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Abstract 

 
Comparative Studies on Human and Canine 

Mammary Carcinoma Biomarkers by Omics Data 

Analysis 

 

 

 

 

Breast cancer (BC), known as mammary gland carcinoma (MGC), is one of the 

most frequently diagnosed malignancies among women and canines. Despite the 

countless efforts to fully understand and overcome such cancer-related anomalies, 

various subtypes originating from specific regions of the mammary organ 

generates infrequent yet menacing malignancies. Comparative medicinal 

approach has emerged as a powerful method to approach human BC research on 

a different perspective. Together with various omics technologies, the paradigm 

for BC treatment has become shifting toward evidence-based large-scale 

discovery studies which leads to biomarkers specifically expressed in distinct BC 

subtypes. The incorporation of diverse omics data spreading from next 

generation sequencing (NGS) assembled epigenetic transcripts to mass 

spectrometry (MS) derived proteomics stands as a solution for breast malignancy 

differential diagnosis and drug target discovery. The research is divided into 

three chapters for detailed description. 
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CHAPTER Ⅰ describes sequenced RNA-seq data from ten pairs of canine 

mammary gland carcinoma (MGC) and matching adjacent normal tissues to 

identify canine MGC-associated transcriptomic signatures. Breast cancer (BC) 

and MGC is the most frequently diagnosed and leading cause of cancer-related 

mortality in both women and canines. To better understand both canine MGC- 

and human BC-specific genes which express similar transcriptomic profiles, we 

sequenced RNAs obtained from eight pairs of carcinomas and adjacent normal 

tissues in dogs. By comprehensive transcriptome analysis, 351 differentially 

expressed genes (DEGs) were identified in overall canine MGCs. Based on the 

DEGs, comparative analysis revealed correlation existing among the three 

histological subtypes of canine MGC (ductal, simple, and complex) and four 

molecular subtypes of human BC (HER2+, ER+, ER & HER2+, and TNBC). 

Eight DEGs shared by all three subtypes of canine MGCs had been previously 

reported as cancer-associated genes in human studies. Gene ontology (GO) and 

pathway analyses using the identified DEGs revealed that the biological 

processes of cell proliferation, adhesion, and inflammatory responses are 

enriched in up-regulated MGC DEGs. In contrast, fatty acid homeostasis and 

transcription regulation involved in cell fate commitment were down-regulated 

in MGC DEGs. Moreover, correlations are demonstrated between upstream 

promoter transcripts and DEGs. Canine MGC- and subtype-enriched gene 

expression allows us to better understand both human BC and canine MGC, 
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yielding new insight into the development of biomarkers and targets for both 

diseases. The resemblance in transcriptomic profiles will present canines as a 

suitable comparative model for MGC studies and its application to human BC.   

 

CHAPTER Ⅱ focuses on the identification and treatment specific to a BC 

subtype. Among many types of BCs, triple-negative breast cancer (TNBC) has 

the worst prognosis and the least cases reported. To gain a better understanding 

and a more decisive precursor for TNBC, two major histone modifications, an 

activating modification H3K4me3 and a repressive modification H3K27me3, 

were analyzed using data from normal breast cell lines against TNBC cell lines. 

The combination of these two histone markers on the gene promoter regions 

showed a great correlation with gene expression. A list of signature genes was 

defined as active (highly enriched H3K4me3), including NOVA1, NAT8L, and 

MMP16, and repressive genes (highly enriched H3K27me3), IRX2 and ADRB2, 

according to the distribution of these histone modifications on the promoter 

regions. To further enhance the investigation, potential candidates were also 

compared with other types of BC to identify signs specific to TNBC. RNA-seq 

data was implemented to confirm and verify gene regulation governed by the 

histone modifications. Combinations of the biomarkers based on H3K4me3 and 

H3K27me3 showed the diagnostic value area under the curve (AUC) 93.28% 

with P-value of 1.16e-226. The results of this study suggest that histone 

modification analysis of opposing histone modifications may be valuable toward 
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developing biomarkers and targets for TNBC and further provide understanding 

the overall regulation derived by epigenetic modifications. 

 

CHAPTER Ⅲ consists of biomarker study implemented from canine 

mammary tumors to human BCs. While biomarkers are continuously discovered, 

specific markers representing the aggressiveness and invasiveness of BC are 

lacking compared to classification markers. In this study, samples from canine 

mammary tumors were used in a comparative approach. An extensive 36 

fractions of both canine normal and MGC plasma was subjected to high-

performance quantitative proteomics analysis. Among the identified proteins, 

Lecithin-Cholesterol Acyltransferase (LCAT) was discovered to be selectively 

expressed in mixed tumor samples, which represents an aggressive developed 

stage of cancer, possibly highly metastatic. With further multiple reaction 

monitoring (MRM) and western blot validation, we discovered that the LCAT 

protein is an indicator of aggressive mammary tumor. Interestingly, we also 

found that LCAT is overexpressed in high grade and lymph node positive BC in 

silico data. We also demonstrated that LCAT is highly expressed in the sera of 

advanced stage human BCs within the same classification. In conclusion, we 

identified a possible common plasma protein biomarker, LCAT, that is highly 

expressed in aggressive human BC and canine mammary tumor.  

 

Keyword: Breast cancer, Comparative medicine, Biomarker, Epigenetics, 

Proteomics 

 

Student Number: 2016-21753 
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BACKGROUND 

 

 

 

1. BREAST CANCER 

Cancer has been a constant threat in Korea. To make matters worse, cancer 

incidence and mortality are rapidly growing within the Korean society. Cancer 

accounts for one in four deaths and more than 200,000 new cancer cases were 

diagnosed in 2015 (Jung et al., 2018). Statistics measured in Korea reported the 

incidence rate increased significantly by 3.6% annually from 1999 to 2011 with 

229,180 and 78,194 Koreans newly diagnosed and died from cancer in 2016 (Table 

B-1). Despite the decreased incidence and mortality rate from recent years, cancer 

will still remain as a major cause of human casualties (Jung et al., 2019). 

 

BC stands as the second most frequent type among cancers and the most 

common cancer among women that accounted for 24.2% of the cases (Bray et al., 

2018). According to the statistics report dating back from 1930 to 2017, cancer 

originating from female reproductive organs tents to decrease with the exception of 

BC which is now the leading occurring cancer among women (Fig. B-1). 

Furthermore, cancer incidence during childhood (ages birth-14 years) is 

approximately 10% higher in males than in females (18.2 vs 16.4 per 100,000 
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population), whereas during early adulthood (ages 20-49 years) it is 77% higher in 

females (203.4 vs 114.9 per 100,000 population), largely because of BC incidence 

in young women (Siegel et al., 2020) 

 

During the course of cancer study, BC research, therapy, and prediction has been 

constantly reported by various groups. However, numerous cases of symptoms and 

subtypes are still far from complete comprehension. Diagnosis is largely depended 

on computer imaging techniques such as X-rays and computed tomography (CT) 

scans. Certain types of BC prediction approaches are done with minimal precursors 

such as estrogen (ER), progesterone (PR), and HER2 expression. The need for 

additional markers which can pinpoint or predict specific BC types remains.
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Table B-1. Cancer incidence, deaths, and prevalence by sex in Korea, 2016 

SITE/TYPE NEW CASES DEATHS PREVALENT CASESA) 

Both 

sexes 

Men Women Both sexes Men Women Both sexes Men Women 

ALL SITES 229,180 120,068 109,112 78,194 48,208 29,986 1,739,951 764,103 975,848 

LIP, ORAL CAVITY, AND 

PHARYNX 

3,543 2,527 1,016 1,203 909 294 23,639 15,847 7,792 

ESOPHAGUS 2,499 2,245 254 1,524 1,379 145 9,777 8,780 997 

STOMACH 30,504 20,509 9,995 8,264 5,318 2,946 273,701 181,234 92,467 

COLON AND RECTUM 28,127 16,672 11,455 8,358 4,659 3,699 236,431 140,852 95,579 

LIVER 15,771 11,774 3,997 11,001 8,044 2,957 64,864 48,666 16,198 

GALLBLADDERB) 6,685 3,490 3,195 4,408 2,248 2,160 21,011 10,776 10,235 

PANCREAS 6,655 3,384 3,271 5,614 2,901 2,713 10,595 5,502 5,093 

LARYNX 1,167 1,101 66 334 310 24 10,532 9,914 618 

LUNG 25,780 17,790 7,990 17,963 13,324 4,639 76,544 47,438 29,106 

BREAST 21,839 92 21,747 2,472 16 2,456 198,006 743 197,263 

CERVIX UTERI 3,566 - 3,566 897 - 897 52,758 - 52,758 

CORPUS UTERI 2,771 - 2,771 313 - 313 23,135 - 23,135 
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OVARY 2,630 - 2,630 1,204 - 1,204 19,509 - 19,509 

PROSTATE 11,800 11,800 - 1,745 1,745 - 77,635 77,635 - 

TESTIS 288 288 - 14 14 - 3,204 3,204 - 

KIDNEY 5,043 3,410 1,633 1,032 724 308 38,836 26,161 12,675 

BLADDER 4,361 3,488 873 1,389 1,029 360 33,543 27,347 6,196 

BRAIN AND CNS 2,015 1,104 911 1,327 720 607 11,116 5,734 5,382 

THYROID 26,051 5,538 20,513 346 104 242 379,946 65,336 314,610 

HODGKIN LYMPHOMA 312 202 110 51 33 18 2,807 1,770 1,037 

NON-HODGKIN 

LYMPHOMA 

4,766 2,766 2,000 1,820 1,068 752 30,093 17,130 12,963 

MULTIPLE MYELOMA 1,535 837 698 1,010 527 483 5,798 3,050 2,748 

LEUKEMIA 3,416 1,991 1,425 1,842 1,025 817 20,751 11,553 9,198 

OTHER AND ILL-DEFINED 18,056 9,060 8,996 4,063 2,111 1,952 115,720 55,431 60,289 

Source: Cancer statistics, 2016, Statistics Korea. 

Adapted from Jung et al., 2019 
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Figure B-1. Ten Leading Cancer Types for the Estimated New Cancer Cases 

and Deaths by Sex, United States, 2020. 

Estimates are rounded to the nearest 10 and exclude basal cell and squamous cell 

skin cancers and in situ carcinoma except urinary bladder. Ranking is based on 

modeled projections and may differ from the most recent observed data. 

Adapted from Siegel et al., 2020 
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2. COMPARATIVE MEDICINE 

Comparative medicine is an experimental approach that implements animal models 

of both human and genetically close animal disease in translational and biomedical 

research (Bradley, 1927). It also substitutes as a means to relate and compare 

genetic, epigenetic, and other biological characteristics among species to better 

understand the mechanism and expression profiles of human and animal disease. 

This method further progress into comparative oncology, which integrates the 

study of oncology in mammals and implement the biologic, diagnostic and 

therapeutic knowledge to human cancer for a novel approach (Paoloni and Khanna, 

2007). The mouse has been the most frequently used model for genetic studies in 

human oncology for it had a small size, average lifespan of two years, short 

gestation period and inexpensiveness in contrast to other mammals but has shown 

significant limitations and inconsistency when used to study complex human 

diseases (Gondo et al., 2009, Seok et al., 2013). 

 

Among the animal models, canines have emerged as a strong comparative model 

due to many advantages as they experience spontaneous disease, genes similar to 

human, five to seven-fold accelerated ageing, and respond to treatments similarly 

as humans (Sultan and Ganaie, 2018). Similar to humans, cancer is the leading 

cause of death in canines of greater than 10 years of age (Gardner et al., 2016). The 

incidence of mammary tumors in the bitch is approximately three times greater 

than that in women (Owen, 1979). Canine MGC are biologically heterogeneous 
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neoplasms offering several ways to classify such tumors on the basis of 

histopathological characteristics or expression of molecular markers (Sleeckx et al., 

2011). Despite the appearance of histo-morphological variations between human 

and canine BC, due to various prognostic indicators, a number of studies have 

reported that there are significant similarities regarding molecular marker 

expression, hormone dependency and cancer phenotypes (Ahern et al., 1996, 

Misdorp, 1964). Recently, in more refined studies employing 

immunohistochemical approaches and based on the characteristic expression 

patterns of ESR1, PR and EGFR (ERBB1/HER1, ERBB2/HER2, ERBB3 and 

ERBB4), human-like breast cancer phenotypes for canine MGCs have been 

developed and classified as luminal A, luminal B, HER2 positive, and triple-

negative (basal-like) (Kabir et al., 2017, Sassi et al., 2010). Such standard 

classification therefore strongly supports canine MGC as valuable intermediate 

models for human BC that should be well-placed for developing diagnostic and 

treatment strategies (Lutful Kabir et al., 2015). Because canine MGCs are 

considered predictive models for human BC (Vail and MacEwen, 2000), 

similarities in genetic alterations and cancer predisposition between humans and 

dogs have raised interest even further. A large number of studies have demonstrated 

that canine MGCs have many similarities in molecular and clinical features with 

human BC. Many genetic/epigenetic/tumor biology traits that are most frequently 

associated with MGC have been identified and comparative gene expression 

analysis has revealed a significant similarity in the canine and human genes 
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associated with MGC development (Uva et al., 2009). Upon genomic comparison, 

analysis of deregulated gene sets or cancer signaling pathways showed that a 

significant proportion of orthologous genes are comparably up- and down-

regulated in both human and canine BC. Prominent oncogenic pathways and 

related genes, such as PI3K/AKT, KRAS, MAPK, Wnt, β-catenin, BRCA2, ESR1, 

and P-cadherin, are commonly up-regulated while representative tumor suppressive 

pathways, such as p53, p16/INK4A, PTEN, and E-cadherin, are down-regulated in 

human and canine BC (Klopfleisch and Gruber, 2009, Lutful Kabir et al., 2013, 

Uva et al., 2009). Furthermore, chromosomal studies via molecular and cytogenic 

mapping of the INKA/ARF locus depicts high resemblance between human 

chromosome 9 and canine chromosome 11 (Fig. B-2). 
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Figure B-2. Frequently deleted regions in human chr. 9p21 and orthologous 

canine chr. 11 

Relative molecular and cytogenetic mapping of the INKA/ARF locus and closely 

related genes with their positions on human and canine chromosome 9 and 11, 

respectively. The regions at human chromosome 9 and canine chromosome 11 that 

are frequently deleted in cancers are completely orthologous to each other. The 

molecular mapping shows the exact chromosomal position of these genes 

extrapolated from the NCBI map view of each chromosome represented by the 

current human and canine annotation from releases 106 and 103, respectively. The 

red and blue arrows indicate the transcriptional orientation of genes in the human 

and dog chromosomes, respectively. Transcription of genes from the “+ strand” is 
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indicated by down arrows and from the “– strand” by up arrows. (CFA = Canis 

lupus familiaris; HSA = Homo sapiens; Chr. = Chromosome). 

Adapted from Kabir et al., 2016 
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3. BIOMARKERS 

Biomarker, a portmanteau of “biological marker”, is a combined term of 

measurement that can define the normal and abnormal status of an individual. 

Biomarkers have been recently emerged as a strong means of diagnostic and 

therapeutic approach. The discovery of predictive biomarkers will save time and 

money, and lead to minimal invasion into human organs. Biomarkers include any 

type of hallmark of physiological states, such as expression profiles, images, genes, 

or proteins (Dalton and Friend, 2006). An even broader definition takes into 

account not just incidence and outcome of disease, but also the effects of 

treatments, interventions, and even unintended environmental exposure, such as to 

chemicals or nutrients (Strimbu and Tavel, 2010).  

 

Among the variety, genetic biomarkers have proven useful not limited to 

diagnose and designate appropriate treatments. Combinations of marker 

expressions further lead to characterization and classification in certain BCs. The 

most common genomic biomarkers used today are the prognostic markers designed 

to classify BC in to five distinctive subtypes; Luminal A, Luminal B (HER2 

positive), Luminal B (HER2 negative), HER2 positive (non-luminal), and triple-

negative breast cancer (TNBC) for an efficient way of diagnosis and therapy (Table 

B-2). Recent reports studying differential expression patterns of genomic 

transcriptomes under certain malignant conditions seek to identify more 

biomarkers that will be more acceptable to understand and characterize BC. 
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As the human understanding of genomics spread to proteomics and various 

methods that can identify protein or protein derived modifications develop, protein 

biomarkers also emerged as a powerful indicator for BC research. The advantages 

of proteins as a class of biomarkers include their enormous diversity, dynamic 

turnover and secretion into blood and bodily fluids. There is an estimated number 

of 20,0300 genes (Legrain et al., 2011), 40,000 unique metabolites (Wishart et al., 

2013), ~100,000 mRNA transcripts, and up to 1.8 million of different proteoforms, 

if posttranslational modifications (PTMs) are considered (Jensen, 2004). Such 

enormous diversity in proteoforms increases the chances to identify a marker, or a 

panel of markers, for each disease state. Since protein sequences may also reflect 

some genomic variations, a single instrumentation platform of mass spectrometry 

can measure not only changes in protein abundance but also genomic and 

transcriptomic variations, such as mutant proteins (Drabovich et al., 2015).
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Table B-2. Therapy recommendations of the recent St. Gallen Consensus 8. (ET: 

endocrine therapy; CT: chemotherapy; Anti-HER2: anti-HER2 therapy). 

Subtype Therapy 

Luminal A ET 

Luminal B (HER2 negative) ET ± CT (“after risk assessment”) 

Luminal B (HER2 positive) CT + Anti-HER2 + ET 

HER2 positive (non-luminal) CT + Anti-HER2 

Triple negative CT 

ET: endocrine therapy; CT: chemotherapy; Anti-HER2: anti-HER2 therapy. 

Adapted from Schmidt et al.,2012 
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4. NEXT GENERATION SEQUENCING 

Next generation sequencing (NGS) is a term that can be described as a method to 

determine the nucleic acid sequence of a particular sample in a rapid and cost-

efficient way. Early DNA sequences were obtained in the early 1970s by using 

laborious methods based on two-dimensional chromatography (Padmanabhan et al., 

1974). However, as the technology to process high through-put sequencing were 

enhanced, the total storage and quality of the DNA sequence data were obtained 

both time and cost efficiently. In current times, there are a number of different NGS 

platforms using different sequencing technologies. The common mechanism of all 

NGS platforms is to perform sequencing of millions of small fragments of DNA in 

parallel. Bioinformatics analyses are used to piece together these fragments by 

mapping the individual reads to the human reference genome. Each of the three 

billion bases in the human genome is sequenced multiple times, providing high 

depth to deliver accurate data and an insight into unexpected DNA variation (Fig. 

B-3). NGS can be used to sequence entire genomes or constrained to specific areas 

of interest, including all 22,000 coding genes (a whole exome) or small numbers of 

individual genes (Behjati and Tarpey, 2013). 

 

Among the methods derived from NGS, RNA sequencing (RNA-seq) is a 

particular technology-based sequencing technique to reveal the presence and 

quantity of RNA in a biological sample at a given moment, analyzing the 

continuously changing cellular transcriptome (Chu and Corey, 2012). RNA-Seq 
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facilitates the ability to look at alternative gene spliced transcripts, post-

transcriptional modifications, gene fusion, mutations/SNPs and changes in gene 

expression over time, or differences in gene expression in different groups or 

treatments (Maher et al., 2009). In addition to mRNA transcripts, RNA-Seq can 

look at different populations of RNA to include total RNA, small RNA, such as 

miRNA, tRNA, and ribosomal profiling (Ingolia et al., 2012). RNA-Seq can also 

be used to determine exon/intron boundaries and verify or amend previously 

annotated 5' and 3' gene boundaries (Fig. B-4). 
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Figure B-3. Example of next generation sequencing (NGS) raw data-BRAF 

V600E mutation in melanoma. 

The mutation was found by our group in 2002 as part of several year-long efforts to 

define somatic mutations in human cancer using Sanger sequencing, prior to the 

advent of NGS. 

Adapted from Behjati et al., 2013 
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Figure B-4. Summary of RNA-Seq. 

Within the organism, genes are transcribed and (in a eukaryotic organism) spliced 

to produce mature mRNA transcripts (red). The mRNA is extracted from the 

organism, fragmented and copied into stable ds-cDNA (blue). The ds-cDNA is 

sequenced using high-throughput, short-read sequencing methods. These sequences 

can then be aligned to a reference genome sequence to reconstruct which genome 

regions were being transcribed. This data can be used to annotate where expressed 

genes are, their relative expression levels, and any alternative splice variants. 

Adopted from Shafee et al., 2017 
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5. MASS SPECTROMETRY-BASED PROTEOMICS 

Edman degradation, which is used to sequence a protein, relies on the identification 

of amino acids that have been chemically cleaved in a stepwise fashion from the 

amino terminus of the protein and requires much expertise (Steen and Mann, 2004). 

In 1996, Mann and colleagues showed that MS could identify gel-separated 

proteins using a much smaller quantity of the sample than was required by Edman 

degradation, a method of sequencing amino acids in a peptide, and can fragment 

the peptides in seconds instead of hours or days (Wilm et al., 1996). Currently, MS-

based proteomics has proliferated, and many biologists have access to a service to 

which they can submit a sample and are handed back a list of proteins that have 

been identified by MS. 

 

To measure biomolecules, which can be peptides or proteins, by MS, analytes 

are ionized via electrospray ionization (Uva et al., 2009) or matrix-assisted laser 

desorption/ionization (MALDI) (Fig. B-5), and their mass is measured by 

following their specific trajectories in vacuum system. Ionized molecules are 

recorded as values on the m/z scale, which has units of mass per charge (Steen and 

Mann, 2004). 

 

Having determined the m/z values and intensities of all the peaks in the spectrum, 

the mass spectrometer then proceeds to obtain sequence information about these 

biomolecules. This process is called MS/MS for it couples two stages of MS. In 
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tandem MS, a particular biomolecule ion is isolated, energy is imparted by 

collisions with an inert gas, and this energy causes the analyte to break apart. A 

mass spectrum of the resulting fragments is then generated (Fig. B-5). 

 

In general proteomics, the mass spectrometer does not measure proteins, but 

peptides. First, peptides can be easy to handle and are stable to introduce MS. 

Second, the sensitivity of MS for peptides is much better than that for proteins, and 

the protein might be processed and modified such that the combinatorial effect 

makes determining the masses of the numerous resulting isoforms impossible. 

Third, the sequence of a peptide is easy to predict, unlike that of a mature protein is 

not. Finally, MS is most efficient at obtaining sequence information from peptides 

that are up to ~20 residues long, rather than from whole proteins peptides (Steen 

and Mann, 2004). The most highly sequence-specific proteases are used to convert 

proteins to peptides, such as trypsin.
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Figure B-5. General workflow of gel-based proteomics.  

(a) Proteins are extracted from bio specimen. (b) Extracted protein mixture from 

biosamples separated by 2-DE or SDS-PAGE. In most case, proteins are quantified 
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on a gel. Using the quantitative difference from DIGE, target spots can be selected 

from 2-DE. (c) Excised gel pieces are trypsinized and resulting peptides are 

collected. (d) Peptides are ionized via MALDI or nano ESI and are inducted to MS. 

(e) Peptide is measured in MS spectrum, followed by selected and isolated, 

subsequently fragmented to get the sequence information from MS/MS spectrum. 

Adopted from Kim et al., 2019 
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INTRODUCTION 

 

 

 

Human breast cancer (BC) is one of the most common cancers in women and is a 

leading cause of death worldwide, accounting for 8.8 million deaths in 2015 ("Who 

Fact Sheet")(WHO Fact Sheet, 2018). Approximately 80% of diagnosed BCs are 

invasive and heterogeneous, consisting of up to 21 distinct histological subtypes 

(Sgroi, 2010). Current biological markers used for evaluating molecular subtypes 

of BC include hormone receptors for estrogen or progesterone, and HER2+/−, 

indicating levels of human epidermal growth factor receptor 2 (HER2) (Onitilo et 

al., 2009). Although large-scale cohort studies using gene expression profiling 

techniques, such as next-generation sequencing (NGS), have provided better 

understanding of the molecular regulation of BC, a limited number of studies have 

been performed in rare and aggressive subtypes of human BC, such as invasive 

ductal carcinoma, myoepithelial complex type BC, and inflammatory BC 

(Koczkowska et al., 2016, Li et al., 2017, Ratajska et al., 2015). 

 

Canine mammary gland carcinoma (MGC) is a well-known animal model for 

human BC, as there are a number of benefits to studying human BC using dogs  

(Salas et al., 2015). Existing similarities between these species have been reported 
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with respect to genetic, biological, anatomic, and clinical features (Gurda et al., 

2017, Liu et al., 2014). Additionally, dogs hold a unique status in human BC 

studies with respect to epigenetic aberrations since both dogs and humans, 

especially companion dogs and owners, share neighborhood environments and 

might be exposed to the same carcinogens (Romagnolo et al., 2016). Moreover, in 

contrast to human BC, complex/mixed MGC consisting of epithelial masses 

containing regions of myoepithelial components comprises the majority of MGC in 

dogs (Im et al., 2014). Thus, since the dog reference genome was unveiled in 2005, 

a number of comparative analyses using transcriptome data in independent studies 

have been performed (Klopfleisch et al., 2011, Król et al., 2009, Lindblad-Toh et 

al., 2005a). However, the results of these studies have been relatively inconsistent 

and only few biomarkers have been identified for canine MGC as well as human 

BC (Campos et al., 2012, Vinothini et al., 2009). 

 

In the last few decades, high-throughput sequencing technology in medical 

oncology has generated a large number of databases including genetic mutations, 

gene expression profiles, and epigenetic aberrations associated with diverse cancer 

types (Kamps et al., 2017, Khotskaya et al., 2017). Many gene expression profiling 

studies on human BC carcinogenesis have also been performed with large BC 

patient cohorts and have reported many differentially expressed genes (DEGs) and 

their related cancer pathways (Guo et al., 2017, Li et al., 2016a). 
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Noncoding RNAs (ncRNAs) have become one of the most highlighted 

transcriptomic features in diverse organisms, increasing our understanding of the 

complexity of transcriptomic regulation. More than several tens of thousands of 

ncRNAs have been identified and have been functionally grouped within human 

and model organisms, such as yeast and mouse (Ferrero et al., 2018, Liang et al., 

2018, Schwarzer et al., 2017). Particularly in human BC, a list of microRNAs 

(miRNAs) are considered to have crucial roles in cancer development and 

metastasis, and other studies have shown that miRNA expression profiles of each 

BC subtype are different (Haakensen et al., 2016, Huo et al., 2016). Moreover, a 

cluster of oncogenic long ncRNAs (lncRNA) are up-regulated in human BC and 

seem to be involved in regulating immune system activation (Xu et al., 2017). 

Additional interesting ncRNAs, including those recently determined and confirmed 

in existence, are known as promoter upstream transcripts (PROMPTs)  (Preker et 

al., 2011). Interestingly, the presence of PROMPTs may be positively correlated 

with gene activity. Although PROMPTs are not widespread regulators of gene 

expression, their existence is tightly regulated by exosome activity, and the analysis 

of PROMPTs as a part of regulatory mechanisms of transcription in cancer might 

be important to better understand MGC. 

 

In this study, we sequenced total RNAs from ten pairs of canine MGC and 

matching adjacent normal tissues to identify canine MGC-associated 

transcriptomic signatures. We further tested whether these signatures can 

distinguish canine MGCs from normal tissue using principal component analysis 
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(PCA) and clustering. To better understand both canine MGCs and human BC, we 

subsequently extracted a group of canine MGC-associated KEGG pathways and 

gene ontology (GO) terms. PROMPTs were then suggested as a part of 

transcriptional regulation mechanisms in cancer. This study will provide new 

insights into biomarker and target development for human BC as well as canine 

MGC. 
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MATERIALS AND METHODS 

 

 

 

 

Specimens 

This study was reviewed and approved by the Seoul National University 

Institutional Animal Care and Use Committee (IACUC# SNU-170602-1). Ten dogs 

diagnosed with mammary gland tumor were enrolled in this study. Mammary gland 

tumors and matching adjacent normal tissues were obtained by excisional surgery. 

Clinical features of eight dogs analyzed in the study are listed in Table S1. Eight 

pairs of specimens consisting of two simple-, three ductal-, and three complex-

subtypes, from diverse breeds including Maltese, Dachshund, and Cocker Spaniel, 

were processed further for RNA-seq. For total RNA-seq, all tissue samples were 

immersed in RNAlater solution (Qiagen, Valencia, CA, USA) overnight at 4 ◦C, 

and stored at −80 ◦C after removal from solution. 

 

RNA Isolation and Total RNA Sequencing 

Total RNA was extracted from mammary gland tumors and matched to normal 

tissues using the RNeasy Mini plus kit (Qiagen, Valencia, CA, USA). Pulverization 

for sample homogenization was performed with liquid nitrogen before RNA 

isolation according to the manufacturer's instructions. The RNA quality was 
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assessed by analysis of 18S and 28S rRNA band integrity on RNA 6000 Nano Kit 

(part # 5067-1511) using an Agilent Bioanalyzer (Agilent, Santa Clara, CA, USA). 

After ribosomal RNA (rRNA) depletion from 2 µg of total RNA, libraries were 

constructed using the TruSeq Stranded Total RNA Sample Preparation Kit (RS-

122-9007) (Illumina, San Diego, CA, USA) according to the manufacturer’s 

guideline. The cDNA library quality was evaluated electrophoretically with an 

Agilent DNA 1000 Kit (part # 5067–1504) (Agilent, Santa Clara, CA, USA). 

Subsequently, libraries were sequenced using Illumina HiSeq2500 that were set to 

rapid-run mode. Cluster generation, followed by 2 × 100 cycle sequencing reads, 

separated by paired-end turnaround, were performed on the instrument using HiSeq 

Rapid SBS Kit v2 (FC-402-4021) and HiSeq Rapid PE Cluster Kit v2 (PE-402-

4002) (Illumina, San Diego, CA, USA). Image analysis was performed using the 

HiSeq control Software version 2.2.58. The raw data were processed, and base-

calling was performed using the standard Illumina pipeline (CASAVA version 1.8.2 

and RTA version 1.18.64). A summary of statistics of the RNA-seq data is listed in 

Table S2. 

 

 

Primary Analysis of RNA-seq Data (Mapping and Quantification) 

Initially, transcript integrity was analyzed and transcript integrity number (TIN) 

was in Table S3. Reads were aligned with the dog reference genome (CanFam 3.1, 

2011) using Hiset2 (ver.2.1.0) with cufflink option. Mapped reads were then 
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assembled and counted using Cuffquant (ver. 2.2.1) and our GTF annotation file 

pre-built with additional transcripts information obtained from 13 different organs 

based on the Ensembl database (Canis lupus familiaris 3.1.91 gene set). Defaults 

were used for all other parameters. 

 

Differentially Expressed Gene (Lindblad-Toh et al.) Analysis 

For the differential gene expression analysis, three subtypes of MGC (simple, 

complex, and ductal) and three breeds, as well as all eight MGCs and matching 

normal tissues, were grouped and compared using Cuffdiff (ver.2.2.1). Genes with 

expression differences of 2-fold increases or decreases and p < 0.01 were evaluated 

as DEGs and were further analyzed. Fragments per kilobase of exon per million 

fragments mapped (FPKM) were extracted for all groups, and Plotly package in R 

was employed to visualize statistically significant changes among the comparisons. 

Venn diagrams were created using Venny 2.1 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html). 

 

Correlation Analysis, Clustering and Principal Component Analysis (PCA) 

FPKM values were extracted from a list of DEGs enriched in three subtypes of 

MGCs. All the FPKM values were log2 transformed to rank correlations among 

three subtypes of MGCs. Spearman rank correlation was calculated using Perseus 

ver.1.5.8.5 and visualized as Multiscatter plots in Maxquant software package 

(Max Planck Institute of Biochemistry, Munich, Germany). Z-scores were 
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calculated from FPKM and further used for gene clustering. Clustering was 

performed with Kendall clustering method and the heat map was visualized using 

“pheatmap” in R package. PCA was performed by using ClustVis 

(https://biit.cs.ut.ee/clustvis/) (Metsalu and Vilo, 2015). 

 

Comparative Gene Expression Analysis among Four Subtypes of Human BC and 

Three Subtypes of Canine MGC 

RNA-seq data for four molecular subtypes (HER2+, ER+, ER&HER2+, and 

TNBC) were retrieved from the project (PRJNA305054) in the National Center for 

Biotechnology Information (NCBI). The expression of orthologous genes, matched 

with subtype-specific DEGs and summarized in Table S6A, were compared in 

Spearman correlation and visualized in scatter plot using SPSS program. On the 

contrary, correlation in gene expression between canine MGC and human BC was 

computed using the list of genes in PAM50 and Oncotype DX. 

 

Pathway Enrichment Analysis and Gene Ontology (GO) Analysis 

To better understand the biological significance of the identified DEGs, we 

performed GO, gene network analysis, and pathway enrichment analysis. GO was 

analyzed with overall MGCs-enriched and subtype-enriched DEGs using the web-

based functional annotation tool DAVID 6.7 (https://david.ncifcrf.gov) and ClueGo, 

provide by Cytoscape App Store (apps.cytoscape.org). Three aspects, including 

biological process (BP), molecular function (MF), and cellular component (CC), 

https://biit.cs.ut.ee/clustvis/
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were surveyed and the highest enrichment aspect, BP in this study, was 

documented in detail. GO terms and gene networks were visualized by ClueGo 

(cytoscape.org) (Lotia et al., 2013). For all GO and KEGG pathway analysis, p < 

0.01 was considered as significant. 
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RESULTS 

 

 

 

 

RNA Sequencing in Mammary Gland Carcinomas and Matching Adjacent 

Normal Dog Tissues 

Ten canine MGCs were enrolled in this study as pairs of MGCs and matching 

adjacent normal tissues which were collected by veterinarians during surgery and 

pathologically tested. Animal protocols were approved by SNU IACUC 

(approval#SNU-170602-1, 26 July 2016). Out of ten dogs, two dogs were excluded 

from this study due to diagnosis of benign adenoma and large differences in the 

phylogenetic tree of dog breeds. To increase the reliability of the RNA-seq data, 

each subtype consists of at least two specimens as biological replicates (three 

specimens in ductal, three in complex, and two in simple type). Ultimately, eight 

pairs of data of MGC and normal tissues were further analyzed. 

 

Overall, 625.4 and 672.4 million paired-end and strand-specific reads from dog 

MGC and adjacent normal tissues were sequenced, respectively. The transcript 

integrity number (TIN) was computed to measure RNA degradation level. Both 

raw read quality scores (Q30) and median TINs for all the samples were greater 

than 93.17% and 65%, respectively. Before sequence alignment, gene transfer 
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format (GTF) of Canfam3.1 reference annotation file was updated with our dog 

transcript library consisting of 10,792 novel transcripts with information obtained 

from 13 major dog organs. Out of 1.29 billion reads, more than 96.82% reads were 

mapped onto Canfam3.1, the canine reference genome reinforced by our annotation 

file. Unique transcripts where the regions had never been annotated in dog were 

considered “novel”. Overall, in a total of eight pairs of transcriptome, the number 

of transcripts identified with both novel and reference annotations were slightly 

higher in the adjacent normal tissues (5015 new and 15,602 ref genes) than in the 

MGC tissues (4683 new and 15,003 ref genes) (Fig. 1-1). 

 

 

 

Figure 1-1. Transcript expression found in eight pairs of mammary gland 

carcinomas (MGCs) and matching adjacent normal tissues. 

Ref: Canfam3.1 reference annotation. 
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Identification of DEGs in Canine MGCs and Their Subtypes 

For the differentially expressed gene (Lindblad-Toh et al.) analysis, four 

comparisons were performed between eight pairs of MGCs and matching adjacent 

normal tissues and in three subtypes (simple, complex and ductal). DEGs with a p-

value < 0.01 and changes greater than 2-fold were determined for each comparison. 

Cuffdiff analysis identified 350 DEGs, of which 132 and 218 genes were up- and 

down-regulated, respectively, in a comparison of the eight canine MGCs and 

matching adjacent normal tissues. Hierarchical clustering with Kendall correlation 

matrix of the 350 DEGs successfully distinguished MGCs and matching adjacent 

normal in a heat map analysis (Fig. 1-2A). In total, 454 DEGs (178 up- and 276 

down-regulated), 226 DEGs (117 up- and 109 down-regulated) and 171 DEGs (66 

up- and 105 down-regulated) were identified as subtype-specific DEGs for 

complex, ductal, and simple MGCs respectively. Hierarchical clustering with these 

DEGs successfully separated MGC from normal again (Fig. 1-2B). 
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Figure 1-2. Heat map and hierarchical clustering of mammary gland 

carcinoma (MGCs) and matching adjacent normal tissues. 

(A) in eight pairs and (B) in three subtypes of MGCs (complex, simple, and ductal). 

Eight specimens were labeled with N (normal) and C (Jung et al.). The distance 

metric used for clustering was Kendall correlation, while the linkage method used 

was average linkage. 
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Overall DEGs were summarized and visualized using Venn diagram and Volcano 

plots (Fig. 1-3). The top five up-/down-DEGs were labeled in Volcano plots (Fig. 

1-3) and are listed in Table 1. Out of 851 DEGs, only 16 genes, 1.6% of total DEGs, 

were shared by all three subtypes, indicating that these three subtypes might have 

unique RNA expression profiles (Fig. 1-4A). Subsequently, correlations among 

DEG profiles in these three subtypes were tested and are shown in scatter plots (Fig. 

1-4B). All correlation coefficients among subtypes of MGC were between 0.7~0.9, 

which can be considered highly correlated. There was little difference between the 

highest correlation (0.849 between ductal and complex subtype) and the lowest 

correlation (0.784 between simple and complex subtype). Thus, each subtype of 

MGC had unique transcription signatures, but overall transcriptome profiles might 

be very similar among MGCs. 
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Figure 1-3. Differentially expressed genes (DEGs) in canine MGCs.  

(A) Volcano plots of DEG content with larger than two-fold changes (log 2 values) 

and p-values < 0.001 for total cancer. (B) Complex. (C) Simple. (D) Ductal. 
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To test whether these DEG signatures represent canine MGCs and/or MGC 

subtypes, we conducted a principal component analysis (PCA). PCA results 

indicated that the first principal component (PC1) explains 34.7% of the variability, 

while PC2 and PC3 explain 13.4% and 10.6% of the variability, respectively, in 

DEGs of all the canine samples. Three PCs only covered ~58% of total variability. 

This might represent the complexity of cancer biology in clinical samples. 

Although these three PCs only covered approximately 58.7% of the total variability 

in the overall comparison of MGC and the adjacent normal tissue, MGC and the 

matching normal samples were successfully distinguished from each other in 

dimensional PCA, illustrated in Fig. 1-4C. Unexpectedly, all eight MGCs were 

tightly grouped, whereas matching normal tissues were more individually variable 

(Fig. 1-4C). 
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Figure 1-4. Computational analysis of canine differentially expressed genes 

(DEGs) 

(A) Venn diagrams illustrating the number of up- and down-regulated DEGs among 

three subtypes of MGC. (B) Scatter plots of DEGs among three subtypes of MGC. 

The Spearman rank correlation based on 555 DEGs was computed by Perseus 

(ver.1.5.8.5) in Maxquant software. (C) Principal Component Analysis (PCA). The 

first three principal components explain ~57% of total variations
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Table 1-1. Top 5 up-/down-DEGs enriched in overall canine MGC and in three subtypes. 

Group Ensembl ID Gene log10(Fold Change) −log10(p-Value) 

Overall 

MGCs 

ENSCAFG00000006046 COL6A5 6.06776 2.37161107 

ENSCAFG00000003825 MATN3 5.14522 4.301029996 

ENSCAFG00000024982 C4BPA 4.5425 2.288192771 

ENSCAFG00000000367 ENPP3 4.10668 4.301029996 

ENSCAFG00000017925 DLK1 4.02563 2.187086643 

ENSCAFG00000016014 KRT26 −11.005 2.381951903 

ENSCAFG00000011986 PLIN1 −10.1163 2.038578906 

ENSCAFG00000023806 KRT25 −10.001 2.869666232 

ENSCAFG00000017661 SERPINA12 −8.16046 2.361510743 

ENSCAFG00000017941 CYP1A2 −8.04964 2.677780705 

Complex 

ENSCAFG00000011534 ACAN 6.56988 2.004364805 

ENSCAFG00000012561 DMBT1 6.33988 4.301029996 

ENSCAFG00000004810 CXCL17 6.13628 2.26760624 

ENSCAFG00000012181 ACTC1 6.08066 3.698970004 

ENSCAFG00000002142 IL1RL1 5.92575 4.301029996 

ENSCAFG00000013694 ADIPOQ −10.343 2.709965389 
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ENSCAFG00000011986 PLIN1 −9.57036 2.314258261 

ENSCAFG00000005266 CIDEC −9.47559 2.356547324 

ENSCAFG00000018828 CIDEA −9.36545 3.397940009 

ENSCAFG00000001672 LEP −8.18516 3.823908741 

Ductal 

ENSCAFG00000009820 NOS1 7.40628 2.769551079 

ENSCAFG00000005458 CLDN10 5.90219 2.853871964 

ENSCAFG00000014345 FN1 5.3764 4.301029996 

ENSCAFG00000002808 TMPRSS11B 5.3535 4.301029996 

ENSCAFG00000008948 LYZF2 5.3447 2.744727495 

ENSCAFG00000023094 MYH3 −10.6876 2.002176919 

ENSCAFG00000018070 DSC1 −10.3628 2.920818754 

ENSCAFG00000023806 KRT25 −10.0193 4.301029996 

ENSCAFG00000015475 DES −9.0685 2.431798276 

ENSCAFG00000011103 NRAP −8.30778 4.301029996 
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Group Ensembl ID Gene log10(Fold Change) −log10(p-Value) 

Simple 

ENSCAFG00000006046 COL6A5 9.15426 2.361510743 

ENSCAFG00000013863 CEMIP 7.65997 2.167491087 

ENSCAFG00000000834 TNFRSF11B 6.89898 3.397940009 

ENSCAFG00000020033 CLEC3A 6.45938 2.200659451 

ENSCAFG00000003825 MATN3 6.0326 2.37675071 

ENSCAFG00000011103 NRAP −10.1506 2.099632871 

ENSCAFG00000014281 PYGM −8.87425 2.296708622 

ENSCAFG00000028609 TNNC2 −8.60343 2.019996628 

ENSCAFG00000008950 LALBA −8.18348 4.301029996 

ENSCAFG00000014842 MYOZ1 −7.72731 2.164309429 
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Correlation in Gene Expression between Four Molecular Subtypes of Human 

BC and Three Histological Subtypes of Canine MGC 

 

Eleven RNA-sequencing data for four molecular subtypes (HER2+, ER+, 

ER&HER2+, and TNBC) were retrieved from the study by Chung W. et al., 

publicly opened project (PRJNA305054) in the National Center for Biotechnology 

Information (NCBI) (Chung et al., 2017). DEGs specific to each canine MGC 

subtype were subjected for correlation analysis. BC with molecular subtype of 

HER2+ showed significant correlation coefficient (r) with all three canine MGC 

subtypes (max r = 0.475 with simple subtype, min r = 0.393 with complex subtype, 

p < 0.01) (Fig. 1-5). ER+ and ER+&HER2+ subtypes showed no correlation with 

‘complex and simple’ and ductal subtype, respectively. Only low levels of 

correlation were found in ER+ with ductal subtype (r = 0.254, p < 0.05) and 

ER+&HER2+ with simple subtype (r = 0.355, p < 0.05). Notably, TNBC has strong 

correlation in both ductal and simple subtypes (r = 0.472 and 0.523, respectively). 

It is interesting because TNBC is usually defined as basal-like and non-basal-like 

types in human BC and the most common histological subtype of TNBC is 

invasive ductal carcinoma. Moreover, the simple subtype showing the highest 

correlation in TNBC expressed KRT5 and MKI67, which has been known and used 

as immunohistochemical markers for basal-like breast cancer and proliferation 

(Jézéquel et al., 2015). Our results indicated that transcriptomic signatures for 

canine MGC subtypes might represent human BC subtypes and provide new 

candidates of biomarkers. We then tested the same analysis oppositely using the 
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gene expression profiles listed in PAM50 and Oncotype DX, but no significant 

correlation was found among subtypes of human BC and canine MGC. 

 

 

 

 

 

Figure 1-5. Scatter plots showing the correlation between molecular subtypes 

of human BCs and histological subtypes of canine MGCs. Different numbers of 

canine MGC subtypes-specific genes were abstracted (Complex: N = 78, Ductal: N 

= 77, and Simple: N = 48). *, ** indicates p < 0.05, p < 0.01, respectively. 
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Gene Ontology (GO) and Network Analysis 

To better understand transcriptomic regulation in canine MGCs, we performed GO 

analysis with DEGs in all MGCs and in each subtype. For GO analysis, only the 

list of DEGs annotated by Ensembl gene name were subjected to ClueGo software 

(ver.2.5.0). Three hundred fifteen out of 350 profiled DEGs were assigned to 88 

GO terms, including 53 biological processes (BP), 18 cellular components, and 18 

molecular function terms. GO terms were mainly categorized into BPs with wide 

distributions and extensive assignments (53 GO terms). BP assignments in up-

regulated DEGs in MGCs were divided into eight groups. 

 

The most prevalent BP group, consisting of eight GO terms, was represented by 

positive regulation of angiogenesis (GO:0045766). This group also included some 

important assignments, such as “cell adhesion mediated by integrin (GO:0033627)” 

and “positive regulation of vasculature development (GO:1904018),” suggesting 

that the biological processes in MGCs were directionally changed to promote 

tumor progression with increased vasculature (Niland and Eble, 2011). In contrast, 

the GO term “release of sequestered calcium ion into cytosol by sarcoplasmic 

reticulum” (GO:001480) represented BP in down-regulated DEGs. This result is 

interesting because association between calcium ion homeostasis and cancerization 

has been reported (Papp et al., 2012). This group consisted of 5 GO terms 

(GO:0003009, GO:0003009, GO:0055002, GO:0048747 and GO:0055008) 

covering 33.3% of total GO terms in down-regulated DEGs (Table 1-2). 
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Figure 1-6. Gene ontology (GO) enrichment analysis for DEGs identified in an 

MGC-specific and subtype-dependent manner. 

(A) GO analysis using DEGs from all three subtype comparisons. Orange bar 

indicates up-regulated GO and dark blue bar represents down-regulated GO. GOID 

enriched in each comparison of (B) Complex type, (C) Ductal type, and (D) Simple 

type of MGC.



 

 47 

 

Table 1-2. Gene ontology (GO) terms biological processes (BP) of up- and down-regulated DEGs in canine MGCs. 

Up-Regulated DEGs 

GO 

groups 
GO ID GO Term 

% 

Assoc. 

Genes 

No. 

Genes 
Associated Genes Found 

0 

:1904018 
positive regulation of 

vasculature development 
4.58 6 [CHI3L1, CXCL8, FOXC2, SERPINE1, SFRP2, TF] 

:0045766 
positive regulation of 

angiogenesis 
4.8 6 [CHI3L1, CXCL8, FOXC2, SERPINE1, SFRP2, TF] 

:0031638 zymogen activation 4.07 5 [PLAU, S100A8, SERPINE1, SERPINE2, TF] 

:0033627 cell adhesion mediated by integrin 5.26 4 [FOXC2, PLAU, SERPINE1, SFRP2] 

:0033628 
regulation of cell adhesion 

mediated by integrin 
7.27 4 [FOXC2, PLAU, SERPINE1, SFRP2] 

:1903318 negative regulation of protein maturation 10.34 3 [C4BPA, SERPINE1, SERPINE2] 

:0010955 negative regulation of protein processing 10.34 3 [C4BPA, SERPINE1, SERPINE2] 

:0031639 plasminogen activation 17.65 3 [PLAU, SERPINE1, SERPINE2] 

1 :0097529 myeloid leukocyte migration 4.19 7 
[CCL8, CMKLR1, CXCL10, CXCL8, S100A8, 

SERPINE1, SPP1] 
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:0097530 granulocyte migration 4.17 5 [CCL8, CMKLR1, CXCL8, S100A8, SPP1] 

:0071222 
cellular response to 

lipopolysaccharide 
4.26 6 [CD80, CD86, CXCL10, CXCL8, SERPINE1, TNIP3] 

:0002690 
positive regulation of 

leukocyte chemotaxis 
5.26 4 [CMKLR1, CXCL10, CXCL8, SERPINE1] 

:0070098 
chemokine-mediated  

signaling pathway 
4.94 4 [CCL8, CMKLR1, CXCL10, CXCL8] 

:0071621 granulocyte chemotaxis 4.39 5 [CCL8, CMKLR1, CXCL8, S100A8, SPP1] 

2 

:0051607 defense response to virus 4.7 7 
[CD86, CXCL10, ITGAX, PTPRC, RSAD2, 

SAMHD1, TLR7] 

:0002224 
toll-like receptor 

signaling pathway 
5.13 4 [CD86, RSAD2, TLR7, TNIP3] 

3 

:0050654 
chondroitin sulfate proteoglycan metabolic 

process 
8.82 3 [BGN, CHST11, NDNF] 

:0030204 
chondroitin sulfate metabolic 

process 
11.11 3 [BGN, CHST11, NDNF] 

4 :0002456 T cell-mediated immunity 4.05 3 [P2RX7, PTPRC, RSAD2] 

5 :0045124 regulation of bone resorption 9.38 3 [P2RX7, TF, TFRC] 

6 :1901292 nucleoside phosphate catabolic process 4.11 3 [ENPP3, P2RX7, SAMHD1] 

7 :0034405 response to fluid shear stress 9.09 3 [COX-2, P2RX7, SPP1] 
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Down-Regulated DEGs 

0 

:0086036 
regulation of cardiac muscle cell 

membrane potential 
27.27 3 [ANK2, FXYD1, TRDN] 

:1903513 endoplasmic reticulum to cytosol transport 9.43 5 [ANK2, DHRS7C, DMD, RYR1, TRDN] 

:1903514 
calcium ion transport from endoplasmic 

reticulum to cytosol 
11.11 5 [ANK2, DHRS7C, DMD, RYR1, TRDN] 

:0070296 
sarcoplasmic reticulum calcium ion 

transport 
10.64 5 [ANK2, DHRS7C, DMD, RYR1, TRDN] 

:0014808 
release of sequestered calcium 

ion into cytosol by sarcoplasmic reticulum 
11.11 5 [ANK2, DHRS7C, DMD, RYR1, TRDN] 

1 

:0055088 lipid homeostasis 7.37 7 
[ANGPTL4, DGAT2, EPHX2, GPAM, LCAT, LPL, 

RORA] 

:0055090 acylglycerol homeostasis 13.79 4 [ANGPTL4, DGAT2, LPL, RORA] 

:0070328 triglyceride homeostasis 14.81 4 [ANGPTL4, DGAT2, LPL, RORA] 

2 

:0009755 hormone-mediated signaling pathway 5.56 7 [ACSL1, AR, BMP4, ESR1, PPARG, PRLR, RORA] 

:0060850 
regulation of transcription involved in cell 

fate commitment 
17.39 4 [BMP4, PPARG, PROX1, RORA] 

3 
:0006638 neutral lipid metabolic process 6.32 6 [DGAT2, GPAM, LIPE, LPIN1, SERPINA12, TNXB] 

:0006639 acylglycerol metabolic process 6.45 6 [DGAT2, GPAM, LIPE, LPIN1, SERPINA12, TNXB] 

4 :0055001 muscle cell development 4.12 8 [ANK2, BMP4, COL14A1, CSRP3, DMD, PROX1] 



 

 50 

Similar analyses were performed for DEGs within the three subtypes. The most 

prevalent group of BPs in up-regulated genes of the complex subtype is defense 

response to virus, covering 43.7% of up-regulated DEGs. Furthermore, some 

important assignments, such as cartilage development (GO:0051216), showed 

~28.9%. Interestingly, 14 GO terms obtained from down-regulated DEGs in the 

complex subtype are grouped into five GO groups associated with lipid-related 

biological process, such as GO:0010876 that describes lipid localization, 

GO:0006631 of fatty acid metabolic process, and GO:0033211 of adiponectin-

activated signaling. These results indicated the reduction of adipose components in 

the complex subtype compared to normal tissues. GO terms of defense response to 

virus (GO:0051607), humoral immune response (GO:0006959), and extracellular 

matrix organization (GO:0030199) up-regulated in the complex subtype were also 

shared by GO terms in the ductal subtype (Fig. 1-6B). However, endoderm-related 

biological processes, such as endodermal cell differentiation (GO:0035987), 

endoderm formation (GO:0001706), primary germ layer formation (GO:0001704), 

and endoderm development (GO:0007492), were enriched only in the ductal 

subtype. Whereas lipid-related BPs were down-regulated in the complex subtype, 

many GO terms linked to muscles, such as cardiac muscle tissue morphogenesis 

(GO:0055008), skeletal muscle adaptation (GO:0043501), and muscle adaptation 

(GO:0043500), were found in down-regulated DEGs in the ductal subtype (Fig. 1-

6C). These down-regulated data suggested the dominant origin of ductal epithelium 

in ductal carcinoma compared to the presence of a certain proportion of 
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myoepithelial cells in normal tissues. Since the sample numbers were relatively 

small in the simple subtype, only a few GO terms were identified as up-regulated 

(GO:0030199, GO:0051965). Numbers of GO terms enriched in down-regulated 

DEGs in the simple subtype were shared by one from the ductal subtype. Various 

muscle-related biological processes were also down-regulated (GO:0043500. 

GO:0035994, GO: 0048011, GO:0014888, GO:0055001, and GO:0055008) in 

simple carcinoma (Fig. 1-6D). Gene networks constructed by DEGs enriched in 

canine MGCs are shown in Fig. 1-7.
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Figure 1-7. Gene network enrichment analysis in three subtypes of MGCs. 

(A) Down-regulated DEGs. Lipid metabolism and localization are enriched only in 

the complex subtype, while muscle-related biological processes are enriched in the 

ductal subtype. The simple subtype does not construct unique nodes. (B) Up-

regulated DEGs. Response to other organisms and defense responses are 

highlighted in the complex subtype, but cell mobility and extracellular matrix 

organization are shown in the ductal subtype. No node was found up-regulated in 

the simple subtype. 
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Pathways Significantly Enriched in MGC 

Many cancer-related pathways including WNT, PI3K/Akt, KRAS, and PTEN 

pathways have been reported in canines (Campos et al., 2014, Dobbin and Landen, 

2013, Terragni et al., 2014). To better understand canine MGC and human BC, we 

performed KEGG pathway analysis using the web-based DAVID functional 

annotation tool (https://david.ncifcrf.gov/summary.jsp). For the pathway analysis, 

we used a list of DEGs summed by the three subtype comparisons because it 

showed better results than with DEGs from the overall MGC comparison. Out of 

727 DEGs, 313 up- and 414 down-regulated DEGs in MGCs were isolated and 

subjected to KEGG pathway analysis. Three hundred thirteen up-regulated DEGs 

in MGCs were involved in 24 and 23 KEGG pathways in dog and human databases, 

respectively. Twenty-one terms from the KEGG pathway analysis, including 

‘ECM-receptor interaction’, ‘pathways in cancer’, and ‘proteoglycan in cancer’, 

were shared by both dog and human databases. However, the terms ‘microRNA in 

cancer’, ‘salivary secretion’, and ‘Wnt signaling pathway’ were found only in the 

dog database, while ‘dilated cardiomyopathy’ and ‘Fc gamma R-mediated 

phagocytosis’ were exclusively found only in the human database. The highest 

assignment of up-regulated DEGs was ‘pathways in cancer’ which includes WNT 

and PI3K pathways. Seventeen up-regulated DEGs in canine MGC primarily 

mapped to ECM-ITGA/B-PI3K signaling and Wnt-Frizzled signaling pathways. 

ECM signaling is known to be involved in proliferation, migration, invasion, and 

angiogenesis (Venning et al., 2015). In addition, up-regulation of COX2, TGFb, 
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GLUT1, MMP, and IL8 genes were involved in angiogenesis, and BIRC7/2 is 

known for its function of apoptosis evasion (Bergers and Benjamin, 2003). In 

contrast, ‘metabolic pathways’ was the highest enriched (45 genes) KEGG pathway 

among down-regulated DEGs. Interestingly, most DEGs were heavily mapped to 

glycan biosynthesis and metabolism, and some additionally mapped to lipid 

metabolism related to glycan biosynthesis and metabolism pathways. These results 

indicated that aberration of lipid biogenesis and metabolism is associated with 

canine MGC progression. 

 

Accumulation of Promoter Upstream Transcripts (PROMPTs) and MGC-

Associated Gene Transcription 

Although some regulatory mechanisms have been suggested, few promoter 

upstream transcripts (PROMPTs) have been characterized, and many of their 

functional roles remain unknown (Preker et al., 2011). Here, we measured 

unknown genome-wide transcripts expressed in the upstream regions of gene 

promoters. To quantify transcripts upstream of promoter regions, we collected all 

sequence reads mapped to regions ranging from all genes’ TSS to −1500 upstream. 

After excluding mapped transcript sequences that are shared with other genes, 

28,757 promoter upstream regions consisting of 25,395 Ensembl database genes 

and 3362 novel transcripts were identified and used for further analysis. These 

were narrowed down to 41 regions (31 positive and 10 negative correlations) that 

met the threshold (p < 0.01, fold change ≥ 2) for genes and (fold change ≥ 2) 
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PROMPTs. Unfortunately, differences in all ten negatively correlated genes and 

PROMPTs listed in Table S9 were not confirmed by integrative genomic viewer 

(IGV) due to low expression level of the transcripts. However, the genes and 

PROMPTs that were positively correlated were confirmed by IGV survey 

(correlation: 0.71694) (Fig. 1-8. Eleven genes out of 31 were up-regulated in 

MGCs and positively correlated with PROMPT expression. Some of these 

promoter regions, such as NOVA1 and GRIA3, have been annotated with antisense 

RNA and pseudogenes, but most were not. This meant that more comprehensive 

genome annotations are necessary for the dog genome. Furthermore, it might 

provide a clue for understanding the regulatory mechanisms of up-regulated gene 

expression in cancer.
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Figure 1-8. Correlation between DEGs and promoter upstream transcripts 

(PROMPT) expression. 

(A) CADM4 and CYGB gene promoter regions as an example of DEGs and 

PROMPT expression in integrative genomic viewer (IGV). (B) Negative and 

positive correlation between DEGs and PROMPTs.



 

 57 

Quantitative Real-Time RT-PCR Validation of DEGs in MGCs 

To validate our results, quantitative real-time RT-PCR was performed on ten 

selected DEGs to confirm our RNA-seq data. Out of ten, three well-verified genes 

were selected for further validation. The three genes belong to divergent functional 

categories or pathways but are not included in either Mammaprint or OncotypDx. 

FN1 (fibronectin 1) is involved in cell adhesion and migration. BGN (biglycan) 

plays a role in collagen fibril assembly in multiple tissues. SCD (stearoyl-CoA 

desaturase) belongs to the fatty acid desaturase family and is involved in fatty acid 

biosynthesis. Verification was performed in additional pairs of ten MGCs and 

matching adjacent normal samples using real-time RT-PCR. The relative gene 

expression to ATP5B gene was calculated by the 2−ΔΔCt method and is shown in 

Fig. 1-9. Up- or down-regulated MGC DEGs in RNA sequencing data were 

confirmed in most sample pairs. Up-regulated FN1 and BGN were validated in 

seven out of eight MGCs and matching normal tissues, respectively. In contrast, 

down-regulated SCD was confirmed in six out of eight MGCs (Fig. 1-9A). The 

Mann–Whitney U test indicated that there was significant difference in gene 

expression levels between MGCs and adjacent normal tissues (FN1; U = 27, p = 

0.0083, BGN; U = 31, p = 0.0173, SCD; U = 34, p = 0.0284). To expand this 

analysis, we performed a receiver operating characteristics (ROC) analysis for each 

gene (Fig. 1-9B). A maximum AUC of 0.8125 (95% CI 0.6424–0.9826) was 

observed in FN1 gene expression. AUCs of 0.7847 and 0.7639 were observed for 

BGN and SCD, respectively.
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Figure 1-9. Real-time RT-PCR for validation of MGC-enriched RNA 

expression. 

(A) Box-and-whisker plots of relative gene expression levels in MGCs and 

matching adjacent normal samples. The Mann–Whitney test was performed. Bar 
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graphs representing relative RNA expression of FN1, BGN, and SCD genes in 12 

MGCs and adjacent normal tissues. Statistical significance is indicated by asterisks 

and relative p-value (** p < 0.01, * p < 0.05) (B) Receiver operating characteristic 

(ROC) curve for each gene expression level. (C) Conceptional scheme of canine 

MGC as a model to study human BC and discovery new biomarkers. 
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DISCUSSION 

 

 

 

 

In this study, we performed genome-wide transcriptome analysis of spontaneous 

canine MGCs and compared to transcriptome data from four molecular subtypes of 

human BC. Although the sample size was small, being a pilot study (16 

transcriptomes; 8 MGCs with matching adjacent normal tissues), this study could 

reveal transcriptome signatures enriched in canine MGC and subtypes. 

 

Although there were several reports presenting that canine MGC is a good model 

for human BC study, subtype levels were still unclear (Abdelmegeed and 

Mohammed, 2018a, Lutful Kabir et al., 2015). We thus determined whether these 

two systems are compatible at the transcriptome level. We analyzed correlation in 

gene expression existing between the subtypes of human BC and canine MGC 

using the genes differentially expressed in canine MGC. Overall, the level of 

correlation seemed low between human BC and canine MGC (max r = 0.523, min r 

= 0.040). However, correlation among the subtypes within canine MGC was not 

strong either (max r = 0.767). It means that each subtype of canine MGC has a 

unique gene expression pattern. One of the interesting findings in the correlation 

analysis was the strongest correlation in human TNBC with canine simple MGC (r 
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= 0.523) and ductal MGC (r = 0.472). The existence of high transcriptomic 

correlation between canine MGC subtypes (ductal and simple) and human TNBC 

might be more important since TNBC has been highlighted in clinical and 

biomedical research due to its aggressive characteristics with poor prognosis. It has 

been known that the most common histological subtype of TNBC is invasive ductal 

carcinoma and their genetic profiles are shared by basal-like BC (Bryan et al., 2006, 

Plasilova et al., 2016). Thus, our results suggested that transcriptome signature of 

canine MGC and subtypes is able to represent the origin and characteristics of 

human BC. On the other hand, ER+-related human BC subtypes (ER+, 

ER+/HER2+) had few or no significant correlation with any canine MGC subtypes 

but tend to be shared by ductal and simple subtypes, respectively, in the given 

groups (Fig. 1-5). However, this result, showing week correlation in ER+-related 

subtypes with canine MGCs, should be confirmed if it is influenced by spayed dogs. 

 

Since many studies have been performed in human BCs, we reviewed literature 

regarding human BC and oncogenes to compare our findings to human studies. 

First, four out of 16 representative DEGs found in all three subtypes of canine 

MGCs have strong references in human cancer as biomarkers: CCL23, CXCL10, 

SFRP2, and FRZB. These genes are altered in at least four types of human cancers, 

including BC (Ejaeidi et al., 2015, Ugolini et al., 1999, Veeck et al., 2008). Second, 

six genes, CHI3L1, CXCL8, FOXC2, SERPINE1, SFRP2, and TF, which are 

grouped within the highest enrichment GO term, “positive regulation of 
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angiogenesis”, have been reported to play roles in various cancer processes, 

including BC (Kolbl et al., 2016, Libreros et al., 2013, Mazzoccoli et al., 2012, 

Wang et al., 2018). Moreover, 45 genes enriched in BP GO terms, ‘glycan 

biosynthesis and metabolism’ and ‘lipid metabolism’, may provide strong evidence 

that cellular metabolism is fundamentally altered in cancer tissue, and lipid 

metabolism may have crucial roles in cancer progression (Hashmi et al., 2015). 

This survey confirms that dogs and dog MGCs are good animal models for human 

breast cancer study at the transcriptome level. 

 

We further investigated the biological roles of MGC subtype-enriched DEGs. 

KEGG pathway analysis using 211 up- and 306 down-regulated DEGs revealed 

that cancer signaling in the complex subtype was mainly triggered by Wnt-Frizzled 

LRP5/6 and GPCR signaling, whereas glycan biosynthesis and metabolism are 

strongly blocked through down-regulation of PPAR signaling, beginning with 

CD36-FABP. 

 

A total of 141 up- and 120 down-regulated DEGs were tested in the ductal 

subtype. Similar to the complex subtype, both glycan biosynthesis and lipid 

metabolism were down-regulated, but down-regulated retinol metabolism was 

found only in the ductal subtype. Although down-regulated biological processes 

were shared by two different subtypes, there were discrepancies in the list of up-

regulated pathways between complex and ductal subtypes. KEGG pathways 

involved in cancer, such as cell adhesion, PIK3-Akt signaling, and ECM-receptor 
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interaction, are enriched in the ductal subtype. Many ECM molecules have been 

associated with breast cancer development (Oskarsson, 2013). These discrepancies 

may partly come from differences in cellular origin, compositions of cell types and 

the cancer environment. 

 

Since only two pairs of specimens comprised the simple subtype, the number of 

identified DEGs was small (79 up- and 115 down-regulated). Focal adhesions as 

well as the Wnt and ECM-ITGB pathways were up-regulated. Interestingly, insulin 

signaling, including the FBP1 gene, was the most highly enriched in down-

regulated DEGs, but we know that down-regulation of FBP1 promotes tumor 

metastasis and indicates poor prognosis in other cancers (Li et al., 2016b). If the 

results from the canine MGC subtype-enriched transcriptome profiles are validated 

in a large sample size, it will likely be helpful in developing cancer therapies for 

human breast cancer counterparts. 

 

As previously stated, only a few aspects of PROMPT, a newly identified class of 

RNAs produced just upstream of the promoters of active protein-coding genes, 

have been characterized; due to being rapidly dumped by exosomes, their 

biological functions remain to be revealed (Liu et al., 2015, Wang et al., 2015). We 

thus tested whether PROMPT expression can be detected in paired-end stranded 

total RNA sequencing data. First, we should note that the “PROMPT” we measured 

in this study might differ from the general term “PROMPT”. We used the term 
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PROMPT since “promoter upstream transcripts” is exactly what we investigated in 

this study. However, many transcripts may not satisfy the criteria of the general 

term PROMPT in size or amount (Preker et al., 2011). Furthermore, our 

measurements also have a few limitations to calculating accurate levels of 

transcript expression because small portions of non-coding RNAs including 

PROMPTs are annotated and characterized with their structures. We then measured 

all the sequence reads mapped upstream of the promoter region (−1500 bp~TSS) 

without consideration of RNA structures. It may not represent exact amounts of 

transcripts if the size is longer than 1500 bp or exon structures vary. 

 

In this study, we selected and showed two gene promoters upstream regions 

representing each correlation type (Fig. 1-7A). Although negative correlation 

between genes and PROMPTs were stronger than positive correlations, positive 

correlations were more reliable because many genes with negative correlations 

were found as artifacts due to the low number of PROMPTs. Target-enriched high-

throughput sequencing for short transcripts may be helpful for this type of analysis. 

Furthermore, comprehensive annotation with extensive transcriptome analysis in 

dogs is mandatory for comparative medicine and future study. In addition, diverse 

small-size non-coding RNAs, including micro RNA, which were not analyzed in 

this study due to the limitation of RNA isolation method but can be done by 

miRNA capturing in the future, might have very important roles in canine MGC as 

well. 
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Canine MGC has been proposed as a comparative model for spontaneous tumors 

of human BC due to their genetic, clinical, and biological similarities to human 

BCs. In addition, closely shared environmental conditions between dog and owner 

can be beneficial in an approach using epigenetic aberrations. Thus, studies for 

canine MGCs, counterparts of human BCs, can provide new clues for biomarker 

screening in human BCs (Fig. 1-9C). We confirmed RNA sequencing data and 

validated three genes’ expression in additional sets of samples using quantitative 

real-time PCR. FN1 and BGN were targeted here due to their expression pattern 

being similarly up-regulated in human breast cancers. However, SCD was 

identified as a down-regulated gene in this study but is known to be up-regulated in 

human BCs. These results might represent similarities and discrepancies that exist 

between human BC and canine MGCs. 

 

In conclusion, this study reports the comprehensive transcriptome profile of 

spontaneous canine MGCs and subtypes. Sets of DEGs in canine MGCs were 

determined from overall canine MGCs for each subtype. Many genes, but not all, 

listed in this study have been reportedly associated with human cancers including 

breast cancer. Three canine MGC subtypes then were matched to four human BC 

subtypes according to their transcriptome profiles. This study may represent the 

extant similarities between human BCs and canine MGCs. Thus, the current study 

provides new clues and clinical implications for better understanding of canine 

MGCs and their application to human BCs. Further validation using large sample 
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numbers will reveal more general features, but our current study provides an 

important initial understanding of canine MGCs in different canine MGC subtypes. 
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CHAPTER Ⅱ 

 

 

Analysis of Opposing Histone Modifications 

H3K4me3 and H3K27me3 Reveals Candidate 

Diagnostic Biomarkers for TNBC and Gene Set 

Prediction Combination 
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INTRODUCTION 

 

 

 

 

 

Breast cancer (BC) is one of the most common cancers occurring among females 

and one of the most dominant causes of cancer related deaths alongside lung cancer  

(Jemal et al., 2011). Known as highly diverse cancers, BCs are characterized by 

distinct genetic variations, clinical symptoms, treatments, and prognosis outcomes. 

In previous studies, breast cancer has been clinically classified by major changes in 

expression levels (O'Brien et al., 2010) including high expression of the estrogen 

receptor (ESR), progesterone receptors (PGR), and HER2. Most clinically 

diagnosed BC types have at least one of these features, but basal-like triple-

negative breast cancer (TNBC) presents no expression of the three. TNBC is more 

aggressive and has poor prognosis, but because of its minor occurrence treatments 

and therapies, are scarce (Perou, 2011). Some patients suffering from TNBC 

benefit from chemotherapy, but still need a better method of treatment less toxic 

and dangerous to the patient. Recent studies of TNBC revealed distinct gene 

mutation patterns and repressive signal pathways (Carey et al., 2006). Despite the 

effort of continuing research, the understanding of the governing gene mechanism 

and systemic regulation of TNBC pathways is lacking compared to other more 
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dominant breast cancer types. 

 

BC molecular identities can be further specified based on epigenetic features. 

Epigenetic regulation has been a major factor of gene expression control (Jones and 

Baylin, 2007). Various types of epigenetic control such as DNA methylation and 

histone modification are crucial for the activation and repression of genes in cancer. 

Recent studies revealed DNA methylation and histone modification profiles as 

plausible predictors of well-defined subtypes (Chen et al., 2016). Among the 

different types of histone modifications, H3K4me3 is a major modification that 

moderates genes to an active state (Koch et al., 2007). Conversely, histone 

modification H3K27me3 is a major modification that down-regulates genes when 

highly enriched (Barski et al., 2007). Continuing efforts to discover various 

precursors to breast cancer by comparing five or more histone modifications 

enabled a more thorough understanding and precision of prediction (Xi et al., 2018). 

However, less is known of the histone modifications specifically contributing to 

TNBC and the expression differences regulated by the histone regulation. 

 

The purpose of this study was to establish an analytical pipeline for discovering 

TNBC biomarkers from published histone modification peak data. The 

combination of the two histone modifications, H3K4me3 and H3K27me3, in 

TNBC cell lines presented hallmarks of TNBC gene expression against normal 

breast cell lines. The results providing genes that are epigenetically regulated in 
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TNBC, were proven successfully by quantitative transcriptional analysis, and 

suggested biomarker candidates that could specifically diagnose TNBC against 

normal. 
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MATERIALS AND METHODS 

 

 

 

 

DATA acquisition and bioinformatics analysis 

H3K4me3 and H3K27me3 ChIP-seq data from human BC cell lines, MDA-MB-

436, SK-BR-3, ZR-75-1, and human normal breast cell line, HMEC, was obtained 

from the GEO database GSE62907 (Chaligne et al., 2015). RNA-seq data for all 

the cancer cell lines was also obtained from the same database. Human normal 

breast cell line HMEC RNA-seq data was obtained from dataset GSE62820 

(Rahman and Mohammed, 2015). 

 

Each ChIP-seq raw dataset was aligned with human reference hg19 using the 

HISAT2. The peak finding was performed using the ‘findPeaks’ command of 

HOMER. Differential peaks of TNBC cell line MDA-MB-436 was analyzed by 

using HMEC ChIP-seq data as a control group. HOMER software command 

‘getDifferentialPeaks’ was used to identify H3K4me3 enriched peaks, H3K27me3 

repressed peaks for activated regions and H3K4me3 repressed, H3K27me3 

enriched peaks for down-regulated regions. The fold change cutoff was ≥ 4 for 

enriched and ≥ 2 for the repressed peak regions. Annotation of all regions was 
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performed using the ‘annotatePeaks.pl’ function of HOMER. Within the annotated 

list, H3Kme3 regions associated with transcription such as TSS, promoter, and 

exon regions were selected as potential targets. RNA-seq data was aligned and 

peak analysis performed using the HOMER transcriptome analysis pipeline. From 

the ChIP-seq sorted genes, candidates were selected by matching profiles that were 

high-expressed or low-expressed specifically in the MDA-MB-436 dataset. 

 

Among the histone modifications upregulation of histone H3K4me3 and 

downregulation of histone H3K27me3 were selected for the peak comparison. 

After normalization, TNBC H3K4me3 peak data was compared against HMEC 

H3K4me3 peak data for the differential histone enriched regions. To identify 

statistically high or low enriched regions, HMEC and MDA-MB-436 ChIP-seq 

data was used as control groups and experimental groups. As for the potential 

upregulated regions, only locations in TNBC peaks enriched more than four-fold 

compared to the HMEC ChIP-seq data and HMEC H3K27me3 locations with a 

fold enrichment more than two compared to HMEC were sorted (Fig. 2-1A). The 

opposite method was implemented to sort potential down-regulated regions. 

HMEC H3K4me3 peaks that were four-fold higher than TNBC and H3K27me3 

peaks of TNBC two-fold higher than HMEC were selected. Because the 

H3K27me3 profile is dispersed across the entire gene structure, highly enriched 

peaks are difficult to locate. As a result, histone modification H3K27me3 are sorted 

by a two-fold degree. After differential analysis, sorted regions were annotated with 
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gene names and enriched gene positions. Among the DNA structure, H3K4me3 

regions with expression influence were selected as potential histone enriched 

regions; promoter, TSS, and exon. 

 

Correlation of genes matching the up or down regulating prediction was 

calculated by comparing each individual ChIP-seq peak log2 fold change and its 

matching RNA-seq log2 expression fold change. The combined method of sorting 

candidate genes using H3K4me3 and H3K27me3 histone modification was 

compared with the methods that sorted the genes using only H3K4me3 or 

H3K27me3. The accuracy was estimated by a percentage of genes that matched its 

predicted RNA expression pattern. 

 

Cell culture 

MCF-10A normal cell line was cultured in Mammary Epithelial Cell Growth Basal 

Medium (MEBM) BulletKit (Lonza cat # CC-3150) with an additional 10% fetal 

bovine serum (FBS, Gibco cat # 16000069) and 1% Antibiotic-Antimycotic 

product (AA, Gibco cat # 15240062). The cell line SK-BR-3 was cultured using the 

RPMI media with an additional 10% FBS and 1% AA product. MDA-MB-436 was 

cultured in the DMEM media with an additional 10% FBS and 1% AA product. 
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Quantitative RT-qPCR 

The RNA isolation was processed using the Rneasy Plus Mini Kit (Qiagen, Hilden, 

DE). The genomic DNA contamination was eliminated by using the gDNA 

elimination columns. In addition, 2 μg of the total RNA was used for the cDNA 

synthesis using the OMMISCRIPT RT KIT (Qiagen, Hilden, DE). The primers for 

each target gene were designed spanning two different exons. The real-time PCR 

was performed using the CFX96 Touch Real-Time PCR Detection System (Bio-

Rad). The relative gene expression was measured by the ΔΔCTmethod. The data 

were normalized to the 18S rRNA. 

 

Expression box plot analysis 

The gene expression data in the TCGA cancer patients’ samples were analyzed 

with GEPIA (http://gepia2.cancer-pku.cn). The gene expression in the normal data 

was compared only with the basal-like and TNBC subtypes. The log2 fold change 

cutoff was set to 1. The p-value cutoff was set to less than 0.01. 

 

Kaplan-Meier plot analysis 

The web-based Kaplan-Meier plotter was used to evaluate the effect of candidate 

genes on survival rates in more than 3,000 BC samples. The hazard ratio (HR) was 

given with 95% confidence intervals, and log rank P value was calculated and 

displayed on the web page. The log rank P-values were calculated by auto-selecting 

the best cutoff option. The affymetrix ID of the top 10 potential up- and down-
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regulated candidates were listed in Table S2. 

 

ROC analysis 

Classification using receiver operating characteristic (ROC) curves was performed 

using 1,222 normal and breast cancer patients in the TCGA database. The area 

under the curve (AUC) scores and p-values were calculated using the easyROC 

web-based tool. The gene set combined logistic regression model was achieved 

using SPSS statistical analysis software. 
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RESULTS 

 

 

 

 

Distribution of H3K4me3 and H3K27me3 histone modifications as TNBC-

associated epigenomic signatures 

ChIP-seq data from HMEC and MDA-MB-436 that represent normal and TNBC 

cell lines, respectively, were obtained from the public dataset GSE62907. To 

determine the TNBC-enriched epigenetic alteration, two histone modification 

signals H3K4me3 and H3K27me3 on the gene promoter regions were compared 

across the two cell lines. Overall procedures are depicted in Fig. 2-1A. In brief, we 

normalized all ChIP-signal data to the corresponding inputs. The regions of 

differentially modified histones were identified from the comparison of HMEC and 

MDA-MB-436 cell lines. Up- and down-regulated histone modifications in TNBC 

were selected when regions had a larger than two-fold difference in H3K4me3 and 

H3K27me3, compared to the normal HMEC (Fig. 2-1A). The promoter region was 

defined by convention as 2 kb upstream of the TSS of a gene. 

 

Identified as up-regulated genes in TNBC were 1,008 genes with highly enriched 

H3K4me3 regions and 4,954 genes with depleted H3K27me3 signals in MDA-

MB-436 cells. Conversely, 1,608 genes with enriched H3K4me3 and 5,082 genes 
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with low H3K27me3 in HMBC were identified as down-regulated genes in TNBC. 

As a result, a list of genes exclusively up-regulated (148) and down-regulated (41) 

in TNBC was determined by combining high H3K4me3 and low H3K27me3 

profiles and vice versa (Fig. 2-1B). Each potential candidate was scored by its 

H3K4me3 peak score. Integrative genomics viewer (IGV) depicted histone 

modifications on the regions of the NOVA1 and IRX2 genes that were scored in the 

top (Fig. 2-1C). H3K4me3 signals were enriched and H3K27me3 disappeared on 

the NOVA1 promoter region in MDA-MB-436, while H3K4me3 signals are very 

low and H3K27me3 are enriched in HMEC. Oppositely, H3K4me3 signal was 

highly enriched and the H3K27me3 disappeared on the DUSP6 genes in HMEC, 

while H3K4me3 signals disappeared and H3K27me3 were enriched in the MDA-

MB-436.
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Figure 2-1. Project workflow and ChIP-seq analysis.  

(A) Workflow of the ChIP-seq analysis. (B) Venn diagram of 148 potential up-

regulated genes and 41 potential down-regulated genes in triple-negative breast 

cancer. (C) The histone profile H3K4me3 (red) and H3K27me3 (blue) of candidate 

gene in the HMEC and MDA-MB-436 ChIP-seq datasets.
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Integration of transcriptome data revealed TNBC-associated signature genes 

Epigenetic profiles such as histone modification represent convincing evidence as 

biomarker candidates. However, epigenome profiles are not perfectly aligned to 

their corresponding expression data such as transcriptomic or proteomic data  

(Gomez-Cabrero et al., 2014). To investigate the effects of epigenomic aberrations 

on gene expression, matching RNA-seq data of HMEC and MDA-MB-436 were 

merged with two additional transcriptome datasets obtained from other sub-types 

of BC cell lines, SK-BR-3 (luminal type) and ZR-75-1 (HER2 expressing) 

(Chaligne et al., 2015). The influence of histone modification on gene expression 

was examined by calculating the percentage of RNA-seq expression patterns that 

match with histone peak fold changes. Overall, H3K4me3 has better correlation 

than H3K27me3 with gene expression levels in up- and down-regulation. Of note, 

the combination of histone markers, high H3K4me3 and low H3K27me3 for up-

regulated genes and vice-versa for down-regulated genes, presented a remarkable 

improvement in the correlation with gene expression. The top 10 highest scored 

genes are indicated by red and blue dots for up- and down-regulated genes. For 

further analysis, the top 10 scored genes (up- and down-regulated) in ChIP-seq 

were selected and listed with corresponding RNA expressions in Table 2-1.
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Table 2-1. Differentially expressed candidates 

Gene name Score MDAMB436 SKBR3 ZR751 HMEC 

CDH2 1619.5 757.46 428.79 10.67 35.11 

DCLK2 857.0 436.45 43.76 1.93 1.28 

NOVA1 850.3 120.23 1616.05 27.63 0.53 

PLCL2 692.7 121.57 0.00 8.09 0.54 

SOX5 826.3 37.11 1.07 6.66 0.05 

SALL1 806.2 235.11 0.00 0.08 0.54 

SYTL4 780.1 360.80 69.22 112.64 22.07 

DNER 744.5 943.92 0.00 15.72 63.47 

NAT8L 700.4 284.23 1827.86 320.66 3.46 

MMP16 680.3 188.47 99.50 10.53 21.28 

DUSP6 2052.3 58.25 9.73 38.26 2706.05 

IRX2 1564.5 0.58 0.00 180.80 464.21 

ATP2B1 1445.1 212.46 34.82 261.43 1771.94 

VSNL1 1296.7 0.02 72.81 0.71 430.11 

ADRB2 1248.1 0.01 47.46 0.07 115.33 

PLXDC2 1139.4 24.44 0.00 384.42 1078.95 

PLD5 1124.9 0.80 196.58 0.79 125.28 

TPD52L1 1007.3 59.51 0.00 917.35 332.26 

FAM84A 743.7 0.12 4.15 25.43 414.37 

SNX19 648.5 553.93 717.26 853.20 1388.00 

Candidate selection. Each gene is sorted by a combined data of ChIP-seq data and RNA-seq data. Scores represent ChIP-seq H3K4me3 scores 

calculated by HOMER. The four FPKM data represent expression profiles retrieved from for cell lines HMEC, SK-BR-3, ZR-75-1 and MDA-

MB-436. Ranked by score, potential up-regulating (left) and down-regulating (right) candidates were achieved.
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Quantitative RT-PCR validation of candidates’ gene expression 

The expression of selected candidate genes was confirmed by quantitative real-time 

RT-PCR in the corresponding breast cancer related cell lines, MCF-10A (normal), 

MDA-MB-436 (TNBC) and SK-BR-3 (HER2+). For the genes selected by highly-

enriched H3K4me3 by depleted H3K27me3, the gene expressions of 10 up-

regulated candidates were confirmed by real-time RT-PCR. Except for the DNER 

gene which showed half of the expression in TNBC than in normal cell line, the 

nine remaining genes expressed highly in TNBC (Fig. 2-2). Interestingly, we found 

two genes (MMP16 and NAT8L), almost exclusively expressed in TNBC. The 

largest discrepancy in relative gene expression levels between TNBC and normal 

was in MMP16 (-3,000 fold) followed by NAT8L (-2,500 fold). DCLK2 and SYTL4 

showed higher gene expression levels in cancer cell lines SK-BR-3 (HER2+) and 

MDA-MB-436 (TNBC). CDH2, NOVA1, PLCL2, SOX5, and SALL1 were highly 

expressed in TNBC, but not in HER2+. Conversely, gene expressions down-

regulated in the MDA-MB-436 cells selected from the combination of low 

H3K4me3 and high H3K27me3 were validated in four of 10 candidates (Fig. 2-3). 

DUSP6 and VSNL1 gene expressions were significantly down-regulated in HER2+ 

and TNBC breast cancer cell lines. Only TPD52L1, and FAM84A were most 

significantly down regulated in TNBC compared to MCF10A and SK-BR-3. The 

expressions of ATP2B1, ADRB2, PLXDC2, PLD5, and SNX19 grouped in down-

regulated genes were not correlated with histone states in TNBC and normal. 
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Figure 2-2. Up-regulating biomarker RNA expression validation. 

The bar plots of relative RNA expression of 10 genes considered as up-regulating 

biomarkers for the TNBC in MCF10A (black-stripes), SK-BR-3 (grey), and MDA-

MB-436 (black) cell lines. 
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Figure 2-3. Down-regulating biomarker RNA expression validation. 

The bar plots of relative RNA expression of 10 genes considered as Down-

regulating biomarkers for the TNBC in MCF10A (black-stripes), SK-BR-3 (grey), 

and MDA-MB-436 (black) cell lines. 
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Clinical correlation of the genes selected by histone modification data: TCGA 

data correlation of up- and down-regulated genes and cancer patient survival 

data 

To expand the RT-PCR validated gene set data to cancer patient data in the TCGA 

public domain, we analyzed the TCGA data for the selected gene. Unfortunately, 

since TCGA data have not been classified by TNBC, the gene expression pattern in 

overall BC patients was not nicely correlated with the results in this study targeting 

TNBC. For example, gene expressions of NOVA1, SOX5, and NAT8L were found 

higher in the TNBC cell line than in the normal cell line while expressed lower in 

overall breast cancer than the healthy population (Fig. 2-2). This discrepancy may 

come from the absence of corresponding classifications in TCGA data, since these 

three genes whose expressions were upregulated in TNBC were lower in the other 

cancer cell line (SK-BR-3; HER2+) than the normal cell line. 

 

To further correlate the candidate genes with cancer patient data and examine the 

prognostic value of the candidate genes in BC patient databases, we used the 

expression box plots (Box-plots: http://gepia2.cancer-pku.cn) of cancer patients 

and the normal population (Tang et al., 2017) and their Kaplan-Meier plots 

(KMplot; https://www.kmplot.com). Aberrant gene expression and its influence on 

overall survival (OS) was presented. Top two representative genes are shown in Fig. 

2-4; CDH2 in up-regulated and DUSP6 in down-regulated. The CDH2 found as an 

up-regulated gene in MDA-MB-436 was highly expressed in basal-like and TNBC 
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patients. Also, patients with higher CDH2 expression have high mortality when 

compared to low expressed patients (HR = 1.36, logrank P = 1.3e-07). Conversely, 

DUSP6 down-regulated in MDA-MB-436 presented significantly low expression 

levels in basal-like and TNBC patients when compared to healthy controls (Fig. 2-

4A). Survival curves associated with DUPS6 gene expression indicated that lower 

DUPS6 expression in BC patients has an association with worsening OS (Fig. 2-

4B). Moreover, we implemented a classification model based on the expression of 

CDH2 and DUSP6 using 1,222 normal and breast cancer patients from the TCGA 

database. ROC curves from the individual genes had a high AUC with 79% in 

CDH2 and 92% in DUSP6. When these two genes were combined using the binary 

logistic regression method, AUC of sensitivity/1-specificity was up to 93%. 
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Figure 2-4. Diagnostic and prognostic values of candidates.  

The highest ranked genes in up- and down-regulated were subjected to the TCGA 

data. (A) The gene expression box plot in the TNBC and basal-like BC (red) and 

normal (grey). (B) The overall survival of breast cancer patients expressing CDH2 

and DUSP6 (high: red, low: black) in the KM plot. 
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DISCUSSION 

 

 

 

 

Recently, large amounts of omics data have been produced globally and made 

publicly available. Most are genomic, such as single nucleotide polymorphism 

(SNP), copy number variation (CNV), and transcriptomic data. However, recently 

epigenomic data such as histone modification, methylation status, and chromatin 

profiles have seen a continuing increase in various cancer studies (Nebbioso et al., 

2018), since epigenetic mechanisms are recognized as critical risk factors in the 

development of cancers. 

 

In this study, we developed a strategy to investigate triple-negative breast cancer 

(TNBC) biomarkers based on the epigenome dataset of histone modifications 

(Chaligne et al., 2015). The combination of two different histone modification 

markers, high H3K4me3 and low H3K27me3 and vice versa, made significant 

improvement in the correlation with transcriptomic data compared to each marker 

only. This strategy is similar to the concept of bivalent chromatin that has a role in 

developmental regulation in pluripotent cells and is defined wherein the region of 

DNA is bound to histone proteins with repressing and activating epigenetic 

regulators. However, there were some discrepancies such as the range of region 



 

 88 

modification that occurred and the combination of epigenetic markers. 

 

We predicted most likely highly up- or down-regulated genes in terms of 

transcriptome expression based on two histone marks of H3K4me3 and H3K27me3 

and listed up top 10 candidates up- and down-regulated in TNBC. Then, we tested 

the level of gene expression using RNA-seq data and quantitative Real-Time PCR 

in three BC related cell lines (MCF-10A, MDA-MB-436, and SK-BR-3). Because 

of availability, the MCF-10A cell line was used as normal breast cell line in our 

study instead of HMEC used in RNA-seq and ChIP-seq data. This may present 

unexpected high expression levels of CDH2, SALL1 and DNER, and low 

expression of IRX2, PLXDC2 and SNX19 in the normal cell line. This result should 

be confirmed by extended numbers and types of cell lines to exclude cell line 

specific features. 

 

The in vitro cell line analysis of histone modifications and gene expression was 

applied to the public clinical data to retrieve the prognostic significance of 

individual candidates. The top scored genes, CDH2 and DUSP6, up- and down-

regulated respectively in TNBC, successfully represented the aggressive 

pathological phenotype of TNBC, which may directly link to general BC patient’s 

overall survival in TCGA expression plots and KM-plotter (Fig. 2-4).
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Many of the candidate genes we selected have been studied regarding their BC-

related molecular functions. The remarkable increase of aspartate N-

acetyltransferase (NAD8L) is reported to develop cancer growth in overall cancer 

types and is a valuable target for cancer treatment (Zand et al., 2016). Up-

regulation of matrix metallopeptidase 16 (MMP16) from miR-155 is reported to 

enhance proliferation and migration in TNBCs. CDH2, commonly known as N-

cadherin contributes significantly towards transitioning from the epithelial state to 

the mesenchymal state (EMT) and enacting abnormal cells to invade and 

metastasize to nearby as well as distant tissues. Sex determining region Y-box 

protein 5 (SOX5) expression is reported to increase EZH2 expression inducing 

breast cancer cell proliferation and invasion (Sun et al., 2019). Controversially, 

SALL1 is a tumor suppressor in luminal BC types, as well as in TNBCs (Ma et al., 

2018, Wolf et al., 2014). Notably, we newly identified four novel candidate genes 

never been reported in BC (Nova Alternative Splicing Regulator 1 (NOVA1), 

Phospholipase C Like 2 (PLCL2), Synaptotagmin Like 4 (SYTL4), and Delta/Notch 

Like EGF Repeat Containing (Gardner et al., 2016)). Since NOVA1 (52.37%) and 

DNER (34.45%) have been studied in various other cancers, but not in BC. 

 

BCs are continuously separated by different measures for more precise 

classification. We used the top-ranked genes in up- and down-regulated markers to 

observe if it could contribute to enhancing BC classification. Each gene showed 



 

 90 

high differentiation, but the combination of differentially expressed candidate 

genes, predicted by H3K4me3 and H3K27me3 histone marks analysis, using the 

logistic regression models further improved the accuracy of BC diagnosis. 

 

In conclusion, we suggested a bioinformatical strategy to reveal TNBC 

biomarkers using histone modifications of H3K4me3 and H3K27me3 and 

combining transcriptomic datasets. The functional study of the candidate genes 

found in this study in BC, especially in TNBC, is necessary in more extensive 

datasets and cancer types for better understanding and discovering novel 

biomarkers and therapeutic targets. 
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CHAPTER Ⅲ 

 

 

Common Plasma Protein Marker LCAT in 

Aggressive Human Breast Cancer and Canine 

Mammary Gland Carcinoma 
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INTRODUCTION 

 

 

 

 

Among all the malignant tumors, breast cancer (BC) is known to be one of the 

most frequently diagnosed cancers. In fact, it is the most-studied malignancy in the 

world (Woolston, 2015). Despite the efforts of various researchers, the struggle to 

understand and cure breast cancer continues on many fronts. A large number of 

genes have been selected as biomarkers to further understand BC: whether it is 

invasive or non-invasive (Hoag, 2015), whether it is classified to a certain category, 

etc. BC biomarkers can be organized into three major categories: prognostic, 

predictive, and pharmacodynamic markers (Ulaner et al., 2016). The most 

frequently used biomarkers are the prognostic and therapy-decision biomarkers, 

consisting of tissue-based biomarkers such as estrogen receptor (ER), progesterone 

receptor (PgR), and human epidermal growth factor receptor 2 (HER2) (Harris et 

al., 2007). Additional protein biomarkers were able to be identified by the 

improvement of mass spectrometry (MS)-based proteomics technologies, which 

enabled blood analysis of solid tumors (Geyer et al., 2017). Although sequencing 

technology have been increased and enhanced, biomarkers that depict advanced 

stage malignancies or cancers that undergo metastasis are considerably scarce 

compared to early-stage prognostic biomarkers. The most well-known markers 



 

 93 

would be carcinoma antigen 15-3 (CA-15-3), CA-27/29, and carcinoembryonic 

antigen (CEA) (Banin Hirata et al., 2014), which respectively indicate relevant data 

related to breast cancer, but still more indicators are needed . 

 

Canine MGC are frequently studied alongside human BC. Not only is it studied 

due to dogs’ close relations to humans, but it is also a well-known animal model for 

alternative human BC investigation (Salas et al., 2015). However, when it comes to 

cancer indicating markers, canine prognostic biomarkers are rare. Most are inferred 

indicators, such as CA-15-3, that derived from data in human samples. To further 

understand and diagnose MGC, it is certainly a necessity to find suitable 

biomarkers that depict stage-wise and aggressive MGC. 

 

This study focused on discovering aggressiveness biomarkers of canine MGC 

using canine normal and cancer plasma samples. After an extensive search 

consisting of 36 fractions of each sample run in mass spectrometry (MS), potential 

targets were further filtered through MRM data and validated by Western blot. 

Once a suitable biomarker was discovered, in silico data of human breast cancer 

was implemented to investigate its possibility as a human aggressiveness-

indicating biomarker and further validated in human plasma samples and cell lines. 

This study will provide a novel aggressiveness biomarker that can be applied to 

both human and canine malignant cancer patients. 
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MATERIALS AND METHODS 

 

 

 

 

Plasma sampling 

Canine normal and cancer plasma were obtained from the Canine Cancer Research 

Center project (CCRC). No live animals were directly involved in this study. For 

each sample, 50ul of plasma was used. The depletion process was done by using 

the multi affinity removal spin cartridge top 2 depletion kit (Agilent, location, Cat # 

5188-8825). Every product was concentrated by using a speed-vac and 200ul of 

HPLC water was added to dissolve for further processing. Digestion was done via 

the filter-aided sample preparation protocol (Wisniewski et al., 2009). Desalting 

was done by using SDB-RPS resin. The initial 6 canine normal and cancer samples 

were pooled into 3 samples. 6-plex tandem mass tagging was implemented for the 

normal and cancer samples. Thirty-six fractions were made by using Waters’ HPLC 

columns. The column length is 25 cm, consisting of C18 with a pore size of 5um 

attached to an HPLC separation unit. Twenty-four canine plasma samples 

underwent an identical depletion and digestion process. Fractionation and desalting 

was done by using the SDP-RPS 3 fraction method. Human normal and cancer 

plasma were obtained from a local hospital which was involved in the CCRC 

project. No live patients were directly involved in this study. Each sample was 
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identically processed as the canine samples, with a resulting fraction of 3 using the 

SDP-RPS method. 

 

Mass spectrometry and peptide analysis 

Proteomics analysis was done as previously reported by our group (Kim et al., 

2016). Each fraction was identified by a Q-Exactive Orbitrap mass spectrometer 

located at the Korea Brain Research Institute (KBRI). Additional samples used for 

validation was identified using the Orbitrap fusion mass spectrometer located at the 

Ulsan National Institute of Science and Technology (UNIST). Raw data was 

collected for initial peptide research. Protein identification was done with the 

Maxquant protein search engine (https://www.maxquant.org/). Major search 

options were assembled with 6 minimal peptides, 1 unique and razor peptide. 

Additional modifications included methyl oxidation and N-term acetylation. The 

data was analyzed by the Perseus protein analysis tool attached to the Maxquant 

software. Differential analysis was done by sorting cancer proteins expressed more 

or less than 1.2 fold compared to normal samples. P-value cutoff was set to 0.05. 

 

MRM measurements 

Multiple reaction monitoring (MRM) analysis was done as previously reported by 

our group (Kim and Cho, 2019). Briefly, identical plasma samples used in the 

initial protein search was picked for MRM validation. To each desalted peptide 

product 20ul of 0.1% TFA in HPLC water was added. Each sample was subjected 

to a 60 min length liquid chromatogram (LC). Peptide intensity was identified by 
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the triple quad LC/MS 6490. Identified peptides were compared and validated 

using the skyline software (https://skyline.ms/project/home/begin.view?). 

 

Kaplan-Meier (KM) plot analysis 

Survival analysis was done using a web-based Kaplan-Meier (KM) plotter to 

evaluate the candidate gene and survival rates in more than 3,000 breast cancer 

samples. Grades and subtypes were sorted by the options provided within the KM 

plotter tool. The hazard ratio (HR) was given with 95% confidence intervals, and 

log rank P value was calculated by auto selecting the best cutoff option. 

 

Western blot 

Western blot analysis was done as previously reported in our laboratory (Cho et al., 

2017). Depleted proteins were dried by the speed vacuum centrifuge method and 

prepared in HPLC grade water. SDS-PAGE was performed using a 10% 

polyacrylamide gel. LCAT (Abcam, Cambridge, UK) antibodies were used at a 

1:1000 dilution. 



 

 97 

RESULTS 

 

 

 

 

To maintain MS quality among samples, a basic three step process was followed 

for every canine normal and cancer plasma sample: protein depletion, digestion, 

and fractionation. A total of 12 normal and cancer samples were used for basic 

profiling and primary targeting. Plasma protein is not easily acquired in normal 

protein preprocessing, so an extensive 36 fractions with 6-plex TMT labels were 

used for both sample types (Fig. 3-1). Each fraction contained proteins located in 

various timelines, which allowed for a higher yield for comparative analysis. 

Among the samples, cancer subtypes that were diagnosed as aggressive or highly 

metastatic were handpicked. Histologically, canine mixed tumors are characterized 

by the presence of myoepithelial cancer cells habited with bone/cartilage 

mesenchymal cells (Dantas Cassali et al., 2012), which can be categorized as 

highly developed metastatic cancer. After analysis of LC-MS/MS results, a total of 

292 proteins were identified, with 54 proteins elevated in cancer compared to 

normal plasma (Fig. 3-2). Elevated proteins included SERPING1 and SERPINA6, 

which are known to be increased in canine MGC and are currently recognized 

markers in human BC patients (de Ronde et al., 2013).
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Figure 3-1. Proteome profiling of canine normal & cancer plasma samples. 

Basic schematics of the proteomic procedure. (A) Each sample is depleted of 

plasma abundant proteins Alb and IgG. (B) After depletion, samples were treated 

with trypsin enzymes for protein digestion. (C) Peptides were then labeled with 6-

plex tandem mass tag (TMT) systems for quantification. (D) Finally, peptides were 

analyzed by MS for protein identification and relative expression analysis. 

A 

B 

C 
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Among the increased proteins, we focused on LCAT, or lecithin-cholesterol 

acyltransferase, for several reasons. First, LCAT was the fourth highest elevated 

protein with a significant p-value of 0.03 (Table 3-1). The other proteins that had 

higher fold change did not suffice the statistical significance, since LC-MS/MS 

intensities can vary due to the sample’s natural characteristics such as age, dog 

breed etc. Second, LCAT is a highly abundant protein that converts free cholesterol 

into a more hydrophobic form, which eventually synthesizes into high density 

lipoproteins (HDL) that gain mobility to move unidirectionally (Dobiasova and 

Frohlich, 1999). Highly abundant proteins are much more viable biomarker 

candidates since they can be detected with ease. Third and most interestingly, 

human LCAT is well known to be decreased in overall BC tissues (Subbaiah et al., 

1997). Because the plasma samples analyzed in our study were highly developed or 

metastatic carcinomas, this reason alone raised a possibility that LCAT expression 

patterns can be altered when mammary tumors become more invasive and 

aggressive. To further address LCAT as a protein highly expressed in mixed tumors, 

additional MRM analysis was done as a validation. The result indicated that LCAT 

levels in mixed tumor cancer were more than ten times higher than in normal 

plasma (Fig. 3-2). While LCAT was easily detected in mixed tumors, only a small 

portion was identified in normal samples. Our data showed that the LCAT protein 

is elevated in the plasma of mixed type MGC.
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Figure 3-2. Proteome expression analysis 

(A) Proteins profiled in each plasma group. Volcano plot indicates top 5 up-

regulated genes (Red) and down-regulated genes (Blue) in cancer state. (B) Protein 

LCAT intensity identified by MRM.

A B 

* P-value: 0.01742  
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 Table 3-1. Differential analysis of protein expression in canine plasma 

Gene Name Fold change Enriched sample P-value 

    

PSMA7;PSMA8 2.545446 Cancer 0.012536934 

Ig heavy chain V 

region MOO 

2.239375 Cancer 0.024700876 

ADIPOQ 1.701391 Cancer 0.025296237 

LCAT 1.49674 Cancer 0.027445789 

LCP1;PLS3 1.477428 Cancer 0.034921527 

 

Canine MGC can be classified into various types when categorized by 

histological diagnosis. We further focused on whether LCAT expression is elevated 

only in mixed tumors or in other cancer subtypes as well. A total of 23 canine 

plasma samples consisting of normal and distinct cancer subtypes were processed 

via the four basic steps explained in Fig. 3-1. Due to excessive labor, three 

fractions were performed for each sample. Every sample contained 110~230 

proteins with visible LCAT expressions. When concisely compared between 

normal and cancer specimens, the normal LCAT level was observed to be slightly 

higher (Fig. 3-3A), which correlates with recent human studies (Subbaiah et al., 

1997). However, when cancer samples were classified into cancer subtypes, mixed 

tumor samples presented the highest intensity compared to simple or complex 

tumor samples (Fig. 3-3B). Simple tumor is comprised of tubular or papillary 

adenocarcinomas, usually consisting of individual cancer cells derived from their 

respective tissue origin. Complex tumors are microscopically diagnosed by a 

formation of epithelial and myoepithelial cells. Mixed type tumors are 

histologically and microscopically more advanced and metastatic compared to the 
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other tumor types. Our data further emphasizes that LCAT expression is elevated in 

a highly developed cancer environment. To further prove the expressive traits of 

LCAT, Western blotting was performed in each group. Undergoing blind selection 

of normal as well as each cancer subtype, we confirmed that mixed type tumors 

tended to have higher levels of LCAT compared to normal and other distinct cancer 

subtypes (Fig. 3-4). Our results showed that the LCAT protein is elevated in the 

plasma of highly developed, invasive and metastatic mammary tumors such as 

mixed tumors. 

 

 

Figure 3-3. LCAT expression of canine plasma samples. 

(A) overall expression comparison of LCAT in 25 normal and cancer plasma. (B) 

LCAT expression difference among normal and cancer subtypes. 
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Figure 3-4. Wester blotting of LCAT expression in canine plasma 

(A) Cropped gel indicating LCAT expression of selected canine samples from 

normal and each cancer subtype. (B) Numeric intensity of LCAT expression 

derived from western blot. Samples range from Normal (Black) to Simple (Dark 

grey), Complex (light grey), and Mixed type tumors (white). 
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Human LCAT activity is reported to be constrained in BC. However, detailed 

expression profiles of distinct cancer subtypes have not yet been addressed. We 

analyzed LCAT expression in silico data of human BC tissues provided by the 

TCGA database. Because this data lacks specific stage information, human BC was 

separated into grades, from lowest normal-like grade 1 to highly aggressive and 

invasive grade 3 (Rakha et al., 2018) (Fig. 3-5A). Survival analysis of each grade 

presented dissimilar outcomes. Expression levels of LCAT in grades 1 and 2 did 

not seem to influence the mortality. On the other hand, high expression of LCAT 

decreased the survival rate of patients with grade 3 BC. This provided evidence 

that LCAT might have a role in aggressive types of BC. We further sorted grade 3 

patients into lymph node positive and negative types. Lymph nodes can be viable 

metastasis indicators, as they are one of the most common organs involved in 

aggressive BC metastasis (Rahman and Mohammed, 2015). Interestingly, patients 

with lymph node metastasis indicated a drastic decline in survival rates compared 

to non-metastatic BC (Fig 3-5B). Therefore, it was clear that LCAT has a negative 

correlation with the survival rate of patients with BC that has substantially 

developed and undergone metastasis. 
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Figure 3-5. Survival analysis of LCAT expression. 

Kaplan-Meier (KM) plots representing patient mortality of increased and decreased 

LCAT expression. (A) survival rate of BC patients with grades starting from 1 to 3. 

(B) LCAT expression survival rate of BC patients with or without lymph node 

metastasis 

A 
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Survival analysis of BC patients’ data alone does not fully explain whether the 

change of mortality is caused by differential expression or functional alteration. To 

validate human LCAT expression among BC plasma, various subtypes and stages 

suitable for stage-wise analysis were selected for Western blotting from 24 samples. 

Surprisingly, among luminal A plasma, LCAT expression was correlated with an 

increased stage of cancer development (Fig. 3-6A). Stages of BC consisted from 

the in situ stage 0 to the very invasive and developed stage 3. Stage 0 was mainly 

intact within the ductal parts of the breast, which expressed similar LCAT patterns 

to normal patients. However, as the cancer’s characteristics became more 

aggressive with continuous development, LCAT expression increased. The second 

stage of BC could be further separated by the possibility of lymph node metastasis. 

Stage 2B was considered to be more invasive into the lymph nodes than 2A, which 

was reflected in the further elevated expression of LCAT (Fig. 3-6B). This data, 

although tested in a limited number of samples and needing to be studied with 

more samples, indicated again that the LCAT plasma level correlates with the 

aggressiveness of BC.
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Figure 3-6. Western blot of LCAT expression among human BC plasma. 

(A) Cropped gels of Normal, Luminal A, Luminal B, and TNBC subtype BC 

patients with different stages indicating LCAT expression. Full-length gels are 

presented in Supplementary Fig. 2. Stages range from the least cancer-like 0 stage 

to the most aggressive and metastatic IIIC. (B) Intensity of each sample listed in 

Fig. 3-6A 
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DISCUSSION 

 

 

 

 

This study was able to identify a potentially strong protein biomarker as an 

aggressive BC indicator through a comparative approach via canine MGC plasma. 

Not only are dogs environmentally related to humans, but they are also genetically 

highly conserved compared to other universal experimental animals such as mice 

or rats (Lindblad-Toh et al., 2005b). This aspect gives access to human BC from a 

different perspective. Previous studies that implemented canine MGC as a suitable 

model for human BC research has been widely used to understand certain BC 

subtypes that seldom occur but have high mortality rates, such as TNBC and other 

myoepithelial carcinomas (Abdelmegeed and Mohammed, 2018b) Our group also 

reported resemblances of canine MGC to human BC in terms of transcriptomic 

analyses (Lee et al., 2018). Though canine MGC do not have criteria related to 

cancer development stages, tumor subtypes are diagnosed by grades to indicate 

severity. Complex type MGC are mainly graded 1~2, which indicates relatively 

stable cancer cells with a good prognosis. Mixed type tumors are far more 

metastatic due to the multiple cancer cells related to breast and bones (Tavasoly et 

al., 2013). By using developed, metastatic canine mixed tumor plasma, we were 

able to discover a novel biomarker that could be used as a precursor of 
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aggressiveness and metastasis of both human BC and canine MGC. 

 

MGC cells secrete certain proteins which can be used to identify their nature. 

Furthermore, compared to the direct tissue approach, plasma proteins are 

considered a much more viable biomarker able to be implemented in both basic 

and clinical research (Surinova et al., 2011). Despite the provided advantages, the 

majority of reported plasma protein biomarkers are not easily accessed due to their 

low abundance and co-habitation with abundant proteins such as albumin and 

various immunoglobulins. Initially through extensive plasma sampling using 6-

plex TMT labeling and a wide selection of fractions, the protein, LCAT, was 

identified in all normal and cancer samples. LCAT is a well-known enzyme that 

participates in transporting cholesterol (Kosek et al., 1999). To validate the 

protein’s practical role as a biomarker compared to other low abundant proteins, an 

additional 24 plasma samples of canine normal and various MGC was inspected 

with a very compact and reproducible method. As a result, we were able to identify 

LCAT as a selective biomarker highly elevated in MGC that have undergone a 

series of developments and metastases. 

 

Before investigating LCAT in human BC, we were well aware of the previous 

studies that in general mentioned that LCAT activity is decreased in BC patients. 

The main LCAT products, lipoproteins LDL and HDL, are considered as potential 

new causes in BC development (Cedo et al., 2019). Decreased LCAT activity 
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leading to low level high-density lipoproteins (HDL) was reported in BC patients 

before radiotherapy (Ozmen and Askin, 2013). However, more recent reports 

described LCAT and HDL levels rising in breast cancer subjects. A genome-wide 

study using 164 discrete variants associated with HDL, LDL and cholesterol 

among 101,424 BC cases and 80,253 controls provided strong evidence that 

increased HDL may be related to BC occurrence (Beeghly-Fadiel et al., 2019). The 

controversial debate of lipoproteins in BC may be due to the lack of understanding 

of how LCAT activity influences high- and low-density lipoproteins. The dispute 

also infers the possibility that LCAT expression is not correlated to BC as a whole, 

but rather only to certain types. Through in silico research and Western blot 

validation, we were able to demonstrate that human LCAT resembles canine LCAT 

expression level patterns, as it was increased in highly progressed breast cancers 

within the same classified subtypes. These results not only indicate a discovery of a 

novel protein biomarker in breast cancer, but could also provide further 

understanding of the lipoprotein pathway that is involved in aggressive breast 

cancer development. 

 

In conclusion, this study reveals the plasma protein LCAT as a biomarker for 

indicating advanced breast cancer as well as mammary tumor undergoing 

metastasis using a comparative analysis approach from canine to human cases. 

Further extending the comparative analysis using more than 150 samples of canine 

and human plasma revealed proteins which altered expression when MGC is 

developed in both canine and humans. Among the commonly regulated proteins, 
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protein LCP1 was identified to have a significant increase in human cohorts with 

MGC dogs as companions. The identified biomarkers will provide further evidence 

in diagnosing clinical samples of dogs and humans. LCP1 will not only serve as a 

biomarker for MGC diagnosis, but also might serve as a guiding protein which can 

warn humans by investigating their canine partners. 
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GENERAL DISCUSSION 

 

 

 

 

Many researches regarding canine MGC as an appropriate model for researching 

human BC has been mainly demonstrated by antibody based immunohistochemical 

staining or targeted proteins directly expressed from the malignant tissue. To 

further address the advantages of canine MGC as appropriate BC comparative 

models, I used transcriptomic data to compare canine MGC and its adjacent normal 

tissue for identifying transcriptomes specifically expressing in overall MGCs and 

each respective subtypes simple, ductal and complex MGCs. As a result, genes 

differentially expressed in all subtypes such as CCL23, CXCL10, SFRP2, and 

FRZB have been known to be altered in human BC. Not just only individual gene 

expression shared common ground. Once performing GO term analysis within the 

DEGs, term “positive regulation of angiogenesis” consisting of genes CHI3L1, 

CXCL8, FOXC2, SERPINE1, SFRP2, and TF have also been reported to play roles 

in various malignancies including BC. Furthermore, by implementing public RNA-

seq data of human BC subtypes and comparing its transcriptomic expression 

profiles with canine MGC histological subtypes, I discovered that while ER+ and 

ER+&HER2+ subtypes showed no correlation with ‘complex and simple’ and 

ductal subtypes, TNBC had a strong correlation in both simple and ductal subtypes. 



 

 113 

Other reports describing invasive ductal carcinoma showing histological 

resemblance with TNBC and similar transcriptomic profiles from simple subtypes 

such as KRT5 and MKI67 present a possibility of which the transcriptomic 

signatures for canine MGC might indicate certain human BC subtypes. This further 

leads to finding biomarkers which were previously not considered as subtype 

specific target.  

 

Even though BC research through in silico data have been gradually beneficial, a 

large portion of the targets did not correlate with real experiments. Meanwhile, 

various methods of omics technology were implemented to analyze the genetic and 

epigenetic characteristics of human BC. As more data was processed, correlating 

the genetic and epigenetic omics datasets made possible to yield outcomes which 

tend to be more accurate than those discovered with only one type of expression 

data. By combining the epigenetic histone modification profiles of H3K4me3 and 

H3K27me3, which tends to exist within the same genomic region, sorted out 

cancer specifically enriched genes that highly matched with the transcriptomic 

expression. The results not only represented a possible marker for TNBC, but also 

provide information on how the gene is regulated in an epigenetic matter. Further 

validating the top ten up- and down-regulating candidates in TNBC cell lines and 

other breast cancer cell lines resulted in a high correlation. Among the candidates, 

genes such as NAD8L, MMP16, CDH2 and SOX5 have been studied regarding their 

BC-related molecular functions, with MMP16 reporting a specific role in TNBC. 

While some targets were matched with previous researches, I have found novel 
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biomarkers which expressions are specific to TNBC. NOVA1, PLCL2, SYTL4 and 

DNER did not show any information considering human BC. The discovered 

markers may prove as a viable target for understanding TNBC.  

 

Proteomic expression in cancer also serves as a strong indicator of the patients’ 

anomaly. As I addressed canine MGC models as an appropriate comparative 

medicinal approach, I further investigated on comparing canine and human 

malignancies in a proteomic level. During the process, I deliberately selected 

canine MGC subtypes which were histologically diagnosed as late-stage, or highly 

metastatic, to see if MGC of a more metastatic and aggressive stage would alter the 

proteome expression compared to not only normal, but also other MGC subtypes. 

By processing proteomic data using canine plasma samples, I reported plasma 

protein LCAT as a biomarker to highly advanced stage, metastatic mixed MGC 

subtype.  
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GENERAL CONCLUSION 

 

 

 

 

The continuous efforts to fully overcome BC has led to various methods of analysis 

branching from producing sequencing data which supervises the overall gene and 

protein expression of the human construct to implementing comparative models of 

relatively close species for discovering aspects which were neglected or overlooked 

in the human approach. Recent advances in sequencing technology made possible 

to manufacture various omics data regarding the genomic, epigenetic and 

proteomic region such as transcriptomic expression, histone modification profiles 

and protein expression. Along with the datasets, personalized medicine has been 

gaining importance, with predictive biomarkers indicating disease progression and 

target approaches for therapy and monitoring. 

 

In these studies, I applied various datasets of different omics technology to 

discover potential biomarkers which express distinct profiles from normal states in 

both canine MGC and human BC. The analysis resulted in the identification of 

DEGs and DEPs of each representative species and led to commonly expressed 

targets both previously reported and novel in breast malignancies. The verified 
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biomarkers will suit as a potential target for not just overall MGCs, but also in 

certain advanced stage specific cancer of high metastatic features.  

 

Considering the series of omics data comparison of two genetically and 

environmentally close species, this research might provide further insight to 

establish an appropriate understanding of comparative medicinal BC biomarker 

development which encompass canines and humans alike. 
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유방암은 여성과 암캐에서 가장 빈번하게 진단되는 악성종양 중 하나이

다. 이러한 암과 관련된 이상현상을 완전히 이해하고 극복하려는 수많은 

노력에도 불구하고, 유방 조직의 특정 부위에서 발생하는 여러 유형들은 

드물지만 위협적인 악성 종양으로 발달한다. 비교 의학적 접근법은 인간

의 유방암 연구에 기존과는 다른 관점으로 접근하는 효과적인 방법으로 

등장했다. 다양한 오믹스 기술의 등장과 함께 유방암 치료의 전반적인 

방향이 대규모 데이터를 이용하여 특정 유방암을 지칭하는 바이오마커 
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발굴로 기울었다. 차세대 염기서열 분석(NGS)을 이용한 후생유전체 데

이터부터 질량분석기(MS)에서 생산하는 단백체 정보까지, 이러한 오믹

스 데이터를 통합분석하는 것이 악성 유방암 진단과 약물 표적 발견을 

위한 해결책이다. 본 연구는 총 3장으로 구성된다. 

 

제1장에서는 10쌍의 개 유선암 및 인접 정상 조직에서 추출한 RNA-

seq 데이터로 개 유선암과 연관된 신호를 식별하는 방법을 설명한다. 유

방암(BC)/유선암(MGC)은 가장 빈번한 암중 하나이며 암과 관련된 사

망률에서 선두를 차지하고 있다. 개 유선암과 사람 유방암 특이적 유전

자를 이해하기 위해, 우리는 개의 8쌍의 발암과 인접한 정상 조직에서 

얻은 RNA의 염기서열을 분석했다. 전사체 분석을 통해 개 전체 유선암

에서 351개의 특이적 발현유전자를 확인했다. 비교분석 결과, 개 유선암

의 세 가지 조직학적 유형(단순형, 관상형, 복합형)과 인간 유방암의 네 

가지 분자 유형(HER2+, ER+, ER&HER2+, TNBC) 사이에 존재하는 

상관관계를 밝혔다. 세 종류의 개 유선암을 모두 공유하는 8개의 DEG

는 이전에 인간 연구에서 암과 관련된 유전자로 보고됬다. 확인된 DEG

를 이용한 유전자 온톨로지 및 발현 경로 분석 결과, 세포 증식, 접착, 

염증 반응 과정이 유선암 DEG에서 나타났다. 이와는 대조적으로, 세포 

사멸과 관련된 전사체 조절 및 지방산 항상성에 연관된 유선암 DEG들

은 하향 조절되었다. 더욱이, 상류 프로모터 전사체(PROMPT)와 DEG 

사이에 상관관계가 있음을 밝혔다. 개 유선암 및 조직학적 유형 특이적 

발현 유전자를 통해 우리는 인간의 유방암과 개 유선암을 더 잘 이해할 
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수 있게 되었으며, 두 질병의 바이오마커의 진단과 개발에 대한 새로운 

통찰력을 얻을 수 있을 것이다. 

 

제2장은 특정 유방암 유형의 판별과 치료에 초점을 맞추고있다. 여러 

유방암 유형 중 삼중음성유방암(TNBC)은 예후가 가장 나쁘며 보고된 

사례가 가장 적다. TNBC에 대한 보다 나은 이해와 효과적인 전구체을 

얻기 위해 TNBC 세포와 정상 유방 세포의 데이터를 사용하여 두 가지 

주요 히스톤 변형인 활성화 변형체 H3K4me3와 억압 변형체 

H3K27me3를 분석하였다. 프로모터 유전자에 두 히스톤 변형체의 조합

을 통해 유전자 발현과 높은 상관관계가 있음을 확인했다. 유전자의 목

록은 NOVA1, NAT8L, MMP16을 포함한 활성화된 유전자(H3K4me3

이 많이 포진된)와 IRX2, ADRB2와 같은 억제된 유전자(H3K27me3이 

많이 포진된)로 정의됐다. 추가적인 조사를 위해, 후보 유전자들은 

TNBC에 특이적인 발현함을 식별하기 위해 다른 종류의 유방암과 비교

했다. RNA-seq 데이터는 히스톤 변형에 의해 지배되는 유전자 조절을 

확인하고 검증하기 위해 구현됐다. H3K4me3와 H3K27me3를 통합하

여 분석한 바이오마커 조합은 P-값이 1.16e-226인 AUC 93.28%를 

보였다. 이 연구 결과는 프로모터 지역에 위치한 서로 반대되는 히스톤 

변형 분석이 TNBC의 바이오마커의 진단 및 개발에 활용될 수 있음을 

시사하며 발현의 과정이 후성유전체에 의한 조절 기작과 관련되어 있기

에 이러한 유전자 발현에 대한 연구방향을 제시해 줄 수 있을 것이다. 
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제3장은 개 유선암에서 시작하여 인간 유방암까지 적용될 수 있는 바

이오마커 연구로 구성된다. 바이오마커는 지속적으로 발견되지만, 유방

암의 공격성과 지속성을 대표해주는 바이오마커는 유방암의 유형을 분류

시키는 바이오마커에 비해 부족하다. 이 연구는 비교의학적 접근법을 통

한 개 유선 종양 샘플을 사용했다. 개암 정상 혈장과 유선암 혈장 모두 

36분할을 통한 광범위한 정량적 단백체 분석을 진행했다. 확인된 단백

질 중 LCAT는 전이 가능성이 높은 공격적인 암 발병 단계를 나타내는 

혼합형 종양 검체에서 특이적으로 발현되는 것으로 밝혀졌다. 추가적인 

질량분석과 Western Blot 검증을 통해 우리는 LCAT 단백질이 전이성

이 높은 유선종양의 지표단백질이 될 수 있음을 발견했다. 흥미롭게도, 

사람의 림프절 양성 유방암에서 과발현된 LCAT이 환자의 수명을 유의

미하게 줄이며 유방암 중 2기 이상 진행되었을 때에도 개 유선암과 동

일하게 높게 발현되는 것을 확인하였다. 이것으로 단백질 LCAT은 사람

과 개에서 공격적인 형태의 유방암 및 유선암을 지칭하는 지표단백질로

서의 가능성을 밝혔다.  

  

 

주요어: 유방암, 비교의학, 바이오마커, 후성유전학, 단백체학 

학번: 2016-21753 
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