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Abstract 
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analysis of highly pathogenic avian influenza 

(H5N8) outbreaks in South Korea 

 
Woo-Hyun, Kim 

 
(Supervisor: Seongbeom Cho. D.V.M., Ph. D.) 

 
Department of Veterinary Medicine 

The Graduate School 
Seoul National University 

 

Infectious diseases have become important in public health because of their 

increased socioeconomic impact during epidemics. Attempts are on to understand 

and predict disease transmission based on mathematical modeling. These models are 

increasingly being recognized as useful tools for establishing public health policies. 

Highly pathogenic avian influenza (HPAI) is one of the major zoonoses 

transmitted from birds to humans and has been an intermittent disease in South Korea 

since 2003. Among the multiple epidemics, the HPAI subtype H5N8 is the enormous 

outbreaks resulting in significant damage to the country’s poultry industry. It is, thus, 

important to study the disease transmission characteristics of the emerging H5N8 

subtype in South Korea. However, to date, epidemiological studies have mainly 

focused on the H5N1 subtype. Therefore, this thesis is aimed to conduct to 

investigate epidemiologic characteristics of HPAI caused by newly appeared 

subtypes, including their risk factors, transmissibility, and spatiotemporal dynamics 

between poultry farms. 

First, to understand HPAI H5N8 infection, a retrospective case-control study 

was conducted to identify and evaluate potential risk factors for HPAI H5N8 
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infection on broiler duck farms. Duck farms with known H5N8 infections were 

selected as cases; control farms were matched to cases based on location within a 3-

km radius. Potential risk factors were analyzed using univariable and multivariable 

logistic regression. Fecal removal services (OR = 27.78, 95% confident interval (CI) 

= 3.89–198.80), farm owner’s career (OR = 7.91, CI = 1.69–37.14), large flock size 

(OR = 6.99, CI = 1.34–37.04), and other poultry farms within 500 m (OR = 6.30, CI 

= 1.08–36.93) were significantly associated with HPAI (H5N8) outbreaks in the final 

model. These results indicated that the HPAI H5N8 outbreaks in South Korea were 

associated with farm owner age, the number of flocks, poultry farm density, and 

biosecurity. Establishing policies to manage these risk factors may reduce the 

vulnerability of South Korean poultry farms to HPAI (H5N8) outbreaks. 

The second study assessed the transmissibility of the HPAI subtypes H5N1, 

H5N8, and H5N6 in poultry farms by estimating their basic reproduction numbers 

(R0) through mathematical modeling. R0 calculations used exponential growth and 

maximum likelihood models based on the susceptible-infected-removed 

compartment model. The mean R0 for subtypes H5N1, H5N8, and H5N6 were 1.68-

1.95, 1.03-1.83, and 1.37-1.60, respectively. Results of Kruskal-Wallis pairwise 

comparison tests showed that the mean generation time for H5N8 (7.27 days) was 

significantly longer than that for subtype H5N1 (4.93 days). These findings suggest 

that the R0 differ by HPAI subtype and might be associated with the temperature 

during the early stage of the infection, species specificity by viral subtype, and 

prevention policies. Knowledge of these and other factors affecting transmissibility 

can be used to design practical disease control strategies for future emergent HPAI 

subtypes. 

Finally, H5N8 infections in South Korean poultry farms were analyzed to 

identify their spatiotemporal distributions, understand the mechanisms of 

transmission between farms, and evaluate the effectiveness of quarantine policies in 

addressing outbreaks. The global and local spatiotemporal interactions in the first 

and second H5N8 epidemics were analyzed using a space-time K function at the 

national level and a space-time permutation model from 2014 to 2016, respectively. 

In both epidemics, the space–time K-function analyses revealed significant 

interactions within three days and up to 40 km distance; excessive risk attributable 

values (D0) were maintained despite the distance. Eleven local spatiotemporal 
ii



clusters were identified, and results indicated that the regional spread of H5N8 was 

polarized between small and large spatiotemporal clusters. This global and local 

spatiotemporal interaction indicates that the HPAI epidemics in South Korea were 

mostly characterized by short duration of transmission within a small area and then 

dispersal by long-range jumps. 

In conclusion, this study used three epidemiological models to provide a 

scientific basis for improved effective quarantine policies for HPAI control. Risk 

factors for the introduction and spread of H5N8 HPAI virus in South Korean poultry 

farms were identified through analytic epidemiology. Furthermore, differences in 

disease transmissibility for three HPAI subtypes were demonstrated through 

mathematical modeling. Results suggest that features of the current quarantine 

system, such as preemptive depopulation, and the tracking of poultry vehicle 

movements, need to be continued. The results of this thesis can be used as scientific 

evidence for evaluating and supplementing HPAI quarantine policies and disease 

countermeasures. It is also expected that the methodologies used in this thesis can 

be applied to other infectious zoonosis occurring in South Korea and worldwide. 
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General Introduction 

In epidemiology, a risk factor is defined as a factor that increases the probability 

of developing a disease (Liamputtong, 2019). Case-control studies are among several 

epidemiologic study designs that identify risk factors by comparing groups (Hess, 

2004). Researchers estimate the association of a potential risk factor with the disease 

by comparing its frequency in a diseased group (cases) with its frequency in a non-

diseased group (controls) (Lewallen & Courtright, 1998). It is then possible to 

estimate the impact of the factor on the disease (World Health Organization, 2018). 

In infectious disease epidemiology, it is important to identify and quantify associated 

risk factors through risk-based surveillance and control strategies (Chaudhry et al., 

2015). Understanding the factors associated with infections in the host will help in 

improving actions and policies to reduce the spread of infectious diseases within the 

population. 

The spread of infectious disease is a dynamic process and the amount of the 

population susceptible to infection changes over time (Grassly & Fraser, 2008). 

Mathematical approaches have been used to estimate changes in the number of 

infections by tracking the dynamics of pathogens over time (Grenfell et al., 2004). 

In recent years, detailed electronic surveillance of infectious disease has become 

widespread through advances in computing science and rapid diagnostic tests 

(Delamater et al., 2019). The basic reproduction number (R0) is a key parameter 

developed through mathematical modelling to reflect the transmission potential of a 

disease. R0 is an average of the number of successful transmission events resulting 

from a single infection (Dietz, 1993). Estimation of R0 is a powerful tool for 

understanding disease dynamics and evaluating the impact of interventions on 

1



infectious disease. 

An understanding of the mechanisms driving infectious disease propagation in 

space and time enable the development of public health policies. Recent 

technological advances have led to a growing trend of using geographical 

information system (GIS) approaches for infectious disease epidemiology (Chowell 

& Rothenberg, 2018). A spatiotemporal analysis is an epidemiologic method that 

focuses on the relationships between time, space (location), and host or 

environmental characteristics to detect patterns of disease occurrence (Smith et al., 

2015). The occurrence of space-time interactions between outbreak cases located 

close in time and space varies and can, thus, be considered an infectious disease 

indicator (Diggle et al., 1995). Measuring and analyzing these indicators provides an 

understanding of pathogen transmission mechanisms, which enables the 

development of prevention strategies against disease spread. 

Highly pathogenic avian influenza (HPAI) is an avian disease with zoonotic 

potential. HPAI outbreaks are highly contagious and often fatal to poultry, causing 

enormous economic damage to the poultry industry (Short et al., 2015). The first 

case of direct human infection of HPAI from poultry was reported in Hong Kong in 

1997 (De Jong et al., 1997). Since then, persistent human infections have been 

reported and HPAI has become an important public health concern in humans. The 

novel H5N8 subtype HPAI virus was first reported in poultry farms in January 2014 

in South Korea (Lee, 2014), and caused four epidemic waves through April 2016 to 

become the largest nationwide HPAI outbreak (Animal & Plant Quarantine Agency, 

2016). Characteristics of the H5N8 subtype in poultry farms are different from those 

of the H5N1 viruses previously identified in South Korea. Compared to the high 

mortality rates of H5N1 virus infections in poultry farms, H5N8 virus infections in 
2



domestic ducks caused lower mortality, furthermore, affected ducks did not display 

reconizable clinical signs of infection (Kim et al., 2014).  

The present study was designed to analyze HPAI (H5N8) in South Korea 

through three methods to provide a scientific basis for improving effective 

quarantine policies for HPAI control in the future: an analytic epidemiological 

model, a mathematical model, and a spatiotemporal model. This thesis is organized 

into three chapters. In chapter 1, the potential risk factors for H5N8 outbreaks in 

broiler duck farms are identified and evaluated using a retrospective case-control 

study design; the results from this study are applicable to policies designed to reduce 

the spread of the HPAI subtype H5N8 between poultry farms in South Korea. In 

chapter 2, the R0 of subtypes H5N1, H5N8, and H5N6 during HPAI outbreaks are 

estimated and used in mathematical modeling to understand outbreak characteristics 

and to provide insight into potential control measures. In chapter 3, the 

spatiotemporal distributions of HPAI (H5N8) in the poultry farms are modeled in 

order to understand underlying mechanisms of H5N8 HPAI virus transmission 

between farms. 
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Literature Review 

1. Analytic epidemiology in infectious disease 

1.1. Analytic epidemiology  

In epidemiologic research, descriptive and analytic studies are the two 

main types of research designs for describing the distribution of disease incidence 

and prevalence, studying exposure–disease associations, and identifying disease 

prevention strategies (Boslaugh, 2007).Analytic epidemiology attempts to evaluate 

the reasons and mechanisms of the variations in health outcomes observed in 

different groups, communities, and populations (Dicker et al., 2006). These studies 

are designed to determine whether differences in outcomes can be attributed to 

variations between groups in demographic characteristics, socioeconomic status, 

genetic factors, environmental exposures, and behavioral and other risk factors that 

are potential direct or underlying causes of the disease (Aschengrau & Seage, 2013).  

The term “exposure” is used to represent the potential causes of a health 

outcome. Depending on the nature of the exposure factor and the study design, the 

exposure may be a risk factor, a protective factor, or a treatment/intervention. 

Analytic studies explore the association between exposure status and a health event; 

comparisons of two or more groups are used to test a study hypothesis to assess 

whether a relationship exists (Friis & Sellers, 2020). In observational studies such as 

cross-sectional, case-control, and cohort studies, researchers obtain data on exposure 

and outcome variables without providing treatments or interventions to the subjects. 

In contrast, experimental and intervention studies allow researchers to control the 

exposure factor and test the effect of a treatment or intervention on the outcome 

(Figure 1) (Liamputtong, 2019). 
4



 

Figure 1. Epidemiological study designs and the strength of evidence for 

association between an exposure and health outcome. 

Adapted from Liamputtong, 2019 
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1.2. Case-control study and risk factors  

A case-control study uses a retrospective design, that is, both the exposure 

and the outcome have occurred prior to the study being conducted. The study 

methods involve the identification of a group with the outcome of interest (cases) 

and a group free of the same outcome (controls). (Lewallen & Courtright, 1998) Next, 

the researchers evaluate the frequency of the exposure in the case group with its 

frequency in the control group (Figure 2) (Hess, 2004). If the amount of exposure in 

the case group is statistically significantly higher than that in the control group, then 

the illness (outcome) is considered to be associated with that exposure. 

In epidemiology, a risk factor or determinant is a variable associated with 

an increased risk of disease or infection. Risk factors are associated with the outcome 

but are not necessarily causal (World Health Organization, 2018). Risk factors 

relevant to community health policy are those related to a health risk and that are 

general, abstract, pertain to inequalities, and are difficult for an individual to control; 

some are also preventable. Case-control studies are one of the epidemiological 

methods used to assess risk factors. 

 

Figure 2. Case-control study design.  

Adapted from Hess, 2004
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1.3. Risk factors associated with HPAI outbreaks

The timely identification of risk factors in an outbreak is important to 

develop strategies to control the disease (Lewallen & Courtright, 1998). Previous 

epidemiologic studies of AI from a variety of settings and countries have identified 

several risk factors. However, most of the studies on risk factors were based on the 

HPAI H5N1 subtype. To date, most of the studies on H5N8 outbreaks have analyzed 

the genetic epidemiology of the virus, with only a limited number of studies looking 

at the epidemiology of the disease (Globig et al., 2016; Harder et al., 2015; Shin et 

al., 2015)  

Previous studies of HPAI (H5N1) have identified several factors associated 

with infection, including contact with the bodies of dead birds (Biswas et al., 2011), 

methods of carcass disposal (Garber et al., 2016; Liu et al., 2015), distance to case 

farms (Chaudhry et al., 2015; Wells et al., 2017), equipment sharing (Metras et al., 

2013), high poultry densities (Chaudhry et al., 2015; Loth et al., 2010), inadequate 

biosecurity (McQuiston et al., 2005; Nishiguchi et al., 2007), and a minimal distance 

to road (Fang et al., 2008; Ward et al., 2008). These identified risk factors include 

spatial factors. Combining location information with epidemiological analysis is an 

important tool to fully characterize the occurrence and transmission of HPAI 

(Iglesias et al., 2010; Martin et al., 2011). 
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Table 1. Literature references by risk factor of HPAI  

Risk factor Reference Odds ratio P-value 

Inappropriate vaccination Henning et al. (2009b) 85.2 0.01 

Visitor access Henning et al. (2009b) 

Osmani et al. (2014) 

Fasina et al. (2010) 

8.2 

3.0 

8.32 

0.04 

0.01 

<0.01 

Poultry breed mixing Henning et al. (2009b) 11.5 0.02 

Wild animal entering Henning et al. (2009b) 

Biswas et al. (2009a) 

McQuiston et al. (2005) 

10.9 

4.47 

1.9 

0.01 

0.032 

0.04 

Carcass disposal management Biswas et al. (2009b) 13.29 0.027 

Proximity to water Biswas et al. (2009a) 

Paul et al. (2011) 

5.27 

3.48 

0.024 

<0.001 

Selling live poultry Paul et al. (2011) 

Fasina et al. (2010) 

Nishiguchi et al. (2007) 

3.34 

11.91 

36.6 

<0.001 

<0.01 

NA 

Distance to road Paul et al. (2011) 2.44  0.013 

Number of workers Osmani et al. (2012) 12.2 0.001 

Equipment sharing Nishiguchi et al. (2007) 29.4  

Inadequate biosecurity Nishiguchi et al. (2007) 7  

Distance to case farms Nishiguchi et al. (2007) 8.6  

Poultry age McQuiston et al. (2005) 4.9 <0.001 

Managers living outside of the 

farm 

Fasina et al. (2010) 

McQuiston et al. (2005) 

8.98 

2 

0.01 

0.03 

Contact with dead bird bodies McQuiston et al. (2005) 7.3 <0.001 
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2. Pathogen epidemiology in infectious disease  

2.1. Pathogen epidemiology 

Epidemiology is a population science that studies the patterns of disease 

incidence, attempting to infer its causes and consequences. Classical epidemiology, 

for instance, might seek to identify risk factors for a given condition, which might 

be environmental or genetic. This approach identifies factors that can inform 

interventions minimizing the risk of disease. However, methods are different for 

transmissible diseases. The spread of infectious disease is a dynamic process in 

which an increasing numbers of cases increases the risk to the rest of the population. 

In contrast, as people recover, they may become immune and be removed from the 

pool of susceptible. Hence, the numbers of hosts available to be infected changes 

over time (Figure 3) (Grassly & Fraser, 2008). Infectious disease epidemiology 

expands the methodological repertoire with the use of mathematical models, 

comprising sets of differential equations, and statistical models that use a 

probabilistic framework. These models can then be used to explore the impact of 

vaccination campaigns or other interventions (Kliman, 2016).
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2.2. Mathematical models of infectious disease 

Mathematical representation and analyses of infectious diseases have been 

central to infectious disease epidemiology since its inception as a discipline (Beisner, 

2005). In recent years, detailed electronic surveillance of infectious diseases has 

become widespread, owing to the advent of improved computing, electronic data 

management, and the ability to share and deposit data. These ongoing developments 

have increased the application of mathematical models to both the generation and 

testing of primary scientific hypotheses and to the design of practical strategies for 

disease control. Such analyses and models have successfully explained challenging 

observations, such as influenza, HIV, and malaria, and have been key in developing 

public health strategies in many countries such as influenza, HIV, and malaria 

(Anderson et al., 1992; Glasser et al., 2004).  

Given the growing importance of mathematical epidemiology, the 

integration of models with rigorous statistical methods has been fundamental to 

developing methods to estimate key parameters of these models and to test 

hypotheses using real-life data. In the absence of reliable data, mathematics can help 

formulate hypotheses, inform data-collection strategies, and determine sample sizes, 

permitting evaluation of competing hypotheses (Figure 4) (May, 2004). Ideally, data 

should be analyzed using models that adequately describe the observed dynamics 

and patterns of interest as well as the mechanisms that generate these observations. 

Models should be as simple as possible, but not so simple that the consideration of 

additional realistic complexity alters the conclusions.  
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Figure 4. Difference between stochastic simulation and deterministic 

approximation in foot and mouth disease in UK in 2001. 

The red curve and shaded region show the mean and range, respectively, for 

simulations of a detailed stochastic model in which spread of infection is modeled 

using the actual spatial distribution of farms in England and Wales. The blue curve 

is from a highly simplified “toy model,” using gross averages of relevant parameters. 

The comparison between the simple model, in which the dynamics can be clearly 

understood, and the complex computer simulations illuminates both for similarities 

and differences. 

Adapted from May, 2004 
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2.3. Reproduction number study in infectious disease 

The basic reproduction number (R0) is one of the crucial parameters in 

infectious disease epidemiology. It is defined as the number of successful 

transmission events and new infections that result, on average, from one infection. It 

is possible to relate these numbers to the course of an outbreak. When R0. >1, the 

expected number of new cases will increase, whereas if R0. <1, the numbers will fall. 

It is also essential to define and distinguish incidence and prevalence. Incidence is 

the number of new cases per unit time, whereas prevalence is the overall frequency 

of the disease in the population. The incidence can be falling, but the prevalence can 

continue to rise, albeit at a slower rate. 

Figure 5 displays an ideal epidemic curve, which shows prevalence and 

incidence, and the changes in R throughout the outbreak (Kliman, 2016). While in 

the illustrated case the epidemic diminishes after the pathogen has run out of hosts 

to infect the disease can become endemic if sufficient susceptible hosts are 

continually introduced (e.g., by birth or waning immunity). Although the expected 

final size of the outbreak falls rapidly as R0 decreases, outbreaks can still occur in 

the case where R0 < 1. This can happen as R0 is an average value, and the initial cases 

can result in an above-average number of new infections. The effects of this 

phenomenon can be probed using a stochastic approach in which events are modeled 

as randomly sampled realizations from a probability distribution. 
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Figure 5. An ideal epidemic curve showing variations in the prevalence, 

incidence, and reproductive number (R) over the course of an outbreak. 

The illustrated case is the result of a Susceptible-Infectious-Recovered model, in 

which recovered hosts become entirely resistant to infection, and as a result, the 

prevalence returns to zero. The point at which the decline in the availability of 

susceptible hosts means each case causes on average just one onward infection is 

that where R¼1, and is indicated. Note that this is coincident with the peak incidence, 

which precedes peak prevalence as described in the text. 

Adapted from Kliman, 2016 
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3. Spatial epidemiology in infectious disease 

3.1. Application of geographical information system to 

epidemiology 

Over the last few decades, significant progress has been achieved in 

infectious disease prevention and control; despite this, infectious diseases continue 

to pose a significant public health burden (Chowell & Rothenberg, 2018). However, 

the understanding of mechanisms driving their propagation in space and time has 

advanced exponentially in recent years. Modern quantitative computational tools and 

highly resolved geospatial demographic, epidemiological, and genomic data are 

enabling actionable insights for public health in near-real-time (Chowell & 

Rothenberg, 2018). 

Geographic information systems (GIS) have increased the availability and 

range of tools that can be used to analyze disease outbreaks (Pfeiffer et al., 2008). A 

GIS is a database designed to handle geographically referenced information and 

complemented with software tools for the input, management, analysis, and display 

of data (Longley et al., 2005). It is used widely in epidemiology, with the most 

straightforward application in the investigation of an outbreak being the creation of 

maps displaying the locations of cases (Figure 6) (Smith et al., 2015).  
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Figure 6. Maps of John Snow’s cholera outbreak investigation in London in 

1854. 

Adapted from C. M. Smith et al., 2015 
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3.2. Spatial research approach  

Quantitative methods for investigating infectious disease using 

spatiotemporal data rely on two broad classes of research methods—spatial 

statistical modeling (Anselin et al., 2010; Lawson, 2013) and spatial transmission 

dynamic modeling methods (Sattenspiel & Lloyd, 2009). The application of these 

methodologies to infectious disease research has increased rapidly over the last two 

decades. Additionally, there have been major advances in computational power and 

an increasing amount and diversity of epidemiological and genetic data with spatial 

and temporal information (Figure. 7) (Chowell & Rothenberg, 2018). For instance, 

spatial statistical methods are frequently used to uncover relationships between 

spatiotemporal patterns of a disease and host or environmental characteristics 

(Lawson, 2013), The resulting detailed maps provide a visualization of the 

distribution of morbidity or mortality (Zulu et al., 2014), and help identify hotspots 

or clusters (Kulldorff & Nagarwalla, 1995). 

 

Figure 7. Growth in spatial modeling, 1990–2017 (Web of Science). 

Adapted from Chowell & Rothenberg, 2018
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3.3. Spatiotemporal analysis using clustering 

Spatiotemporal modeling of animal diseases has been applied to various 

outbreak scenarios to identify geographical clusters with higher than expected levels 

of disease risk. Numerous methods have been developed to detect clusters, including 

point methods and aggregated data (Pfeiffer et al., 2008). Global” tests evaluate 

the entire area for evidence of clustering but without pinpointing specific clusters, 

whereas “local” (or “cluster detection”) tests identify the positions of specific 

clusters. Cuzick and Edwards’ k-nearest neighbor test, for example, is a global 

method for assessing clustering in case-control point data (Cuzick & Edwards, 1990). 

The method counts the number of nearest neighbors of cases that are also cases, and 

compares the result to the number that would be expected under the null hypothesis 

that cases and controls are randomly distributed. Kulldorff’s spatial scan statistic is 

an additional method used to identify local clustering, usually in point data 

(Kulldorff, 2007). Observed numbers of cases within spatiotemporal windows of 

various sizes are compared with numbers that would be expected under a random 

distribution. Circular or elliptical regions of elevated risk of disease are then located. 

The scan statistics and k-nearest neighbor test have also been adapted to identify 

spatiotemporal clustering, testing the null hypothesis that cases that are 

geographically close to each other occur at random times (Figure 8) (Kulldorff et al., 

2005). 
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Figure 8. Locations and dates of detected diarrhea outbreak signals, using 

historical data from November 15 to November 14 2002. 

The three hospital-based signals are depicted with thicker lines/circles. The stronger 

residential-based signal was signal C. Note that all the zip-code areas in the 

residential signal E are also part of signal C. 

Adapted from M. Kulldorff, Heffernan, Hartman, Assuncao, & Mostashari, 2005 

  

19



4. Avian Influenza 

4.1. Avian influenza virus  

The influenza virus belongs to the Orthomyxoviridae family of viruses and 

are classified into four genera—A, B, C, and D. Among them, B and C infect humans, 

while D is not known to cause human infections. Influenza A viruses (IAVs) infects 

various types of vertebrates, such as humans, pigs, horses, dogs, and marine 

mammals, as well as wild birds and poultry. IAVs are primarily classified into 

subtypes according to the antigenicity of their surface proteins, hemagglutinin (HA) 

and neuraminidase (NA) (Figure 9) (Horimoto & Kawaoka, 2005). There are 16 HA 

and 9 NA subtypes generating 144 subtype combinations. Subtypes are named based 

on the characteristics of these surface proteins, for example, H5N1, H5N6, H5N8, 

H7N9 etc. IAVs spread through interspecies transmission and has a variety of hosts 

for the various subtypes (Figure 10) (Short et al., 2015). 

The World Organization for Animal Health (OIE) categorizes AI as having 

high or low pathogenicity according to molecular characteristics of the virus and its 

ability to cause disease and mortality in chickens in laboratory settings (Figure 11) 

(Horimoto & Kawaoka, 2005). HPAI virus is highly contagious in chickens and has 

a mortality rate of about 90%; infected chickens display clinical symptoms such as 

shortness of breath, diarrhea, a sharp decrease in egg production, and cyanosis of 

comb and wattle. It is classified in South Korea as a type 1 livestock infectious 

disease under the Livestock Infectious Disease Prevention Act (MAFRA, 2015) and 

designated as a managed disease by the OIE (World Organisation for Animal Health, 

2020). 
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Figure 9. Schematic diagram of influenza A virus.  

Adapted from Horimoto & Kwaoka, 2005. 

 

Figure 10. Reservoirs and interspecies transmissions of influenza virus. 

Adapted from Short et al., 2015. 
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Figure 11. Localized low pathogenic avian influenza (LPAI) infection versus 

systemic highly pathogenic avian influenza (HPAI) infection.  

Adapted from Horimoto & Kwaoka, 2005. 

 

4.2. Transmission  

AI viruses are transmitted from wild to domestic birds and spill to humans 

potentially (Figure 12) (Pascua & Choi, 2014). While wild aquatic birds have played 

the main role in long-distance transmission of AI viruses, ducks are key in the 

transmission between wild migratory birds and domestic poultry (Lycett et al., 2016). 

The subtypes that cause HPAI are H5 and H7, and are spread from wild birds to 

poultry and poultry to humans and pigs via interspecies transmission.  

AI is mainly infectious through direct contact with the host animal (Figure 

13) (Center for Disease Control and Prevention, 2019). However, mechanical 

propagation between farms also occurs due to vehicles, people, feed, clothing, shoes, 

appliances, and equipment contaminated by dust, water, or feces of infected poultry. 
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Additionally, diseases can occur through animal vectors such as wild mice and wild 

birds. Further, contaminated water, feed, and aerosolized solids can spread from the 

affected farms to adjacent farms (Animal & Plant Quarantine Agency, 2011). 

 

Figure 12. Transmission and spread of avian influenza viruses from wild to 

domestic birds and potential spill to humans.  

.Adapted from Pascua & Choi, 2014. 

 

Figure 13. Avian Influenza Transmission infographic  

Adapted from Centers for Disease Control and Prevention, 2019 
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4.3. HPAI subtype H5N8 outbreaks 

The novel H5N8 HPAI virus was first reported in January 2014 in South 

Korean poultry farms (Y. Lee, 2014). The analysis of virus transmission in migratory 

birds, and HPAI H5N8 antigens from these birds, revealed that wild water birds 

introduced this subtype to South Korea during the winter of 2013–2014 (Jeong et al., 

2014; Y. Lee, 2014). By the summer of 2014, the H5N8 virus had spread to Siberia 

and Beringia courtesy of the migratory birds via the East Asia–Australia flyway 

(Figure 14) (D. H. Lee et al., 2015; Verhagen, Herfst, & Fouchier, 2015). Thereafter, 

the subtype spread globally through overlapping migratory pathways (Lycett et al., 

2016). H5N8 outbreaks have occurred in 37 countries since 2014 and are spread by 

wild water birds (McLeod & Hinrichs, 2016). In South Korea, the detection rate of 

HPAI antigens in the feces of wild migratory birds is reported to be high during the 

winter season (November and December), when they fly to the south, and during the 

spring season (March and April), when heading to the north for breeding (Song et 

al., 2017). 

The outbreak of HPAI (H5N8) was recorded to be the longest HPAI 

outbreak in South Korea and occurred over four waves (Animal & plant Quarantine 

Agency, 2016). The sequencing analysis of the H5N8 to understand their origin and 

transmission revealed that it entered South Korea from the west via Jeonbuk 

province, spreading rapidly among western provinces with high densities of 

overwintering waterfowl and domestic ducks (Figure 15) (Hill et al., 2015). The 

H5N8 subtype detected in poultry farms has different characteristics than the H5N1 

subtype previously occurred in South Korea. First, HPAI (H5N1) outbreaks were 
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concentrated in commercial chicken farms, whereas HPAI (H5N8) outbreaks 

occurred more frequently in broiler duck farms. Second, compared with the HPAI 

(H5N1), HPAI (H5N8) in ducks had no evident clinical signs and lower mortality 

despite a high level of viral excretion (Kim et al., 2014). These characteristics of the 

HPAI (H5N8) in domestic ducks present a challenge to virus monitoring. The high 

density of ducks in farms and the vulnerability of the detection system in live bird 

markets and poultry farms further increase the difficulty of preventing HPAI 

outbreaks (Song et al., 2017). 

 

 

Figure 14. Global movement of the HPAI H5N8 virus. 

Geographic map showing the movement of HPAI H5N8 virus in Asia, Europe, and 

North America in relation to regional waterfowl migration routes. The map, by 

Dmthoth, is sourced from Wikipedia Commons  

(http://commons.wikimedia.org/wiki/File:Blank_Map_Pacific_World.svg). 

Adapted from Lee et al., 2015 
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Figure 15. The estimated trajectory of the H5N8 spread in South Korea.  

Arrows connecting locations represent directions of movement with Bayes factor 

support >10. Arrow colors represent Bayes factor support for rate indictors, with 

darker blue indicating better support. Arrow thicknesses are proportional to the 

inferred values of Markov jumps between locations; a wider arrow represents more 

migration between a pair of locations. Yellow and orange backgrounds show the 

estimated density (numbers per kilometer) of domestic ducks (colors in key). 

Adapted from Hill et al., 2015 
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Abstract 

Highly Pathogenic Avian Influenza (HPAI) subtype H5N8 outbreaks occurred in 

poultry farms in South Korea in 2014 resulting in significant damage to the poultry 

industry. Between 2014 and 2016, the pandemic disease caused significant economic 

loss and social disruption. To evaluate the risk factors of HPAI infection in broiler 

duck farms, we conducted a retrospective case-control study on broiler duck farms. 

Forty-three farms with confirmed laboratories on premises were selected as the case 

group and 43 HPAI-negative farms were designated as the control group. Control 

farms were matched based on farm location and were within a 3-km radius from the 

case premises. Spatial and environmental factors were characterized by site visit and 

plotted through a geographic information system (GIS). Univariable and 

multivariable logistic regression models were developed to assess possible risk 

factors associated with HPAI broiler duck farm infection. Four final variables were 

identified as risk factors in a final multivariable logistic model: “Farms with ≥ seven 

flocks” (odds ratio (OR) = 6.99, 95% confidence interval (CI) 1.34–37.04), “Farm 

owner with ≥ 15 yrs. of raising poultry career” (OR = 7.91, 95% CI 1.69–37.14), 

“Presence of any poultry farms located within 500 m of the farm” (OR = 6.30, 95% 

CI 1.08–36.93), and “Not using a fecal removal service” (OR = 27.78, 95% CI 3.89–

198.80). This highlights that the HPAI H5N8 outbreaks in South Korea were 

associated with farm owner education, number of flocks and facilities, and farm 

biosecurity. Awareness of these factors may help reduce the spread of HPAI H5N8 

across broiler duck farms in Korea during epidemics. Greater understanding of the 

risk factors for H5N8 may improve farm vulnerability to HPAI and other subtypes 

and help establish policies to prevent re-occurrence. These findings are relevant to 
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global prevention recommendations and intervention protocols. 

 

1.1. Introduction 

Highly Pathogenic Avian Influenza (HPAI) is a major zoonosis between humans 

and birds, especially domestic poultry (Alexander, 2007). It has caused considerable 

economic loss to the global poultry industry and is an ongoing major public health 

threat worldwide (Short et al., 2015). The first case of direct H5 HPAI transmission 

from chickens to humans was reported during a H5N1 HPAI outbreak on chicken 

farms and live bird markets in 1997 in Hong Kong (De Jong et al., 1997). Following 

this first report of human infection, HPAI subtype H5N1 viruses have since infected 

859 people with a mortality rate close to 60% (OIE, 2017).  

Outbreaks of the new HPAI subtype, H5N8, were first reported in January 2014 

on South Korean poultry farms (Lee, 2014). The introduction of the HPAI subtype 

H5N8 in Korea was associated with wild water birds in winter, determined by 

transmission factors analyzed through the migration route of migratory birds and 

HPAI antigen identification in these birds (Jeong et al., 2014; Lee, 2014). As the 

result of a phylogenetic network analysis of avian influenza viruses worldwide, the 

H5N8 subtype virus emerged during late 2013 in China, spread in early 2014 to 

South Korea and Japan, and reached Siberia and Beringia by summer 2014 via 

migratory birds (Lee et al., 2015; Verhagen et al., 2015). Migratory birds from Korea 

mainly use the East Asia-Australia route and HPAI H5N8 virus spreads globally 

through the mutual overlapping of migratory pathways (Lycett et al., 2016). The 

HPAI H5N8 has occurred extensively in 37 countries globally since 2014 due to 

spread by wild water birds (McLeod & Hinrichs, 2016). 

29



HPAI outbreaks occurred in Korea between from 2003 to 2015 with four 

outbreaks of HPAI H5N1 in 2003–2004, 2006–2007, 2008, and 2010–2011. The 

outbreak of HPAI H5N8 was the longest in Korea and occurred over four waves 

(Animal & Plant Quarantine Agency, 2016). The H5N8 subtype in poultry farms has 

different characteristics to the H5N1 HPAI that previously occurred in Korea. First, 

H5N1 HPAI cases were concentrated on commercial chicken farms, whereas HPAI 

H5N8 occurred more frequently on broiler duck farms. Second, in comparison with 

the associated high mortality of H5N1 virus on domestic farms, HPAI H5N8 was 

associated with lower mortality without evident clinical signs on duck farms though 

there were a large amount of viral excretions (Kim et al., 2014). These characteristics 

of the H5N8 virus in the domestic duck could present a challenge to virus monitoring. 

The high density of duck farms and the vulnerability of the detection system in live 

bird markets or poultry farms are proposed as causes for the continuous HPAI 

outbreaks (Song et al., 2017). 

In order to construct strategies to control diseases, the identification of timely risk 

factors in outbreaks are important (Lewallen & Courtright, 1998). Previous avian 

influenza epidemiologic studies have identified several risk factors from a variety of 

settings and countries (Abbas et al., 2012; Arriola et al., 2015; Beaudoin et al., 2014; 

Biswas, Christensen, Ahmed, Barua, et al., 2009; Biswas, Christensen, Ahmed, Das, 

et al., 2009; Biswas et al., 2011; Boender et al., 2007; Bui et al., 2017; Cao et al., 

2010; Chaudhry et al., 2015; Desvaux et al., 2011; Dinh et al., 2006; Fang et al., 

2008; Fasina et al., 2011; Gale et al., 2014; Garber et al., 2016; Gilbert et al., 2006; 

Henning et al., 2009; Huang et al., 2016; Iglesias et al., 2010; Kung et al., 2007; Liu 

et al., 2015; Lohiniva et al., 2013; Loth et al., 2010; Mannelli et al., 2006; Martin et 

al., 2011; McQuiston et al., 2005; Metras et al., 2013; Mounts et al., 1999; Musa et 
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al., 2013; Nishiguchi et al., 2007; Osmani et al., 2014; Paul et al., 2011; Tenzin et al., 

2017; Thomas et al., 2005; Thompson et al., 2008; Tiensin et al., 2009; Tombari et 

al., 2013; Tsukamoto et al., 2007; Vong et al., 2009; Wang et al., 2017; Wang et al., 

2014; Ward et al., 2008; Zhang et al., 2014; Zhou et al., 2009). However, most risk 

factor studies are based on the HPAI subtype H5N1. To date most of the HPAI H5N8 

studies of the outbreaks have analyzed the genetic epidemiology of the virus with 

limited epidemiologic studies (Globig et al., 2016; Harder et al., 2015; Hill et al., 

2015; Jeong et al., 2014; Kang et al., 2017; Kim et al., 2015; Kim et al., 2014; Lee 

et al., 2015; Lee, 2014; Lycett et al., 2016; Shin et al., 2015; Song et al., 2017). 

Phylogenetic analysis is a powerful tool in molecular epidemiology but is enhanced 

with risk factor studies. To the best of the authors’ knowledge, limited 

epidemiological analysis of H5N8 outbreaks has not been conducted.  

In previously published studies, many risk factors were associated with avian 

influenza infection, such as contact with dead bird bodies (Biswas et al., 2011), 

carcass disposal management (Garber et al., 2016; Liu et al., 2015; McQuiston et al., 

2005), distance to case farms (Chaudhry et al., 2015; Mannelli et al., 2006; 

Nishiguchi et al., 2007; Wells et al., 2017), equipment sharing (Metras et al., 2013; 

Nishiguchi et al., 2007), poultry densities (Boender et al., 2007; Chaudhry et al., 

2015; Loth et al., 2010; Paul et al., 2011; Tiensin et al., 2009), inadequate biosecurity 

(Biswas, Christensen, Ahmed, Barua, et al., 2009; Garber et al., 2016; McQuiston et 

al., 2005; Metras et al., 2013; Nishiguchi et al., 2007; Paul et al., 2011; Thompson et 

al., 2008; Tombari et al., 2013), minimal distance to road (Chaudhry et al., 2015; 

Fang et al., 2008; Paul et al., 2011; Ward et al., 2008), proximity to water (i.e. ponds 

and lakes), workers and visitor access to barns, and contact with wild birds. Among 

the identified risk factors, some are related to spatial information. Combining 
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location information with epidemiological analysis studies is an important tool to 

fully characterize the occurrence and transmission of HPAI (Fang et al., 2008; 

Iglesias et al., 2010; Martin et al., 2011). To understand factors for outbreaks on 

boiler duck farms and to help control the spread of HPAI subtype H5N8, we 

conducted a retrospective case-control study to identify and evaluate potential risk 

factors of HPAI H5N8 occurrence during the outbreak that occurred in 2014-2016.  

 

1.2. Material and Method 

1.2.1. Case definition and control farm selection 

Case farms were selected as infected premises that were confirmed positive by 

reverse transcription polymerase chain reaction (RT-PCR) by the Animal and Plant 

Quarantine Agency in Korea. HPAI virus was screened by using the 

hemagglutination (HA) assay and RT-PCR by using influenza A–specific 

nucleoprotein (NP) primers (Hoffmann et al., 2001). Infected premises comprised 

poultry farms with observed clinical signs reported by farmers. Positive premises 

were diagnosed as positive after culling. 

H5N8 outbreaks were the longest HPAI outbreaks in Korea and occurred in four 

waves: 2014.01.16–2014.07.29, 2014.09.24–2015.06.10, 2015.09.14–2015.11.15, 

and 2016.03.23–2016.04.5. In the H5N8 outbreak report for 2014 to 2016, a total of 

393 case premises were reported as infected (Animal & Plant Quarantine Agency, 

2016).  

For the HPAI H5N8 outbreaks in the study, the cases occurred mainly on poultry 

farms in the boundary area of three provinces; Gyeonggi-do, Chungcheongbuk-do, 

and Chungcheongnam-do, which were surveyed, though the disease eventually 
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spread throughout Korea. These provinces were considered to have an important role 

in the early stages of the outbreaks. Sample farms were selected from broiler duck 

farms because they had a large proportion of the H5N8 cases. Therefore, we decided 

that comparing the case and control broiler duck farms in these areas would be the 

most efficient method. In the first wave of HPAI H5N8 outbreaks (2014.01.16–

2014.07.29), 46 broiler duck farms were confirmed as HPAI H5N8-positive in three 

provinces. Of the 46 HPAI-positive broiler duck farms, three farm owners rejected 

the questionnaire. The other 43 case farms were enrolled in this study. 

Control farms were selected from among farms within a distance of 3 km from 

the case farm. Control farms were confirmed HPAI-negative by PCR during the 

outbreak periods from 2014-2016 and were matched in terms of location. Among the 

non-infected farms, the closest farm was selected as the control farm. The control 

farms needed to fulfill the selection criteria, which included raising broiler ducks 

during the HPAI H5N8 outbreaks and not being shut down after the HPAI H5N8 

outbreaks. Forty-three case premises and 43 control farms were selected and sampled. 

 

1.2.2. Data collection and survey 

It is usually found to determine the risk factors based on the characteristics of 

pathogens or on research into a similar disease that has been studied. Since there is 

no previous H5N8 case-control study, potential risk factors related to other subtypes 

of HPAI were included in the questionnaire for analysis. We investigated 55 possible 

risk factors associated with HPAI H5N8 infection in broiler duck farms. 

Data were collected using a questionnaire comprising 55 binary, multiple choice, 

and short answer type questions (Appendix A). In the farm characteristic category, 
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we documented farm location, species, and number of flocks on farms, farm area 

size, density of herds, and the raising of other birds or animals on the farm. Distance 

between the nearest poultry farms were surveyed by farm owners, and were 

confirmed using ArcGIS v. 10.0 (ESRI System, Redlands, CA, USA). Demographic 

factors of owners were also collected and included education level, farm owner age, 

number of years raising poultry, and any secondary occupations. Farmers were asked 

to provide details on contact with wild birds and animals in winter to assess the 

relationship between HPAI and wild animals. Wild bird and animal contacts were 

estimate through contact probabilities and frequency. The probability and frequency 

of wild birds and animals were estimated by farm owner response. It was asked 

whether wild birds were observed on a nearby farm during the winter when HPAI 

occurred. 

Data on the following items were collected from targeted farms as risk factors 

related to biosecurity: disposal of dead poultry, removal of feces and sewage, use of 

a biosecurity advisor, fencing, footbaths at entry to the farm, presence of hand 

sanitizer, change room, log book, individual boots, farm visitor protocols, and 

disinfection of vehicles entering farms. 

Two trained veterinarians conducted interviews of farm owners or senior 

employee(s) between July and December 2015. In order to confirm the reliability of 

the survey, on-site farms visits were performed after the interview. 

 

1.2.3. Geographical information 

Among the risk factors associated with HPAI, environmental data were 

calculated via GIS. The basic administrative area was expressed using the shape file 
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map provided by ArcGIS. The GIS database was constructed through geocoding of 

the farm address information from the Korea Animal Health Integrated System. 

Location of poultry farms were analyzed using the GIS database by receiving 

information from the Animal and Plant Quarantine Agency using the transformation 

method of Korea Geodetic Datum 2002. To determine if certain geographic features 

were related to HPAI H5N8 infection, we compared proximity of roads, water 

environments, and distance to documented migratory bird locations. Data on road 

networks, such as highways, national roads, and other types of roads were obtained 

from the traffic management system at the Korea Road Traffic Authority (KoROAD) 

(2016). Korea Water Resource Management Information Systems was used to obtain 

information of national canal and local streams (http://www.wamis.go.kr). The 

location of migratory bird areas and the 2014 winter water bird census reported by 

the Ministry of Environment were used to estimate the influence of wild birds on 

HPAI. Breeder poultry farms and duck slaughterhouses were referenced in the 

statistics from the Ministry of Agriculture, Food, and Rural Affairs (2015). 

Geographical shape file data and land coverage of the Korea administrative division 

were downloaded from the Korea National Spatial Data infrastructure portal Open 

API (http://openapi.nsdi.go.kr). 

To assess the impact of environmental risk factors, we estimated minimal 

distance between the farms and risk factors using the ‘near’ tools in the GIS 

proximity toolset, which are used to compute the distance from each point in a 

coverage to nearest point in another coverage. Land cover spatial information was 

also surveyed after visualizing and mapping land types such farmland, forest, water, 

and city.  
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1.2.4. Statistical analysis 

All statistical analyses were performed using SPSS v. 23.0 (IBM, USA) and R 

software version 3.4.3 (R Project for Statistical Computing, Vienna, Austria). Before 

being entered into the model, continuous variables were transformed into categorical 

variables using the quartile of distribution to avoid problems of linearity. The flock 

numbers and flocks size were changed to dichotomous variables based on whether 

they were above or below the averages for broiler duck farms in Korea. Farm 

location and environmental data were analyzed by ArcGIS v. 10.0. The continuous 

information data, such as distance to environmental factors, were converted into 

categorical data through quantiles based on control farm data. The population 

characteristics and continuous variables between case and control farms were 

examined using Student’s t-test. McNemar’s chi-squared test was used to compare 

categorical variables between case and control farms. The level of significance was 

set at 5% for all comparisons. 

Odd ratios (ORs), their 95% confidence intervals (CIs), and p-values were 

estimated using maximum likelihood methods. Risk factors analysis was carried out 

in two steps, using univariable and multivariable logistic regression models. As an 

initial screening, univariable analysis was conducted to test the association between 

outcome (case-control) and each explanatory variable suspected as a risk factor. The 

likelihood-ratio test was used to assess the fit of the model.  

Multivariable logistic regression was applied to the selection of explanatory 

variables according to Dohoo et al. (Dohoo et al., 2003). For multivariable analyses, 

we used the conditional logistic model to assess the effects of risk factors. We used 

multinomial logistic regression (NOMREG) for 1:1 matches between case and 
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control farms. Each farm was paired by location. Significance levels of the Wald 

statistic p ≤ 0.2 in the univariable logistic regression were used to select variables 

for a multivariable logistic regression. A forward stepwise variable-selection was 

used to add the variable with the lowest p-value to construct a final model with a 

significance level of p ≤ 0.05. The new model was compared with the previous one 

using a likelihood-ratio test after the addition of each variable. The fit of the model 

was evaluated using the Hosmer-Lemeshow test (Hosmer Jr et al., 2013). For all tests, 

variables with p-values < 0.05 were considered to be statistically significant. 

 

1.3. Results 

1.3.1. Population characteristics 

The epidemic curve of HPAI H5N8 outbreaks on case farms in Korea is shown 

in Figure 16. The first suspected outbreak occurred in January 2014. After this, the 

number of infected farms rapidly increased and peaked on February 19, 2014.  

At the species and breed level, 229 broiler ducks (58.3%), 61 parent stock ducks 

(15.5%), 47 layer chickens (12.0%), 20 Korean native chicken premises (5.1%), 15 

parent stock chickens (3.8%), 11 mixed poultry (2.80%), 3 mallards (0.76%), 2 

broiler chickens (0.51%), 2 geese (0.51%), 1 ostrich (0.25%), 1 wild goose (0.25%), 

and 1 quail (0.25%) were confirmed as positive by PCR for HPAI H5N8. 

The geographical distribution of the 43 case and 43 control farms is shown in 

Figure 17. Most case farms were concentrated in the boundary between the provinces. 

The Chungcheongbuk-do area and the Eumseong County, is an area where broiler 

duck farms are concentrated, and an area where most of the farms tested positive for 

HPAI H5N8. 
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Case and control farm population characteristics are presented in Table 2. There 

was a significant difference in the number of flocks between the case and control 

duck farms (p = 0.009), but no significant difference in the number of ducks, flock 

size, or farm area size (p > 0.05). 

 

1.3.2. Univariable analysis of risk factors 

Fourteen variables were identified as risk factors with the univariable analysis 

(Table 3). Examining binary variable data, HPAI H5N8 was significantly associated 

with 11 variables; “Farms with ≥ seven flocks” (OR = 4.91, 95% CI 1.79–13.43), 

“Sizes of flocks ≥ 2000” (OR = 2.72, 95% CI 1.05-7.05), “Poultry farms located 

within 500 m of farm” (OR = 3.82, 95% CI 1.30–11.20), “Farm owners with ≥ 15 

yrs. of raising poultry career” (OR = 2.99, 95% CI 1.16–7.73) “Hiring new workers” 

(OR = 58.33, 95% CI 7.33–463.96), “Not using a feces removal service” (OR = 7.14, 

95% CI 2.38–20.12), “Not using a biosecurity advisor” (OR = 3.15, 95% CI 1.31–

7.60), “No fence around a farm” (OR = 3.71, 95% CI 1.26–10.93), “No footbaths at 

entry areas to the farm” (OR = 47.31, 95% CI 9.93–255.44), “No hand sanitizer” 

(OR = 2.58, 95% CI 1.08–6.16), “No disinfection sprayer” (OR = 6.16, 95% CI 2.39–

15.86), and “No change area on the farm” (OR = 4.18, 95% CI 1.58–11.05).  

Analyzing the categorical data, two variables were significantly related to HPAI. 

Regarding the method of dead bird disposal, the farms which treated dead birds as 

“dog food” (OR = 14.40, 95% CI 1.38–150.81) or use of “rendering” (OR = 10.40, 

95% CI 1.62–66.90) were more vulnerable than the farms that incinerated dead 

bodies on the farm. In 2014 farms at a distance of less than 13 km from the winter 

water bird sites were at a higher risk than the farms located more than 24.6 km (OR 
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= 5.87, 95% CI 1.59–21.65). The following factors had the greatest significance (p 

< 0.001): “Hiring new workers,” “Not using a feces removal service,” “No footbaths 

at entry areas to the farm,” and “No change area on the farm”.  

The correlation was analyzed by R using the function cor by using the Spearman 

rank correlation. Results showed that the only positive correlations found were 

between “farm workers’ boots” and “farm workers’ clothes”. These two factors were 

merged into “The worker entry biosecurity,” 

 

1.3.3. Multivariable analysis of risk factors 

Twenty-seven variables with p ≤ 0.2 were considered for candidates in the 

multivariable logistic regression model to estimate effects (Table 4). The final model 

identified four variables as independent risk factors for HPAI H5N8 infection on 

broiler duck farms in Korea (Table 5). They were “Farms with ≥ seven flocks” (p = 

0.021), “Farm owner with ≥ 15 yrs. of raising poultry career” (p = 0.009), “Any 

poultry farms located within 500 m of the farm” (p = 0.041), and “Not using a feces 

removal service” (p < 0.001). 

 

1.4. Discussion 

The aim of this study was to investigate potential risk factors of HPAI H5N8 

infection in poultry farms in Korea. Previous studies have identified risk factors of 

HPAI infection on duck farms, especially commercial broiler duck farms (Gilbert et 

al., 2006; Henning et al., 2009). However, these studies focused on small-sized duck 

farms in Southeast Asian countries. To the best of our knowledge, this is the first 

case-control study reporting the risk factors for HPAI infection in Korea. It is also 
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the first epidemiologic report on the risk factors of H5N8 subtypes on commercial 

broiler duck farms. The results help describe risk factors associated with the HPAI 

H5N8 infection and transmission in Korea between 2014 and 2016.  

The risk factor, “farm with ≥ seven poultry flocks,” was identified from the 

multivariable analysis model. Thompson et al. previously suggested that the number 

of flocks was a risk factor for HPAI occurrence (Thompson et al., 2008). This can be 

explained by an increased frequency of contacts that have potential for infection (e.g., 

traders, veterinarian, pharmacy, or feed suppliers). In addition, it might be difficult 

for farm owners with larger flocks to disinfect their farms. In broiler duck farms, 

disinfection of flocks is operated after duck shipment. In the case of farms with 

multiple flocks, the farm owner and employee are more likely to come into contact 

with other flocks after disinfectant operation. In the univariable analysis, a flock size 

> 2,000 was also identified as a risk factor. In a previous study, HPAI virus 

transmission was dependent on an increased number of birds (Tsukamoto et al., 

2007). Therefore, a large farm may have a greater chance of infections.  

The odds of HPAI infection was eight-fold greater for a farm owner with ≥ 15 

yrs. raising poultry career than less those with < 15 yrs. (p = 0.009). One reason for 

this is that the more experienced a farmer is in the poultry industry, the more likely 

the facility would be older. There was a significant relationship between the age of 

the farm and the farmer’s poultry industry experience. Second, the longer the farm 

owner is employed, the older the farmer is likely to be. In the sampled farms, farmer 

age and years of poultry industry career were found to be positively correlated. The 

older the farmer, the less likely the farmer may be to accept new information and 

update their practices (Smith & Buckwalter, 2006). Therefore, it is important to focus 

on biosecurity and HPAI education with older farm owners in future prevention 
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activities. 

Previous studies have shown that proximity to the nearest case farm was related 

to avian influenza virus infection in Japan and the Netherlands (Boender et al., 2007; 

Nishiguchi et al., 2007), which is consistent with our findings. These studies showed 

that as the distance between farms decreases, the risk of infection increases. The 

density of poultry farms in the high-risk group was significantly higher than average 

(Boender et al., 2007). In addition, the greater the number of nearby poultry farms, 

the higher the probability of HPAI infection. In fact, HPAI H5N8 occurs mainly in 

areas with a high density of farms, where the proximity of nearby farms is an 

important factor in the spread of disease (Hill et al., 2015). It may be necessary to 

reduce the density of poultry farms to control and prevent disease outbreaks. 

Our results documented that case farms were unlikely to conduct proper disposal 

of feces than control farms. Feces are often used as a fertilizer on the owner’s farm 

or neighboring farms in most of the case farms. Inappropriate management of feces 

has been shown to be an important biosecurity threat in other studies (McQuiston et 

al., 2005; Musa et al., 2013; Sheta et al., 2014). Feces can be contaminated and serve 

as a source of HPAI virus allowing spread to wild birds and domestic animals 

(Stallknecht et al., 1990). Therefore, appropriate management of feces conducted by 

an approved removal service is important to prevent the virus from entering farms. 

Although there is no evidence that wild birds have been infected with HPAI through 

the feces of domestic poultry, there might be a risk that wild animals can come into 

contact with infected feces and spread the HPAI. This study has some limitations 

regarding target farm data collection. Because of the ongoing outbreak, it was 

sometimes difficult to interview farm owners. In addition, control farm owners were 

also reluctant to be surveyed because of biosecurity concerns. There was some 
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concern for reporter validation. This concern was minimized by interviewers’ 

observation and it was suspected that no significant bias occurred and that there was 

high reliability in respondent answers. We also recognized that recall bias may have 

occurred for some questions. This may especially be true for wild bird related 

questions. The survey was conducted in July but the questions asked where related 

to the previous recollection of winter water bird contact. Potential recall differences 

may increase the possibility of recall bias and explain the lack of statistical 

significance in wild animal variables.  

 

1.5. Conclusion 

We analyzed possible risk factors of the introduction and transmission of HPAI 

H5N8 on broiler duck farms during the outbreaks in Korea between 2014 and 2016. 

The risk increased for farms with ≥ 7 flocks, owners with ≥ 15 years’ experience in 

the poultry industry, poultry farms located within 500 m, and not using a feces 

removal service. Consideration of these risk factors related to biosecurity of HPAI 

outbreaks could possibly reduce the risk of HPAI H5N8 infection on broiler duck 

farms in Korea. This study highlights the importance of farm owner education, 

reducing flock density, enhancing disease management of large size farms, and 

proper treatment of feces. Good management practice and strict biosecurity can 

prevent the introduction of the virus to farms and the transmission within flocks. By 

managing the risk factors identified through this study, it will be possible to 

overcome the vulnerability of farms to HPAI and establish policies to prevent the 

occurrence of HPAI H5N8 in Korea. It is believed that this study can form the basis 

for future HPAI H5N8 analytical research. 
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Chapter 2. 

Estimation of the basic reproduction 

numbers of the subtypes H5N1, H5N8, and 

H5N6 during the highly pathogenic avian 

influenza epidemic spread between farms  
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Abstract 

It is important to understand pathogen transmissibility in a population to establish 

an effective disease prevention policy. The basic reproduction number (R0) is an 

epidemiologic parameter for understanding the characterization of disease and its 

dynamics in a population. We aimed to estimate the R0 of the highly pathogenic avian 

influenza (HPAI) subtypes H5N1, H5N8, and H5N6, which were associated with 

nine outbreaks in Korea between 2003 and 2018, to understand the epidemic 

transmission of each subtype. According to HPAI outbreak reports of the Animal and 

Plant Quarantine Agency, we estimated the generation time by calculating the time 

of infection between confirmed HPAI-positive farms. We constructed exponential 

growth and maximum likelihood (ML) models to estimate the basic reproduction 

number, which assumes the number of secondary cases infected by the index case. 

The Kruskal-Wallis test was used to analyze the epidemic statistics between subtypes. 

The estimated generation time of H5N1, H5N8, and H5N6 were between 4.58 and 

5.24 days, 6.01 and 8.23 days, and 5.02 and 5.91 days, respectively. A pairwise 

comparison showed that the generation time of H5N8 was significantly longer than 

that of the subtype H5N1 (P=0.04). Based on the ML model, R0 was estimated as 

1.68-1.95 for subtype H5N1, 1.03-1.83 for subtype H5N8, and 1.37-1.60 for subtype 

H5N6. We concluded that R0 estimates may be associated with the poultry product 

system, climate, species specificity based on the HPAI virus subtype, and prevention 

policy. This study provides an insight on the transmission and dynamics patterns of 

various subtypes of HPAI occurring worldwide. Furthermore, the results are useful 

as scientific evidence for establishing a disease control policy. 
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2.1. Introduction 

Highly pathogenic avian influenza (HPAI) is a highly contagious viral disease 

that infects domestic poultry and wild birds (Alexander, 2007). The HPAI virus can 

cause an epidemic that may spread rapidly, has a high mortality rate among domestic 

birds, and devastates the poultry industry (Short et al., 2015). Outbreaks of distinct 

subtypes of HPAI, including H5N1, H5N8, and H5N6, are continually reported 

worldwide (DeJesus et al., 2016; Gu et al., 2013; Si et al., 2017), and this global 

HPAI virus dissemination is caused by migratory wild birds (Verhagen et al., 2015). 

The HPAI crisis appears to be a great threat to not only animal health but also public 

health worldwide. Furthermore, the World Health Organization reported 860 human 

infection cases of avian influenza A subtype H5N1 (World Health Organization, 

2019) after the first human case of HPAI subtype H5N1, which was reported in Hong 

Kong in 1997 (De Jong et al., 1997). 

In South Korea, outbreaks of three different subtypes of HPAI occurred between 

2003 and 2018. The first outbreak of H5N1 occurred from December 2003 to 

February 2004 and had a high mortality rate at poultry farms, especially among 

chickens (Lee et al., 2005). Since then, outbreaks of H5N1 have occurred in 2006, 

2008, and 2010 (Kim et al., 2012; Kim et al., 2010; Lee et al., 2008). The novel HPAI 

subtype, H5N8, was first reported in January 2014 at South Korean poultry farms 

(Lee, 2014). Genetic analyses of viruses isolated from wild birds and poultry farms 

showed that migratory birds could be responsible for the first wave of H5N8 

outbreaks between January and May 2014 (Jeong et al., 2014). After the first wave, 

two waves of subtype H5N8 occurred during September 2014 to June 2015 and 

during September 2015 to November 2015 (Animal & plant Quarantine Agency, 
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2016). It was reported that these sporadic outbreaks were caused by viruses 

reintroduced into Korea by migratory waterfowl (Kwon et al., 2016). In November 

2016, a novel genotype of H5N6 that was first detected in wild birds in Korea and 

HPAI infectious cases was reported at poultry farms (Lee et al., 2017). Another novel 

H5N8 virus co-circulated with H5N6 virus during the outbreaks in 2016, from 

February to June 2017 (Kim et al., 2017). In November 2017, the novel H5N6 virus 

was detected at a broiler duck farm and in wild mallards, with infection spreading to 

poultry farms (Lee et al., 2018).  

The main strategies used to prevent and control HPAI outbreaks are based on the 

prohibition of movement, preemptive culling, and vaccinations in infected areas (Yee 

et al., 2009). Therefore, it is important to understand pathogen transmissibility in a 

population to establish an effective disease prevention policy. The basic reproduction 

number (R0) is one of the important epidemiologic parameters necessary to 

understand the characterization of disease and the dynamics in a population (de Jong, 

1995). R0 is generally defined as the average number of secondary cases caused by 

one infectious individual during the entire infectious period in an uninfected 

population (Thomas et al., 2001). If each infected individual infects more than one 

other individual, on an average, at any time point, then the epidemic will be 

sustainable (Dietz, 1993). Various methods are used to estimate the reproduction 

number (Forsberg White & Pagano, 2008; Wallinga & Lipsitch, 2006; Wallinga & 

Teunis, 2004), and these have been implemented in the R program (Obadia et al., 

2012) and Excel (Cori et al., 2013) as ready-made procedures. 

Reproduction number estimation has been used to understand HPAI epidemic 

characteristics and to provide insight regarding control measures for epidemics. 

These farm-to-farm reproduction number estimations were targeted to the HPAI 
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subtype H5N1 and were conducted in Nigeria (Bett et al., 2014), Romania (Ward et 

al., 2009), Thailand (Marquetoux et al., 2012), Bangladesh (Ssematimba et al., 2018), 

India (Pandit et al., 2013), Italy, Canada, and the Netherlands (Garske et al., 2007). 

In Korea, there was a mathematical modeling study of the reproduction number for 

HPAI from 2016 to 2017, but this was limited to the local reproduction number and 

did not include all epidemics from South Korea (Lee et al., 2019). We aimed to 

estimate the generation time and R0 of HPAI subtypes H5N1, H5N8, and H5N6, 

which were associated with nine outbreaks from 2003 to 2018 in Korea, and 

demonstrate the characterization of each subtype by analyzing HPAI characteristics, 

including the epidemic days, number of farms, species distribution, generation time, 

and R0. It is expected that the results of the present study will become a foundation 

for demonstrating the disease dynamics of each HPAI subtype and its characteristics, 

as well as for establishing effective HPAI control, not only for traditional HPAI 

subtype H5N1 but also the emerging subtypes H5N8 and H5N6. 

 

2.2. Material and Method 

2.2.1. Data collection 

The epidemic data of HPAI outbreaks in Korea were collected by the Animal and 

Plant Quarantine Agency (APQA) in Gimcheon, Korea. The livestock owner 

(including the manager) or veterinarian who found an animal with clinical signs and 

suspected HPAI was required to report the case to the APQA according to the 

Prevention of Contagious Animal Disease Act. Cloacal, fecal, and blood samples 

were collected from sick or dead poultry in reported poultry farms, and HPAI virus 

was confirmed using reverse-transcriptase polymerase chain reaction at the Avian 
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Influenza Research and Diagnosis Department of the APQA. If the suspected farm 

was confirmed as HPAI-positive and deemed an infected premise (IP), then 

depopulation of farms with infected poultry and depopulation of all poultry farms in 

the protection zone were conducted. If a depopulated farm was found to be positive, 

then it was defined as a positive premise (PP)(Oh, 2018). Both IP and PP were 

considered cases in this study. The epidemic curve of these HPAI cases was depicted 

using the “incidence” package in R to illustrate the weekly reported number of 

poultry farms in the International Organization for Standardization (ISO) week date 

system (Kamvar et al., 2019) (Figure 18).  

 

2.2.2. Serial interval and generation time 

A serial interval is the time between successive cases in a chain of transmission, 

estimated from the interval between clinical onsets in patients (Forsberg White & 

Pagano, 2008). We estimated the serial interval of HPAI as the time between the 

reported date of the first farm with infected cases and secondary farm with infected 

cases. This estimation was based on the investigation of the epidemic pathway of 

HPAI transmission, which shows the epidemiologic relationship between the 

infector and infectee. According to the APQA investigations, HPAI transmission 

could be possible through wild migratory birds, wild animals, farm owners, 

managers, staff, vehicles related to the poultry industry, and airborne transmission 

from nearby infected farms. The epidemic transmission pathway investigation was 

conducted by an APQA epidemiologic investigator visiting and interviewing the 

places suspected to be associated with the infected farms, including animal facilities 

such as hatcheries, feed factories, and live bird markets. The APQA investigated 
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vehicles, people, livestock, and their products that entered an infected farm from 21 

days prior to infection and estimated the disease transmissions. 

In addition to investigating via interview, the APQA used geographic information 

to identify HPAI viral transmission by vehicles. In Korea, vehicles related to the 

poultry industry transporting poultry, poultry products, medicines, feed, and feces 

must be registered with the Korea Animal Health Integrated System (KAHIS; 

http://www.kahis.go.kr). The movements of livestock-related vehicles are reported 

to the KAHIS, making it possible to track the movement of vehicles, people, 

livestock, and animal products.  

Through these interviews and vehicle information, the disease transmission 

pathway via transportation and human movement was identified. If a clear 

epidemiologic link to the infected farm could not be found through interviews and 

movement tracking, then we hypothesized that the farm might have been infected 

with HPAI by wild migratory birds or wild animals. We then excluded infection 

thought to be caused by wild birds or wild animals during the estimation of the serial 

interval because it is not possible to observe the serial interval of virus transmission 

from wild birds and animals. 

The generation time is the modeling term describing the time duration from the 

onset of transmittable infection in a primary case to the onset of infection in a 

secondary case infected from the primary case. We defined the generation time as 

the difference between suspected infection days of the primary farm and secondary 

farm, which was measured through epidemiologic investigation. The suspected 

infection day was estimated according to the day reported by the farm owner after 

clinical symptoms were found in the poultry and the period between the infection 

and latent period of each HPAI subtype in the poultry species. We estimated the 
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suspected infection date from the day the clinical symptoms were reported by 

subtracting the periods between infection and clinical symptoms. For H5N1, the 

periods between infection and clinical symptoms were assumed to be 2 days for 

chickens (Lee et al., 2005), 4 days for ducks (Jeong et al., 2009), and 3.8 days for 

other poultry species (Lee et al., 2005). For H5N8, the periods were 3.2 days for 

chickens (E.-K. Lee et al., 2016), 8.0 days for ducks (Animal & Plant Quarantine 

Agency, 2016), and 2.0 days for other species (D.-H. Lee et al., 2016). For H5N6, 

the periods were 2.6 days for chickens (Park et al., 2019), 4.6 days for ducks (Animal 

& Plant Quarantine Agency, 2017), and 3.0 days for other species (Animal & Plant 

Quarantine Agency, 2017). 

Based on the generation time between case farms, we calculated the discretized 

generation time distribution using a function (est.GT) in the R0 package. 

Discretization is performed on the grid [0, 0.5), [0.5, 1.5), [1.5, 2.5), etc… where the 

unit is time interval of days (Obadia et al., 2012). Time-to-event data were assumed 

to follow a parametric distribution with a probability density function (PDF). The 

distribution of generation time is expressed in the form of parametric distribution 

such as “gamma,” “lognormal,” or “Weibull,” using maximum likelihood. The mean 

and standard deviation of generation time is provided in the desired time units. The 

calculated distribution of the generation time in each subtype and outbreaks is 

depicted in figure 19. 

 

2.2.3. Model assumption and data analysis 

The study model is based on the susceptible-infected-removed (SIR) 

compartmental model (Iwami et al., 2007), which divides poultry farms into 
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compartment. A susceptible farm (S) becomes infectious (I) through contact with the 

possible disease and is then removed (R) by depopulation. The dynamics of an 

epidemic can be described as the equation given below when N is the sum of S, I, 

and R. 

 

 

 

 

In this model, β is a parameter, which controls how much the disease can be 

transmitted through the exposure of HPAI virus, and γ is a parameter, which 

expresses how many poultry farms can be removed in a specific period. In this model, 

the average number of secondary infections caused by an infected host, R0, equals β/ 

γ (Ridenhour et al., 2018). 

We constructed exponential growth (EG) and maximum likelihood (ML) models 

to estimate early reproduction numbers using the R0 package (Obadia et al., 2012) 

in R (version 3.3.0). The EG model assumes that the initial reproduction ratio can be 

associated with the EG rate during the early epidemic phase (Wallinga & Lipsitch, 

2006). The formula is R0 = 1/M (-r), where r denotes the initial EG rate and M stands 

for the moment generating function of generation time distribution. In the initial EG 

model, a period from day 1 to day 14 of epidemics was chosen when the outbreak’s 

growth was exponential. A function (est.R0.EG) in the R0 package was used (Obadia 

et al., 2012). We used a sensitivity test in EG to select the period during which growth 

is exponential as optimized time windows. We used the “sensitivity analysis” 
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function to compute the deviance R-squared statistic over a range of periods. 

The ML estimation model assumes that the number of secondary cases caused 

by an index case is Poisson-distributed with the expected value R0 (Forsberg White 

& Pagano, 2008). This model assume that the number of new cases at time t as N= 

{ }, t=0,…T, and a generation time distribution w. The log-likelihood of R0 was 

defined as  , where  . The 

likelihood must be calculated on a period of exponential, and the deviance R-squared 

measure may be used to select the best period that maximized the likelihood. The 

range was set as 0.01 to 50, in which the maximum must be searched. A function 

(est.R0.ML) in the R0 package was used (Obadia et al., 2012). 

The Kruskal-Wallis test was used to determine the statistical differences in 

epidemics between subtypes (Breslow, 1970). The epidemic days, number of farms, 

cases per day, poultry species distribution of farms, generation time, and R0 estimated 

by EG and ML of the three subtypes H5N1, H5N8, and H5N6 were analyzed. The 

significance level was α=0.05. These statistical analyses were performed using SPSS 

22.0 (IBM, Armonk, NY, USA). 

 

2.3. Results 

2.3.1. HPAI epidemic in Korea 

We investigated 12 HPAI outbreaks of three subtypes, H5N1, H5N8, and H5N6, 

that occurred from 2003 to 2018 in Korea. Table 6 presents a summary of the 

epidemic data, including the period of outbreaks and the number of infected farms 

that were investigated. The weekly epidemic curves of HPAI outbreaks are shown in 

Figure 18 based on the ISO 8601 week date system. The H5N1 HPAI outbreaks 
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(except for the 2008 outbreaks) began between November and February, when the 

lowest temperature drops below 0°C (Figure 18a). Regarding H5N8 in 2014, the 

second and third waves recurred in September 2015 and 2016, respectively (Figure 

18b). However, the second wave of H5N6 in 2016 occurred in June (Figure 18c). 

The longest outbreak was the second wave of H5N8 in 2014, which occurred over 

260 days. The shortest outbreak was the fourth wave of H5N8 in 2014, which 

occurred over 14 days. The outbreaks with the most cases (340 poultry farms) and 

cases per day (3.579 cases per day) were the H5N6 outbreaks in 2016. Regarding 

H5N8 in 2014, more than 72% of the occurrences were in ducks; however, there was 

no apparent species specificity for subtypes H5N1 and H5N6. 

 

2.3.2. Generation time and the basic reproduction 

number 

We selected nine outbreaks with sufficient number of premises to calculate R0 

and analyzed the generation time and initial R0 using the EG and ML methods (Table 

2). Generation time distributions are illustrated by each HPAI subtype as the PDF in 

Figure 19. Generation time of H5N1 were estimated between 4.58 and 5.24 days 

(Figure 19a), generation time of H5N8 were estimated to have 6 days or more (6.01- 

8.23 days) (Figure 19b), and generation time of H5N6 were estimated between 5.02 

and 5.91 days (Figure 19c). R0 was estimated as 1.65-2.20 for subtype H5N1, 0.03-

1.56 for subtype H5N8, and 1.03-1.24 for subtype H5N6 using EG methods. Using 

ML methods, R0 was estimated as 1.68-1.95 for subtype H5N1, 1.03-1.83 for subtype 

H5N8, and 1.37-1.60 for subtype H5N6.  

Most of the R0 in the EG and ML methods were similar, except for the second 
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and third waves of H5N8 in 2014. The R value obtained by the EG method was less 

than 1 for the second and third waves of H5N8 in 2014. To select the optimal time 

windows, sensitivity results of the time windows and R0 were used (Table 7). 

Optimized time windows selected by sensitivity tests accounted for 69.14% of the 

outbreak periods, on an average, and the optimal R0 values in optimized time 

windows were less than 1 for the subtypes H5N1 and H5N6 outbreaks. 

 

2.3.3. Epidemic statistics between subtype 

The average values of the number of epidemic days, infected poultry farms, 

species distribution, and infected farms per day for the three subtypes of nine 

selected outbreaks were determined (Table 8). The average numbers of epidemic 

days were 86.0 for H5N1, 108.0 for H5N6, and 143.8 for H5N8. The average 

numbers of farms were 69.0 for H5N1 (69.0), 107.8 for H5N8, and 181.0 for H5N6. 

Regarding the species distribution, subtype H5N8 was more highly distributed 

among duck farms (74.2%) than other subtypes (37.7% for H5N1 and 42.5% for 

H5N6).  

The Kruskal-Wallis H test showed a statistically significant difference in mean 

generation time among the different subtypes (χ2 (2) = 6.444; p=0.040), with mean 

rank scores of 2.33 for subtype H5N1, 7.50 for H5N8, and 4.00 for H5N6. The 

pairwise comparison showed that the H5N8 generation time (7.27 days) was 

significantly longer than the H5N1 generation time (4.93 days) (P=0.03) (Table 8). 

There were no significant differences among subtypes in epidemic days, number of 

farms, cases per day, species distributions, or reproduction number.  
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2.4. Discussion 

HPAI outbreaks occur continually worldwide and have become a major threat to 

animal and human public health. In South Korea, eight outbreaks with multiple 

waves of infections occurred between 2003 and 2018; these involved three different 

HPAI subtypes, H5N1, H5N8, and H5N6, and massively damaged the poultry 

industry. Therefore, it is important to understand the HPAI transmissibility at poultry 

farms to control outbreaks by establishing an effective prevention policy. An 

effective tool for understanding disease characteristics is the R0, which is generally 

defined as the average number of secondary cases caused by one infected individual 

(de Jong, 1995). Therefore, we investigated the transmission dynamics of the HPAI 

subtypes H5N1, H5N8, and H5N6 by estimating the generation time and R0. To the 

best of our knowledge, no previous study has attempted to estimate R0 of various 

HPAI subtypes and perform comparative analyses among them. This could be the 

first study to investigate the disease transmission dynamics of HPAI subtypes H5N1, 

H5N8, and H5N6, which are emerging worldwide.  

The R0 of HPAI H5N1 in Korea estimated in this study was between 1.68 and 

1.95 according to the ML method (Table 7). The R0 of subtype H5N1 has been 

estimated in countries such as Italy (1.2-2.7), Canada (1.4-2.7), the Netherlands (1.0-

3.0) (Garske et al., 2007), Romania (1.95-2.68) (Ward et al., 2009), Bangladesh 

(0.85-0.96) (Ssematimba et al., 2018), and Thailand (1.27-1.60) (Retkute et al., 

2018). Despite the same subtype of HPAI as that in other countries, the estimated R0 

in Korea was different from that in other countries. We assumed that several factors, 

such as geographic distribution of poultry farms, mixed farming systems, poultry 

product supply system, and climate, were associated with this difference. We believe 
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that unique characteristics of the poultry industry in Korea and climatic differences 

are the major causes for these observed differences.  

Our first hypothesis was that the estimated R0 may be related to characteristics of 

the Korean poultry industry, such as the coexistence of large-scale commercial farms 

and small family farms. Among the Organization for Economic Cooperation and 

Development (OECD) countries, Korea has the lowest availability of arable land per 

capita (0.03 hectare in 2016) (Bank, 2020). This land scarcity is an important factor 

leading to high stocking densities (Statistics Korea, 2015). A previous study 

suggested that farms with large flocks and the presence of a neighboring farm within 

500 m were risk factors of HPAI at Korean broiler duck farms (Kim et al., 2018). 

This high stocking and local density of large-scale poultry farms could increase the 

likelihood of massive infections when HPAI outbreaks occur in Korea.  

Small family poultry farms also represent a biosecurity risk during HPAI 

outbreaks. Most of these small farms sell live poultry to local markets without going 

through slaughterhouses; this could be a pathway for the spread of HPAI viruses. 

Additionally, there was an obvious lack of information regarding the official 

statistics of poultry farms too small to be defined as agricultural holders in Korea 

(OECD, 2017). This includes establishments with less than 0.1 hectares of land or 

with sales of agricultural products per year or value of agricultural animals less than 

KRW 1.2 million (USD 1,090).  

Our second hypothesis was that climate factors during the epidemic period may 

affect R0 in these countries. Climate factors could affect HPAI transmission and 

persistence by altering bird migration, virus shedding between hosts, and virus 

survival outside the host (Gilbert et al., 2008). Climate change is considered to 

influence the wild bird species composition and their migration cycle, and these 
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changes will affect the transmission intensity of disease (Tian et al., 2015). 

Furthermore, temperature and humidity could be related to viral persistence in the 

host and environment. An influenza virus transmission experiment using a guinea 

pig model suggested that relative low humidity and cold temperature were favorable 

for spreading influenza (Lowen et al., 2007). Liu et al. showed that the environmental 

temperature decreased soon before HPAI H5N1 outbreaks in domestic poultry in 

Eurasia between 2005 and 2006 (Liu et al., 2007). Additionally, AI viral infectivity 

remained at lower temperatures (<17°C) during an in vivo test (Brown et al., 2009). 

Therefore, it is assumed that our estimated R0 in Korea is lower than the R0 in 

Thailand and Bangladesh, where the average annual temperatures are higher. Based 

on these results, it is believed that the climate factors were closely related to the 

R0estimated in several countries in terms of virus transmission and survivability. This 

association between temperature and HPAI viruses was also shown in the R0 results 

of the H5N1 subtype. Regarding the HPAI that occurred in 2008 (R0 = 1.68), the R0 

value was less than that of H5N1 that occurred in 2003 and 2010 (R0 = 1.95 and 

1.98). For H5N1 in 2003 and 2010, the initial outbreaks occurred in December, and 

the average temperatures in Korea were -0.2°C and -6.0°C during those periods, 

whereas the 2008 outbreak started in April and the average temperature was 12.5°C. 

In 2016, two novel HPAI subtypes, H5N6 and H5N8, occurred simultaneously. 

HPAI H5N6 occurred from November 2016 to February 2017, whereas subtype 

H5N8 occurred from February to April 2016; the first wave and second wave 

occurred in June. Although these two subtypes occurred simultaneously, both were 

novel viruses. The genetic clade analysis suggested that Korean H5N6 viruses are 

novel reassortments of multiple virus subtypes, and it is difficult for H5N6 virus 

reassortment to occur during outbreaks that could increase the possibility of viral 
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subtype mutation (Si et al., 2017). Additionally, an infection experiment involving 

wild mandarin ducks demonstrated a difference in viral shedding and viral tropism 

in H5N8 and H5N6 viruses within the same clade of 2.3.4.4 H5 HPAI viruses (Son 

et al., 2018). Based on these findings, both subtypes were independent of each other, 

and the virus infectivity could also be different; therefore, different R0 was expected.  

However, our estimated initial R0 value in 2016 suggested a similarity between 

the reproduction number represented in subtypes H5N8 (1.70) and H5N6 (1.60) 

(Table 7). These results might represent differences between virus transmissions in 

laboratory experiments and between farms. Apart from the difference in 

transmissibility of each virus subtype, the level of transmission between farms in the 

field may be similar between the two subtypes. However, this presumes that the 

values of R0 of the two subtypes were similarly calculated because the biosecurity 

policy implemented during the outbreaks was identical. The basic reproductive 

number is affected by the rate of contacts in the host population, the probability of 

infection being transmitted during contact, and the duration of infectiousness 

(Delamater et al., 2019). Therefore, it can be estimated that the R0 of two different 

subtypes were similar due to the reduction of the poultry population through 

preemptive culling and the reduction of contact between farms because of the 

standstill (USDA Foreign agricultural service, 2016). 

The quarantine against HPAI in Korea has changed over 14 years after the first 

HPAI epidemic in 2003. The HPAI prevention policy changed dramatically, 

especially before and after H5N8 epidemics in 2014. Before the outbreaks, Korea 

Animal Health Integrated System (KAHIS) was established in 2013 to monitor 

livestock vehicle movement. In this system, all poultry-related vehicles must be 

registered with KAHIS and equipped with a global positioning system mandatorily 
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(Kim & Pak, 2019). Also during the epidemics, the preemptive depopulation of the 

protective zone was changed from a radius of 500m to 3km, and inspections were 

conducted more than once before releasing poultry and poultry products(Oh, 2018), 

The influence of these quarantine policy can also be seen in the changes in the R0 

values of each wave of subtype H5N8 that occurred between 2014 and 2016. For 

H5N8 in 2014, the initial R0 of each wave showed a tendency to decrease as the 

outbreak progressed gradually (Table 7). This would indicate that the effectiveness 

of control measures for HPAI were increasing while the waves were passing. 

In the Kruskal-Wallis model, H5N1 and H5N8 subtypes showed statistically 

significant differences in generation time (P=0.03) (Table 8). However, there were 

no significant differences in the epidemic characteristics of the subtypes. There was 

also no statistical significance in the R0 obtained through the EG and ML models. 

This generation time difference in the two subtypes might be associated with subtype 

pathogenicity in the poultry species. The spread of H5N1 viruses in the field was 

quickly controlled as a result of the rapid diagnosis of the infections due to the high 

pathogenicity of these viruses in poultry. In contrast, subtypes H5N6 and H5N8 

clustered as clade 2.3.4. H5NX viruses are usually mild in ducks, leading to delayed 

diagnosis of infections and persistent spread in the wild (Kwon et al., 2018). 

Therefore, the H5N8 subtype could possibly spread the HPAI virus over a relatively 

longer period than the H5N1 subtype which could be driven by sub-clinical spread 

in ducks. 
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2.5. Conclusion 

In conclusion, this study showed the characterization of each subtype by 

analyzing the HPAI characteristics, including the epidemic days, number of farms, 

species distribution, generation time, and R0 of HPAI subtypes H5N1, H5N8, and 

H5N6, which were associated with nine outbreaks in Korea between 2003 and 2018. 

R0, which is estimated by the generation time, index case, and secondary cases, is 

essential for identifying the characteristics of HPAI. In particular, our findings 

suggest that the estimated R0 might be influenced by the HPAI subtype and might be 

associated with the temperature during the early stage, species specificity by virus 

subtype, and prevention policy. We believe that the results of the present study are 

helpful for demonstrating the disease dynamics of each HPAI subtype and its 

characteristics and, thus greatly assist in better disease control strategies. It could be 

possible to establish systematic quarantine policies to reduce the socio-economic 

losses caused by HPAI, Especially differences observed between countries with 

different poultry raising systems and climatic conditions. This study provided insight 

regarding HPAI transmission of the traditional subtype H5N1 and newly emerging 

subtypes H5N8 and H5N6. Further research on the basic reproduction numbers of 

the HPAI subtypes occurring worldwide is required to understand the global 

dynamics of HPAI transmission. 

.
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Figure 18. Epidemic curve of HPAI outbreaks in Korea from 2003 to 2018. 
a) Weekly epidemic curves of HPAI subtype H5N1 from 2003 to 2011. b) Weekly 
epidemic curves of HPAI subtype H5N8 from 2014 to 2017. c) Weekly epidemic 
curves of HPAI subtype H5N6 from 2016 to 2018. The x-axis represents the week 
numbers, which were based on the ISO 8601 week date system. 
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Chapter 3. 

Spatiotemporal distribution of highly 

pathogenic avian influenza subtype H5N8 

in Korea 
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Abstract 

In zoonotic disease, highly pathogenic avian influenza (HPAI) is a major threat 

to human and poultry health worldwide. In January 2014, HPAI virus subtype H5N8 

first infected poultry farms in South Korea, and a total of 393 outbreaks were 

reported with enormous economic damage in the poultry industry. We analyzed the 

spatiotemporal distribution of HPAI H5N8 outbreaks in poultry farms using the 

global and local spatiotemporal interactions in the first outbreak wave from January 

2014 to June 2015 and the second wave from September 2014 to June 2015. The 

space-time K-function analyses revealed significant interactions within three days 

and over 40 km in two study periods in global spatiotemporal interaction. The excess 

risk attributable value (D0) was maintained despite the distance in the case of HPAI 

H5N8 in South Korea. Eleven spatiotemporal clusters were identified, and the results 

show the HPAI introduction from the southwestern region and the spread to the 

middle region in South Korea. Six clusters were distributed in 0.46-9.86 km space 

and 3-19 days in time, while five clusters were distributed in 19.74-72.59 km space 

and 27-36 days in time. This global and local spatiotemporal interaction indicates 

that the HPAI epidemic in South Korea was mostly characterized by short period 

transmission within a small area and dispersed by long-range jumps. This finding 

supports strict control strategies such as preemptive depopulation, the standstill, and 

poultry movement tracking. More studies are needed to understand HPAI disease 

transmission patterns of HPAI in South Korea. 
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3.1. Introduction 

Highly pathogenic avian influenza (HPAI) became a major zoonotic disease that 

threatens public health (Alexander, 2007). The HPAI virus (HPAIV) is highly 

contagious to domestic poultry and continuously occurs worldwide, causing 

enormous damage to the poultry industry(Short et al., 2015). The HPAI subtype 

H5N8 infection in poultry farms was first reported in January 2014 in South Korea 

(Lee, 2014). The results of a genetic epidemiologic investigation showed that the 

transmission occurs through the migration pathway of wild birds in winter season; 

indicating that the introduction of H5N8 HPAIV is associated with wild water 

birds(Jeong et al., 2014). Migratory birds that stay in South Korea move through the 

East Asia-Australia flyway, and the HPAI H5N8 virus has disseminated to other 

continents, including Europe and United States, through the overlying flyways of 

migratory birds (Verhagen et al., 2015).  

While the wild migratory birds are the source of viral infection in domestic 

poultry farms (Pandit et al., 2013), the HPAIV transmission and spread between 

farms occurs mechanically through transport vehicles, people, feeds, clothes, shoes, 

and equipment contaminated by dust, water, and feces of HPAIV-infected poultry 

(Dent et al., 2011). In a recent study, HPAIV airborne transmission can be possible 

between poultry farms and may have played a role in spreading HPAI outbreaks in 

the United States (Zhao et al., 2019). Considering these various HPAIV transmission 

pathways, it is important to understanding how HPAI disease is transmitted through 

time and space to understand and prevent the spread of disease.  

The occurrence of space-time interactions between outbreak cases located close 

in time and space varies and can be considered an infectious disease indicator 

(Diggle et al., 1995). Measuring and analyzing these indicators provide an 
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understanding of the disease's underlying mechanisms, which enable the 

development of prevention strategies against disease spread (Baker, 2004). Space-

time interaction analysis using the space-time K function has been used in the 

following animal disease studies: the foot-and-mouth disease in the United Kingdom 

(Picado et al., 2007; Wilesmith et al., 2003) and Tanzania (Picado et al., 2011), 

bovine tuberculosis in New Zealand (Porphyre et al., 2007), Rift Valley fever in 

South Africa (Metras et al., 2012), and Africa swine fever in Russia Federation 

(Vergne et al., 2017). The spatiotemporal interaction of HPAI has been studied in 

France for the H5N8 subtype (Guinat et al., 2018) and in Vietnam for the H5N1 

subtype (Loth et al., 2019).  

This study aimed to identify the time and space distribution of HPAI H5N8 

outbreaks in South Korea from 2014 to 2016. The time-space interaction was 

analyzed using the space-time K function analysis and the scan statistics of HPAI 

transmission dynamics. It is believed that this systematic understanding of the 

spatiotemporal distribution will enable the evaluation of quarantine policies 

addressing the HPAI outbreaks, thereby providing scientific evidence for future 

policy development and suggesting the direction for further research.  

 

3.2. Material and Method 

3.2.1. Data collection and management 

The epidemic data of HPAI subtype H5N8 were collected by the Animal and 

Plant Quarantine Agency (APQA) in Gimcheon, Korea from January 15, 2014 to 

April 5, 2016 (Animal & Plant Quarantine Agency, 2016). Following the 

identification of a bird with clinical signs suspected of HPAI infection by the 

livestock owners, farm workers, and veterinarians, the case must be reported to the 
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APQA according to the Act on Prevention of Contagious Animal Diseases (MAFRA, 

2015) in passive surveillance. Veterinarians from governmental agencies visited the 

reported poultry farms to collect samples from the sick or dead birds, and then 

samples were tested to confirm possible HPAI infection. If the suspected farm was 

confirmed as HPAI-positive, it was deemed an infected premise (IP). Then infected 

poultry farms and neighboring farms located in a protective zone set to a radius of 3 

km were depopulated. A depopulated farm found to be positive for HPAIV was 

referred to as a positive premise (PP) (Oh, 2018) in active surveillance. 

In Korea, all the transporting vehicles related to the poultry industry for 

transporting either poultry, poultry products, medicines, feed, or feces must be 

registered with the Korea Animal Health Integrated System (KAHIS; 

http://www.kahis.go.kr). Based on these vehicles' geographical information, APQA 

conducted HPAI diagnostic test on the poultry farms visited by the vehicles entering 

HPAI-infected farms. This active epidemiological investigation of livestock-related 

vehicle movement makes it possible to detect additional HPAI-infected farms. In this 

study, all IPs and PPs found through this surveillance were considered as cases. All 

the geographical data of the poultry farms that were collected at the tong-ri 

administration, and village level, were projected to WGS84/UTM zone 52N 

(European Petroleum Survey Group; EPSG: 32652) and processed using QGIS (3.4) 

(QGIS Development Team, 2020). The dates of each case were based on the date of 

the first clinical signs observed. 

 

3.2.2. Spatio-temporal analysis  

HPAI subtype H5N8 outbreak from January 15, 2014 to April 5, 2016, was 

classified into four waves in Korea (Animal & Plant Quarantine Agency, 2016). In 
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this study, the first wave from January 15, 2014 to July 29, 2014, and the second 

wave that occurred from September 24, 2014 to June 10, 2015, were analyzed. The 

third (17 cases) and fourth waves (2 cases) of H5N8 were excluded due to the 

inadequate number of cases for the analysis. 

Global and local spatiotemporal interaction analyses were conducted to describe 

the HPAI subtype H5N8’s spatiotemporal characteristics between poultry farms in 

Korea. The global analysis used the space-time K function to calculate the 

spatiotemporal interactions of HPAI H5N8 outbreaks (Diggle et al., 1995). The 

space-time K function, K(s,t), was defined as the number of expected cases (E) if 

cases are randomly- distributed within a distance s and a time t, then divided by the 

intensity λ, defined as the mean number of cases per unit of space and time (Equation 

1).  

K(s,t)=λ^(-1) E  (Equation 1) 

If cases occur independently in time and space without space-time interaction, 

K(s,t) was the product of two K functions in space and time, similar to that shown in 

Equation 2. 

K(s,t)= K(s)*K(t)   (Equation 2) 

We can define D(s,t) as the difference between the observed and randomly 

expected space-time interactions (Equation 3);  

D(s,t)=K(s,t)- K(s)*K(t).   (Equation 3) 

In this equation 3, D(s,t)>0 means that space-time interactions are presented at a 

distance s and time t and with higher D(s,t) values showing stronger evidence. D0 

was the value interpreted as the proportional increase, or excess risk attributable to 
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the space-time interaction to facilitate inference (Equation 4)  

D0 (s,t) = D(s,t) / (K(s)*K(t))   (Equation 4) 

D0 (s,t) >1 indicated that the number of observed events was greater than twice 

the number of expected events (Diggle et al., 1995; Picado et al., 2007). 

The null hypothesis of no space-time interaction in the observed cases was tested, 

the dates of the cases were randomly permuted on a fixed set of the location of the 

cases, using Monte-Carlo simulation, to generate a distribution of D(s,t) to compare 

with the D(s,t) of the observed cases.  

Suppose D (s,t) value in the observed case exceeds 95% of values derived from 

the simulation, in that case, we reject the null hypothesis because the probability of 

observed space-time interaction occurring by chance is less than 5% probability. 

Therefore, it can be concluded that there was a significant space-time interaction 

between the observed cases.  

In this study, global spatiotemporal clustering of HPAI H5N8 outbreaks was 

investigated in the first and second study periods using the space-time K function 

(Metras et al., 2012). The space-time K function analysis was conducted using the 

maximum space-time window of 40 km and 40 days. Significant space-time 

clustering was simulated by generating 999 Monte-Carlo random permutations. 

D0(s,t) value, the excess risk attributable to the space-time interaction within a 

distance s and time t, was calculated and visualized in R software version 3.6 (R 

Core Team, 2020) using the ‘splancs’ package (Rowlingson & Diggle, 1993). 

We used the space-time permutation model of the scan statistics to identify the 

local spatiotemporal cluster of HPAI H5N8 outbreaks (Kulldorff, 2007) by applying 
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the spatio-temporal windows shown in global spatiotemporal clustering. This 

approach was based on creating a series of hypothetical spatiotemporal cylinder-

centered coordinates of each case (Kulldorff et al., 2005). These cylinder bases and 

heights represent the space and time dimensions of each potential cluster, 

respectively. The approach to calculate cylinder is to iterate over a finite number and 

then gradually to increase the circle radius and height from zero to the maximum 

space and time value defined by the user. To test the null hypothesis, which assumed 

a no space-time interaction between cases, randomly distributed permutation of the 

spatial and temporal attributes of each case were performed using the Monte-Carlo 

simulation. Through this simulation, the expected disease occurrence is obtained 

when time and space are assumed to be independent of each other within a given 

space and time frame. If the observed actual cases are higher than the expected cases 

calculated through the above process, it can be inferred that the case in region within 

the cluster was more frequent in space and time than the rest of the geographic areas 

(Kulldorff et al., 2005; Picado et al., 2011; Porphyre et al., 2007). 

The presence of local spatiotemporal clusters in HPAI H5N8 during the two 

study periods (first and second waves of the outbreaks) between the case poultry 

farms was investigated using the space-time permutation model of the scan statistic 

test, implemented using the SatScan (Kulldorff et al., 2005). Statistically 

significance reported at the level of 5% assessed by the 999 Monte-Carlo replications 

without overlapping. The maximum spatiotemporal window was set to 25% of the 

outbreak cases (first wave, 53 cases; second wave, 41 cases) and 25% of the study 

period (first wave, 49 days; second wave, 75 days). 
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3.3. Results 

3.3.1. Descriptive analysis  

In total, 393 HPAI subtype H5N8 outbreaks were reported in poultry farms from 

January 15, 2014 to April 5, 2016. During the first and second waves, the majority 

of outbreaks were among the ducks (75.7%, 283/374), followed by the chickens 

(20.9%, 78/374), and then others (3.5%, 13/374) such as quail or ostriches. In the 

first (78.3%) and second waves (72.2%), the outbreaks mainly infected ducks (Table 

9). 

HPAI H5N8 was distributed throughout, nationwide, but was mainly 

concentrated in the west coastal and southern regions where the duck breeding 

density was high (Figure 20). The order of the intensities of the distribution by 

province were Jeollanam-do (JN) (28.6%, 107/374), Chungcheongbuk-do (CB) 

(24.9%, 93/374), and Jeollabuk-do (JB) (19.0%, 71/374). The order of the case 

incidence rates was CB (27.4%), JB (22.2%), and JN (22.2%) in the first H5N8 

outbreak period; and JN (37.0%), CB (21.6%), and Gyeonggi-do (GG) (19.1%), in 

the second outbreak period. 

The temporal distributions of the first and second outbreaks of HPAI H5N8 in 

Korea are shown in Figure 21. After the first case farm outbreak was reported on 

January 16, 2014, the outbreaks increased continuously, peaked in February 2014, 

and only intermittently spread after March 20, 2014 (Figure 21A). The number of 

poultry farms infected during the exponential period was 178 (of 212 cases, 83.9%) 

in the first study period. In the second study period, the HPAIV was reintroduced to 

Korea on September 24, 2014, with a total of 61 farm outbreaks (37.6%, 61/162), 

which were infected exponentially for 34 days from January 28, 2015 to March 3, 

2015 (Figure 21B).  
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3.3.2. Spatiotemporal analysis  

Out of the 393 outbreaks of HPAI H5N8, a spatiotemporal analysis was 

performed on 212 and 162 farm outbreaks during the first and second study periods, 

respectively. The global spatiotemporal cluster of HPAI H5N8 in poultry farms was 

statistically significant (p<0.05) for each study period (Figure 22). During the first 

study period (January 15, 2014 - July 29, 2014), the excess risk attributable to space-

time interaction with D0>1 was 40 km and three days; the time was closer to 0, and 

the D0 value was higher (Figure 22A). The D0 value was the highest (21.4) at the 

spatiotemporal parameters of 2 km and 0 days, and when the temporal parameter 

was set as 0 days, the D0 value was maintained at 15, despite the increasing distance. 

The excess risk attributable to the spatiotemporal interaction in the second study 

period (September 24, 2014- June 10, 2015) was 40 km and three days; the time was 

closer to 0, and the D0 value was higher (Figure 22B). The excess risk attributable 

during the second period had a similar pattern to that of the first study period. The 

D0 value was the highest (23.4) at 2 km and 0 days, and the value of 6 was maintained, 

despite the increasing distance.  

We identified the 11 statistically significant spatiotemporal clusters from the 

result of the space-time permutation scan statistic test. The geographical location of 

each cluster numbered according to the time of occurrence is indicated in Figure 23 

and 24. The radius (km), temporal extension (days), number of outbreaks in the 

cluster, and the observed to the expected ratio of each cluster are shown in Table 10. 

The clusters were mainly formed around the west coastal area in South Korea. In the 

first study period, two clusters (Figure 23A) were formed in JN and JB, while three 

clusters were formed around the border areas of GG, CB, and CN (Figure 23B). The 
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maximum spatial expansion of the clusters ranged from 2.21 km to 21.84 km, and 

the maximum time ranged from 3 to 30 days (Table 10). Since the cluster radius was 

the least at 2.21 km in cluster 3, but the number of farm outbreaks included in the 

cluster had the highest number of cases at 28. In the second study period, three 

clusters were found in JN and JB (Figure 24A), two clusters in the northern GG 

regions, and one cluster in the border areas of CB, CN, and GG (Figure 24B). The 

maximum space of the cluster was between 0.46 km and 72.59 km, while the 

duration was between 5 and 36 days (Table 10). All the clusters that showed 

statistically significant difference during the first study period overlapped with the 

epidemic exponential growth period (January 16 –March 20, 2014), while no 

statistically significant clusters were found that overlapped with the second 

exponential period (January 28 - March 3, 2015). Among HPAI poultry farms, during 

the study period, the proportion of farms in the cluster that were derived from the 

scan statistic test was 48.11% (102/212) in the first, and 51.23% (83/162) in the 

second. 

 
3.4. Discussion 

It is important to identify and analyze clustering to detect the area with a higher 

level of disease risk during outbreak investigations (Pfeiffer et al., 2008). There have 

been many attempts to apply spatiotemporal modelling to zoonosis, which were 

estimating the space-time interaction between cases that are spatially and temporally 

proximate, make it possible to interpret the underlying transmission process (Ahmed 

et al., 2010; Guinat et al., 2018; Picado et al., 2011). Despite the importance of 

understanding the spatiotemporal disease dynamics, epidemiological research into 

HPAI epidemics in Korea was mainly focused on molecular investigations to track 
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the origin of HPAIV strains and pathogens (Kwon et al., 2020; Si et al., 2016). It is 

important to analyze the global and local spatiotemporal interaction for the HPAI 

H5N8 outbreak to understand the disease transmission process for effective HPAI 

controls in poultry farms. This study investigated the spatiotemporal patterns of the 

first and second waves that occurred after the H5N8 HPAIV was introduced to Korea 

in January 2014. As far as we know, this is the first HPAI subtype H5N8 study in 

Korea that analyzed the global and local space-time interaction. This result will be a 

cornerstone in explaining the spatiotemporal factors related to HPAI H5N8 infection 

and transmission. 

In space-time K function analysis, we identified space-time interactions over a 

distance of more than 40 km and under two days at the first study period (Figure 22 

A). In addition, at 2 km and 0 days, the risk was highest and then decreased, 

maintaining a constant risk regardless of the increasing distance. This pattern of the 

space-time interaction was the same in the second study period, but the peak of the 

risk was highest at 0 days and 0 km, and the D0 value decreased from 15 to 6 after 

two days (Figure 22 B). This results showed a different pattern from those of 

previous research (Guinat et al., 2018; Loth et al., 2019) that have analyzed the 

spatiotemporal analysis of other HPAIs, and seems to be a characteristic of HPAI 

disease transmission in Korea. The results of the space-time K function analysis for 

HPAI in other countries showed significant spatiotemporal clustering less than 13 

days and 8 km in France (Guinat et al., 2018), and less than 50 days and 60 km in 

Vietnam (Loth et al., 2019). Moreover, the excess risk reported in both studies 

showed a pyramidal shape in which the D0 decreased as time and distance increased. 

Conversely, the excess risk was maintained even when the distance was increased in 

the spatiotemporal interaction in Korea (Figure 22). These results imply that the 
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spread of HPAI disease in Korea occurs consistently regardless of the distance, 

especially within two days.  

According to the results of our local spatiotemporal cluster analysis, HPAI from 

our two study periods tends to appear as the clusters in the western coastal area in 

Korea (Figure 23, 24). Five spatiotemporal clusters showed for 0.46-21.84 km and 

5-28 days in JN and JB provinces (Figure 23B & 24B). Among them, the cluster 1 

in each outbreak wave appeared in the early stage of outbreaks wave and the 

southwestern coastal area, major habitats of the wild migratory birds in the winter 

season. After introduction or re-introduction of HPAIV into Korea, six clusters of 

2.21-72.59 km and 3-36 days were formed in the three provinces of GG, CB, and 

CN (Figure 23A, 24A). The assumption is that the HPAI introduced from the 

southwestern region has spread to the central area, considering the cluster formation 

time. These results of spatiotemporal clustering of HPAI H5N8 are consistent with 

the result of the investigation on the origin and transmission of H5N8 by sequencing 

analysis, indicating that H5N8 virus entered to western coastal provinces and spread 

rapidly to other provinces with high densities of winter migratory birds and ducks 

holding (Hill et al., 2015). In light of these results, the HPAI intensive monitoring is 

necessary for these regions in winter seasons.  

In our results, six clusters were distributed 0.46-9.86 km in space and 3-19 days 

in time, while five clusters were distributed 19.74-72.59 km in space and 27-36 days 

in time (Table 10). Furthermore, cluster 3 in the first study period and cluster 3 and 

5 in the second study period were less than 3 km in size. It might be that this 

phenomenon appeared as the size of clusters was suppressed by preemptive 

depopulation. On the contrary, 5 of the 11 clusters were covering the spatiotemporal 

extension from 27 to 36 days and from 19.74 to 72.59 km, which is larger than the 
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period (10-25-days) and the distance (16.5 km-52.7 km) of the previous study on 

H5N8 spatiotemporal cluster study in France (Guinat et al., 2018). This shows that 

the regional spread of H5N8 in Korea was polarized between small and large 

spatiotemporal clusters. In other words, the HPAI virus disseminated in the 

extremely short distance and time, or rather spread over the long-distance and times. 

Based on the results of the global and local spatiotemporal interaction, the 

following were assumed to have affected the spatial and temporal characteristics of 

the HPAI H5N8 in the poultry farms. First, we assumed that HPAI reporting and 

depopulation are carried out quickly in Korea, which leads to the prevention of 

adjacent disease spread (by the preemptive depopulation), from infected farms to the 

neighboring poultry farms. This can be inferred from the results showing that the 

time window of excess risk from the time-space interaction analysis was two days, 

which is shorter than the time reported in other studies (Guinat et al., 2018; Loth et 

al., 2019). In addition, the third cluster in the first period, the third and fifth clusters 

in the second period, had small spatial windows greater than 3 km. If the HPAI report 

from the poultry farms and the disease quarantine were delayed, HPAI would have 

had sufficient opportunity to propagate adjacent poultry holdings, which would have 

shown a similar spatiotemporal interaction of other studies (Guinat et al., 2018; Loth 

et al., 2019). According to APQA, when the suspected poultry with clinical signs is 

reported and confirmed positive, a 3 km radius depopulation is carried out around 

infected holdings, and this process, from report to depopulation, is conducted within 

a short period (Animal & Plant Quarantine Agency, 2016). It can be inferred that the 

virus short-range contiguous transmission was blocked effectively by removing the 

host that could cause increase infection spread.  

Second, there is a high possibility that the cases that were due to the long-distance 
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propagation of HPAI through vehicles were relatively due to oversampling, because 

of the suppression of the adjacent propagation of HPAI. The KAHIS was established 

in 2013 to integrate the management of animal disease and livestock quarantine 

information using information and communication technology (ICT) to prevent 

livestock disease outbreak (MAFRA, 2015). It is possible to collect information on 

registered vehicle movements related to the poultry industry, such as feces treatment, 

veterinarian visits, transporting of feed, medicine, poultry, and poultry products. It is 

mandatory to equip global positioning system (GPS) on registered vehicles under the 

Korean Act on the Prevention of Contagious Animal Diseases, and their movement 

information is periodically collected through KAHIS (Kim & Pak, 2019). This 

systemic tracking makes it possible to track the HPAI long-distance dissemination. 

If an HPAI case found through the long-distance propagation tracking using this 

mechanical relationship is included in the analysis, it is judged that a pattern of the 

D0 value that is not affected by the distance in the spatiotemporal interaction can 

appear. Therefore, this result of global spatiotemporal interaction is presumed to 

rapidly suppression of HPAI outbreaks through active surveillance.  

Finally, the excess risk D0 in the second study period was relatively reduced 

compared to the D0 in the first study period (Figure 22). The factors that are estimated 

to have influenced the decrease in D0 during the second study period are as follows. 

First, the livestock owners may be already aware of the HPAI introduction in poultry 

holdings during HPAI recurrence. Through this recognition, it can be assumed that 

alertness to HPAI has increased and faster disease reporting has been made. The 

effect of knowledge and awareness to HPAI reporting was reported from a study of 

HPAI during the 2006-2008 outbreaks in Nigeria (Ameji et al., 2012). Second, the 

changed quarantine policy of the Korean government in the second period might be 
90



more effective in controlling the outbreak than in the first period. Due to continuous 

HPAI outbreaks in Korea, the Disease Outbreak Law and infectious disease standard 

operating procedure was revised in 2015 (MAFRA, 2015) and the systematic 

investigation of diseases was developed through the manual (Animal & Plant 

Quarantine Agency, 2015). This change in HPAI biosecurity policy may have 

resulted in a reduction in excess risk attributable.  

The finding of this study may have been affected by several limitations. First, 

there may have been cases where the presence of HPAI H5N8 was not reported if 

the sensitivity of the reports from the farms to the government were not optimal. In 

particular, in case of HPAI H5N8 in Korea, the infected ducks did not show clinical 

signs, which may have made the detection of H5N8 challenging (Kwon et al., 2020; 

Song et al., 2017). However, it is already mandatory to sample the poultry at the farm 

a day before transportation to other farms or slaughterhouses, to inspect them for 

HPAI using RT-PCR, since 2008 (MAFRA, 2015). Therefore, considering the 

massive HPAI inspection, the risk of unreported cases may be considered relatively 

low. 

Second, our analysis was performed on the assumption that the date when the 

clinical signs were first observed was the date HPAIV was first introduced into the 

poultry farm. This may have had effects on the study results because the incubation 

period of HPAI H5N8 may differ depending on the poultry species or the condition 

of the flocks. However, in our study periods, 75.7% of the cases included the ducks; 

therefore, it can be assumed that the latent period of H5N8 will be similar in most of 

the poultry farms. The interval from the date of the virus introduction to the flocks, 

to the date when the first clinical signs were observed is likely to be constant. 

Therefore, our assumption would not have a significant impact on the temporal 
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elements in our spatiotemporal analyses to the extent of results bias. 

 

3.5. Conclusion 

This study provides insights into the 2014-2016 Korea HPAI epidemic 

dynamics. This global and local spatiotemporal interaction indicates that the 

HPAI epidemic in Korea was mostly characterized by short period 

transmission within a small area and dispersed by long-range jumps. This 

disease transmission pattern is different from other HPAI spatio-temporal 

interaction studies. It is believed that these results are closely related to the 

rapid preemptive depopulation, standstill, and disease tracking policy, using 

GPS. This finding supports the need for strict control strategies such as the 

preemptive depopulation, the standstill of poultry transporting, and 

epidemiological movement tracking in Korea during the H5N8 disease period. 

Further research is needed to evaluate the optimal culling radius, the spread 

rate of disease between farms, and the disease transmission pathways by 

poultry-related vehicles, to help understand HPAI disease transmission 

patterns. 
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Figure 20. Location of Highly pathogenic avian influenza case farms in the first and 

second waves. 

Red round dot is the outbreaks in poultry farms at the first wave from January 14, 

2014 to June 23, 2014. Green rectangle dot is the outbreaks in poultry farms at the 

second wave from September 23, 2014 to June 24, 2015. 

Province abbreviations are as follows; CB: Chungbuk, CN: Chungnam, GB: 

Gyeongbuk, GG: Gyeonggi, GN: Gyeongnam, GW: Gangwon, JB: Jeonbuk, JN: 

Jeonnam
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Figure 21. Epidemic curve of HPAI H5N8 from 2014-2015. 

A. Epidemic curve of the first wave of HPAI H5N8 from January 2014 to August 

2014 in Korea. B. Epidemic curve of the second wave of HPAI H5N8 from 

September 2014 to July 2015 in Korea. 
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Figure 22. Excess risk attributable to the space-time interaction (D0) as a function 

of space and time. 

A. Excess risk attributable to the space-time interaction of the first wave of HPAI 

H5N8 from January 14, 2014 to June 23, 2014.  

B. Excess risk attributable to space-time interaction of the second wave of HPAI 

H5N8 from September 23, 2014 to June 24, 2015.  

 

The red-shaded area show the space-time interaction for which the observed number 

of cases was higher than twice the expected number, which assumes no space-time 

interaction (D0 >1). 

HPAI, highly pathogenic avian influenza 
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General conclusion 
The present study investigated the epidemiological characteristics of HPAI through 

risk factors, transmissibility, and spatiotemporal dynamics between poultry farms. 

Moreover, it provides a scientific basis for improving effective quarantine policies for 

HPAI control in the future. 

The possible risk factors associated with the introduction and transmission of HPAI 

H5N8 subtype in broiler duck farms were investigated to understanding factors for HPAI 

H5N8 infection. The result of retrospective case-control study indicated that the HPAI H5N8 

outbreaks in South Korea were associated with farm owner career, the number of flocks, poultry 

farm density, and biosecurity measures. Greater understanding of the risk factors for H5N8 may 

reduce farm vulnerability to this and other AI subtypes and help establish policies to prevent re-

occurrence of infection. Further, awareness of these factors may help reduce the broader spread 

of H5N8 across broiler duck farms during outbreaks. 

Pathogen transmissibility in poultry farms in South Korea during each epidemic was 

demonstrated in the results of the R0 of three subtypes, H5N1, H5N8, and H5N6, which 

were associated with nine outbreaks between 2003 and 2018. The study also characterized 

each subtype, including the duration of the epidemic, number of affected farms, species 

distribution, and generation times. In particular, the study findings suggested that the 

estimated R0 might be influenced by the HPAI subtype and might be associated with the 

temperature during the early stage, species specificity by virus subtype, and prevention 

policy. This study provided information on HPAI transmission of the traditional subtype 

H5N1 and newly emerging subtypes H5N8 and H5N6. 

The study also provided insight into the dynamics of the 2014-2016 South Korean 

HPAI epidemic. Global and local spatiotemporal interactions indicated that the epidemic 

was mostly characterized by short period transmission within a small area and dispersal 

by long-range jumps. This disease transmission pattern is different from results of other 

HPAI studies assessing spatiotemporal interactions. It is believed that these results are 
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closely related to the use of GPS for rapid preemptive depopulation of affected farms, the 

standstill of poultry transporting, and disease tracking policies. These findings support 

the need for strict, nationwide enforcement of these control strategies during the H5N8 

disease period.  

Overall, study findings emphasize that HPAI infections of duck farms in South Korea 

are related to biosecurity, farm and farm owner characteristics, host specificity of HPAI 

subtype, and strict control strategies. This thesis highlights the value of a multifaceted 

approach to epidemiological modeling of infectious diseases. Furthermore, the study 

provided insights into potential data-driven approaches to HPAI control and provides an 

example for future studies in infectious diseases.  
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Appendix 
Appendix A. Highly Pathogenic Avian Influenza Investigation-Questionnaire for Evaluation 

and Improvement of National Biosecurity 
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