

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

i

Abstract

Linguistically Explicit BERT with

Part-of-Speech Information

Baik, Yunmee

Department of Linguistics

The Graduate School

Seoul National University

This study incorporates part-of-speech, one of the most well-known linguistic

features, to the input embedding of the BERT model to enhance the ability of

the language model and investigates what linguistic knowledge the model

learns from pre-training. Although BERT shows powerful performance on

many downstream tasks of Natural Language Processing, many studies have

reported that injecting explicit linguistic knowledge improves the

performance of the BERT model. Also, several studies have inspected the

linguistic representation encoded in BERT using probing classifiers. Probing

task on the Korean dataset, however, has not yet been conducted.

In this study, we fuse POS embedding to the input embedding of the

BERT model by (1) adding POS embedding to the BERT

embedding(addPOS), (2) multiplying and then adding it to the input

embedding(multiaddPOS), and (3) masking the POS of the masked token

ii

while adding it to the input representation(maskPOS) in pre-training. We use

Korean Wikipedia and news data as a corpus and MeCab POS tagger as a

POS tagger and a tokenizer. In fine-tuning, we conduct 5 Korean downstream

tasks (NSMC, NER, KorQuaD, KorNLI, KorSTS). As a result, the proposed

POS models, especially the maskPOS model, show better performance on the

tasks than the base MeCab-tokenized model which does not fuse POS

information. In comparison to the state-of-the-art models, however, the POS

models show low performance on the tasks.

We conduct a linguistic analysis of the maskPOS model. To identify

syntactic information encoded in the model, the structural probe (Hewitt and

Manning, 2019) is adapted on Korean datasets. The probe results show that

the proposed POS model embeds syntax trees, encoding linguistic knowledge

in its word representations. Further experiments are conducted for better

performance of the POS models on the downstream task. We conclude that

there is a possibility for improving the POS models.

This study suggests new methods to fuse linguistic information to the

Korean pre-trained BERT model, and to the best of our knowledge, it is the

first study to use “probe” on Korean datasets with the Korean-specific model.

In this study deep learning architectures and linguistic theory are integrated,

suggesting directions for future Korean NLP research.

Keywords: Natural Language Processing, Language Modeling, BERT,

Word Embeddings, Part-of-Speech, Interpretability, Probe, Parse Tree

Student Number: 2018-20037

iii

Table of Contents

1. Introduction .. 1

2. Literature Review ... 4

2.1. Embeddings ... 4

2.2. Models with Linguistic Information .. 5

2.3. Interpretation of Linguistic Knowledge of a Model 7

3. Transformer Architectures .. 9

3.1. Transformer ... 9

3.2. Bidirectional Encoder Representations from Transformer

(BERT) ... 11

4. Part-of-Speech Models ... 14

4.1. Model Structure (Input Representation) 14

4.1.1. addPOS .. 15

4.1.2. multiaddPOS .. 16

4.1.3. maskPOS .. 17

5. Experiments .. 18

5.1. Pre-training .. 18

5.1.1. Data .. 18

5.1.2. Tokenizer ... 18

5.1.3. Vocabulary ... 19

5.1.4. Part-of-Speech Tag Vocabulary ... 19

5.1.5. Training Details ... 20

iv

5.2. Pre-training Results .. 20

5.3. Downstream Tasks ... 22

5.3.1. Tasks .. 23

5.3.2. Evaluation Metrics ... 23

5.4. Downstream Task Results ... 25

5.5. Analysis ... 27

5.5.1. Correlation Heatmap .. 28

5.5.2. Limitations ... 30

6. Linguistic Analysis .. 32

6.1. Syntactic Probing Analysis .. 32

6.1.1. The Structural Probe .. 32

6.1.2. Experiment Details .. 33

6.1.3. Probe Evaluation Metrics .. 34

6.1.4. Probe Results ... 35

6.2. Further Analysis ... 40

6.2.1. POS Tag Combination ... 40

6.2.2. Vocabulary Size ... 41

6.2.3. POS Tagging .. 42

7. Conclusion ... 46

References .. 48

Appendix ... 53

국문 초록 ... 59

v

List of Figures

Figure 1. Transformer architecture ... 9

Figure 2. Pre-training and fine-tuning procedures for BERT 12

Figure 3. BERT input representation .. 12

Figure 4. MeCab-tokenized model (base) input representation 14

Figure 5. addPOS model input representation .. 15

Figure 6. multiaddPOS model input representation 16

Figure 7. maskPOS model input representation ... 17

Figure 8. Two ways of POS tag vocabulary combination 19

Figure 9. Heatmap representing the correlation between POS embeddings 29

Figure 10. The gold parse trees (black) and the minimum spanning trees of

predicted squared distances on maskPOS (red) 36

Figure 11. Distance matrix between all pairs of words in a sentence 37

Figure 12. The gold parse trees depth (black) and the predicted norm probes

(squared) on maskPOS (red) .. 39

Figure 13. Full POS combinations and example tokens 41

vi

List of Tables

Table 1. Pre-training results of the base model and POS models 21

Table 2. Pre-training results of the maskPOS (fulltag) models with different

batch sizes .. 22

Table 3. Confusion matrix .. 24

Table 4. Downstream task results of the base model and POS models 26

Table 5. Downstream task results of maskPOS (fulltag) models and other

state-of-the-art models ... 27

Table 6. The probe results of parse tree distance and depth on maskPOS ... 35

Table 7. Pre-training and fine-tuning results of maskPOS models with

different POS tag combinations ... 41

Table 8. Pre-training and fine-tuning results of maskPOS models with

different vocabulary sizes .. 42

Table 9. Pre-training and fine-tuning results of maskPOS models with

different POS tagging methods .. 43

Table 10. Tokens with different POS tags .. 44

1

1. Introduction

The Bidirectional Encoder Representations from Transformers

(BERT) model (Devlin et al., 2018) has demonstrated powerful performances

on a wide range of tasks in natural language processing (NLP). This

improvement of the model on the downstream tasks is because BERT can

learn lexical, syntactic, and semantic information of a sentence (Clark et al.,

2019; Coenen et al., 2019; Goldberg, 2019; Hewitt and Manning, 2019;

Tenney et al.,2019).

Although BERT itself can capture linguistic information, the

incorporation of linguistic information does help the language model for the

related downstream task (Lee et al., 2020; Liu et al., 2019; Strubell et al.,

2018; Sundararaman et al., 2019; Wang et al., 2019, Zhang et al., 2020; Zhou

et al., 2020). In this study, we incorporate part-of-speech (POS) tags using

MeCab POS tagger 1 in the KoNLPy 2 package into the Korean-specific

BERT model from pre-training.

Part-of-speech is also known as word classes or syntactic categories

which represent morphosyntactic information. It is one of the most familiar

and simplistic linguistic feature. It gives information about the relationship

between words by their distribution, such as adjectives describe nouns. Also,

it informs a syntactic structure of a sentence (verbs are part of verb phrases),

and a word sense disambiguation (Korean 가 ka as a particle or a verb). It is

1 http://eunjeon.blogspot.com/

2 https://konlpy.org/ko/latest/

KoNLPy is a Python package for natural language processing of the Korean language.

2

a useful feature in parsing, named entity recognition, information extraction,

or coreference resolution (Jurafsky, 2019).

This study leverages part-of-speech (POS) tags using MeCab POS

tagger to the BERT model from pre-training and runs experiments on the

Korean downstream tasks. We implement the MeCab POS tagger which is

known to be the most time-efficient and does not decompose Hangul

(character) into Jamo (sub-character). We suggest new training methods by

infusing this linguistic knowledge to the embeddings fed into the pre-trained

model. The suggested models prove the effectiveness of adding linguistic

features compared to the base MeCab model.

We implement linguistic probing tasks on the proposed POS model.

“Probes” interpret how well linguistic knowledge is encoded in the model

using various linguistic tasks. This study conducts the syntactic probing task

of Hewitt and Manning (2019) to analyze the effect of adding POS

information on the language model.

The outline of this research is as follows: Chapter 2 provides a

literature review of embeddings, existing Transformer models with linguistic

knowledge, and model interpretation. Chapter 3 provides a detailed account

of Transformer architectures and the BERT model. Chapter 4 introduces POS

models, which are BERT models with POS-infused embeddings. Chapter 5

describes the pre-training data, training details, and results. It also contains

the following fine-tuning experiments and their results. Five Korean

downstream tasks will be introduced in chapter 5. Chapter 6 analyzes the

proposed models using the probing tasks to evaluate the models’ linguistic

ability to learn the underlying structure of a sentence and conducts additional

experiments to enhance the model’s performance on the downstream task.

Chapter 7 concludes the study by providing a summary of the work and

3

discussing a limitation of our research and possible avenues for future

research.

4

2. Literature Review

This chapter discusses the history and development of embeddings,

and relevant literature review concerning Transformer models (Vaswani et al.,

2017) with linguistic information, and model interpretation using probing

tasks.

2.1. Embeddings

Word embeddings are vectors that represent words or the process that

words are embedded in a particular vector space. It is based on the idea of

vector semantics: representations of the meaning of words can be learned

directly from their distributions. It is also based on the distribution hypothesis,

defining a word by the distribution it occurs in the text, as the philosopher

Ludwig Wittgenstein said “the meaning of a word is its use in the language”.

If the two words occur in similar environments or distributions, they are likely

to have a similar meaning.

Embeddings have been developed from embedding words to

embedding sentences. The most famous word embedding algorithms are

Word2Vec (Mikolov et al., 2013a), GloVe (Pennington et al., 2014), and

FastText (Bojanowski et al., 2017).

The Word2Vec model has two model architectures, CBOW and Skip-

gram (Mikolov et al., 2013b). The Continuous Bag of Words (CBOW) model

predicts the target word using context words. The Skip-gram model predicts

the context words given a current target word. In general, the Skip-gram

model is known to show better performance results for the downstream tasks

5

than the CBOW model.

Word2Vec implements negative sampling (Mikolov et al., 2013a) to

reduce computation costs. A positive sample refers to a pair of a target word

and surrounding context words, and a negative sample refers to a pair of a

target word and a word that randomly samples in the vocabulary.

The GloVe model is trained on aggregated global word-word co-

occurrence statistics from a corpus. A global word-word co-occurrence matrix

organizes how frequently word pairs occur in a given corpus and matrix

factorization is applied to approximate the matrix. The FastText model

considers a subword, treating each word as a Bag of Character n-grams so

that rare words get a good representation.

Like ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018),

sentence embedding models offer an advantage over word embedding models,

because while a word has a fixed embedding under word embedding models

disregarding the context it appears, sentence embedding models produce

context embeddings that dynamically differ depending on the meaning of the

word in a sentence.

Embeddings are key aspects in transfer learning as embeddings with

accurate representations of words or sentences in pre-training result in high

performances on the downstream tasks in fine-tuning. Models applying

transfer learning, the Transformer architecture and the BERT model, will be

described in detail in Chapter 3.

2.2. Models with Linguistic Information

Recently, linguistic knowledge has been incorporated into the pre-

6

trained language model. Linguistically Informed Self-Attention (LISA)

(Strubell et al., 2018) suggests the potential of incorporating linguistic

information into the Transformer model by explicit modeling of syntax.

Strubell et al. (2018) enhanced the performance of the model with multi-task

learning across various syntactic knowledge, such as dependency parsing,

POS tagging, predicate detection, and Semantic Role Labeling (SRL).

Zhou et al, (2020) also proposed the multi-task learning model LIMIT-

BERT, proving the effectiveness of injecting linguistic knowledge into the

BERT model. In addition to leveraging multi-task learning across POS tags,

constituent and dependency syntactic parsing, span and dependency SRL,

they introduced Syntactic and Semantic Phrase Masking. Syntactic Phrase

Masking masks tokens in a constituent of a sentence together ([MASK]

[MASK] [MASK] sells paper and wood products.), and Semantic Phrase

Masking masks tokens in a dependency relation such as the predicate and its

object argument (federal paper board [MASK] paper and wood [MASK].)

This study also uses a masking strategy for the BERT model to learn linguistic

information.

Other studies explicitly incorporated the model with one of the

linguistic features. Syntax-Infused Transformer and BERT models

(Sundararaman et al., 2019) infused POS information into the models using

WordPiece tokenizer (Wu et al., 2016) and SpaCy3 for POS tagger. For

constituent information, Tree Transformer (Wang et al., 2019) proposed

“Constituent Attention” to make the attention heads learn tree structures.

Zhang et al. (2020) suggested SemBERT by incorporating pre-trained SRL

information, and Liu et al. (2019) implemented a knowledge graph to get

3 https://spacy.io/

7

sememe information.

This paper leverages POS information, a simple and familiar linguistic

feature. Since POS forms a distribution, we believe that a model can learn a

representation according to the distribution hypothesis. Furthermore, it will

give useful information on an agglutinative language like Korean.

One of the proposed models has the same structure proposed in

Sundararaman et al. (2019). The input token ℎ𝑚
′ = 𝑒𝑚 + 𝑓𝑚

𝑃 where 𝑒𝑚 is

the BERT token embedding and 𝑓𝑚
𝑃 is POS embedding for token m. This

study, however, suggests new methods other than just adding embeddings.

Instead of SpaCy in Sundararaman et al. (2019), MeCab is used in this paper

expecting to be more suitable for morphologically rich languages. The

suggested models will be introduced in chapter 4.

2.3. Interpretation of Linguistic Knowledge of a Model

 “Probes” are used to interpret how and what type of linguistic

information is encoded in the model. This process is referred to as a “probing

task” (Conneau et al., 2018), “diagnostic classifier” (Giulianelli et al., 2018),

or an “auxiliary prediction task” (Adi et al., 2016). Such probes are conducted

on various linguistic tasks and on different levels of the model.

There are studies concerning attention heads of the Transformer

architecture. In Clark et al. (2019), specific attention heads in BERT showed

particular linguistic phenomena. Kovaleva et al. (2019) suggested 5 patterns

of attention heads using a heatmap, and that the “heterogeneous” pattern can

be interpreted linguistically. Visualization tools are also proposed in Vig

(2019), and Hoover et al. (2019).

8

On the layers of the model, Tenney et al. (2019) proved that syntactic

knowledge appeared in initial layers and semantics in later layers using

probing tasks such as POS, constituents, dependencies, entities, SRL, and

coreference resolutions.

Hewitt and Manning (2019) proposed syntactic analysis using probing.

They evaluated syntactic knowledge of the models by recovering syntactic

dependencies in Penn Treebank (Marcus et al., 1993) from the models’ token

embeddings. Through a linear transformation of a model’s word

representation space, it was proved that the dependency trees were embedded

in the model. In addition to the results, Coenen et al. (2019) visualized

syntactic and semantic information of the models. We replicate the structural

probing task of Hewitt and Manning (2019) using the Korean dataset. This

will be demonstrated in chapter 6.

9

3. Transformer Architectures

This chapter will provide a description of Transformer architecture

(Vaswani et al., 2017) and the BERT model (Devlin et al., 2018) as we use it

as the base model architecture of the proposed POS models which will be

described in the following chapter.

3.1. Transformer

Transformer architecture (Vaswani et al., 2017) is composed of a stack

of encoders and decoders and when it takes an input sentence, it gets an output

sentence in another (Figure 1). The BERT model (Devlin et al., 2018), which

will be described in the next section, only uses the encoder part of the

Transformer.

Figure 1. Transformer architecture, based on The Illustrated Transformer4

4 http://jalammar.github.io/illustrated-transformer/

10

Each encoder has two sub-layers as in Figure 1: a self-attention layer

and a feed-forward neural network. The outputs of the self-attention layer are

fed to the feed-forward network. A list of vectors is taken as input and these

vectors are passed into a self-attention layer, then through a feed-forward

neural network, to the next encoder.

Multi-Head Attention (Equation 2) is a concatenation of multi Scaled

Dot-Product Attention which is also called as Self-Attention (Equation 1). All

equations in this section are from Vaswani et al. (2017).

Attention(Q, K, V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (1)

The shape of an input embedding X of Self-Attention is the number of

words in an input sentence and the dimension of the input embedding. A

Query matrix Q, a Key matrix K, and a Value matrix V are created by

multiplying the input matrix X and three weight matrices WQ, WK, and WV.

Then we take the dot product of the query vector with the key vector and

divide it by the square root of dk (the dimension of the key vectors) for

scaling the variance, then normalize it through a softmax. The resulting score

is multiplied by each value vector as the weighted value vectors and summed

up.

 MultiHead(Q, K, V) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂

 where headi = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)

(2)

In Multi-Head Attention, the Self-Attention is calculated h different

times with h different weight matrices. The resulting h attention heads are

11

concatenated and multiplied with a weight matrix WO so that the shape of the

output is the same as that of the input. W𝑖
Q

, W𝑖
K, W𝑖

V, and WO are parameter

matrices. By doing Self-Attention, the Transformer model can give attention

to all the word pairs in a sentence considering the context without gradient

vanishing problem.

The results send to the feed-forward neural network, using ReLU as

an activation function (Equation 3). Instead of ReLU, GeLU is adopted in the

BERT model.

 FFN(x) = max(0, xW1 + 𝑏1)𝑊2 + 𝑏2 (3)

To keep the order of the words in the input sequence, the Transformer

uses positional encoding. BERT model, however, does not implement the

same positional encoding. It uses the position embeddings instead. The input

representation of the BERT model will be described in detail below.

3.2. Bidirectional Encoder Representations from

Transformer (BERT)

Bidirectional Encoder Representations from Transformer (BERT)

(Devlin et al., 2018) is a method that pre-trains language representations. As

it adopts transfer learning, there are two procedures (Figure 2), pre-training

and fine-tuning.

12

Figure 2. Pre-training and fine-tuning procedures for BERT from Devlin et al.

(2018)

At pre-training, a general-purpose language understanding model is

trained on a large text corpus like Wikipedia. It is an unlabeled and

unsupervised process. The pre-trained model is fine-tuned and utilized for

downstream NLP tasks like question answering, named entity recognition

(NER), and natural language inference (NLI). A detailed description of each

downstream task will be in chapter 5.

BERT is a Transformer Encoder stack. It has two model sizes, BERT-

base and BERT-large. The BERT-base model has 12 encoder layers, 768

hidden embedding sizes, and 12 attention heads. The BERT-large model has

24 encoder layers, 1024 hidden embedding sizes, and 16 attention heads. In

this study, we adopted BERT-base model architecture.

Figure 3. BERT input representation from Devlin et al. (2018)

13

BERT input representation, as in Figure 3, is the sum of the token

embeddings, the segment embeddings, and the position embeddings which

substitute the positional encoding of Transformer. WordPiece tokenizer (Wu

et al., 2016) is used to token embeddings. Sentence pairs are packed into a

single input sequence as the first token of the sequence is a classification

token ([CLS]) and the two sentences are separated by a separation token

([SEP]). Segment embeddings indicate whether a token is from sentence A or

sentence B. Position embeddings inform the position of the token in an input

sequence.

POS models, proposed in this study, have one more input embedding,

POS embeddings, to add to the input representation. The token of BERT is

tokenized by WordPiece tokenizer, however, MeCab is used as the tokenizer

for the convenience of adding POS embeddings in this study. The description

of POS models will be provided in detail in the next chapter.

 To train a deep bidirectional representation and understand sentence

relationships, BERT has two training approaches: masked language model

(MLM) and next sentence prediction (NSP).

In the MLM task, the model masks some percentage of the input

tokens, usually 15%, at random, and predicts the masked tokens. Specifically,

for the masked token t, 80% of the time the token t is replaced with [MASK]

token, 10% of the time with a random token, and 10% of the time it remains

unchanged.

In the NSP task, two sentences A and B are given for each training

example, and the model predicts whether B is the actual next sentence that

follows A (labeled as IsNext). 50% of the time, it is a random sentence from

the corpus (labeled as NotNext). We utilize both tasks in the experiments.

14

4. Part-of-Speech Models

In this chapter, POS models with modified embedding methods are

fed into the BERT architecture (Devlin et al., 2018) will be introduced. 3

embedding methods are suggested in this chapter: addPOS, multiaddPOS,

and maskPOS model. MeCab POS tagger, instead of WordPiece (Wu et al.,

2016), is implemented as a tokenizer, therefore the base model in the

experiment (chapter 5) is the MeCab-tokenized BERT model (Figure 4).

Figure 4. MeCab-tokenized model (base) input representation

By adding POS embeddings, we expect the model to learn the

distribution of POS information, and thus understand the underlying syntactic

representation in a language. We prove the effectiveness of incorporating

linguistic knowledge into the input embeddings through the comparison of

the POS models and the base model without POS embeddings in chapter 5.

4.1. Model Structure (Input Representation)

The input representation of POS models is a modification of BERT

(Devlin et al., 2018) input representation, adding POS embeddings to the

input embeddings of BERT. We propose 3 embedding methods here.

15

4.1.1. addPOS

Figure 5. addPOS model input representation

The input representation of the addPOS model is composed of the

BERT input embeddings, token embeddings, segment embeddings, and

position embeddings, and POS embeddings tagged from the MeCab POS

tagger. It is the same architecture with Syntax-infused BERT (Sundararaman

et al., 2019), but the input sentence in this model is tokenized by the MeCab

POS tagger instead of the WordPiece algorithm.

 For the token m, the input representation ℎ𝑚 becomes Equation 4,

where 𝑒𝑚 is the token embedding of m, 𝑠𝑚 is the segment embedding of m,

𝑝𝑚 is the position embedding of m, and 𝑓𝑚 is the POS embedding of m.

 ℎ𝑚 = 𝑒𝑚 + 𝑠𝑚 + 𝑝𝑚 + 𝑓𝑚 (4)

16

4.1.2. multiaddPOS

Figure 6. multiaddPOS model input representation

The multiaddPOS model input embeddings are the sum of the token

embeddings multiplied by the POS embeddings, the segment embeddings, the

position embeddings, and the POS embeddings. The two POS embeddings

can have different initialization. For the token m, we compute the input

representation ℎ𝑚 as:

 ℎ𝑚 = 𝑒𝑚 ∗ 𝑓𝑚
′ + 𝑠𝑚 + 𝑝𝑚 + 𝑓𝑚 (5)

where 𝑒𝑚 is the token embedding of m, 𝑠𝑚 is the segment

embedding of m, 𝑝𝑚 is the position embedding of m, and 𝑓′𝑚 and 𝑓𝑚 is

the POS embedding of m with different initialization.

17

4.1.3. maskPOS

Figure 7. maskPOS model input representation

The maskPOS model has the same input representation as the addPOS

model, adding the token embeddings, the segment embeddings, the position

embeddings, and the POS embeddings, but the MLM task is applied to both

the token embeddings and the POS embeddings. In the MLM task in the

maskPOS model, if the i-th token is chosen, the token embedding and the

POS embedding corresponding to the masked token ti assign [MASK]

embedding values respectively. The original token and POS will be predicted

using cross-entropy loss, thus having two losses and accuracies for each

embedding. The pre-training results will be presented in the next chapter.

18

5. Experiments

With the POS models described in chapter 4, pre-training and fine-

tuning experiments were conducted to demonstrate the effectiveness of

adding POS information, and the data for pre-training, training details, and

results are presented below. The maskPOS model shows higher performances

compared to the base model on 5 Korean downstream tasks, showing the

language model with linguistic knowledge learns the underlying grammatical

representation of a language. To the best of our knowledge, this is the first

study to corporate POS knowledge to a pre-trained Korean BERT model.

5.1. Pre-training

Data, tokenizer, vocabulary, POS tag vocabulary, and other training

details during pre-training will be described in this section.

5.1.1. Data

 For the pre-training corpus, preprocessed 2.47GB Korean Wikipedia

was used. It consists of 20M sentences, or 233M words. It is the same corpus

on which KR-BERT (Lee et al., 2020) was pre-trained on. KR-BERT,

however, implemented a WordPiece tokenizer (Wu et al., 2016).

5.1.2. Tokenizer

 Unlike the original BERT model which utilized the WordPiece

tokenizer, we adapted the MeCab POS tagger as a tokenizer of the models.

The input sentences in the training examples are tokenized by the MeCab

tokenizer. It makes the summation of the token embeddings and the POS

19

embeddings simpler because the token units and the POS units from the

tagger correspond.

5.1.3. Vocabulary

 After tokenizing the corpus with the MeCab tokenizer, we extracted

30,000 vocabularies in order of frequency. Then 5 special tokens that the

BERT model uses were added: [CLS] which informs the start of a sentence,

[SEP] which informs the end of a sentence, [PAD] for padding, [UNK] for

unknown tokens, and [MASK] for masking in MLM tasks. Thus, the

vocabulary of size 30,005 was used for pre-training the models.

5.1.4. Part-of-Speech Tag Vocabulary

 POS tag vocabulary was proposed in two ways: fulltag and endtag.

Because the POS tagging by MeCab is presented as a combination of

agglutinative POS tags, it could be offered in many ways. Fulltag uses all the

POS tags presented. Endtag uses only the last POS of tagging in order to

capture particles in Korean and make the size of the vocabulary smaller. So

for the example in Figure 8, MeCab POS tagging for token 그럴만도

gurelmando ‘It could be’ is VA+ETM+JX+JX. In the fulltag vocabulary, it

uses all the combination VA+ETM+JX+JX, while in the endtag vocabulary,

it only uses the last tag, JX. Other kinds of combinations have been

experimented and the results are presented in chapter 6.

그럴만도 VA+ETM+JX+JX
Fulltag:

VA+ETM+JX+JX

 Endtag: JX

Figure 8. Two ways of POS tag vocabulary combination

20

5.1.5. Training Details

 The pre-training batch size was 16, and the learning rate was 1e-4,

then decreased to 2e-5 when the pre-training step was over 1M. 4 TITAN

RTX (24GB RAM) GPUs were used for pre-training. Other hyperparameters

are the same as the original BERT5.

 For the maskPOS with fulltag model, which shows the highest

performances on the downstream tasks, we increased its batch size to 256,

and pre-trained the model to 2M steps on TPU. It can be expected as the batch

size increases, the performance of the model improves since the model can

take more sentences as input at once. The learning rate was 1e-4.

5.2. Pre-training Results

Pre-training results of the base model and the proposed POS models

are demonstrated below (Table 1). Because the NSP accuracy always shows

almost 1, we exhibit only the MLM accuracy. All the models are showing

high MLM accuracies.

5 https://github.com/google-research/bert

21

Model 100k 500k 1M
2M

step

MeCab base 0.5945 0.6737 0.7097 0.7297

addPOS
fulltag 0.702 0.7886 0.8152 0.8197

endtag 0.7006 0.7498 0.7452 0.783

multiaddPOS
fulltag 0.5465 0.7643 0.7734 0.7944

endtag 0.506 0.7348 0.7654 0.7595

maskPOS

fulltag

(POS)

0.8032

(token)

0.5911

(POS)

0.8478

(token)

0.6769

(POS)

0.8642

(token)

0.7046

(POS)

0.8703

(token)

0.7182

endtag

(POS)

0.8142

(token)

0.6047

(POS)

0.8523

(token)

0.6727

(POS)

0.8660

(token)

0.6988

(POS)

0.8816

(token)

0.7256

Table 1. Pre-training results of the base model and POS models. MLM accuracies

are represented.

For the maskPOS with fulltag model, we increase its batch size from

16 to 256 as described in 5.1.5. The MLM accuracy of the two models is

presented below. We can discover the MLM accuracy enhances as the batch

size of the same model increases.

22

Model 100K 1M 2M

maskPOS

(fulltag)

Batch

size=16

(POS)

0.8032

(token)

0.5911

(POS)

0.8642

(token)

0.7046

(POS)

0.8703

(token)

0.7182

Batch

size=256

@TPU

(POS)

0.8242

(token)

0.6583

(POS)

0.8648

(token)

0.7240

(POS)

0.8755

(token)

0.7400

Table 2. Pre-training results of the maskPOS (fulltag) models with different batch

sizes. MLM accuracies are represented.

5.3. Downstream Tasks

We conducted 5 Korean downstream tasks: NSMC (NAVER

Sentiment Movie Corpus)6, NER (Named Entity Recognition)7, KorQuAD

(Korean Question Answering Dataset)8, KorNLI (Korean Natural Language

Inference), and KorSTS (Korean Semantic Textual Similarity)9 (Ham et al.,

2020). The tasks and the metrics used for evaluating them will be described

below.

6 https://github.com/e9t/nsmc

7 http://air.changwon.ac.kr/?page_id=10

8 https://korquad.github.io/

9 https://github.com/kakaobrain/KorNLUDatasets

23

5.3.1. Tasks

NSMC NAVER Sentiment Movie Corpus (NSMC) is a movie review

dataset with the binary label for the sentiment class of the review (0: negative,

1: positive). It has 200K reviews, with half of the review is positive and the

other half negative.

NER Named Entity Recognition (NER) is a dataset to extract named

entities such as a person, organization, or location name. It has 14 categories.

KorQuAD The Korean Question Answering Dataset (KorQuAD) 1.0

is a dataset for Machine Reading Comprehension. It is composed of 20K QA

pairs, finding an answer from 1~2 paragraphs.

KorNLI Korean Natural Language Inference (KorNLI) is the dataset

for Korean Natural Language Understanding (KorNLU). Given a pair of two

sentences, the task of KorNLI is to determine whether they are entailment,

contradiction, or neutral. It has 950K examples.

KorSTS Korean Semantic Textual Similarity (KorSTS) is the dataset

for KorNLU. The task of KorSTS is to determine the similarity between those

two sentences from 0 to 5, given a pair of two sentences. KorSTS has 8K

examples.

5.3.2. Evaluation Metrics

Accuracy, F1 score, Exact Match (EM), and Spearman’s rank

correlation coefficient are used to evaluate the results.

24

Actual Class

True False

Predicted Class
True True Positive False Positive

False False Negative True Negative

Table 3. Confusion matrix

Accuracy (Equation6) and F1 score (Equation7) can be derived from

a confusion matrix (Table 3). Accuracy is the rate of correct predictions out

of the total number of true labels.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (6)

F1 score is the weighted mean of precision and recall. EM is the

number of exactly correct answers with the same start and end index.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 𝑠𝑐𝑜𝑟𝑒 =

2

1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (7)

Spearman’s rank correlation coefficient or Spearman correlation

shows the relationship between the rank values of two variables. It assesses

monotonic relationships while the Pearson correlation between two variables

25

assesses linear relationships. Packages from scikit-learn 10 , SciPy 11 , and

seqeval 12 are implemented as evaluation metrics for evaluating the

performance of downstream tasks.

5.4. Downstream Task Results

The table below demonstrates the downstream task results of the base

model and the POS models. It is seen in Table 4, the maskPOS models clearly

outperform the base MeCab model. Among the models with a batch size of

16, the maskPOS model with fulltag shows the highest outputs. So we trained

the model with a batch size of 256 as described in 5.1.5 for the maskPOS with

fulltag model. It is observed in Table 4, the maskPOS (fulltag) model with a

batch size of 256 surpasses the other models, especially the base MeCab-

tokenized model without the POS embeddings. Therefore, we can conclude

that when linguistic information is added to the pre-trained model, it is

learning the underlying grammatical representation via the enhanced

performance on the Korean downstream tasks.

10 https://scikit-learn.org/stable/

Scikit-learn is simple and efficient tools for predictive data analysis.

11 https://www.scipy.org/

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and

engineering.

12 https://github.com/chakki-works/seqeval

seqeval is a Python framework for sequence labeling evaluation.

26

Model
5

epochs
NSMC NER

KorQuad

(dev)
KorNLI KorSTS

Batch size 16,

2M step
 Accuracy F1 EM/F1 Accuracy Spearman

MeCab base 84.81 75.08
49.70,

80.68
72.89 0.7434

addPOS

fulltag 84.9 75.04
48.35,

79.41
74.59 0.7402

endtag 84.84 74.7
47.81,

77.71
73.67 0.7326

multiaddPOS

fulltag 84.62 74.05
48.96,

79.77
73.59 0.7267

endtag 84.46 74.11
48.04,

79.03
74.41 0.737

maskPOS

fulltag 84.98 75.48
49.46,

80.84
75.5 0.7501

endtag 84.92 75.51
48.97,

80.40
74.67 0.7488

fulltag,

Batch

size=256

85.66* 76.29
51.92,

83.42
76.6 0.7643*

Table 4. Downstream task results of the base model and POS models. Results

marked with an asterisk implemented prediction batch size of 128.

However, as seen in Table 5, the POS models exhibit poor

performances in comparison to other models with WordPiece tokenizer, KR-

BERT, or State-of-the-Art models. The reason for this poor improvement of

the POS embeddings will be discussed in the next section.

27

Model NSMC NER
KorQuad

(dev)
KorNLI KorSTS

 Accuracy F1 EM/F1 Accuracy Spearman

maskPOS

(fulltag)

Batch

size

=16

84.98 75.48
49.46,

80.84
75.5 0.7501

Batch

size

=256

85.66* 76.29
51.92,

83.42
76.6 0.7643*

KR-BERT

(char)
 89.74 85.77

72.04,

89.45
77.76 0.7746

State-Of-

The-Art

(KoELEC

TRA-Base

etc.)

5+

epochs

Different test

datasets.

84.34,

92.58 (v2)

80.89

(HanBER

T)

0.843 (v2)

Table 5. Downstream task results of maskPOS (fulltag) models and other state-of-

the-art models. Results marked with an asterisk implemented prediction batch size

of 128. The results on the state-of-the-art models are from KoELECTRA GitHub13.

They used different test datasets on NSMC and NER tasks.

5.5. Analysis

The results captured in the previous section will be analyzed in this

section. In 5.5.1, for the better performance that the maskPOS models showed

in comparison to the other POS models, we drew a correlation heatmap

13 https://github.com/monologg/KoELECTRA

28

between POS embeddings in order to figure out how a model learns a latent

representation during pre-training. But for the poor performance of the POS

models, we will point out the limitations of the current POS models in 5.5.2

and suggest the need for a further study (chapter 6).

5.5.1. Correlation Heatmap

To evaluate how POS models learn a latent representation during

training, the correlation between POS embeddings is drawn to a heatmap

(Figure 9).

As the performances on the downstream tasks in section 5.4 reflect,

only the maskPOS models show correlation. The others remain yellow on the

heatmap, meaning they learn no correlations between the POS embeddings.

The maskPOS models seem to capture an underlying grammatical

relationship between POS tags. It is in line with SpanBERT (Joshi et al., 2020)

in that the heatmap proves the helpfulness of the MLM task.

29

Figure 9. Heatmap representing the correlation between POS embeddings

30

5.5.2. Limitation

In order to explain the poor outcome of the POS models compared to

the other models with WordPiece tokenizer (Wu et al., 2016) and the state-of-

the-art models, the limitations of the current POS models will be identified

here.

First, POS tagging is not off-the-shelf. POS tags are called from a

pickle file, consist of a dictionary of a token and its POS tag. During the

process of saving the dictionary file, only a high-frequency POS tag was

selected, and others were neglected. For example, a token ##는 ##nun ‘is’

can be tagged as JX, ETM, ETN, or VV, but since the most frequent POS tag

is JX, the token always get the POS embedding of JX. In a phrase like 오 ##

는 9 ##월 o ##nun 9 ##wel ‘this September’, a token ##nun, which is ETM in

the phrase, wrongly tagged as JX in Figure 5-7 because it is the most frequent

POS of ##nun. The possible solution for this problem will be discussed in

6.2.1 and 6.2.3.

##는 Counter({'JX': 7292984, 'ETM': 4944041, 'ETN': 5, 'VV': 1})

Second, the lack of vocabulary could reduce the models’

performances. The pre-training corpus consists of 1M tokens, but we only use

the vocabulary of the size of 30K concerning the computational capacity of

the hardware. In 6.2.2, we will adjust the vocabulary size to deal with this

limitation.

In addition, there could be some problem in preprocessing the corpus

or the MeCab tokenizer to being an input of BERT architecture compared to

the WordPiece tokenizer which is an unsupervised tokenization method based

31

on the frequency of a token in a corpus.

Further analysis to overcome the limitations above will be suggested

in the next chapter.

32

6. Linguistic Analysis

Based on the experiment results in chapter 5, we conduct a linguistic

analysis to evaluate the ability of the proposed POS models of learning

syntactic representation by using a probing task (6.1). To further overcome

the limitations in 5.5.2, further analysis on the POS tag combination,

vocabulary size, and off-the-shelf POS tagging method will be used in the

next section. We analyze the maskPOS model (fulltag, 30k vocabulary size,

16 batch size) since it showed comparably stable performances on the pre-

training and fine-tuning downstream tasks in the previous chapter.

6.1. Syntactic Probing Analysis

Hewitt and Manning (2019) evaluated a neural network’s

representation by retrieving syntax trees embedded in a linear transformation

of a model’s word embedding space. We adapt the transformation to our POS

model, maskPOS, to evaluate the linguistic ability of our model. This

syntactic probing task will prove the effectiveness of adding morphosyntactic

information to a model to make the model learn an underlying syntactic

representation of a sentence.

6.1.1. The Structural Probe

The probe is based on the hypothesis that there is a linear

transformation (an inner product) of the word representation that parse trees

are embedded. Under the linear transformation B, vector distance under the

inner product 𝐵𝑇𝐵 is supposed to encode parse trees. Given a parse tree,

Hewitt and Manning (2019) consider a squared vector distance (an L2

33

distance) ‖ℎ𝑖 − ℎ𝑗‖
𝐵

2
 as a tree distance, and a norm ‖𝑤𝑖‖ as a parse depth

where i, j are indexes of a word w in a sentence. The parse depth is the number

of edges between the root of the parse tree and a word.

Equation 8 from Hewitt and Manning (2019) is a squared distance

where h𝑖
l is a vector representation of the i-th word of a sentence l, under the

linear transformation of the word representation Bh. A parse depth can be

defined as Equation 9.

 𝑑𝐵(ℎ𝑖
𝑙 , ℎ𝑗

𝑙)
2

= (𝐵(ℎ𝑖
𝑙 − ℎ𝑗

𝑙))
𝑇

(𝐵(ℎ𝑖
𝑙 − ℎ𝑗

𝑙)) (8)

 ‖ℎ𝑖‖𝐵
2 = (𝐵ℎ𝑖)𝑇(𝐵ℎ𝑖) (9)

The matrix B is the parameters of the probe. It is trained to recreate

the distance or the depth. In the case of the tree distance across all sentences

𝑇𝑙 in a training corpus, it is approximated through Equation 10 (Hewitt and

Manning, 2019) where |𝑠𝑙| is the length of the sentence l. Each sentence is

normalized by the number of word pairs |𝑠𝑙|2.

min

𝐵
∑

1

|𝑠𝑙|2
 ∑ |𝑑

𝑇𝑙(𝑤𝑖
𝑙 , 𝑤𝑗

𝑙) − 𝑑𝐵(ℎ𝑖
𝑙, ℎ𝑗

𝑙)
2

|

𝑖,𝑗𝑙

 (10)

6.1.2. Experiment Details

The probe requires CoNLL-formatted data. The KAIST Korean

Universal Dependency Treebank14 (Chun et al., 2018) was implemented to

train the probe. The training dataset contains 23010 sentences, the dev dataset

has 2066 sentences, and the test dataset has 2287 sentences (total 27363

14 https://github.com/UniversalDependencies/UD_Korean-Kaist

34

sentences).

We conduct the probing analysis on the maskPOS model (fulltag,

batch size of 16). Because the model was trained with TensorFlow (Abadi et

al., 2016), we converted the TensorFlow checkpoint for maskPOS in a

PyTorch save file. All configurations follow the original experiment15.

6.1.3. Probe Evaluation Metrics

The predicted tree distance is evaluated on undirected attachment

score (UUAS) and “distance Spearman (DSpr.)”. UUAS is the percent of

correct edges against the gold tree, evaluating tree reconstruction. To

construct “DSpr.”, the Spearman correlations between the gold tree and the

predicted tree distance are averaged over all sentences of the same length and

then averaged across sentence lengths 5-50.

To evaluate how well the predicted tree depth rebuilds the true tree,

we report “root%” and “norm Spearman (NSpr.)”. We assess the percentage

of the correctly predicted root of the sentence which is the least deep word as

“root%”. “NSpr.” metric replaces the “DSpr.” metric with the Spearman

correlation between the gold depth order of the word and the predicted

ordering. All the evaluation metrics follow Hewitt and Manning (2019).

15 https://github.com/john-hewitt/structural-probes

35

6.1.4. Probe Results

 Distance Depth

Layer UUAS DSpr. Root% NSpr.

1 63.29 0.6985 70.52 0.7223

2 63.28 0.6986 70.76 0.7248

3 63.29 0.6995 70.76 0.7247

4 63.28 0.6989 71.39 0.7221

5 63.51 0.6988 70.43 0.7246

6 63.31 0.6989 71.06 0.7225

7 63.44 0.6996 70.67 0.7240

8 63.48 0.7001 71.06 0.7246

9 63.21 0.6992 70.81 0.7231

10 63.29 0.6999 70.62 0.7277

11 63.34 0.6985 70.76 0.7260

12 63.41 0.7002 70.91 0.7249

Table 6. The probe results of parse tree distance and depth on maskPOS

The experiment results of parse tree distance probes and depth probes

are reported in Table 6. There is no big difference between layers. It can be

interpreted that the model encodes the parse tree stably across all the layers.

Among the layers, the result of layer 8 will be reported since it shows

comparably high performance on the probing task.

36

Figure 10. The gold parse trees (black) and the minimum spanning trees of

predicted squared distances on maskPOS (red)

We present the gold parse trees (black) and the predicted parse trees

on the maskPOS model (red) in Figure 10. Regarding a short and simple

structured sentence such as Figure 10-a, the model perfectly predicts the parse

tree. For Figure 10-b, the model predicts correctly the long-distance

dependency between 그때는 guttaynun ‘at that time’ and 들렸습니다

tullyesssupnita ‘heard’. Some adverb phrases are wrongly predicted, however,

since Korean is a scrambling (Ross, 1967) language, adverb phrases can have

flexible word order in Korean.

나서 nase in Figure 10-c is incorrectly presented on the predicted tree.

MeCab POS tagger tags the token as VV but it seems to be used as an auxiliary.

It seems POS tagging is not specific enough to reflect conjugations in Korean.

(a)

(b)

(c)

(d)

37

On the other hand, ##다가 ##taga in 헐어다가 heletaga ‘demolish’ (Figure

10-c) and ##고 ##go in 많았고 manhassgo ‘many’ (Figure 10-d) is EC in

MeCab POS tagging. It is a naïve classification as determining what kind of

syntactic phrase they are is a critical question in Syntax.

Figure 12 displays the depth in parse tree encoded in the gold tree

(black) and the predicted tree on the maskPOS model (red) by vector norm

after the linear transformation. The root of the parse tree, the least deep word,

is generally identified correctly on the maskPOS model. Although the depth

of the predicted tree does not perfectly correspond to that of the true tree,

patterns, or relative depth, shown in the predicted trees are relatively similar

to those of the true trees.

Figure 11 demonstrates all distances between all word pairs in a

sentence. Short distances are visualized in darker colors and long distances

are in lighter colors. According to Hewitt and Manning (2019), this is the rich

structure in a parse distance matrix.

Figure 11. Distance matrix between all pairs of words in a sentence

38

(a)

(b)

(c)

39

Figure 12. The gold parse trees depth (black) and the predicted norm probes

(squared) on maskPOS (red)

(d)

40

6.2. Further Analysis

In order to improve the POS models’ performance at the level of the

other models with other state-of-the-art models, we investigate further

analysis based on the limitation mentioned in the previous chapter. KorNLI

(Korean Natural Language Inference) (Ham et al., 2020) is used as the

downstream task to compare the performance of the models. The linguistic

ability of a model is determined by the performance on the KorNLI task here.

6.2.1. POS Tag Combination

We tried to change the combination of the MeCab POS tag. Other than

using a full POS tag combination or the last POS tag, only the first POS tag

or the first and the last POS tag combination was implemented. The full POS

combinations are suggested in Figure 13.

After pre-training the models to 2M steps (batch size of 16,

vocabulary size of 30k) we compared the KorNLI performance of each model.

It appears in Table 7 that the full POS tag combination shows the highest

performance on the task compared to the other POS tag combinations,

especially compared to the combinations with only one tag, the first or the

last POS tag. If we consider the first POS tag as lexical information and the

other POS tags syntactic information, it can be interpreted that both lexical

and syntactic information should be provided for a POS model to learn a latent

linguistic representation.

41

Figure 13. Full POS combinations and example tokens

Model POS Tag 2M step KorNLI

maskPOS

Batch size =

16

30k vocab

full
(POS) 0.8703

(token) 0.7182
75.5

front+end
(POS) 0.8836

(token) 0.7379
75

front
(POS) 0.8676

(token) 0.7074
74.97

end
(POS) 0.8816

(token) 0.7256
74.88

Table 7. Pre-training and fine-tuning results of maskPOS models with different

POS tag combinations

6.2.2. Vocabulary Size

We increased the vocabulary size to improve the POS models’ ability

on the downstream task. Out of 1M tokens from the corpus, 30k, 50k, and

100k vocabulary were chosen in order of frequency and pre-trained to 2M

steps (full POS tag, batch size of 16). It turns out that the vocabulary size of

42

30k that we used in the experiment (chapter 5) is not enough to perform well

on the downstream task. As the vocabulary increases, the accuracy of the

KorNLI task enhances in Table 8. The maskPOS with a vocabulary size of

100k shows the highest accuracy. Since the POS models implement POS

tagger as a tokenizer which is a supervised tokenizer, it must require a bigger

vocabulary size compared to the models with WordPiece tokenizer (Wu et al.,

2016) which is an unsupervised tokenizer constructing vocabulary based on

the statistical frequency of tokens rather than the meaning of them. The result

in Table 8 implies that there are possible avenues for improving the POS

models.

Model
Vocabulary

Size
2M step KorNLI

maskPOS

fulltag

Batch size =16

30k
(POS) 0.8703

(token) 0.7182
75.5

50k
(POS) 0.8821

(token) 0.7237
75.6

100k
(POS) 0.8908

(token) 0.7310
76.42

Table 8. Pre-training and fine-tuning results of maskPOS models with different

vocabulary sizes

6.2.3. POS Tagging

In order to avoid POS models from tagging wrong POS tags in the

embeddings during pre-training, we construct the off-the-shelf POS tagging

model. The off-the-shelf POS tagging model tags POS to a token during the

43

tokenization process. By tagging POS differently rather than calling POS tags

from a pickled dictionary file to avoid wrong tagging, we observe higher

performance on the downstream task in Table 9. Although the performance

on the KorNLI of the off-the-shelf POS model with a vocabulary size of 30k

is lower than that of the original pickle model with the same vocabulary size,

the performance of the off-the-shelf model gets better with a bigger

vocabulary size. The result reconfirms that the 30k vocabulary size was too

small for the POS models to learn enough linguistic representations.

Model
POS

Tagging
2M step KorNLI

maskPOS

fulltag

Batch size =16

pickle
(POS) 0.8703

(token) 0.7182
75.5

Off-the-

shelf

(POS) 0.8560

(token) 0.6932
74.73

Off-the-

shelf

(w/ 100k

vocab)

(POS) 0.8999

(token) 0.7370
75.8

Table 9. Pre-training and fine-tuning results of maskPOS models with different

POS tagging methods

The off-the-shelf POS model would benefit from the lexical

information, the first POS tag, as it can disambiguate the word sense. For

example, if we implement the off-the-shelf tagging method rather than using

a dictionary saved into a pickle file to call a POS tag, tokens in Table 10 which

44

have the same form with different POS tags can be distinguished.

Token Frequency 'POS': Frequency

##고 6230238

'EC': 5051649, 'JKQ': 1152139, 'VCP+EC':

18285, 'NNG': 5233, 'XPN': 1246, 'MM': 633,

'XSV+EC': 131, 'VV': 91, 'NNP': 62, 'IC': 21, 'JC':

18, 'NP': 6, 'VA': 4

##과 2518551
'JC': 2093857, 'JKB': 383815, 'NNG': 48575,

'ETN+JKB': 64, 'VV+EC': 61, 'NNBC': 2

전 695925
'NNG': 578685, 'MM': 108186, 'NNP': 2017,

'NP+JX': 654

제 350186
'XPN': 215112, 'NP': 70060, 'NP+JKG': 63324,

'MM': 832, 'NP+VCP': 38, 'XR': 3

사 101443
'NR': 44041, 'VV': 41047, 'NNG': 10752,

'VV+EC': 5474, 'VV+EF': 46, 'NNP': 42

##대로 58585
'JX': 47240, 'NNB': 4979, 'JKB': 4814,

'ETM+NNB': 1191, 'NNG': 287

제한 40979 'NNG': 39174, 'VV+ETM': 1806

지내 17888
'VV': 16762, 'VV+EC': 1031, 'NNG': 59,

'VV+EF': 36

얼 2747
'VV': 1301, 'NNG': 690, 'IC': 471, 'NNP': 210,

'VV+ETM': 76

후진 1743 'NNG': 1564, 'VA+ETM': 179

Table 10. Tokens with different POS tags

A token with high-frequency ##고 ##go seems to have various POS

45

tags in Table 9. POS tags are primarily reflected in the lexical information. It

mostly appears in conjunctions (EC) or quotations (JKQ). ##과 ##gwa and

##대로 ##daylo can be a particle or a part of a noun. Tokens such as 사 sa,

제한 ceyhan, 지내 cinay, 얼 el, and 후진 hwucin can be nouns or stems of

verb/adjective. Some syntactic information reveals in the other parts of POS

tags. 전 cen and 제 cey can appear in nouns or as pronouns with a particle as

the first POS tag is NP. They are both 1st person pronouns, but their syntactic

information POS tags are different, showing that they have different Cases

(+JX/+JKG). A token 지내 cinay can be either a stem of a verb (VV) or a verb

phrase in itself (VV+EC).

We conclude that the improvement of the off-the-shelf POS tagging

model belongs to the ability to use both lexical and syntactic information POS

tags.

46

7. Conclusion

In this study, we incorporated explicit linguistic knowledge into the

pre-trained BERT model. Suggesting new training methods by fusing

morphosyntactic information, POS tag, with input embeddings, we proposed

addPOS, multiaddPOS, and maskPOS models from pre-training. The

downstream task results, especially the performances of the maskPOS model,

proved the effectiveness of adding linguistic features compared to the base

MeCab models. Through the following linguistic probing task and analysis,

we insist that the POS models learn a latent linguistic representation during

training, and have a potential for future improvement.

One of the limitations in this study is that the performance of the

model entirely relies on the quality of a POS tagger. In this case, the ability

of a model can be influenced by tagging errors. Also, the ‘out-of-vocabulary’

(OOV) problem, that the POS tagger cannot infer novel words, must be solved.

The preprocessing of raw data required for the pre-training is also a key

element in improving the performance of the language model.

It is still under discussion whether the BERT model needs linguistic

knowledge for solving its tasks. Glavaš and Vulić (2020) suggested an issue

that either BERT has incomplete syntactic knowledge or it does not rely on

linguistic information. But obviously, there is a point that BERT understands

the structure of a language. Warstadt et al. (2019) studied negative polarity

items (NPIs) and found BERT detected the presence and the structure of NPIs

(detecting “ever” and the usage of “whether”) fairly well, while it was weak

to detect scope violations.

We leave for future work language models with more linguistic

47

features other than POS tags or various architectures as the models in chapter

2. Multi-grained tokenization (Zhang and Li, 2020) or embeddings using

Siamese network (Reimers and Gurevyych, 2019) could be applied for future

work. Future research could experiment on a more in-depth analysis of the

fine-tuning tasks. Various linguistic probing tasks for the Korean language

could be developed for future research.

48

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... &

Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., & Goldberg, Y. (2016). Fine-

grained analysis of sentence embeddings using auxiliary prediction

tasks. arXiv preprint arXiv:1608.04207.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word

vectors with subword information. Transactions of the Association

for Computational Linguistics, 5, 135-146.

Chun, J., Han, N. R., Hwang, J. D., & Choi, J. D. (2018, May). Building

universal dependency treebanks in Korean. In Proceedings of the

Eleventh International Conference on Language Resources and

Evaluation (LREC 2018).

Clark, K., Khandelwal, U., Levy, O., & Manning, C. D. (2019). What does

bert look at? an analysis of bert's attention. arXiv preprint

arXiv:1906.04341.

Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., & Wattenberg,

M. (2019). Visualizing and measuring the geometry of bert. arXiv

preprint arXiv:1906.02715.

Conneau, A., Kruszewski, G., Lample, G., Barrault, L., & Baroni, M. (2018).

What you can cram into a single vector: Probing sentence

embeddings for linguistic properties. arXiv preprint

arXiv:1805.01070.

49

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805.

Giulianelli, M., Harding, J., Mohnert, F., Hupkes, D., & Zuidema, W. (2018).

Under the hood: Using diagnostic classifiers to investigate and

improve how language models track agreement information. arXiv

preprint arXiv:1808.08079.

Glavaš, G., & Vulić, I. (2020). Is supervised syntactic parsing beneficial for

language understanding? an empirical investigation. arXiv preprint

arXiv:2008.06788.

Goldberg, Y. (2019). Assessing BERT's syntactic abilities. arXiv preprint

arXiv:1901.05287.

Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). KorNLI and KorSTS:

New Benchmark Datasets for Korean Natural Language

Understanding. arXiv preprint arXiv:2004.03289.

Hewitt, J., & Manning, C. D. (2019, June). A structural probe for finding

syntax in word representations. In Proceedings of the 2019

Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers) (pp. 4129-4138).

Hoover, B., Strobelt, H., & Gehrmann, S. (2019). exbert: A visual analysis

tool to explore learned representations in transformers models. arXiv

preprint arXiv:1910.05276.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., & Levy, O. (2020).

Spanbert: Improving pre-training by representing and predicting

spans. Transactions of the Association for Computational

50

Linguistics, 8, 64-77.

Jurafsky, D., & Martin, J. H. (2019). Speech and language processing (3rd ed.

draft). Draft of September 16, 2019.

Kovaleva, O., Romanov, A., Rogers, A., & Rumshisky, A. (2019). Revealing

the dark secrets of BERT. arXiv preprint arXiv:1908.08593.

Lee, S., Jang, H., Baik, Y., Park, S., & Shin, H. (2020). KR-BERT: A Small-

Scale Korean-Specific Language Model. arXiv preprint

arXiv:2008.03979.

Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., & Wang, P. (2020).

K-BERT: Enabling Language Representation with Knowledge Graph.

In AAAI (pp. 2901-2908).

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large

annotated corpus of English: The Penn Treebank.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013a).

Distributed representations of words and phrases and their

compositionality. Advances in neural information processing systems,

26, 3111-3119.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013b). Efficient estimation

of word representations in vector space. arXiv preprint

arXiv:1301.3781.

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global

vectors for word representation. In Proceedings of the 2014

conference on empirical methods in natural language processing

(EMNLP) (pp. 1532-1543).

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &

51

Zettlemoyer, L. (2018). Deep contextualized word representations.

arXiv preprint arXiv:1802.05365.

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings

using siamese bert-networks. arXiv preprint arXiv:1908.10084.

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in bertology:

What we know about how bert works. arXiv preprint

arXiv:2002.12327.

Ross, J. R. (1967). Constraints on variables in syntax.

Strubell, E., Verga, P., Andor, D., Weiss, D., & McCallum, A. (2018).

Linguistically-informed self-attention for semantic role

labeling. arXiv preprint arXiv:1804.08199.

Sundararaman, D., Subramanian, V., Wang, G., Si, S., Shen, D., Wang, D., &

Carin, L. (2019). Syntax-Infused Transformer and BERT models for

Machine Translation and Natural Language Understanding. arXiv

preprint arXiv:1911.06156.

Tenney, I., Das, D., & Pavlick, E. (2019). BERT rediscovers the classical NLP

pipeline. arXiv preprint arXiv:1905.05950.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ...

& Polosukhin, I. (2017). Attention is all you need. In Advances in

neural information processing systems (pp. 5998-6008).

Vig, J. (2019). A multiscale visualization of attention in the transformer model.

arXiv preprint arXiv:1906.05714.

Wang, Y. S., Lee, H. Y., & Chen, Y. N. (2019). Tree transformer: Integrating

tree structures into self-attention. arXiv preprint arXiv:1909.06639.

52

Warstadt, A., Cao, Y., Grosu, I., Peng, W., Blix, H., Nie, Y., ... & Wang, S. F.

(2019). Investigating BERT's Knowledge of Language: Five

Analysis Methods with NPIs. arXiv preprint arXiv:1909.02597.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... &

Klingner, J. (2016). Google's neural machine translation system:

Bridging the gap between human and machine translation. arXiv

preprint arXiv:1609.08144.

Zhang, X., & Li, H. (2020). AMBERT: A Pre-trained Language Model with

Multi-Grained Tokenization. arXiv preprint arXiv:2008.11869.

Zhang, Z., Wu, Y., Zhao, H., Li, Z., Zhang, S., Zhou, X., & Zhou, X. (2019).

Semantics-aware bert for language understanding. arXiv preprint

arXiv:1909.02209.

Zhou, J., Zhang, Z., Zhao, H., & Zhang, S.(2019). LIMIT-BERT: Linguistic

informed multi-task bert. arXiv preprint arXiv:1910.14296.

53

Appendix A. MeCab POS Tag

대분류(5 언

+ 기타)

mecab-ko-dic 품사 태그

태그 설명

실질형태소

체언

NNG 일반 명사

NNP 고유 명사

NNB 의존 명사

NNBC
단위를 나타내는

명사

NR 수사

NP 대명사

용언

VV 동사

VA 형용사

VX 보조 용언

VCP 긍정 지정사

VCN 부정 지정사

수식언

MM 관형사

MAG 일반 부사

MAJ 접속 부사

독립언 IC 감탄사

형식형태소

관계언

JKS 주격 조사

JKC 보격 조사

JKG 관형격 조사

JKO 목적격 조사

JKB 부사격 조사

JKV 호격 조사

JKQ 인용격 조사

JX 보조사

JC 접속 조사

선어말 어미 EP 선어말 어미

어말 어미

EF 종결 어미

EC 연결 어미

ETN 명사형 전성 어미

ETM 관형형 전성 어미

접두사 XPN 체언 접두사

54

접미사

XSN 명사 파생 접미사

XSV 동사 파생 접미사

XSA
형용사 파생

접미사

 어근 XR 어근

부호

SF
마침표, 물음표,

느낌표

 SE 줄임표 …

 SSO 여는 괄호 (, [

 SSC 닫는 괄호),]

 SC 구분자 , · / :

SY

한글 이외

SL 외국어

 SH 한자

 SN 숫자

55

Appendix B. Correlation Heatmap

addPOS (fulltag)

addPOS (endtag)

56

multiaddPOS (fulltag)

multiaddPOS (endtag)

57

maskPOS (fulltag)

maskPOS (endtag)

58

Appendix C. Distance Matrix

59

국문 초록

품사 임베딩 정보를 결합한 언어학적

BERT 모델

백연미

언어학과

서울대학교 대학원

본 연구에서는 BERT 모델에 품사라는 언어학적 정보를 결합하여 모델의

성능을 높이고 이를 언어학적으로 분석하고자 하였다. BERT는 그 자체로

강력한 성능을 내는 모델이지만 모델에 명시적으로 언어학적 정보를

결합하여 주입했을 때 그 성능이 더욱 올라갈 수 있는 여지가 있다는

연구가 이루어지고 있다. 또한 최근 언어 모델이 어떠한 언어학적 지식을

학습했는지 분석하는 연구가 활발하게 이루어지고 있으나 한국어를

대상으로는 사전학습된 모델의 언어학적 표상을 해석하는 분류기(probing

classifier) 연구가 아직 미비한 상황이다.

실험을 위해 본 연구에서는 사전학습 단계에서 다양한 방법으로 기존

BERT 모델의 입력 임베딩에 품사 임베딩 정보를 추가하였다. 이에는 (1)

품사 임베딩을 더하는 방법(addPOS), (2) 품사 임베딩을 곱하고 더하는

방법(multiaddPOS), 그리고 (3) 품사 임베딩을 마스킹하는

방법(maskPOS)이 사용되었다. 사전학습 말뭉치로는 한국어 위키피디아와

뉴스기사가 사용되었고 이때 품사는 MeCab 형태소 분석기를 이용하여

태깅되었으며 이는 모델이 말뭉치를 토큰화하는 토큰의 단위로 사용되기도

했다. 이후 학습된 모델을 이용하여 5개의 한국어 하위 실험(downstream

task)을 진행하였다(NSMC, NER, KorQuaD, KorNLI, KorSTS). 실험 결과

품사를 명시적으로 결합한 모델, 그 중에서도 maskPOS 모델이 품사 정보가

60

제공되지 않은 모델보다 높은 성능을 보였다. 하지만 최신 모델에 비해서는

낮은 결과를 내었다.

 이후 품사 임베딩 정보가 결합되어 학습된 모델을 대상으로 언어학적

분석을 진행하였다. 모델이 학습한 통사 정보를 확인하기 위해 Hewitt and

Manning (2019)에서 제안된 structural probe를 한국어 데이터셋에 적용하여

실험이 이루어졌다. 그 결과 품사 임베딩을 결합하여 명시적으로 언어학적

정보를 준 모델이 한국어 통사 정보를 학습했다는 사실을 확인할 수 있었다.

추가로 품사 모델의 성능을 더 높이기 위해 추가 실험을 진행하였고 품사

모델의 성능을 높일 수 있는 여지가 있다는 결론을 낼 수 있었다.

 본 연구는 한국어를 대상으로 BERT 사전학습 모델에 언어학적 정보를

명시적으로 결합하는 새로운 방법을 제시한다. 또한 한국어 모델로는

최초로 모델의 언어학적 표상을 해석하는 연구(probe)를 적용했다.

마지막으로 본 연구는 컴퓨터 공학의 딥러닝 기법과 언어학 이론을

결합하며 앞으로 한국어 자연언어처리가 나아가야 할 방향을 제시한다.

주요어: 자연언어처리, 언어 모델, BERT, 임베딩, 품사, 모델 해석, Probe,

파스 트리

학번: 2018-20037

	1. Introduction
	2. Literature Review
	2.1. Embeddings
	2.2. Models with Linguistic Information
	2.3. Interpretation of Linguistic Knowledge of a Model

	3. Transformer Architectures
	3.1. Transformer
	3.2. Bidirectional Encoder Representations from Transformer (BERT)

	4. Part-of-Speech Models
	4.1. Model Structure (Input Representation)
	4.1.1. addPOS
	4.1.2. multiaddPOS
	4.1.3. maskPOS

	5. Experiments
	5.1. Pre-training
	5.1.1. Data
	5.1.2. Tokenizer
	5.1.3. Vocabulary
	5.1.4. Part-of-Speech Tag Vocabulary
	5.1.5. Training Details

	5.2. Pre-training Results
	5.3. Downstream Tasks
	5.3.1. Tasks
	5.3.2. Evaluation Metrics

	5.4. Downstream Task Results
	5.5. Analysis
	5.5.1. Correlation Heatmap
	5.5.2. Limitations

	6. Linguistic Analysis
	6.1. Syntactic Probing Analysis
	6.1.1. The Structural Probe
	6.1.2. Experiment Details
	6.1.3. Probe Evaluation Metrics
	6.1.4. Probe Results

	6.2. Further Analysis
	6.2.1. POS Tag Combination
	6.2.2. Vocabulary Size
	6.2.3. POS Tagging

	7. Conclusion
	References
	Appendix
	국문 초록

<startpage>10
1. Introduction 1
2. Literature Review 4
 2.1. Embeddings 4
 2.2. Models with Linguistic Information 5
 2.3. Interpretation of Linguistic Knowledge of a Model 7
3. Transformer Architectures 9
 3.1. Transformer 9
 3.2. Bidirectional Encoder Representations from Transformer (BERT) 11
4. Part-of-Speech Models 14
 4.1. Model Structure (Input Representation) 14
 4.1.1. addPOS 15
 4.1.2. multiaddPOS 16
 4.1.3. maskPOS 17
5. Experiments 18
 5.1. Pre-training 18
 5.1.1. Data 18
 5.1.2. Tokenizer 18
 5.1.3. Vocabulary 19
 5.1.4. Part-of-Speech Tag Vocabulary 19
 5.1.5. Training Details 20
 5.2. Pre-training Results 20
 5.3. Downstream Tasks 22
 5.3.1. Tasks 23
 5.3.2. Evaluation Metrics 23
 5.4. Downstream Task Results 25
 5.5. Analysis 27
 5.5.1. Correlation Heatmap 28
 5.5.2. Limitations 30
6. Linguistic Analysis 32
 6.1. Syntactic Probing Analysis 32
 6.1.1. The Structural Probe 32
 6.1.2. Experiment Details 33
 6.1.3. Probe Evaluation Metrics 34
 6.1.4. Probe Results 35
 6.2. Further Analysis 40
 6.2.1. POS Tag Combination 40
 6.2.2. Vocabulary Size 41
 6.2.3. POS Tagging 42
7. Conclusion 46
References 48
Appendix 53
국문 초록 59
</body>

