creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Linguistically Explicit BERT with

Part—of-Speech Information

st ¢lojstd BERT mdl

2021 d 2 4

Linguistically Explicit BERT with
Part—of—Speech Information
4 9HlEd AHE A¥e dojg3 BERT Y

A= x4 A a4

0o u
ol =R& &

b

A A}

&

s

oz A%

2020 & 11 4

fduje] BoEA SRS AEY

202191 4

Abstract

Linguistically Explicit BERT with
Part-of-Speech Information

Baik, Yunmee
Department of Linguistics
The Graduate School

Seoul National University

This study incorporates part-of-speech, one of the most well-known linguistic
features, to the input embedding of the BERT model to enhance the ability of
the language model and investigates what linguistic knowledge the model
learns from pre-training. Although BERT shows powerful performance on
many downstream tasks of Natural Language Processing, many studies have
reported that injecting explicit linguistic knowledge improves the
performance of the BERT model. Also, several studies have inspected the
linguistic representation encoded in BERT using probing classifiers. Probing

task on the Korean dataset, however, has not yet been conducted.

In this study, we fuse POS embedding to the input embedding of the
BERT model by (1) adding POS embedding to the BERT
embedding(addPOS), (2) multiplying and then adding it to the input
embedding(multiaddPOS), and (3) masking the POS of the masked token

while adding it to the input representation(maskPOS) in pre-training. We use
Korean Wikipedia and news data as a corpus and MeCab POS tagger as a
POS tagger and a tokenizer. In fine-tuning, we conduct 5 Korean downstream
tasks (NSMC, NER, KorQuaD, KorNLI, KorSTS). As a result, the proposed
POS models, especially the maskPOS model, show better performance on the
tasks than the base MeCab-tokenized model which does not fuse POS
information. In comparison to the state-of-the-art models, however, the POS

models show low performance on the tasks.

We conduct a linguistic analysis of the maskPOS model. To identify
syntactic information encoded in the model, the structural probe (Hewitt and
Manning, 2019) is adapted on Korean datasets. The probe results show that
the proposed POS model embeds syntax trees, encoding linguistic knowledge
in its word representations. Further experiments are conducted for better
performance of the POS models on the downstream task. We conclude that

there is a possibility for improving the POS models.

This study suggests new methods to fuse linguistic information to the
Korean pre-trained BERT model, and to the best of our knowledge, it is the
first study to use “probe” on Korean datasets with the Korean-specific model.
In this study deep learning architectures and linguistic theory are integrated,

suggesting directions for future Korean NLP research.

Keywords: Natural Language Processing, Language Modeling, BERT,
Word Embeddings, Part-of-Speech, Interpretability, Probe, Parse Tree

Student Number: 2018-20037

Table of Contents

INErOUCTION .o 1
Literature REVIEWcoccoiiiiiicieeiee e 4
2.1, EMDEAAINGS oo 4
2.2. Models with Linguistic Informationccccceveniiininnnnnnnnn 5
2.3. Interpretation of Linguistic Knowledge of a Model 7
. Transformer ArchiteCtUreSccocvviiiiiniiniisine e 9
3L TranSTOrMEr oo 9

3.2. Bidirectional Encoder Representations from Transformer
(BERT) ottt 11
. Part-of-Speech Modelsccccooiiiiiiii e 14
4.1. Model Structure (Input Representation)cccccevcviiveieennns 14
4.1.1.addPOS ..o 15
4.1.2. MultiaddPOS ..o 16
4.1.3. MASKPOS ..ot 17
. EXPeriments ... 18
5.1, Pre-traiNiNg ..ocooocieoiiiiie e 18
B.LL DAA v 18
5.1.2. TOKENIZEL oottt e e 18
5.1.3. VOCADUIAIY ..o 19
5.1.4. Part-of-Speech Tag Vocabularyccccoevvveieiencnnnnne. 19
5.1.5. Training DetailSccccooveiiiiiiie e 20

1
7]

5.2, Pre-training ReSUITSccccveiiiiiiieiicie e 20

5.3, Downstream TasKSccoceriiiriiieniiie e 22
5.3.1. TASKS e e 23

5.3.2. Evaluation MEtriCSccccevieriiiiiiieiieie e 23

5.4. Downstream Task RESUILScccooviiiiiiniiinii e 25
5.5, ANAIYSIS oo 27
5.5.1. Correlation Heatmapccccoccvevieiievicie e 28

5.5.2. LIMIAtIONS ...veeiiiicieece e 30

6. Linguistic AnalysiScccooiiiiiiiiii s 32
6.1. Syntactic Probing AnalysiScccrimiiiniiiineie s 32
6.1.1. The Structural Probeccccooveiiiiiicie e 32

6.1.2. Experiment Detailsccccccvviiiiiiiiniiie i 33

6.1.3. Probe Evaluation MEtriCScovereivivieeeiiirieeeeeiieee e 34

6.1.4. Probe Resultscccccuvviiiiiiiii e 35

6.2. Further ANalySiSccccocooiieiiiieiicce e 40
6.2.1. POS Tag Combinationcccccceivveviiiciieceee e 40

6.2.2. VOCADUIArY SIZEccveeiiieceecece e 41

6.2.3. POS TAQQING .oooveiieieieieeeeteee et 42

T. ConcluSIONccccovviiiiiii e 46
ReEferencCesooooiiiiiiiiiii e 48
APPENAIX oo 53
T B ittt b nre e ns 59

iv
§ ¥

List of Figures

Figure 1. Transformer architeCtureccevvviiiiiiiiiiic e 9
Figure 2. Pre-training and fine-tuning procedures for BERT 12
Figure 3. BERT input representationccocuevvireenenieneenieieseese e 12
Figure 4. MeCab-tokenized model (base) input representation 14
Figure 5. addPOS model input representation...........cccvvververvesieeneeneneennns 15
Figure 6. multiaddPOS model input representationccocevvveivesiveennnn. 16
Figure 7. maskPOS model input representationcccoeeeveeriecinesieennne. 17
Figure 8. Two ways of POS tag vocabulary combinationc.cccceveenne. 19

Figure 9. Heatmap representing the correlation between POS embeddings 29

Figure 10. The gold parse trees (black) and the minimum spanning trees of
predicted squared distances on maskPOS (red).........cccovvriiriiiininninnnns 36

Figure 11. Distance matrix between all pairs of words in a sentence........... 37

Figure 12. The gold parse trees depth (black) and the predicted norm probes
(squared) on MaskPOS (T€d)ccovviiiiiiiiiiiiiee e 39

Figure 13. Full POS combinations and example tokens..............cccoovvrreennnn. 41

List of Tables

Table 1. Pre-training results of the base model and POS models................. 21
Table 2. Pre-training results of the maskPOS (fulltag) models with different

DALCH SIZES ...vvviiiiiie st 22
Table 3. Confusion MALIIXccveeeiiieiiiie i 24

Table 4. Downstream task results of the base model and POS models........ 26

Table 5. Downstream task results of maskPOS (fulltag) models and other
state-of-the-art MOdelSoovvvviiiiiiiii s 27

Table 6. The probe results of parse tree distance and depth on maskPOS ...35

Table 7. Pre-training and fine-tuning results of maskPOS models with
different POS tag combinationsc.ccovvviriiiiiiniiniiie e 41

Table 8. Pre-training and fine-tuning results of maskPOS models with
different vocabulary S1Zescccoceeiiiiiiiiieiiees e 42

Table 9. Pre-training and fine-tuning results of maskPOS models with
different POS tagging methodsccoocveiiiiiiii 43

Table 10. Tokens with different POS tagsccoceeviiiiiiiiiiiicie, 44

Vi

1. Introduction

The Bidirectional Encoder Representations from Transformers
(BERT) model (Devlin et al., 2018) has demonstrated powerful performances
on a wide range of tasks in natural language processing (NLP). This
improvement of the model on the downstream tasks is because BERT can
learn lexical, syntactic, and semantic information of a sentence (Clark et al.,
2019; Coenen et al., 2019; Goldberg, 2019; Hewitt and Manning, 2019;
Tenney et al.,2019).

Although BERT itself can capture linguistic information, the
incorporation of linguistic information does help the language model for the
related downstream task (Lee et al., 2020; Liu et al., 2019; Strubell et al.,
2018; Sundararaman et al., 2019; Wang et al., 2019, Zhang et al., 2020; Zhou
et al., 2020). In this study, we incorporate part-of-speech (POS) tags using
MeCab POS tagger! in the KoNLPy? package into the Korean-specific
BERT model from pre-training.

Part-of-speech is also known as word classes or syntactic categories
which represent morphosyntactic information. It is one of the most familiar
and simplistic linguistic feature. It gives information about the relationship
between words by their distribution, such as adjectives describe nouns. Also,
it informs a syntactic structure of a sentence (verbs are part of verb phrases),

and a word sense disambiguation (Korean 7} ka as a particle or a verb). It is

! http://eunjeon.blogspot.com/

2 https://konlpy.org/ko/latest/
KoNLPy is a Python package for natural language processing of the Korean language.

1

a useful feature in parsing, named entity recognition, information extraction,

or coreference resolution (Jurafsky, 2019).

This study leverages part-of-speech (POS) tags using MeCab POS
tagger to the BERT model from pre-training and runs experiments on the
Korean downstream tasks. We implement the MeCab POS tagger which is
known to be the most time-efficient and does not decompose Hangul
(character) into Jamo (sub-character). We suggest new training methods by
infusing this linguistic knowledge to the embeddings fed into the pre-trained
model. The suggested models prove the effectiveness of adding linguistic

features compared to the base MeCab model.

We implement linguistic probing tasks on the proposed POS model.
“Probes” interpret how well linguistic knowledge is encoded in the model
using various linguistic tasks. This study conducts the syntactic probing task
of Hewitt and Manning (2019) to analyze the effect of adding POS

information on the language model.

The outline of this research is as follows: Chapter 2 provides a
literature review of embeddings, existing Transformer models with linguistic
knowledge, and model interpretation. Chapter 3 provides a detailed account
of Transformer architectures and the BERT model. Chapter 4 introduces POS
models, which are BERT models with POS-infused embeddings. Chapter 5
describes the pre-training data, training details, and results. It also contains
the following fine-tuning experiments and their results. Five Korean
downstream tasks will be introduced in chapter 5. Chapter 6 analyzes the
proposed models using the probing tasks to evaluate the models’ linguistic
ability to learn the underlying structure of a sentence and conducts additional
experiments to enhance the model’s performance on the downstream task.

Chapter 7 concludes the study by providing a summary of the work and

2

discussing a limitation of our research and possible avenues for future

research.

2. Literature Review

This chapter discusses the history and development of embeddings,
and relevant literature review concerning Transformer models (Vaswani et al.,
2017) with linguistic information, and model interpretation using probing

tasks.

2.1. Embeddings

Word embeddings are vectors that represent words or the process that
words are embedded in a particular vector space. It is based on the idea of
vector semantics: representations of the meaning of words can be learned
directly from their distributions. It is also based on the distribution hypothesis,
defining a word by the distribution it occurs in the text, as the philosopher
Ludwig Wittgenstein said “the meaning of a word is its use in the language”.
If the two words occur in similar environments or distributions, they are likely

to have a similar meaning.

Embeddings have been developed from embedding words to
embedding sentences. The most famous word embedding algorithms are
Word2Vec (Mikolov et al., 2013a), GloVe (Pennington et al., 2014), and
FastText (Bojanowski et al., 2017).

The Word2Vec model has two model architectures, CBOW and Skip-
gram (Mikolov et al., 2013b). The Continuous Bag of Words (CBOW) model
predicts the target word using context words. The Skip-gram model predicts
the context words given a current target word. In general, the Skip-gram

model is known to show better performance results for the downstream tasks

4

than the CBOW model.

Word2Vec implements negative sampling (Mikolov et al., 2013a) to
reduce computation costs. A positive sample refers to a pair of a target word
and surrounding context words, and a negative sample refers to a pair of a

target word and a word that randomly samples in the vocabulary.

The GloVe model is trained on aggregated global word-word co-
occurrence statistics from a corpus. A global word-word co-occurrence matrix
organizes how frequently word pairs occur in a given corpus and matrix
factorization is applied to approximate the matrix. The FastText model
considers a subword, treating each word as a Bag of Character n-grams so

that rare words get a good representation.

Like ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018),
sentence embedding models offer an advantage over word embedding models,
because while a word has a fixed embedding under word embedding models
disregarding the context it appears, sentence embedding models produce
context embeddings that dynamically differ depending on the meaning of the

word in a sentence.

Embeddings are key aspects in transfer learning as embeddings with
accurate representations of words or sentences in pre-training result in high
performances on the downstream tasks in fine-tuning. Models applying
transfer learning, the Transformer architecture and the BERT model, will be

described in detail in Chapter 3.

2.2. Models with Linguistic Information

Recently, linguistic knowledge has been incorporated into the pre-

trained language model. Linguistically Informed Self-Attention (LISA)
(Strubell et al., 2018) suggests the potential of incorporating linguistic
information into the Transformer model by explicit modeling of syntax.
Strubell et al. (2018) enhanced the performance of the model with multi-task
learning across various syntactic knowledge, such as dependency parsing,

POS tagging, predicate detection, and Semantic Role Labeling (SRL).

Zhou et al, (2020) also proposed the multi-task learning model LIMIT-
BERT, proving the effectiveness of injecting linguistic knowledge into the
BERT model. In addition to leveraging multi-task learning across POS tags,
constituent and dependency syntactic parsing, span and dependency SRL,
they introduced Syntactic and Semantic Phrase Masking. Syntactic Phrase
Masking masks tokens in a constituent of a sentence together ((MASK]
[MASK] [MASK] sells paper and wood products.), and Semantic Phrase
Masking masks tokens in a dependency relation such as the predicate and its
object argument (federal paper board [MASK] paper and wood [MASK].)
This study also uses a masking strategy for the BERT model to learn linguistic

information.

Other studies explicitly incorporated the model with one of the
linguistic features. Syntax-Infused Transformer and BERT models
(Sundararaman et al., 2019) infused POS information into the models using
WordPiece tokenizer (Wu et al., 2016) and SpaCy® for POS tagger. For
constituent information, Tree Transformer (Wang et al., 2019) proposed
“Constituent Attention” to make the attention heads learn tree structures.
Zhang et al. (2020) suggested SemBERT by incorporating pre-trained SRL

information, and Liu et al. (2019) implemented a knowledge graph to get

3 https://spacy.io/

sememe information.

This paper leverages POS information, a simple and familiar linguistic
feature. Since POS forms a distribution, we believe that a model can learn a
representation according to the distribution hypothesis. Furthermore, it will

give useful information on an agglutinative language like Korean.

One of the proposed models has the same structure proposed in
Sundararaman et al. (2019). The input token h;, = e,, + f;; where e,, is
the BERT token embedding and f;} is POS embedding for token m. This
study, however, suggests new methods other than just adding embeddings.
Instead of SpaCy in Sundararaman et al. (2019), MeCab is used in this paper
expecting to be more suitable for morphologically rich languages. The

suggested models will be introduced in chapter 4.

2.3. Interpretation of Linguistic Knowledge of a Model

“Probes” are used to interpret how and what type of linguistic
information is encoded in the model. This process is referred to as a “probing
task” (Conneau et al., 2018), “diagnostic classifier” (Giulianelli et al., 2018),
or an “auxiliary prediction task™ (Adi et al., 2016). Such probes are conducted

on various linguistic tasks and on different levels of the model.

There are studies concerning attention heads of the Transformer
architecture. In Clark et al. (2019), specific attention heads in BERT showed
particular linguistic phenomena. Kovaleva et al. (2019) suggested 5 patterns
of attention heads using a heatmap, and that the “heterogeneous” pattern can
be interpreted linguistically. Visualization tools are also proposed in Vig

(2019), and Hoover et al. (2019).

On the layers of the model, Tenney et al. (2019) proved that syntactic
knowledge appeared in initial layers and semantics in later layers using
probing tasks such as POS, constituents, dependencies, entities, SRL, and

coreference resolutions.

Hewitt and Manning (2019) proposed syntactic analysis using probing.
They evaluated syntactic knowledge of the models by recovering syntactic
dependencies in Penn Treebank (Marcus et al., 1993) from the models’ token
embeddings. Through a linear transformation of a model’s word
representation space, it was proved that the dependency trees were embedded
in the model. In addition to the results, Coenen et al. (2019) visualized
syntactic and semantic information of the models. We replicate the structural
probing task of Hewitt and Manning (2019) using the Korean dataset. This

will be demonstrated in chapter 6.

3. Transformer Architectures

This chapter will provide a description of Transformer architecture
(Vaswani et al., 2017) and the BERT model (Devlin et al., 2018) as we use it
as the base model architecture of the proposed POS models which will be

described in the following chapter.

3.1. Transformer

Transformer architecture (Vaswani et al., 2017) is composed of a stack
of'encoders and decoders and when it takes an input sentence, it gets an output
sentence in another (Figure 1). The BERT model (Devlin et al., 2018), which
will be described in the next section, only uses the encoder part of the

Transformer.

DECODER

\J ENCODER | | DecoDEr {—~—-| oUTPUT \
L X) L X) \)
" ENCODER ‘ | becoor ‘
) L . D g
\' ENCODER ‘ DECODER ‘
) £ . i]
‘ ENCODER ‘ DECODER ‘
) 1 g % g
‘ ENCODER ‘ DECODER ‘
oo o

INPUT L, ENCODER

‘ Feed Forward Neural Network ‘
) t ;
‘ Self-Attention ‘

Figure 1. Transformer architecture, based on The Illustrated Transformer*

4 http://jalammar.github.io/illustrated-transformer/

9

Each encoder has two sub-layers as in Figure 1: a self-attention layer
and a feed-forward neural network. The outputs of the self-attention layer are
fed to the feed-forward network. A list of vectors is taken as input and these
vectors are passed into a self-attention layer, then through a feed-forward

neural network, to the next encoder.

Multi-Head Attention (Equation 2) is a concatenation of multi Scaled
Dot-Product Attention which is also called as Self-Attention (Equation 1). All

equations in this section are from Vaswani et al. (2017).

. QK"
Attention(Q, K, V) = softmax(—)V (1)

Jax

The shape of an input embedding X of Self-Attention is the number of
words in an input sentence and the dimension of the input embedding. A
Query matrix Q, a Key matrix K, and a Value matrix V are created by
multiplying the input matrix X and three weight matrices W?, WX, and WV.
Then we take the dot product of the query vector with the key vector and
divide it by the square root of dy (the dimension of the key vectors) for
scaling the variance, then normalize it through a softmax. The resulting score

is multiplied by each value vector as the weighted value vectors and summed
up.

MultiHead(Q,K,V) = Concat(head,, ..., head,)W °

(2)
where head; = Attention(QWiQ,KWiK, VWl-V)

In Multi-Head Attention, the Self-Attention is calculated 4 different
times with /4 different weight matrices. The resulting / attention heads are

10

concatenated and multiplied with a weight matrix W° so that the shape of the
output is the same as that of the input. WL.Q, wX, wY, and W° are parameter
matrices. By doing Self-Attention, the Transformer model can give attention
to all the word pairs in a sentence considering the context without gradient

vanishing problem.

The results send to the feed-forward neural network, using ReLU as
an activation function (Equation 3). Instead of ReLU, GeLU is adopted in the
BERT model.

FFN(x) = max(0,xW; + by)W, + b, 3)

To keep the order of the words in the input sequence, the Transformer
uses positional encoding. BERT model, however, does not implement the
same positional encoding. It uses the position embeddings instead. The input

representation of the BERT model will be described in detail below.

3.2. Bidirectional Encoder Representations from

Transformer (BERT)

Bidirectional Encoder Representations from Transformer (BERT)
(Devlin et al., 2018) is a method that pre-trains language representations. As
it adopts transfer learning, there are two procedures (Figure 2), pre-training

and fine-tuning.

11

/Nsp Mask LM Mask LM \
*

*

BERT

=)). (=)
I_'_I —
Masked Sentence A Masked Sentence B

| /
',
M Unlabeled Sentence Aand B Pair) /

Pre-training

/MNLI NER /SQuAD

StartEnd Span Y

Taa)
- B
Epust Iil W EF 4 -
T e T e s S
B EENE.
I_'_I
'.\ '._\ \ Question -« Paragraph j.
o N \‘._ Question Answer Pair 7_.//’
Fine-Tuning

Figure 2. Pre-training and fine-tuning procedures for BERT from Devlin et al.
(2018)

At pre-training, a general-purpose language understanding model is

trained on a large text corpus like Wikipedia. It is an unlabeled and

unsupervised process. The pre-trained model is fine-tuned and utilized for

downstream NLP tasks like question answering, named entity recognition

(NER), and natural language inference (NLI). A detailed description of each

downstream task will be in chapter 5.

BERT is a Transformer Encoder stack. It has two model sizes, BERT-
base and BERT-large. The BERT-base model has 12 encoder layers, 768

hidden embedding sizes, and 12 attention heads. The BERT-large model has

24 encoder layers, 1024 hidden embedding sizes, and 16 attention heads. In

this study, we adopted BERT-base model architecture.

Input [CLS] my ‘ dog ‘ is cute ‘ [SEP] ‘ he likes ‘ play ##ing ‘ [SEP] ‘
Tok
E?n::dmngs ECLS E’ny E dog Ela Ecu E.:EP Ehe Ellke: Eplay Emng Eser
+ + + + + + + + + + +
s
E'mal::;?\nss Eq Ea Ea En Ea Ea Eg Eg Eg Eg Eg
+ + + + + + + + + +
Bositi
E:;;::ginqs EO EI EZ ES E4 E5 EB ET EB E9 E|0

12

BERT input representation, as in Figure 3, is the sum of the token
embeddings, the segment embeddings, and the position embeddings which
substitute the positional encoding of Transformer. WordPiece tokenizer (Wu
et al., 2016) is used to token embeddings. Sentence pairs are packed into a
single input sequence as the first token of the sequence is a classification
token (JCLS]) and the two sentences are separated by a separation token
([SEP]). Segment embeddings indicate whether a token is from sentence A or
sentence B. Position embeddings inform the position of the token in an input

sequence.

POS models, proposed in this study, have one more input embedding,
POS embeddings, to add to the input representation. The token of BERT is
tokenized by WordPiece tokenizer, however, MeCab is used as the tokenizer
for the convenience of adding POS embeddings in this study. The description
of POS models will be provided in detail in the next chapter.

To train a deep bidirectional representation and understand sentence
relationships, BERT has two training approaches: masked language model

(MLM) and next sentence prediction (NSP).

In the MLM task, the model masks some percentage of the input
tokens, usually 15%, at random, and predicts the masked tokens. Specifically,
for the masked token t, 80% of the time the token t is replaced with [MASK]
token, 10% of the time with a random token, and 10% of the time it remains

unchanged.

In the NSP task, two sentences A and B are given for each training
example, and the model predicts whether B is the actual next sentence that
follows A (labeled as IsNext). 50% of the time, it is a random sentence from

the corpus (labeled as NotNext). We utilize both tasks in the experiments.

13

4, Part-of-Speech Models

In this chapter, POS models with modified embedding methods are
fed into the BERT architecture (Devlin et al., 2018) will be introduced. 3
embedding methods are suggested in this chapter: addPOS, multiaddPOS,
and maskPOS model. MeCab POS tagger, instead of WordPiece (Wu et al.,
2016), is implemented as a tokenizer, therefore the base model in the

experiment (chapter 5) is the MeCab-tokenized BERT model (Figure 4).

Input ‘ [CLS] ‘ Q [MASK] ‘ 9 ‘ ##E ‘ ‘ [SEP] ‘ ‘ [SEP]
Embedaings | EcLs Eo Ewmask Eq = E. Esep E. Eser
+ + + + + + + + o+
Emboadings Ea Ea = Ea E, E, Ea Eg Es
+ + + + + + + +
:::Il::;mgs Eu E1 EZ EJ E4 E.. Em E En

Figure 4. MeCab-tokenized model (base) input representation

By adding POS embeddings, we expect the model to learn the
distribution of POS information, and thus understand the underlying syntactic
representation in a language. We prove the effectiveness of incorporating
linguistic knowledge into the input embeddings through the comparison of

the POS models and the base model without POS embeddings in chapter 5.

4.1. Model Structure (Input Representation)

The input representation of POS models is a modification of BERT
(Devlin et al., 2018) input representation, adding POS embeddings to the
input embeddings of BERT. We propose 3 embedding methods here.

14

4.1.1. addPOS

Input ‘ [CLS] ‘ e ‘ [MASK] ‘ 9 ‘ #E ‘ ‘ [SEP] ‘ ‘ [SEP]
tmoedaings | EcLs Eo Emask E, Egn E. Esep E. Eser
- + + + - + - - -
;;ﬁ:::;z:ngs EA EA EA EA EA EA EA EB EB
+ i+ + + + - + + +
Emosadings | Eo E, E, Es E, E. E, E. En
+ + + + + + + + +
Embedeings | Ecus Ew Eux Esn Ewec | E. \ Ecer \ E. Eser

Figure 5. addPOS model input representation

The input representation of the addPOS model is composed of the
BERT input embeddings, token embeddings, segment embeddings, and
position embeddings, and POS embeddings tagged from the MeCab POS
tagger. It is the same architecture with Syntax-infused BERT (Sundararaman
et al., 2019), but the input sentence in this model is tokenized by the MeCab
POS tagger instead of the WordPiece algorithm.

For the token m, the input representation h,, becomes Equation 4,
where e, is the token embedding of m, s,, is the segment embedding of m,

Pm 1s the position embedding of m, and f;, is the POS embedding of m.

hm:em+5m+pm+fm (4)

15

4.1.2. multiaddPOS

Input ‘ [cLs] H o H [MASK] H 9 H el H H [SEP] H H [SEP] ‘
Tmbeadings | EcLs Eo Emask E,o S E. Eser E. Eser
X X X X X X X X X
POS
-
+ + + + + + + + +
S it
Empeddings EA Ea Ex E, Ep Ea Ep Eg Eg
+ + + + + + + + +
Positi
Eﬁ:‘ve‘;:ings EI) E 1 E 2 E 3 E 4 E Em E E n
+ + + + + + + + +
POS
= BRI R

Figure 6. multiaddPOS model input representation

The multiaddPOS model input embeddings are the sum of the token
embeddings multiplied by the POS embeddings, the segment embeddings, the
position embeddings, and the POS embeddings. The two POS embeddings
can have different initialization. For the token m, we compute the input

representation h,, as:

hm = ey * fr;l+5m+pm+fm (5)

where e, is the token embedding of m, s, is the segment
embedding of m, p,, is the position embedding of m, and f',, and f,, is

the POS embedding of m with different initialization.

16

4.1.3. maskPOS

Input ‘ [CLS] ‘ L3 ‘ [MASK] ‘ 9 ‘ #E ‘ ‘ [SEP] ‘ ‘ [SEP]
eoeadings | Ecls Eo Emask Eq = E_ Esep EN Eser
+ + + + + + + + +
é:\gl‘::z:ngs EA EA EA EA EA EA ER EB EB
+ + + ¥ + + + + ¥
;;i:;zlngs En E1 E2 ES Ed E Em E En
+ + + + + + + + +

Embedaings | EcLs Epv Esn Ennsc E. \ Eser \ E. Eser

Figure 7. maskPOS model input representation

The maskPOS model has the same input representation as the addPOS
model, adding the token embeddings, the segment embeddings, the position
embeddings, and the POS embeddings, but the MLM task is applied to both
the token embeddings and the POS embeddings. In the MLM task in the
maskPOS model, if the i-th token is chosen, the token embedding and the
POS embedding corresponding to the masked token t; assign [MASK]
embedding values respectively. The original token and POS will be predicted
using cross-entropy loss, thus having two losses and accuracies for each

embedding. The pre-training results will be presented in the next chapter.

17

5. Experiments

With the POS models described in chapter 4, pre-training and fine-
tuning experiments were conducted to demonstrate the effectiveness of
adding POS information, and the data for pre-training, training details, and
results are presented below. The maskPOS model shows higher performances
compared to the base model on 5 Korean downstream tasks, showing the
language model with linguistic knowledge learns the underlying grammatical
representation of a language. To the best of our knowledge, this is the first

study to corporate POS knowledge to a pre-trained Korean BERT model.

5.1. Pre-training

Data, tokenizer, vocabulary, POS tag vocabulary, and other training

details during pre-training will be described in this section.
5.1.1. Data

For the pre-training corpus, preprocessed 2.47GB Korean Wikipedia
was used. It consists of 20M sentences, or 233M words. It is the same corpus
on which KR-BERT (Lee et al., 2020) was pre-trained on. KR-BERT,

however, implemented a WordPiece tokenizer (Wu et al., 2016).

5.1.2. Tokenizer

Unlike the original BERT model which utilized the WordPiece
tokenizer, we adapted the MeCab POS tagger as a tokenizer of the models.
The input sentences in the training examples are tokenized by the MeCab

tokenizer. It makes the summation of the token embeddings and the POS
18

embeddings simpler because the token units and the POS units from the

tagger correspond.
5.1.3. Vocabulary

After tokenizing the corpus with the MeCab tokenizer, we extracted
30,000 vocabularies in order of frequency. Then 5 special tokens that the
BERT model uses were added: [CLS] which informs the start of a sentence,
[SEP] which informs the end of a sentence, [PAD] for padding, [UNK] for
unknown tokens, and [MASK] for masking in MLM tasks. Thus, the

vocabulary of size 30,005 was used for pre-training the models.
5.1.4. Part-of-Speech Tag Vocabulary

POS tag vocabulary was proposed in two ways: fulltag and endtag.
Because the POS tagging by MeCab is presented as a combination of
agglutinative POS tags, it could be offered in many ways. Fulltag uses all the
POS tags presented. Endtag uses only the last POS of tagging in order to
capture particles in Korean and make the size of the vocabulary smaller. So
for the example in Figure 8§, MeCab POS tagging for token 1Y%
gurelmando ‘It could be’ is VA+ETM+JX+JX. In the fulltag vocabulary, it
uses all the combination VA+ETM+JX+JX, while in the endtag vocabulary,
it only uses the last tag, JX. Other kinds of combinations have been

experimented and the results are presented in chapter 6.

Fulltag:
VA+ETM+JIX+IX
Endtag: JX

J89: VA+ETM+IX+JIX

Figure 8. Two ways of POS tag vocabulary combination

19

5.1.5. Training Details

The pre-training batch size was 16, and the learning rate was le-4,
then decreased to 2e-5 when the pre-training step was over IM. 4 TITAN
RTX (24GB RAM) GPUs were used for pre-training. Other hyperparameters

are the same as the original BERT®.

For the maskPOS with fulltag model, which shows the highest
performances on the downstream tasks, we increased its batch size to 256,
and pre-trained the model to 2M steps on TPU. It can be expected as the batch
size increases, the performance of the model improves since the model can

take more sentences as input at once. The learning rate was 1e-4.

5.2. Pre-training Results

Pre-training results of the base model and the proposed POS models
are demonstrated below (Table 1). Because the NSP accuracy always shows
almost 1, we exhibit only the MLM accuracy. All the models are showing

high MLM accuracies.

5 https://github.com/google-research/bert
20

100k 500k M
MeCab base 0.5945 | 0.6737 | 0.7097 | 0.7297
fulltag | 0.702 | 0.7886 | 0.8152 | 0.8197
addPOS
endtag | 0.7006 | 0.7498 | 0.7452 | 0.783
fulltag | 0.5465 | 0.7643 | 0.7734 | 0.7944
multiaddPOS
endtag | 0.506 | 0.7348 | 0.7654 | 0.7595
POS) | POS) | (POS) | (POS)
0.8032 | 0.8478 | 0.8642 | 0.8703
fulltag
(token) | (token) | (token) | (token)
0.5911 | 0.6769 | 0.7046 | 0.7182
maskPOS
POS) | (POS) | (POS) | (POS)
0.8142 | 0.8523 | 0.8660 | 0.8816
endtag
(token) | (token) | (token) | (token)
0.6047 | 0.6727 | 0.6988 | 0.7256

Table 1. Pre-training results of the base model and POS models. MLM accuracies

For the maskPOS with fulltag model, we increase its batch size from
16 to 256 as described in 5.1.5. The MLM accuracy of the two models is
presented below. We can discover the MLM accuracy enhances as the batch

size of the same model increases.

21

are represented.

Model 100K 1M 2M
(POS) (POS) (POS)
Batch 0.8032 0.8642 0.8703

size=16 (token) (token) (token)

maskPOS 0.5911 0.7046 0.7182
(fulltag) (POS) (POS) (POS)
Batch
0.8242 0.8648 0.8755
size=256 ke (rok (token)
token token token
@TPU ()

0.6583 0.7240 0.7400
Table 2. Pre-training results of the maskPOS (fulltag) models with different batch

sizes. MLM accuracies are represented.

5.3. Downstream Tasks

We conducted 5 Korean downstream tasks: NSMC (NAVER
Sentiment Movie Corpus)®, NER (Named Entity Recognition)’, KorQuAD
(Korean Question Answering Dataset)®, KorNLI (Korean Natural Language
Inference), and KorSTS (Korean Semantic Textual Similarity)® (Ham et al.,
2020). The tasks and the metrics used for evaluating them will be described

below.

6 https://github.com/e9t/nsmc

7 http://air.changwon.ac.kr/?page id=10

8 https://korquad.github.io/

° https://github.com/kakaobrain/KorNLUDatasets
22

5.3.1. Tasks

NSMC NAVER Sentiment Movie Corpus (NSMC) is a movie review
dataset with the binary label for the sentiment class of the review (0: negative,
1: positive). It has 200K reviews, with half of the review is positive and the

other half negative.

NER Named Entity Recognition (NER) is a dataset to extract named

entities such as a person, organization, or location name. It has 14 categories.

KorQuAD The Korean Question Answering Dataset (KorQuAD) 1.0
is a dataset for Machine Reading Comprehension. It is composed of 20K QA

pairs, finding an answer from 1~2 paragraphs.

KorNLI Korean Natural Language Inference (KorNLI) is the dataset
for Korean Natural Language Understanding (KorNLU). Given a pair of two
sentences, the task of KorNLI is to determine whether they are entailment,

contradiction, or neutral. It has 950K examples.

KorSTS Korean Semantic Textual Similarity (KorSTS) is the dataset
for KorNLU. The task of KorSTS is to determine the similarity between those
two sentences from 0 to 5, given a pair of two sentences. KorSTS has 8K

examples.
5.3.2. Evaluation Metrics

Accuracy, F1 score, Exact Match (EM), and Spearman’s rank

correlation coefficient are used to evaluate the results.

23

Actual Class
True False
True True Positive False Positive
Predicted Class
False False Negative True Negative

Table 3. Confusion matrix

Accuracy (Equation6) and F1 score (Equation7) can be derived from
a confusion matrix (Table 3). Accuracy is the rate of correct predictions out

of the total number of true labels.

_ TP +TN (6)
accuracy = To T Ep A TN + FN

F1 score is the weighted mean of precision and recall. EM is the

number of exactly correct answers with the same start and end index.

R
pTeClSlon = TP n FP
y_ TP
recatt = TP Y FEN
F1 - 2
Score = 1 1 (7)

recall ' precision

Spearman’s rank correlation coefficient or Spearman correlation
shows the relationship between the rank values of two variables. It assesses

monotonic relationships while the Pearson correlation between two variables

24

assesses linear relationships. Packages from scikit-learn®?, SciPy!!, and
seqeval ? are implemented as evaluation metrics for evaluating the

performance of downstream tasks.

5.4. Downstream Task Results

The table below demonstrates the downstream task results of the base
model and the POS models. It is seen in Table 4, the maskPOS models clearly
outperform the base MeCab model. Among the models with a batch size of
16, the maskPOS model with fulltag shows the highest outputs. So we trained
the model with a batch size of 256 as described in 5.1.5 for the maskPOS with
fulltag model. It is observed in Table 4, the maskPOS (ful/ltag) model with a
batch size of 256 surpasses the other models, especially the base MeCab-
tokenized model without the POS embeddings. Therefore, we can conclude
that when linguistic information is added to the pre-trained model, it is
learning the underlying grammatical representation via the enhanced

performance on the Korean downstream tasks.

10 https://scikit-learn.org/stable/
Scikit-learn is simple and efficient tools for predictive data analysis.

1 https://www.scipy.org/
SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and
engineering.

12 hitps://github.com/chakki-works/seqeval
seqeval is a Python framework for sequence labeling evaluation.

25

5 KorQuad
Model NER KorNLI KorSTS
epochs (dev)
Batch size 16,
Accuracy] EM/F1 | Accuracy | Spearman
2M step
49.70,
MeCab base 84.81 75.08 72.89 0.7434
80.68
48.35,
fulltag 84.9 75.04 74.59 0.7402
79.41
addPOS
47.81,
endtag 84.84 74.7 73.67 0.7326
77.71
48.96,
fulltag 84.62 74.05 73.59 0.7267
79.77
multiaddPOS
48.04,
endtag 84.46 74.11 74.41 0.737
79.03
49.46,
fulltag 84.98 75.48 75.5 0.7501
80.84
48.97,
endtag 84.92 75.51 74.67 0.7488
maskPOS 80.40
fulltag,
51.92,
Batch 85.66* 76.29 76.6 0.7643*
83.42
size=256

Table 4. Downstream task results of the base model and POS models. Results

marked with an asterisk implemented prediction batch size of 128.

However, as seen in Table 5, the POS models exhibit poor
performances in comparison to other models with WordPiece tokenizer, KR-
BERT, or State-of-the-Art models. The reason for this poor improvement of

the POS embeddings will be discussed in the next section.

26

KorQuad

NSMC NER KorNLI KorSTS
(dev)
Accuracy ‘ F1 H EM/F1 Accuracy | Spearman
Batch
49.46,
size 84.98 75.48 75.5 0.7501
80.84
maskPOS =16
fullta Batch
(&) 51.92,
size 85.66% 76.29 76.6 0.7643*
83.42
=256
KR-BERT 72.04,
89.74 85.77 77.76 0.7746
(char) 89.45
State-Of-
The-Art 80.89
5+ Different test 84.34,
(KoELEC (HanBER | 0.843 (v2)
epochs datasets. 92.58 (v2)
TRA-Base T)
etc.)

Table 5. Downstream task results of maskPOS (fulltag) models and other state-of-

the-art models. Results marked with an asterisk implemented prediction batch size

of 128. The results on the state-of-the-art models are from KoELECTRA GitHub®.

They used different test datasets on NSMC and NER tasks.

5.5.

Analysis

The results captured in the previous section will be analyzed in this

section. In 5.5.1, for the better performance that the maskPOS models showed

in comparison to the other POS models, we drew a correlation heatmap

13 https://github.com/monologg/KoELECTRA

27

between POS embeddings in order to figure out how a model learns a latent
representation during pre-training. But for the poor performance of the POS
models, we will point out the limitations of the current POS models in 5.5.2

and suggest the need for a further study (chapter 6).
5.5.1. Correlation Heatmap

To evaluate how POS models learn a latent representation during
training, the correlation between POS embeddings is drawn to a heatmap

(Figure 9).

As the performances on the downstream tasks in section 5.4 reflect,
only the maskPOS models show correlation. The others remain yellow on the
heatmap, meaning they learn no correlations between the POS embeddings.
The maskPOS models seem to capture an underlying grammatical
relationship between POS tags. It is in line with SpanBERT (Joshi et al., 2020)
in that the heatmap proves the helpfulness of the MLM task.

28

o
(.

ztugess

21T

53 .>!}‘:.
R
1

e

N

VALEC VBB

WAEC Vs ECHVXLETH -

Fritoits
TERTS IV Y
& narit
& 5sii]
52

)
{{ by

CWSETMENND S

ISVAECA W R ET

41K NG 4 X

"W
SECHVKATCIVKOED
SwaETd

o
xverc

ISVAEC IV ER
reteate

CovcParc

™
™NOKS
epsC

SWIE

TECHKO
ver

ALK

XSVAECoVRLEPLETIH

£

NG S NVBC VO 7 —

Ve

BG4 VEP 4 C

ECIVXATCHVXaTTM

29

i

-
e -
e
c-
N
h-
Ko
A -
K-
x-
xo-
s
ssc
sc-
xsa -
-
Ve -
xo-
s

5.5.2. Limitation

In order to explain the poor outcome of the POS models compared to
the other models with WordPiece tokenizer (Wu et al., 2016) and the state-of-
the-art models, the limitations of the current POS models will be identified

here.

First, POS tagging is not off-the-shelf. POS tags are called from a
pickle file, consist of a dictionary of a token and its POS tag. During the
process of saving the dictionary file, only a high-frequency POS tag was

selected, and others were neglected. For example, a token ##= ##nun ‘is’

can be tagged as JX, ETM, ETN, or VV, but since the most frequent POS tag
1s JX, the token always get the POS embedding of JX. In a phrase like @ ##
= 9 ##Y o ##nun 9 ##wel ‘this September’, a token ##nun, which is ETM in
the phrase, wrongly tagged as JX in Figure 5-7 because it is the most frequent

POS of ##nun. The possible solution for this problem will be discussed in
6.2.1 and 6.2.3.

##+ Counter({'JX": 7292984, 'ETM': 4944041, 'ETN" 5, 'VV" 1})

Second, the lack of vocabulary could reduce the models’
performances. The pre-training corpus consists of 1M tokens, but we only use
the vocabulary of the size of 30K concerning the computational capacity of
the hardware. In 6.2.2, we will adjust the vocabulary size to deal with this

limitation.

In addition, there could be some problem in preprocessing the corpus
or the MeCab tokenizer to being an input of BERT architecture compared to

the WordPiece tokenizer which is an unsupervised tokenization method based

30

on the frequency of a token in a corpus.

Further analysis to overcome the limitations above will be suggested

in the next chapter.

31

6. Linguistic Analysis

Based on the experiment results in chapter 5, we conduct a linguistic
analysis to evaluate the ability of the proposed POS models of learning
syntactic representation by using a probing task (6.1). To further overcome
the limitations in 5.5.2, further analysis on the POS tag combination,
vocabulary size, and off-the-shelf POS tagging method will be used in the
next section. We analyze the maskPOS model (fulltag, 30k vocabulary size,
16 batch size) since it showed comparably stable performances on the pre-

training and fine-tuning downstream tasks in the previous chapter.

6.1. Syntactic Probing Analysis

Hewitt and Manning (2019) evaluated a neural network’s
representation by retrieving syntax trees embedded in a linear transformation
of a model’s word embedding space. We adapt the transformation to our POS
model, maskPOS, to evaluate the linguistic ability of our model. This
syntactic probing task will prove the effectiveness of adding morphosyntactic
information to a model to make the model learn an underlying syntactic

representation of a sentence.
6.1.1. The Structural Probe

The probe is based on the hypothesis that there is a linear
transformation (an inner product) of the word representation that parse trees
are embedded. Under the linear transformation B, vector distance under the
inner product BTB is supposed to encode parse trees. Given a parse tree,

Hewitt and Manning (2019) consider a squared vector distance (an L2
32

distance) ||h; — hj||z as a tree distance, and a norm |w;]| as a parse depth

where i, j are indexes of a word w in a sentence. The parse depth is the number

of edges between the root of the parse tree and a word.

Equation 8 from Hewitt and Manning (2019) is a squared distance
where h% is a vector representation of the i-th word of a sentence /, under the
linear transformation of the word representation Bh. A parse depth can be

defined as Equation 9.

dg(ht,h))* = (B(h! - h}))T (B(h: - h)) (8)

”hi”% = (Bhi)T(Bhi) (9)

The matrix B is the parameters of the probe. It is trained to recreate
the distance or the depth. In the case of the tree distance across all sentences
T! in a training corpus, it is approximated through Equation 10 (Hewitt and
Manning, 2019) where |s!| is the length of the sentence /. Each sentence is

normalized by the number of word pairs |s!|?.

. 1 2
min) . |dpuCwlw)) = da(h, 1))’ (10)
L)

6.1.2. Experiment Details

The probe requires CoNLL-formatted data. The KAIST Korean
Universal Dependency Treebank* (Chun et al., 2018) was implemented to
train the probe. The training dataset contains 23010 sentences, the dev dataset

has 2066 sentences, and the test dataset has 2287 sentences (total 27363

14 https://github.com/UniversalDependencies/UD_Korean-Kaist
33

sentences).

We conduct the probing analysis on the maskPOS model (fulltag,
batch size of 16). Because the model was trained with TensorFlow (Abadi et
al., 2016), we converted the TensorFlow checkpoint for maskPOS in a

PyTorch save file. All configurations follow the original experiment™.

6.1.3. Probe Evaluation Metrics

The predicted tree distance is evaluated on undirected attachment
score (UUAS) and “distance Spearman (DSpr.)”. UUAS is the percent of
correct edges against the gold tree, evaluating tree reconstruction. To
construct “DSpr.”, the Spearman correlations between the gold tree and the
predicted tree distance are averaged over all sentences of the same length and

then averaged across sentence lengths 5-50.

To evaluate how well the predicted tree depth rebuilds the true tree,
we report “root%” and “norm Spearman (NSpr.)”. We assess the percentage
of the correctly predicted root of the sentence which is the least deep word as
“root%”. “NSpr.” metric replaces the “DSpr.” metric with the Spearman
correlation between the gold depth order of the word and the predicted

ordering. All the evaluation metrics follow Hewitt and Manning (2019).

15 https://github.com/john-hewitt/structural-probes
34

6.1.4. Probe Results

Distance Depth
Layer UUAS DSpr. Root% NSpr.
1 63.29 0.6985 70.52 0.7223
2 63.28 0.6986 70.76 0.7248
3 063.29 0.6995 70.76 0.7247
4 063.28 0.6989 71.39 0.7221
5 63.51 0.6988 70.43 0.7246
6 063.31 0.6989 71.06 0.7225
7 03.44 0.6996 70.67 0.7240
8 63.48 0.7001 71.06 0.7246
9 063.21 0.6992 70.81 0.7231
10 63.29 0.6999 70.62 0.7277
1 03.34 0.6985 70.76 0.7260
12 03.41 0.7002 70.91 0.7249

Table 6. The probe results of parse tree distance and depth on maskPOS

The experiment results of parse tree distance probes and depth probes

are reported in Table 6. There is no big difference between layers. It can be

interpreted that the model encodes the parse tree stably across all the layers.

Among the layers, the result of layer 8 will be reported since it shows

comparably high performance on the probing task.

35

/ s
|
|

—— — I'I / —— —— ~ Vs —_——
Qe A& AYe] 48] flolA RAZA of A9Sw 2d ok F4ds} oAy of SRsUT .

[A

1AE A U4 $9E qane ol BEA 420 AfEUT .

(d)

/ — .I"r —

£ /] —— —— | _——,
2 ol e nle Wl wokn 1 Gowt BAW ka7l 9908 |

Figure 10. The gold parse trees (black) and the minimum spanning trees of
predicted squared distances on maskPOS (red)

We present the gold parse trees (black) and the predicted parse trees
on the maskPOS model (red) in Figure 10. Regarding a short and simple
structured sentence such as Figure 10-a, the model perfectly predicts the parse
tree. For Figure 10-b, the model predicts correctly the long-distance
dependency between IJwj= guttaynun ‘at that time’ and E35UYtTH
tullyesssupnita ‘heard’. Some adverb phrases are wrongly predicted, however,
since Korean is a scrambling (Ross, 1967) language, adverb phrases can have

flexible word order in Korean.

WA nase in Figure 10-c is incorrectly presented on the predicted tree.
MeCab POS tagger tags the token as VV but it seems to be used as an auxiliary.

It seems POS tagging is not specific enough to reflect conjugations in Korean.

36

SRk

1

I

U

On the other hand, ##t}7} ##taga in ottt heletaga ‘demolish’ (Figure
10-c) and ##11 ##go in B*1 manhassgo ‘many’ (Figure 10-d) is EC in
MeCab POS tagging. It is a naive classification as determining what kind of

syntactic phrase they are is a critical question in Syntax.

Figure 12 displays the depth in parse tree encoded in the gold tree
(black) and the predicted tree on the maskPOS model (red) by vector norm
after the linear transformation. The root of the parse tree, the least deep word,
is generally identified correctly on the maskPOS model. Although the depth
of the predicted tree does not perfectly correspond to that of the true tree,
patterns, or relative depth, shown in the predicted trees are relatively similar

to those of the true trees.

Figure 11 demonstrates all distances between all word pairs in a
sentence. Short distances are visualized in darker colors and long distances
are in lighter colors. According to Hewitt and Manning (2019), this is the rich

structure in a parse distance matrix.

Gold Parse Distance Predicted Parse Distance (squared)

-7
e sz
sz a1l
* -6
oy ety
an o
5 .
e =
an 4
29riee 3 e
= Bl
he #
2
" o
Frres iz
1 .
a v
0
A FERTELERG
3 : W
¥ 3

Figure 11. Distance matrix between all pairs of words in a sentence

37

A& gk

(@)

LSTM H Encoder Dependency Parse Tree Depth Prediction

Linear Absolute Position

200
17.5
15.0
125
-~
=
[o}
(o]
0 100
(]
(7]
o
=
7.5
EEH
50
sl sigel
s BHG 84l
Al
st
00 s
o] 25 50 75 100 125 150 175 200
Linear Absolute Position
LSTM H Encoder Dependency Parse Tree Depth Prediction
200
17.5
15.0
12.5
=
=]
Q
[
O oo
[«F)
<]
—_
= 4 otz
75
A SAIZtolA O%‘éﬁ HeE
20|
* 2AIZ{of A
420 -
e ! LL o
20iK
25 B2}
g glofH Zaa5t ofriMu [
SsUC
00 S
0 100 200 300 400 500 200

(©
38

1

kTl

125

Tree Depth

LSTM H Encoder Dependency Parse Tree Depth Prediction

a
75
e
50 RS
ug
23 e stal
23 - “2A
25 2 goicpor :
Foicpzt FEEE]
HEBELICH
00 MgiELIcH
o 50 100 150 200 250 300 350 400
Linear Absolute Position
LSTM H Encoder Dependency Parse Tree Depth Prediction
200
175
15.0
12.5
-
=g
[=X
[}
O e
a
2 4
=
75
oltal a EEE
a o
5o ORO[EH Al
i 2o
apBol2t oLty FEEIS =77t
== sls7
Qo2 i)
s 22 oy ¥ s8i0i2
sisiole
00 jtavan!
0 50 100 150 200 250 300 350

Linear Absolute Position

Figure 12. The gold parse trees depth (black) and the predicted norm probes
(squared) on maskPOS (red)

39

6.2. Further Analysis

In order to improve the POS models’ performance at the level of the
other models with other state-of-the-art models, we investigate further
analysis based on the limitation mentioned in the previous chapter. KorNLI
(Korean Natural Language Inference) (Ham et al., 2020) is used as the
downstream task to compare the performance of the models. The linguistic

ability of a model is determined by the performance on the KorNLI task here.

6.2.1. POS Tag Combination

We tried to change the combination of the MeCab POS tag. Other than
using a full POS tag combination or the last POS tag, only the first POS tag
or the first and the last POS tag combination was implemented. The full POS

combinations are suggested in Figure 13.

After pre-training the models to 2M steps (batch size of 16,
vocabulary size of 30k) we compared the KorNLI performance of each model.
It appears in Table 7 that the full POS tag combination shows the highest
performance on the task compared to the other POS tag combinations,
especially compared to the combinations with only one tag, the first or the
last POS tag. If we consider the first POS tag as lexical information and the
other POS tags syntactic information, it can be interpreted that both lexical
and syntactic information should be provided for a POS model to learn a latent

linguistic representation.

40

=
F=
[
=
=

Figure 13. Full POS combinations and example tokens

Model ‘ POS Tag 2M step
0OS) 0.8703
full (FOS) 75.5
(token) 0.7182
maskPOS (POS) 0.8836
front+end 75
Batch size = (token) 0.7379
16 OS) 0.8676
front (FO5) 74.97
30k vocab (token) 0.7074
OS) 0.8816
end (FO5) 74.88
(token) 0.7256

Table 7. Pre-training and fine-tuning results of maskPOS models with different

POS tag combinations

6.2.2. Vocabulary Size

We increased the vocabulary size to improve the POS models’ ability
on the downstream task. Out of 1M tokens from the corpus, 30k, 50k, and
100k vocabulary were chosen in order of frequency and pre-trained to 2M

steps (full POS tag, batch size of 16). It turns out that the vocabulary size of
41

30k that we used in the experiment (chapter 5) is not enough to perform well
on the downstream task. As the vocabulary increases, the accuracy of the
KorNLI task enhances in Table 8. The maskPOS with a vocabulary size of
100k shows the highest accuracy. Since the POS models implement POS
tagger as a tokenizer which is a supervised tokenizer, it must require a bigger
vocabulary size compared to the models with WordPiece tokenizer (Wu et al.,
2016) which is an unsupervised tokenizer constructing vocabulary based on
the statistical frequency of tokens rather than the meaning of them. The result
in Table 8 implies that there are possible avenues for improving the POS

models.

Vocabulary

Model 2M step

Size

(POS) 0.8703
30k 75.5
(token) 0.7182
maskPOS
(POS) 0.8821
fulltag 50k 75.6
(token) 0.7237
Batch size =16
(POS) 0.8908
100k 76.42
(token) 0.7310

Table 8. Pre-training and fine-tuning results of maskPOS models with different

vocabulary sizes

6.2.3. POS Tagging

In order to avoid POS models from tagging wrong POS tags in the
embeddings during pre-training, we construct the off-the-shelf POS tagging
model. The off-the-shelf POS tagging model tags POS to a token during the

42

tokenization process. By tagging POS differently rather than calling POS tags
from a pickled dictionary file to avoid wrong tagging, we observe higher
performance on the downstream task in Table 9. Although the performance
on the KorNLI of the off-the-shelf POS model with a vocabulary size of 30k
is lower than that of the original pickle model with the same vocabulary size,
the performance of the off-the-shelf model gets better with a bigger
vocabulary size. The result reconfirms that the 30k vocabulary size was too

small for the POS models to learn enough linguistic representations.

YN

- (POS) 0.8703 -
ickle .
P (token) 0.7182

maskPOS Off-the- | (POS) 0.8560 s
fulltag shelf (token) 0.6932 '
Batch size =16 Offthe-
shelf 0S) 0.8999
(oS 75.8

(w/ 100k | (token) 0.7370

vocab)

Table 9. Pre-training and fine-tuning results of maskPOS models with different

POS tagging methods

The off-the-shelf POS model would benefit from the lexical
information, the first POS tag, as it can disambiguate the word sense. For
example, if we implement the off-the-shelf tagging method rather than using

a dictionary saved into a pickle file to call a POS tag, tokens in Table 10 which
43

have the same form with different POS tags can be distinguished.

Token | Frequency '"POS': Frequency

'EC: 5051649, TKQ': 1152139, 'VCP+EC":
18285, NNG": 5233, 'XPN": 1246, MM'": 633,
'XSV+EC! 131, 'VV": 91, 'NNP" 62, 'IC": 21, 'JC":
18, 'NP" 6, 'VA": 4

'JC": 2093857, 'JKB": 383815, NNG': 48575,
'ETN+JKB': 64, 'VV+EC": 61, 'NNBC'; 2
'NNG" 578685, MM": 108186, NNP': 2017,

##1 6230238

##3t 2518551

A 695925
'NP+]X": 654
"XPN": 215112, 'NP": 70060, 'NP+]KG": 63324,
A 350186
"MM'": 832, 'NP+VCP": 38, 'XR": 3
'NR" 44041, 'VV': 41047, ' NNG" 10752,
At 101443
'VV+EC": 5474, 'VV+EF": 46, 'NNP'; 42
'TX": 47240, NNB': 4979, 'TKB'": 4814,
#H =2 58585
"ETM+NNB" 1191, 'NNG': 287
Agt 40979 'NNG" 39174, 'VV+ETM" 1806
"VV': 16762, 'VV+EC" 1031, 'NNG": 59,
A1 17888
"VV+EF" 36
'VV" 1301, 'NNG" 690, 'IC"; 471, NNP" 210,
A 2747
VV+ETM": 76
) 1743 'NNG" 1564, 'VA+ETM": 179

Table 10. Tokens with different POS tags

A token with high-frequency ##11 ##go seems to have various POS

44

tags in Table 9. POS tags are primarily reflected in the lexical information. It
mostly appears in conjunctions (EC) or quotations (JKQ). ##3} ##gwa and
2 ##daylo can be a particle or a part of a noun. Tokens such as A} sa,
Agt ceyhan, AW cinay, & el, and 3 hwucin can be nouns or stems of
verb/adjective. Some syntactic information reveals in the other parts of POS
tags. A cenand A cey can appear in nouns or as pronouns with a particle as

the first POS tag is NP. They are both 1% person pronouns, but their syntactic
information POS tags are different, showing that they have different Cases

(+JX/+JKG). Atoken AW cinay can be either a stem of a verb (VV) or a verb
phrase in itself (VV+EC).

We conclude that the improvement of the off-the-shelf POS tagging
model belongs to the ability to use both lexical and syntactic information POS

tags.

45

1. Conclusion

In this study, we incorporated explicit linguistic knowledge into the
pre-trained BERT model. Suggesting new training methods by fusing
morphosyntactic information, POS tag, with input embeddings, we proposed
addPOS, multiaddPOS, and maskPOS models from pre-training. The
downstream task results, especially the performances of the maskPOS model,
proved the effectiveness of adding linguistic features compared to the base
MeCab models. Through the following linguistic probing task and analysis,
we insist that the POS models learn a latent linguistic representation during

training, and have a potential for future improvement.

One of the limitations in this study is that the performance of the
model entirely relies on the quality of a POS tagger. In this case, the ability
of'a model can be influenced by tagging errors. Also, the ‘out-of-vocabulary’
(OOV) problem, that the POS tagger cannot infer novel words, must be solved.
The preprocessing of raw data required for the pre-training is also a key

element in improving the performance of the language model.

It is still under discussion whether the BERT model needs linguistic
knowledge for solving its tasks. Glavas and Vuli¢ (2020) suggested an issue
that either BERT has incomplete syntactic knowledge or it does not rely on
linguistic information. But obviously, there is a point that BERT understands
the structure of a language. Warstadt et al. (2019) studied negative polarity
items (NPIs) and found BERT detected the presence and the structure of NPIs
(detecting “ever” and the usage of “whether”) fairly well, while it was weak

to detect scope violations.

We leave for future work language models with more linguistic

46

features other than POS tags or various architectures as the models in chapter
2. Multi-grained tokenization (Zhang and Li, 2020) or embeddings using
Siamese network (Reimers and Gurevyych, 2019) could be applied for future
work. Future research could experiment on a more in-depth analysis of the
fine-tuning tasks. Various linguistic probing tasks for the Korean language

could be developed for future research.

47

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... &
Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., & Goldberg, Y. (2016). Fine-
grained analysis of sentence embeddings using auxiliary prediction

tasks. arXiv preprint arXiv:1608.04207.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word
vectors with subword information. Transactions of the Association

for Computational Linguistics, 5, 135-146.

Chun, J., Han, N. R., Hwang, J. D., & Choi, J. D. (2018, May). Building
universal dependency treebanks in Korean. In Proceedings of the

Eleventh International Conference on Language Resources and

Evaluation (LREC 2018).

Clark, K., Khandelwal, U., Levy, O., & Manning, C. D. (2019). What does
bert look at? an analysis of bert's attention. arXiv preprint

arxXiv:1906.04341.

Coenen, A., Reif, E., Yuan, A., Kim, B., Pearce, A., Viégas, F., & Wattenberg,
M. (2019). Visualizing and measuring the geometry of bert. arXiv
preprint arXiv:1906.02715.

Conneau, A., Kruszewski, G., Lample, G., Barrault, L., & Baroni, M. (2018).
What you can cram into a single vector: Probing sentence
embeddings for linguistic properties. arXiv preprint
arXiv:1805.01070.

48

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805.

Giulianelli, M., Harding, J., Mohnert, F., Hupkes, D., & Zuidema, W. (2018).
Under the hood: Using diagnostic classifiers to investigate and

improve how language models track agreement information. arXiv

preprint arXiv:1808.08079.

Glavas, G., & Vuli¢, 1. (2020). Is supervised syntactic parsing beneficial for
language understanding? an empirical investigation. arXiv preprint

arxXiv:2008.06788.

Goldberg, Y. (2019). Assessing BERT's syntactic abilities. arXiv preprint
arXiv:1901.05287.

Ham, J., Choe, Y. J., Park, K., Choi, 1., & Soh, H. (2020). KorNLI and KorSTS:
New Benchmark Datasets for Korean Natural Language

Understanding. arXiv preprint arXiv:2004.03289.

Hewitt, J., & Manning, C. D. (2019, June). A structural probe for finding
syntax in word representations. In Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers) (pp. 4129-4138).

Hoover, B., Strobelt, H., & Gehrmann, S. (2019). exbert: A visual analysis
tool to explore learned representations in transformers models. arXiv

preprint arXiv:1910.05276.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., & Levy, O. (2020).
Spanbert: Improving pre-training by representing and predicting

spans. Transactions of the Association for Computational
49

Linguistics, 8, 64-77.

Jurafsky, D., & Martin, J. H. (2019). Speech and language processing (3rd ed.
draft). Draft of September 16, 2019.

Kovaleva, O., Romanov, A., Rogers, A., & Rumshisky, A. (2019). Revealing
the dark secrets of BERT. arXiv preprint arXiv:1908.08593.

Lee, S., Jang, H., Baik, Y., Park, S., & Shin, H. (2020). KR-BERT: A Small-
Scale Korean-Specific =~ Language Model. arXiv preprint

arxiv:2008.03979.

Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., & Wang, P. (2020).
K-BERT: Enabling Language Representation with Knowledge Graph.
In AAAI (pp. 2901-2908).

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large
annotated corpus of English: The Penn Treebank.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., & Dean, J. (2013a).
Distributed representations of words and phrases and their
compositionality. Advances in neural information processing systems,

26,3111-3119.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013b). Efficient estimation
of word representations in vector space.arXiv preprint

arXiv:1301.3781.

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global
vectors for word representation. In Proceedings of the 2014
conference on empirical methods in natural language processing

(EMNLP) (pp. 1532-1543).

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &
50

Zettlemoyer, L. (2018). Deep contextualized word representations.

arXiv preprint arXiv:1802.05365.

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings

using siamese bert-networks. arXiv preprint arXiv:1908.10084.

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in bertology:
What we know about how bert works. arXiv preprint
arXiv:2002.12327.

Ross, J. R. (1967). Constraints on variables in syntax.

Strubell, E., Verga, P., Andor, D., Weiss, D., & McCallum, A. (2018).
Linguistically-informed self-attention for semantic role

labeling. arXiv preprint arXiv:1804.08199.

Sundararaman, D., Subramanian, V., Wang, G., Si, S., Shen, D., Wang, D., &
Carin, L. (2019). Syntax-Infused Transformer and BERT models for
Machine Translation and Natural Language Understanding. arXiv

preprint arXiv:1911.06156.

Tenney, L., Das, D., & Pavlick, E. (2019). BERT rediscovers the classical NLP
pipeline. arXiv preprint arXiv:1905.05950.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ...
& Polosukhin, 1. (2017). Attention is all you need. In Advances in

neural information processing systems (pp. 5998-6008).

Vig, J. (2019). A multiscale visualization of attention in the transformer model.

arXiv preprint arXiv:1906.05714.

Wang, Y. S., Lee, H. Y., & Chen, Y. N. (2019). Tree transformer: Integrating

tree structures into self-attention. arXiv preprint arXiv:1909.06639.

51

Warstadt, A., Cao, Y., Grosu, 1., Peng, W., Blix, H., Nie, Y., ... & Wang, S. F.
(2019). Investigating BERT's Knowledge of Language: Five
Analysis Methods with NPIs. arXiv preprint arXiv:1909.02597.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... &
Klingner, J. (2016). Google's neural machine translation system:

Bridging the gap between human and machine translation. arXiv

preprint arXiv:1609.08144.

Zhang, X., & Li, H. (2020). AMBERT: A Pre-trained Language Model with
Multi-Grained Tokenization. arXiv preprint arXiv:2008.11869.

Zhang, Z., Wu, Y., Zhao, H., Li, Z., Zhang, S., Zhou, X., & Zhou, X. (2019).
Semantics-aware bert for language understanding. arXiv preprint

arxiv:1909.02209.

Zhou, J., Zhang, Z., Zhao, H., & Zhang, S.(2019). LIMIT-BERT: Linguistic
informed multi-task bert. arXiv preprint arXiv:1910.14296.

52

Appendix A. MeCab POS Tag

s z[E
=
i) <% Tz |x| (% T 0| 70|
| XX || TROIRO| ||| [R | R R U
N T OF | M| TF X[~ | O~ | oo | N | RO RO T | A | WA | TR B RC |~ || ajo | N 4| S | TR0 B
T | oM M| or | W B L | T | Mo | T | (Mo |k TR | oW | RE|RE| N | BT | o) | T R T | Mo | B B T R
3
Hin
Q
4
o
n
Bl
O
£ %
Ola|a| & ~|<|Q sl
= Z.
ZNZ|1Z| Z |la|s|<|=|BICI125]S N OO0 |al= O Z
ZIZIZ2] Z |Z|IZI22|2|2 2|5 |23 Qa2 2|5 s =20 s ma b E]X
T 2=
@9 R 5 =4
E_HW .@m M“ T | T A > uk
o W 2 T Cle T
=3 Tl &
< <d
T %
B B
R T
L (5

53

XSN AL oAy Hu| Ak
XSV FAF oY Ak
gL T4
XSA AnlAl
XR o
bR, 258
SF [
SE YR
SSO o= I3 ([
SSC 2= 235),]
SC T2,/
SY
SL Q]=to]
SH k2k
SN =2t

54

2% A &)t

SECHRIL hATIOMAL LIMIVERSTY

Appendix B. Correlation Heatmap

addPOS (fulltag)

N - VX+|

- XSA+EC+VX+EP

- MAG+XSV+EP+EC
- NNB+VCP+EC

- NNG+JKO

- WHECHVX+EP+EC
- VX+EP+ETM

-NR

-ICHX
- VAHECHVX+EP+EC

N - WHETM+NNB+JKS

- XSV+EC+VCP+EP+ETM

-NA
- WHECHVX+ECHVX+ETM
- NNG+XSN+XSV+ETM
- NNBC+EC
- VA+EP+UNA+EF
- VAHECHVV+EF
- WHETN+VCP+EC
| - EC+ETM
- WHECHEC
- WHETN+XSV+ETM
R - NR+EC
- VCPHEC+VX+EC
- NP+/KG+NNG+/KB
- VA+ETM+NNG+VCP
- VX+ETM+NNB+VCP
- NR+KO
- XR+JX
- EC+VX+EC+KO
- VCP+EF+VCP

- XSA+EC+VV+EF

- ECHWHEC

- XSA+EC+VX+EC+VX

- VA+EC+VX+ECHVX+EP
™

NR -

ICHX -

-

NA -
WHECHVX+EC+VX+ETM -

VA+ECHVX+EP+
NR+EC -

VCP+EC+VX+EC -
NPﬂrKG#NNGﬁKB -
VA+ETM+NNG+VCP -

EC+ETM -
VX+ETM+NNB+VCP -

WHECHEC -

VXHETM -
XSA+ECHVX+EP -
MAG +XSV+EP+EC -
NNGHKO -
WHECHVX+EP+EC -
NNBC+EC -
VA+EP+UNA+EF -
WHETN+XSVHETM -
EC+VV+EC -
XSA+ECHVX+ECHVX -

HKO -
VCP+EF+VCP -
VA+EC+VX+ECHVX+EP -

NNB+VCP+EC -
VX+EP+ETM -
WHETM+NNB+JKS -
VA+EC+VVA+EF -
W+HETN+VCP+EC -
ECHVX+EC
VCP+ECHETM -
XSA+ECHWAEF -
EC+VV+ETN -

XSV+EC+VCP+EP+ETM -
NNG+XSN+XSV+ETM -

addPOS (endtag)

l—? mj%

- MM

- NR

NNP -
SN -
VA -
EF -
ETM -
EC -
MM -
-
NR -
XSN -
KC -
UNA -
KV _
-
Ko -
S -
ssC -
sc -
XSA -
VX -
VEN -
KO -
SH -

multiaddPOS (fulltag)

B T e e

- NNG
- XSV+EC
-1c

'3 - XSV+EC+VX+EP
- VX+EPHEC

- NNG+JC

- XSV+ETN+JX
-VCN

- W+HEC+VX+EC
- VX+ECHXSA+ETM
- XSV+EC+VX+EP+EC

- VX+ETN
- EP+ETM+NNB+VCP
- NNB+ETM

- EPHECHX

- XSV+ECHWHEC

- NP+JKG+NNG+KS
- XSV+ETM+NNB+)X

- VX+EP+ETN+JKB

- EP+VCPHEC

- VA+EC+VX+ECHVX+EP
- W+ETM+NNB+VCP+EF
- NP+KO+WHEC

- WHEC+VX+EC+EC

- WHECHECH+VX+EF

- VA+ETN+JKB+X+/X

= VA+EC+VX+EP+EC

- ECH+VX+ECHVX+ETM

= XSV+EC+VX+EF
- EC+EP+EC

- NP4KG

- NNG+VCP+ECHX

- WHETN+JX

- WHETN+/KB

- WHEPHEPHEC
VA+ECHVX

IC -
X -
Cim

XSVHECHVXHEP -

Vo
uxz
T

i

NNG -

XSVHEC -
WHECHVX -
NNP-+JKB -

NP+KG +NNGKS -
XSV+ETM+NNB+X -

VX+ETN -

VX+EP+EC -
WW+ECHVXHEC -
VX+ECHXSA+ETM -
XSVAECHVX+EP+EC -
EP+ETM+NNB+VCP -
NNB+ETM -

EP+EC

XSVH+EC+HVVH
VA+ECHVX+ECHUXHEP -
VA+ETN4KB£JX+X -
VA+EC+VX+EP+EC -
ECHVXHECHVXHETM -
WAHEP+UNA+EF —
WH+ECHXSN
XSVHEC+VX+EF -
ECHEP+EC -

NP+
WAHETN4JKB -
WAEPHEPHEC -
VA+ECHVX -

multiaddPOS g(f;:ndtag)
\
TG A

_— -NA
= UNKNOWN

-

- NNP
-EC
-ETM

- VA

K-
e -
KS -

UNKNOWN -

56

maskPOS (fulltag)

—L .l

~ NP-+JKG+NNBC+VCP+EP
|- NA+EP

- NR+JKO

- XSVHECHVX+EP+ETM

- EC+VX+EP+UNA+EF

- NP+JKO+VV+EP+EC

- NNG+VCP+EF

- XSVHEPHETN+JX

- XSV+EC+VX+ECHVX+EC
- VA+ECHVV+EP

|- VXHEP+VX+EP+ETM

- NP+JKG+NNBC+VCP+EF

|- VX+ETM+NNB+VCP+EC

WH+IC

- XSVHEC+VCP+EC
|~ WHECHVX+EC+VX+ETM
|- XSV+EC+VCP+VCP
|- ECHEF

|- XSVAHETN+VWHETM
|- EP+ETN4JKS

- JKS+EP+EC

- XSA+ECHVVHEF

|- WHECHVV+EF

- XSA+EC+VV+ETM
- EC+VX+EC+JKO

- W+EC+VCP

- NNG+XSV+ETM

-~ NNBC+VCP+EC

- JKB+VCP+EC

- WHEP+EF

- XSN+VCP+ETM

- VX+EF

-SH
- W+EC+VX+EP
- SF

X

SF -
X

7 i T T i T
ceoSLULXOETLOLLZa auw o 50U Tw Ta
G wﬁmwwémﬁwwﬁm‘{ﬂéumé OO FRRLEL F
Fribt+ritihi e+t h>+ Sherrr s
532 380E552 00592505 uE gh1eses 3
STSHIYRLIIHSYNGINTYXETS oEgss+6” 3
+ ++;+uuu+++ I+ FF> 3 xEXFES> [
9 Xgowuiixgn Rg9 god =z E3+00>1 o
@ SWizp++>02 Lz wwY £ OO¥, Z +
4 ++0ZSx<F 22 +Z ++0 O Tz I} 2
z 9x¥ 9 >a Zz% 2 SE¥+ o+ g 22

+ WST X3 W4 952 >

it T*d O 0o 2 2

< P2 W x| O

F 0 + Tt o

& > +

a ax

z 2 z 2

maskPOS (endtag)

i

- UNKNOWN

NA -
UNA -
*Q -
veP -
VCN -
550
s -
VX -
O -
-
MA)
XPN -
EF -
x-
NNB -
ASN -
NR -
VA -
NP -
B -
wWo.
MM -

z
H
g
H
£
E

Appendix C. Distance Matrix

Gold Parse Distance

.

Ké

fekdias Ll 1)
2labaro]

AR AU

wiufeel

5

o
12

»

22k=Ck2|oll

2

UM

YRZE

obke

s

=
4
]

Bl um

27t2rp2|ol=
2|2Haro]
A Zlof Yol
oLtz
27kCR|

2
UotH
Azt
opzkz

&

Predicted Parse Distance (squared)

.

ol
T

24cele

latarol

3/slolglol 4l

»

27trp2ol=
EEEL
92) =l of 2101 H
20)
LN
kO]
22
Aot
alzt
opzkz
A

(6]
[0}

IR 25
B4 Y JRE AFT AolotA
BERT =4l

) o]
otol3} i}

Aedet sl

2 Aol BERT Rdlof| FARM: <dojehd] ZJRE Agtsio] 2d o]
e wold olE JdefefHon gAstuzt sttt BERTE 1 AAl2
7283 A= U= mddolxut muo] mWAHoz oojstd ARE
Aot FAade W I Aol HE 22 & Ae AR =
AF7E o] FofAaL QUrt. ERE T lo] mdlo] ofmqt <lojeha] 2|22
S5zl BEAdals ATyt sl ool oy JHolE
digore APHstEE mYo dojsta mARS sl4sks 257 (probing

classifier) @A77} of2] mH|gt Ao},

AYS flofl 2 A= ARk dACNA ot WHes 7|E
BERT =H] Qg du|do] JFA dHlEd AEE F7bstdth ololl= (1)
EZ4F d¥d-S o= W (addPOS), (2) EAF dHidS =
" (multiaddPOS), J=ar (3) FAE i
W (maskPOS)o] AMGE|QITE. APdeHE TEX 2= th=o] f]7]mjtotet
FAZIAPE AMEEA ojnff FAR= MeCab 4 BEA7]E o]851
HAEGeH o] Rdo] TFAE EFIcts EFQ @92 AT
Sict. o]% shsE HYE ogste] 5709 fh=o] shef A9 (downstream
task)2 2P TFINSMC, NER, KorQuaD, KorNLI, KorSTS). A9 A}
s gAFor Akt Bl 1 Zo|AE maskPOS EElo] ZAF ZHI}L

59

ol% FEAL dWld AEI} AgEo] stad
A4S sttt mdo] S5ttt FAF AHE gl6H] H5H Hewitt and
Manning (2019)ell 4 AI9FE structural probeE
Aelo] olFojHtt. 1 Ay FA dHldS Adst
ARE Z ndo] 3hto] BEAF AHE k5t AFALS Sl
7R FAF REO] e © &olV] HOH F7F AdE Aol JFA

=
ndo) 45g HU & UE oA}t doks ARS W 4 g

or >~

Aze e AN E GEe] mdR:
Hzz 2del Qolshd EAL st AT(rob)E AEILE
1

uAsteR ® APt ARE ¥ gy sWI dejst g
Agete] oz gato] Adeol A} tolrlok & wraFg ANt

FRol: AAdA =, 1o Kdll, BERT, A, FAF Ed sf4, Probe,
oA E

SH: 2018-20037

60

	1. Introduction
	2. Literature Review
	2.1. Embeddings
	2.2. Models with Linguistic Information
	2.3. Interpretation of Linguistic Knowledge of a Model

	3. Transformer Architectures
	3.1. Transformer
	3.2. Bidirectional Encoder Representations from Transformer (BERT)

	4. Part-of-Speech Models
	4.1. Model Structure (Input Representation)
	4.1.1. addPOS
	4.1.2. multiaddPOS
	4.1.3. maskPOS

	5. Experiments
	5.1. Pre-training
	5.1.1. Data
	5.1.2. Tokenizer
	5.1.3. Vocabulary
	5.1.4. Part-of-Speech Tag Vocabulary
	5.1.5. Training Details

	5.2. Pre-training Results
	5.3. Downstream Tasks
	5.3.1. Tasks
	5.3.2. Evaluation Metrics

	5.4. Downstream Task Results
	5.5. Analysis
	5.5.1. Correlation Heatmap
	5.5.2. Limitations

	6. Linguistic Analysis
	6.1. Syntactic Probing Analysis
	6.1.1. The Structural Probe
	6.1.2. Experiment Details
	6.1.3. Probe Evaluation Metrics
	6.1.4. Probe Results

	6.2. Further Analysis
	6.2.1. POS Tag Combination
	6.2.2. Vocabulary Size
	6.2.3. POS Tagging

	7. Conclusion
	References
	Appendix
	국문 초록

<startpage>10
1. Introduction 1
2. Literature Review 4
 2.1. Embeddings 4
 2.2. Models with Linguistic Information 5
 2.3. Interpretation of Linguistic Knowledge of a Model 7
3. Transformer Architectures 9
 3.1. Transformer 9
 3.2. Bidirectional Encoder Representations from Transformer (BERT) 11
4. Part-of-Speech Models 14
 4.1. Model Structure (Input Representation) 14
 4.1.1. addPOS 15
 4.1.2. multiaddPOS 16
 4.1.3. maskPOS 17
5. Experiments 18
 5.1. Pre-training 18
 5.1.1. Data 18
 5.1.2. Tokenizer 18
 5.1.3. Vocabulary 19
 5.1.4. Part-of-Speech Tag Vocabulary 19
 5.1.5. Training Details 20
 5.2. Pre-training Results 20
 5.3. Downstream Tasks 22
 5.3.1. Tasks 23
 5.3.2. Evaluation Metrics 23
 5.4. Downstream Task Results 25
 5.5. Analysis 27
 5.5.1. Correlation Heatmap 28
 5.5.2. Limitations 30
6. Linguistic Analysis 32
 6.1. Syntactic Probing Analysis 32
 6.1.1. The Structural Probe 32
 6.1.2. Experiment Details 33
 6.1.3. Probe Evaluation Metrics 34
 6.1.4. Probe Results 35
 6.2. Further Analysis 40
 6.2.1. POS Tag Combination 40
 6.2.2. Vocabulary Size 41
 6.2.3. POS Tagging 42
7. Conclusion 46
References 48
Appendix 53
국문 초록 59
</body>

