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Linguistically Explicit BERT with 

Part-of-Speech Information 
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The Graduate School 

Seoul National University 

 

This study incorporates part-of-speech, one of the most well-known linguistic 

features, to the input embedding of the BERT model to enhance the ability of 

the language model and investigates what linguistic knowledge the model 

learns from pre-training. Although BERT shows powerful performance on 

many downstream tasks of Natural Language Processing, many studies have 

reported that injecting explicit linguistic knowledge improves the 

performance of the BERT model. Also, several studies have inspected the 

linguistic representation encoded in BERT using probing classifiers. Probing 

task on the Korean dataset, however, has not yet been conducted. 

In this study, we fuse POS embedding to the input embedding of the 

BERT model by (1) adding POS embedding to the BERT 

embedding(addPOS), (2) multiplying and then adding it to the input 

embedding(multiaddPOS), and (3) masking the POS of the masked token 
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while adding it to the input representation(maskPOS) in pre-training. We use 

Korean Wikipedia and news data as a corpus and MeCab POS tagger as a 

POS tagger and a tokenizer. In fine-tuning, we conduct 5 Korean downstream 

tasks (NSMC, NER, KorQuaD, KorNLI, KorSTS). As a result, the proposed 

POS models, especially the maskPOS model, show better performance on the 

tasks than the base MeCab-tokenized model which does not fuse POS 

information. In comparison to the state-of-the-art models, however, the POS 

models show low performance on the tasks. 

We conduct a linguistic analysis of the maskPOS model. To identify 

syntactic information encoded in the model, the structural probe (Hewitt and 

Manning, 2019) is adapted on Korean datasets. The probe results show that 

the proposed POS model embeds syntax trees, encoding linguistic knowledge 

in its word representations. Further experiments are conducted for better 

performance of the POS models on the downstream task. We conclude that 

there is a possibility for improving the POS models. 

This study suggests new methods to fuse linguistic information to the 

Korean pre-trained BERT model, and to the best of our knowledge, it is the 

first study to use “probe” on Korean datasets with the Korean-specific model. 

In this study deep learning architectures and linguistic theory are integrated, 

suggesting directions for future Korean NLP research. 

 

Keywords: Natural Language Processing, Language Modeling, BERT, 

Word Embeddings, Part-of-Speech, Interpretability, Probe, Parse Tree 

Student Number: 2018-20037 

  



iii 

 

Table of Contents 

 

1. Introduction  .......................................................................................... 1 

 

2. Literature Review  ................................................................................. 4 

2.1. Embeddings  ............................................................................... 4 

2.2. Models with Linguistic Information  .......................................... 5 

2.3. Interpretation of Linguistic Knowledge of a Model  .................. 7 

 

3. Transformer Architectures  .................................................................. 9 

3.1. Transformer  ............................................................................... 9 

3.2. Bidirectional Encoder Representations from Transformer 

(BERT)  ..................................................................................... 11 

 

4. Part-of-Speech Models  ....................................................................... 14 

4.1. Model Structure (Input Representation)  .................................. 14 

4.1.1. addPOS  ................................................................................ 15 

4.1.2. multiaddPOS  ........................................................................ 16 

4.1.3. maskPOS  .............................................................................. 17 

 

5. Experiments  ........................................................................................ 18 

5.1. Pre-training  .............................................................................. 18 

5.1.1. Data  ...................................................................................... 18 

5.1.2. Tokenizer  ............................................................................. 18 

5.1.3. Vocabulary  ........................................................................... 19 

5.1.4. Part-of-Speech Tag Vocabulary  ........................................... 19 

5.1.5. Training Details  ................................................................... 20 



iv 

 

5.2. Pre-training Results  .................................................................. 20 

5.3. Downstream Tasks  ................................................................... 22 

5.3.1. Tasks  .................................................................................... 23 

5.3.2. Evaluation Metrics  ............................................................... 23 

5.4. Downstream Task Results  ....................................................... 25 

5.5. Analysis  ................................................................................... 27 

5.5.1. Correlation Heatmap  ............................................................ 28 

5.5.2. Limitations  ........................................................................... 30 

 

6. Linguistic Analysis  .............................................................................. 32 

6.1. Syntactic Probing Analysis  ...................................................... 32 

6.1.1. The Structural Probe ............................................................ 32 

6.1.2. Experiment Details  .............................................................. 33 

6.1.3. Probe Evaluation Metrics  .................................................... 34 

6.1.4. Probe Results  ....................................................................... 35 

6.2. Further Analysis  ....................................................................... 40 

6.2.1. POS Tag Combination  ......................................................... 40 

6.2.2. Vocabulary Size  ................................................................... 41 

6.2.3. POS Tagging  ........................................................................ 42 

 

7. Conclusion  ........................................................................................... 46 

 

References  .................................................................................................. 48 

 

Appendix  ................................................................................................... 53 

 

국문 초록  ..................................................................................................... 59 



v 

 

List of Figures 

 

Figure 1. Transformer architecture ................................................................. 9 

Figure 2. Pre-training and fine-tuning procedures for BERT ....................... 12 

Figure 3. BERT input representation ............................................................ 12 

Figure 4. MeCab-tokenized model (base) input representation ................... 14 

Figure 5. addPOS model input representation .............................................. 15 

Figure 6. multiaddPOS model input representation ..................................... 16 

Figure 7. maskPOS model input representation ........................................... 17 

Figure 8. Two ways of POS tag vocabulary combination ............................ 19 

Figure 9. Heatmap representing the correlation between POS embeddings 29 

Figure 10. The gold parse trees (black) and the minimum spanning trees of 

predicted squared distances on maskPOS (red) ..................................... 36 

Figure 11. Distance matrix between all pairs of words in a sentence ........... 37 

Figure 12. The gold parse trees depth (black) and the predicted norm probes 

(squared) on maskPOS (red) .................................................................. 39 

Figure 13. Full POS combinations and example tokens ............................... 41 

 

  



vi 

 

List of Tables 

 

Table 1. Pre-training results of the base model and POS models ................. 21 

Table 2. Pre-training results of the maskPOS (fulltag) models with different 

batch sizes .............................................................................................. 22 

Table 3. Confusion matrix ............................................................................ 24 

Table 4. Downstream task results of the base model and POS models ........ 26 

Table 5. Downstream task results of maskPOS (fulltag) models and other 

state-of-the-art models ........................................................................... 27 

Table 6. The probe results of parse tree distance and depth on maskPOS ... 35 

Table 7. Pre-training and fine-tuning results of maskPOS models with 

different POS tag combinations ............................................................. 41 

Table 8. Pre-training and fine-tuning results of maskPOS models with 

different vocabulary sizes ...................................................................... 42 

Table 9. Pre-training and fine-tuning results of maskPOS models with 

different POS tagging methods .............................................................. 43 

Table 10. Tokens with different POS tags .................................................... 44 

  



1 

 

1. Introduction 

 

The Bidirectional Encoder Representations from Transformers 

(BERT) model (Devlin et al., 2018) has demonstrated powerful performances 

on a wide range of tasks in natural language processing (NLP). This 

improvement of the model on the downstream tasks is because BERT can 

learn lexical, syntactic, and semantic information of a sentence (Clark et al., 

2019; Coenen et al., 2019; Goldberg, 2019; Hewitt and Manning, 2019; 

Tenney et al.,2019).  

Although BERT itself can capture linguistic information, the 

incorporation of linguistic information does help the language model for the 

related downstream task (Lee et al., 2020; Liu et al., 2019; Strubell et al., 

2018; Sundararaman et al., 2019; Wang et al., 2019, Zhang et al., 2020; Zhou 

et al., 2020). In this study, we incorporate part-of-speech (POS) tags using 

MeCab POS tagger 1  in the KoNLPy 2  package into the Korean-specific 

BERT model from pre-training. 

Part-of-speech is also known as word classes or syntactic categories 

which represent morphosyntactic information. It is one of the most familiar 

and simplistic linguistic feature. It gives information about the relationship 

between words by their distribution, such as adjectives describe nouns. Also, 

it informs a syntactic structure of a sentence (verbs are part of verb phrases), 

and a word sense disambiguation (Korean 가 ka as a particle or a verb). It is 

                                           
1 http://eunjeon.blogspot.com/ 

2 https://konlpy.org/ko/latest/ 

KoNLPy is a Python package for natural language processing of the Korean language. 
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a useful feature in parsing, named entity recognition, information extraction, 

or coreference resolution (Jurafsky, 2019).  

This study leverages part-of-speech (POS) tags using MeCab POS 

tagger to the BERT model from pre-training and runs experiments on the 

Korean downstream tasks. We implement the MeCab POS tagger which is 

known to be the most time-efficient and does not decompose Hangul 

(character) into Jamo (sub-character). We suggest new training methods by 

infusing this linguistic knowledge to the embeddings fed into the pre-trained 

model. The suggested models prove the effectiveness of adding linguistic 

features compared to the base MeCab model. 

We implement linguistic probing tasks on the proposed POS model. 

“Probes” interpret how well linguistic knowledge is encoded in the model 

using various linguistic tasks. This study conducts the syntactic probing task 

of Hewitt and Manning (2019) to analyze the effect of adding POS 

information on the language model. 

The outline of this research is as follows: Chapter 2 provides a 

literature review of embeddings, existing Transformer models with linguistic 

knowledge, and model interpretation. Chapter 3 provides a detailed account 

of Transformer architectures and the BERT model. Chapter 4 introduces POS 

models, which are BERT models with POS-infused embeddings. Chapter 5 

describes the pre-training data, training details, and results. It also contains 

the following fine-tuning experiments and their results. Five Korean 

downstream tasks will be introduced in chapter 5. Chapter 6 analyzes the 

proposed models using the probing tasks to evaluate the models’ linguistic 

ability to learn the underlying structure of a sentence and conducts additional 

experiments to enhance the model’s performance on the downstream task. 

Chapter 7 concludes the study by providing a summary of the work and 
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discussing a limitation of our research and possible avenues for future 

research. 
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2. Literature Review 

 

This chapter discusses the history and development of embeddings, 

and relevant literature review concerning Transformer models (Vaswani et al., 

2017) with linguistic information, and model interpretation using probing 

tasks. 

 

2.1. Embeddings 

Word embeddings are vectors that represent words or the process that 

words are embedded in a particular vector space. It is based on the idea of 

vector semantics: representations of the meaning of words can be learned 

directly from their distributions. It is also based on the distribution hypothesis, 

defining a word by the distribution it occurs in the text, as the philosopher 

Ludwig Wittgenstein said “the meaning of a word is its use in the language”. 

If the two words occur in similar environments or distributions, they are likely 

to have a similar meaning. 

Embeddings have been developed from embedding words to 

embedding sentences. The most famous word embedding algorithms are 

Word2Vec (Mikolov et al., 2013a), GloVe (Pennington et al., 2014), and 

FastText (Bojanowski et al., 2017). 

The Word2Vec model has two model architectures, CBOW and Skip-

gram (Mikolov et al., 2013b). The Continuous Bag of Words (CBOW) model 

predicts the target word using context words. The Skip-gram model predicts 

the context words given a current target word. In general, the Skip-gram 

model is known to show better performance results for the downstream tasks 
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than the CBOW model.  

Word2Vec implements negative sampling (Mikolov et al., 2013a) to 

reduce computation costs. A positive sample refers to a pair of a target word 

and surrounding context words, and a negative sample refers to a pair of a 

target word and a word that randomly samples in the vocabulary. 

The GloVe model is trained on aggregated global word-word co-

occurrence statistics from a corpus. A global word-word co-occurrence matrix 

organizes how frequently word pairs occur in a given corpus and matrix 

factorization is applied to approximate the matrix. The FastText model 

considers a subword, treating each word as a Bag of Character n-grams so 

that rare words get a good representation.  

Like ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018), 

sentence embedding models offer an advantage over word embedding models, 

because while a word has a fixed embedding under word embedding models 

disregarding the context it appears, sentence embedding models produce 

context embeddings that dynamically differ depending on the meaning of the 

word in a sentence. 

Embeddings are key aspects in transfer learning as embeddings with 

accurate representations of words or sentences in pre-training result in high 

performances on the downstream tasks in fine-tuning. Models applying 

transfer learning, the Transformer architecture and the BERT model, will be 

described in detail in Chapter 3. 

 

2.2. Models with Linguistic Information 

Recently, linguistic knowledge has been incorporated into the pre-
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trained language model. Linguistically Informed Self-Attention (LISA) 

(Strubell et al., 2018) suggests the potential of incorporating linguistic 

information into the Transformer model by explicit modeling of syntax. 

Strubell et al. (2018) enhanced the performance of the model with multi-task 

learning across various syntactic knowledge, such as dependency parsing, 

POS tagging, predicate detection, and Semantic Role Labeling (SRL).  

Zhou et al, (2020) also proposed the multi-task learning model LIMIT-

BERT, proving the effectiveness of injecting linguistic knowledge into the 

BERT model. In addition to leveraging multi-task learning across POS tags, 

constituent and dependency syntactic parsing, span and dependency SRL, 

they introduced Syntactic and Semantic Phrase Masking. Syntactic Phrase 

Masking masks tokens in a constituent of a sentence together ([MASK] 

[MASK] [MASK] sells paper and wood products.), and Semantic Phrase 

Masking masks tokens in a dependency relation such as the predicate and its 

object argument (federal paper board [MASK] paper and wood [MASK].) 

This study also uses a masking strategy for the BERT model to learn linguistic 

information. 

Other studies explicitly incorporated the model with one of the 

linguistic features. Syntax-Infused Transformer and BERT models 

(Sundararaman et al., 2019) infused POS information into the models using 

WordPiece tokenizer (Wu et al., 2016) and SpaCy3  for POS tagger. For 

constituent information, Tree Transformer (Wang et al., 2019) proposed 

“Constituent Attention” to make the attention heads learn tree structures. 

Zhang et al. (2020) suggested SemBERT by incorporating pre-trained SRL 

information, and Liu et al. (2019) implemented a knowledge graph to get 

                                           
3 https://spacy.io/ 
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sememe information. 

This paper leverages POS information, a simple and familiar linguistic 

feature. Since POS forms a distribution, we believe that a model can learn a 

representation according to the distribution hypothesis. Furthermore, it will 

give useful information on an agglutinative language like Korean. 

One of the proposed models has the same structure proposed in 

Sundararaman et al. (2019). The input token ℎ𝑚
′  = 𝑒𝑚 + 𝑓𝑚

𝑃 where 𝑒𝑚 is 

the BERT token embedding and 𝑓𝑚
𝑃 is POS embedding for token m. This 

study, however, suggests new methods other than just adding embeddings. 

Instead of SpaCy in Sundararaman et al. (2019), MeCab is used in this paper 

expecting to be more suitable for morphologically rich languages. The 

suggested models will be introduced in chapter 4. 

 

2.3. Interpretation of Linguistic Knowledge of a Model 

 “Probes” are used to interpret how and what type of linguistic 

information is encoded in the model. This process is referred to as a “probing 

task” (Conneau et al., 2018), “diagnostic classifier” (Giulianelli et al., 2018), 

or an “auxiliary prediction task” (Adi et al., 2016). Such probes are conducted 

on various linguistic tasks and on different levels of the model. 

There are studies concerning attention heads of the Transformer 

architecture. In Clark et al. (2019), specific attention heads in BERT showed 

particular linguistic phenomena. Kovaleva et al. (2019) suggested 5 patterns 

of attention heads using a heatmap, and that the “heterogeneous” pattern can 

be interpreted linguistically. Visualization tools are also proposed in Vig 

(2019), and Hoover et al. (2019). 
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On the layers of the model, Tenney et al. (2019) proved that syntactic 

knowledge appeared in initial layers and semantics in later layers using 

probing tasks such as POS, constituents, dependencies, entities, SRL, and 

coreference resolutions. 

Hewitt and Manning (2019) proposed syntactic analysis using probing. 

They evaluated syntactic knowledge of the models by recovering syntactic 

dependencies in Penn Treebank (Marcus et al., 1993) from the models’ token 

embeddings. Through a linear transformation of a model’s word 

representation space, it was proved that the dependency trees were embedded 

in the model. In addition to the results, Coenen et al. (2019) visualized 

syntactic and semantic information of the models. We replicate the structural 

probing task of Hewitt and Manning (2019) using the Korean dataset. This 

will be demonstrated in chapter 6.  
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3. Transformer Architectures 

 

This chapter will provide a description of Transformer architecture 

(Vaswani et al., 2017) and the BERT model (Devlin et al., 2018) as we use it 

as the base model architecture of the proposed POS models which will be 

described in the following chapter. 

 

3.1. Transformer 

Transformer architecture (Vaswani et al., 2017) is composed of a stack 

of encoders and decoders and when it takes an input sentence, it gets an output 

sentence in another (Figure 1). The BERT model (Devlin et al., 2018), which 

will be described in the next section, only uses the encoder part of the 

Transformer.  

 

Figure 1. Transformer architecture, based on The Illustrated Transformer4 

                                           
4 http://jalammar.github.io/illustrated-transformer/ 
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Each encoder has two sub-layers as in Figure 1: a self-attention layer 

and a feed-forward neural network. The outputs of the self-attention layer are 

fed to the feed-forward network. A list of vectors is taken as input and these 

vectors are passed into a self-attention layer, then through a feed-forward 

neural network, to the next encoder. 

Multi-Head Attention (Equation 2) is a concatenation of multi Scaled 

Dot-Product Attention which is also called as Self-Attention (Equation 1). All 

equations in this section are from Vaswani et al. (2017). 

 
Attention(Q, K, V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (1) 

 

The shape of an input embedding X of Self-Attention is the number of 

words in an input sentence and the dimension of the input embedding. A 

Query matrix Q, a Key matrix K, and a Value matrix V are created by 

multiplying the input matrix X and three weight matrices WQ, WK, and WV. 

Then we take the dot product of the query vector with the key vector and 

divide it by the square root of dk  (the dimension of the key vectors) for 

scaling the variance, then normalize it through a softmax. The resulting score 

is multiplied by each value vector as the weighted value vectors and summed 

up. 

 MultiHead(Q, K, V) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 

     where headi = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

(2) 

 

In Multi-Head Attention, the Self-Attention is calculated h different 

times with h different weight matrices. The resulting h attention heads are 



11 

 

concatenated and multiplied with a weight matrix WO so that the shape of the 

output is the same as that of the input. W𝑖
Q

, W𝑖
K, W𝑖

V, and WO are parameter 

matrices. By doing Self-Attention, the Transformer model can give attention 

to all the word pairs in a sentence considering the context without gradient 

vanishing problem. 

The results send to the feed-forward neural network, using ReLU as 

an activation function (Equation 3). Instead of ReLU, GeLU is adopted in the 

BERT model. 

 FFN(x) = max(0, xW1 + 𝑏1)𝑊2 + 𝑏2 (3) 

 

To keep the order of the words in the input sequence, the Transformer 

uses positional encoding. BERT model, however, does not implement the 

same positional encoding. It uses the position embeddings instead. The input 

representation of the BERT model will be described in detail below. 

 

3.2. Bidirectional Encoder Representations from 

Transformer (BERT) 

Bidirectional Encoder Representations from Transformer (BERT) 

(Devlin et al., 2018) is a method that pre-trains language representations. As 

it adopts transfer learning, there are two procedures (Figure 2), pre-training 

and fine-tuning.  
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Figure 2. Pre-training and fine-tuning procedures for BERT from Devlin et al. 

(2018) 

  

At pre-training, a general-purpose language understanding model is 

trained on a large text corpus like Wikipedia. It is an unlabeled and 

unsupervised process. The pre-trained model is fine-tuned and utilized for 

downstream NLP tasks like question answering, named entity recognition 

(NER), and natural language inference (NLI). A detailed description of each 

downstream task will be in chapter 5. 

BERT is a Transformer Encoder stack. It has two model sizes, BERT-

base and BERT-large. The BERT-base model has 12 encoder layers, 768 

hidden embedding sizes, and 12 attention heads. The BERT-large model has 

24 encoder layers, 1024 hidden embedding sizes, and 16 attention heads. In 

this study, we adopted BERT-base model architecture.  

 

Figure 3. BERT input representation from Devlin et al. (2018) 
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BERT input representation, as in Figure 3, is the sum of the token 

embeddings, the segment embeddings, and the position embeddings which 

substitute the positional encoding of Transformer. WordPiece tokenizer (Wu 

et al., 2016) is used to token embeddings. Sentence pairs are packed into a 

single input sequence as the first token of the sequence is a classification 

token ([CLS]) and the two sentences are separated by a separation token 

([SEP]). Segment embeddings indicate whether a token is from sentence A or 

sentence B. Position embeddings inform the position of the token in an input 

sequence. 

POS models, proposed in this study, have one more input embedding, 

POS embeddings, to add to the input representation. The token of BERT is 

tokenized by WordPiece tokenizer, however, MeCab is used as the tokenizer 

for the convenience of adding POS embeddings in this study. The description 

of POS models will be provided in detail in the next chapter. 

 To train a deep bidirectional representation and understand sentence 

relationships, BERT has two training approaches: masked language model 

(MLM) and next sentence prediction (NSP).  

In the MLM task, the model masks some percentage of the input 

tokens, usually 15%, at random, and predicts the masked tokens. Specifically, 

for the masked token t, 80% of the time the token t is replaced with [MASK] 

token, 10% of the time with a random token, and 10% of the time it remains 

unchanged.  

In the NSP task, two sentences A and B are given for each training 

example, and the model predicts whether B is the actual next sentence that 

follows A (labeled as IsNext). 50% of the time, it is a random sentence from 

the corpus (labeled as NotNext). We utilize both tasks in the experiments.  
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4. Part-of-Speech Models 

 

In this chapter, POS models with modified embedding methods are 

fed into the BERT architecture (Devlin et al., 2018) will be introduced. 3 

embedding methods are suggested in this chapter: addPOS, multiaddPOS, 

and maskPOS model. MeCab POS tagger, instead of WordPiece (Wu et al., 

2016), is implemented as a tokenizer, therefore the base model in the 

experiment (chapter 5) is the MeCab-tokenized BERT model (Figure 4). 

 

Figure 4. MeCab-tokenized model (base) input representation 

 

By adding POS embeddings, we expect the model to learn the 

distribution of POS information, and thus understand the underlying syntactic 

representation in a language. We prove the effectiveness of incorporating 

linguistic knowledge into the input embeddings through the comparison of 

the POS models and the base model without POS embeddings in chapter 5. 

 

4.1. Model Structure (Input Representation) 

The input representation of POS models is a modification of BERT 

(Devlin et al., 2018) input representation, adding POS embeddings to the 

input embeddings of BERT. We propose 3 embedding methods here. 
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4.1.1. addPOS 

 

 

Figure 5. addPOS model input representation 

 

The input representation of the addPOS model is composed of the 

BERT input embeddings, token embeddings, segment embeddings, and 

position embeddings, and POS embeddings tagged from the MeCab POS 

tagger. It is the same architecture with Syntax-infused BERT (Sundararaman 

et al., 2019), but the input sentence in this model is tokenized by the MeCab 

POS tagger instead of the WordPiece algorithm. 

 For the token m, the input representation ℎ𝑚 becomes Equation 4, 

where 𝑒𝑚 is the token embedding of m, 𝑠𝑚 is the segment embedding of m, 

𝑝𝑚 is the position embedding of m, and 𝑓𝑚 is the POS embedding of m. 

 ℎ𝑚 = 𝑒𝑚 + 𝑠𝑚 + 𝑝𝑚 + 𝑓𝑚  (4) 
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4.1.2. multiaddPOS 

 

Figure 6. multiaddPOS model input representation 

  

The multiaddPOS model input embeddings are the sum of the token 

embeddings multiplied by the POS embeddings, the segment embeddings, the 

position embeddings, and the POS embeddings. The two POS embeddings 

can have different initialization. For the token m, we compute the input 

representation ℎ𝑚 as:  

 ℎ𝑚 = 𝑒𝑚 ∗ 𝑓𝑚
′  + 𝑠𝑚 + 𝑝𝑚 + 𝑓𝑚  (5) 

 

where 𝑒𝑚  is the token embedding of m, 𝑠𝑚  is the segment 

embedding of m, 𝑝𝑚 is the position embedding of m, and 𝑓′𝑚 and  𝑓𝑚 is 

the POS embedding of m with different initialization. 
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4.1.3. maskPOS 

 

Figure 7. maskPOS model input representation 

  

The maskPOS model has the same input representation as the addPOS 

model, adding the token embeddings, the segment embeddings, the position 

embeddings, and the POS embeddings, but the MLM task is applied to both 

the token embeddings and the POS embeddings. In the MLM task in the 

maskPOS model, if the i-th token is chosen, the token embedding and the 

POS embedding corresponding to the masked token ti  assign [MASK] 

embedding values respectively. The original token and POS will be predicted 

using cross-entropy loss, thus having two losses and accuracies for each 

embedding. The pre-training results will be presented in the next chapter. 
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5. Experiments 

 

With the POS models described in chapter 4, pre-training and fine-

tuning experiments were conducted to demonstrate the effectiveness of 

adding POS information, and the data for pre-training, training details, and 

results are presented below. The maskPOS model shows higher performances 

compared to the base model on 5 Korean downstream tasks, showing the 

language model with linguistic knowledge learns the underlying grammatical 

representation of a language. To the best of our knowledge, this is the first 

study to corporate POS knowledge to a pre-trained Korean BERT model. 

 

5.1. Pre-training 

Data, tokenizer, vocabulary, POS tag vocabulary, and other training 

details during pre-training will be described in this section. 

5.1.1. Data 

 For the pre-training corpus, preprocessed 2.47GB Korean Wikipedia 

was used. It consists of 20M sentences, or 233M words. It is the same corpus 

on which KR-BERT (Lee et al., 2020) was pre-trained on. KR-BERT, 

however, implemented a WordPiece tokenizer (Wu et al., 2016). 

5.1.2. Tokenizer 

 Unlike the original BERT model which utilized the WordPiece 

tokenizer, we adapted the MeCab POS tagger as a tokenizer of the models. 

The input sentences in the training examples are tokenized by the MeCab 

tokenizer. It makes the summation of the token embeddings and the POS 
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embeddings simpler because the token units and the POS units from the 

tagger correspond. 

5.1.3. Vocabulary 

 After tokenizing the corpus with the MeCab tokenizer, we extracted 

30,000 vocabularies in order of frequency. Then 5 special tokens that the 

BERT model uses were added: [CLS] which informs the start of a sentence, 

[SEP] which informs the end of a sentence, [PAD] for padding, [UNK] for 

unknown tokens, and [MASK] for masking in MLM tasks. Thus, the 

vocabulary of size 30,005 was used for pre-training the models. 

5.1.4. Part-of-Speech Tag Vocabulary 

 POS tag vocabulary was proposed in two ways: fulltag and endtag. 

Because the POS tagging by MeCab is presented as a combination of 

agglutinative POS tags, it could be offered in many ways. Fulltag uses all the 

POS tags presented. Endtag uses only the last POS of tagging in order to 

capture particles in Korean and make the size of the vocabulary smaller. So 

for the example in Figure 8, MeCab POS tagging for token 그럴만도 

gurelmando ‘It could be’ is VA+ETM+JX+JX. In the fulltag vocabulary, it 

uses all the combination VA+ETM+JX+JX, while in the endtag vocabulary, 

it only uses the last tag, JX. Other kinds of combinations have been 

experimented and the results are presented in chapter 6. 

그럴만도 VA+ETM+JX+JX 
Fulltag: 

VA+ETM+JX+JX 

  Endtag: JX 

Figure 8. Two ways of POS tag vocabulary combination 
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5.1.5. Training Details 

 The pre-training batch size was 16, and the learning rate was 1e-4, 

then decreased to 2e-5 when the pre-training step was over 1M. 4 TITAN 

RTX (24GB RAM) GPUs were used for pre-training. Other hyperparameters 

are the same as the original BERT5. 

 For the maskPOS with fulltag model, which shows the highest 

performances on the downstream tasks, we increased its batch size to 256, 

and pre-trained the model to 2M steps on TPU. It can be expected as the batch 

size increases, the performance of the model improves since the model can 

take more sentences as input at once. The learning rate was 1e-4. 

 

5.2. Pre-training Results 

Pre-training results of the base model and the proposed POS models 

are demonstrated below (Table 1). Because the NSP accuracy always shows 

almost 1, we exhibit only the MLM accuracy. All the models are showing 

high MLM accuracies. 

 

 

 

 

                                           
5 https://github.com/google-research/bert 
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Model  100k 500k 1M 
2M 

step 

MeCab base 0.5945 0.6737 0.7097 0.7297 

addPOS 
fulltag 0.702 0.7886 0.8152 0.8197 

endtag 0.7006 0.7498 0.7452 0.783 

multiaddPOS 
fulltag 0.5465 0.7643 0.7734 0.7944 

endtag 0.506 0.7348 0.7654 0.7595 

maskPOS 

fulltag 

(POS) 

0.8032 

(token) 

0.5911 

(POS) 

0.8478 

(token) 

0.6769 

(POS) 

0.8642 

(token) 

0.7046 

(POS) 

0.8703 

(token) 

0.7182 

endtag 

(POS) 

0.8142 

(token) 

0.6047 

(POS) 

0.8523 

(token) 

0.6727 

(POS) 

0.8660 

(token) 

0.6988 

(POS) 

0.8816 

(token) 

0.7256 

Table 1. Pre-training results of the base model and POS models. MLM accuracies 

are represented. 

 

For the maskPOS with fulltag model, we increase its batch size from 

16 to 256 as described in 5.1.5. The MLM accuracy of the two models is 

presented below. We can discover the MLM accuracy enhances as the batch 

size of the same model increases. 
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Model  100K 1M 2M 

maskPOS 

(fulltag) 

Batch 

size=16 

(POS) 

0.8032 

(token) 

0.5911 

(POS) 

0.8642 

(token) 

0.7046 

(POS) 

0.8703 

(token) 

0.7182 

Batch 

size=256 

@TPU 

(POS) 

0.8242 

(token) 

0.6583 

(POS) 

0.8648 

(token) 

0.7240 

(POS) 

0.8755 

(token) 

0.7400 

Table 2. Pre-training results of the maskPOS (fulltag) models with different batch 

sizes. MLM accuracies are represented. 

 

5.3. Downstream Tasks 

We conducted 5 Korean downstream tasks: NSMC (NAVER 

Sentiment Movie Corpus)6, NER (Named Entity Recognition)7, KorQuAD  

(Korean Question Answering Dataset)8, KorNLI (Korean Natural Language 

Inference), and KorSTS (Korean Semantic Textual Similarity)9 (Ham et al., 

2020). The tasks and the metrics used for evaluating them will be described 

below. 

 

                                           
6 https://github.com/e9t/nsmc 

7 http://air.changwon.ac.kr/?page_id=10 

8 https://korquad.github.io/ 

9 https://github.com/kakaobrain/KorNLUDatasets 
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5.3.1. Tasks 

NSMC NAVER Sentiment Movie Corpus (NSMC) is a movie review 

dataset with the binary label for the sentiment class of the review (0: negative, 

1: positive). It has 200K reviews, with half of the review is positive and the 

other half negative. 

NER Named Entity Recognition (NER) is a dataset to extract named 

entities such as a person, organization, or location name. It has 14 categories. 

KorQuAD The Korean Question Answering Dataset (KorQuAD) 1.0 

is a dataset for Machine Reading Comprehension. It is composed of 20K QA 

pairs, finding an answer from 1~2 paragraphs. 

KorNLI Korean Natural Language Inference (KorNLI) is the dataset 

for Korean Natural Language Understanding (KorNLU). Given a pair of two 

sentences, the task of KorNLI is to determine whether they are entailment, 

contradiction, or neutral. It has 950K examples. 

KorSTS Korean Semantic Textual Similarity (KorSTS) is the dataset 

for KorNLU. The task of KorSTS is to determine the similarity between those 

two sentences from 0 to 5, given a pair of two sentences. KorSTS has 8K 

examples. 

5.3.2. Evaluation Metrics 

Accuracy, F1 score, Exact Match (EM), and Spearman’s rank 

correlation coefficient are used to evaluate the results.  
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Actual Class 

True False 

Predicted Class 
True True Positive False Positive 

False False Negative True Negative 

Table 3. Confusion matrix 

 

Accuracy (Equation6) and F1 score (Equation7) can be derived from 

a confusion matrix (Table 3). Accuracy is the rate of correct predictions out 

of the total number of true labels. 

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (6) 

  

F1 score is the weighted mean of precision and recall. EM is the 

number of exactly correct answers with the same start and end index. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
𝐹1 𝑠𝑐𝑜𝑟𝑒 =  

2

1
𝑟𝑒𝑐𝑎𝑙𝑙

+
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 (7) 

 

Spearman’s rank correlation coefficient or Spearman correlation 

shows the relationship between the rank values of two variables. It assesses 

monotonic relationships while the Pearson correlation between two variables 
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assesses linear relationships. Packages from scikit-learn 10 , SciPy 11 , and 

seqeval 12  are implemented as evaluation metrics for evaluating the 

performance of downstream tasks. 

 

5.4. Downstream Task Results 

The table below demonstrates the downstream task results of the base 

model and the POS models. It is seen in Table 4, the maskPOS models clearly 

outperform the base MeCab model. Among the models with a batch size of 

16, the maskPOS model with fulltag shows the highest outputs. So we trained 

the model with a batch size of 256 as described in 5.1.5 for the maskPOS with 

fulltag model. It is observed in Table 4, the maskPOS (fulltag) model with a 

batch size of 256 surpasses the other models, especially the base MeCab-

tokenized model without the POS embeddings. Therefore, we can conclude 

that when linguistic information is added to the pre-trained model, it is 

learning the underlying grammatical representation via the enhanced 

performance on the Korean downstream tasks. 

 

                                           
10 https://scikit-learn.org/stable/ 

Scikit-learn is simple and efficient tools for predictive data analysis. 

11 https://www.scipy.org/ 

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and 

engineering. 

12 https://github.com/chakki-works/seqeval 

seqeval is a Python framework for sequence labeling evaluation. 
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Model 
5 

epochs 
NSMC NER 

KorQuad 

(dev) 
KorNLI KorSTS 

Batch size 16,  

2M step 
 Accuracy F1 EM/F1 Accuracy Spearman 

MeCab base 84.81 75.08 
49.70, 

80.68 
72.89 0.7434 

addPOS 

fulltag 84.9 75.04 
48.35, 

79.41 
74.59 0.7402 

endtag 84.84 74.7 
47.81, 

77.71 
73.67 0.7326 

multiaddPOS 

fulltag 84.62 74.05 
48.96, 

79.77 
73.59 0.7267 

endtag 84.46 74.11 
48.04, 

79.03 
74.41 0.737 

maskPOS 

fulltag 84.98 75.48 
49.46, 

80.84 
75.5 0.7501 

endtag 84.92 75.51 
48.97, 

80.40 
74.67 0.7488 

fulltag, 

Batch 

size=256 

85.66* 76.29 
51.92, 

83.42 
76.6 0.7643* 

Table 4. Downstream task results of the base model and POS models. Results 

marked with an asterisk implemented prediction batch size of 128. 

 

However, as seen in Table 5, the POS models exhibit poor 

performances in comparison to other models with WordPiece tokenizer, KR-

BERT, or State-of-the-Art models. The reason for this poor improvement of 

the POS embeddings will be discussed in the next section. 
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Model  NSMC NER 
KorQuad 

(dev) 
KorNLI KorSTS 

  Accuracy F1 EM/F1 Accuracy Spearman 

maskPOS 

(fulltag) 

Batch 

size 

=16 

84.98 75.48 
49.46, 

80.84 
75.5 0.7501 

Batch 

size 

=256 

85.66* 76.29 
51.92, 

83.42 
76.6 0.7643* 

KR-BERT 

(char) 
 89.74 85.77 

72.04, 

89.45 
77.76 0.7746 

State-Of-

The-Art 

(KoELEC

TRA-Base 

etc.) 

5+ 

epochs 

Different test 

datasets. 

84.34,  

92.58 (v2) 

80.89 

(HanBER

T) 

0.843 (v2) 

Table 5. Downstream task results of maskPOS (fulltag) models and other state-of-

the-art models. Results marked with an asterisk implemented prediction batch size 

of 128. The results on the state-of-the-art models are from KoELECTRA GitHub13. 

They used different test datasets on NSMC and NER tasks. 

 

5.5. Analysis 

The results captured in the previous section will be analyzed in this 

section. In 5.5.1, for the better performance that the maskPOS models showed 

in comparison to the other POS models, we drew a correlation heatmap 

                                           
13 https://github.com/monologg/KoELECTRA 



28 

 

between POS embeddings in order to figure out how a model learns a latent 

representation during pre-training. But for the poor performance of the POS 

models, we will point out the limitations of the current POS models in 5.5.2 

and suggest the need for a further study (chapter 6). 

5.5.1. Correlation Heatmap 

To evaluate how POS models learn a latent representation during 

training, the correlation between POS embeddings is drawn to a heatmap 

(Figure 9). 

As the performances on the downstream tasks in section 5.4 reflect, 

only the maskPOS models show correlation. The others remain yellow on the 

heatmap, meaning they learn no correlations between the POS embeddings. 

The maskPOS models seem to capture an underlying grammatical 

relationship between POS tags. It is in line with SpanBERT (Joshi et al., 2020) 

in that the heatmap proves the helpfulness of the MLM task. 
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Figure 9. Heatmap representing the correlation between POS embeddings 



30 

 

 

5.5.2. Limitation 

In order to explain the poor outcome of the POS models compared to 

the other models with WordPiece tokenizer (Wu et al., 2016) and the state-of-

the-art models, the limitations of the current POS models will be identified 

here. 

First, POS tagging is not off-the-shelf. POS tags are called from a 

pickle file, consist of a dictionary of a token and its POS tag. During the 

process of saving the dictionary file, only a high-frequency POS tag was 

selected, and others were neglected. For example, a token ##는 ##nun ‘is’ 

can be tagged as JX, ETM, ETN, or VV, but since the most frequent POS tag 

is JX, the token always get the POS embedding of JX. In a phrase like 오 ##

는 9 ##월 o ##nun 9 ##wel ‘this September’, a token ##nun, which is ETM in 

the phrase, wrongly tagged as JX in Figure 5-7 because it is the most frequent 

POS of ##nun. The possible solution for this problem will be discussed in 

6.2.1 and 6.2.3. 

##는 Counter({'JX': 7292984, 'ETM': 4944041, 'ETN': 5, 'VV': 1}) 

Second, the lack of vocabulary could reduce the models’ 

performances. The pre-training corpus consists of 1M tokens, but we only use 

the vocabulary of the size of 30K concerning the computational capacity of 

the hardware. In 6.2.2, we will adjust the vocabulary size to deal with this 

limitation. 

In addition, there could be some problem in preprocessing the corpus 

or the MeCab tokenizer to being an input of BERT architecture compared to 

the WordPiece tokenizer which is an unsupervised tokenization method based 
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on the frequency of a token in a corpus. 

Further analysis to overcome the limitations above will be suggested 

in the next chapter. 

 

  



32 

 

6. Linguistic Analysis 

 

Based on the experiment results in chapter 5, we conduct a linguistic 

analysis to evaluate the ability of the proposed POS models of learning 

syntactic representation by using a probing task (6.1). To further overcome 

the limitations in 5.5.2, further analysis on the POS tag combination, 

vocabulary size, and off-the-shelf POS tagging method will be used in the 

next section. We analyze the maskPOS model (fulltag, 30k vocabulary size, 

16 batch size) since it showed comparably stable performances on the pre-

training and fine-tuning downstream tasks in the previous chapter. 

 

6.1. Syntactic Probing Analysis 

Hewitt and Manning (2019) evaluated a neural network’s 

representation by retrieving syntax trees embedded in a linear transformation 

of a model’s word embedding space. We adapt the transformation to our POS 

model, maskPOS, to evaluate the linguistic ability of our model. This 

syntactic probing task will prove the effectiveness of adding morphosyntactic 

information to a model to make the model learn an underlying syntactic 

representation of a sentence. 

6.1.1. The Structural Probe 

The probe is based on the hypothesis that there is a linear 

transformation (an inner product) of the word representation that parse trees 

are embedded. Under the linear transformation B, vector distance under the 

inner product 𝐵𝑇𝐵 is supposed to encode parse trees. Given a parse tree, 

Hewitt and Manning (2019) consider a squared vector distance (an L2 
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distance) ‖ℎ𝑖 − ℎ𝑗‖
𝐵

2
  as a tree distance, and a norm ‖𝑤𝑖‖  as a parse depth 

where i, j are indexes of a word w in a sentence. The parse depth is the number 

of edges between the root of the parse tree and a word. 

Equation 8 from Hewitt and Manning (2019) is a squared distance 

where h𝑖
l  is a vector representation of the i-th word of a sentence l, under the 

linear transformation of the word representation Bh. A parse depth can be 

defined as Equation 9.  

 𝑑𝐵(ℎ𝑖
𝑙 , ℎ𝑗

𝑙)
2

= (𝐵(ℎ𝑖
𝑙 − ℎ𝑗

𝑙))
𝑇

(𝐵(ℎ𝑖
𝑙 − ℎ𝑗

𝑙)) (8) 

 ‖ℎ𝑖‖𝐵
2 = (𝐵ℎ𝑖)𝑇(𝐵ℎ𝑖) (9) 

 

The matrix B is the parameters of the probe. It is trained to recreate 

the distance or the depth. In the case of the tree distance across all sentences 

𝑇𝑙 in a training corpus, it is approximated through Equation 10 (Hewitt and 

Manning, 2019) where |𝑠𝑙| is the length of the sentence l. Each sentence is 

normalized by the number of word pairs |𝑠𝑙|2. 

 
min

𝐵
∑

1

|𝑠𝑙|2
 ∑ |𝑑

𝑇𝑙(𝑤𝑖
𝑙 , 𝑤𝑗

𝑙) − 𝑑𝐵(ℎ𝑖
𝑙, ℎ𝑗

𝑙)
2

|

𝑖,𝑗𝑙

 (10) 

   

6.1.2. Experiment Details 

The probe requires CoNLL-formatted data. The KAIST Korean 

Universal Dependency Treebank14 (Chun et al., 2018) was implemented to 

train the probe. The training dataset contains 23010 sentences, the dev dataset 

has 2066 sentences, and the test dataset has 2287 sentences (total 27363 

                                           
14 https://github.com/UniversalDependencies/UD_Korean-Kaist 
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sentences).  

We conduct the probing analysis on the maskPOS model (fulltag, 

batch size of 16). Because the model was trained with TensorFlow (Abadi et 

al., 2016), we converted the TensorFlow checkpoint for maskPOS in a 

PyTorch save file. All configurations follow the original experiment15. 

6.1.3. Probe Evaluation Metrics 

The predicted tree distance is evaluated on undirected attachment 

score (UUAS) and “distance Spearman (DSpr.)”. UUAS is the percent of 

correct edges against the gold tree, evaluating tree reconstruction. To 

construct “DSpr.”, the Spearman correlations between the gold tree and the 

predicted tree distance are averaged over all sentences of the same length and 

then averaged across sentence lengths 5-50.  

To evaluate how well the predicted tree depth rebuilds the true tree, 

we report “root%” and “norm Spearman (NSpr.)”. We assess the percentage 

of the correctly predicted root of the sentence which is the least deep word as 

“root%”. “NSpr.” metric replaces the “DSpr.” metric with the Spearman 

correlation between the gold depth order of the word and the predicted 

ordering. All the evaluation metrics follow Hewitt and Manning (2019). 

 

 

 

 

                                           
15 https://github.com/john-hewitt/structural-probes 
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6.1.4. Probe Results 

 Distance Depth 

Layer UUAS DSpr. Root% NSpr. 

1 63.29 0.6985 70.52 0.7223 

2 63.28 0.6986 70.76 0.7248 

3 63.29 0.6995 70.76 0.7247 

4 63.28 0.6989 71.39 0.7221 

5 63.51 0.6988 70.43 0.7246 

6 63.31 0.6989 71.06 0.7225 

7 63.44 0.6996 70.67 0.7240 

8 63.48 0.7001 71.06 0.7246 

9 63.21 0.6992 70.81 0.7231 

10 63.29 0.6999 70.62 0.7277 

11 63.34 0.6985 70.76 0.7260 

12 63.41 0.7002 70.91 0.7249 

Table 6. The probe results of parse tree distance and depth on maskPOS 

 

The experiment results of parse tree distance probes and depth probes 

are reported in Table 6. There is no big difference between layers. It can be 

interpreted that the model encodes the parse tree stably across all the layers. 

Among the layers, the result of layer 8 will be reported since it shows 

comparably high performance on the probing task. 
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Figure 10. The gold parse trees (black) and the minimum spanning trees of 

predicted squared distances on maskPOS (red) 

 

We present the gold parse trees (black) and the predicted parse trees 

on the maskPOS model (red) in Figure 10. Regarding a short and simple 

structured sentence such as Figure 10-a, the model perfectly predicts the parse 

tree. For Figure 10-b, the model predicts correctly the long-distance 

dependency between 그때는 guttaynun ‘at that time’ and 들렸습니다 

tullyesssupnita ‘heard’. Some adverb phrases are wrongly predicted, however, 

since Korean is a scrambling (Ross, 1967) language, adverb phrases can have 

flexible word order in Korean.  

나서 nase in Figure 10-c is incorrectly presented on the predicted tree. 

MeCab POS tagger tags the token as VV but it seems to be used as an auxiliary. 

It seems POS tagging is not specific enough to reflect conjugations in Korean. 

(a) 

 

(b) 

 

(c) 

 

(d) 
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On the other hand, ##다가 ##taga in 헐어다가 heletaga ‘demolish’ (Figure 

10-c) and ##고 ##go in 많았고 manhassgo ‘many’ (Figure 10-d) is EC in 

MeCab POS tagging. It is a naïve classification as determining what kind of 

syntactic phrase they are is a critical question in Syntax. 

Figure 12 displays the depth in parse tree encoded in the gold tree 

(black) and the predicted tree on the maskPOS model (red) by vector norm 

after the linear transformation. The root of the parse tree, the least deep word, 

is generally identified correctly on the maskPOS model. Although the depth 

of the predicted tree does not perfectly correspond to that of the true tree, 

patterns, or relative depth, shown in the predicted trees are relatively similar 

to those of the true trees. 

Figure 11 demonstrates all distances between all word pairs in a 

sentence. Short distances are visualized in darker colors and long distances 

are in lighter colors. According to Hewitt and Manning (2019), this is the rich 

structure in a parse distance matrix. 

  

Figure 11. Distance matrix between all pairs of words in a sentence 
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(a) 

 

(b) 

 

(c) 
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Figure 12. The gold parse trees depth (black) and the predicted norm probes 

(squared) on maskPOS (red) 

 

(d) 
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6.2. Further Analysis 

In order to improve the POS models’ performance at the level of the 

other models with other state-of-the-art models, we investigate further 

analysis based on the limitation mentioned in the previous chapter. KorNLI 

(Korean Natural Language Inference) (Ham et al., 2020) is used as the 

downstream task to compare the performance of the models. The linguistic 

ability of a model is determined by the performance on the KorNLI task here. 

 

6.2.1. POS Tag Combination 

We tried to change the combination of the MeCab POS tag. Other than 

using a full POS tag combination or the last POS tag, only the first POS tag 

or the first and the last POS tag combination was implemented. The full POS 

combinations are suggested in Figure 13.  

After pre-training the models to 2M steps (batch size of 16, 

vocabulary size of 30k) we compared the KorNLI performance of each model. 

It appears in Table 7 that the full POS tag combination shows the highest 

performance on the task compared to the other POS tag combinations, 

especially compared to the combinations with only one tag, the first or the 

last POS tag. If we consider the first POS tag as lexical information and the 

other POS tags syntactic information, it can be interpreted that both lexical 

and syntactic information should be provided for a POS model to learn a latent 

linguistic representation. 
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Figure 13. Full POS combinations and example tokens 

 

Model POS Tag 2M step KorNLI 

maskPOS 

Batch size = 

16 

30k vocab 

full 
(POS) 0.8703  

(token) 0.7182 
75.5 

front+end 
(POS) 0.8836  

(token) 0.7379 
75 

front 
(POS) 0.8676  

(token) 0.7074 
74.97 

end 
(POS) 0.8816  

(token) 0.7256 
74.88 

Table 7. Pre-training and fine-tuning results of maskPOS models with different 

POS tag combinations 

 

6.2.2. Vocabulary Size 

We increased the vocabulary size to improve the POS models’ ability 

on the downstream task. Out of 1M tokens from the corpus, 30k, 50k, and 

100k vocabulary were chosen in order of frequency and pre-trained to 2M 

steps (full POS tag, batch size of 16). It turns out that the vocabulary size of 
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30k that we used in the experiment (chapter 5) is not enough to perform well 

on the downstream task. As the vocabulary increases, the accuracy of the 

KorNLI task enhances in Table 8. The maskPOS with a vocabulary size of 

100k shows the highest accuracy. Since the POS models implement POS 

tagger as a tokenizer which is a supervised tokenizer, it must require a bigger 

vocabulary size compared to the models with WordPiece tokenizer (Wu et al., 

2016) which is an unsupervised tokenizer constructing vocabulary based on 

the statistical frequency of tokens rather than the meaning of them. The result 

in Table 8 implies that there are possible avenues for improving the POS 

models. 

 

Model 
Vocabulary 

Size 
2M step KorNLI 

maskPOS 

fulltag 

Batch size =16 

30k 
(POS) 0.8703  

(token) 0.7182 
75.5 

50k 
(POS) 0.8821  

(token) 0.7237 
75.6 

100k 
(POS) 0.8908  

(token) 0.7310 
76.42 

Table 8. Pre-training and fine-tuning results of maskPOS models with different 

vocabulary sizes 

 

6.2.3. POS Tagging 

In order to avoid POS models from tagging wrong POS tags in the 

embeddings during pre-training, we construct the off-the-shelf POS tagging 

model. The off-the-shelf POS tagging model tags POS to a token during the 
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tokenization process. By tagging POS differently rather than calling POS tags 

from a pickled dictionary file to avoid wrong tagging, we observe higher 

performance on the downstream task in Table 9. Although the performance 

on the KorNLI of the off-the-shelf POS model with a vocabulary size of 30k 

is lower than that of the original pickle model with the same vocabulary size, 

the performance of the off-the-shelf model gets better with a bigger 

vocabulary size. The result reconfirms that the 30k vocabulary size was too 

small for the POS models to learn enough linguistic representations. 

 

Model 
POS 

Tagging 
2M step KorNLI 

maskPOS 

fulltag 

Batch size =16 

pickle 
(POS) 0.8703  

(token) 0.7182 
75.5 

Off-the-

shelf 

(POS) 0.8560  

(token) 0.6932 
74.73 

Off-the-

shelf 

(w/ 100k 

vocab) 

(POS) 0.8999  

(token) 0.7370 
75.8 

Table 9. Pre-training and fine-tuning results of maskPOS models with different 

POS tagging methods 

 

The off-the-shelf POS model would benefit from the lexical 

information, the first POS tag, as it can disambiguate the word sense. For 

example, if we implement the off-the-shelf tagging method rather than using 

a dictionary saved into a pickle file to call a POS tag, tokens in Table 10 which 
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have the same form with different POS tags can be distinguished. 

 

Token Frequency 'POS': Frequency 

##고 6230238 

'EC': 5051649, 'JKQ': 1152139, 'VCP+EC': 

18285, 'NNG': 5233, 'XPN': 1246, 'MM': 633, 

'XSV+EC': 131, 'VV': 91, 'NNP': 62, 'IC': 21, 'JC': 

18, 'NP': 6, 'VA': 4 

##과 2518551 
'JC': 2093857, 'JKB': 383815, 'NNG': 48575, 

'ETN+JKB': 64, 'VV+EC': 61, 'NNBC': 2 

전 695925 
'NNG': 578685, 'MM': 108186, 'NNP': 2017, 

'NP+JX': 654 

제 350186 
'XPN': 215112, 'NP': 70060, 'NP+JKG': 63324, 

'MM': 832, 'NP+VCP': 38, 'XR': 3 

사 101443 
'NR': 44041, 'VV': 41047, 'NNG': 10752, 

'VV+EC': 5474, 'VV+EF': 46, 'NNP': 42 

##대로 58585 
'JX': 47240, 'NNB': 4979, 'JKB': 4814, 

'ETM+NNB': 1191, 'NNG': 287 

제한 40979 'NNG': 39174, 'VV+ETM': 1806 

지내 17888 
'VV': 16762, 'VV+EC': 1031, 'NNG': 59, 

'VV+EF': 36 

얼 2747 
'VV': 1301, 'NNG': 690, 'IC': 471, 'NNP': 210, 

'VV+ETM': 76 

후진 1743 'NNG': 1564, 'VA+ETM': 179 

Table 10. Tokens with different POS tags 

 

A token with high-frequency ##고 ##go seems to have various POS 



45 

 

tags in Table 9. POS tags are primarily reflected in the lexical information. It 

mostly appears in conjunctions (EC) or quotations (JKQ). ##과 ##gwa and 

##대로 ##daylo can be a particle or a part of a noun. Tokens such as 사 sa, 

제한 ceyhan, 지내 cinay, 얼 el, and 후진 hwucin can be nouns or stems of 

verb/adjective. Some syntactic information reveals in the other parts of POS 

tags. 전 cen and 제 cey can appear in nouns or as pronouns with a particle as 

the first POS tag is NP. They are both 1st person pronouns, but their syntactic 

information POS tags are different, showing that they have different Cases 

(+JX/+JKG). A token 지내 cinay can be either a stem of a verb (VV) or a verb 

phrase in itself (VV+EC). 

We conclude that the improvement of the off-the-shelf POS tagging 

model belongs to the ability to use both lexical and syntactic information POS 

tags. 
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7.  Conclusion 

 

In this study, we incorporated explicit linguistic knowledge into the 

pre-trained BERT model. Suggesting new training methods by fusing 

morphosyntactic information, POS tag, with input embeddings, we proposed 

addPOS, multiaddPOS, and maskPOS models from pre-training. The 

downstream task results, especially the performances of the maskPOS model, 

proved the effectiveness of adding linguistic features compared to the base 

MeCab models. Through the following linguistic probing task and analysis, 

we insist that the POS models learn a latent linguistic representation during 

training, and have a potential for future improvement. 

One of the limitations in this study is that the performance of the 

model entirely relies on the quality of a POS tagger. In this case, the ability 

of a model can be influenced by tagging errors. Also, the ‘out-of-vocabulary’ 

(OOV) problem, that the POS tagger cannot infer novel words, must be solved. 

The preprocessing of raw data required for the pre-training is also a key 

element in improving the performance of the language model. 

It is still under discussion whether the BERT model needs linguistic 

knowledge for solving its tasks. Glavaš and Vulić (2020) suggested an issue 

that either BERT has incomplete syntactic knowledge or it does not rely on 

linguistic information. But obviously, there is a point that BERT understands 

the structure of a language. Warstadt et al. (2019) studied negative polarity 

items (NPIs) and found BERT detected the presence and the structure of NPIs 

(detecting “ever” and the usage of “whether”) fairly well, while it was weak 

to detect scope violations. 

We leave for future work language models with more linguistic 
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features other than POS tags or various architectures as the models in chapter 

2. Multi-grained tokenization (Zhang and Li, 2020) or embeddings using 

Siamese network (Reimers and Gurevyych, 2019) could be applied for future 

work. Future research could experiment on a more in-depth analysis of the 

fine-tuning tasks. Various linguistic probing tasks for the Korean language 

could be developed for future research. 
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Appendix A. MeCab POS Tag 

 

 
대분류(5 언 

+ 기타) 

mecab-ko-dic 품사 태그 

태그 설명 

실질형태소 

체언 

NNG 일반 명사 

NNP 고유 명사 

NNB 의존 명사 

NNBC 
단위를 나타내는 

명사 

NR 수사 

NP 대명사 

용언 

VV 동사 

VA 형용사 

VX 보조 용언 

VCP 긍정 지정사 

VCN 부정 지정사 

수식언 

MM 관형사 

MAG 일반 부사 

MAJ 접속 부사 

독립언 IC 감탄사 

형식형태소 

관계언 

JKS 주격 조사 

JKC 보격 조사 

JKG 관형격 조사 

JKO 목적격 조사 

JKB 부사격 조사 

JKV 호격 조사 

JKQ 인용격 조사 

JX 보조사 

JC 접속 조사 

선어말 어미 EP 선어말 어미 

어말 어미 

EF 종결 어미 

EC 연결 어미 

ETN 명사형 전성 어미 

ETM 관형형 전성 어미  

접두사 XPN 체언 접두사 
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접미사 

XSN 명사 파생 접미사 

XSV 동사 파생 접미사 

XSA 
형용사 파생 

접미사 

  어근 XR 어근 

  

부호 

SF 
마침표, 물음표, 

느낌표 

  SE 줄임표 … 

  SSO 여는 괄호 (, [ 

  SSC 닫는 괄호 ), ] 

  SC 구분자 , · / : 

  
SY 

    

  

한글 이외 

SL 외국어 

  SH 한자 

  SN 숫자 
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Appendix B. Correlation Heatmap 
 

addPOS (fulltag) 

 
addPOS (endtag) 
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multiaddPOS (fulltag) 

 
multiaddPOS (endtag) 

 
 

 

 



57 

 

 

maskPOS (fulltag) 

 
maskPOS (endtag) 
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Appendix C. Distance Matrix 
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국문 초록 

품사 임베딩 정보를 결합한 언어학적 

BERT 모델 

 

백연미 

언어학과 

서울대학교 대학원 

 

본 연구에서는 BERT 모델에 품사라는 언어학적 정보를 결합하여 모델의 

성능을 높이고 이를 언어학적으로 분석하고자 하였다. BERT는 그 자체로 

강력한 성능을 내는 모델이지만 모델에 명시적으로 언어학적 정보를 

결합하여 주입했을 때 그 성능이 더욱 올라갈 수 있는 여지가 있다는 

연구가 이루어지고 있다. 또한 최근 언어 모델이 어떠한 언어학적 지식을 

학습했는지 분석하는 연구가 활발하게 이루어지고 있으나 한국어를 

대상으로는 사전학습된 모델의 언어학적 표상을 해석하는 분류기(probing 

classifier) 연구가 아직 미비한 상황이다. 

실험을 위해 본 연구에서는 사전학습 단계에서 다양한 방법으로 기존 

BERT 모델의 입력 임베딩에 품사 임베딩 정보를 추가하였다. 이에는 (1) 

품사 임베딩을 더하는 방법(addPOS), (2) 품사 임베딩을 곱하고 더하는 

방법(multiaddPOS), 그리고 (3) 품사 임베딩을 마스킹하는 

방법(maskPOS)이 사용되었다. 사전학습 말뭉치로는 한국어 위키피디아와 

뉴스기사가 사용되었고 이때 품사는 MeCab 형태소 분석기를 이용하여 

태깅되었으며 이는 모델이 말뭉치를 토큰화하는 토큰의 단위로 사용되기도 

했다. 이후 학습된 모델을 이용하여 5개의 한국어 하위 실험(downstream 

task)을 진행하였다(NSMC, NER, KorQuaD, KorNLI, KorSTS). 실험 결과 

품사를 명시적으로 결합한 모델, 그 중에서도 maskPOS 모델이 품사 정보가 
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제공되지 않은 모델보다 높은 성능을 보였다. 하지만 최신 모델에 비해서는 

낮은 결과를 내었다. 

 이후 품사 임베딩 정보가 결합되어 학습된 모델을 대상으로 언어학적 

분석을 진행하였다. 모델이 학습한 통사 정보를 확인하기 위해 Hewitt and 

Manning (2019)에서 제안된 structural probe를 한국어 데이터셋에 적용하여 

실험이 이루어졌다. 그 결과 품사 임베딩을 결합하여 명시적으로 언어학적 

정보를 준 모델이 한국어 통사 정보를 학습했다는 사실을 확인할 수 있었다. 

추가로 품사 모델의 성능을 더 높이기 위해 추가 실험을 진행하였고 품사 

모델의 성능을 높일 수 있는 여지가 있다는 결론을 낼 수 있었다. 

 본 연구는 한국어를 대상으로 BERT 사전학습 모델에 언어학적 정보를 

명시적으로 결합하는 새로운 방법을 제시한다. 또한 한국어 모델로는 

최초로 모델의 언어학적 표상을 해석하는 연구(probe)를 적용했다. 

마지막으로 본 연구는 컴퓨터 공학의 딥러닝 기법과 언어학 이론을 

결합하며 앞으로 한국어 자연언어처리가 나아가야 할 방향을 제시한다. 

 

주요어: 자연언어처리, 언어 모델, BERT, 임베딩, 품사, 모델 해석, Probe, 

파스 트리 

학번: 2018-20037 
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