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Abstract

With the upsurge in using Unmanned Aerial Vehicles (UAVs) in various

fields, identifying them in real-time is becoming an important issue. However,

the identification of UAVs is difficult due to their characteristics such as Low al-

titude, Slow speed and Small radar cross-section (LSS). To identify UAVs with

existing deterministic systems, the algorithm becomes more complex and re-

quires large computations, making it unsuitable for real-time systems. Hence,

we need a new approach to these threats. Deep learning models extract features

from a large amount of data by themselves and have shown outstanding per-

formance in various tasks. Using these advantages, deep learning-based UAV

classification models using various sensors are being studied recently.

In this paper, we propose a deep learning-based classification model that

learns the micro-Doppler signatures (MDS) of targets represented on radar spec-

trogram images. To enable this, first, we recorded five LSS targets (three types

of UAVs and two different types of human activities) with a frequency modu-

lated continuous wave (FMCW) radar in various scenarios. Then, we converted

signals into spectrograms in the form of images by Short time Fourier trans-

form (STFT). After the data refinement and augmentation, we made our own

radar spectrogram dataset. Secondly, we analyzed characteristics of the radar

spectrogram dataset using the ResNet-18 model and designed the lightweight

ResNet-SP model for the real-time system. The results show that the proposed

ResNet-SP has a training time of 242 seconds and an accuracy of 83.39 %,

which is superior to the ResNet-18 that takes 640 seconds for training with an

accuracy of 79.88 %.

i



keywords: CNN, Classification, UAV, FMCW radar, STFT, Spectrogram, MDS

student number: 2019-29945

ii



Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 Introduction 1

2 Related Works 5

2.1 Micro Doppler Signature (MDS) . . . . . . . . . . . . . . . . . 5

2.2 Classification of UAVs using MDS . . . . . . . . . . . . . . . . 6

3 Dataset Generation 9

3.1 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Models 21

4.1 ResNet-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 ResNet-SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ii



5 Experiment 32

5.1 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Conclusion 34

Abstract (In Korean) 38

iii



List of Tables

3.1 The movements for each target and the settings for recording. . . 12

3.2 Spectrogram width of two targets before and after the data re-

finement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Data augmentation method applied to generating training data . 20

3.4 Number of samples for each class in radar spectrogram dataset . 20

4.1 Accuracy of the ResNet-18 according to the signal form of the

radar spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Accuracy of the ResNet-18 on two different noises. . . . . . . . 25

4.3 Accuracy of the ResNet-18 according to conv. groups and layers. 26

4.4 Accuracy of the ResNet-18 according to the dilated kernel. . . . 29

5.1 Average test accuracy of five runs and their standard deviation. . 32

5.2 Computation time; Training time and inference time. . . . . . . 33

iv



List of Figures

2.1 Radar spectrogram of walking: approaching and turning away. . 6

2.2 Spectrogram of UAVs; wing-flap (top), quad-copter (middle),

and fixed-wing (bottom) . . . . . . . . . . . . . . . . . . . . . 7

3.1 X-band FMCW radar (Ancortek’s SDR-KIT 980AD2) image

and Specification . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Target images; three types of UAVs and two different human

activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Sequential video frames of a specific movement for each target:

(a) Metafly flight from right to left, (b) Mavic Air 2 flight from front

to back, (c) Disco flight coming forward, (d) Walking from right to

left, (e) Sit-walking coming forward . . . . . . . . . . . . . . . . . 13

3.4 Spectrogram resolution of Walking according to window sizes;

as the window size increases, the frequency resolution increases. 14

3.5 Spectrogram resolutions of Metafly flight according to window

overlap ratios: as the window overlap ratio increases, wing-flaps

of Metafly appear more clearly . . . . . . . . . . . . . . . . . . 15

3.6 Spectrogram of background clutter (left) and Mavic Air 2 (right).

The red box is the non-recorded section of the target. . . . . . . 17

v



3.7 Spectrograms of Mavic Air 2 before the refinement process (left)

and after the refinement process(right). red box: chopped im-

ages with an average intensity below the threshold, blue box:

chopped images with an average intensity above threshold . . . 18

3.8 Training loss curves; before the refinement process(left), after

the refinement process (right) . . . . . . . . . . . . . . . . . . . 19

4.1 Plane CNN layers (left), Residual block (right) . . . . . . . . . 23

4.2 ResNet-SP Architecture . . . . . . . . . . . . . . . . . . . . . . 27

4.3 The receptive fields : 3x3 kernel (left), 5x5 kernel (center), 2-

dilated 3x3 kernel (right) . . . . . . . . . . . . . . . . . . . . . 28

4.4 Training loss curves; before the gradient clipping (left), after the

gradient clipping (right) . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Softmax output distributions; normal data (left), outlier data (right) 31

vi



Chapter 1

Introduction

In recent years, the rapid development of UAV technology has increased the us-

age of UAVs in various fields such as agriculture, industry, and military fields.

Even though the use of UAVs brings convenience to life, it poses severe threats

if abused by enemies or terrorists. There have been reports of attempts to as-

sassinate key figures or to attack oil facilities using UAVs loaded with small

bombs. If UAVs are used to attack with biochemical weapons, damages will be

more severe. Therefore, the real-time early detection and identification of UAVs

are essential. However, it is difficult to identify UAVs due to their Low altitude,

Slow speed and Small radar cross-section (LSS) characteristics. In the case of

deterministic rule-based model, due to LSS characteristics of UAVs, the algo-

rithm becomes more complex, which increases computations. Hence, effective

alternatives enabling real-time identification of these new threats are required.

Recently, deep learning-based classification models are being applied to various

tasks. These models learn features from a large amount of data themselves and

have especially shown outstanding performance in image classification tasks.

In the UAV classification task, deep learning-based classification models using
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various sensors are being actively studied. Saqib et al. [15] performed the UAV

identification task using pre-trained models of ZF-Net [22] and VGG-16 [17] on

the bird-vs-UAV dataset with 2,727 video frames and showed the highest mean

average precision of 0.66 at VGG-16. Seo et al. [16] recorded acoustic signals

of UAVs and non-UAVs outdoors, obtained a 2D image by applying STFT, and

tested the dataset with a self-designed CNN model and showed a detection rate

of 98.97% and a false alarm rate of 1.28%. Radar poses several advantages

over other sensors. Namely, radar is less affected by weather and low visibility

environments than optical sensors. And unlike acoustic sensors, it is not vulner-

able to ambient noise. Because of these advantages, deep learning-based UAV

classification studies that birds vs. UAVs, UAVs vs. UAVs, and etc. are being

conducted using radar sensors [20]. Among them, there are deep learning-based

classification models that learn micro-Doppler signatures of UAVs represented

on the radar spectrogram. A moving target generates the micro-Doppler effect

by partial movements like the pendulum, rotation and vibration along with a

constant Doppler shift induced from the main body. This MDS is a unique char-

acteristic of the target and is well represented visually in the radar spectrogram,

which is the STFT result of the radar signal. It is possible to train the radar signal

with the deep learning-based image classification model because it is converted

into the optical image format. Related studies showed high accuracy in UAV

classification, but most of them measured only limited flight dynamics such as

hovering, so it does not contain the various UAV flights in reality. And in the

process of transforming the UAV radar signal into the image form such as RGB

and grayscale, data distortion or loss may occur.

In this study, we propose a deep learning-based UAV classification model

that learns MDS that is suitable for real-time systems by increasing the data
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diversity and designing a lightweight and stable model while considering the

characteristics of the spectrogram dataset. To diversify the dataset, radar signals

were recorded by diversifying the target type and the movement assuming a real-

life scenario. We recorded five LSS targets (3 types of UAVs and 2 different hu-

man activities) each with an FMCW radar. UAV targets were selected according

to flight type (multicopter, fixed wing, wing flap) and walking and sit-walking

were chosen as ground moving targets. UAV signals were recorded by changing

altitude, speed, and direction, and human signals were recorded by changing

direction and range at a constant walking speed. The signals were converted

into spectrogram images through STFT. Then, through the data refinement and

augmentation, we generated own the radar spectrogram dataset. Then, we ana-

lyzed characteristics of radar spectrogram data using the ResNet-18 model [7],

which is a popular image classification model. With this model, we analyzed the

performance according to the radar spectrogram data type and the model struc-

ture. Based on this, we designed a lightweight ResNet-SP model which is more

suitable for real-time systems. Additionally, we improved model’s stability by

applying anomaly detection and gradient clip methods to reduce learning insta-

bility caused by abnormal data. The results show that ResNet-SP has 83.39% of

accuracy which is higher than 79.88% from the ResNet-18. Also, the training

time is 242 seconds with our proposed model, which is faster than 640 seconds

of ResNet-18. Furthermore, the ResNet-SP model is more stable through out the

training process.

Our main contributions are summarized as follows:

(1) Generated radar spectrogram dataset covering various movements of targets.

(2) Analyzed radar spectrogram dataset characteristics with the ResNet-18 model.

(3) Designed lightweight ResNet-SP model suitable for real-time system.
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The paper is organized as follows. Chapter 2 describes the micro-Doppler

signature and introduce related works. Chapter 3 describes the generation pro-

cess of the radar spectrogram dataset through radar measurement and pre-processing.

Chapters 4 analyze data characteristics using the ResNet-18 model and design a

lightweight ResNet-SP model for the real-time system. Chapter 5 shows exper-

imental results and finally, Chapter 6 concludes the paper.
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Chapter 2

Related Works

This chapter describes the micro-Doppler signature which is the main feature

of the radar spectrogram dataset. And we introduce deep learning-based UAV

classification studies that learn the MDS represented on the radar signals of

moving targets.

2.1 Micro Doppler Signature (MDS)

The Doppler effect of a radar is a frequency shift or wavelength change gener-

ated from the reflected radar signal when a target moves or changes in a relative

distance to an observer. Radar signal interacts with the target in motion and the

returned signal changes its characteristics. While the Doppler effect is generated

by a bulky motion of the body of the target, its micro-movements from the part

of the body can generate such micro-frequency shifts, which is called the micro-

Doppler effect [2]. This micro-Doppler signal is created by all subtle movements

of a target, such as vibration, rotation, pendulum, etc., unique patterns or charac-

teristics occur depending on the object type or different movements of the same
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Figure 2.1: Radar spectrogram of walking: approaching and turning away.

object. Figure 2.1 shows the micro-Doppler signature of walking represented on

the radar spectrogram. On this spectrogram, we can see the MDS shape gener-

ated by swinging limbs around the torso signal. And the shape of this MDS is

represented differently depending on the length of the limb, the swinging pe-

riod, and the angle. Hence, we can use this MDS shape as the main feature of

the classification task.

In UAV, MDS appears differently according to the flight types, and even

within the same flight type, it appears differently depending on the number of

rotors, blade length, etc. Figure 2.2 is a radar spectrogram for UAVs of different

flight types. The second column shows the spectrograms of the UAVs with the

fuselage fixed at short-range, and the third column is the spectrogram of free-

flight. We can see that each UAV spectrogram appears differently and using this

characteristic we can further perform deep learning-based UAV classification.

2.2 Classification of UAVs using MDS

There are several deep learning-based UAV classification studies that learn the

MDS represented on the radar spectrogram of moving target.
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Figure 2.2: Spectrogram of UAVs; wing-flap (top), quad-copter (middle), and

fixed-wing (bottom)

Choi et al. [3] suggested a deep-learning model which classifies three types

of UAVs (Vario helicopter, DJI Phantom 2, and DJI S1000+) based on the micro-

Doppler signatures in the spectrogram and confirmed the feasibility of the ap-

plication of deep learning-based models in the UAVs classification. Raman et

al.[13] proposed a radar spectrogram-based deep learning model that classifies

birds and UAVs. They applied the following methods to mitigate the lack of di-

versity and quantity of UAV radar spectrogram data. First, they added the flying

dynamics of UAVs for diversify the dataset. They added more flight dynamics

such as radial traversing, pointing out that other previous studies such as [3] only

utilized the hovering data of UAVs. Second, they applied the transfer learning

[10] commonly used in the optical image classification to solve the lack of radar

spectrogram data. Transfer learning is a method that can improve performance

by transferring well-trained parameters of a network trained with a large dataset

to the network with a small amount of data. To apply this method, the authors

7



transformed the radar signal into an RGB spectrogram of the same color scale

as the optical image and trained the dataset with the modified GoogleNet [19].

They showed high performance of over 99%.

However, the datasets still do not cover various flight movements of UAVs.

And radar signal has very different characteristics from the optical image, so the

data characteristics may be distorted or omitted in the process of transforming

the color scale of radar spectrogram data to suit the optical image classification

network.
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Chapter 3

Dataset Generation

This chapter covers the whole process of generating a radar spectrogram dataset.

UAV flight data is mainly generated by radar-related companies, agencies, or the

military for particular purposes. There are no publicly released datasets and ref-

erences so it is difficult to study. In particular, the dataset recorded by radar

sensors is even rarer. Due to these characteristics of the research field, many

researchers generate their own datasets and carry out research. However, most

of the datasets have a lack of diversity, such as measuring only at short-range

or limited movements of UAVs to obtain a clear signals. Considering the real-

life scenarios, we measured various movements of targets with radar and pre-

processed the measured signal to generate our radar spectrogram dataset. Sec-

tion 3.1 describes the radar measurement process for targets, and section 3.2

describes the pre-processing process of the measured signals.
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Figure 3.1: X-band FMCW radar (Ancortek’s SDR-KIT 980AD2) image and

Specification

3.1 Measurement

Radar signals are less vulnerable to low visibility and weather conditions than

video signals and have fewer restrictions on the line of sight (LOS), which in-

dicates a straight line between the target and the sensor. These radars are di-

vided into two types by the principle of radio wave emission; (1) ‘pulse radar,’

which transmits pulse signals and receives signals reflected from objects and

(2) ‘continuous wave (CW) radar’, which continuously transmits and receives

signals without a pause. To detect time-varying changes for low radar cross sec-

tion (RCS) targets, the continuous wave radar is suitable and we decided to use

an FMCW radar that continuously emits a frequency modulated signal at reg-

ular intervals to obtain time information. Our model is Ancortek’s SDR KIT

980AD2 and the specifications are described in Figure 3.1. Additionally, to se-

lect well-recorded files, we installed a video camera synchronized with the radar

and double-checked video files and radar spectrograms.

We recorded five different LSS targets with the FMCW radar. Assuming the
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Figure 3.2: Target images; three types of UAVs and two different human activi-

ties

enemy approaching the local area, we selected three types of UAVs as aerial

moving targets and two different human activities as ground moving targets.

The three flight types of UAVs are ‘Metafly’, a wing-flapping drone that mimics

wings of a bird and ‘Disco’, a fixed-wing, and ‘Mavic Air 2’, a quad-copter

(4 rotors). ‘Walking’ and ‘Sit-walking’ are data of the same person. Figure 3.2

shows the images of the five targets.

We recorded various movements of targets within the 100m range. UAVs

were recorded while changing altitude, speed, and direction freely, and humans

were recorded while changing the distance and the direction at a constant pace.

Only two UAVs (Metafly and Disco) were given some restrictions for the proper

recording. Metafly was recorded within the 10m range because of its low signal

intensity. Disco was recorded only in the left and right, front and rear, and con-

centric circular flight at an altitude of 10m with low-velocity settings because

of its high-speed and wide turning radius. Disco is equipped with a single rotor

at the rear of the fuselage so that thrust acts only forward and changes direc-

tion gradually by changing the Angle of the Attack (AoA) of the aileron at the

wing-tips. So it requires a wide turning radius and often be placed outside of

the radar’s detection range. Besides, because it moves at high speed, it quickly
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Parameter Metafly Mavic Air 2 Disco Walking Sit-walking

Alt. / Range (m) 0 - 10 / 0 - 10 0 - 10 / 0 - 100 10 / 0 - 100 0 / 0 - 100 0 / 0 - 100

Radar angle(vertical) 0 0 + 20 º 0 0

Movement Free flight Free flight Circular-flight Free Free

Table 3.1: The movements for each target and the settings for recording.

leaves the radar’s detection range. Table 3.1 shows the movements for each tar-

get and the settings for recording. And Figure 3.3 is sequential video frames of

a specific movement for targets. We operated Metafly and Mavic Air 2 manu-

ally, and Disco operated automatically by entering flight plans through the ‘Free

Flight Pro’ mobile application. We recorded many times for each target and re-

moved abnormal files such as overly noisy files or files intruded by other objects

by cross-checking video files and spectrograms. Basically, we selected 10 well-

recorded files for each target and divided the training dataset and the test dataset

by a ratio of 8:2. (The exception is for Disco; 25 files were used because the

recorded section was too short)

3.2 Pre-processing

In the pre-processing step, the recorded radar signals are transformed into spec-

trogram images through STFT and after the data refinement and augmentation,

the radar spectrogram dataset is generated. The data refinement is the step for

removing the spectrogram section in which the target is not recorded. To do this,

we cut the spectrogram into short time intervals and removed cut images with

an average intensity below a threshold. To increase the amount of data, we ap-

plied three data augmentation methods, keeping the format of the spectrogram:

the x-axis represents time, the y-axis represents frequency and the color at each

12



Figure 3.3: Sequential video frames of a specific movement for each target:

(a) Metafly flight from right to left, (b) Mavic Air 2 flight from front to back, (c) Disco

flight coming forward, (d) Walking from right to left, (e) Sit-walking coming forward

point represents the amplitude of a specific frequency at a specific time.

In the signal processing of STFT, we applied different window sizes (128,

256, and 512) and the window overlap ratios (50%, 70%, and 85%) to get spec-

trograms of different resolutions. In addition, we applied the vertical flip after

the data refinement to obtain spectrograms with reversed radial velocity sign.

A spectrogram [6] reveals the instantaneous spectral content of the time-

domain signal and the spectral content variations over time. A spectrogram is

13



Figure 3.4: Spectrogram resolution of Walking according to window sizes; as

the window size increases, the frequency resolution increases.

obtained by the squared magnitude of the STFT of a discrete signal. With the

spectrogram, we can visually observe the spectrum of frequency changing over

time. But when converting the spectrogram, finite-size sampling in a recorded

signal may result in a truncated waveform from the original continuous-time

signal, introducing discontinuities into the recorded signal. These discontinu-

ities are represented in the FFT as high-frequency components, even though not

present in the original signal. This appears as a blurry form, rather than a clear

form on the spectrogram. This is called ‘spectral leakage’ because it looks as if

energy is leaking from one frequency to another. In order to mitigate the spec-

tral leakage, window functions are generally applied. The spectrogram resolu-

tion is determined by the window size and there is a trade-off between time and

frequency resolution [4]. Figure 3.4 shows the differences in the spectrogram

resolution according to window sizes.

If a narrow window size is applied, a fine time resolution can be obtained

due to a short time interval, but the frequency resolution is degraded due to

the wide frequency bandwidth. Conversely, if wide window size is applied, a

fine frequency resolution is obtained due to a wide time interval and a narrow

14



Figure 3.5: Spectrogram resolutions of Metafly flight according to window over-

lap ratios: as the window overlap ratio increases, wing-flaps of Metafly appear

more clearly

frequency bandwidth, but the time resolution is degraded. The higher the resolu-

tion, the more detailed the object’s MDS waveform is represented. We generated

spectrogram images with different resolutions by applying three window sizes

(128, 256, 512) to the original signal.

Even when the window size is determined, if several different frequencies

are included in a window, they may not be distinguishable. One can use a win-

dow overlap that applies for redundancy when applying the next window in the

STFT process to reduce this effect. The higher the overlap ratio is applied, the

higher the resolution, but it requires more computations. Figure 3.5 shows the

differences in the spectrogram resolution of Metafly (wing flapping UAV) ac-

cording to different window overlap ratios. The higher the overlap ratio in the

given window size, the more detailed the MDS shape is. And the trajectory of

radial velocity by the entire body of the target is also precisely expressed.

In the time-velocity spectrogram, the height represents the target’s radial

velocity relative to the radar; the radial velocity component that appears on the

upside (positive velocity) from the center represents the target is moving away

15



from the radar, the downward (negative velocity) from the center represents

that the target is moving toward the radar. The continuous waveform of the

target over time generates a trajectory representing the movement characteristics

according to the type of target on the spectrogram. For example, the difference

in trajectory due to flight dynamics between fixed-wing aircraft and multiple

helicopters is explained below. First, in fixed-wing UAVs, the propeller is fixed

in the front or rear, so the thrust works only in one direction. Accordingly, the

direction changes gradually by three factors; the inclination of the aileron at the

rear of the main wing, the elevator of the horizontal tail wing, and the rudder of

the vertical tail wing. In contrast, in a multi-copter, several rotors are distributed

over the top of the fuselage. When changing the directions, it uses fuselage-

tilting caused by the difference at each rotor rotation rate, so not only a gradual

change of the direction but also a drastic change of the directions is possible.

These distinctive flight characteristics appear as time-varying trajectories on the

spectrogram; in the former case, it is gradual and curved and in the latter case,

it appears in a sharp and vertical form. This trajectory will be trained with the

target’s characteristics along with the spectrogram shape and the spectrogram

with a high overlap ratio will represent the radial velocity change in more detail.

We applied three different window overlap ratios for each window size to obtain

spectrograms with different resolutions for MDS and trajectory.

We performed data refinement process after STFT. UAV signal has low in-

tensity due to its small size and material such as plastic or reinforcement styro-

foam. So, as the distance increases, the signal intensity drops sharply or is not

detected at all. So there are many unrecorded sections like background clutter in

the spectrogram. Figure 3.6 shows the spectrogram for the background clutter

and Mavic Air 2.
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Figure 3.6: Spectrogram of background clutter (left) and Mavic Air 2 (right).

The red box is the non-recorded section of the target.

In the spectrogram of Mavic Air 2 on the right, the red box is non-recorded

sections because of the target’s low signal intensity. When these non-recorded

sections are trained with data, it is hard to expect the correct performance of

the deep learning model. So we applied the following data refinement process

to remove abnormal data. If the target is well captured, the clear spectrogram

shape with strong intensity appears around a specific velocity component on

the spectrogram and harmonic components are represented parallel around it.

Based on this property, we first chopped the image at a time interval, which

is the MDS periodicity of the target. Then, we removed chopped images with

an average intensity below the threshold and stitched chopped images with an

average intensity above the threshold. If the threshold is too high, only high-

intensity signals recorded at a short-range would be retained and low-intensity

signals at a long-range could be removed even though the MDS shape is rep-

resented. Conversely, if the threshold is too low, non-recorded sections of the

target cannot be removed. So we determined the threshold by referring to the

average intensity values of the background clutter and non-recorded sections of

UAV spectrograms. Figure 3.7 represents the data refinement process for the
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Figure 3.7: Spectrograms of Mavic Air 2 before the refinement process (left)

and after the refinement process(right). red box: chopped images with an aver-

age intensity below the threshold, blue box: chopped images with an average

intensity above threshold

Mavic Air 2 spectrogram. The spectrogram is cut at the same time interval, and

the cut images with average intensity below threshold are removed. And images

above the threshold are stitched together to generate a refined spectrogram.

※ MDS periodicity : Walking / Sit-walking(1/2sec), Metafly (1/24sec), Mavic Air 2

(1/92sec), Disco (1/183sec)

The data refinement process was applied to only two targets (MavicAir 2

and Disco), which have many non-recorded sections on the spectrogram. Table

3.2 shows the change in the spectrogram width of these two targets before and

after the refinement.

Application of Refinement Mavic Air 2 Disco

Before 995 339

After 747 168

Removal ratio 25% 50%

Table 3.2: Spectrogram width of two targets before and after the data refinement.
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Figure 3.8: Training loss curves; before the refinement process(left), after the

refinement process (right)

After refinement, the spectrogram size of Mavic Air 2 was reduced by about

25 % and the Disco by about 50 %. In particular, the spectrogram size of the

Disco was significantly reduced due to the flight characteristics of fixed-wing

UAV. Disco has a single rotor mounted at the rear of the fuselage, so the thrust

acts only forward, and the direction changes gradually by the ailerons at the

wing-tips. Hence, it requires a large turning radius and is often outside the radar

detection range. Besides, its RCS is very low because of the fuselage material

which is reinforced styrofoam. In other words, it was difficult to record due

to the low RCS, and due to flight characteristics such as high-speed and wide

turning radius, the recording time was too short within the radar detection range.

Figure 3.8 is the training loss curve before and after data refinement. In

training with unrefined data, accuracy often fell significantly during training

and the test accuracy had a large variation. You can see this by the number and

size of spikes in the training loss curve on the left. Conversely, with refined

spectrogram data, the phenomenon of drastic accuracy drop during training and

the variation of test accuracy were reduced. And this can be seen by the decrease

in spike size and quantity in the training loss curve on the right. Through the data
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Category Window size Window overlap Vertical Flip Total

(Specification) (128, 256, 512) (50%, 70%, 85%) (O, X)

Original signal x 3 x 3 x 2 x 18

Table 3.3: Data augmentation method applied to generating training data

refinement process, the stability of the model has been improved.

After the refinement process, we applied the vertical flip to spectrograms.

By using the vertical flip, we got additional spectrograms with reversed radial

velocity sign. Totally we could generate 18 different spectrograms from original

radar signal by applying three window sizes, three window overlap ratios and

vertical flip. Table 3.3 shows applied data augmentation methods when gener-

ating the training data. The test set was generated with only one window size

(128) and one overlapping ratio (70 %), and data augmentation was not applied.

For the training data, after pre-processing, the height of each spectrogram

is resized to 128 and then cut into a 128x128 spectrogram image by applying a

50% overlap ratio. The test data is cut into a 128x128 spectrogram image by ap-

plying a 75% overlap ratio after the pre-processing process. To prevent the class

imbalance, the number of classes of the trainset and the testset were balanced.

The number of examples for each class was set to about 2000 in the trainset and

about 200 in the testset. Table 3.4 shows the number of samples for each class

in our dataset.

Class Metafly Mavic Air 2 Disco Walking Sit-walking Total

Trainset 2142 2176 2196 2136 2112 10762

Testset 219 218 206 198 195 1096

Table 3.4: Number of samples for each class in radar spectrogram dataset

20



Chapter 4

Models

This section introduces the deep learning model and analyzes characteristics of

the radar spectrogram dataset using the ResNet-18 model, a popular image clas-

sification model. By checking model performances depending on the data type

of radar spectrogram and the noise, we confirm the optimal data type and a ma-

jor feature of the spectrogram dataset. In addition, we check the performance

by changing the structure of the model. And we design a lightweight and sta-

ble ResNet-SP model which is suitable for real-time systems by modifying the

model, based on these characteristics.

The rule-based classifier is based on ’if-then’ rules designed by engineers.

This method often complicates the model and lacks scalability, because rules

must be specified every time to classify the new data. On the other hand, a

CNN-based classifier extracts features from large amounts of data automatically.

In addition, the robustness of CNN to shift and distortion [8] resulted in an

outstanding performance in image classification tasks; in the 2014 ImageNet

Large Scale Visual Recognition Challenge (ILSVRC), GoogLeNet and VGG-

Net respectively ranked first and second with top-5 error rates of 6.67% and
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7.3% and In the 2105 ILSVRC, ResNet recorded a recognition top-5 error rate

of 3.57% which was less than the human recognition error rate.

CNN is a deep-learning model that uses convolutional operation, and is

composed of several convolution layers and pooling layers. A model learns the

different features of an image using various sizes and numbers of kernels. In the

shallow layers, low-level features are learned, which can be basic shapes like

lines and edges. In the deep layers, high-level features are learned, which con-

tain more specific information for classifying objects. The model is designed to

perform well by learning the various characteristics of the data. CNN can ex-

tract high-level features as layers are stacked deeper, but simply stacking layers

deeper does not increase the performance. The reason is known to be the gradi-

ent vanishing problem [1] that occurs due to the multiplications of gradients in

the parameter update stage as the layer gets deeper. As a result, training cannot

be progressed and in some cases, the performance even degrades.

4.1 ResNet-18

He et al. [7] proposed a residual network that applies residual concepts to the

CNN model. ResNet showed that as the layer gets deeper, the gradient vanishing

problem can be reduced using the residual block and hence bring performance

gain. This architecture has shown superior performance in various image pro-

cessing tasks than previous CNN models. In the CNN model, the receptive field

of the unit in the deeper layer is larger than in the shallow layer. This is because

as the layer deepens, the output unit is indirectly connected to a broader area

of the input image [5]. However, as the layer deepens, structural problems such

as gradient vanishing and over-fitting can easily occur. As shown on the right
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Figure 4.1: Plane CNN layers (left), Residual block (right)

side of Figure 4.1, ResNet solves the aforementioned problems by connecting a

detour path called identity shortcut connection between intermediate layers.

In the residual block, the input ‘x’ goes through the first convolution layer,

the activation function (Relu) and the second convolution layer, outputting F(x).

The output F(x) passes through the activation function after the addition with the

initial input ‘x’. Due to this shortcut connection, even if F(x) has passed through

the two layers and the parameter approaches 0 due to gradient vanishing, the

added initial input ‘x’ remains and is transferred to the next layer. Therefore,

even if the layer is deepened, the representation power does not fall short of the

layer before the identity function and the performance is improved by training.

In the ImageNet dataset, the ResNet model showed higher performance than

the vanilla CNN model, and achieved better performance as the layer deepens.

ResNet is a well-balanced CNN model widely used in recent computer vision

tasks. As radar signals were transformed into a format of an image, we can train

the detection problem on the dataset with these ResNet models. Through this,

we can analyze the radar spectrogram data with the ResNet model and design
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Number of channels Signal form Accuracy (%)

1 Magnitude 75.98

2 Real, Imaginary 79.88

2 Magnitude, Phase 54.53

Table 4.1: Accuracy of the ResNet-18 according to the signal form of the radar

spectrogram

an enhanced model.

First, we analyzed the performance of the model according to the informa-

tion type of the spectrogram data. The radar signal is composed of complex

numbers, containing the signal intensity and phase information, etc. In a related

study, to utilize a deep learning-based optical image classification model, the

signal value of the radar spectrogram was transformed into the color scale of

the optical image. We assumed that the transformation without preserving radar

data characteristics could distort or miss out on information and tested the per-

formances according to the three different information form of the radar signals.

The three types of radar information are represented as channel information: 1

channel of magnitude, 2 channels of real & imaginary and 2 channels of mag-

nitude & phase. The magnitude is the square root of the sum of the squared

real-value and the squared imaginary-value. The phase is obtained by taking

the inverse tangent of the value obtained by dividing the imaginary value by

the real value. The height and width sizes of the three spectrogram data were

the same, and the accuracy is the average of five times measurements. Table

4.1 shows the classification accuracy according to the signal information form

of radar spectrogram. The result shows the highest accuracy when the real and

imaginary values of the radar signal are paired as two channels. Through this,
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Classification Accuracy (%)

Noise level Gaussian Noise Uniform Noise

0.01 76.20 80.80

0.03 66.30 80.90

0.05 40.25 75.71

Table 4.2: Accuracy of the ResNet-18 on two different noises.

we confirmed that most features were maintained at the original form of the

radar signal and that the change in signal form could lead to loss of information.

Next, we investigate the main features of the data that the model learns by

adding two different noises to the dataset. One is the Gaussian noise that adds

random value and the other is the uniform noise that adds the same value. The

Gaussian noise image was created by generating a random variable following

a standard normal distribution as the input size, multiplying it by a noise level

representing noise intensity, and adding it to the original normalized image. The

uniform noise image was created by setting the value of 1 to the input size, mul-

tiplying the noise level, and adding it to the original normalized image. Each

value of the image does not exceed 1. Through Gaussian noise, we checked the

model performance in the condition of where an arbitrary shape is added to the

entire image, and in uniform noise, we checked the model performance when

the sharpness of the MDS is reduced compared to the surrounding area. Each

noise level was specified as a hyper-parameter by identifying the point at which

the model’s performance begins to deteriorate significantly. Table 4.2 shows the

performance of the model for two types of noises.

The performance of the model decreases in both data as the noise level increases,

but we see that the performance decreases sharply in the Gaussian noise, com-
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Conv. Groups Numbers of Layers Feature-map size Accuracy (%)

5 18 4 x 4 79.88

4 14 8 x 8 81.43

3 10 16 x 16 75.38

Table 4.3: Accuracy of the ResNet-18 according to conv. groups and layers.

pared to the uniform noise. This result shows that low-level features in the our

dataset are the most important features to the model when classifying UAVs.

The ResNet-18 model consists of a 5 convolution group and a 2− 5 group,

which consists of a few basic blocks. The feature map size is halved after going

through each convolution group. We analyzed the performance by changing the

convolution group of the model and the basic block(layer)s within the groups.

We checked the performance by sequentially removing the convolution groups

from the output of the model. Table 4.3 shows the accuracy of the model by

the change of the convolution groups and layers. The results showed the highest

accuracy in the 8x8 feature map size with the 5th convolution group removed,

and the performance continued to decline after that. This is the highest model

performance in the optimal feature map size that reflects the characteristics of

the data, and this feature is applied when designing a new model. And we tested

the performance by changing the number of basic blocks within the convolution

group, but there was no significant trend. Through this experiment, we con-

firmed that the final feature map size is significant in learning the spectrogram

data of the deep learning model, and that the additional depth of the layer does

not significantly affect the performance improvement. Based on the above anal-

ysis, we design a lightweight model more suitable for real-time systems.
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4.2 ResNet-SP

In the analyses with the ResNet-18 model, we checked that 1) the model mainly

learns the low-level features of the radar spectrogram, 2) the size of the final

feature map significantly affects the performance and 3) the depth of layers do

not significantly affect the performance. Furthermore, we designed the ResNet-

SP model for real-time systems by applying optimal settings based on these

analyses and applying additional compression and stabilization methods.

Figure 4.2: ResNet-SP Architecture

Figure 4.2 is the architecture of ResNet-SP. We removed the 5th convolu-

tion group from the ResNet-18 model and kept the number of basic blocks the

same. And we reduced the channels of each group by half. By applying a dilated

kernel method, the computations were reduced because the smaller parameters

are used in the model while keeping the receptive fields. And to increase the

learning stability of the model, we applied an outlier detection method that re-
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Figure 4.3: The receptive fields : 3x3 kernel (left), 5x5 kernel (center), 2-dilated

3x3 kernel (right)

moves abnormal data in the learning process through the distribution of the data

and the gradient clip method that reduces the influence of the anomalous data

by limiting the norm of the gradient.

In a kernel, the receptive field signifies the area of the input image where

the kernel attends to. The size of the receptive field is the same as the kernel

size and the larger the size, the more the overall characteristics of the image can

be obtained. However, if the kernel size is increased to obtain a wider receptive

field, the number of parameters increases, which increases the computation.

Dilated convolution is a method of adding zero-padding to the convolution

kernel, which allows a wider receptive field while using the same number of

parameters [21]. Figure 4.3 shows the receptive field images when 3x3, 5x5,

and 3x3 kernels with dilation are applied. The 2-dilated 3x3 kernel has the same

receptive field as the 5x5 kernel, with the same number of parameters as the

3x3 kernel. Through this method, the global feature can be extracted without

increasing the number of parameters.

In the radar spectrogram, the MDS shape is formed around the main veloc-

ity by the main body, and the harmonic components appear parallel to around.

Whereas the target is located locally in the visual image, the moving target sig-
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Kernel 7 x 7 3 x 3 3 x 3

Dilation 1 2 3

Receptive field 7 x 7 5 x 5 7 x 7

Accuracy (%) 79.88 80.26 79.33

Table 4.4: Accuracy of the ResNet-18 according to the dilated kernel.

nal of the radar spectrogram is time-varying, and the local characteristics of the

MDS formed in specific areas of the entire image and the global characteristics

of the harmonic component formed at various frequencies coexist. We tried to

reduce the computations without missing the global feature. Therefore, we ap-

plied a dilated convolution kernel within the range that does not significantly

degrade the performance. Table 4.4 shows the performance when the size of

the 7x7 kernel of the model is reduced to a 3x3 kernel with the dilation. When

dilation of 2 was applied to the 3x3 kernel, the performance was maintained.

However, when dilations of 3 or more were applied, the performance was grad-

ually decreased. This means that applying large dilation will miss out on the

MDS, the main feature that the model is supposed to learn. Therefore, in the

end, we applied a dilation of 2 to the 3x3 kernel, instead of the 7x7 kernel.

Although many abnormal data were removed in the refinement process, ab-

normal data interfering training still remained in our dataset. In a deep neural

network using multiple layers, when such abnormal data comes in a specific

batch, large weights are successively multiplied in the parameter update pro-

cess, causing a gradient exploding problem. As a result, previous well-trained

parameters change rapidly, which causes a dramatic accuracy drop. We applied

a gradient norm clipping method [12] that constrains the maximum norm of

gradients to reduce the impact of anomalous data interfering with the learning
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Figure 4.4: Training loss curves; before the gradient clipping (left), after the

gradient clipping (right)

process. Figure 4.4 is the training loss curve before and after applying the gradi-

ent clipping method. In the figure, the red box represents the training loss after

5000 iterations, and we can see that the variation has decreased after applying

the gradient clipping. And the variation of test accuracy was also decreased.

We additionally applied a method of removing abnormal data from the train-

ing process to increase the learning stability of the model. In our dataset, abnor-

mal data are non-recorded or contaminated sections of the spectrogram. Most of

these abnormal data were removed through the data refinement step, but some

remain, interfering with the stable learning of the model. These abnormal data

exist in every class. Anomaly detection is a research field that identifies outliers

that deviate from the majority of normal data. There are various anomaly de-

tection methods, but we applied the concept of a softmax model of end-to-end

anomaly score learning. [11] This approach assumes that normal data appears

at a relatively high frequency compared to anomalous data, and anomalous data

appears at a lower frequency. When data of a specific class is input, the softmax
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Figure 4.5: Softmax output distributions; normal data (left), outlier data (right)

value is much higher in that class than in other classes, and most of the nor-

mal data have this probability distribution. When normal data is entered into the

model, the softmax value is significantly higher in one class. However, when

abnormal data is entered into the model, the softmax value appears similar in

several classes and the largest value is much smaller than the softmax value

in normal data. Figure 4.5 is an example of the softmax distribution of normal

and abnormal data. Using this characteristic, we excluded data in the training

process if the highest softmax value of the input data does not exceed a certain

threshold.
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Chapter 5

Experiment

5.1 Experiment Result

This section shows performances with the ResNet-18 and the ResNet-SP models

on the radar spectrogram dataset. The performances are the accuracy and com-

putation time. The accuracy is the percentage of the correctly predicted samples

out of the total samples. We used the average test accuracy of five runs and

recorded their standard deviation. Table 5.1 shows the test accuracy and stan-

dard deviation of five runs. The ResNet-SP model shows higher accuracy and

smaller standard deviation than the ResNet-18 model, which indicates better

performance in accuracy and stability.

Models Accuracy (%) Standard deviation

ResNet-18 79.88 0.0204

ResNet-SP 83.39 0.0115

Table 5.1: Average test accuracy of five runs and their standard deviation.
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The computation time is measuring the computational cost of the model. We

recorded the training time and inference time of models, excluding the dataset

generation process. Training time is the time to train the model using training

data, and inference time is the time to predict new data with the trained model.

Table 5.2 shows the training time and inference time for the radar spectrogram

dataset of both models. The ResNet-SP model shows faster computation time

than the ResNet-18 model in both training time and inference time.

Models Training time (sec) Inference time (ms)

ResNet-18 640.39 2.68

ResNet-SP 242.22 1.98

Table 5.2: Computation time; Training time and inference time.

5.2 Training Details

This section explains the details of our experiments. The model training was

performed in Ubuntu with NVIDIA GeForce GTX Titan X edition GPU and

a 3.6 GHz Intel Core i7-9700K CPU. We used the stochastic gradient descent

(SGD) [14] with momentum [18] as an optimizer. The momentum coefficient

was set to 0.9 which means 90% of the cumulated gradient from the previous

step will be transmitted to the current step. The initial learning rate was 0.1 and

the weight decay [9] coefficient for regularization was set to 1.0e−4. We trained

for 100 epochs in total, with a batch size of 64. We used the cross-entropy loss

[23] for the final loss function.
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Chapter 6

Conclusion

In this study, we recorded three different types of UAV signals and two dif-

ferent types of human activity signals in various scenarios using FMCW radar.

Furthermore, we generated the radar spectrogram dataset with high diversity

through STFT, the data refinement method, and the data augmentation method.

Then, we analyzed the characteristics of the radar spectrogram dataset using

the ResNet-18 and checked the optimal data form and model structure. In ad-

dition, we designed the ResNet-SP model, which is more suitable for real-time

systems by compressing and stabilizing the ResNet-18 model. As a result of

experimenting with both models with the same radar spectrogram dataset, the

ResNet-SP showed higher stability, accuracy, and faster computational time than

the ResNet-18 model. In future works, we hope to expand this study to a model

that classifies UAV types by adding several additional UAVs and to improve the

performance of the model using the acoustic spectrogram of the target along

with the radar spectrogram. We also hope to improve the performance of the

ResNet-SP model.
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초록

본 논문에서는, 레이더 스펙트로그램 상에 형성된 서로 다른 이동표적의

고유한 마이크로 도플러신호를 학습하는 딥러닝 기반 분류모델을 제안한다.

이를위해우리는다섯가지소형이동표적(무인항공기 3종과사람행동 2종)을

선정하여 주파수변조 연속파레이더로 표적들의 다양한 움직임을 측정하고

측정한신호에단시간푸리에변환의신호처리과정과데이터정제및증강의

전처리과정을적용하여자체레이더스펙트로그램데이터셋을생성한다.

이후광학이미지분류모델인 ResNet-18을사용하여레이더스펙트로그램데

이터셋의 특성을 분석한다. 레이더신호를 광학이미지로 변형하는 과정에서

의정보왜곡및손실을가정하여세가지레이더신호형태에따른성능을비교

하고최적의데이터형태를확인한다.노이즈시험및구조에따른성능변화를

통해모델이학습하는주요한데이터특징과이상적인모델구조를확인한다.

마지막으로 레이더 스펙트로그램 데이터셋 특성분석을 기반으로 추가적인

경량화 및 안정화 기법을 적용하여 실시간 시스템을 위한 ResNet-SP 모델을

설계하고 ResNet-18모델과의성능비교를통하여연산속도증가와안정성및

정확성향상등의성능개선을확인한다.
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주요어: 컨볼루션 신경망, 분류, 무인항공기, 주파수변조 연속파레이더,

단시간푸리에변환,스펙트로그램
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