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Abstract

Dynamic force microscopy

using multi-harmonic signal analysis

Sunghoon Kim
Department of Physics and Astronomy

The Graduate School
Seoul National University

The success of the dynamic force microscopy (DFM) in quantifying structures

and features of material surfaces at the atomic and molecular level has led to

numerous progress in condensed matter physics, chemistry, biology, and mate-

rial science. Its success is based on the ability to measure the local physical

forces between the DFM probe and sample with spatial resolution ranging from

few micrometers to sub-nanometers. Measuring forces using DFM requires con-

version of the perturbed motion of the probe due to tip-sample interactions to

force-distance curves, which is called force reconstruction. However, the most

widely used force reconstruction method has recently been reported to yield

non-negligible error and exhibit reconstruction instabilities when the oscillation

amplitude is comparable to the decay length of the interaction. The main reason

for these failures at such amplitudes is that the probe oscillation is no longer sim-

ply harmonic, which conventional methods assume, as higher harmonic motions

become considerable at the regime where force changes rapidly. Consequently,
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a novel, universal force reconstruction scheme that works in all amplitudes and

the entire tip-sample distances has become crucial.

This thesis resolves this issue by developing DFM based on multi-harmonic

signal analysis. This platform enables versatile force reconstruction using sig-

nals not only at the resonance frequency of the DFM probe, but also at its

higher harmonics. Here, the following studies are performed for formulation of

this new approach. First, the higher harmonic signals in DFM are theoretically

analyzed. Exact, analytic expressions for higher harmonics generated from ar-

bitrary conservative and dissipative forces are derived for two operation modes

of DFM, amplitude-modulation and frequency-modulation. Moreover, universal

force reconstruction formulas, which completely recover both the conservative

and dissipative forces for entire oscillation amplitudes and tip-sample distances,

are derived for two operation modes of DFM. This approach provides force re-

construction scheme that outperforms the conventional methods in two ways: (i)

the higher accuracy at faster computation speed even by employing an approxi-

mated form of the reconstruction formulas, and (ii) the greater robustness with

respect to the oscillation-amplitude error, overcoming the reconstruction insta-

bility. This thesis is expected to be of great potential importance in the field of

surface science, as it may lead to a significant improvement in DFM-based ex-

periments, including single molecule detection, identification of physicochemical

interactions, and discovery of novel electron transport properties.
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Chapter 1

Introduction

1.1 Dynamic Force Microscopy

Dynamic force microscopy (DFM) is one of the most precise type of scanning

probe microscopy that opened the doors to the atomic and molecular world. The

invention of the scanning tunneling microscope (STM) by Binnig et al. [1] thirty-

nine years ago was succeeded by the advent of atomic force microscopy (AFM)

five years later [2]. Within nine years of its arrival, the dynamic mode AFM, also

known as DFM, has demonstrated the atomic resolution imaging of silicon (111)-

(7 × 7) surface [3]. DFM was further utilized to probe and manipulate objects

at an atomic level, enabling applications to various fields including condensed

matter physics [4–6], chemistry [7], biology [8, 9], and material science [10].

The principle of AFM operation is based on the interaction between a

sharp tip of the AFM probe and a sample, which causes perturbation of the

1



probe from its initial state [11]. The AFM probe is typically composed of a can-

tilever and a sharp tip attached at its end. In static mode AFM, which is the

most basic operation mode of AFM, the probe interacts with the surface atoms,

and commensurate deflections of the cantilever occur, which are detected using

a laser beam reflected from the cantilever. Static mode AFM is widely used

in structural imaging, where the probe is moved physically closer to or fur-

ther away from the surface to maintain a constant deflection, while it scans

the sample surface. Another important application of static mode AFM is force

spectroscopy, where the deflection is monitored at a single point of the sample

as the probe moves vertically to or away from the sample. However, a critical

problem in AFM is jump-to-contact, where its tip is made in contact with the

surface when the attractive force exceeds the restoring force of the cantilever.

Such behavior reduces measurement accuracy and causes mechanical damages

to the sample. While the use of stiff cantilevers can resolve this issue, it poses a

different problem: signal-to-noise ratio (SNR) decreases since stiffer cantilevers

deflect less to tip-sample interaction force. In DFM, the cantilever is driven

externally as it interacts with the sample [12] to achieve the greater SNR and

enhanced sensitivity to short-range forces. There are two operation schemes of

DFM; in frequency-modulation AFM (FM-AFM), the oscillation frequency of

the cantilever matches its resonance, whereas in amplitude-modulation AFM

(AM-AFM), the probe oscillates at a fixed frequency. In contrast to force spec-

troscopy using static mode AFM, where the force can be directly converted from

the deflection of the probe, that in DFM is not so straightforward since DFM
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measures the perturbed dynamic motion of the probe due the force acted on

the probe during its oscillations. Hence, an additional procedure is required to

convert experimental data to force-distance curves, which is called force recon-

struction.

1.2 Force Reconstruction in Dynamic Force Mi-

croscopy

Force reconstruction in DFM is a nontrivial problem since it requires deconvo-

lution of the tip oscillation to recover tip-sample interaction. Several proposed

methods include the use of iterative calculations [13,14], matrix inversions [15],

infinite summations of higher order derivatives [16] and Chebyshev polynomi-

als [17]. Such methods are of limited practicality and/or under-performance

because heavy calculations are required to achieve desired accuracy [18, 19]. A

practical method most widely used in both FM-AFM [20] and AM-AFM [18,21]

operations is the integration method of Sader and Jarvis [20], called the Sader-

Jarvis (SJ) method, as it provides good approximation to the underlying forces

using simple integrals.

Nonetheless, however, recent reports suggested non-negligible error and

exhibit reconstruction instability of the SJ method when the oscillation ampli-

tude is comparable to the decay length λ of the interaction forces [18,20,22–24].

Using amplitudes smaller or larger than λ can bypass this issue, despite the

requirement of additional experimental procedures to identify (possibly multi-

3



ple) λ’s [24, 25], which are generally not known a priori. However, this bypass

strategy has a trade-off: since it sacrifices both the SNR [26] and the sensitiv-

ity to the short-range forces [11], one requires not only costly instruments and

long data acquisition times to achieve low noise, but also excessive experimental

procedures to isolate the short-range contributions from the measured forces.

Indeed, to optimize signal measurement, amplitudes comparable to λ have been

used in DFM experiments, particularly in recent researches in condensed-matter

physics [5,27–30]. Nonetheless, choosing such amplitudes in conventional force-

reconstruction procedures may lead to failure to accurately recover the fine de-

tails of the force. Such failure is due to the discrepancy between the assumption

used in the reconstruction formulas (i.e., single-frequency cantilever motion at

resonance) and the actual cantilever dynamics which can become significantly

anharmonic, especially in the rapidly changing regime of the force. Therefore, an

accurate and robust force reconstruction platform for DFM, valid in the entire

range of amplitudes is yet conceived.

1.3 Multi-harmonic Atomic Force Microscopy

In multi-harmonic AFM (MHAFM), the anharmonic motion of the cantilever

is considered to enhance the capability of the conventional AFM. MHAFM ad-

ditionally detects the higher harmonic signals during AM-AFM or FM-AFM

operations to attain greater spatial resolutions [31–34] and characterize the lo-

cal properties in more detail [35–38]. Detection bandwidth and resolution of
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multi-harmonic signals have been further advanced by the use of novel signal

processing filters [39, 40] and signal enhancement effects of the resonant har-

monics of cantilevers [41, 42] as well as piezoelectric effects of quartz tuning

forks [33, 34].

While understanding higher harmonic motions in DFM is crucial to ad-

dress the ‘pothole’ in conventional force reconstructions, theoretical formula-

tions of MHAFM remain incomplete; existing analytical expressions for higher

harmonic signals of arbitrary harmonic order are derived only for high-vacuum

FM-AFM operations [43], which still requires a general framework for both

MHAFM modes to resolve the ‘pothole’.

1.4 Outline of the Thesis

This thesis formulates a new platform of DFM using multi-harmonic signal anal-

ysis through following chapters. In Chapter 2, higher harmonic signals in DFM

is studied based on rigorous theoretical formulations. The DFM probe is mod-

eled as a driven harmonic oscillator induced by tip-sample interactions. Using

typical assumptions made in DFM studies, highly accurate and analytic expres-

sions for higher harmonics in DFM is derived for both types of DFM and for

arbitrary conservative and dissipative forces. Then, Chapter 3 builds upon the

theoretical studies of the higher harmonics by providing inversion formulas for

force reconstruction. Laplace transformations, followed by analytic calculations

are performed to derive reconstruction formulas from multi-harmonic signals.
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Reconstruction of simulated force curves from generated multi-harmonic signals

in both AM-AFM and FM-AFM demonstrates high accuracy and robustness of

multi-harmonic signal analysis-based DFM. Chapter 4 concludes this thesis by

providing a short summary of the major contributions and discussions and leav-

ing comments about prospective impacts on condensed matter physics.
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Chapter 2

Generation of Higher Harmonics

in Dynamic Force Microscopy

2.1 Introduction

Higher harmonic responses of physical systems provide rich information of the

physical characteristics of the underlying structures pertaining to the driving

force. While the potential energy of the physical system is approximately har-

monic near its equilibrium state, most systems become anharmonic for large

perturbations, which gives rise to higher harmonic behaviors. In conducting ma-

terials, electrons are excited using a laser, where the higher harmonic response

of the electrons is used to characterize the electron-nucleus interactions [1–3].

Similarly, in dynamic force microscopy (DFM), the external driving forces the

DFM cantilever probe to oscillate, and high harmonics of the cantilever motion

14



are generated due to anaharmonic tip-sample interactions.

This chapter describes derivation of exact, analytic expressions for the

higher harmonics of the DFM cantilever motion in both AM-AFM and FM-

AFM. The physical meanings of higher harmonic signals are discussed. Also,

simulation results of multi-harmonic signals assuming Lennard-Jones type force

as the tip-sample interaction is shown. This chapter provides general theoretical

formulations for rigorous analysis in MHAFM.

2.2 Theoretical Formulation

The motion of the cantilever probe is typically modeled as a harmonic oscillator

with external driving force and interaction force [4, 5],

mξ̈ + bξ̇ + kξ = kAd cosωt+ Fint, (2.1)

where ξ is the displacement of the probe, m the effective mass, b the damping

coefficient, and k the stiffness of the probe. The coefficients on the left-hand

side of the equation are related to the unperturbed resonance frequency ω0 and

the quality factor Q, where b = mω0/Q and k = mω2
0. The right-hand side of

the equation represents the tip-sample interaction force Fint and the external

driving force with driving amplitude Ad and frequency ω. As the cantilever

graudally approaches the surface, the nonlinearity of Fint within the oscillation

range generates multi-harmonic motion of the probe. Thus, ξ can be described
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in terms of the relative distance z between the tip and substrate atoms;

ξ(z, t) = ξ0(z) +
∞∑
n=1

An(z) sin (nωt+ θn(z)) , (2.2)

where An(z) and θn(z) denote the amplitude and phase, respectively, of the nth

harmonic motion and ξ0(z) is the mean deflection of the probe.

The interaction force can be decomposed into the conservative and dis-

sipative (non-conservative) terms,

Fint(z, ż) = Fc(z) + Fnc(z, ż). (2.3)

Combining Eqs. (2.1) and (2.3), we obtain the dissipation energy of the probe

for a single oscillation,

−∆E =

∫ T

0

dt ξ̇Fnc

=

∫ T

0

dt ξ̇
(
mξ̈ + bξ̇ + kξ − kAd cosωt− Fc

)
, (2.4)

which can be rewritten in terms of multi-harmonic signals as, using Eq. (2.2),

∆E = πk

(
AdA1 cos θ1 −

ω

Qω0

∞∑
n=1

n2A2
n

)
. (2.5)

Note that the dissipation energy is fully expressed by the multi-harmonic re-

sponses, with no dependence on the explicit form of Fnc. Moreover, the expres-

sion can be divided in terms of energy flow, where the positive term represents

the external energy influx from the drive and the negative terms the internal

dissipation energy. The higher harmonic terms (n > 1) reflect the additional

internal dissipation due to the higher harmonic motions. Of course, the single
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amplitude approximation of Eq. (2.5) reduces well to the previously reported

results [5–7].

Now, let us consider Fnc having explicit velocity dependence of the form,

Fint(z, ż) = Fc(z)− Γ(z)ż, (2.6)

where Γ(z) is the friction coefficient [8]. This form is chosen for further investi-

gation as it is one of the most conventional and intuitive representation of the

dissipation force [5,8,9]. Inserting Eq. (2.6) to Eq. (2.1), we obtain the following

equation of motion for the probe,

mξ̈ + bξ̇ + kξ = kAd cosωt+ Fc(z + ξ)− Γ(z + ξ)ξ̇. (2.7)

From this equation, let us proceed to derive two explicit force-reconstruction

formulas, corresponding to the two MHAFM operation modes.

2.2.1 Amplitude-Modulation MHAFM.

In amplitude-modulation MHAFM, the cantilever is driven at a constant driv-

ing amplitude and frequency, and responses at the driving frequency and its

higher harmonics is measured. To proceed, let us assume |A1| � |An| for n > 1,

corresponding to typical MHAFM experimental observations [10–12]. Also, let

us approximate z + ξ0 ≈ z in accordance with previous dynamical AFM litera-

tures [5,13], as the mean deflection is negligible with the use of stiff cantilevers.

Integrating Eq. (2.7) with the weight functions sin(nωt+nθ1) and cos(nωt+nθ1)
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gives, ∫ π

0

dτ

π
Fc(z + A1 cos τ) cosnτ =

−δn1
(
kAd

2
sin θ1

)
+

1

2
Re
[
ÃnH̃

−1
n

]
, (2.8)

∫ π

0

dτ

π
Γ (z + A1 cos τ) sin τ sinnτ =

δn1

(
kAd

2A1ω
cos θ1

)
− 1

2A1ω
Im

[
ÃnH̃

−1
n

]
. (2.9)

Here, δn1 is the Kronecker delta, Ãn ≡ Ane
iθn and H̃n ≡ H(inω)einθ1i1−n, where

H(iω) ≡ (k −mω2 + ibω)
−1

is the transfer function of the cantilever. Note that

An and θn are uniquely determined by the above equations for any positive

integer n.

The integrals used to express the multi-harmonics can be converted to

infinite summations. Let us express the conservative and dissipative forces in

terms of the Laplace transformations of functions, C(λ) and γ(λ),

Fc(z) ≡
∫ ∞
0

dλe−λzC(λ), (2.10)

Γ(z) ≡
∫ ∞
0

dλe−λzγ(λ). (2.11)

Then, the integrals in Eqs. (8) and (9) can be written as,

(−1)n
∫ ∞
0

dλC(λ)e−λzIn (λA1) =

−δn1
(
kAd

2
sin θ1

)
+

1

2
Re

[
ÃnH̃

−1
n

]
, (2.12)

(−1)n+1n

∫ ∞
0

dλγ(λ)e−λz
In (λA1)

λA1

=

δn1

(
kAd

2A1ω
cos θ1

)
− 1

2A1ω
Im

[
ÃnH̃

−1
n

]
. (2.13)
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Here, In is the nth-order modified Bessel function of the first kind, which is

defined as,

In (λA1) =
∞∑
k=0

(λA1)
2k+n

2(2k+n)k!(k + n)!
. (2.14)

Inserting the formula to Eqs. (2.12) and (2.13), we derive the following equa-

tions,

∞∑
k=0

A2k+n
1 (z)

2(2k+n)k!(k + n)!

d2k+n

dz2k+n
Fc(z) =

δn1

(
−kAd

2
sin θ1(z)

)
+

1

2
Re

[
Ãn(z)H̃−1n (z)

]
, (2.15)

∞∑
k=0

n
A2k+n−1

1 (z)

2(2k+n)k!(k + n)!

d2k+n−1

dz2k+n−1
Γ(z) =

δn1

(
kAd

2A1(z)ω
cos θ1(z)

)
− 1

2A1(z)ω
Im

[
Ãn(z)H̃−1n (z)

]
. (2.16)

Notice that the leading term in the nth harmonic signals is proportional to the

nth derivatives of Fc and the (n− 1)th derivatives of Γ.

2.2.2 Frequency-Modulation MHAFM

In FM-AFM, the driving amplitude and frequency are controlled to ensure fixed

oscillation amplitude A1 at the resonance frequency ωres (θ1 = 0) by using feed-

back loops. Thus, frequency-modulation MHAFM measures higher harmonic re-

sponses Ãn ≡ Ane
iθn with the resonance frequency shift Ω(z) ≡ (ωres(z)−ω0)/ω0

and driving amplitude Ad(z). Using again the assumptions of |A1| � |An|

for n > 1 and z + ξ0 ≈ z, we multiply Eq. (2.7) by sin(nω0(1 + Ω)t) and
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cos(nω0(1 + Ω)t), and integrate to derive the equations for Ãn as,∫ π

0

dτ

π
Fc(z + A1 cos τ) cosnτ =

1

2
Re
[
ÃnĤ

−1
n

]
, (2.17)

∫ π

0

dτ

π
Γ (z + A1 cos τ) sin τ sinnτ =

δn1

(
kAd

2A1ω0(1 + Ω)

)
− 1

2A1ω0(1 + Ω)
Im

[
ÃnĤ

−1
n

]
.

(2.18)

Here, Ĥn ≡ H(inω0(1 + Ω))i1−n, not to be confused with H̃n in the previ-

ous subsection. Solving Eqs. (2.17) and (2.18), we can analytically derive the

multi-harmonic response Ãn up to an arbitrary order n. Note these expressions

are more general than those previously reported [8], as the latter uses the low

bandwidth (Q� 1) approximation.

Similarly, let us convert the integrals to infinite sum of higher order

derivatives using the Laplace transformation as

∞∑
k=0

A2k+n
1

2(2k+n)k!(k + n)!

d2k+n

dz2k+n
Fc(z) =

1

2
Re
[
Ãn(z)Ĥ−1n (z)

]
, (2.19)

∞∑
k=0

n
A2k+n−1

1

2(2k+n)k!(k + n)!

d2k+n−1

dz2k+n−1
Γ(z) =

δn1

(
kAd(z)

2A1ω0(1 + Ω(z))

)
− 1

2A1ω0(1 + Ω(z))
Im

[
Ãn(z)Ĥ−1n (z)

]
. (2.20)

Let us make several observations regarding the expressions of the higher

harmonics of the cantilever motion. Firstly, for a conservative system without

damping, the higher harmonic signals are given explicitly as (see Eq. (2.19)),

Ãn = 2Ĥn

∞∑
k=0

A2k+n
1

2(2k+n)k!(k + n)!

d2k+n

dz2k+n
Fc(z), (2.21)
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where the leading term is proportional to the nth derivative of Fc and the

rest is attenuated exponentially. Thus, the higher harmonic signals due to in-

teratomic forces that follow the inverse power laws are more localized close to

the surface atoms, which explains the enhanced lateral resolution in MHAFM.

Moreover, the expression of the higher harmonics as in Eq. (2.21) implies that

the derivative of Fc of order n can be calculated through summation of higher

harmonic signals of order n and higher. In other words, complete character-

ization of Fc is possible through measurement of the multi-harmonic signals,

enabling detailed description of the properties of samples. This explains how si-

multaneous characterization of the local properties have been possible in former

works [12, 14–16]. The main difference is that they chose a particular contact

model (eg. Derjaguin-Muller-Toporov model of elastic contact) to derive equa-

tions connecting the higher harmonics and parameters for the contact model.

In contrast, this approach provides a general relation of the higher harmonics

and arbitrary interaction, from which we can describe the distance-dependent

characteristics of the interaction force.

2.3 Simulation Results

To observe the behaviors of the higher harmonics of DFM probe, let us use the

Lennard-Jones (LJ) type force, which is defined as,

FLJ(z) = F0(
l6

3z6
− l2

z2
), (2.22)

where F0 = 0.9 nN is a constant and l = 0.3 nm is the characteristic length.
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For simulation of the multi-harmonic signals, we chose 0.33 l = 0.1 nm

for the free (fixed) oscillation amplitude in AM-AFM (FM-AFM) because am-

plitudes comparable to the decay length of the interaction (0.5 l = 0.15 nm) are

typically used in DFM experiments.

The mechanical parameters of the cantilever were set to values typical in

tuning fork-based AFM experiments with f0 = 22 000 Hz, k0 = 2 000 N m−1, Q =

1 000 for AM-AFM and f0 = 22 000 Hz, k0 = 2 000 N m−1, Q = 10 000 for FM-

AFM. We use the spacing of the data points ∆z = 1 pm and the total number

of data points N ≈ 5000.

Let us demonstrate the generation multi-harmonic signals in AM-AFM

up to the sixth harmonic with free oscillation amplitude Afree1 = A1(∞) =

0.1 nm (or 0.33 l) as shown in Fig. 2.1. The signals are calculated at approx-

imately 5000 data points spaced with ∆z = 1 pm and mechanical parameters

of the cantilever as f0 = 22 000 Hz, k0 = 2 000 N m−1, Q = 1 000. Interest-

ingly, the amplitude and phase of the higher harmonic signals from n = 2 to

6 in Figs. 2.1(b-f) exhibit different behaviors with those at the driving fre-

quency (n = 1) given in Fig. 2.1(a). The higher harmonic amplitudes increase

sharply due to increased nonlinearity as the force changes more rapidly after

z = zinf = 0.37 nm, which then decrease since the oscillation range given as 2A1

is narrowed, reducing the nonlinear effects on the probe.
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Figure 2.1: Simulated multi-harmonic signals in amplitude-modulation AFM.
(a) Amplitude and phase of the signal at the driving frequency. Signals at the
higher harmonics of the driving frequency are calculated for (b) second, (c)
third, (d) fourth, (e) fifth, and (f) sixth harmonics.
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Let us also show multi-harmonic signals in FM-AFM in Fig. 2.2, gener-

ated using fixed oscillation amplitude Afixed1 = A1 = 0.1 nm (or 0.33 l). Here,

the signals are calculated for approximately 5000 data points spaced with ∆z =

1 pm and mechanical parameters of the cantilever as f0 = 22 000 Hz, k0 =

2 000 N m−1, Q = 10 000. The resonance frequency shift and the driving am-

plitude are shown in Fig. 2.2(a) and the higher harmonics in Figs. 2.2(b-f).

Since A1 is kept constant in FM-AFM, attenuation of the nonlinear effects by

the reduction of A1 is absent, resulting monotonic increase of An for n > 1. Note

that phase information of the higher harmonic signals is not important when

the force is conservative, since Ãn is purely real for odd n and purely imaginary

for even n.
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Figure 2.2: Simulated multi-harmonic signals in frequency-modulation AFM.
(a) Frequency shift and driving amplitude change. Signals at the higher harmon-
ics of the driving frequency are calculated for (b) second, (c) third, (d) fourth,
(e) fifth, and (f) sixth harmonics.
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2.4 Conclusion

Higher harmonic responses in DFM have been theoretically examined in this

chapter. Exact and analytic expressions for the multi-harmonics have been de-

rived for both AM-AFM and FM-AFM in integral and summation representa-

tions. Simulation results have demonstrated the behavior of the higher harmon-

ics when the interaction is characterized by the Lennard-Jones type potential.

Also, energy dissipation due to tip-sample interaction has been shown to be less

than the estimated value in theories based on single-frequency approximations

since higher harmonic motions causes additional internal energy loss. This work

provides a rigorous theoretical tool for analysis of higher harmonic signals in

both AM-AFM and FM-AFM.
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Chapter 3

Force Reconstruction in

Dynamic Force Microscopy using

Multi-harmonic Signal Analysis

3.1 Introduction

Measuring interaction forces using dynamic force microscopy (DFM) requires

reconstruction procedure from the measured signals, which is called force re-

construction. Force reconstruction in DFM is a mathematically nontrivial task

since the motion of the DFM probe is determined not by a constant force, but

rather by a varying force with respect to the range the probe oscillates.

This chapter develops a universal multi-harmonic atomic force microscopy

(MHAFM) platform for exact, robust and efficient force reconstruction. First,
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from analytical formulas for higher harmonic responses in DFM, explicit recon-

struction formulas for conservative and dissipative forces are derived, valid for

all oscillation amplitudes and entire tip-sample distances. Analytic expressions

of these formulas are derived separately for each operation mode of DFM. The

chapter goes on to demonstrate the exactness of the formulas by performing

force reconstruction for the Lennard-Jones type force model, and find that the

approximate reconstruction results, obtained by including only a finite number

of harmonics, show superior accuracy over the Sader-Jarvis (SJ) method. Fi-

nally, the robustness of the MHAFM force reconstruction scheme against the

oscillation-amplitude error is demonstrated using the Stillinger-Weber type force

model, which clearly shows that MHAFM platform remarkably overcomes the

force-inversion instability inherent in the conventional methods.

3.2 Theoretical Formulation

3.2.1 Amplitude-Modulation MHAFM

The multi-harmonic responses for amplitude-modulation MHAFM is derived in

the previous chapter as∫ π

0

dτ

π
Fc(z + A1 cos τ) cosnτ =

−δn1
(
kAd

2
sin θ1

)
+

1

2
Re
[
ÃnH̃

−1
n

]
, (3.1)
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∫ π

0

dτ

π
Γ (z + A1 cos τ) sin τ sinnτ =

δn1

(
kAd

2A1ω
cos θ1

)
− 1

2A1ω
Im

[
ÃnH̃

−1
n

]
, (3.2)

where δn1 is the Kronecker delta, Ãn ≡ Ane
iθn and H̃n ≡ H(inω)einθ1i1−n,

where H(iω) ≡ (k −mω2 + ibω)
−1

is the transfer function of the cantilever.

The equivalent expressions are as the following:

∞∑
k=0

A2k+n
1 (z)

2(2k+n)k!(k + n)!

d2k+n

dz2k+n
Fc(z) =

δn1

(
−kAd

2
sin θ1(z)

)
+

1

2
Re

[
Ãn(z)H̃−1n (z)

]
, (3.3)

∞∑
k=0

n
A2k+n−1

1 (z)

2(2k+n)k!(k + n)!

d2k+n−1

dz2k+n−1
Γ(z) =

δn1

(
kAd

2A1(z)ω
cos θ1(z)

)
− 1

2A1(z)ω
Im

[
Ãn(z)H̃−1n (z)

]
. (3.4)

Next, consider the following relation,

m∑
n=0

 2m+ 1

m− n

 (2n+ 1)(−1)n = 0 for m > 0, (3.5)

to eliminate the infinite sum of the higher-order derivatives of force, and derive

the exact expressions of dFc/dz and Γ using the multi-harmonic signals,

d

dz
Fc(z) = − kAd

A1(z)
sin θ1(z)

−
∞∑
m=1

(−1)m(2m− 1)

A1(z)
Re
[
Ã2m−1(z)H̃−12m−1(z)

]
, (3.6)

Γ(z) =
kAd

A1(z)ω
cos θ1(z)

+
∞∑
m=1

(−1)m

A1(z)ω
Im
[
Ã2m−1(z)H̃−12m−1(z)

]
. (3.7)
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Integration of Eq. (3.6) gives us the following.

Fc(z) =

∫ ∞
z

dz′
{

kAd
A1 (z′)

sin θ1 (z′)

+
∞∑
m=1

(−1)m(2m− 1)

A1 (z′)
Re
[
Ã2m−1 (z′) H̃−12m−1(z

′)
]}

. (3.8)

3.2.2 Frequency-Modulation MHAFM

Force reconstruction formulas for frequency-modulation MHAFM is similarly

derived from the analytical expressions of the multi-harmonic signals, given as∫ π

0

dτ

π
Fc(z + A1 cos τ) cosnτ =

1

2
Re
[
ÃnĤ

−1
n

]
, (3.9)

∫ π

0

dτ

π
Γ (z + A1 cos τ) sin τ sinnτ =

δn1

(
kAd

2A1ω0(1 + Ω)

)
− 1

2A1ω0(1 + Ω)
Im

[
ÃnĤ

−1
n

]
, (3.10)

where Ĥn ≡ H(inω0(1 + Ω))i1−n, different from H̃n in the previous subsection.

These expressions can equivalently be written using infinite summations as

∞∑
k=0

A2k+n
1

2(2k+n)k!(k + n)!

d2k+n

dz2k+n
Fc(z) =

1

2
Re
[
Ãn(z)Ĥ−1n (z)

]
, (3.11)

∞∑
k=0

n
A2k+n−1

1

2(2k+n)k!(k + n)!

d2k+n−1

dz2k+n−1
Γ(z) =

δn1

(
kAd(z)

2A1ω0(1 + Ω(z))

)
− 1

2A1ω0(1 + Ω(z))
Im

[
Ãn(z)Ĥ−1n (z)

]
. (3.12)

The exact inversion formulas for the conservative and dissipative forces
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are similarly derived as the amplitude-modulation counterparts,

Fc(z) =
∞∑
m=1

{
(−1)m(2m− 1)

×
∫ ∞
z

dz′

A1

Re
[
Ã2m−1 (z′) Ĥ−12m−1(z

′)
]}

, (3.13)

Γ(z) =
kAd(z)

A1ω0(1 + Ω(z))

+
∞∑
m=1

(−1)m

A1ω0(1 + Ω(z))
Im
[
Ã2m−1(z)Ĥ−12m−1(z)

]
. (3.14)

Let us make several remarks on the reconstruction formulas. First, the

reconstruction formulas for both conservative and dissipative forces require Ãn’s

of odd n. For the conservative part, the key to understanding this is that the

exact value of dFc/dz is integrated to derive Fc. In Eq. (3.3), the odd(even)-

order derivatives of Fc are linear combinations of the odd (even) harmonics

(and vice versa), which explains why dFc/dz and consequently its integral Fc is

a function of odd harmonics. Second, Fc can be efficiently calculated through

approximation using a finite upper bound M in the summations in Eqs. (3.8)

and (3.13), with M corresponding to the order of approximation. Then, the

calculations reduce to M integrations that each require (O(N)) computation

time, where N is the number of discrete data points. The resulting computation

time of this scheme is (O(MN)), dramatically faster than both the SJ method

[1] that requires integrations for each point (O(N2)), and the matrix method

[2] that involves inversion of N × N matrices (O(Nk) with 2.373 ≤ k ≤ 3

depending on the algorithm used). Lastly, while single mode oscillation of the
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cantilever is assumed in the derivations, the analogous reconstruction formulas

can also be derived assuming multiple eigenmodes where one of its resonance

frequencies is an exact multiple of ωres, enhancing the corresponding higher

harmonic responses [3]. For this, simply replace H(iω), used to define H̃n and

Ĥn respectively in Eqs. (3.7-3.8) and Eqs. (3.13-3.14), by the transfer function

of the corresponding eigenmode.

3.3 Reconstruction Results

Let us verify that the reconstruction formulas are exact for the entire range of

oscillation amplitudes and tip-sample separations. First, multi-harmonic signals

Ãn are generated with respect to the model force for both AM-AFM and FM-

AFM using Eqs. (3.1-3.2) and (3.9-3.10), respectively. The Lennard-Jones (LJ)

type force is chosen for current analysis, which is defined as,

FLJ(z) = F0(
l6

3z6
− l2

z2
), (3.15)

where F0 = 0.9 nN is a constant and l = 0.3 nm is the characteristic length.

The LJ type force has the inflection point zinf = 1.24 l where the curvature of

the force changes sign, force-minimum point zf min = l, and potential-minimum

point zp min = 0.76 l. The oscillation amplitudes are chosen by invoking the

inflection point test of Sader et al. [4], which gives the amplitude range where

single frequency-based conventional force reconstruction methods are unreliable:√
−F

′
int (zinf )

F ′′′int (zinf )
≤ A1 ≤

zinf
2
. (3.16)
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For the LJ type force, the corresponding amplitude range is 0.22 l < A1 <

0.62 l, which is comparable to λ of the attractive force (0.5 l). For comprehensive

analysis, we use amplitudes that are small (0.1 l = 0.03 nm), intermediate (0.33 l

= 0.1 nm), and large (0.66 l = 0.2 nm) with respect to Eq. (3.16), for the free

(fixed) oscillation amplitude in AM-AFM (FM-AFM) to generate the multi-

harmonic signals.

The mechanical parameters of the cantilever were set to values typical in

tuning fork-based DFM experiments with f0 = 22 000 Hz, k0 = 2 000 N m−1, Q =

1 000 for AM-AFM and f0 = 22 000 Hz, k0 = 2 000 N m−1, Q = 10 000 for FM-

AFM. The spacing of the data points ∆z = 1 pm and the total number of data

points N ≈ 5000 are chosen accordingly.

Reconstruction results of the interaction forces from the generated AM-

AFM and FM-AFM multi-harmonic signals are shown in Figs. 3.1 and 3.2, using

an order M approximation of the formulas (Eqs. (3.8) and (3.13)) with varying

M. Increasing M leads to more accurate reconstruction results in Figs. 3.1(a-

c) and 3.2(a-c) as well as less errors at zp min, zf min, and zinf in Figs. 3.1(d-

f) and 3.2(d-f), demonstrating the exactness of the reconstruction formulas.

Futhermore, since the accuracy of the approximation is compromised by the

magnitude of the higher harmonics of order > 2M − 1, smaller amplitudes

result in more accurate reconstructions even at smaller M. For example, the

reconstruction errors for AM-AFM at zf min in Figs. 3.1(d-f) are given as 0.02%,

0.3%, and 0.02% using M = 2 (small amplitude), 3 (intermediate amplitude),

and 6 (large amplitude), respectively. For FM-AFM, the reconstruction errors
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at zf min in Figs. 3.2(d-f) are given as 0.03%, 0.8%, and 0.25% using the same M

values for each amplitude, except for large amplitude (M = 9). These results

clearly show superior accuracy over the SJ method by an order of magnitude

for intermediate and large amplitudes, and by two orders of magnitude for

smaller amplitudes. Additionally, our approach displays superior computational

efficiency, with at least ten-fold decrease in the computation time compared to

the SJ method as shown in Tabs. 3.1-3.6.
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Figure 3.1: Analysis of the reconstructed force in AM-AFM for different free
oscillation amplitude A1. (a-c) Reconstructed force-distance curves using differ-
ent orders of approximation and those of the Sader-Jarvis method (black) are
presented and compared to the model force FLJ (orange). (d-f) Reconstruction
errors are calculated for each plot at the potential minimum zp min, force min-
imum zf min, and inflection point zinf of FLJ. As shown, increasing the order of
approximation reduces the overall error observed at the specific points.
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Figure 3.2: Force reconstruction in FM-AFM using different fixed oscillation
amplitude A1. (a-c) Reconstructed force-distance curves of the model force FLJ

(orange) using different orders of approximation of the reconstruction formulas.
(d-f) Reconstruction errors calculated at zp min, zf min, and zinf . The results of
the Sader-Jarvis method (black) are also shown for comparison. Similar to the
results in AM-AFM, the reconstruction accuracy at such points increases when
using higher orders of approximation, reflecting the exactness of the reconstruc-
tion formulas.
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Method Error(z = zp min) (nN) Error(z = zf min) (nN) Error(z = zinf) (nN) Computation time (s)
order = 1 0.01877 0.007394 0.0001907 0.0013
order = 2 0.0001363 9.605e-05 3.199e-05 0.0023
order = 3 0.000131 4.686e-05 3.891e-05 0.0034
order = 6 0.0001287 4.557e-05 3.888e-05 0.0101

Sader-Jarvis 0.05225 0.01476 0.01353 1.497

Table 3.1: Reconstruction results in AM-AFM for small amplitude. The force-
reconstruction errors (nN) at the points of interest and the computation times
(s) are shown for each reconstruction method.

Method Error(z = zp min) (nN) Error(z = zf min) (nN) Error(z = zinf) (nN) Computation time (s)
order = 1 0.186 0.1052 0.0002228 0.0011
order = 2 0.02381 0.01955 0.001138 0.0023
order = 3 0.001981 0.001724 6.805e-05 0.0035
order = 6 9.828e-05 1.513e-05 8.715e-06 0.0061

Sader-Jarvis 3.014 0.03397 0.01722 1.278

Table 3.2: Reconstruction results in AM-AFM for intermediate amplitude. The
force-reconstruction errors (nN) at the points of interest and the computation
times (s) are shown for each reconstruction method.

Method Error(z = zp min) (nN) Error(z = zf min) (nN) Error(z = zinf) (nN) Computation time (s)
order = 1 0.5931 0.3941 0.1155 0.0020
order = 2 0.2014 0.1833 0.08773 0.0037
order = 3 0.04319 0.0419 0.02422 0.0049
order = 6 4.515e-05 0.0001282 0.0001042 0.0105

Sader-Jarvis 0.003696 0.0009537 0.001888 1.340

Table 3.3: Reconstruction results in AM-AFM for large amplitude. The force-
reconstruction errors (nN) at the points of interest and the computation times
(s) are shown for each reconstruction method.
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Method Error(z = zp min) (nN) Error(z = zf min) (nN) Error(z = zinf) (nN) Computation time (s)
order = 1 0.1287 0.009435 3.104e-06 0.0022
order = 2 0.00368 0.00021 2.038e-05 0.0080
order = 3 0.0001517 8.825e-06 1.232e-07 0.0096
order = 9 8.983e-05 6.667e-06 2.757e-08 0.0236

Sader-Jarvis 0.01731 0.01767 0.01277 0.3956

Table 3.4: Reconstruction results in FM-AFM for small amplitude. The force-
reconstruction errors (nN) at the points of interest and the computation times
(s) are shown for each reconstruction method.

Method Error(z = zp min) (nN) Error(z = zf min) (nN) Error(z = zinf) (nN) Computation time (s)
order = 1 2.835 0.1695 0.005641 7.425e-04
order = 2 0.9858 0.04106 0.003418 0.0021
order = 3 0.195 0.004708 0.0002799 0.0044
order = 9 9.015e-05 6.667e-06 2.757e-08 0.0121

Sader-Jarvis 0.05382 0.02686 0.01809 0.3753

Table 3.5: Reconstruction results in FM-AFM for intermediate amplitude. The
force-reconstruction errors (nN) at the points of interest and the computation
times (s) are shown for each reconstruction method.

Method Error(z = zp min) (nN) Error(z = zf min) (nN) Error(z = zinf) (nN) Computation time (s)
order = 1 1811 4.851 0.2157 0.0034
order = 2 2835 4.405 0.1734 0.0046
order = 3 2953 2.293 0.0579 0.0056
order = 9 248.8 0.001459 1.568e-06 0.0133

Sader-Jarvis 0.01709 0.01068 0.009035 0.3898

Table 3.6: Reconstruction results in FM-AFM for large amplitude. The force-
reconstruction errors (nN) at the points of interest and the computation times
(s) are shown for each reconstruction method.
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Let us now discuss the robustness of the reconstruction formulas. The

resolving power of DFM between two distinct interatomic force laws depends on

how precisely the forces can be recovered, which is, in FM-AFM, compromised

by the instability of the oscillation amplitude. Although feedback is used to

maintain a constant amplitude, the non-conservative tip-sample interaction can

lead to variations in the amplitude during the gradual approach of the cantilever,

causing spurious reconstruction results. This is expected to be maximized in

single frequency-based reconstruction procedures when the amplitude is in the

intermediate range (Eq. (3.16)) and when the force has points not infinitely

differentiable with respect to z [4], due to greater anharmonic motion of the

cantilever within the regime where the force changes rapidly.

To verify the robustness with respect to the amplitude instability, force

reconstruction is performed using the set oscillation amplitudes A1,set having

±5% error with respect to the actual oscillation amplitude A1,actual [4].The

Stillinger-Weber (SW) type, which approximates the forces between two silicon

atoms, serves as a good model force because it changes rapidly at z ≈ 350 pm.

The multi-harmonic signals are generated with A1,actual = 50 pm, which lies in

the range of Eq. (3.16), and the same parameters used for the LJ force. Then,

the forces are recovered using A1,set = 50 pm (0% error), 52.5 pm (+5% error),

47.5 pm (−5% error), as shown in Figs. 3.3(a) and 3.3(b). The forces recon-

structed with the SJ method show the greatest variance at the force minimum

with respect to the amplitude error, whereas it is hardly noticed in the recon-

struction using M = 3. In addition, the above reconstruction procedures are
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repeated using the model force rescaled by different scaling factors; we use 0.9,

0.95, 0.98, 1, 1.02, 1.05, and 1.1, to observe the resolving power of the formu-

las. Quantitative analysis of the force minimum of the reconstruction results

in Figs. 3.3(c) and 3.3(d) reveals that multi-harmonic consideration allows to

resolve the rescaled SW type forces at ≈ 2% precision, which is a five-fold

improvement over the SJ method.
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Figure 3.3: Robustness of force reconstruction with respect to amplitude error.
(a-b) Reconstructed forces from the signals generated using the SW type force
(orange) and fixed oscillation amplitude A1,actual = 50 pm, assuming no error
(0% error, solid line) and ±5% error (dotted line) with respect to A1,actual.
Different scaling factors are used to rescale the SW type force, where the force
minimum of the reconstruction results are evaluated in terms of (c) relative force
and (d) relative distance with respect to the original SW type force minimum.
The error bars delimit the relative position of the force minimum assuming ±5%
amplitude error.
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3.4 Conclusion

The universal theory of DFM based on multi-harmonic signal analysis is derived

in this chapter. This method enables exact and robust reconstruction of the con-

servative and dissipative forces in both amplitude- and frequency-modulation

AFM, regardless of the oscillation amplitudes and tip-sample distances. Even

when approximated reconstruction formulas are used, higher accuracy over the

SJ method with less computation time is found. Force reconstruction using the

multi-harmonic signal analysis is also demonstrated to be robust with respect

to the oscillation amplitude error, overcoming the intrinsic reconstruction in-

stability of the conventional methods. The results demonstrate versatility and

efficiency for accurate and precise force measurements beyond the limits of con-

ventional DFM.
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Chapter 4

Conclusion

Dynamic force microscopy (DFM) is a powerful tool in surface science that

realized characterization of structures and quantification of forces at the atomic

and molecular scale. Yet, force reconstruction, which is the inversion process

from the DFM probe oscillations to force-distance curves, becomes an ill-posed

problem when the oscillation amplitude becomes comparable to the decay length

of the interaction λ. The ill-posed behavior is caused by the anharmonic motions

of the probe, which undermine the accuracy and stability of the single frequency

based reconstruction methods. Hence, multi-harmonic signal analysis can be

applied to measure the motion of the probe not only at its resonance, but also at

its higher harmonics, since the higher harmonics possess information pertaining

to the nonlinearities of tip-sample interactions.

DFM using multi-harmonic signal analysis has been formulated in this

thesis through the following steps. First, higher harmonic motions of the DFM

47



probe have been studied. Exact and analytic expressions for the higher harmon-

ics has been derived in both amplitude-modulation (AM-AFM) and frequency-

modulation atomic force microscopy (FM-AFM) for arbitrary conservative and

dissipative forces. It has been shown that higher harmonics are more localized to

the surface such that measuring higher harmonics can lead to enhanced resolu-

tion imaging. Next, a novel force reconstruction method using multi-harmonic

signals has been conceived. This approach allows universal reconstruction of

conservative and dissipative force in AM-AFM and FM-AFM for all oscillation

amplitudes and entire tip-sample distance. The approximated form of the re-

construction formula, which uses only the first few harmonics, has been shown

to yield at least ten-fold increase in accuracy and five-fold increase in precision

compared to the most widely used SJ method. Also, the reconstruction formulas

are mathematically simple, resulting at least ten-fold decrease in computation

time compared to the SJ method.

This thesis extends the existing power of DFM in condensed matter

physics. Enhanced resolution imaging of material surface using higher harmonic

analysis can reveal hidden physicochemical features of materials. Accurate force

measurements using the reconstruction formulas can allow resolving molecules

of similar configurations and identifying new types of inter-atomic interactions.

Great potential impacts on characterization of electronic properties are expected

as well, as DFM can be implemented in scanning tunnelling microscopy or con-

ductive AFM.
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초 록

동역학 힘 현미경은 물질 표면의 구조와 특성을 원자 및 분자 단위에서

측정하는도구로써응집물질물리뿐아니라화학,생물학,재료공학등다양한학

문의 발전에 이바지하였다. 이러한 업적이 가능했던 이유는 동역학 힘 현미경이

마이크로미터부터 나노미터 이하의 분해능으로 국소적인 영역에서 탐침과 시료

사이에 상호작용하는 물리적인 힘을 측정할 수 있기 때문이다. 동역학 힘 현미

경에서의 힘 측정은 시료와의 상호작용으로 인해 섭동된 탐침의 움직임으로부터

힘을역산하는힘복원이라는과정을거쳐야한다.하지만가장상용되는힘복원

방법론은 탐침의 진동 진폭이 상호작용의 감쇠길이와 상응하게 되면 정확도가

떨어지고 복원식이 불안정해진다는 문제점이 제기되었다. 해당 진폭에서 이러한

문제점이 생기는 이유는 기존의 방법론들의 탐침의 움직임이 단순 조화 진동을

하고 있다는 가정이 힘이 급격하게 변하는 구간에서 고조파 진동이 상당해짐에

따라 깨지게 되기 때문이다. 결과적으로 모든 진폭과 탐침-시료 거리에서 유효한

일반적인 힘 복원 방법론의 필요성이 대두되었다.

이논문에서는다중조파신호분석을이용한동역학힘현미경법을이러한

문제점의 해결책으로 제시한다. 이 새로운 플랫폼은 보편적인 조건에서 동역학

힘 현미경의 탐침의 공명 진동수 신호뿐 아니라 고조파 진동수 신호를 고려하여

힘 복원을 한다. 이 논문은 다음 단계들을 겨쳐 다중 조파 신호 기반 현미경법을

구축한다. 우선, 동역학 힘 현미경에서 나타나는 고조파 신호를 이론적으로 탐

구한다. 동역학 힘 현미경의 두 가지 작동방식인 진폭 변조와 주파수 변조에서

임의의 보존력과 비보존력을 가정할 때 생성되는 고조파 신호의 정확하고 해석
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적인 표현식을 구한다. 그다음으로 동역학 힘 현미경의 두 가지 작동방식을 위한

일반적인 힘 복원 방법론을 제시한다. 이 방법론은 모든 진동 진폭과 탐침-시료

거리에 대해 정확하게 힘을 복원한다. 이러한 접근 방식은 기존의 방법론에 비해

두 가지 측면에서 월등히 뛰어나다: (i) 복원식들의 근사식을 사용하더라도 더

높은 정확도와 계산속도로 힘을 복원하며 (ii) 진폭 오류에 대해 더 강인하여 기

존 방법론의 힘 복원 불안정성을 극복한다. 이 연구가 향후 다방면의 동역학 힘

현미경 실험에 접목되어 단분자 검출, 원자 단위의 물리-화학적 힘 규명, 새로운

전자 전달 성질 발견 등에 응용될 것을 기대한다.

주요어 : 동역학 힘 현미경, 원자 힘 현미경, 다중조파 원자 힘 현미경, 주파수

분석, 조파 분석, 비선형 동역학

학 번 : 2019-22272
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