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Abstract 

 
 

Anatomically-guided PET reconstruction: 

from non-smooth prior  

to a deep learning approach 

 

Seung Kwan Kang 

Major in Biomedical Sciences  

Department of Biomedical Sciences  

Seoul National University Graduate School 

 

Advances in simultaneous positron emission tomography/magnetic resonance 

imaging (PET/MRI) technology have led to an active investigation of the anatomy-

guided regularized PET image reconstruction algorithm based on MR images. 

Among the various priors proposed for anatomy-guided regularized PET image 

reconstruction, Bowsher’s method based on second-order smoothing priors 

sometimes suffers from over-smoothing of detailed structures. Therefore, in this 

study, we propose a Bowsher prior based on the 𝑙1  norm and an iteratively 

reweighting scheme to overcome the limitation of the original Bowsher method. In 

addition, we have derived a closed solution for iterative image reconstruction based 

on this non-smooth prior. A comparison study between the original 𝑙2 and proposed 

𝑙1 Bowsher priors were conducted using computer simulation and real human data. 

In the simulation and real data application, small lesions with abnormal PET uptake 

were better detected by the proposed 𝑙1 Bowsher prior methods than the original 
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Bowsher prior. The original 𝑙2 Bowsher leads to a decreased PET intensity in small 

lesions when there is no clear separation between the lesions and surrounding tissue 

in the anatomical prior. However, the proposed 𝑙1 Bowsher prior methods showed 

better contrast between the tumors and surrounding tissues owing to the intrinsic 

edge-preserving property of the prior which is attributed to the sparseness induced 

by 𝑙1 norm, especially in the iterative reweighting scheme. Besides, the proposed 

methods demonstrated lower bias and less hyper-parameter dependency on PET 

intensity estimation in the regions with matched anatomical boundaries in PET and 

MRI.  

Moreover, based on the formulation of 𝑙1 Bowsher prior, the unrolled network 

containing the conventional maximum-likelihood expectation-maximization (ML-

EM) module was also proposed. The convolutional layers successfully learned the 

distribution of anatomically-guided PET images and the EM module corrected the 

intermediate outputs by comparing them with sinograms. The proposed unrolled 

network showed better performance than ordinary U-Net, where the regional uptake 

is less biased and deviated. Therefore, these methods will help improve the PET 

image quality based on the anatomical side information. 

 

Keywords: image reconstruction, positron emission tomography, anatomical prior, 

regularization, deep learning, unrolled network 

 

Student Number: 2014-22024 
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Chapter 1. Introduction 

1.1 Backgrounds 

1.1.1 Positron Emission Tomography 

Positron emission tomography (PET) is a medical imaging device that is highly 

sensitive in identifying functional and molecular abnormalities in patients with 

various diseases. For PET imaging, radiopharmaceuticals emitting positrons are 

synthesized and injected into the patient’s body. PET has the advantage of being able 

to non-invasively investigate detailed functional activities of the human body. The 

emitted positrons travel to nearby tissues in a short length (< 1 mm), and interact 

with the electrons. The interaction of positron and electron results in a pair of 

annihilation gamma photons moving in approximately opposite directions. To 

measure the annihilation photons, scintillation detectors consisting of scintillation 

crystals and photosensors, such as photomultiplier tube (PMT) and silicon 

photomultiplier (SiPM), are employed in PET systems [1]. Coincidence events are 

recorded by a PET scanner using a coincidence detection module. Finally, the 

tomographic images are obtained by applying image reconstruction algorithms to the 

coincidence data. Clinically, various filters are applied to the reconstructed images 

to obtain better quality.  

 

1.1.2. Maximum A Posteriori Reconstruction 

However, PET images have lower spatial resolution and higher noise levels 

compared to anatomical imaging modalities, such as computed tomography (CT) 

and magnetic resonance imaging (MRI). Numerous mathematical and computational 
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methods, including iterative reconstruction algorithms accounting for the noise 

properties of measured data have been developed to improve the image quality and 

quantitative accuracy of the PET [2-4] (Figure 1-1). The formulation of optimization 

problems based on Poisson statistics for iterative PET image reconstruction is 

generally ill-posed in high-noise circumstances, resulting in inconsistent solutions 

with no certainty of convergence [5-7]. To mitigate such problems, maximum a 

posteriori (MAP) reconstruction algorithms, also known as penalized likelihood 

reconstruction methods, are used. MAP reconstruction allows the solution to 

stabilize by incorporating prior information into the optimization problem 

formulation [8-12]. Nonetheless, smoothing priors (e.g., the quadratic prior) used for 

reducing noise in reconstructed images also eliminate some essential high-frequency 

features, such as anatomical edges and small lesions.  

 

Figure 1-1. A simple schematic of iterative reconstruction. The figure describes the maximum-likelihood 

expectation-maximization algorithm (ML-EM). 
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1.1.3. Anatomical Prior 

To preserve the anatomical edges and small lesions during the reconstruction process, 

we can use edge-preserving priors, such as the non-local means prior [13]. 

Alternatively, anatomical information provided by CT or MRI can be utilized as a 

prior (anatomically-guided PET image reconstruction) [14-22]. In recent years, 

advances in simultaneous PET/MRI technology [23-27] have led to an active 

investigation of such anatomically-guided PET image reconstruction algorithms 

based on MR images. MRI with higher soft-tissue contrast compared to CT would 

be a useful anatomic prior, particularly for brain and head/neck regions. Either raw 

MR images or segmentation outcomes can be used as the priors for PET image 

reconstruction [28-32]. This study focuses on the former method because the 

segmentation-based method is vulnerable to segmentation error. 

 

1.1.4. Proposed 𝒍𝟏 Bowsher Prior 

Among the various priors proposed for anatomy-guided regularized PET image 

reconstruction, Bowsher’s method is one of the best performing anatomical priors 

[22, 33]. However, the original Bowsher’s method based on second-order smoothing 

prior sometimes suffers from over-smoothing of detailed structures. Therefore, in 

this study, we propose a Bowsher prior based on the 𝑙1  norm to overcome the 

limitation of the original Bowsher method. An interesting property of newly derived 

prior is that it induces sparseness of the image like total-variation (TV) prior [34, 35]. 

Accordingly, we could improve the performance of the proposed prior by applying 

an iterative reweighting scheme introduced in [36]. A modified proximal gradient 

algorithm was used to solve the optimization problem of Poisson log-likelihood and 
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non-smooth prior. Computer simulation studies under different noise conditions 

were conducted to compare the performance of the original and proposed 𝑙1 

Bowsher priors. We also analyzed both priors using clinical [18F]FDG PET images. 

 

1.1.5. Deep Learning for MR-less Application 

Nonetheless, the simultaneous PET/MRI scanner is not available in most clinical and 

research centers. Besides, not all the patients who undergo PET/CT scans have 

corresponding MR images. Therefore, we aimed to develop an MR-less application 

for anatomically guided PET reconstruction. We used deep learning to solve this 

problem, which developed a lot recently [37-41]. Once we have a dataset paired with 

PET and MR images, the anatomically guide PET reconstruction can be conducted. 

Reconstructed results are used as the reference target of the network training. We 

first examined the end-to-end training using U-Net [42]. However, this method does 

not consider the projection or back-projection modeling of the data. Accordingly, the 

test result can be distorted if input distribution is significantly different from the 

training set. In this research, we proposed to use an unrolled model containing the 

maximum-likelihood expectation-maximization (ML-EM) module in the neural 

network. Moreover, the proposed unrolled network is closely related to the 

optimization of the 𝑙1 Bowsher prior, where the proximal operator is a substitute 

for the convolutional neural network. 

 

1.2 Purpose of the Research 

The first aim of the thesis is to develop anatomically-guided PET reconstruction 

using 𝑙1 Bowsher prior, which is non-smooth. Secondly, the MR-less application of 
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anatomically-guided PET reconstruction is studied using an unrolled network 

combined with conventional ML-EM update and convolutional neural network.  

    In Chapter 2, we describe the general formulation of the reconstruction problem 

using penalized log-likelihood. The equations of the original Bowsher prior and its 

optimization method are also given. Moreover, a detailed description of proposed 𝑙1 

Bowsher prior and its iterative reweighting scheme is also provided. 

   In Chapter 3, the MR-less application of anatomically-guided PET 

reconstruction is presented. The proposed unrolled network is compared to ordinary 

U-Net. Detailed architecture and the dataset are also described. 

   In Chapter 4, we summary our researches. 
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Chapter 2. Anatomically-guided PET reconstruction 

using Bowsher Prior 

2.1. Backgrounds 

2.1.1. PET Data Model 

The Poisson log-likelihood model is used for PET image reconstruction to account 

for the statistical properties of PET image acquisition [3, 4]. However, the maximum 

log-likelihood solution for unknown images usually yields noisy results because the 

problem is fundamentally ill-posed. Thus, regularization is considered to recover 

better images by imposing some appropriate assumptions. The penalized negative 

log-likelihood estimate of the unknown image 𝒙 is expressed as: 

 

(1) argmin
𝒙≥0

∑𝑦̂𝑖(𝒙) − 𝒚𝑖 log 𝑦̂𝑖(𝒙) + 𝛽𝑅(𝒙)

𝑖

, (1) 

 

where 𝑦𝑖  is the observed data for the i th line of response, 𝑅(∙)  is the penalty 

function, β is a weighting parameter of the penalty function, and 𝑦̂𝑖(∙) is a forward 

projection of the image to the i-th line of response. The expected count distribution 

𝑦̂𝑖(𝒙) for image 𝒙 is expressed as 𝑦̂𝑖(𝒙) = 𝐴𝒙 + 𝒔, where 𝐴 is a system matrix 

and 𝑠  denotes the expected distribution of random and scatter events. We can 

provide anatomical information available in the MR image to the penalty function 

𝑅(∙). As mentioned earlier, one of the popular choices for the penalty function R(∙) 

is the Bowsher prior [33], which will be discussed in the following sections. 
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2.1.2. Original Bowsher Prior 

The original Bowsher prior is expressed as [22, 33] 

 

(1) 𝑅𝑙2(𝒙|𝒛) = ∑ ∑ 𝑤𝑙𝑗(𝒙𝑙 − 𝒙𝑗)
2

𝑙∈𝑁𝑗𝑗

 
, (2) 

 𝑤𝑙𝑗 = {
1      ∀𝒛𝑘 ∈ 𝐵𝑗, if |𝒛𝑗 − 𝒛𝑙| < |𝒛𝑗 − 𝒛𝑘| 
0                                                            else

, (3) 

 

where 𝒛 is a prior MR image and 𝑁𝑗 is the neighbor voxel of the j-th voxel. The 

weight 𝑤∙𝑗 uses the difference between the center of the MR image patch and its 

surrounding voxels to determine the smoothness in the homogenous region. If the 

difference is large, the boundary of the given image is preserved. 𝐵𝑗 consists of the 

k most similar voxels in the anatomical image around the j-th voxel. In the previous 

study, authors showed that the modifying quadratic term in (2) to relative difference 

yielded better performance [15, 22, 43]. 

 

 𝑅𝑙2
𝑟𝑒𝑙 =∑∑ 𝑤𝑙𝑗

(𝒙𝑙 − 𝒙𝑗)
2

𝒙𝑙 + 𝒙𝑗
𝑙∈𝑁𝑗𝑗

 (4) 

 

To reconstruct the image using this prior, we utilized the asymmetric Bowsher prior 

and one-step-late algorithm developed in [43, 44]. The meaning of “asymmetric”  

is that: 

 

 
𝜕𝑅𝑙2

𝑟𝑒𝑙

𝜕𝒙𝑗
=∑∑ 𝑤𝑙𝑗

𝜕

𝜕𝒙𝑗
(
(𝒙𝑙 − 𝒙𝑗)

2

𝒙𝑙 + 𝒙𝑗
)

𝑙∈𝑁𝑗

.

𝑗

 (5) 



 

 ８ 

 

Note that additional term ∑ ∑ 𝑤𝑗𝑙
𝜕

𝜕𝒙𝑗
(
(𝒙𝑗−𝒙𝑙)

2

𝒙𝑗+𝒙𝑙
)𝑙∈𝑁𝑗𝑗   is removed from the 

derivative. The second derivative is also modified as the above notation. Authors in 

[43, 44] showed that this modification yielded better performances. The update of 

each voxel 𝒙𝑗
  is expressed as the following equation: 

 

 𝒙𝑗
𝑛+1 = 𝒙𝑗

𝑛 + (
𝜕𝐿

𝜕𝒙𝑗
+
𝜕𝑅𝑙2

𝑟𝑒𝑙

𝜕𝒙𝑗
)/(

𝑎𝑗

𝒙𝑗
𝑛 −

𝜕2𝑅𝑙2
𝑟𝑒𝑙

𝜕𝒙𝑗
2 ), (6) 

 

where 𝐿 is the negative log-likelihood, and 𝑎𝑗 = ∑ 𝑎𝑖𝑗𝑗  is the sum of the system 

matrix. This original Bowsher prior is a 𝑙2 -norm prior; therefore, it sometimes 

suffers from over-smoothing of detailed structures.  

 

2.2. Methods and Materials 

2.2.1. Proposed 𝒍𝟏 Bowhser Prior 

Our proposed 𝑙1 Bowsher prior is defined as follows: 

 

 𝑅𝑙1(𝒙|𝒛) =∑∑ 𝑤𝑙𝑗|𝒙𝑙 − 𝒙𝑗|

𝑙∈𝑁𝑗𝑗

 

. (7) 

 

Instead of using a squared function between the center voxel and its neighbors, the 

𝑙1 norm was exploited. This prior is convex but not smooth. Therefore, we devised 

a modified proximal gradient algorithm because the reconstruction scheme from the 

original Bowsher prior was not applicable. At first, the EM update equation can also 
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be described as [45] 

 

 𝒙𝑛+1 = 𝒙𝑛 − 𝐷(𝒙𝑛)∇𝐿(𝒙𝑛), (8) 

 

where 𝐷(𝒙𝑛) = 𝑑𝑖𝑎𝑔(𝒙𝑛/𝐴𝑇𝟏), and 𝐴𝑇𝟏 is the backprojection of a vector whose 

elements are equal to 1. Thus, 𝒙𝑛+1 is the solution to the following problem: 

 

 

aargmin𝒙 𝐿(𝒙
𝑛) + ∇𝐿(𝒙𝑛)𝑇(𝒙 − 𝒙𝑛) +

1

2
‖𝒙 − 𝒙𝑛‖𝐷(𝒙𝑛)−1

2  

= argmin𝒙  
1

2
‖∇𝐿(𝒙𝑛)‖𝐷(𝒙𝑛)−1

2 + ∇𝐿(𝒙𝑛)𝑇(𝒙 − 𝒙𝑛)

+
1

2
𝐷‖𝒙 − 𝒙𝑛‖𝐷(𝒙𝑛)−1

2  

= argmin𝒙  
1

2
‖𝒙 − 𝒙𝑛 + 𝐷(𝒙𝑛)∇𝐿(𝒙𝑛) ‖𝐷(𝒙𝑛)−1

2 .. 

(9) 

 

In the (9), the 𝐿(𝒙𝑛)  can be removed because it does not depend on 𝒙  and 

1/2‖∇𝐿(𝒙𝑛)‖𝐷(𝒙𝑛)−1
2   can be inserted into the first equation for the same reason. 

This equation can be regarded as the second-order Taylor approximation of Poisson 

log-likelihood where the Hessian is substituted for 𝐷(𝒙𝑛)−1. Consequently, we can 

rewrite the original problem (1) in the following approximated form after combining 

the proposed regularization term: 

 

 argmin𝒙≥0
1

2
‖𝒙 − 𝒙𝑛+1‖𝐷(𝒙𝑛)−1

2 + 𝛽𝑅𝑙1(𝒙|𝒛). (10) 
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This formula is the modified proximal mapping for a penalty function 𝑅𝑙1, where 

𝐷(𝒙𝑛)−1 plays the role of diagonal weighting. The proximal gradient algorithm is 

efficient when a closed expression of the proximal mapping is provided. We were 

able to determine the proximal mapping for the individual voxel 𝒙𝑗 by applying the 

subgradient optimality condition [46] (see Figure 2-1). 

 

 

0 ∈ ∂(
1

2𝑑𝑗
(𝒙𝑗 − 𝒙𝑗

𝑛+1)
2

+ 𝛽(∑ 𝑤𝑙𝑗|𝒙𝑙 − 𝒙𝑗|

𝑙∈𝑁𝑗

+ ∑ 𝑤𝑗𝑚|𝒙𝑗 − 𝒙𝑚|

𝑚∈𝑁𝑗

)) 

(11) 

 

The final term ∑ 𝑤𝑗𝑚|𝒙𝑗 − 𝒙𝑚|𝑚∈𝑁𝑗   is included for the symmetricity of the 

Figure 2-1. Example of the proposed proximal operator 
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proposed prior. If we remove this term, it becomes asymmetric 𝑙1 Bowsher prior. 

We used the asymmetric 𝑙1 Bowsher in this study. The solution of the subgradient 

is given by if we set 𝒙𝑖 ≠ 𝒙𝑗 for 𝑖, 𝑗 ∈ 𝑁𝑗 and 𝒙𝑖 < 𝒙𝑗 for ∀ 𝑖 < 𝑗: 

 

 

∂(∑ 𝑤𝑙𝑗|𝒙𝑙 − 𝒙𝑗|

𝑙∈𝑁𝑗

)

=

{
 
 
 
 
 
 

 
 
 
 
 
 −∑ 𝑤𝑙𝑗

𝑙∈𝑁𝑗

                                          if 𝒙𝑗 < 𝒙1

⋮

𝑤𝑖[−1,1] +∑𝑤𝑙𝑗

𝑖−1

𝑙=1

− ∑ 𝑤𝑙𝑗

𝑛𝑙

𝑙=𝑖+1

  if 𝒙𝑗 = 𝒙𝑖

∑𝑤𝑙𝑗

𝑖

𝑙=1

− ∑ 𝑤𝑙𝑗

𝑛𝑙

𝑙=𝑖+1

          if 𝒙𝑖 < 𝒙𝑗 < 𝒙𝑖+1

⋮

∑ 𝑤𝑙𝑗
𝑙∈𝑁𝑗

                                             if 𝒙𝑗 > 𝒙𝑛𝑙

 

(12) 

 

Rearranging (12) yields the following solution: 

 

 prox𝑅𝑙1
𝐷(𝒙𝑛)−1

(𝒙𝑗
𝑛+1|𝒛) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝒙𝑗

𝑛+1 + 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗
𝑙∈𝑁𝑗

             if 𝒙𝑗
𝑛+1 ∈ 𝑆1

+

⋮
𝒙𝑖                                                 if 𝒙𝑗

𝑛+1 ∈ 𝑆𝑖
−

𝒙𝑗
𝑛+1 − 𝑑𝑗𝛽∑𝑤𝑙𝑗

𝑖

𝑙=1

                                       

+𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗

𝑛𝑙

𝑙=𝑖+1

                   if 𝒙𝑗
𝑛+1 ∈ 𝑆𝑖

+ 

⋮

𝒙𝑗
𝑛+1 − 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗

𝑙∈𝑁𝑗

           if  𝒙𝑗
𝑛+1 ∈ 𝑆𝑛𝑙

+

 (13) 
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where 𝑛𝑙 is the number of elements in the set 𝑁𝑗, 2 ≤ 𝑖 ≤ 𝑛𝑙 − 1, and 

 

 

𝑆1
+ = {𝑢|𝑢 ≤ 𝒙1 − 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗𝑙∈𝑁𝑗 } 

⋮ 

𝑆𝑖
− = {𝑢|

𝒙𝑖 + 𝑑𝑗𝛽(∑ 𝑤𝑙𝑗
𝑖−1
𝑙=1 − ∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1 −𝑤𝑙𝑖) < 𝑢

≤ 𝒙𝑖 + 𝑑𝑗𝛽(∑ 𝑤𝑙𝑗
𝑖−1
𝑙=1 −∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1 +𝑤𝑙𝑖)

} 

𝑆𝑖
+ = {𝑢|

𝒙𝑖 + 𝑑𝑗𝛽(∑ 𝑤𝑙𝑗
𝑖
𝑙=1 − ∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1 ) <

𝑢 ≤ 𝒙𝑖+1 + 𝑑𝑗𝛽(∑ 𝑤𝑙𝑗
𝑖
𝑙=1 − ∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1 )

} 

⋮ 

𝑆𝑛𝑙
+ = {𝑢|𝑢 > 𝒙𝑛𝑙 + 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗𝑙∈𝑁𝑗 }. 

(14) 

 

Note that 𝑆1
+ ∪⋯∪ 𝑆𝑖

− ∪ 𝑆𝑖
+ ∪⋯∪ 𝑆𝑛𝑙

+ = ℝ  and each 𝑆∙
∙  is disjoint sets. The 

example of proximal mapping is presented in Figure 2-1, and it is similar to the soft 

thresholding operator [47]. Therefore, image reconstruction with the proposed 𝑙1 

Bowsher prior is conducted by applying the EM update (8) followed by the modified 

proximal operator update (13). Both the original and proposed Bowsher prior 

reconstruction algorithms can be accelerated by replacing the EM update with the  

ordered subset (OS) algorithm. 
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2.2.2. Iterative Reweighting 

Proposed 𝑙1 Bowsher prior (7) is similar to TV-𝑙1 regularization which is one of 

the sparsity-inducing methods [34, 35]. Thus, we can apply the iterative reweighting 

method to further enforce the sparsity of the proposed 𝑙1 Bowhser prior [36]. The 

modified prior is given by: 

 

 𝑅𝑙1
𝐼𝑅(𝒙|𝒛) =∑∑ 𝑤𝑙𝑗

𝐼𝑅𝑤𝑙𝑗|𝒙𝑙 − 𝒙𝑗|

𝑙∈𝑁𝑗𝑗

 

, (15) 

 𝑤𝑙𝑗
𝐼𝑅 =

1

𝑤𝑙𝑗
 |𝒙𝑙 − 𝒙𝑗| + 𝜖

, (16) 

 

where 𝜖 > 0  is the design parameter that controls the stability of the algorithm, 

which yields relatively consistent results for its variation [36]. In our experiments, 

𝜖 = 0.1 was used for both simulation and clinical dataset. For the optimization, the  

weights 𝑤𝑙𝑗 of proximal operator (13) at each iteration 𝑛 is modified to 

 

 

Algorithm 1. Modified proximal gradient with ordered subsets 

1:  input 𝒚 and 𝒛 

2:  initialize x 

3:  for 𝑛1 = 1…𝑛out do 

4:     for 𝑛2 = 1…𝑛subsets do 

5:        𝒙EM = 𝒙 − 𝐷(𝒙)𝛻𝐿𝑛2(𝒙) (ordinary EM using subsets) 

6:           for 𝑗 = 1…𝑛𝑗 do 

7:              𝒙𝑗,prox
EM = prox𝑅𝑙1

𝐷(𝒙𝒋)
−1

(𝒙𝑗
EM|𝒛) (proximal operator) 

8:           set 𝒙 = 𝒙prox
EM  

9:        end 

10:   end 

11: return  
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Algorithm 2. OS-Modified proximal gradient with iteratively reweighting 
1:  input 𝒚 and 𝒛 

2:  initialize x 

3:     for 𝑛1 = 1 … 𝑛out do 

4:        for 𝑛2 = 1…𝑛subsets do 

5:           𝒙EM = 𝒙 − 𝐷(𝒙)𝛻𝐿𝑛2(𝒙)  

6:              for 𝑗 = 1…𝑛𝑗 do 

7:                  if 𝑛1 = 1 

8:                     𝒙𝑗,prox
EM = prox𝑅𝑙1

𝐷(𝒙𝒋)
−1

(𝒙𝑗
EM|𝒛) (eq. (12)) 

9:                     set 𝒙 = 𝒙prox
EM  

10:                  else 

11:                     𝒙𝑗,prox
EM = prox

𝑅𝑙1
𝐼𝑅

𝐷(𝒙𝒋)
−1

(𝒙𝑗
EM|𝒛) (eq. (12) with weight (16)) 

12:                     set 𝒙 = 𝒙prox
EM  

13:                  end 

14:              end 

15:        End 

16:     end 

17:  return  

 

 𝑤𝑙𝑗
𝐼𝑅,𝑛 =

1

𝑤𝑙𝑗
 |𝒙𝑙

𝑛 − 𝒙𝑗
𝑛| + 𝜖

, (17) 

 

which means that the weight of current iteration is calculated using the previous 

images. As in the [36], the iteratively reweighted prior is originated from the 

majorization-minimization (MM) algorithm of the following log-concave prior: 

 

 𝑅𝑙𝑜𝑔
𝐼𝑅 (𝒙|𝒛) =∑∑ log (𝑤𝑙𝑗

𝐼𝑅|𝒙𝑙 − 𝒙𝑗| + 𝜖)

𝑙∈𝑁𝑗

.

𝑗

 (18) 

 

  

Accordingly, the optimization problem is not convex anymore, so that the 

convergence to a global solution is not guaranteed. Therefore, the proper initial 

condition is important and we start this iteratively reweighting scheme after one 
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iteration of the OS algorithm. This approach did not cause convergence problems, at 

least in our experiments. 

 

2.2.3. Computer Simulations 

We generated the ground truth PET image based on the MR image and its 

segmentations obtained from BrainWeb [48, 49]. The image was divided into four 

regions: gray matter (GM), white matter and others (WM, and so on), small tumor, 

and large tumor. We assigned image intensities of 0.5, 0.125, 0.75, and 1 to each of 

these regions (Figure 2-2). The attenuation map was also generated from the ground 

truth image and a scatter map was acquired by filtering the projections with 50 mm 

Gaussian FHWM. Two different levels of Poisson noise was added to the projections 

assuming two different situations: 5 min acquisition (total 7.0×107 prompt counts) 

and 1 min acquisition (total 1.4×107 prompt counts) using Siemens Biograph mMR 

system (Siemens Healthcare, Knoxville, TN), where the number of views in the 

sinogram was 168. To analyze the results statistically, 15 independent noise 

realizations are produced. We compared three different image reconstruction 

strategies: original 𝑙2  Bowsher prior with a relative difference, proposed 𝑙1 

Bowsher prior and 𝑙1  Bowsher prior with iterative reweighting. The initial 

Figure 2-2. Simulated brain phantoms. a. MRI and b. PET. 
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conditions for all the compared algorithms were the output of the first iteration of 

OS-EM. The OS algorithm had 21 subsets and the number of outer iterations was 6. 

The Bowsher prior was calculated in the nearest 80 voxels. Although the previous 

report showed the optimal number of selected voxels in the patch (𝑘) was about 10 

[15, 43], we also examined the larger patch size (20). The regularization parameters 

for the original Bowsher prior were from 0.1×20 to 0.1×27 with logarithmic scale 2, 

and those for the proposed 𝑙1 Bowsher prior were 0.1×21 to 0.1×28 divided into the 

same logarithmic scale. 

 

2.2.4. Human Data 

The proposed method was applied to two different sets of human data acquired using 

the Siemens Biograph mMR system. One of them was obtained from the PET/MRI 

scan of a healthy volunteer (59 years old male) acquired 110 min after the injection 

of 192 MBq [18F]FDG. The PET scan duration was 10 min. A T1-weighted structural 

MRI was also acquired using the ultrafast gradient-echo sequence and reconstructed 

into a 208 × 256 × 256 matrix with voxel sizes of 1.0 × 0.98 × 0.98 mm [50]. 

The other set was the PET/MRI data of a patient with head and neck cancer 76 

years old female). Both T1- and T2-weighted MRIs were acquired using a turbo spin-

echo sequence, whereas the [18F]FDG PET scan was obtained after 110 min after 

injection of 256 MBq of the radiotracer. Of the MRIs, only T1-weighted MR images 

were used for the regularized PET reconstruction. Retrospective use of all human 

data was approved by the Institutional Review Board of our institute.  

Deep learning-based super-resolution along the 𝑧-axis was performed because 

the slice thickness of the acquired MR image was thicker than that of the PET scan 

[51]. The SPM12 (SPM12; University of College London, UK) program was used 
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to re-slice the MR images to have the same voxel size and dimension as that of the 

PET scan. The Fourier rebinning algorithm was applied to the PET sinogram data, 

and 2D projection and the backprojection algorithm were used [52]. The same 

regularization parameters or post-filters as those used in the computer simulation 

were applied. The number of voxels selected within the patch was fixed at 20, which 

was showed quantitatively better performances in the simulation study. 

 

2.2.5. Image Analysis 

Standard deviation (STD) and bias in the PET image intensity were calculated for 

each region in the simulation study: 

 

 
STD =

√∑ (𝒙GT,i
region

− 𝒙recon,i
region

)
2

𝑖

𝑛region − 1
, 

(19) 

 
Biasregion =

1

𝑛
∑𝒙GT,i

region
− 𝒙recon,i

region

𝑖

, 
(20) 

 

where 𝒙recon
  is a reconstructed image of the given region (GM, WM, and tumors), 

𝒙̅recon
region

 is the mean value over the given region, 𝑛region is the number of voxels, 

and 𝒙GT
region

 is the ground truth value of each region.  

From the [18F]FDG brain PET of a healthy volunteer, we calculated the mean 

uptake level (kBq/ml) in the frontal lobe, cingulate cortex, superior parietal gyrus, 

and lateral temporal gyrus using regions of interest (ROI) drawn only on the gray 

matter pixels shown in the MRI. The SPM12 program was used to extract gray matter 

and above ROIs were defined in AAL template [53, 54]. The standard deviation of 

the uptake level in the white matter that has the most homogenous uptake in the brain 
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was also calculated. We focused on two lesions (large and small) with high uptake 

in the patient with head and neck cancer. 

 

Figure 2-3. The representative reconstructed images using original 𝑙2 Bowsher prior, proposed 𝑙1 

Bowsher prior and its iterative reweighting variation under low-level noise circumstances (total 

7.0×107 prompt counts). Red arrow indicates the position of small lesions. a. Ground truth, b. 10 voxels 

selection in the given patch (nearest 80 voxels) and c. 20 voxels selections in the given patch. 

Figure 2-4. The representative reconstructed images using original 𝑙2 Bowsher prior, proposed 𝑙1 

Bowsher prior and its iterative reweighting variation under high-level noise circumstances (total 

1.4×107 prompt counts). Red arrow indicates the position of small lesions. a. Ground truth, b. 10 voxels 

selection in the given patch (nearest 80 voxels) and c. 20 voxels selections in the given patch. 
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2.3. Results 

2.3.1. Simulation with Brain Phantom 

The proposed 𝑙1  Bowsher prior recovered the detailed structure of the GM and 

tumors well even under high-level noise circumstances. Figures 2-3 and 2-4 show 

the representative reconstruction results for different noise levels (low and high) and 

patch sizes (10 and 20 voxels). Fifth regularization parameters (0.1× 24 for 𝑙2 

Bowsher prior and 0.1×25 for others) were chosen for the visualization. The PET 

intensity in the large lesion was also less smeared with the proposed methods. 

Although the original Bowsher prior over-smoothed the small tumor, the proposed 

𝑙1  Bowsher prior methods preserved the shape and intensity of the small lesion. 

Figures 2-5 and 2-6 show the bias map for different noise levels (low and high). The 

proposed methods yielded lower bias under both low and high-level noise 

circumstances. Moreover, the bias of artificial lesions, especially for small lesion, 

were lower in the iteratively reweighted 𝑙1  Bowsher prior than all the other 

reconstruction methods. This phenomenon also can be observed in the bias-STD plot  

(Figure 2-7) for each simulated region (Gray matter, white matter, large lesion and 

small lesion). Both the bias and STD were suppressed by the proposed 𝑙1 Bowsher 

prior methods as the regularization parameter increases, however, the bias became 

greater with 𝑙2  Bowsher prior. The bias for artificial lesions with iteratively 

reweighted 𝑙1 Bowsher prior yielded the lowest value. This result was consistent 
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regardless of the noise level. 

2.3.2. Human Data 

As described in the Methods section, 20 voxels were selected in the patch for all 

reconstruction, which showed the better performance. With respect to the human data, 

the proposed 𝑙1  Bowsher prior methods outperformed the original 𝑙2  Bowsher 

Figure 2-5. Bias map of computer simulation results using original 𝒍𝟐 Bowsher prior, proposed 𝒍𝟏 

Bowsher prior and its iterative reweighting variation under the low-level noise circumstances (total 

7.0×107 prompt counts). a. 10 voxels selection in the given patch (nearest 80 voxels) and b. 10 voxels 

selection in the given patch. 
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prior in preserving the detailed structures while suppressing the noise. As depicted 

in the [18F]FDG PET image of the healthy volunteer (Figure 2-8), the original 𝑙2 

Bowsher prior with high regularization parameters yielded a blurred shape and 

decreased the uptake in some gyri, as highlighted with red boxes, and most 

subcortical regions, such as in the striatum. However, the proposed 𝑙1  Bowsher 

Figure 2-6. Bias map of computer simulation results using original 𝑙2 Bowsher prior, proposed 𝑙1 

Bowsher prior and its iterative reweighting variation under the high-level noise circumstances (total 

1.4×107 prompt counts). a. 10 voxels selection in the given patch (nearest 80 voxels) and b. 10 voxels 

selection in the given patch. 
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Figure 2-7. Bias-STD plot of computer simulation results using original 𝒍𝟐 Bowsher prior, proposed 

𝒍𝟏 Bowsher prior and its iterative reweighting variation for four regions and two noise levels. a. Gray 

matter (GM) for low-level noise, b. white matter (WM) for low-level noise, c. large lesion for low-

level noise, d. small lesion for low-level noise, e. GM for high-level noise, f. WM for high-level 

noise, g. large lesion for high-level noise and h. small lesion for high-level noise. 
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These findings were confirmed in the quantitative analysis summarized in 

Figure 2-9 that shows the STD of uptake in white matter versus the mean uptake in 

four different gray matter regions (frontal lobe, cingulate cortex, superior parietal 

gyrus, and lateral temporal gyrus). Iteratively reweighted 𝑙1 Bowsher prior showed 

higher uptake than other methods with similar STD. The uptake in the gray matter 

decreased as the regularization parameter increased when the original Bowsher prior 

was used. However, the uptake level was more constant with the 𝑙1 Bowsher prior.  

In addition, the 𝑙1 Bowsher prior methods better preserved the increased PET 

uptake in the small lesion that was not visible in the structural T1 MRI used for the 

guiding anatomy as compared to the original Bowsher prior (Figure 2-10). It should 

be noted that the T2 MRI images presented in Figure 2-10 as supporting evidence of 

Figure 2-8. Reconstructed brain [18F]FDG images of a healthy volunteer. The magnified region is 

highlighted by the red box. 
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the malignancy of the tumor were not used in the anatomy-guided reconstruction. 

Figure 2-11 depicts that the PET uptake in the small lesion is less impacted by the 

regularization parameter in the 𝑙1 Bowsher methods, especially for the iteratively 

reweighting scheme. 

Figure 2-9. Quantitative analysis on four different regions in brain [18F]FDG PET images. a. frontal 

lobe, b. cingulate cortex, c. superior parietal gyrus and d. lateral temporal gyrus. 
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2.4. Discussions 

In this study, we propose an MRI-guided regularized PET reconstruction based on a 

Figure 2-10. Reconstructed [18F]FDG images of a head and neck cancer patient. Only T1 

MR image was used for the anatomy-guided reconstruction. 

 

Figure 2-11. Quantitative analysis on two lesions in the head and neck [18F]FDG PET 

images. 
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new 𝑙1 Bowsher prior and its application with the iterative reweighting scheme. In 

these methods, (13) plays a pivotal role in incorporating side information into the 

reconstruction process. The proposed proximal operator described in this equation is 

similar to the soft-thresholding operator used in the Lasso regression [55]. Both 

operators commonly cause the sparsity of their solution, leading to better 

detectability of small lesions.  

As demonstrated by the simulation and real data, small lesions with abnormal 

PET uptake were better detected by the proposed 𝑙1 Bowsher prior and its iterative 

reweighting variation as compared to the original 𝑙2  Bowsher prior. The 

performance of the proposed method was particularly superior when such lesions are 

not shown in the MRI used for the regularized PET reconstruction (Figures 2-3, 2-4, 

and 2-10). The original 𝑙2 Bowsher prior leads to smeared PET intensity in small 

lesions when there is no contact between the tumor and surrounding tissue in the 

anatomical prior. This is because, in (2) and (7), tumor voxels are not distinguishable 

based on the difference in voxels in the anatomical image. However, the proposed 

𝑙1  Bowsher prior enables to preserve the edges between the tumor and the 

surrounding tissue in PET because of the intrinsic edge-preserving property of the 

prior based on the 𝑙1 norm. Moreover, Enhanced sparseness by iterative reweight 

enlarged this effect. For the same reasons, the proposed method works better than 

the original method when the MRI structures have a blurred boundary (striatum in 

Figure 2-8). In addition, the proposed method demonstrated smaller bias and less 

hyper-parameter dependency in PET intensity estimation in the regions (GM and 

WM) with matched anatomical boundaries in PET and MRI (Figures 2-5 and 2-6). 

The proposed 𝑙1 Bowsher prior methods well preserve the mean uptake level of 

ROI even with the high regularization parameter although there is a trade-off 
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between the standard deviation and the mean uptake level of ROI in the original 𝑙2 

Bowsher prior.  

Introducing iterative reweight scheme in the reconstruction with 𝑙1 Bowsher 

prior yielded better quantification results compared to the vanilla 𝑙1 Bowsher prior. 

It would be because, as mentioned above, the iterative reweighting enhances the 

sparseness of the prior. It originally aimed to approximate the optimization process 

from the 𝑙1  relaxation to the 𝑙0  minimization [36]. The sparsity of the intensity 

difference defined in (2) is important when the matched anatomical information is 

not provided because the uptake of these regions will be smoothed by the prior. 

However, if the optimization algorithm can preserve the sparseness, hot uptake 

surrounded by warm background can be preserved as shown in Figures 2-3, 2-4 and 

2-10. However, promoting sparseness of the prior sometimes leads to a side effect. 

Under the high-level noise circumstance, it is not an easy task to distinguish noise 

and true signal in the image, resulting in worse denoising performance compared to 

the vanilla 𝑙1  Bosher prior (Figure 2-10, second row). The 𝜖  is another control 

parameter and finding optimal settings including the number of patches and the 

number of selected voxels is a future direction of the research. 

Although this is the first study to apply 𝑙1-norm to the Bowsher prior as far as 

we know, the 𝑙1-norm has been investigated extensively in the more general context 

of Bayesian (or penalized likelihood) image reconstruction. Various total variation 

(TV) minimization approaches have been proposed to improve the image quality of 

CT and emission tomography [21, 56-65]. In the most TV approaches, l1-norm of 

discretized gradient of image is used to regularize the fidelity optimization while 

preserving the edge information. In general, the TV-𝑙1 model suppresses noise in the 

uniform region more effectively than the 𝑙2-norm regularization. However, TV-𝑙1 
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regularization often causes so-called “staircase” artifacts, yielding multiple flat 

regions separated by sharp boundaries. For PET images with high-level noise and 

low spatial resolution, the edges produced by TV prior might be inaccurate.  

The shortcomings of the 𝑙1 -norm regularization could be alleviated by the 

anatomical prior because the edge-preserving property of the 𝑙1-norm regularization 

is guided by the anatomical prior (Figure 2-12). However, the “staircase” artifacts 

still appears when the regularization parameter is high (Figures 2-8 and 2-10), so 

further investigations to mitigate the artifacts are needed. Another significant 

difference in this study from others is that the 𝑙1-norm was applied to the Gibbs prior 

calculated using the distance between local neighboring pixels. Although many 

previous studies have used 𝑙1-norm with TV prior [57, 66, 67], there are relatively 

few studies on 𝑙1 -norm regularization with other prior than TV for solving the 

inverse problems [68, 69]. Wang et al. applied 𝑙1-norm directly to the solution vector 

and used the barrier function as well as the projection method to find the update 

equation. Liu et al. used both TV and 𝑙1 -norm of the image vector in the cost 

function, which is minimized by a fast iterative shrinkage-thresholding algorithm 

(FISTA) [47]. Both studies examined 𝑙1 -norm of the image vector, however, we 

modified potential function of the Gibbs prior from 𝑙2 -norm to 𝑙1 -norm. To 

minimize the proposed 𝑙1 Bosher prior, modified proximal gradient was calculated 

and combined with the ordinary EM update. 

A limited number of segmentation-free anatomy-guided reconstruction 

methods have been proposed so far. One of them is the kernel method that assumes 

that the PET image is a linear function of the transformed anatomical features from 

the MRI. The kernel-based method that encodes prior information into the PET 

projection model is another [32]. In this method, patch-based MR image features are 
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employed to form the kernel matrix. Because this kernel method incorporates 

anatomical information in the maxim likelihood formulation rather than in the 

penalized likelihood framework, it is amenable to ordered subsets. However, this 

approach also suffers from the over-smoothing of PET intensity in the regions where 

the PET uptake pattern differs from the anatomical side information. A parallel level 

set (PLS) prior between the anatomical and reconstructed PET image [18] is more 

robust to the discrepancy between the PET uptake pattern and anatomical side 

information. Nevertheless, using a differentiable prior requires well-defined 

parameter settings during the optimization process. Moreover, there is a report that 

the asymmetrical Bowsher prior shows better performance than the PLS method [22]. 

Our proposed method is also based on the Bowsher prior, but we have incorporated 

it into the edge-preserving property of the 𝑙1 norm. The optimization of the cost 

function is easy to implement using the proximal gradient algorithm and the closed-

form solution of the proximal operator. Similar to the original Bowsher prior, the 

Figure 2-12. Comparison between TV prior using EM-TV algorithm (Sawatzky et al.) and 𝑙1 Bowsher 

methods. Low count simulation data was used and the regularization parameter for TV prior was 4 and 

the others were the same with Figure 4 (0.1×25). 
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proposed method can be applied to multiple MRI pulse sequences. As presented in 

Figure 2-10, various MR images with various pulse sequences were acquired during 

routine PET/MRI studies. The weight used in (6) can be modified by combining 

information from the multiple MRI pulse sequences.  

In this study, we applied the FORE algorithm to pre-corrected sinogram for 

scatter, random and attenuation to reconstruct real patient PET images using 

proposed prior models [52]. This would cause problems in terms of performance 

such as degraded sensitivity and resolution. However, the same optimization 

schemes can be used by replacing only the projection and backprojection parts with 

the 3D methods.  

An approach to anatomy-guided functional image enhancement using deep 

neural networks is emerging, as deep learning is outperforming conventional 

approaches based on numerical and statistical signal processing in several different 

areas [38-41, 70-73]. Beyond simple noise reduction by recovering high-statistics 

PET images from the pair of anatomical image and low-statistics PET scan, more 

sophisticated concepts such as super-resolution and partial volume correction of PET 

are now being handled using deep learning [74-76]. Generation of anatomical images 

or the standard template from PET data using deep neural networks proposed for 

PET spatial normalization and attenuation correction [77-80] can be potentially 

utilized for reducing PET noise and enhancing its spatial resolution and image 

contrast. These methods have the potential for providing anatomical side information 

to be used for anatomy-guided PET image reconstruction. Including pre-trained deep 

neural networks that utilize anatomical side information for enhancing PET into 

PET-iterative reconstruction would also be an interesting future research topic [81-

84]. 
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Chapter 3. Deep Learning Approach for 

Anatomically-guided PET Reconstruction 

3.1. Backgrounds 

PET provides quantitative information on the spatiotemporal distribution of 

radiotracers that assess the functional and molecular changes in the body due to 

various diseases. However, PET has relatively low noise characteristics and spatial 

resolution than other anatomical imaging modalities, such as computed tomography 

(CT) or magnetic resonance imaging (MRI). As we explained in the previous 

chapters, a promising approach to improving the quality and quantitative accuracy 

of PET is incorporating MRI into the iterative reconstruction through anatomical 

information provided by MRI showing high contrast between soft tissues. [14, 17, 

20, 22, 31, 33, 43]. In addition, the anatomically-guided PET reconstruction gains 

more attention than before, as the fully integrated simultaneous PET/MR scanner 

provides the spatially well-matched image pairs. 

However, the simultaneous PET/MRI scanner is not available in most clinical 

and research centers. Besides, not all the patients who undergo PET/CT scans have 

corresponding MR images. Meanwhile, some analytic methods for iteratively 

solving equation (1) consist of a few proximal operators [46, 85, 86]. For example, 

we have shown that alternating use of proximal operator and EM update yields a 

solution for penalized Poisson log-likelihood with non-smooth Bowsher prior. 

Moreover, the MRI information is inserted during the calculation of the proximal 

operator. If we can substitute the proximal operator by learned neural network using 

the training set pair, the MR-less application of anatomy guided PET reconstruction 
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is achieved [87]. In this unrolled architecture, the forward and backward projectors 

were combined with a convolutional neural network. Some early papers proposed a 

similar neural network for CT denoising, SPECT denoising and penalized PET 

reconstruction [81, 88, 89]. Adler and Oktem proposed to use primal-dual hybrid 

gradient (PDHG) for unrolled neural networks and showed that the network provided 

better denoising performance than conventional PDHG, which required optimal 

parameter selection. The direct application of learned PDHG is not straightforward 

for PET image reconstruction due to Poisson statistics of the data and cost function, 

which is different from the CT reconstruction. Lim et al. used BCD-Net starting from 

the convolutional sparse coding algorithm. Although they showed improved 

performance than the existing iterative algorithms, the shape of the SPECT data used 

in the experiments is relatively simple compared to that of the brain PET. Mehranian 

et al. proposed a forward-backward splitting algorithm with shared network 

parameters for each iteration. They evaluated their network with U-Net [42]; 

however, because the number of network parameters was different, overfitting may 

occur for U-Nets with insufficient training data. In this study, we proposed to used 

Douglas-Rachford splitting for arbitrary convex regularization function. We 

examined two networks: an ordinary U-Net and an unrolled network containing 

conventional EM update modules in the convolutional neural network. The number 

of parameters for the two networks was approximately the same for the fair 

comparison. 
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3.2. Methods and Materials 

3.2.2 Douglas-Rachford Splitting 

Again, the penalized negative log-likelihood for PET reconstruction is given by: 

 

 argmin
𝒙≥0

∑𝑦̂𝑖(𝒙) − 𝒚𝑖 log 𝑦̂𝑖(𝒙) + 𝛽𝑅(𝒙; 𝒛)

𝑖

 (21) 

 

where z is the prior anatomical image (MRI). For arbitrary regularizer 𝑅(𝒙; 𝒛) 

which is convex, the iterative update of the solution is given by Douglas-Rachford 

splitting [46, 85]: 

 

 𝝎𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝝎
∑𝑦̂𝑖(𝝎) − 𝒚𝑖 𝑙𝑜𝑔 𝑦̂𝑖(𝝎) +

𝑖

𝜌

2
‖𝝎− 𝒙𝑛‖2  (22) 

 𝝂𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒛
𝛽𝑅(𝝂; 𝒛) +

𝜌

2
‖2𝝎𝑛+1 − 𝒙𝑛 − 𝝂‖2   (23) 

 𝒙𝑛+1 = 𝒙𝑛 + (𝝂𝑛+1 −𝝎𝑛+1). (24) 

 

The first equation (22) is the penalized PET reconstruction problem for quadratic 

prior and closed updated can be found using a separable quadratic surrogate (SQS) 

[45, 90]: 

 

 𝝎𝑆𝑄𝑆
𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝝎
∑𝑝𝑗(𝝎𝑗 − 𝑥𝑗,𝐸𝑀

𝑛+1 𝑙𝑜𝑔𝝎𝑗) +
𝜌

2
‖𝝎− 𝒙𝑛‖2  (25) 

 

⇒ 𝝎𝑗,𝑆𝑄𝑆
𝑛+1 =

1

2
(𝒙𝑗

𝑛 −
𝑝𝑗

𝜌
+ √(𝒙𝑗

𝑛 −
𝑝𝑗

𝜌
)
2

+ 4𝑥𝑗,𝐸𝑀
𝑛+1

𝑝𝑗

𝜌
 ) (26) 
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where 𝑥𝑗,𝐸𝑀
𝑛+1  is the result of EM update and 𝑝𝑗 = ∑ 𝐴𝑖𝑗𝑖  is the sensitivity vector for 

projection matrix. Although (26) is not the exact solution for (22), however, many 

studies showed that the SQS is well performed with various regularizers [13, 45]. 

The second equation (23) is the direct definition of proximal operator for regularizer 

R where the input is the 2𝝎𝑛+1 − 𝒙𝑛. In the previous study with 𝑙1-norm Bowsher 

prior, the proximal oprator is calculated based on the information of given MRI. If 

we can substitute the proximal operator to the learned neural network, the MR-less 

anatomy-guided PET reconstruction is achieved [87]. 

 

 prox𝑅𝑙𝑒𝑎𝑟𝑛𝑒𝑑
𝛽𝜌

= arg𝑅𝜃𝑚𝑖𝑛𝜃
 𝐿(𝑓𝑅𝜃,𝐸𝑀(𝐼),  𝐽) (27) 

 

L is the loss function used to train the network, 𝐼 is an input image, 𝐽 is a training 

target and 𝜃 is network parameters. By minimizing L in a supervised manner, the 

data-driven proximal operator is defined by the convolutional neural network.  

 

3.2.1 Network Architecture 

Figure. 3-1 shows the detailed structure of the unrolled deep neural network for the 

PET image reconstruction. Input to the network is PET sinogram and initially 

reconstructed PET image using the OS-EM algorithm (4 iterations and 21 subsets, 

4-mm Gaussian post-filter). 

     The target is the anatomically-guided PET image that is reconstructed using 

the corresponding MRI and 𝑙1 Bowsher prior. Once the network is trained, MRI is 

not necessary for the neural network-based PET image reconstruction. As shown in 

Figure 3-1, we used eight iteration blocks containing a single ordinary ML-EM 
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update (forward and backward projections) followed by resNet subblocks with the 

attention layer. 

For the comparison, we also trained a U-net with the same dataset. In the U-net 

that converts OS-EM image to the anatomically-guided PET based on Bowsher prior, 

36 channels were used for the first layer to enable the fair comparison between the 

networks in terms of the parameter numbers. The total number of network 

parameters was 10.8M for the proposed network and 10.8M for the U-net. We fed 

both networks 2.5 images (adjacent three slices) as the channels to prevent the 

discontinuity in the orthogonal directions between axial slices.  

 

3.2.2 Dataset and Training Details 

We retrospectively used 39 [18F]FDG brain PET scans acquired from a 

Biograph mCT 40 scanner (Siemens Healthcare, Knoxville, TN). The dataset was 

divided into the training (n=29) and test (n=10) sets. PET scan duration was 5 min 

and obtained after 110 min after injection of 5.18 MBq/kg of the radiotracer. Of the 

MRIs, only T1-weighted MR images were used for the regularized PET 

 
 

Figure 3-1. Schematic of the unrolled deep neural network for the MRI-less anatomically-

guided PET image reconstruction. 
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reconstruction. Retrospective use of all human data was approved by the Institutional 

Review Board (IRB) of our institute. Fourier rebinning algorithm (FORE) was used 

for the conversion of 3D sinograms to 2D. Both the proposed network and U-Net 

were optimized by the Adam algorithm. The learning rate was 0.0001. The batch size 

of the proposed network and U-Net was 1 and 8, respectively. We used L1 loss 

function for network training. 

 

3.2.3 Image Analysis 

Regional activity concentration in global gray matter regions was measured using an 

automated anatomical label (AAL) template after the spatial normalization using 

SPM12. The regional uptakes for 4 ROIs were extracted: frontal, cingulate, lateral 

temporal, lateral parietal. We calculated the error between the output of neural 

networks and the ground truth (Bowsher prior). 

Figure 3-2. Reconstructed PET images of a representative case. 
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3.3. Results 

Figure 3-2 shows the PET images reconstructed using Bowsher prior (reference), 

OSEM, U-Net, and proposed network. Our proposed network generated more 

consistent with the reference image than the U-Net. The gray matter uptakes were 

blurred and contaminated by the noise in the OSEM; however, the proposed network 

showed improved contrast between gray matter and surroundings. Although U-Net 

generates denoised images compared to OS-EM, however, the regional uptake is 

quite different from the reference. On the other hand, the proposed unrolled network 

showed denoised output and retained the regional uptake. 

    Figure 3-3 shows the result of RMSE and SSIM values for reconstruction 

methods. The RMSE value was slightly decreased for U-Net than OSEM; however, 

the variance was also increased. The proposed network shows the best performance 

than other methods for RMSE and SSIM. 

Figure 3-4 shows the Bland-Altman plot of gray matter activity (Bq/ml, mean 

of four measured regions) between Bowsher prior and MR-less deep learning 

applications (U-Net and proposed unrolled network). Although the U-net approach's 

 
Figure 3-3. RMSE and SSIM for reconstruction methods for testset. 

 

OSEM U-Net Proposed

0.01

0.015

0.02

0.025

0.03

0.035

OSEM U-Net Proposed

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

RMSE SSIM



 

 ３８ 

quantification error was as high as 30%, the proposed unrolled neural networks 

yielded only small errors. The embedded ML-EM update in each block would 

prevent the deviation of uptake level from the observed data. 

 

3.4. Discussions 

In this study, we trained an unrolled deep neural network containing a conventional 

EM update module and compared it to the ordinary U-Net trained by an end-to-end 

manner. After training, both networks successfully generated denoised output and 

anatomical edges (e.g., the boundary between gray and white matter) were also 

Figure 3-4. Bland-Altman plot of regional gray matter activity (Bq/ml) between Bowsher 

prior and deep learning methods (U-Net and proposed unrolled network). a. Frontal, b. 

cingulate, c. lateral temporal and d. lateral parietal. The mean difference is indicated in the 

figure. 
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visually divided compared to the OS-EM. However, the U-Net results showed biased 

and more deviated distributions for the test set (Figure 3-3). In other words, it can be 

said that the generalization power of the network is weaker than the proposed 

unrolled network. The EM update module in the convolutional neural network 

compares the intermediate results with the sinogram and modifies them continuously 

(Figure 3-1). 

    The idea of unrolled networks starts with Algorithm 1. As we suggested above, 

the update equation for 𝑙1 Bowsher prior consists of two alternating equations: EM 

update and proximal operator update. Here, the MRI information is only used to 

calculate the proximal operator. As a result, a neural network can be trained to 

produce an output similar to a proximal operator that guides and smoothes the image 

using an MR image. The trained network performs an anatomically guided PET 

reconstruction without MR. Experimentally, we show that the proposed unrolled 

network can learn the distribution of MRI information in the convolutional neural 

network.  

    Better generalization power than U-Net will probably be useful when using the 

training set and other test sets. For example, one can try amyloid positive PET images 

for the test, using the unrolled network trained only using amyloid negative PET 

images. Or, different radiotracers between training and test set could be examined. 

In this case, the distribution of training and test set is definitely different and ordinary 

single convolutional neural networks without EM modules are more likely to 

produce biased results (Figure 3-3). We would like to perform an additional 

experiment between various radiotracers. 
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Chapter 4. Conclusions 

In this study, we proposed an 𝑙1 norm-based Bowsher prior. The proximal gradient 

algorithm was exploited to solve the penalized likelihood function, and a modified 

proximal operator for EM-based reconstruction was provided. The iterative 

reweighting scheme enforcing sparseness of the prior improved both qualitative and 

quantitative results. The results from the computer simulation support the fact that 

our proposed methods yield a better quantification of tumors as well as the GM and 

WM than the previous approaches. Besides, clinical data showed that the proposed 

prior methods have a superior ability to detect small regions than the previous 

method. Therefore, these methods will help improve the PET image quality based 

on the anatomical information provided by other anatomical imaging systems. 

Nevertheless, further evaluations of the proposed method with more clinical data 

will be necessary.  

    Moreover, we also proposed to use deep neural networks combined with 

conventional EM module to generate MR-less anatomically-guided PET images. As 

we intended, the convolution layers successfully learned the distribution of target 

images that was clearly divided between anatomical edges and denoised in a 

homogeneous region. The regional analysis showed that the proposed unrolled 

network is less biased and deviated than the U-Net. In the future, we will evaluate 

our proposals for various radiotracers. 
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Abstract in Korean (국문 초록) 

 

양전자방출단층촬영 / 자기공명영상 (PET/MRI) 동시 획득 기술의 

발전으로 MR 영상을 기반으로 한 해부학적 사전 함수로 정규화 된 PET 

영상 재구성 알고리즘에 대한 심도있는 평가가 이루어졌다. 해부학 

기반으로 정규화 된 PET 이미지 재구성을 위해 제안 된 다양한 사전 중 

2차 평활화 사전함수에 기반한 Bowsher의 방법은 때때로 세부 구조의 

과도한 평활화로 어려움을 겪는다. 따라서 본 연구에서는 원래 Bowsher 

방법의 한계를 극복하기 위해 𝑙1  norm에 기반한 Bowsher 사전 함수와 

반복적인 재가중치 기법을 제안한다. 또한, 우리는 이 매끄럽지 않은 

사전 함수를 이용한 반복적 이미지 재구성에 대해 닫힌 해를 도출했다. 

원래 𝑙2와 제안 된 𝑙1  Bowsher 사전 함수 간의 비교 연구는 컴퓨터 

시뮬레이션과 실제 데이터를 사용하여 수행되었다. 시뮬레이션 및 실제 

데이터에서 비정상적인 PET 흡수를 가진 작은 병변은 원래 Bowsher 

이전보다 제안 된 𝑙1  Bowsher 사전 방법으로 더 잘 감지되었다. 원래의 

𝑙2  Bowsher는 해부학적 영상에서 병변과 주변 조직 사이에 명확한 

분리가 없을 때 작은 병변에서의 PET 강도를 감소시킨다. 그러나 제안 

된 𝑙1  Bowsher 사전 방법은 특히 반복적 재가중치 기법에서 𝑙1  노름에 

의해 유도된 희소성에 기인한 특성으로 인해 종양과 주변 조직 사이에 

더 나은 대비를 보여주었다. 또한 제안된 방법은 PET과 MRI의 해부학적 

경계가 일치하는 영역에서 PET 강도 추정에 대한 편향이 더 낮고 

하이퍼 파라미터 종속성이 적음을 보여주었다. 
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또한, 𝑙1 Bowsher 사전 함수의 닫힌 해를 기반으로 기존의 ML-EM 

(maximum-likelihood expectation-maximization) 모듈을 포함하는 펼쳐진 

네트워크도 제안되었다. 컨볼루션 레이어는 해부학적으로 유도 재구성된 

PET 이미지의 분포를 성공적으로 학습했으며, EM 모듈은 중간 출력들을 

사이노그램과 비교하여 결과 이미지가 잘 들어맞게 수정했다. 제안된 

펼쳐진 네트워크는 지역의 흡수선량이 덜 편향되고 편차가 적어, 일반 

U-Net보다 더 나은 성능을 보여주었다. 따라서 이러한 방법들은 

해부학적 정보를 기반으로 PET 이미지 품질을 향상시키는 데 유용할 

것이다. 

 

주요어 : 이미지 재구성, 양전자방출단층촬영(PET), 해부학적 사전 함수, 

딥 러닝, 펼쳐진 네트워크 
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