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Abstract

2D human pose estimation and tracking aim to detect the location of a per-

son’s parts and their trajectory. A pose is composed of parts of a person, and a

person’s part is an element of the body such as arms, legs and head. Pose estima-

tion technique is being utilized both industrially and academically. For example,

in a home training system, pose detection can detect the user’s pose and help

the user correct the posture. Also, in human action recognition research, human

pose information can be exploited as a helpful supplementary information.

In order to apply human pose studies to real-world systems, the model is

required to be of high performance and also light enough to run in a real-time

manner. In this paper, we have focused on improving accuracy. We have consid-

ered how to utilize the feature values to achieve high accuracy using the spatial

and temporal features.

Spatial feature means characteristic values such as textures, patterns, and

postures that can be extracted from images. We have made better use of the

spatial feature by dividing it into local and global features. The global feature

is likely to include a large number of parts, while the local feature focuses on a

relatively small number of parts.

First, we have proposed a structure that can use the global-local feature at the

same time to improve the performance. The global network intensively learns

the global feature, and the local network can learn various regional informa-

tion from images. The local network performs as a function of refining the pose

detected in the global network sequentially. To prove the efficiency of the pro-

posed method, experiments have been conducted on the Leeds sports dataset
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(LSP) data, which is one of the single-person pose estimation datasets.

Secondly, we define the rare pose using global feature and solve the im-

balance in poses. First of all, the poses are classified using location informa-

tion of the entire pose. Experiments have shown that the poses are distributed

around certain poses (standing poses, upper body poses, etc.), and an imbalance

between them apparently exists. We have proposed methods such as weighted

loss, synthesizing rare pose data, etc. to resolve the imbalance. Experiments are

conducted using MPII and COCO data, which are widely used in multi-person

pose estimation.

The temporal feature refers to the varying information of poses along the

time. It is usually recommended to use time information when analyzing objects

in a video. Therefore thirdly, we have estimated and tracked the poses with a

map that expresses the change of a person’s movement. The network learns the

spatial and temporal maps together to create synergy between each other. The

experiment has been conducted in multi-person pose tracking data, Posetrack

2017 and 2018.

Even if the proposed three methods improve different issues, utilized to-

gether. For example, a new structure is a top-down approach and has parallel two

deconvolutions for spatial (Heatmap) and temporal map (TML). Additionally,

the rare pose data augmentation and the local network are applied to increase

performance. Thus, adopting three methods is available to improve performance

and more extensible in the pose estimation field.

keywords: 2D human pose estimation, 2D multi-person pose tracking, Spa-

tial feature, Temporal feature, Rare pose, Temporal flow map, Deep learning,

clustering
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Chapter 1

Introduction

The 2D human pose estimation is to detect the pose of human in 2D images.

The pose is similar to a person’s skeleton and is composed of parts such as

head, hand as shown in Figure 1.1. Although the number of parts constituting a

pose is different in each pose dataset, parts are distributed mainly on the head,

arms, and legs. The location of each part is represented as (x, y) coordinate in

the image.

Because the pose indicates a person’s shape and motion, pose information

can be applied to various fields such as education and entertainment. Recently

a home training system has been released by a well known company to help

those who workout alone at home. When the user follows the instructor’s mo-

tion shown in the screen, the home training system detects the user’s pose and

suggests correction on the posture. Also, other research fields have used pose

feature as an additional information. For example, in action recognition area,

action recognition accuracy has been enhanced drastically using human pose

information [51, 75, 52].

In order to apply pose information to various fields, the essential compo-
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(a) (b)

Figure 1.1: The example results of pose estimation and pose tracking.

(a) shows the multi-person pose estimation result and (b) shows the

multi-person pose estimation and tracking result. Left side of (b) is the pose

overlapping image between two images. It shows the movement (red arrow) of

the pose between the poses.

nents of the model are high performance and low complexity. With a high per-

formance, a smaller number of poses will fail to be detected. With a low com-

plexity, pose estimation will be done light enough to reduce the runtime and

memory consumption in an actual application. Among them, we have focused

on improving the accuracy of a pose estimation and tracking model.

There are various factors such as the model structure, the size of an image

and the optimization method to improve the performance. Among them, we have

considered how to use and combine the feature values from the model itself

to increase pose accuracy. By designing the architecture of a pose estimation

model, we induce the intermediate features to represent spatial and temporal

features to harvest more information from an images or video.

The research on 2D human pose consists of pose estimation, dense pose

estimation and pose tracking. This paper is mainly about pose estimation and
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(a) Spatial feature (b) Temporal feature

Figure 1.2: The visualization of spatial and temporal features.

(a) is the spatial features and (b) is the temporal features. In the (a), the area

containing a person’s whole means a global feature and an area including a

partial part means a local feature.

tracking. The Figure 1.1 shows the example of (a) pose estimation and (b) pose

tracking. The pose estimation is a study that detects the (x, y) coordinates of

a person’s part in the image. Depending on how many people are in the input

image, it can be divided into a single-person pose estimation and a multi-person

pose estimation. The pose tracking is a study of detecting and tracking poses.

Tracking a pose, the model should assign every detected parts of a person to

the identically corresponding parts of the same person in the next frame. More

specifically, the pose tracking aims to give each person a unique id and correctly

match each detected pose.

1.1 Spatial feature

Implicit connections between parts exist in the pose of a person. If we focus

only on a single part, we cannot learn the overall relationship among parts, and

the performance may degrade. Besides, if we focus on the entire pose, the accu-
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racy of detecting each part having a wider range of movement may be reduced.

Therefore, we need to use all the features globally and locally.

Literally, the spatial feature is a feature value that represents the space do-

main. We have divided the spatial feature into global features and local feature.

The global feature stands for the overall property of the pose, and local feature

embraces partially focused information. As shown in Figure 1.2 (a), the global

feature is likely to extract information from area that contain a large number of

parts while the local feature would rather interpret a smaller area from an im-

age. Therefore, in order to detect poses effectively, both global and local features

should be used appropriately.

1.1.1 Global-local network

Many studies have learned global and local information using the receptive field

of traditional convolutional neural networks (CNN). The receptive field refers to

a region where one neuron affects the pre-layer, and it usually lies on a square-

shaped area in the convolution layer. Some researchers expand the receptive

field by repeatedly stacking networks or accumulating layers deeply. In the ex-

panded receptive field, the global feature can be extracted to includes the full

body. Also, the receptive field is small at the bottom layer and it can be used as

the local feature that contains a few parts.

Strided convolutional operation restricts the area of corresponding receptive

field and offers a limited amount of information from the local feature of in-

terest. To solve this problem, we have proposed a local network to get a better

representation of local feature.

Proposed method consists of two parts: the global (general) network and the

local (refine) network. In the global network module, we predict Heatmaps [7]
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of parts using the ResNet-101.

The feature maps of the final convolutional layer are concatenated with the

Heatmaps of global network, which are inputted to the local network to refine

the location. In the local network, position-sensitive score maps are created to

explain the spatial information on region of interest (ROI) as in [43], where

region-based fully convolutional networks was proposed for object detection.

More details are in Chapter 3.

1.1.2 Exploring rare pose estimation using global pose information

Comparing to datasets of other research field such as object detection, the num-

ber of training images in pose estimation datasets are relatively smaller. Among

them, rarely seen poses which act as outliers can be observed and this easily af-

fects the performance of the model. To resolve this problem, we need to analyze

the distribution of the dataset.

For a better understanding on poses, a criteria to classify them is required.

Unfortunately, a pose is expressed as a combination of continuous values with

a very wide range and this makes the criteria hard to define. Thus, we propose a

method to classify poses using the global pose feature.

We use the (x, y) coordinates of parts as global information. All poses are

grouped by clustering with global information that consist of part’s location. As

a result, poses are clustered around standard poses such as standing pose, left,

right pose, etc. A large number of poses are close to the center pose and a small

number of poses still remains far from the center. This infers that the diversity

of poses in the data is insufficient and statistics of poses is imbalanced.

We have defined the imbalance part as ”rare pose” where the distance to the

center position is higher than the threshold. A pose near the outlier, its predicted
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accuracy is likely to decrease. The poses corresponding to the outlier are rel-

atively small in the dataset and, at the same time, difficult to detect. Thus, we

define the rare pose and propose methods to improve the performance of rare

poses. More details are available in Chapter 4

1.2 Temporal feature

The temporal feature is time-sequential information and feature value that can

be extracted from the video. To acquire temporal feature, we can think of a

relatively narrow temporal feature acquired from the neighboring two frames

and a wide range of temporal feature obtained from the ongoing video. The

temporal feature is a rich information that can be extracted from the video data

and is essential to analyze the video data.

We focus on increasing the pose estimation and tracking performance in the

video. We should make a proper use of the temporal and spatial information to

track the poses effectively. We considered how we could simultaneously learn

the temporal and spatial features. We thought that if both feature were learned

together, it would create synergy. Thus, we propose a temporal flow map for

limb (TML) representing the limb’s movement and a network designed parallel

to train both features.

Limb denotes the area that connects two parts. A pose is composed of parts

and a part is a (x, y) coordinate. Tracking a single part of a pose equals to

tracking a single coordinate. However, tracking only one single part may not

contain enough temporal information due to lack of representation power and

it may be vulnerable to occlusion of parts. Therefore, instead of using a single

part point, a limb connecting two adjacent parts is tracked, which is expected to
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resolve the above mentioned problems.

The TML is designed to represent a temporal movement of a person by

estimating the direction of limbs’ movement. More specifically, we subdivide

each limb into several sections equally in each frame. Then, 2D unit vectors that

represent the direction of corresponding limb sections between two frames are

calculated, which are used to build each limb’s temporal maps. A huge amount

of data is needed to train the TML because the maps have to learn extensive

information. Thus, we develop a multi-stride method as a data augmentation

method to learn various types of TML. In other words, we randomly take the

two frames within a given time range. More detailed in Chapter 5

The proposed methods have solved different issues of human pose. Going

one step forward, other issues can be solved by using combined methods. For

example, a new pose estimator and tracker followed top-down manner is con-

structed using the combined methods to get higher accuracy. The top-down man-

ner estimates the pose based on the detected bounding box. So, the accuracy of

pose estimation is higher than a bottom-up manner and state-of-the-art methods

follow the top-down manner.

Additionally, the Heatmap representing body parts can be learned using var-

ious local features by the proposed global-local network. And, the rare pose data

augmentation helps to general learning. Above the three ways which are the top-

down manner, the global-local network and the rare pose data augmentation help

to improve a performance of pose estimation. For pose tracking, the temporal

flow map for limbs (TML) is adopted. More detailed in Chapter 6. Moreover, if

a method of reducing parameters is additionally applied, it will be possible to

detect and track the pose in real time.
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Chapter 2

Related work

2.1 Single-person pose estimation

Single-person pose estimation is the pose estimating problem of one person

from an image with only one person. The single-person pose estimation problem

has been researched for a long time in Computer Vision (CV). As Deep learning

advances, the performance of pose estimation has increased significantly. [73,

11, 35, 79, 4, 57, 18, 23]

DeepPose [73] is the first paper to adopt Deep learning to human pose esti-

mation. A network of DeepPose has consisted of 7 fully connected layers. The

last layer of the network regresses the (x, y) coordinates of joints. The same

network structure was applied to multiple stages to improve the position. Deep-

Pose has been shown that Deep learning is effectively applied in pose estimation

problems, with higher performance than conventional methods that do not use

deep learning.

One of the reasons why pose estimation is difficult is that we need to detect

the (x, y) coordinates. The range of coordinates is too broad because of the

8



variety pose variation. Thus, a Heatmap to express the location of parts was

proposed. The Heatmap is created as a Gaussian map centered on the (x, y)

coordinate. The Heatmaps are created for each part, and all Heatmaps of parts

are concatenated to a 2D tensor form.

[35] is the first paper to train the Convolution neural network (CNN) with the

Heatmap. They have two significant parts as the part detector and the high-level

spatial model. Part detecter trains the Heatmap through parallel convolution lay-

ers with different input image size. Based on the Part detector’s output, the Spa-

tial model trains the Heatmap using parts’ relation. At the last time, they have

merged the outputs of each part. After their work, most papers have adopted the

Heatmap to regress the joints.

In order to solve the single-person pose estimation problem, many papers

have built up networks deeply. The deeper network has a larger receptive field,

and it is more efficient to detect global pose information.

[79] applied the multi-stage method to take a deep network. The multi-stage

method is constructed with small networks of the same structure repeatedly. In

each stage, they calculate a loss of Heatmap, and the calculated Heatmap has

added the input of the next stage. Not only get the global information more

broadly, but it also has the advantage of being able to view the attention part via

the Heatmap.

Stacked-hourglass network [57] also applied the multi-stage method using a

proposed Hourglass module. The Hourglass module has a symmetric structure

between down-sampling and up-sampling. Repeatedly features down-sampling

and up-sampling, the network learns global and local features.

Because parts’ movements are diverse, it is also essential to use appropri-

ate local features expressing partial characteristics. In the Convolutional neural
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network (CNN), a receptive field means a volume of input values that affect the

output neuron. The feature of the receptive field explains local information. The

deeper network has a larger receptive field and various sizes of receptive fields.

Unfortunately, it is not easy to get the various location of the receptive field.

[18] proposed the Dual-source deep Convolutional neural networks (DS-

CNN). They learn the pose to integrate both the local appearance and full body

appearance. They get the local information through the part image patch, which

has various scales and locations. Because the image patch is detected indepen-

dently, it is possible to learn various local information better than the receptive

field.

To efficiently use global and local information simultaneously, we proposed

the global-local network. The global-local network concatenates with the base-

line network to learn global features and the small network to learn local feature.

Differently DS-CNN, we used the local information to refine the pose. Because

we extract local information on the region of interest (ROI), the local informa-

tion is an appropriate refining pose. More detail, in chapter 3.

2.2 Multi-person pose estimation

The multi-person pose estimation is to estimate poses of the multi-person in the

image. The number of multi-person is different for each image. Multi-person

pose estimation methods are divided into Bottom-up approach and Top-down

approach. The most significant difference between the two methods is whether

or not to have a person detection module. The top-down approach firstly detects

a person in the image through the detection module and extracts that person’s

pose on the detected bounding box. The Bottom-up approach, on the other hand,
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detects a person’s pose directly within the image. [53, 42, 55, 19, 61, 85, 39, 86,

87, 72, 37, 12, 62, 15, 14, 59]

Both approaches have pros and cons. The top-down approach has higher per-

formance than the bottom-up approach method because it prioritizes human de-

tection. So the state-of-the-art method in multi-person pose estimation is mostly

top-down structures. In contrast, the bottom-up approach has a relatively faster

inference speed than the top-down because there is no detection module part.

So in real-life applications, the bottom-up method is more suitable.

In the bottom-up approach, detecting the pose is split mainly into detecting

the part’s location and tying the parts of the same person. To detect the part’s lo-

cation, previous research proposed a network to learn the Heatmap to represent

parts or methods to directly detect the part. Also, they suggested ways to tie up

parts of the same person to enhance pose detection performance.

Openpose[10] proposed a part affinity field (PAF) map to connect detected

parts. PAF is the map that indicates the direction of the limb connecting parts.

At the inference, the parts are detected through Heatmap. They calculate the

association score between detected parts through the line segmentation method

in the PAF and the distance between parts. Finally, match them together into one

person’s parts.

[63] proposed the DeepCut module to connect parts of the same person.

[63] detects various parts candidates first through the part detector. Each part

has a unary score and uses this score to calculate the association cost again.

Based on the association score, they match part candidates. DeepCut[63] and

DeepCut[29] have the same frame form, and DeepCut has proposed a better

part detector and pairwise module.

The top-down methods estimate poses from objects detected by executing
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detection methods. Many researchers use various detection methods, of which

Mask-RCNN [1] is the most commonly used one. Most previous works have

done researches on utilizing multi-scale features to estimate poses for different

situations and sizes. Simple [80] proposes a method to increase the scale of the

output heatmaps through deconvolution layers. Upon a ResNet [24] structure,

the work increases the scale of encoded features through newly added deconvo-

lution layers. Although it is a network with a relatively simple extension, it had

achieved a quite good accuracy.

Many recent studies have proposed network structures that can utilize fea-

tures in various scales concurrently. For example, a network that exploits multi-

scale features to maintain a high-resolution feature scale is proposed [71]. High-

and low-resolution features are provided with separated inference paths with

four stations to exchange information along the paths. On every last layer of

each station, features are concatenated to be fed into following separated paths.

For the concatenations, 1x1 upsampling has been applied for low-resolution fea-

tures, and a 3x3 convolution layer with a stride size of 2 has been applied to

downsample high-resolution features.

Based on the analysis that local and global features are respectively impor-

tant in localization and classification problems, Cai et al. [8] proposed a method

that seeks to integrate local and global features since pose estimation problems

require estimation for joint locations of different body parts. The method had

achieved state-of-the-art performance in COCO keypoint 2017 challenge with

their proposed network structure. A convolution layer operates recursively with

a single bottleneck, effectively extracting local and global features.

Localization or detection accuracy rate varies for different body parts, each

of which is innately given with different ranges and degrees of movement free-

12



dom. Several kinds of research have labeled keypoints that are relatively more

difficult to localize, such as ankle and wrist joints. As a similar approach to

the object mining method, OHEM (online hard example mining), that tries to

solve data imbalance issue from object detection tasks [68],an online hard key-

points mining (OHKM) loss is proposed to solve typical accuracy imbalance

among keypoints of pose estimation problems [13]. In the work, a refine net-

work is fed with features of a global network, and both networks are trained

with L2-loss functions. The refined network is applied with an OHKM loss to

be trained only with detectable parts less accurately. Another work[88] that as-

signs more weights on joints that are comparably more difficult to estimate,

such as partially occluded body parts, is proposed with a generative adversarial

network[22] (GAN). The work collects losses for each part calculated from a

generator and applies larger weights on joints with larger loss values.

As mentioned, recent papers have focused on improving pose estimation

methods by utilizing the feature scales and refinement of poses using local in-

formation. While such methods have improved overall performance to an extent,

a more direct approach is needed to handle poses that cover a lot of complexity.

We looked at the problem from a different perspective. We have guessed

that the imbalance of pose has existed in the pose dataset. If the pose dataset

has an imbalance of pose, it has a limitation of improving the pose estimation’s

accuracy. Because the model couldn’t be learned enough to estimate the unusual

pose, there is a limit to performance improvement. Thus, we discover and define

the pose imbalance and propose the methods to improve the imbalance. More

detailed in chapter 4
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2.3 Multi-person pose tracking

Multi-person pose tracking means tracking the pose of the same person in the

video. The purpose of multi-person pose tracking is to follow the same person

for a long time. The multi-person pose estimation and tracking are related be-

cause the pose can only be tracked if it is well estimated.

The multi-person pose tracking is divided into the bottom-up approach and

the top-down approach, same as the multi-person pose estimation. The bottom-

up approach estimates the poses and tracks the poses using temporal informa-

tion. The top-down approach first detects the bounding boxes of humans and

estimates one person’s pose on the bounding box. Same as the bottom-up ap-

proach, the top-down approach tracks the poses using temporal information.

The main issue in pose tracking is how to use temporal information. Many

researchers have conducted research using temporal information in various ways,

such as a bounding box tracking algorithm, optical flow, and similarity. [16, 21,

28, 30, 33, 80, 81, 76, 70, 5, 67]

Xiu et al. [81] proposed a pose tracker based on a pose flow that is a flow

structure indicating the same person in different frames by pose distance. [66]

used a bi-directional long-short term memory (LSTM) framework to learn the

consistencies of the human body shapes.

[16] and [65] proposed the temporal map to represent the movement of per-

son. In the case of [16], they used the direction of joints for temporal map in-

formation. Their map is called a temporal flow fields (TFF). TFF indicates the

transition between two frames. On the other hand, [65] used the direction of

limbs to generate the temporal map because the movement of joints is too small.

The way of generating temporal map is similar with [16]. Both methods used a
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similarity measure to track the poses using the temporal map.

Recently, studies using the top-down approach have produced state-of-the-

art results in the multi-person pose estimation. Multi-person pose tracking has

also come up with a lot of top-down approaches accordingly.

[80] tracked the pose using the optical flow and the pose similarity. At the

previous frame, the bounding box is shifted to the current frame using the opti-

cal flow generated between the previous and present frames. They adopted the

greedy search to match the same pose. They calculated the similarity using ob-

ject keypoint similarity (OKS) and selected the optimized association between

the shifted bounding box and bounding box of the current frame.

[58] is the online pose tracking method for the top-down approach. They

use a Re-ID module to track the pose. As the Re-ID module, A Siamese Graph

Convolution Network (SGCN) is proposed. The SGCN calculates a similarity

of the poses using graphical information of person parts.

2.4 Datasets and measurements

Various datasets express the pose of people. The most commonly used data are

Leeds sports pose (LSP), MPII, COCO, and Pose Track. The annotation of each

data is centered on the arms, legs, and head, but the order of each data is differ-

ent. Also, the methods for measuring the accuracy of each dataset are different.

Therefore, in this section, we explained the pose information and measurement

metric of each data.
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2.4.1 Leeds Sports Pose (LSP) dataset

The LSP dataset is typically used in single-person pose estimation. They gath-

ered the dynamic sports pose images in Flickr, an online image and video host-

ing site (Figure 2.1). Images contain various sports poses such as Badminton,

Baseball, Gymnastics, Tennis, and so on. Most images have only one person.

The images were resized so that the person was about 150 pixels. The pose is

annotated with 14 joints as shown in Figure 2.1 (a).

They have two sets, which are original LSP [35] and LSP extended (LSPe)

[36]. The original LSP data has 2000 poses images, and LSPe has 11,000 pose

images. Two sets have shared the same 1,000 test pose images. Except for the

test image, the rest pose images are training images. The LSP has 1,000 training

images, and The LSPe has 10,000 training images. The Figure 2.1 (b) shows the

example images of LSP.

We use the percentage of correct keypoint (PCK) to evaluate the pose as

bellow equation 2.1. Dist means the distance between ground-truth joint (Jgt)

and predicted joint (Jpred). If theDist is in the threshold (0.2∗dtorso), the output

of bool is true, which means the joint is corrected. dtorso means a distance of

torsor in person, and N is the number of people.

∑N
n=1(bool(Dist(J

n
gt, J

n
pred) < (0.2 ∗ dntorso)))
N

(2.1)

2.4.2 MPII dataset

MPII human pose dataset [3] has 25k images with poses of 40k people. The

poses are annotated with 2D locations of 16 joint parts as shown in Figure 2.2

(a). The MPII pose dataset is collected based on 410 types of action categories
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(a) (b)

Figure 2.1: The order of annotations (a) and example images (b) in Leeds sports

dataset (LSP).

of people (Figure 2.2 (b)). The pose images are extracted from a YouTube video.

The evaluation method of MPII dataset is correct keypoints using head (PCKh)

as follow equation . The PCKh measures the accuracy of the prediction same as

PCK. The difference between PCK and PCKh is a threshold. PCKh counts the

number of joints that are within a distance of head.

∑N
n=1(bool(Dist(J

n
gt, J

n
pred) < (0.5 ∗ dnhead)))

N
(2.2)

2.4.3 COCO 2017 keypoint dataset

COCO 2017 keypoint is a large-scale keypoint dataset [46]. COCO has more

than 200k images with poses of 250k people. The poses are annotated with 17

joint parts as shown in Figure 2.3 (a). The pose images include not only daily life
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(a) (b)

Figure 2.2: The order of annotations (a) and example images (b) in MPII.

but also sports. This is an unrestricted and extensive range of pose data (Figure

2.3 (b)).

The evaluation metric of COCO is average precision (AP). Originally, the

AP is used in the object detection field. The AP computes the average preci-

sion value for recall values over 0 to 1. When measuring the similarity between

ground-truth box and predicted box, the intersection of union (IoU) are used.

The AP of pose estimation is inspired by object detection. In the pose estima-

tion, IoU is replaced by object keypoints similarity (OKS). OKS is used for sim-

ilarity measures among ground-truth pose and predicted pose as follow equation

2.3.

∑
i exp(−d2i /(2s2k2i ))δ(vi > 0)∑

i δ(vi > 0)
(2.3)

The di means the Euclidean distances between ground-truth and predicted

joint and vi means the visibility label of ground-truth. s is the object scale and
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(a) (b)

Figure 2.3: The order of annotations (a) and example images (b) in COCO key-

points 2017.

ki is a constant of per-joint.

2.4.4 PoseTrack

PoseTrack datasets are large-scale benchmarks for human pose estimation and

tracking [2]. The PoseTrack datasets have various videos of human activities,

including fishing, running, tennis, etc. The datasets include a wide range of pose

variations, from a monotonous pose to a complex pose. PoseTrack datasets have

videos more than 500 sequences that are expected to be more than 20K frames.

It comprises 250 videos for training, 50 videos for validation, and 214 videos

for testing.

PoseTrack datasets have the two different version: PoseTrack 2017 and Pose-

Track 2018. The difference between the two versions is the order of annotation

and number of annotation as shown in Figure 2.4.
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The evaluation metric of Posetrack is a mean average precision (mAP) for

pose estimation and multiple object tracker (MOT) metric for pose tracking.

We measured the mAP using the PCKh. First, we calculate PCKh between the

predicted multi poses and ground truth poses. Then, only one predicted pose

was assigned to the ground truth based on the highest PCKh. Unassigned other

poses are counted to false positive. Finally, the mAP is measured using the AP

of each body part.

The purpose of MOT is to track multi poses simultaneously and track them

for a long time. Among the MOT metric, multiple object tracker accuracy (MOTA)

and multiple object tracker precision (MOTP) are used. For MOTA, first, we

compared the predicted poses, which have their own personal id and ground

truth pose. When comparing the poses, we count three situations: missed de-

tects (MISS), False Positives (FP ), miss-match (MissMatch). Miss is the

case of missing tracking trajectory. MissMatch means that tracking informa-

tion is replaced with other objects. gt means the number of poses at time t.

MOTA = 1−
∑

t(Misst + FPt +MissMatcht)∑
t gt

(2.4)

The MOTP is the total error in predicted poses. The MOTP exposes the

ability to estimate the exact position of the object in the tracker, independent

of the technique of recognizing the composition of the object and keeping the

trajectory constant.
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(a) Posetrack 2017 dataset (b) Posetrack 2018 dataset

Figure 2.4: The order of annotations (a) in posetrack 2017 and (b) in posetrack

2018.
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Chapter 3

Single-person pose estimation

The single-person pose estimation is to detect locations of parts in the single

person image. There are many components to increase the performance: fea-

tures, structure of network, optimization, etc. In this section, we focus on how

to effectively use the features. The features can be separated into global and lo-

cal features. The global feature represents the whole body of a person, and the

local feature represents a specific region such as hand, leg.

We propose a global-local network that can be learned the global and local

feature as end-to-end. The local network is behind the global network, and it

works to refine the output of the global network. The first global network is a

big deep network that estimates parts’ locations using the global features, and

the second local network is a small network that modifies the parts’ locations

using local feature.
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3.1 Global-local Network

The global network regresses the whole body parts using the Heatmaps. We gen-

erate the Heatmap centered on the location of each part through a Gaussian map.

Because human pose estimation is a highly non-linear problem, it is difficult to

directly regress the locations of the parts. Rather than directly regressing the

position of the parts, we followed a simple alternative method, which regressed

a set of Heatmap centered at the visible target joints as in [7].

We used the ResNet-101 model[24] to a global network to jointly regress

the position of each part. The ResNet-101 network has a huge receptive field, as

shown in Figure 3.1. The global network learns the Heatmap using a wide range

of global features obtained from a receptive field. To increase the resolution of

the Heatmap, the output feature of ResNet-101 was enlarged by adjusting the

stride of convolution filter. Specifically, the stride of the conv3, conv4 and conv5

layers are changed to 2,1 and 1 respectively. Lastly, the output feature map of

conv5) is 14× 14.

We have used a pixel-wise L2 loss to regress the Heatmap as follows:

Lg =
1

N

N∑
n=1

∑
x,y

∥∥∥Hn(x, y)− H̄n(x, y)

∥∥∥2. (3.1)

Here,Hn means the predicted heatmap and H̄n is the ground truth heatmaps.

N is a number of parts and (x, y) means pixel locations of a Heatmap.

The local network is executed to refine the pose of global network. The out-

put of global network are fed into the local network. The output is a combination

of the output of conv5 and the Heatmaps. The local network learned the partial

Heatmap using direct local evidences.

The low layer of networks can represent the local information by the small

size of the receptive field, which regionally covers the image. As shown in the
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Layer name Output size Layer size

conv6 P × P 1× 1, 2048, 1

conv7 P × P 1× 1, Nb ×N, 1

PS-ROI pooling B ×B ×N

Table 3.1: The structure of the local refine network. The values in the layer

size tap means (kernel, channels, stride). P is the output size of conv6, which

depends on the stride of the global network. N is the number of parts and Nb is

the number of bins.

bottom-left of Figure 3.1, the small size of the receptive field on the conv1 layer

includes only the foot. Furthermore, we need local information which has var-

ious locations or scale. Because the receptive fields of convolution layer have

fixed sizes of strides, it is restricted to get the various local information.

Thus, we use a region of interest (ROI) to extract the local evidence. ROIs

have various scales, sizes and positions, and they contain a variety of combi-

nations of body parts. These characteristics help to increase the expressiveness

and generalization power of the network. As shown in the bottom-right of Fig-

ure 3.1, the detected ROIs have a various size bounding box and a various union

of body parts. We expect that the local feature of ROIs helps to increase the

expressiveness and generalization of the network.

We adopted the position-sensitive score maps and the position-sensitive ROI

pooling form R-FCN [43] to train the local information. The R-FCN is one of

the most popular object detectors. In the original R-FCN network, the position-

sensitive score map channel represents the specific bin of the ROI for each class.
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Figure 3.2: The position-sensitive model applied to our local network.

In this paper, the channel means the specific bin of the ROI for each body part.

The position-sensitive score map has Nb ×N channel to describe spatial infor-

mation for each joint. Here, N is the number of parts, and Nb is the number

of bins to which ROIs are divided. Note that Nb = B × B in the figure. The

position-sensitive ROI pooling is applied to the score maps to generate the fea-

ture maps used to locate the body parts as shown in Figure 3.2.

The Table 3.1 shows the structure of the local refine network. The local

network has three layers: one convolutional layer, one ReLu layer, and one

position-sensitive score map layer. The P means an output size changed by the

stride of the last layer on the global network. The B is the number of bins on

the bounding box.

We used the position-sensitive ROI pooling to extract the features on ROI

region. The position-sensitive ROI pooling works average pooling for all chan-

nels on each bin from the position-sensitive score map. The output value of b -th
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bin after the pooling is calculated as

r(b) =
1

E

∑
(x,y)∈bin(b)

Cb(x0 + x, y0 + y) (3.2)

where E is the number of elements in a feature map that are inside the b-th

bin, Cb is the value of the feature map that corresponds to the b-th bin, (x0, y0)

is the offset of the top-left corner of an ROI, and (x, y) are the offsets in the b-th

bin.

We need to selectively detect the ground-truth Heatmap based on ROI region

and applied the ROI pooling same as position-sensitive pooling. As shown in

Figure 3.2 The average score value in each bin was trained using a L2 loss

where the loss function is as follows:

Ll =
1

N

N∑
n=1

(
1

Nb

Nb∑
b=1

∥∥∥rn(b)− r̄n(b)

∥∥∥2). (3.3)

Here, rn(b) is the value after the selective pooling in the b-th bin of the n-th

joint and r̄n(b) is the corresponding ground truth heatmap.

Figure 3.3 shows a visualization of position-sensitive ROI pooling on two

region proposals. The number of bin is 7. E1 and E2 are the region proposals

extracted from Edgebox. The pooled features that are used to locate right ankle,

right shoulder, and head are visualized for both region proposals. It is verified

that the proposed local network successfully locate the joints in each region

proposal. For example, because E1 included the head and the shoulder but not

the right ankle, the pooled features for the right ankle have low values while the

values of the other joints are high at the position of the joints.

27



Figure 3.3: Visualization of position-sensitive score maps on two different ROIs,

E1 and E2.

3.2 Experiments

To prove the efficiency of the proposed method, we experiment with our method

on the Leeds sports dataset (LSP). The proposed method is implemented us-

ing the deep learning open-source library Caffe[32]. We use the baseline model

of the global network as ResNet-101 network and use the pre-trained parame-

ter, which is trained on ImageNet dataset[40]. For training, the learning rate is

0.0001, weight decay is 0.0005, and momentum is 0.9. We train the proposed

model in two steps. First, the global network is learned except the local network.

As it were, we train the ResNet-101(global network) on the LSP dataset using

a pre-trained parameter of ImageNet. And then, the full network of the global-

local network are trained end-to-end. When training the full network, only one

image input to the network for every iteration. ROIs of the input image is gen-

erated via EdgeBox [89]. Among them, 20 ROIs are randomly selected and are

fed to the local network.
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Head Shoulder Elbow Wrist Hip Knee Ankle Total

Local 74.8 63.9 44.7 29.7 66.6 47.9 28.3 50.8

Global 89.3 71.5 58.0 51.0 70.5 66.5 62.5 67.0

Global(14)-local 91.8 76.0 64.7 58.6 76.9 72.9 68.8 72.8

Global(14)-local* 92.3 79.1 69.2 62.9 80.8 76.0 71.5 76.0

Global(28)-local* 96.2 85.4 76.1 71.2 85.7 81.8 76.2 81.8

Fan[18] et al. CVPR’15 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0

Yang [83] et al. CVPR’16 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6

Table 3.2: PCK-based comparison on LSP. A threshold value was measured at

0.2 (@0.2). The mark * indicates weights from the additional fine-tuning step is

used.

Results on the LSP dataset are shown in Table 3.2 and Figure 3.4. We com-

pared the performance of the proposed global-local network (Global-local) with

the case that only the global network is used (Global), the case that only the local

network is used (Local), and recent human pose estimation methods [83, 18].

Global network was based on the ResNet-101 and used L2 pixel-wise loss to

regress heatmap. Local network was also based on the ResNet-101, and L2 loss

is used for the position-sensitive score maps. Yang et al. [83] proposed a com-

bined network with the expressive deformable mixture of parts. Fan et al. [18]

proposed a dual-source CNN without using any explicit graphical model. They

used the local information in image patches. Unlike our method, they put the

cropped image on input image. We compared those methods as representative

methods of exploiting global information [83] and local information [18]. In the

method tab of Table 3.2, the numbers in parentheses are the size of the output

heatmap.

The performance of the local network and the global network were 50.8%
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(a) (b)

Figure 3.4: Compared result of global network and the proposed method.

(a) Global network, (b) Global(14)-local network. For both (a) and (b), the left

image shows the position of body parts and the right image is the original

image overlapped with the heatmap of the left wrist.

and 67% in terms of PCK accuracy respectively. The accuracy of the proposed

global-local network is 5.8% higher than that of the global network. From the

results, we can see that using only local or only global feature is insufficient for

expressing complex human poses. To boost the performance, we added interme-

diate fine-tuning step before training the global-local network. For the model,

we added the deconvolution layer [49] after the last convolutional layer of the

ResNet. The deconvolution layer upsamples the size of the feature maps to

224 × 224. Then, 224 × 224 heatmaps are generated, which are trained us-

ing the L2 loss with the ground truth heatmaps. We found that using the weight

trained from the intermediate fine-tuning step improves the performance. In Ta-

ble 3.2, methods with the postfix (*) are the networks trained from the weights

that comes from the intermediate step. It can be seen that the intermediate fine-

tuning improves the PCK performance by 3.2%. As stated Section 3.1 that the

stride of the convolutional layers inside the ResNet is adjusted to control the
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output heatmap size, we tested two different output heatmap sizes, 14× 14 and

28 × 28 to show the importance of the output heatmap size. When the out-

put heatmap size is doubled, PCK has been improved from 76.0% to 81.8% by

5.8%.

The model that shows the best performance is Global(28)-local* model of

which PCK@0.2 is 81.8%. Note that the PCK of head regression shows superior

results to the compared methods [83, 57]. Figure 3.5 shows the PCK curve ac-

cording to the normalized distance of each part. It can be seen that the proposed

Global(28)-local* model outperforms the other methods in estimating a variety

of parts. Qualitative results from LSP dataset are shown in Figure 3.6.

The proposed method included the local network to effectively learn local

information. The role of the local network is to find the local information which

cannot be inferred in the global network. Figure 3.4 is the example that shows

the effect of the local network. The images that shows the results of all parts lo-

cations and the images that show the output heatmap of the left wrist are shown.

Figure 3.4(a) is the results from Global model, and Figure 3.4(b) is the results

from Global(14)-local model. In the case of Global model which aggregates the

global information, the heatmap of the left wrist has high values around the right

wrist which is visible in the image. On the other hand, in the case of Global(14)-

local model which exploits the local information as well as the global one, it is

possible to refine the heatmap even for the occluded part, and the position of the

left wrist is correctly inferred as shown in Figure 3.4(b). Thus, we conclude that

the global-local network is able to learn both global and local information.

Next, we tested the Global(28)-local* network model that had been trained

using the LSP dataset on the UCF sports dataset and provide qualitative results.

Figure 3.7 shows the results of representative frames of various videos such as
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(a)

(b)

Figure 3.6: Qualitative results of our method on LSP dataset.

(a) Successful results, (b) Failure results. Proposed method was successful in

various poses. As like squatting pose, many joints had self-occlusion, then it

made a failure result.

kicking and skate-boarding. The network successfully locates parts even though

it is not trained on the UCF-sports dataset. Especially the head, knee and shoul-

der positions were estimated with small amount of errors. Compared to LSP

dataset, UCF sports dataset is more challenging since the datset contains low

resolution and blurry images as can be seen in Figure 3.7. The proposed net-

work produces reliable results despite those challenging conditions. Lastly, we

showed the failure cases of our methods in Figure. When a person is in a squat-

ting position or a person is wearing loose clothes, it was difficult to locate the

body parts. The proposed method also suffers from self-occlusions. In those

case, it is difficult to regress the part’s location correctly on a single frame.

Using a tracking algorithm that contains temporal information can be a solution
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Figure 3.7: Qualitative results of our method on UCF dataset time-sequentially.

for the case. Our method performs slightly worse than the state-of-the-art. How-

ever, since the state-of-the-art methods are constructed as a repetitive structure

or a very deep structure, our proposed method will work a little faster. Also,

attaching our local refine network to other structures which has been previously

proposed will be left for the future work.
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Chapter 4

Rare pose estimation

In pose estimation, imbalance among parts refers to the difference of each part’s

accuracy, and most works try to diminish this accuracy gap.

A data imbalance is inherent in many applications [34]. The imbalanced data

could learn bias towards the majority class and ignore the minority class. Rarely

cases in which you need to handle minor classes exist. The lack of gathering

rare data due to the low frequency occur. Thus, it is necessary to find a way to

detect the minor class well in the current data.

Various methods have been proposed to solve the class imbalance. Repre-

sentatively, over-sampling, under-sampling, re-weighting the loss and synthetic

minority over-sampling techniques are used [64, 77, 74, 47, 20, 6]. Most re-

searchers have proposed methods trained by focusing on minor classes that have

a small number of data. Unfortunately, simple ways such as increasing the num-

ber of minor class data may reduce the performance of the major class. Also,

they need a specific parameter to set an optimal model. Methods such as Groups

Softmax[44] have been proposed to overcome this problem. [78, 31, 44, 26, 84].

[44] divides classes into several groups by the number of data and trains the
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model group-wise. However, since pose data has no class label, existing meth-

ods cannot be applied directly to the pose imbalance problem.

Our method takes a different approach by defining pose imbalance differ-

ently and suggests several methods to resolve this problem. Most available pose

datasets consist of data samples collected in daily-based situations that are nat-

ural in motion (e.g., walking and playing sports). Huang et al.[27] has reported

that 85% of COCO[46] dataset is composed of standing poses, with the rest

being either sitting or lying poses.

Their work argues that the severe imbalance in the data pool makes the gen-

eralization of pose detection difficult. However, pose imbalance in their work is

mainly decided by whether a person is stood upright. Considering that various

factors such as self-occlusions may affect the overall pose estimation perfor-

mance even among the standing poses, a more deductive method must be sug-

gested to quantitatively measure pose abnormality for a better analysis of the

imbalance in pose data.

In this Chapter, our method’s rare poses are newly defined for the first time,

and other approaches to improve the estimation performance against rare poses

are proposed consequently.

First, we establish an appropriate definition of unique pose samples to solve

the problem to enhance the robustness of a pose estimator. To this end, we

firstly define a rare pose as “a pose that occupies as a minority within a data

population”. Examples of such rare poses include squatting poses, poses with

self-occlusion, horizontally extended poses (e.g., swimming poses), and more.

A minority of a dataset, in this context, refers to outliers from the distribution of

whole data.

An outlier generally means that a data sample is significantly different from
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others, the meaning of which is also applied for rare poses. However, unlike

outliers, rare poses are not to be discarded from the set. Among various meth-

ods proposed for outlier detection, we use K-means clustering to detect rare

poses because of its computational advantage of being a training-free clustering

method. In this work, we empirically show that it is suitable to define an out-

lier as a rare pose that is distant from a center of clusters, unlike other dense

data samples near the centers. Once all samples are clustered, a sample’s cluster

distance (CD), the distance between a pose sample and the center point of its

classified cluster, is compared with a pre-defined distance threshold (DT) value

to determine whether it is a rare sample or not.

Fig 4.1 (a) illustrates a distribution of MPII[3] pose data samples and their

clusters resulted by K-means clustering with K = 7. While the solid red arrow

represents a DT, the dashed arrow represents the CD of a pose sample. If a sam-

ple’s CD is larger than DT, the pose is classified as rare data. Fig 4.1 (b) shows

images of rare and non-rare pose samples selected by our proposed method.

Classified pose samples show the clear difference of complexity between rare

and non-rare poses.

Since not only the rare poses are difficult to detect, but also there exists only

a scarce amount of similar data samples, we propose following three techniques

to enhance the pose estimation performance:

1. Duplication of rare pose data samples. In addition to the given training

data samples, we repeat rare pose data samples once more within the

dataset.

2. Addition of synthetic rare pose data samples. We have created and added

synthetic samples with annotations of rare pose samples to the training
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(a) 7 center poses obtained by our experiments of K-means clustering

(b) Examples of ‘non rare’ (CD < DT) and ‘rare’ poses (CD ≥ DT) in MPII dataset

Figure 4.1: Illustration of rare pose identification via clustering in MPII pose

dataset.

(a) Center poses often represent typical poses such as standing upright or tilted

towards left or right side. The dashed red arrow represents the distance between

the cluster’s center pose (yellow star) and a pose sample (small circle). A pose

is classified as a rare pose (solid circle) if this cluster distance (CD) exceeds a

distance threshold (DT) (large circle). Other small circles (hollow circle) is

classified as a usual pose (Non rare pose). (b) shows examples of rare and

non-rare poses which are identified with a DT value of 1.2.
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dataset.

3. Rarity-based loss weights. After clustering poses, the distances between

poses and the center points of their corresponding clusters are used as

weights for learning the amount of parameter update.

We have conducted comparison experiments among our proposed techniques

to evaluate performance improvement on rare pose estimation. To further show

the effectiveness of our proposed methods, we also provide quantitative results

and mean average precision (mAP) scores on COCO keypoint[46] and the per-

centage of correct keypoints (PCKh) on MPII[3] datasets which are commonly

used benchmarks of 2D multi-person pose estimation. As baselines, we have

used Simple[80] and CPN[13] models which are popular networks in the multi-

person pose estimation problems. From the experiments, we observed a larger

increase of accuracy scores for rare pose samples.

4.1 Identification of Rare Poses

Conventionally, a pose sample that is rare represents either poses with a lot

of invisible parts or an unusual pose as shown in Fig 4.1(b). Many methods

have previously struggled from estimating such samples because of their rarity

within a dataset and no clear definition to distinguish them from the usual ones.

Although rare, the pose estimation for these rare poses is critical to human eyes

in some areas that involve a lot of pose deformation such as gymnastics and

extreme sports.

In order to improve the performance on rare poses, we firstly need to have a

clear measure to identify a rare pose. Since a 2D image sample with a pose P is

composed of (x, y) coordinate values of J joints, i.e. p = {(xj , yj)}Jj=1, which
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can be considered as a 2J-dimensional continuous real random vector, it is very

complicated to set a clear definition of a rare pose using the coordinate. Even if

we set a heuristic rule, it takes time and cost because people have to label it. In

order to solve this problem, we propose a new rare pose identification method

which does not require additional learning.

The rare poses occupy a small fraction within a dataset, and have a rela-

tively large difference from the majority of data, appearing as outliers. For the

computational advantage, we aim to detect the outliers using a simple cluster-

ing method without any other additional learning of anomaly detection. In this

paper, we conduct the K-means clustering method [48], a popular unsupervised

clustering method that searches for clusters with the minimum distance between

the K cluster centers and data samples. The method allows grouping similar

poses as densely as possible and labeling of rare poses which are relatively dis-

tant from the centers of clusters.

2D location information of body joints, without color and texture informa-

tion, is considered to classify the poses because color and texture information

tends to depend on various factors such as clothes and skin colors and thus

spans an excessively wide search space. Clusters are therefore defined only by

2D coordinates p = {(xj , yj)}Jj=1 of parts from the image space which mainly

represent uniqueness of each pose sample. When detecting the location infor-

mation of each part, the object is positioned in the center of a certain bounding

box with similar scales as illustrated in Fig. 4.1(a).

First, the training data are classified based on the predetermined number of

clusters K. In doing so, the distance between the pose pi and the center of the

corresponding cluster mc is measured as follows which is denoted as the cluster
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distance dci :

dci = min{‖pi −mc‖}c∈{1,··· ,K} (4.1)

Then, the cluster distance is used to to determine whether the pose pi is rare

pose or not. The Fig 4.6 (b) and (c) show the histograms of cluster distance. Both

graphs confirm that the number of samples suddenly decreases from a certain

value. We consider this point corresponding to a sudden drop of the number

samples as the distance threshold (DT) τ for the rare pose. We have conducted

experiments to measure accuracy for this threshold setting. The same DT (τ ) is

applied to all clusters. Finally, the pose pi is classified as a rare pose R or an

usual pose U as follows.

pi ∈


R if dci ≥ τ

U otherwise.
(4.2)

4.2 Enhancing the performance of rare pose estimation

We have empirically found that the reason of low performance on rare poses

is not only that they are difficult to estimate, but also that only a small amount

of such samples are present in a dataset compared to relatively simpler poses.

Table4.1 shows accuracy of Simple[80] based on various distance thresholds be-

tween the centers of clusters and their corresponding poses. It can be seen from

the results that the accuracy and the amount of rare pose data decreases as the

threshold increases. With such understanding, we propose following methods to

improve the performance against rare poses by focusing on the rare data: Ad-

dition of duplicates of rare pose samples and synthetic samples with rare pose

labels to the training set and an objective function that reflects rarity based on

the distance from the cluster centers.
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Table 4.1: The accuracy of Simple[80] for samples of train data with cluster

distance that exceeds each distance threshold (τ ).

(a) Results of COCO

τ All (0) <1.4 1.4 1.5 1.6 1.7 1.8 1.9 2

#data 257252 249789 7463 3317 1395 551 217 95 45

mAP 72.4 80.7 56.5 50.4 44.3 35.4 30.7 22.8 15.7

(b) Results of MPII

τ All(0) <0.5 0.5 0.6 0.7 0.8 0.9 1 1.2

#data 22246 16885 5361 3090 2316 1709 1044 644 282

PCKh 97.92 98.604 95.73 94.721 94.123 93.406 90.93 86.85 74.09

4.2.1 Duplication of Rare Pose Samples (DRP)

One of the effective ways to improve general performance is to train with a

better-balanced dataset. To achieve a similar effect and to provide data samples

from the same domain as the majority of training data, instead of collecting

additional data, we have added duplicates of rare pose samples. The rare samples

are firstly labeled from the training data in a preprocess and they are simply

repeated once within the training set.

The ground truth poses, Pgt = {p1, p2, ..., pN}, are used for learning. Once

we detect the rare poses, R = {pi|dci > τ}, from the ground truth poses R ⊂

Pgt, we duplicateRwhich are added to the original Pgt to constitute Pdrp. Then,

Pdrp is fed into the network for learning.

This method is a simple but effective way to augment scarce samples from

the same domain. There exists a risk on a model to over-fit on the data samples
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(a) By reprojecting pose samples θ randomly selected from a pose pool with shape β

and random camera R, t, s parameters, 2D joint coordinates of the outputs and corre-

sponding inputs are collected.

(b) Since rare pose data samples from MPII and COCO are defined as (x, y) coordinates

of body parts within images, an inverse function f is newly learned in order to map the

given joint coordinates to SMPL parameters needed.

Figure 4.2: An overall illustration of the synthetic rare pose data generation

process.

that are duplicated, however in the case of rare pose samples, since their distri-

bution is comparably smaller than other samples, the overall performance is not

severely altered.

4.2.2 Addition of Synthetic Rare Pose data (ASRP)

Since data collection is expensive and collecting rare pose data is particularly

more difficult, it is reasonable to synthetically generate rare samples with ac-
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(a) After the inverse function f is trianed, our method is able to map a desired 2D pose

into SMPL parameters with which an image sample can be synthetically generated with

the SMPL model. A pool of mesh texture is provided by SMPL [50].

(b) Each synthetic image is transitioned with realistic texture by a pre-trained synthetic-

to-real style translator. Lastly, a random image is then assigned in the background to

create a rare pose data sample.

Figure 4.3: An overall illustration of the synthetic rare pose data generation

process.

companying annotation ground truths if more various color/texture must be

considered[56, 82].

For generations of synthetic rare pose data, we have used SMPL human

body model [50]. SMPL is a mesh deformation model that is defined by pose

θ and shape β parameters for controlling the model’s 3D mesh outputs. The

constructed 3D human mesh models from SMPL can then be projected to 2D

images with camera parameters consisting of scales s, translations t and rota-

tionsR to be re-created as pose data samples with 2D joint location annotations.
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However, since the annotations for rare pose data samples are given with image

coordinates (x, y) for each joint, we were required to map the 2D coordinates to

the corresponding pose and camera parameters that allow creating and reproject-

ing SMPL mesh models in order to align the annotations of resultant synthetic

samples with those of given 2D rare pose samples.

Fig 4.2 and 4.3 illustrates the overall generation process of synthetic rare

pose data samples. For authenticity of human poses, SMPL provides a pool of

known pose parameters and color/texture information for each mesh collected

from real poses, which we utilize for generating random synthetic samples. As

an initial phase, since we are required to learn a function f that maps 2D joint

coordinates to corresponding SMPL parameters θ, β,R, t, s, we collect inputs

and outputs of SMPL models in order to train f (see Fig 4.2(a)). With the trained

f with the setting in Fig 4.2(b), we are able to find the right parameters that re-

sult in a 3D human mesh model with 2D annotations when re-projected to the

2D image space, as depicted in Fig 4.3(a). A random image then fills the back-

ground in order to create a synthetic rare pose sample which can be shown in

Fig 4.3(b). A pool of body texture provides color values of each mesh that ex-

presses color and wrinkle of clothes or skin. Backgrounds are randomly cropped

patches from randomly selected samples of VOC2012 dataset[17]. Examples of

synthetically generated pose data are shown in Fig 4.4. After generating the re-

sultant synthetic pose samples S = {ps1, ps2, ..., psm} are generated, the samples

are added upon the given training set of ground truth poses Pgt so that poses

that are used for training are Pall = Pgt ∪ S.

To generate more realistic synthesized samples, we have pre-trained a gen-

erator that translates styles from synthetic to real. We have used U-GAT-IT [38],

an unsupervised generative model for image-to-image translation, for its com-
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Figure 4.4: Examples of synthetic MPII rare pose data generated

Images in the first row show MPII data samples that are defined as rare poses

according to our method. Images in the second row are the synthetic samples.

Images in the third and forth rows show synthetically generated samples of

which style is transferred from synthetic to real, respectively, with and without

backgrounds.

petent performance of style transfer from cartoon to real and vice versa.

The model f is structured as PoseResnet with ResNet50 structure from

Simple[80] that takes 256 x 256 sized inputs. The network is selected for its re-

ported and empirical efficiency. We have selected 13 keypoints aligning univer-

sally with SMPL, MPII and COCO datasets, so that after the network is trained

with keypoints of SMPL, rare pose annotations from MPII and COCO can be

used to generate corresponding synthetic samples (See Fig 4.4). The network is

fed with 13 channels of heatmaps that are created based of 2D coordinate inputs.
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4.2.3 Weighted Loss based on Cluster Distance (WLCD)

In object detection problems, soft sampling methods are applied to solve data

imbalance issues. [9, 41, 45, 60] The degree of contribution is assigned to a

value between 0 and 1 for each data to solve data imbalance problem. Similarly,

after i-th pose is assigned with a cluster class c ∈ {1, · · · ,K} through K-means

clustering, a cluster distance dci , a distance between the pose and its correspond-

ing cluster center, can be measured. The cluster distance values are applied as

weights when calculating the loss, which yields larger gradient updates for rarer

poses.

The weighted objective based on cluster distances of our proposed method

is as follows:

L =
1

N

N∑
i

J∑
j

(hij − ĥij)
2 ∗ w(dci ) (4.3)

where a loss function L with a weight w(dci ) is multiplied to the mean square

error (MSE) between heatmap predictions ĥij and ground-truths hij for j-th

joint from i-th pose data. Here, N and J are the number of training samples and

the number of joints respectively. The weight is determined as follows:

w(d) =


1 if d < τ

1 + (d− τ) if τ ≤ d < τ + 0.5

1.5 if d ≥ τ + 0.5.

(4.4)

The cluster distance is a value indicating how far the pose is from the usual

pose, in other words, how the pose is rare. Even within poses classified as rare,

it is possible to learn with different weights for different samples.
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4.2.4 Divide and Conquer Strategy for pose estimation (DACP)

We have proposed DRP , ASRP and WLCD to improve the performance of

pose estimation models using rare poses. The three methods have been designed

for an efficient learning of the rare pose. The proposed methods generally main-

tain the performance of the usual pose, but some experiments have also shown

results sacrificing the performance of the usual pose for the boosted performance

of the rare pose, which is not a significant drop comparing to the performance

gain in rare pose.

Thus, we have adopted the divide and conquer strategy to the network struc-

ture. The divide and conquer is an algorithm which recursively breaks down a

problem into two or more sub-problems. To resolve the tradeoff between the

performance of rare pose and usual pose at the same time, we divide our pose

estimation architecture into two networks each of which focuses more on the

rare pose or the others. The proposed algorithm works as below.

Algorithm 1 uses two networks in parallel: The Netr is learned by the pro-

posed methods (DRP+ ASRP + WLCD) for boosting the performance of

the rare pose and Netb is the baseline network for retaining the performance

on the usual pose. We calculate the confidence scores with the output Heatmaps

(hb, hr) of each network. The Confidence score is the mean of max values of

Heatmaps extracted from all parts. BetweenNetb andNetr, the one with larger

confidence score is selected as the final prediction.

4.3 Experiments

Earlier in this paper, we have newly defined rare poses and proposed three strate-

gic methods to improve the performance on the rare poses. MPII and COCO
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Algorithm 1 Divide and conquer for pose estimation
1: Netb : baseline network.

2: Netr : baseline network with proposed methods

3: score calculates a confidence score of heatmaps.

4: postprocessing : detects the (x, y) locations of pose from the heatmap.

5: for i = 1, · · · ,N do

6: Imgi is an input image.

7: Obtain hb from Netb(Imgi).

8: Obtain hr from Netr(Imgi).

9: if score(hb) < score(hr) then

10: return postprocessing(hr)

11: else

12: return postprocessing(hb)

13: end if

14: end for

keypoints datasets are used in this section for performance evaluation of the

proposed methods.

For the results of clustering, the location coordinates (x, y) of poses are nor-

malized and used as the input feature values for clustering because the location

information can classify the data regardless of the texture of the image. So, coor-

dinates of 16 parts of MPII are used as a 32 dimensional feature vector and those

of 17 parts of COCO are used as a 34 dimensional feature vector for clustering.

In order to show the effectiveness of our proposed method for performance

enhancement on rare pose samples, we have set Simple[80] and CPN [13] as our

baseline models. Both methods are top-down methods, and the basic structure
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of both methods is widely used in human pose estimation. We have conserved

the network structure, hyper-parameters and the training criteria of the baseline

reported except that a different batch size is used for our implementation due to

our given computational resource. We use ground-truth bounding box labels of

people to exclude the possibility of differences in performance caused by using

an external object detector. All of the ground-truth Heatmaps are generated only

using visible parts. In case of Simple[80], we adopt ResNet-50 network and

input image resolution of (256,192) for COCO and (256,256) for MPII. We

use data augmentations such as rescaling(±30%), rotation(±40 degrees) and

flip. In case of CPN [13], we adopt the input image resolution of (256,192) for

COCO and MPII. Similarly, data augmentations include rescaling(0.75∼1.35),

rotation(±45 degrees) and flip. In MPII and COCO, hard samples such as self-

occluded poses can be frequently observed. Training the generator in ASRP,

those samples participate in the training and thus the generator is able to produce

challenging samples.

4.3.1 Results of Rare Pose Identification

Since K-means clustering is an algorithm that collects similar data by using

differences among features based on K centers, its cluster classification results

vary greatly depending on the number of K.

Fig 4.5 shows the results of experiments using different K-means clustering

with different number of clusters K for MPII and COCO. Figs 4.5 (a) and (b)

show the experiment results on the training sets for each dataset, and (c) and

(d) show the results of experiments with each validation data on the Simple[80]

baseline model. Experiments are performed by changing the number of clusters

from 5 to 20 for each dataset. The x-axis represents various distance thresholds
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(a) MPII training data (b) COCO training data

(c) MPII validation data (d) COCO validation data

Figure 4.5: The pose estimation results for rare pose samples whose cluster

distance dci exceeds each threshold τ (x-axis) using Simple [80] baseline model.

The numbers 5 to 20 in the upper right of the graph represent numbers of

clusters K. The bar graphs in (a) and (b) indicate the percentage of

corresponding rare samples from the total number of pose samples (%data)

while the lines represent the accuracy scores. We chose hyper-parameters so

that the rare poses would occupy as 2-3 %, the range of which is indicated by

the gray area. In (c) and (d), bars of validation data indicate the numbers of

corresponding rare samples (#data) while the lines are the accuracy.

τ , and the y-axis represents the resultant accuracy values for poses larger than

each threshold. We also included the number of corresponding samples in the

graphs. In both datasets, all clusters show a decrease in accuracy as distance
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threshold increases. We have chosen a relatively large number of clusters to

avoid the risk of clustering to focus on a few rare poses.

We thus have selected the number of clusters to be intuitively large which

also yields gradual decrements of accuracy score for a fixed threshold τ as the

number of clusters increases. It is experimentally considered suitable that about

2-4% of whole dataset should be set as rare poses, which is represented as gray

areas in Fig 4.5(a) and (b). In the COCO case, the bar graphs in the gray section

are τ = 1.4 for cluster 20 / τ = 1.5 for cluster 11, 15 / τ = 1.6 for cluster 7 /

τ = 1.7 to cluster 5. Clusters 15 and 20 had low mAP with the same number of

data as cluster 5, 7, and 11. This means that rare poses are not well classified as

outliers when the number of clusters is too small because of the characteristics

of COCO data which have many occlusions including self-occlusion. For this

reason, we chose 15 clusters with τ = 1.5 for COCO dataset. In the case of

MPII, cluster was selected based on the same criteria. We chose 7 clusters be-

cause there were many visible parts comparing with COCO. The corresponding

threshold was set τ = 1.0. Finally, the values of K for MPII and COCO are

respectively determined as 7 and 15 through experiments.

Table4.1 shows the results with various numbers for clusters. In the tables,

the row ‘#data’ represents the number of samples with larger distance than a

threshold τ . An exception is the second column with ‘< τ ’ which tells the

number of non-rare samples whose distance is smaller than the threshold τ . In

this context, each pose sample means one pose within a ground truth bounding

box, and we had excluded COCO samples that have zero visible annotations

from this experiment.

Fig 4.6(b) and (c) are histograms of the distance values from the cluster

centers to each data respectively for MPII and COCO. In the case of MPII, most
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(a) Ratio (%) of samples with n visible joints (x-axis) in MPII and COCO datasets

(b) Histogram of dci for MPII (c) Histogram of dci for COCO

Figure 4.6: (a) shows the ratio of number of samples with certain number of

visible parts out of the whole data. Subfigures (b) and (c) represent histograms

of the distance values from the cluster centers to each data respectively for MPII

and COCO.

data lie within cluster distances and distributed in a narrower graph width, and

values tend to be biased on certain distance. On the other hand, the histogram

for COCO tends to have a larger variance in cluster distance than MPII. This

is because the COCO data is comparatively much larger than that of MPII with

much more diverse poses, and in MPII, there are more cases where all body

parts are visible than COCO. Fig 4.6(a) shows the number of data according
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to the number of visible parts. Orange is the result of MPII and blue is the

result of COCO. The x-axis represents the number of visible parts and the y-

axis represents the percentage of the samples. For the case of MPII data of

which 16 parts to be annotated if fully visible, all joints from most of its data

samples (67%) are visible. Fully visible COCO data samples are defined by 17

part locations, and there are not many fully visible pose samples. In the case

of MPII, from a total of 16 joint locations annotated, most data samples are

annotated visible with an average of 12 or more visible parts. On the other hand,

in the case of COCO, an average of 6 parts or less is visible among the 17

available parts.

We provide the results in Table 4.1 to show tendency of labeling rare poses

according to certain thresholds. Each table shows the number and accuracy of

train data by τ . Also, Fig 4.1(b) shows examples of rare and none-rare poses.

Images that are detected as non-rare pose can be confirmed that the object has

less active movements of parts with more frontal views than the ones detected

as rare poses. From these results, it was confirmed that the higher the thresholds

are, the lower the accuracy is with more peculiar poses are defined. Through

these experiments, we have determined a reasonable thresholds (τ ) 1.0 and 1.5

respectively for MPII and COCO, having a reasonable amount of data classified

into rare poses with a low mAP. The ‘Simple’[80] baseline model is used to

select the number of clusters and the threshold of rare pose. In the other baseline

model ‘CPN’[13], the number of clusters and the threshold τ are set to be the

same as for ‘Simple’.
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Table 4.2: The accuracy for each distance threshold (τ ) on the MPII validation

(a) Results of Simple[80]
All(0) <0.5 0.5 0.7 0.9 1 1.2

#data 2958 2274 684 289 150 91 34

Basline 88.53 90.33 82.4 82.9 80.18 77.81 66.98

DRP 88.6(+0.07) 90.24(-0.08) 82.99(+0.59) 83.71(+0.81) 82.06(+1.88) 79.27(+1.46) 73.07(+6.09)

ASRP 88.81(+0.28) 90.62(+0.29) 82.63(+0.23) 83.45(+0.55) 80.18(+0) 77.81(+0) 67.62(+0.64)

ASRPT 88.68(+0.15) 90.48(+0.15) 82.52(+0.12) 83.69(+0.79) 80.89(+0.71) 78.64(+0.83) 70.83(+3.85)

WLCD 88.84(+0.31) 90.46(+0.13) 83.33(+0.93) 83.8(+0.9) 81(+0.82) 78.43(+0.62) 68.91(+1.98)

DRP + WLCD 88.60(+0.07) 90.16(-0.17) 83.29(+0.89) 84.06(+1.16) 81.71(+1.53) 79.58(+1.77) 70.83(+3.85)

ASRPT + WLCD 88.54(+0.01) 90.29(-0.03) 82.56(+0.16) 82.79(-0.1) 80.71(+0.53) 78.22(+0.41) 69.872(+2.89)

DRP+ASRP+WLCD 88.431(-0.09) 90.267(-0.06) 82.17(-0.23) 83.66(+0.76) 82.23(+2.05) 80.10(+2.29) 74.67(+7.69)

DACP 88.69(+0.16) 90.47(+0.14) 82.60(+0.20) 83.08(+0.18) 80.71(+0.53) 78.33(+0.52) 68.91(+1.93)

(b) Results of CPN[13]
All(0) <0.5 0.5 0.7 0.9 1 1.2

#data 2958 2274 684 289 150 91 34

Basline 85.34 88.52 74.49 68.36 59.84 61.04 48.71

DRP 85.59(+0.25) 88.74(+0.22) 74.86(+0.37) 68.65(+0.29) 60.25(+0.41) 62.7(+1.66) 50.96(+2.25)

ASRP 85.67(+0.33) 88.76(+0.24) 75.14(+0.65) 68.73(+0.37) 60.31(+0.47) 61.14(+0.1) 48.07(-0.64)

ASRPT 86.13(+0.79) 89.12(+0.6) 75.92(+1.43) 69.63(+1.27) 61.01(+1.17) 61.35(+0.31) 48.39(-0.32)

WLCD 85.79(+0.45) 89(+0.48) 74.87(+0.38) 69.69(+1.33) 62.48(+2.64) 62.29(+1.25) 51.92(+3.21)

DRP + WLCD 86.21(+0.87) 89.3(+0.78) 75.68(+1.19) 70.73(+2.37) 63.3(+3.46) 64.16(+3.12) 51.92(+3.21)

ASRPT + WLCD 85.1(-0.24) 88.92(+0.4) 75.35(+0.86) 69.89(+1.53) 61.43(+1.59) 62.48(+1.44) 46.47(-2.24)

DRP+ASRP+WLCD 85.15(-0.19) 88.17(-0.35) 74.89(+0.4) 68.13(-0.23) 59.2(-0.64) 61.25(+0.21) 49.35(+0.64)

DACP 85.7(+0.36) 88.70(+0.18) 75.48(+0.99) 68.76(+0.40) 59.61(-0.23) 61.14(+0.10) 49.00(+0.29)
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Table 4.3: The accuracy for each distance threshold (τ ) on the COCO 2017

validation

(a) Results with Simple[80]
All(0) <1.1 1.1 1.3 1.5 1.6 1.7 1.8

data 10777 9142 1635 636 170 69 28 14

Baseline 72.4 76.6 56.3 50.2 35.9 31.4 32.2 31.4

DRP 72.6(+0.2) 76.5(-0.1) 56.8(+0.5) 50(-0.2) 36.3(+0.4) 34.3(+2.9) 33.7(+1.5) 35.1(+3.7)

ASRP 71.9(-0.5) 76.2(-0.4) 55.7(-0.6) 49.2(-1.0) 35.7(-0.2) 32.7(+1.3) 35.7(+3.5) 39.8(+8.4)

WLCD 72.7(+0.3) 76.5(-0.1) 57(+0.7) 50.9(+0.7) 35.3(-0.6) 31.9(+0.5) 32.2(0) 34.7(+3.3)

DRP + WLCD 72.8(+0.4) 76.8(+0.2) 57.1(+0.8) 50.7(+0.5) 37.5(+1.6) 33.5(+2.1) 33.9(+1.7) 37.7(+6.3)

ASRP + WLCD 72.6(+0.2) 76.5(-0.1) 56.8(+0.5) 50.2(+0) 36.2(+0.3) 32.4(+1) 34.8(+2.6) 40.1(+8.7)

DRP+ASRP+WLCD 72.6(+0.2) 76.8(+0.2) 56.6(+0.3) 50(-0.2) 37.1(+1.2) 34.1(+2.7) 37.1(+4.9) 39.7(+8.3)

DACP 72.8(+0.4) 77.1(+0.5) 56.6(+0.3) 50.3(+0.1) 36.8(+0.9) 34.0(+2.6) 37.1(+4.9) 38.1(+6.7)

(b) Results with CPN[13]
All(0) <1.1 1.1 1.3 1.5 1.6 1.7 1.8

#data 10777 9142 1635 636 170 69 28 14

Baseline 71.2 75.6 54.8 48.2 32.8 28.4 29 26.2

DRP 71.2(+0) 75.7(+0.1) 54.7(-0.1) 48.9(+0.7) 34.2(+1.4) 31.2(+2.8) 29.3(+0.3) 32.6(+6.4)

ASRP 71.1(-0.1) 75.5(-0.1) 54.9(+0.1) 48.1(-0.1) 34.9(+2.1) 31.7(+3.3) 33.3(+4.3) 36.1(+9.9)

WLCD 71.3(+0.1) 75.6(+0) 54.9(+0.1) 48.5(+0.3) 35.2(+2.4) 31.4(+3.0) 30.3(+1.3) 32.9(+6.7)

DRP + WLCD 71(-0.2) 75.3(-0.3) 54.8(+0) 48.1(-0.1) 35.9(+3.1) 32.5(+4.1) 33(+4) 35.1(+8.9)

ASRP + WLCD 71.2(+0) 75.8(+0.2) 54.4(-0.4) 47.6(-0.6) 34.7(+1.9) 31.9(+3.5) 33.7(+4.7) 35.4(+9.2)

DRP+ASRP+WLCD 71.1(-0.1) 75.5(-0.1) 55(+0.2) 48.9(+0.7) 35.4(+2.6) 31.5(+3.1) 35.5(+6.5) 39.7(+13.5)

DACP 71.4(+0.2) 75.8(+0.2) 55.3(+0.5) 48.9(+0.7) 34.4(+1.6) 30.2(+1.8) 33.9(+4.9) 34.5(+8.3)
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4.3.2 Results of Proposed Methods

The proposed methods are divided into methods with and without additional

data. The methods of adding data (duplication of rare poses and addition of syn-

thetic rare poses) are labeled as DRP and ASRP , respectively. For the DRP

case, MPII has 644 poses and COCO has 3317 poses repeated within the train-

ing set. While ASRP is a way to add a newly generated synthetic image, for

a fair comparison against other proposing methods, ASRP method creates and

adds the same number of rare poses as DRP ’s added samples. During the pro-

cess of ASRP , we can obtain re-calibrated pose annotations from the SMPL

model. Based on the given annotations, we can calculate the bounding box co-

ordinates and so on. ASRPT represents the method of ASRP with samples

that are transferred from synthetic to real. Lastly, the method that does not alter

the training set (weighted loss based on cluster distance) is referred as WLCD.

Tables 4.2, and 4.3 show the comparison results of the baseline models and

our proposed methods on MPII and COCO datasets. The values in the table

represents accuracy, and the value in brackets means the difference from the

performance of the baseline model. The proposed methods are only used at a

training time. At inference, pose is detected on a Heatmap which is generated

from trained network.

At the MPII results in Table 4.2, the overall results mostly increases as the

highest as 0.79. τ=1.0 assigned to rare pose in gray background, all the proposed

methods show increases in performance. Especially, at τ=1.2 where cluster dis-

tance is relatively very high, the largetst increment is 6.09. We also show an

increasing tendency with τ < 0.5, which only covers usual poses, indicating

that the proposed method does not get hindered from learning usual poses. The
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performance of ASRPT is higher than that of ASRP in estimating rare poses,

which indicates that matching the style (real) with the training data helps im-

prove performance. It is possible to further improve the rare pose performance

when experimenting with improving the transfer performance in future research.

Unfortunately, the methods of adding synthetic rare pose data showed poor per-

formance as shown in Table 4.2 (b) at τ=1.2. However, in COCO data, when

the synthetic was added, the performance was improved in Table 4.3 (b) τ=1.5

and 1.8, and even when the baseline network was the Simple[80] model, the

performance was increased. It can be expected that adding the synthetic data is

not a problem and the proposed methods must be adapted to the network model

and data.

Table 4.3 shows the results of the experiments with COCO 2017 validation

set. Compared to total mAP, the proposed methods increased by about 0.1-0.3

over the baseline method except for ASRP , where some decrease of perfor-

mance is observed. The τ=1.5 assigned to rare pose in gray background. At the

rare pose, all of the values were increased except for two methods. Furthermore,

the all cases of upper τ=1.6 tend to generally increase the performances of the

proposed method. Especially, the highest accuracy improvement is 13.5. Unfor-

tunately, several methods where τ ¡1.1 tends to have performance diminution,

but the difference is 0.1 which is not large.

DRP and ASRP are methods of data augmentation, and WLCD is a

method to give weight to loss. It is more effect to use the method of increas-

ing data and weight loss at the same time to improve the rare pose. Experi-

ments were performed on the combination of DRP + WLCD and ASRP +

WLCD from COCO and MPII data. ASRP + WLCD showed lower results

than DRP +WLCD combination, but DRP +WLCD combination outper-
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formed the method used alone. Especially, the DRP +WLCD in Table 4.2 (b)

showed the highest performance for all τ when compared with others. Combin-

ing all the proposed method (DRP + ASRP + WLCD), we have improved

the performance on rare pose for both MPII and COCO datasets compared to

both baselines (CPN and Simple).

DACP means the result of an experiment applying the divide and conquer

method. DACP shows meaningful improvement in both rare pose and usual

pose under all experimental settings. In rare pose, the accuracy of DACP is

less than DRP + ASRP + WLCD, but still higher than baseline. DACP

generally shows improvement in any pose.

We have proposed methods of defining a rare pose and improving perfor-

mance for rare pose. In some methods, there has been a slight performance drop

in usual pose due to the trade-off between usual pose and rare pose. Though it is

a tolerable amount of degradation, we can still resolve this issue with DACP ,

sacrificing the inference time.

Fig 4.7 shows results of our methods and a baseline model[80] on one of

the samples of MPII validation and COCO 2017 validation. While the baseline

model struggles estimating 2D pose as Fig 4.7 shows, our proposing techniques

better performs against the rare pose sample.

In this paper, we have evaluated our method on test images only, numbering

1000 images, to check the effect of the proposed methods in a different do-

main. Table 4.4 is the results of experiments on the Leeds sports pose dataset

(LSP) test. The evaluation was performed using the trained Simple model [80]

on COCO keypoint data without learning with LSP. In ndata, All (1000 poses)

means all of the validation data, and selected (44 poses) means the dataset that

we chose rare pose in the validation data. The results were measured by Percent-
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Table 4.4: The comparison accuracy on Leeds Sports Pose validation dataset

(LSP) using Simple[80] model trained on COCO.

ndata Parts Ankle Knee Hip Wrist Elbow Shoulder Head Mean

All Baseline 91 92 90.6 83.5 86.9 92.3 23.2 79.9

DRP 91.1(+0.1) 92.5(+0.5) 91(+0.4) 83.2(-0.3) 87.5(+0.6) 93.3(+1.0) 24(+0.8) 80.4(+0.5)

ASRP 91.5(+0.5) 92.6(+0.6) 90.6(+0) 82.9(-0.6) 86.7(-0.2) 92.2(-0.1) 25(+1.8) 80.2(+0.3)

WLCD 91.5(+0.5) 92(+0) 91.3(+0.7) 83.4(-0.1) 87.3(+0.4) 92.6(+0.3) 23.4(+0.2) 80.2(+0.3)

Selected Baseline 36.4 34.1 44.3 40.9 53.4 56.8 27.3 41.9

DRP 46.6(+10.2) 43.2(+9.1) 46.6(+2.3) 51.1(+10.2) 53.4(+0) 61.4(+4.6) 25(-2.3) 46.8(+4.9)

ASRP 44.3(+7.9) 39.8(+5.7) 38.6(-5.7) 37.5(-3.4) 47.7(-5.7) 54.5(+2.3) 28.4(+1.1) 41.6(-0.3)

WLCD 44.3(+7.9) 39.8(+5.7) 47.7(+3.4) 44.3(+3.4) 55.7(+2.3) 59.1(+2.3) 28.4(+1.1) 45.6(+3.7)

age of Correct Keypoint (PCK). In the case of Head, because COCO annotation

were different with LSP, they were excluded from the comparison. All PCK in-

creased with the average PCK (Mean) except ASRP of selected data. Among

the proposed methods, WLCD showed an increasing trend from all parts. This

is because the other two methods were data augmentation with the existing data

domain, so there is a domain specific point. So, WLCD is more robust to do-

main transfer.
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Figure 4.7: The qualitative results of the proposed methods and baseline in MPII

dataset and COCO dataset.

Based on the dotted line, MPII results are above and COCO results are below.

From left to right, baseline[80], DRP, ASRP and WLCD.

61



Chapter 5

Multi-person pose estimation and tracking

In this chapter, we propose a method to track the pose using temporal informa-

tion. It is essential to exploit the temporal information for tracking. There are

many different ways to use temporal information, such as maps and vectors.

For example, the optical flow is a usual method to calculate the velocities of

the object. Existing research has applied the optical flow to track the pose by

calculating the amount of change.

We need the vector map to denote the motion of the part to track the part.

Thus, we proposed the unit vector map about the movement of limbs. The vector

map is called a temporal flow map for limbs (TML). The TML is generated

using the variation of limbs between two frames as shown in Figure 5.3.

We have designed a single-network to estimate and track human poses us-

ing spatial and temporal features. The single-network has two sub-parts: Spatial

part and Temporal part, as shown in Figure 5.1. The spatial part has the same

structure with [10] which is one of the most popular networks in the bottom-up

approach of multi-person human pose estimation. The spatial part has iterative

stages. The stages have two branches to learn the part Heatmaps and Part Affin-
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ity fields. Likely the iterative stage of the spatial part, the temporal part has the

iterative stage with a single branch to learn the TML.

For training, two frames are taken for inputs, and the spatial and the tem-

poral information affect each other through the end-to-end learning. At infer-

ence time, three frames are fed into the spatial part to detect poses, and pairs of

frames are fed into the temporal part to detect the association of poses between

two frames.

Below is a more detailed description on each part.

• VGG part: VGG part means the VGG network [69]. VGG part performs

to extract the features from the input image. Extracted features are fed

into each parts such as spatial parts and temporal parts. At the training

time, VGG part also is trained as end-to-end learning.

• Spatial parts: The spatial parts has consisted of the iterative structure in

which the same stages are stacked. Each stage has two branches to learn

Heatmaps (H circle in Figure 5.1) and part affinity maps (A circle in

Figure 5.1). Each stage has three 3 × 3 convolutions and two 1 × 1 con-

volutions. The number of stage is six and the loss function is pixel-wise

L2 loss function as in [10].

• Temporal parts: the temporal parts have a resemble structure with spatial

parts. The structure is consisted three stages which have the same con-

volution layer with spatial network. Each stage has one branches to learn

TML(L circle in Figure 5.1). The first stage takes the features which con-

catenate with VGG and the last layer of spatial parts. Other stages takes

the features of previous stage. Loss function is a pixel-wise L2 loss func-

tion at each stage.
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As the spatial parts are the same network presented in [10], we will focus

on the temporal part in the following subsections.

We have a unique way of inference as shown in Figure 5.2. Our tracking

way is the off-line approach. Three frames are taken as a frame set at a time.

The poses are extracted on the each of three frames using the joint Heatmaps

and part affinity fields at the spatial parts. The pair of two frames is fed into the

temporal parts and get the TML. The first pair is a first frame and second frame.

We calculate an associated score from a TML score and a joint distance. Based

on the associated score, the poses are tracked. The second frame and third frame

are the second pair. The pair also is applied as same procedure.

After tracking the poses in three frames, we refine the missing pose in the

middle frame because of the blurring or occlusion. The missing poses in second

frame are filled by Analyzing the association scores of between first and third

frames. This makes the model stable since the information from the frames

back and forth adjust the result of the intermediate frame.

5.1 Temporal flow Maps for Limb movement (TML)

The TML is a vector map representing the movement of a person’s limbs. The

limb means a part linking two joints such as a knee and an ankle. Figure 5.3(b)

shows the visualization of TML of the bottom of the left arm, which links the

elbow and wrist. For generating the vector map, each limb is divided at regular

intervals as shown in Figure 5.3(a). In the Figure 5.3(a), we can see that the

left hand of the person moves to the left-down side and that the left hand of the

person moves to the left-down side. We divide the limbs on each Ft1 and Ft2

frames. The red circles in Figure 5.3(a) are joints, and the red lines linked be-
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tween two joints are limbs. The same divided parts on the limb between frames

have calculated the unit vector to make the TML. More specifically, a separated

part (St,p,l,n), which means an n-th separated part on l-th limb on the p-th person

at the frame t, is used to calculate the movement direction between two frames.

Based on the pair (St1,p,l,n, St2,p,l,n), we calculate a unit vector v as follows:

v =
(St1,p,l,n − St2,p,l,n)

‖St1,p,l,n − St2,p,l,n‖2
. (5.1)

Here, n, l and p represent the index of a separated part, a limb and a person

respectively, and t1 and t2 are the frame indices. The part S is represented by a

two dimensional vector corresponding to the position of the part and thus v is

also a two-dimensional vector.

Then, the L for the l-th limb is encoded through the unit vector v for each

pixel s = (x, y) which is the limb passes through at the time interval t1 and t2.

To draw the TML, we applied the similar process of part affinity field in [10].

Ll,p(s) =

v if s ⊆ C

0 otherwise.
(5.2)

According to the condition (C), each pixel is determined to whether it is on

the path of limb movement at the time interval t1 and t2. More concretely, in our

case, the pixels belonging to the line segment (St1,p,l,n, St2,p,l,n) with a constant

width is filled with the value of v and the other pixels remain as zero.

When the TML of multi person are overlapped at the same position, it is

averaged to preserve the scales of the output. Thus, the final TML for the l-

th joint averages the TML of the joints of all people appeared in the image as

follows:
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Figure 5.3: An example of TML.

(a) Illustration explaining how to obtain the TML using the frames Ft1 and Ft2 .

We subdivide each limb into several parts and calculate the unit vector of each

pair (connected by the yellow lines, St1,p,l,n and St2,p,l,n). (b) Visualization of

the left arm TML on x(top) and y(bottom) coordinates. (c) Accumulated TML

for all limbs on x(top) and y(bottom) coordinates. The values of TML are

between the range of -1 and 1.

Ll(s) =


1

P (s)

∑P (s)
p=1 Ll,p(s), if P (s) ≥ 1

0 if P (s) = 0,

(5.3)

where P (s) means the number of non-zero vectors at pixel s. All of n di-

vided parts follow the above process to make the TML.

Unlike optical flow [25] representing directions and magnitudes at each lo-

cation, the TML only represents the directions using unit vectors. Because the
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TML does not contain magnitude information, it is more prone to change of

time interval between frames. The multi-stride method for data augmentation,

which will be describe in the next subsection, helps to alleviate this issue and

successfully trains the network using video frames with different sampling rates.

Furthermore, the TML channel can be set as an individual channel for each

limb (Figure 5.3(b)) or as an accumulated channel which accumulates the TML

of all limbs (Figure 5.3(c)). The number of individual channels becomes the

number of limbs × 2 (x, y coordinate channel) while the accumulated channel

has only 2 channels (x, y coordinate channel). We will show the efficiency of

different types of channel in the evaluation section.

5.2 Multi-stride method

The TML has explained the flow of temporal movement. To generate the TML,

we use two frames and basically the time interval of two frames is one. Unfortu-

nately, using only the time interval of one in video sequential has limited types

of TML because of the number of restricted training data. We need a various

type of TML and a huge dataset for TML. Thus, we use the various time inter-

val that means a multi-stride method. The multi-stride method take two frames

within a given time range which in this paper set as five.

Figure 5.4 shows the examples of the TML on five time range. Figure 5.4(a)

has the one time interval. Because the frames are generally gathered at 30 frame

per second, the motion of the one time interval is too small and not diversity. It

is better to train the various motion to track the pose. Thus, we use the various

time intervals as shown in Figure 5.4(b) and (c). The bigger time interval has

Furthermore, our multi-stride method can be used to refine poses at infer-
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Figure 5.4: Examples of the TML of x coordinate with various time intervals.

Consecutive image sequences are shown from left to right. (a), (b) and (c) are

the right arm TML of the left person with the different time intervals, 1, 2 and

4 respectively. Using various strides, it is possible to get the TML of both small

and large movements.

ence time. The proposed refining method can be useful when a frame misses a

person but the preceding and the next frames successfully target the person. In

this case, because our multi-stride method randomly selected two frames at the

training time and the network learned this situation, we can extract the TML and

track the pose between frame Ft and Ft+2.

5.3 Inference

In this section, the off-line inference approach is proposed to track poses. The

proposed network is structured to take the two frames for input image and to

generate the spatial maps and temporal map at the same time. Thorough the

outputs of network, the poses are tracked. By extension, we pursuit to refine the

70



Table 5.1: The estimation and tracking results of the proposed methods on the

PoseTrack2017 and 2018 validation data.

#stage means the number of stacked stages in the temporal part. Joint-Flow has

a different type of temporal map that is created by joint movement. Basically,

the proposed TML has two channels (x and y) for each limb. (∗) means the

method in which the TML of all limbs are accumulated in a single map for x

and y directions. + adopted the non-maximum suppression (NMS) for joints.

++ indicates that the proposed refining method for the middle frame pose is

applied. Distance means that The TML is not used in the calculation of the

association score in (5.4) by setting α to 0, which means that it only uses the

torso distance of a person for the associated score.

data Method MOTA mAP

#stage Head Shou Elb Wri Hip Knee Ankl Total

Joint-Flow(∗) 1 70.6 70.1 50.6 37.5 53.9 41.8 30.3 52 73.1

Joint-Flow 1 48.5 48.3 30.3 19.3 33.9 23 13.5 32.1 73.2

TML(∗) 1 72 70.6 52.1 37.7 53.8 41.3 30.9 52.6 71.3

2017 TML 1 70.1 69.5 51.9 40.5 53.8 43.5 32.7 52.9 72.9

TML 3 74.7 74.1 61.7 49.4 59 52.6 43.7 60.3 70.9

TML+ 3 75.1 74.6 62.5 50.1 59.5 53 44.2 60.9 71.3

Distance+ 3 49.9 50.1 40.5 31.5 37.7 32.4 26.7 39.2 71.3

TML++ 3 75.5 75.1 62.9 50.7 60 53.4 44.5 61.3 71.5

2018 TML++ 3 76 76.9 66.1 56.4 65.1 61.6 52.4 65.7 74.6

pose using a relation of three frames (Ft−1, Ft, Ft+1) which are defined to a set

of frames as shown in Figure 5.2. More specific inference approach is presented

below.

On each frame, we estimate the candidates of parts using the extracted
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Heatmaps. The candidates of parts are connected by calculating an score of part

affinity fields as in [10]. At this time, the poses don’t have an unique tracking id

and they just are denoted as the poses (I). The Heatmaps and part affinity fields

are created by the spatial part as shown in Figure 5.1.

For the tracking poses, we have proposed the method to calculate the asso-

ciated score of poses between the front and back frames. The associated score

is calculated by each person in different frames. For example, a pose Ia,Ft−1 in

frame Ft−1 and a pose Ib,Ft in frame Ft calculate the associated score using the

TML and a distance. The associated score is calculated by a linear combination

of a score of the TML (ST ) and a score of joint distance (Sd):

S = αST + (1− α)Sd, (5.4)

where α is a hyper-parameter which is set to 0.5 in our experiments.

We measure the score of a candidate movement on each TML by calculating

the line integral. More specifically, we extract two joint candidates It1j and It2j

in different frames at time t1 and t2 corresponding to the joint j and make a

normalized directional vector between the two joint candidates. Then the value

of the TML corresponding to the line segment (It1j , It2j ) is obtained to take

inner product with the directional vector. This is done for all the points in the

line segment and integrated as follows:

ST =
1

nJ

nJ∑
j=1

∫ u=1

u=0
Ll(K(u)) ·

It1j − I
t2
j∥∥∥It1j − It2j ∥∥∥

2

du. (5.5)

Here, I is a joint candidate and nJ is the number of joints for a person which

is determined in the spatial part. K(u) indicates interpolated points in the line

segment (It1j , It2j ) where u ∈ {0, 1}, i.e., K(u) = (1 − u) · It1j + u · It2j . This
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score measures the plausibility of joint association between frames using the

TML.

We measured the joint distance (Sd) between the frames using the Euclidean

distance.

Sd =
1

nJ

nJ∑
j=1

∥∥∥It1j − It2j ∥∥∥ (5.6)

Both scores are given a different weight by using the variable α which is deter-

mined through experiments. Finally, we find the optimal connection by applying

a bipartite graph [16].

After tracking the poses between front and back frames in the set frames,

we refine the poses of the middle frame. We want to improve the situations of

the blur image, the occlusion and other reasons that could make the poses have

disappeared in the intermediate frame. On the other hand, the disappeared pose

comes out again in the first and third frames as shown in Figure 5.2. Specifically,

the poses are not extracted on the frame Ft and extracted and tracked on the

frame (Ft−1 and Ft+1).

To refine the poses in the intermediate frame, we use the association of three

frames. The frame Ft−1 and Ft+1 are fed into the proposed network followed

by the above tracking approach. After that, we could take the poses which have

the unique track id. The track id of poses is compared with the pose’s track id

on the second frame, whether it has existed or not. If the pose hasn’t existed, the

poses or the joints missed in the middle of the frame Ft are filled with average

locations of those in Ft−1 and Ft+1.
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5.4 Experiments

The task of tracking the pose has to experiment on the video or real-time cam-

era. We have used the PoseTrack datasets with information of multi-person pose

estimation and tracking based on the video data. The PoseTrack datasets have

consisted of the PoseTrack2017 and Posetrack2018. Two datasets have differ-

ent annotation types. The order of part is different and more parts such as ear

are added to joint. For the test, mean average precision (mAP), multiple object

tracker accuracy (MOTA) and multiple object tracking precision (MOTP) are

evaluated in the annotation order of PoseTrack 2017.

Our proposed model based on the COCO keypoints dataset pre-trained model

[10]. The network has various parameters: a weight decay is 0.005, a momen-

tum is 0.9 and the learning rate is 0.00005. Efficiently using the pre-trained

parameter at the training network, we have changed the part order and added

non-existent parts. We used the Caffe open-source library [32].

For the data augmentation method, we have used random crop, random ro-

tate and random scaling. Because our proposed network is trained as end-to-end

approach, the two input frames have applied the same parameter of data aug-

mentation. More specifically, on the first frame, the parameters of data augmen-

tation methods are randomly decided and the next frame are equally applied.

MOTA, MOTP and mAP are used to evaluate the performance [54]. Table

5.1 shows the results of the proposed methods by different settings - using dif-

ferent numbers (1 or 3) of iterative stages in the temporal part (#stage), using

channel accumulation of TML instead of using individual channels for each

joint (∗), and a tracking method only using distance score by setting α in (5.4)
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as 0 (distance). Through the experiment, we empirically decide the number of

subdivide each limb to 20 pieces to make the TML.

To make the temporal network part having as few parameters as possible

while maintaining high performance, we experimented with different number

of repetition stages, 1, 3 and 6. The spatial part used a fixed six stages. Table

5.1 only compares the performances with one and three iterative stages in the

temporal part, because the experimental result of the iterative 6 stages is lower

than that of 3 stages and has a huge number of parameters.

Similar to optical flow [25], we accumulate all limb movements in one map

called accumulated channel map as shown in Figure 5.3(c). On the Table 5.1,

(∗) means that the network used the accumulated TML. Basically, we use a map

with a channel for each limb called individual channel map. The number of

channel on individual channel map is (the number of (x, y) channels = 2)×(the

number of limbs), but the accumulated channel map has only two (x, y) chan-

nels. In all the tested networks, the accumulated channel map obtained lower

accuracy than the individual channel map. Huge amount of the directional in-

formation of each limb is lost in the accumulated map, because the map includes

some problems, e.g., different limbs overlap in the same location and have an

averaging effect on that point.

We implemented and compared the performance of the Joint-Flow map to

show that the map created using limbs is more efficient than the map created

using joints. The Joint-Flow map is constructed as a direction in which the joint

moves between two frames. The Joint-Flow map follows the equation of (5.2)

but uses the joint location instead of separated part s.

The mAPs of Joint-Flow are higher than the TML, but MOTAs are lower.

This results shows the difficulty of tracking using the Joint-Flow, because the
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Table 5.2: Pose estimation and tracking performance on PoseTrack 2017 test

dataset.

Method mAP MOTA MOTP Prec. Rec

Top-down

Poseflow[81] 63 51 16.9 71.2 78.9

MVIG 63.2 50.8 - - -

Xiao et al.[80] 74.6 57.8 62.6 79.4 80.3

JointFlow[16] 63.6 53 23.2 82.1 70.6

Bottom-up Jin et al.[33] 59.16 50.59 - - -

TML++ 68.78 54.46 85.2 80 76.1

Table 5.3: Pose estimation and tracking performance on PoseTrack 2018 test

dataset.

Method Additional training data MOTA mAP Wrists AP Ankles AP

Xiao et al. [80] +COCO+Other 61.37 74.03 73 69.05

ALG +COCO+Other 60.79 74.85 72.62 71.11

Miracle +COCO+Other 57.36 70.9 68.19 66.06

CMP +COCO 54.47 64.67 61.78 60.86

PR +COCO 44.54 59.05 50.16 49.4

TML++ +COCO 54.86 67.81 60.2 56.85

Joint-Flow map has less information than the TML. Moreover, we compared

with JointFlow [16] that proposed a temporal map about joint movement as
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Figure 5.5: An example of pose refinement using multi-stride inputs during the

inference.

The person at the right side of input images (red line) is tracked from Ft−1 to

Ft+1, but the pose of the person is not detected at Ft. By associating the poses

at Ft−1 and Ft+1, we can retrieve the missed pose at Ft. On the other hand, we

cannot refine the person on the left side (pink line), because it is only estimated

at the Ft−1.

shown in Table 5.2. On the PoseTrack 2017 test set, our results are better than

those of the JointFlow [16].

Because the proposed method is the bottom-up approach, it is possible to de-

tect many joint candidates on the same part. Thus, a non-maximum suppression

(NMS) is applied for joints to reduce confusion after estimating joint location.

(+) in Table 5.1 means that first we detect joints using the joint heatmaps and re-

fine the joint using NMS. Reducing the confusing candidates increases tracking

performance by around 0.4% in mAP and 0.6% in MOTA.

The sum of the TML score and the joint distance score is used for the as-

sociation score to track poses. We experimented to see how the joint distance

affects to association score. On Table 5.1, (Distance) means that only joint dis-

tances of a person is used in the calculation of association score. To enable this,

at inference time, we use the same structure as TML+ and set α to 0. Only using

the distance score incurs more confusion with nearby people and the resultant

MOTA is by far lower than others on average. However, we need to use the dis-
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tance score to handle the case of no motion. Thus, we apply α to 0.5 in all the

other cases.

One of our contributions is the refining method for the middle frame pose.

We refine the pose on the middle of frame by analyzing between three frames.

(++) in Table 5.1, Table 5.2, and Table 5.3 means that the refining method is

applied. Figure 5.5 shows an example result of the refined pose. The pose on

Ft is refined through the association between frames Ft−1 and Ft+1. In case of

the person on the right side (red line), the person is tracked at the Ft−1 and the

Ft+1, but not tracked at the Ft. Through the refining method, an average pose

between Ft−1 and Ft+1 is added on the frame Ft. Unfortunately, the person on

the left side (pink line) can not be tracked through the refining method, because

the pose is not estimated at the Ft+1.

Figure 5.6 shows qualitative results of pose estimation and tracking. Poses

are estimated and tracked well in a variety of environments even when several

people move close together or quickly. Because our association score consid-

ers the distance score, poses that have a little movement can also be tracked as

shown in the fourth row on Figure 5.6. Unfortunately, if the poses nearly oc-

cludes each other as in the last row of Figure 5.6, the pose is likely to be missed.

For future work, we may propagate the pose through the TML and refine the

estimated pose by comparing it with the propagated pose to address this.

We compare our method with the state-of-the-art methods on the PoseTrack

2017 and 2018 test datasets as shown in Table 5.2. Though the proposed method

shows a lower performance than the highest record [80], the result of the pro-

posed network is the best among the bottom-up approaches. The bottom-up

method tends to be relatively less accurate than the top-down method, which

detects people first and estimates poses. So mAP of proposed method tends to
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be relatively lower than the top-down method. However, our method is available

to be advantageous in a blurry situation because TML is used to refine poses in

the post-processing stage.

Because the PoseTrack challenge was held on the September 2018, papers

using the PoseTrack 2018 data have not been published yet. We could not com-

pare the proposed method with other methods on the PoseTrack 2018 validate

data. However, we can compare results of state-of-the-art on the PoseTrack 2018

test data through the results on the PoseTrack leader-board site as shown in the

Table 5.3. We cannot compare the structures of the networks, but ours shows the

best performance among the ones trained only using COCO data.
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Figure 5.6: The qualitative results of the proposed multi-stride pose estimator

and tracker.

The images are in chronological order from left to right. Tracked poses are

displayed in the same color.
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Chapter 6

Future work

For a better performance of human pose estimation models, we have analyzed

the spatial and temporal features and proposed three different methods. First,

two types of spatial features, global and local features, have been efficiently

exploited by using an end-to-end global and local network. Second, we have

proposed TML which can understand the continuous movements of limbs. By

training the TML with a spatial map, the spatial and temporal features can ex-

change information each other. Finally, in order to balance the amount of the

usual pose and rare pose, we have defined the rare pose and several methods to

improve the performance. Methods in this paper may seem to be irrelevant each

other but can be integrated and utilized altogether. For example, we can propose

an higher accuracy pose estimator and tracker by combining the all methods

mentioned above.

As shown in Figure 6.1, a new structure combined with proposed methods

can be suggested to estimate and track a pose in a top-down manner. The new

structure consists of two parts which are respectively a feature extractor and a

module of estimating maps. The feature extractor network (Network in Figure
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Figure 6.1: The new structure is combined with the proposed methods.

P is a input image, i, j is an unique person identity and t, t− 1 are frames.

Input images (Pi,t, Pi,t−1) are fed input the backbone network (Network).

Feature (f ) is extracted on the backbone network and fed into each

deconvolution layer (DS , DT ). Each deconvolution layer generates spatial and

temporal maps (Heatmap, TML), respectively. Additionally, the Local

network (L) is applied to learn the Heatmap.

6.1) is based on frequently used backbone networks such as ResNet and Mo-

bileNet. The feature extractor extracts the feature of person image to provide

input feature of the spatial and temporal parts.

Introduced in Chapter 5, our multi-person estimation model using spatial

and temporal networks proceeds several stages of learning the maps. In our

method, the repeated stage structure is adopted to harvest the feature because

bottom-up methods usually uses the whole part of an image and an intensive ex-

traction is needed. However, the newly proposed method is a top-down method

and does not require repetitions of modules. [80] has proposed a structure that

connects three deconvolution layers to the backbone network. The performance

is adequate and one of the top-ranking methods in multi-person pose estimation.

Accordingly, only a few deconvolution layers are used in the new structure to

82



learn maps.

In the proposing method, Heatmap and TML can be adopted for a better

performance. The Heatmap is a Gaussian map representing the location of a

part and the TML a the unit vector map representing the movement of limbs.

For the training, each stage of decovolution as shown in Figure 6.1 is used to

process each map.DS andDT denote the decovolution networks. TheDS takes

the output feature of the backbone network as the input (fi,t, fj,t−1) frame-by-

frame. On the other hands, TheDT takes the concatenated feature of two frames

(fi,t + fj,t−1). Additionally, at the spatial part module, the local network we

proposed is applied.

Because the unique bounding box of a person is given in every frame at

training time, bounding boxes of i’th person from different time steps Pi,t, Pi,t−1

are available. At inference time, bounding boxes of humans are detected using

a human detector such as Mask R-CNN [1]. Unlike in the training time, the

identity of a person is unknown making bounding boxes of the same person from

different frames hard to match. The simplest way of choosing an input bounding

box pair is to check all the combinations. To reduce the running time, only pairs

of boxes having low enough pose distance may be under consideration. To track

the pose, we calculate the associated score using the TML and the distance

of pose. Among candidates of box pair above, one with the highest associated

score is selected to be the same person. Finally, our rare pose augmentation can

be used to balance the general pose and rare pose at the training time.

By Observing the [80] which has a similar structure with our proposed

method, the highest performance in COCO validation is 70.4 AP and our pro-

posed method is available to reach high performance. Also, the proposed method

parameter is almost 43 million with 256 ∗ 192 input image size and ResNet-50
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backbone. By the small number of parameter, the proposed method is available

in real-time.
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초록

2D 이미지에서 사람의 포즈를 검출하는 연구는 사람의 파트들의 위치를

검출하는 것을 목표로한다. 포즈는 사람의 파트들로 구성되어 있고 사람의

파트는팔,다리,머리등으로사람을구성하는신체의요소들을의미한다.사

람의 포즈 정보는 다양한 분야에서 활용 될 수 있다. 또한, 사람의 동작 감지

연구분야에서는사람의포즈정보가매우훌륭한입력특징값으로사용된다.

사람의포즈검출연구를실제시스템에적용하기위해서는높은정확도,

실시간성, 다양한 기기에 사용 가능하도록 가벼운 모델이 필요하다. 본 논문

에서는 정확도를 개선하는 연구에 초점을 맞췄다. 높은 정확도를 달성하기

위해서 특징값을 어떻게 활용할지에 대해 고민을 했으며, 지역적 특징값과

시간특징값을사용해서문제를개선했다.

지역적 특징값은 사람의 텍스쳐, 형태와 같은 특징을 표현하는 것을 의

미한다. 우리는 지역적 특징 값을 다수의 파트를 담고 있는 Global feature 와

소수의 파트를 담고 있는 Local feature로 분류해서 문제를 접근했다. 첫번째

로는 global-local feature 을 동시에 사용해서 성능을 개선하는 연구에 집중

했다. Global feature을집중적으로학습하는네트워크와다양한형태의 local

정보를학습할수있는 local network을설계했다. Local network에서는 global

network에서검출한포즈를다시한번개선하는역할을수행한다.제안된방

법의효율성을증명하기위해서 single-person pose estimation데이터중하나
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인 Leeds sports dataset (LSP)데이터에서실험을수행했다.

두번째로는 global한정보를통해희귀한포즈를검출해서포즈의불균형

을 해소해 성능을 개선하는 연구를 수행했다. 우선적으로 포즈 데이터 내에

서 전체 포즈의 위치 정보를 사용해서 포즈들을 분류했다. 실험 결과, 일정

포즈를 (서있는 포즈, 상반신만 있는 포즈 등) 중심으로 포즈들이 분포 된며

포즈 간의 불균형이 있음을 밝혀냈다. 우리는 포즈 간의 불균형을 해소하기

위해 weight loss, generate rare pose data 등의 방법을 제안했다. 제안된 방법

의 효율성을 증명하기 위해서 multi-person pose estimation 데이터에서 많이

사용되는MPII와 COCO데이터에서실험을수행했다.

시간 특징값은 시간 흐름에 따른 움직임 변화값을 의미한다. 동영상에서

객체를분석하기위해서는시간정보를활용하는것이좋다.그래서세번째로

우리는사람의움직임변화를맵으로표현해서포즈를추적했다.이때포즈의

지역적특징값과같이학습해서서로간의시너지효과를낼수있도록네트워

크를 제안했다. 제안된 방법의 효율성을 증명하기 위해서 multi-person pose

tracking데이터인 posetrack 2017과 2018에서실험을수행했다.

본 논문에서는 지역적 특징과 시간적 특징을 활용해서 포즈의 성능을 개

선하는 방법들을 제안했다. 서로 다른 문제들을 해결했지만 나아가 하나로

묶여문제를해결할수있다.예를들어, top-down형태의네트워크구조에서

Heatmap과 TML을각각학습할수있는평행적구조의 decovolution network

을제안할수있다.여기에 Heatmap의성능개선을위해 local network와 rare

pose data augmentation방식또한추가할수있다.이렇게제안된방법을결합

해서더나은포즈의성능을개선할수있는방법들이제안될수있다.

주요어: 2차원사람자세인식, 2차원사람자세추적,공간적특징값,시간

적특징값,희귀포즈분석,시간정보맵,딥러닝,클러스터링

학번: 2015-31349
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