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ABSTRACT 

 

Biomarker Development of Intraductal Papillary Mucinous 

Neoplasm and Breast Cancer using Quantitative Proteomics 

and Bioinformatics 

Misol Do 

Major in Biomedical Sciences 

Department of Biomedical Sciences 

Seoul National University 

Graduate School 

 

Introduction: Mass spectrometry (MS)-based proteomic approaches are being 

increasingly applied to identify markers that are related to specific diseases, based 

on their ability to screen thousands of proteins simultaneously to obtain hundreds of 

differentially expressed proteins (DEPs) in small amounts of samples. In general, 

pathologic specimens collected from clinical cohorts, such as body fluids and 

formalin-fixed paraffin-embedded (FFPE) tissues, are analyzed. For proteomic 

analysis, MS-based approach is a powerful tool in biomarker discovery and clinical 

diagnosis with its high throughput and high sensitivity. Also, a proteomics study will 

help understand biological mechanisms of diseases. 

Methods: In chapter I and II, high-resolution mass spectrometry-based proteomics 
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was performed using pancreatic cyst fluid samples to discover marker candidates for 

predicting the degree of intraductal papillary mucinous neoplasm (IPMN) 

malignancy. In chapter II, samples were collected from the expanded cohort that 

included IPMNs and other PCLs (mucinous cystic neoplasm (MCN) and serous 

cystic neoplasm (SCN)) to better reflect actual clinical circumstances. In chapter III, 

a targeted proteomic technique, multiple reaction monitoring-mass spectrometry 

(MRM-MS), was applied to formalin-fixed paraffin-embedded (FFPE) tissues to 

establish a novel assay to determine human epidermal growth factor receptor 2 

(HER2) status in breast cancer patients. 

Results: In chapter I, a dataset of 2,992 proteins was constructed from pancreatic 

cyst fluid samples of IPMN patients. Eighteen biomarker candidates that were 

differentially expressed across histological grades of IPMN were discovered, and 

some of them were validated by western blot in an independent cohort, the results of 

which were consistent with our proteomic data. In chapter II, 5,834 proteins were 

identified using cyst fluid from patients with IPMN, MCN, and SCN. Among 364 

proteins that differentially expressed between IPMN dysplasia, 19 final marker 

candidates consistently increased or decreased with greater IPMN malignancy. 

CD55 was validated in an independent cohort by ELISA, Western blot, and IHC, and 

the results were consistent with the MS data. In chapter III, we established an MRM-

MS assay that improves on existing methods for differentiating HER2 status. The 

accuracy and precision of HER2 quantification were improved by simplifying the 

sample preparation through predicting the number of FFPE slides required to ensure 

an adequate amount of protein and using the expression levels of an epithelial cell-
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specific protein as a normalization factor when measuring HER2 expression levels. 

Conclusions: In chapter I and II, we have generated the largest proteomic dataset of 

pancreatic cyst fluid to date and discovered potential markers of IPMN dysplasia. 

The development of cyst fluid markers can facilitate an accurate assessment of the 

degree of IPMN malignancy and effectively guide surgical decision-making. 

Ultimately, if the developed marker is implemented in clinical practice, the accurate 

assessment of IPMN dysplasia will prevent unnecessary surgical resection for low-

risk IPMN patients. In chapter III, our proposed protocol, which discriminates 

between equivocal HER2 subgroups, can potentially decrease the time and costs 

required for the diagnosis of breast cancer patients by reducing the number of cases 

that require ancillary fluorescence in situ hybridization (FISH) tests. In addition, the 

simplified assay procedure can reduce the barriers to entry for the clinical application 

of the MRM-MS assay. Our MRM-MS assay yields more accurate HER2 expression 

levels relative to immunohistochemistry and should help to guide clinicians toward 

the proper treatment for breast cancer patients, based on their HER2 expression. 

 

 

Keywords: Proteomics; Mass spectrometry; Multiple Reaction Monitoring; 

Pancreatic cyst fluid; Intraductal papillary mucinous neoplasm (IPMN); Biomarker; 

Human epidermal growth factor receptor 2 (HER2); Formalin-fixed paraffin-

embedded (FFPE) 
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GENERAL INTRODUCTION 

 

Biomarkers are constantly modified or present at abnormal concentrations in specific 

diseases or other health conditions. Thus, disease biomarkers are important for 

determining the stage of disease or predicting disease progression, or might expect 

the effect of a particular treatment on clinical outcomes. Among various types of 

biomarkers, protein biomarkers are regarded as the most ubiquitously affected in 

disease, response, and recovery. There are two approaches to biomarker studies: (1) 

discovering novel biomarkers for the diagnosis of diseases that lack a definitive 

diagnostic method, (2) developing a novel technique for detecting existing 

biomarkers, such as human epidermal growth factor receptor 2 (HER2), more 

accurately and economically. 

Among several protein assays for discovering disease biomarkers, mass 

spectrometry (MS)-based proteomic approaches has become the preferred method 

for biomarker studies of various human samples, based on their ability to screen 

thousands of proteins simultaneously in small amounts of samples. In addition, MS-

based proteomics is increasingly regarded as an effective tool for complementing the 

limitations of conventional techniques, such as immunoassay, for detecting protein 

biomarkers due to its high analytical sensitivity, reproducibility, accuracy, and 

precision. 

Various clinical specimens, such as blood, cyst fluid, frozen tissue, and 

FFPE tissue, are used for biomarker studies. Blood has been the most extensively 

studied body fluid for biomarker studies because proteins secreted by tumor cells are 
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transported to the circulation by drainage through lymphatic or capillary systems. 

However, proteins related to tumor exist in blood at very low levels, about 1 – 10 

pg/ml or less. Therefore, it is difficult to discover biomarkers using blood and to 

identify the association between biomarkers and the specific disease. On the other 

hand, tumor fluid, such as cyst fluid, is regarded as a rich source of proteins related 

to the tumor because it contains secreted proteins from the surrounding tumor cells 

and neighboring stroma. The concentration of disease biomarkers in the local tumor 

microenvironment is estimated to be 1000 – 1500 times higher than in blood. In 

addition, FFPE tissues have been instrumental in MS-based proteomic studies due 

to their abundance and accessibility; vast archives of pathologically characterized 

clinical samples exist in abundance as FFPE tissue can be stored over extended 

periods without requiring expensive equipment. 

In chapter I, pancreatic cyst fluid proteins were investigated by using high-

resolution mass spectrometry to discover potential biomarkers of the degree of 

intraductal papillary mucinous neoplasm (IPMN) malignancy. In addition, using 

several bioinformatics tools, we detailed IPMNs at the molecular level. The 

incidence of patients with pancreatic cystic lesions, particularly IPMN, is increasing. 

However, the lack of a definitive diagnostic method has led to low-risk IPMN 

patients undergoing unnecessary surgeries. Thus, the development of cyst fluid 

markers can facilitate an accurate assessment of the degree of IPMN dysplasia and 

effectively guide surgical decision-making. Ultimately, if the developed marker is 

implemented in clinical practice, the accurate assessment of IPMN dysplasia will 

prevent unnecessary surgical resection for low-risk IPMN patients. 
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In chapter II, pancreatic cyst fluid from intraductal papillary mucinous 

neoplasm (IPMN) and other pancreatic cystic lesions (mucinous cystic neoplasm 

(MCN), and serous cystic neoplasm (SCN)) were investigated to discover more 

clinically relevant biomarker candidates of IPMN malignancy. To increase depth of 

proteome coverage, pooled cyst fluid (comprising equal amounts of individual 

samples), secreted proteins from PANC1, Mia Paca-2, BxPC3, and pooled cell 

lysates from the 3 cell lines were compiled to generate a peptide library. 

Consequently, we discovered potential markers of the histological grades of IPMN 

in a larger pool of proteins. We aimed to generate a logically sound process for 

discovering potential markers of IPMN dysplasia and discover reliable marker 

candidates in accordance with histological grades of IPMN. In addition, using 

several bioinformatics tools, such as gene ontology (GO) analysis and ingenuity 

pathway analysis (IPA), we intended to detail IPMN malignancy at the molecular 

level. The final potential markers, which reflect actual clinical circumstances, can 

help classify various PCLs and avoid unnecessary pancreatic resection for low-risk 

IPMN patients.  

In chapter III, we established a novel MRM-MS assay that improves on 

existing methods for differentiating HER2 status by using FFPE tissue specimens. 

The accurate detection of HER2 is crucial for providing the appropriate measures for 

breast cancer patients. However, the current techniques used to detect HER2 status, 

immunohistochemistry and fluorescence in situ hybridization (FISH) have 

limitations. Our proposed protocol can improve the accuracy and precision of HER2 

quantification by simplifying the sample preparation and applying a novel 
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normalization factor for better measuring HER2 expression levels. This MRM-MS 

assay yields more accurate HER2 expression levels relative to 

immunohistochemistry and should help to guide clinicians toward the proper 

treatment for breast cancer patients, based on their HER2 expression. 
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Quantitative Proteomic Analysis of 

Pancreatic Cyst Fluid Proteins Associated 

with Malignancy in Intraductal Papillary 

Mucinous Neoplasms 
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INTRODUCTION 

 

Intraductal papillary mucinous neoplasms (IPMNs) are precancerous lesions that 

grow in the pancreatic ducts and are characterized by papillary growth of the ductal 

epithelium. The production of thick mucinous fluid, another hallmark of IPMNs, 

causes cystic dilation and can progress into pancreatic ductal adenocarcinoma (1). 

Depending on the malignancy, IPMN is classified as low-grade dysplasia (LGD), 

intermediate-grade dysplasia (IGD), high-grade dysplasia (HGD), and invasive 

IPMN. According to the official guidelines for managing pancreatic IPMN, only 

patients with HGD or invasive IPMN require surgery, because they are at higher risk 

of their disease developing into cancer (2). Milder forms of IPMN can be managed 

with active surveillance and do not warrant surgical intervention. However, current 

methods for assessing the histological grades of IPMNs are unreliable, and as a result, 

patients with milder IPMN are often subjected to unnecessary operations (3). 

In clinical practice, MRI and CT scans, cytological examination of cyst 

fluid, measurement of tumor markers such as carcinoembryonic antigen (CEA) and 

carbohydrate antigen 19-9 (CA 19-9), and analysis of GTPase Kras (KRAS) and 

guanine nucleotide-binding protein alpha subunit (GNAS) mutations are used to 

categorize patients with pancreatic cysts (3-6). Features of pancreatic images in MRI 

or CT scans are generally used to assess the potential malignancy of cysts but have 

low diagnostic accuracy—up to 40% of neoplastic cysts are misdiagnosed as 

pseudocysts, and the overall accuracy ranges from 20% to 80% (7). Cytological 



7 

 

examination of pancreatic cyst fluid is an alternative approach, but it has difficulties 

in identifying the existence of malignancy when sufficient sample volumes are 

unavailable (8). Differentiating mucinous cysts from other cystic lesions by 

measuring carcinoembryonic antigen levels in cyst fluid has relatively low accuracy 

(79% sensitivity, 73% specificity) (9). Similarly, as shown by Frossard et al., CA 19-

9, a pancreatic cancer marker, also performs poorly in distinguishing mucinous cysts 

and other lesions, with 15% sensitivity and 81% specificity (10). Analyzing GNAS 

mutations are only applicable for samples that are acquired during the early stages 

of IPMN (11). The general consensus is that existing methods for diagnosing IPMN 

histological grades are imprecise and unreliable, even when used in tandem (12). 

Because pancreatic cyst fluid contains secreted proteins from tumor cells at 

higher proportions, several groups, such as Poersch et al., have concluded that it is a 

better experimental model of IPMN histological grades than serum and plasma (13). 

Consequently, pancreatic cyst fluid has been widely favored in recent research on 

IPMN, because it is obtainable by endoscopic ultrasound-guided fine needle 

aspiration biopsy, which is minimally invasive (10). Many studies have focused on 

discovering protein markers that differentiate mucinous from nonmucinous cyst fluid 

and cyst fluid that is related to IPMN dysplasia, based on DNA methylation and 

telomerase activity, as demonstrated by Hata et al. (14). Diagnosing histological 

grades of IPMN using pancreatic cyst fluid by proteomic analysis is a relatively 

unexplored area (15). Thus, the IPMN dysplasia proteome has not been characterized 

extensively. 

Cuoghi et al. performed a cursory profiling study of the proteomic patterns 
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of pancreatic cyst fluids from various cystic lesions, including IPMN, MCN, serous 

cystadenomas, pancreatic neuroendocrine tumors, and pseudocysts, identifying 220 

to 727 proteins in these fluids. Specifically, 243 proteins were identified in the IPMN 

groups (16). Gbormittah et al. characterized glycoproteins and nonglycoproteins in 

mucinous and nonmucinous pancreatic cyst fluid to identify DEPs as potential 

biomarker targets. They found 230 proteins in mucinous subtypes and 290 proteins 

in nonmucinous subtypes; the DEPs between mucinous and nonmucinous cyst fluid 

were associated with lipid metabolism, energy metabolism, and stress responses (17). 

These studies were unable to determine the IPMN histological grades, merely 

differentiating between mucinous and nonmucinous cyst fluid. These recent studies 

demonstrate that the current cyst fluid proteome lacks the coverage to extrapolate 

meaningful conclusions on the molecular and biological activities of the identified 

proteins, which ultimately impedes our understanding of IPMN histology in terms 

of proteomic differences and biological functions. 

In this report, we aimed to comprehensively identify pancreatic cyst fluid 

proteins and discover differentially expressed proteins in accordance with 

histological grades of IPMN. Recently, we reported a platform for in-depth profiling 

of pancreatic cyst fluid (18). Using this platform, the protein expression patterns of 

pancreatic cyst fluid were analyzed on a high-resolution mass spectrometer to 

discover potential biomarkers of IPMN histological grades. Subsequently, we 

validated some of the 18 candidate markers by western blot. We report here that 

pancreatic cyst fluid is a valuable source for biomarker studies as it contains putative 

markers related to IPMNs and that bioinformatics analyses using identified proteins 
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of cyst fluid enhance our understanding of IPMNs at the molecular level. We 

ultimately intend to discover marker candidates that can help patients avoid 

unnecessary operations. 
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MATERIALS AND METHODS 

 

1. Clinical samples 

Cyst fluid samples were collected from 9 IPMN patients during their 

pancreatectomies at Seoul National University Hospital (Seoul, South Korea) from 

April 2013 to December 2015. At least 200 µL of cyst fluid was aspirated from each 

patient. The samples were then snap-frozen in liquid nitrogen and stored at -80℃. 

All patients consented to participation in the study in accordance with Institutional 

Review Board guidelines (IRB No. 1301-095-458). IPMN samples were divided into 

low-grade dysplasia (LGD, n=3), high-grade dysplasia (HGD, n=3), and invasive 

IPMN (n=3). 

 

2. Pancreatic cyst fluid protein sample preparation 

Each pancreatic cyst fluid sample was transferred to an Eppendorf tube. Viscous 

samples that could not be pipetted were sonicated briefly (Sonics & Materials Inc., 

USA) to remove the mucus. All samples were centrifuged at 15,000 rpm for 20 min 

at 4℃, and the supernatant was placed into a new tube. The protein concentration 

was estimated using a BCA reducing agent compatibility assay kit (Thermo 

Scientific, Rockford, IL, USA). Equal portions of each sample were pooled to create 

a peptide library from 600 µg of proteins. One hundred micrograms of individual 

protein samples were used for label-free quantification. Cold acetone (Sigma-

Aldrich, USA) was added to the supernatant to the ratio of 5:1 (v/v) to precipitate 
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the proteins. The mixture was vortexed gently and incubated overnight at -20℃. The 

precipitate was centrifuged for 10 minutes (15,000 rpm at 4℃), and the supernatant 

was carefully decanted, after which 500 µL cold acetone was added to the pellet. 

After this wash step, the pellet was centrifuged for 10 min (15,000 rpm at 4℃). The 

remaining acetone was poured off, and the pellet was air-dried for 2 h. 

 

3. Protein digestion and desalting 

The pellet was dissolved in 30 µL of lysis buffer (4 % SDS, 0.1 M DTT, 0.1 M Tris-

Cl, pH 7.4). The mixture was gently vortexed and boiled for 30 min at 95℃. The 

boiled mixture was then transferred through a 30-kDa cutoff filter (Amicon® Ultra, 

Millipore, USA) with 300 µL 8 M urea (8 M Urea, 0.1 M Tris-Cl, pH 8.5) and 

centrifuged (14,000 g, 15 min, 20℃). This filtration step was repeated twice to dilute 

and lower the SDS concentration. Next, 200 µL 50 mM IAA (50mM IAA, 8 M urea, 

0.1 M Tris-Cl, pH 8.5) was added to each sample and incubated for 1 h at 25℃. Each 

sample was then centrifuged and washed twice with 300 µL 8 M urea and then 3 

times with 300 µL 40 mM ammonium bicarbonate (ABC).  

After the samples were centrifuged, 100 µL 40 mM ABC and 0.1 µg/µL 

trypsin (at a trypsin:sample ratio of 1:80, wt/wt) were added to each sample and 

incubated for 18 h at 37℃. Next, the filters (9 individual samples, 1 pooled sample) 

were transferred to new collection tubes, which were centrifuged after 100 µL 40 

mM ABC was added. Fifty microliters NaCl was added to each individual sample, 

and 50 µL water was added to the pooled sample. The pooled sample underwent an 
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additional digestion step (19, 20). Again, the filter unit was transferred to a new tube 

and centrifuged after 200 µL 8 M urea was added. Then, the unit was centrifuged 

twice with 300 µL 40 mM ABC. One-tenth of the concentration of trypsin that was 

used in the first digestion step was added with 100 µL 40 mM ABC, and the unit was 

incubated for 18 h at 37℃. Next, the filter was transferred to another tube, and the 

peptides were collected by sequential centrifugation with 100 µL 40 mM ABC and 

50 µL 0.5 M NaCl. 

Prior to acidification and desalting, all tryptic peptides were measured by 

tryptophan fluorescence assay to determine the volume that was required to extract 

the same amount of peptides from each sample (21). The equalized amounts of 

peptides were then set aside for label-free quantification. The measured peptides 

were acidified with 10 µL 10% TFA and desalted with homemade C18-StageTip 

columns as described (22). The desalted peptides were then lyophilized on a speed-

vacuum centrifuge and stored at -80℃. 

 

4. Peptide fractionation by high-pH reverse phase fractionation 

To increase the number of identified proteins, the pooled cyst fluid sample was 

fractionated using 2 methods: modified Stage-tip-based high-pH peptide 

fractionation (23) and offline HPLC high-pH fractionation on an Agilent 1260 Bio-

inert. For Stage-tip fractionation, half of the lyophilized peptides were dissolved in 

200 µL of loading buffer (15 mM ammonium hydroxide solution, pH 10, and 2% 

acetonitrile) and separated on a pipette-based C18 RP microcolumn. The column was 

constructed by plugging the bottom of a 200 µL transparent pipette tip with C18 
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Empore disk membrane (3M, Bracknell, UK) and packing the tip with POROS 20 

R2 resin. The plugged tip was rinsed 3 times with 100 µL 100% methanol and then 

3 times with 100 µL 100% acetonitrile (ACN). The column was then conditioned 

with 100 µL of loading buffer using a syringe. The peptides were loaded onto the 

column at pH 10. An ACN gradient of 2, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 

30, 32.5, 35, 40, 50, 60, 70, 80, and 100% was used to elute 20 fractions, which were 

collected into 6 tubes discontinuously to distribute eluents of varying hydrophobicity. 

These 6 fractions were lyophilized in a speed-vacuum centrifuge and stored at -80℃. 

The remaining half of the lyophilized peptides was dissolved in 80 µL of loading 

buffer (15 mM ammonium hydroxide in water, pH 10). The peptides were loaded 

onto the column, and 96 (2mL Square Collection Plate, Waters, UK) fractions were 

eluted by applying an ACN gradient (pH 10, 5%~35%) for 40 minutes at a flow rate 

of 0.2 mL/min and washing the column with 90% ACN for 10 minutes at 0.2 mL/min. 

The ACN gradient was established by mixing varying proportions of solution A (0.1% 

formic acid in HPLC-grade distilled water) and solution B (0.1% formic acid in 

ACN). The 96 fractions were concatenated according to the column number of the 

plate to produce 12 pooled fractions. The resulting 12 tubes were lyophilized in a 

speed-vacuum centrifuge and stored at -80oC. 

 

5. LC-MS/MS analysis 

The peptide samples were analyzed using an LC-MS/MS configuration, comprising 

an Easy-nLC 1000 (Thermo Fisher Scientific, Waltham, MA) that was coupled to a 

Q Exactive mass spectrometer with a nanoelectrospray ion source (Thermo Fisher 
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Scientific, Waltham, MA), per our established protocol (18). Peptides were separated 

on a 2-column system that was composed of a trap column (75 µm I.D. x 2 cm, C18 

3.0 µm, 100 Å) and an analytical column (50 µm I.D. x 15 cm, C18 3.0 µm, 100 Å). 

Fractionated peptides were subjected to an ACN gradient (6% to 60%) for 235 

minutes. The gradient was created by mixing solvent A (2% ACN and 0.1% v/v 

formic acid) and solvent B (100% acetonitrile and 0.1% v/v formic acid) at various 

proportions. The spray voltage was set to 2.0 kV in positive ion mode, and the 

temperature of the heated capillary was set to 320℃. Mass spectra were acquired in 

data-dependent mode by top 20 method on an Orbitrap analyzer with a mass range 

of 350-1700 m/z and a resolution of 70,000 at m/z 200. HCD scans were acquired at 

a resolution of 17,500. HCD peptide fragments were acquired at a normalized 

collision energy (NCE) of 27. The maximum ion injection time for the survey scan 

and MS/MS scan was 20 ms and 80 ms, respectively. All samples were analyzed in 

3 technical replicates. 

 

6. Raw data search 

The MS data from the Q Exactive were processed in MaxQuant (version 1.5.5.1 with 

built-in Andromeda search engine) (24). Precursor MS signal intensities were 

determined, and HCD MS/MS spectra were de-isotoped and filtered, such that only 

the 20 most abundant fragments per 100 m/z range were retained. Protein groups 

were identified by searching the MS and MS/MS data of the peptides against the 

Uniprot human database (2014 December, 88,717 entries). Both the forward and 

reverse amino acid sequences were taken into account when calculating the false 
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discovery rate (FDR). Following established target-decoy search procedures (25), 

search results were filtered at FDR <1% for identifying peptides, modification sites, 

and proteins. The search was conducted in digestion mode trypsin/P, which assumes 

cleavage at carboxyl sides of lysine and arginine, including cases where the 

subsequent residue is a proline. 

The following parameters were used in the database search: precursor and 

HCD fragment mass tolerances of 6 ppm and 20 ppm, respectively; tolerance of up 

to 2 missed cleavages; carbamidomethylation of cysteine as a fixed modification; 

and oxidation of Met and acetylation of protein N-term as variable modifications. 

The minimum peptide length was set to 6 residues. Peptides were assigned to protein 

groups by the principle of parsimony (26). The principle is applied to derive the 

smallest list of probable protein groups that adequately represent the identified 

peptides, which reduces sequence redundancy issues. All proteomics data in this 

report have been deposited in the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org/) through the PRIDE partner 

repository: dataset identifier PXD008302 (27). 

 

7. Label-free quantification and statistical analysis 

Label-free quantification (LFQ) and statistical analysis were performed in 

MaxQuant (version 1.5.5.1) and Perseus (version 1.5.8.5), respectively, according to 

our previous studies (18). Protein abundance was obtained from LFQ intensity 

values. LFQ intensity was calculated as described by the equation by Cox et al (28). 

Each of the three histological groups in this study had three biological replicates, 
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which in turn had three technical replicates each. Thus, a total of 9 LFQ intensity 

values exist per histological group (3 biological replicates × 3 technical replicates). 

LFQ intensity values greater than zero were deemed valid. Proteins with at least 6 

valid values within a histological group were used in statistical analysis for label-

free quantification. This criterion was used to reduce the possibility of analyzing 

proteins that are nonspecific to histological grades. After log2-transformation of 

protein intensities, the missing values were replaced with expected intensities based 

on the normal distribution (imputation width = 0.3, shift = 1.8) of log2-transformed 

LFQ intensities (23). Student’s t-test was applied to the preprocessed dataset of 

matched proteins to detect DEPs across grades of IPMN dysplasia. The comparative 

pairs for the statistical analysis were LGD versus HGD (comparison 1), HGD versus 

invasive IPMN (comparison 2), and LGD versus invasive IPMN (comparison 3). A 

Benjamini-Hochberg FDR threshold of 0.05 was applied to each pair to find 

significantly changed proteins. Subsequently, the expression patterns of overlapping 

DEPs across 2 or more pairs were analyzed to screen for biomarker candidates. DEPs 

that had expression patterns that varied based on the malignancy of IPMN were 

selected as final biomarker candidates. The resulting DEPs were subjected to 

hierarchical clustering in Perseus (version 1.5.8.5) with the following parameters: 

Euclidean distance, average linkage, the number of clusters of 100, maximal number 

of iterations of 10, the number of restarts of 1, and k-means preprocessing prior to 

clustering. 

 

8. Bioinformatics analysis 
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The gene ontologies (GOs) of all DEPs were annotated using the DAVID 

bioinformatics resource tool (https://david.ncifcrf.gov/) and the UniprotKB database 

(http://www.uniprot.org/). The GO analysis included information on biological 

process (BP), cellular component (CC), and molecular function (MF). Pathway 

analysis was performed using the KEGG database (http://www.genome.jp/kegg/). 

Secretory protein prediction and functional annotation were performed using SignalP 

4.1 (http://www.cbs.dtu.dk/services/SignalP/), SecretomeP 2.0 

(http://www.cbs.dtu.dk/services/SecretomeP/), and TMHMM, server 2.0 

(http://www.cbs.dtu.dk/services/TMHMM/). Ingenuity Pathway Analysis (IPA) was 

used to conduct functional analysis (Ingenuity Systems, http://www.ingenuity.com/). 

The Plasma Proteome Database (PPD) was used to confirm the association between 

the proteins that were identified in human plasma and the proteins that were 

identified in this study (29). The proteins that were identified in our dataset were 

crossreferenced with mRNA and protein expression in pancreatic sections in the 

Human Protein Atlas (http://www.proteinatlas.org/). 

 

9. Western blot analysis 

A total of 19 pancreatic cyst fluid samples—10 LGD, 4 HGD, and 5 invasive 

IPMN—were used to validate the candidate markers. Equal volumes of a pooled cyst 

fluid sample were loaded onto each gel to correct for the intensity of the blots. 

Pancreatic cyst fluid samples were mixed with 5X SDS loading dye (250 mM Tris-

Cl, pH 6.8, 10% SDS, 50% glycerol, 0.5 M DTT, 0.1% bromophenol blue). Proteins 

(40 µg, as measured by BCA assay) were separated on 10% SDS-PAGE gels and 
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transferred to polyvinylidene fluoride (PVDF) membranes (Hybond-P, GE 

Healthcare, Pittsburgh, PA). The membranes were stained with Ponceau S dye 

(P7170, Sigma-Aldrich, USA), blocked with 5% BSA for 2 h at RT, and incubated 

overnight at 4°C with the following primary antibodies: rabbit monoclonal anti-

HOOK1 (ab150397, Abcam, Cambridge, U.K.) at 1:250, mouse monoclonal anti-

PTPN6 (sc-7289, Santa Cruz Biotechnology, USA) at 1:1000, and mouse polyclonal 

anti-SERPINA5 (ab67368, Abcam, Cambridge, U.K.) at 1:100. The membranes 

were then washed 5 times with Tris-buffered saline and Tween-20 (TBS-T) before 

being incubated with the following HRP-conjugated secondary antibodies: anti-

rabbit (ab6721, Abcam, Cambridge, U.K.) at 1:1000 and anti-mouse (ab6789, 

Abcam, Cambridge, U.K.) at 1:2500 for 2 h at RT. The membranes were developed 

with ECL solution (West-Q chemiluminescent substrate Kit-plus, GenDEPOT, 

Barker, TX), and the signals were visualized on an LAS-4000 (Fujifilm, Japan).
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RESULTS 

 

1. Clinical sample characterization 

Pancreatic cyst fluid samples from 9 patients were classified into 3 groups: LGD 

(n=3), HGD (n=3), and invasive IPMN (n=3). The samples did not differ 

significantly in composition, with the exception of serum CEA level and CA 19-9 

concentration measured by chemiluminescent microparticle immunoassay and cyst 

size (Table 1). The invasive IPMN patient group had the highest average CEA and 

CA19-9 concentrations at 7.67 ± 7.06 mg/L and 117.17 ± 142.78 mg/L, respectively. 

CEA and CA19-9 levels were generally higher in the more severe forms of IPMN. 

The average CEA concentration was approximately 3-fold higher for HGD than 

LGD subjects and 7-fold higher in invasive IPMN versus LGD. In addition, the 

average CA19-9 level was approximately 2-fold and 30-fold greater for these 

comparisons. Our samples were consistent with several publications that have 

reported that malignant cysts tend to be larger, as evidenced by our invasive IPMN 

samples (6.63 ± 3.74 cm) being twice as large as LGD (2.93 ± 0.54 cm) and HGD 

(2.50 ± 0.41 cm) samples on average (30). 

  



20 

 

Table 1. Demographic and clinical characteristics of the study population. 

    Pancreatic cyst fluids 

Group 
LGD HGD Invasive IPMN 

(N = 3) (N = 3) (N = 3) 

Age (years)       

  mean ± SD  69.00 ± 1.41 66.33 ± 8.58 58.33 ± 11.09 

Gender       

  Male/Female 1/2 2/1 1/2 

Gland Type       

  Gastric 2 2 1 

  Intestinal 0 1 1 

  Oncocytic 0 0 1 

  Unknown 1 0 0 

Duct Type       

  Main 0 0 1 

  Branch 2 1 0 

  Mixed 0 2 2 

  Unknown 1 0 0 

Cyst Focality       

  Single 2 3 3 

  Multiple 1 0 0 

Mural Nodule       

  Y 0 3 3 

  N 3 0 0 

Cyst Location       

  Head 1 0 2 

  Body/Tail 1 3 1 

  Mixed 1 0 0 

CEA Concentration (mg/L) 1.13 ± 0.53 3.07 ± 1.27 7.67 ± 7.06 

CA 19-9 Concentration (mg/L) 4.00 ± 1.48 6.87 ± 7.17 117.17 ± 142.78 

Cyst Size       

 Cyst Size (cm) 2.93 ± 0.54 2.50 ± 0.41 6.63 ± 3.74 

  < 3.0 cm 1 2 1 

  ≥ 3.0 cm 2 1 2 

LGD, low-grade dysplasia; HGD, high-grade dysplasia. 
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2. In-depth analysis of pancreatic cyst fluid 

The overall scheme of the study was based on a proteomic platform of cyst fluids 

that we established earlier (18). In this study, 9 individual pancreatic cyst fluid 

samples of various types [LGD (n=3), HGD (n=3), and invasive IPMN (n=3)] were 

used for label-free quantification. All samples were centrifuged, and only the 

supernatant was used. The same portions of individual samples were pooled and 

fractionated to generate a peptide library, which increased the depth of the identified 

proteins. In contrast, the 9 individual samples were not fractionated. After a series of 

sample preparation steps, LC-MS/MS analysis was performed on a Q Exactive mass 

spectrometer. The MS data were processed in MaxQuant (version 1.5.5.1), and the 

statistical analysis was performed in Perseus (version 1.5.8.5) (Figure 1). 

 

 

Figure 1. Experimental workflow. 

Cyst fluids of three types of dysplasia of IPMN and pooled cyst fluid were used for 

the analysis. The sample preparation and data analysis are shown in the flowchart. 
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In total, 2992 proteins were identified and 2938 proteins were quantified. 

A total of 28,728 peptides were identified, and 553,199 peptide spectra matches were 

found. In the peptide library and the 9 individual samples, 2778 and 2963 proteins 

were identified, respectively. Comparing the peptide library with the individual 

samples, 2749 proteins (91.9% of all identified proteins) were shared (Figure 2A). 

In the 9 individual samples, most of the identified proteins (95.7%) were usable for 

quantitative analysis, as evidenced by the 2963 and 2837 proteins that were identified 

and quantified (Figure 2B). Approximately 2200 to 2500 proteins were quantified in 

each sample group. The 3 IPMN groups were similar with regard to the number of 

quantified proteins (Figure 2C). In contrast, there was substantial individual 

variation in the number of identified and quantified proteins within the same 

histological subgroups. This pattern was observed across all 9 samples (Figure 2D). 

On average, the number of identified and quantified proteins increased by 

129 and 83, respectively, in individual samples when matched with the peptide 

library. In addition, the number of identified peptides rose by 752 on average in 

individual samples with HGD 1 displaying the greatest improvement of 2109. As 

shown by the Venn diagram, approximately 77% of identified and 63% of quantified 

proteins overlapped in all histological groups and 337 additional proteins were 

identified exclusively when the search was performed with the generated peptide 

library. Whereas the number of proteins that overlapped in the 3 histological groups 

decreased by approximately 6% when searched without the peptide library (Figure 

2E, F). This result implies that the number of proteins that were common between 

individual samples rose due to the contribution of the peptide library. The dynamic 
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range of the proteome spanned over 7 orders of magnitude overall, but most proteins 

(95%) were expressed within 4 orders (Figure 3). Overall, the proteins with lower 

orders of magnitude were analyzed, and tumor marker proteins, such as MUC5AC, 

MUC1, and CEA, were quantified with high intensity in the dataset. 
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Figure 2. The number of identified and quantified proteins in individual 

samples and the peptide library. 

(A) All identified proteins in the 9 individual samples and peptide library. (B) All 

identified proteins and quantified proteins in the 9 individual samples. (C) 

Quantified proteins in the peptide library, 9 individual samples, and each histological 

group of IPMN. (D) Total identified and quantified proteins in each of the 9 

individual samples. Identified and quantified proteins in LGD, HGD, and invasive 

IPMN in the search results, including the peptide library (E) and excluding the 

peptide library (F). The number of quantified proteins is noted in parentheses.  
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Figure 3. Dynamic range of quantified proteins. 

Distribution of expression intensities of quantified proteins show a large dynamic 

range of abundance, but 95% of the proteins were expressed within 4 orders of 

magnitude. Several tumor marker proteins, such as MUC2, CEA, and KRAS, were 

quantified. 
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3. Comparative analysis using other proteome databases 

Our bioinformatics analysis showed that secreted proteins accounted for 60.5% 

(1810 proteins) of the 2992 identified proteins (Figure 4A). Across SecretomeP, 

SignalP, and TMHMM, 1527, 682, and 381 proteins were identified, respectively 

(Figure 4B). Protein accession numbers were converted into gene names, and the 

resulting redundancy was discarded prior to comparative analysis. We compared our 

dataset with the Human Plasma Proteome Database to assess the likelihood that the 

discovered proteins are potential blood markers (29). As a result, 2299 (79.7%) of 

the identified proteins were plasma proteins (Figure 4C). To determine whether the 

discovered proteins are expressed in the pancreas, the dataset was crossreferenced 

with The Human Protein Atlas (http://www.proteinatlas.org, May 31, 2017)—2613 

genes had corresponding mRNA entries and 2021 genes had corresponding protein 

entries in the pancreas (Figure 4D). 
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Figure 4. Comparative analysis with other proteomic databases. 

(A) A total of 1810 of the identified proteins were secreted proteins; (B) 1810 

secreted proteins were annotated in Secretome P, Signal P, and TMHMM. (C) 

Comparing the dataset with the Human Plasma Proteome Database, 2299 of the 

identified proteins were plasma proteins. (D) Our data had greater depth than those 

of other proteomics studies on pancreatic cyst fluid (Cuoghi et al., Gbormittah et al.) 

and our previous report. (E) Comparing the dataset of 2886 genes to the Human 

Protein Atlas, 2613 genes had corresponding mRNA entries and 2021 genes had 

corresponding protein entries in the pancreas. 
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4. Variation in individual cyst samples 

Coefficient of variation (CV%) values were calculated to evaluate the reproducibility 

of the technical and biological replicates. The CV% values of log2-transformed LFQ 

intensity sums of technical triplicates of individual samples ranged from 0.32% to 

6.45%. All CV% values of log2-transformed LFQ intensities of each quantified 

protein in technical triplicates of individual samples were less than 20%. Moreover, 

the average CV% value of individual samples ranged from 1.085% to 1.524% 

(Figure 5A). Pearson correlation coefficients of the LFQ intensities of technical 

triplicates and their averages were greater than 0.9 (Figure 5B–D). These data 

suggest that the variation between technical replicates was low. In contrast, the 

variation between biological triplicates was generally high, based on the Pearson 

correlation coefficients, which ranged from 0.370 (between LGD1 and LGD2) to 

0.789 (between HGD1 and HGD2) (Figure 5B–D). 
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Figure 5. Coefficient of variation (CV%) values of technical replicates in 

individual samples and scatterplots of Pearson correlation coefficients. 

(A) Intensity values of label-free quantification by MaxQuant were transformed to 

base-2 logarithms, and the coefficient of variation (CV%) values in the technical 

replicates of the 9 individual cyst fluids were calculated and represented as box plots. 

Scatterplots of Pearson correlation coefficients of each technical replicate in 3 

biological replicates of LGD (B), HGD (C), and invasive IPMN (D). TR, technical 

replicate. 
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5. Differentially expressed proteins in IPMN dysplasia 

The 1751 proteins that had at least 6 valid values within a histological group were 

used for the statistical analysis. By student’s t-test (Benjamini-Hochberg FDR = 

0.05), 149, 48, and 98 proteins were differentially expressed between comparisons 1 

(LGD versus HGD), 2 (HGD versus invasive IPMN), and 3 (LGD versus invasive 

IPMN), respectively, 75, 32, and 64 of which were upregulated (Figure 6A–C). By 

unsupervised hierarchical clustering, the DEPs clustered by IPMN histology (Figure 

6D–F). 

There were 243 DEPs across comparisons 1, 2, and 3. Among the 243 DEPs, 

142 were upregulated and 91 were downregulated in at least 1 comparison group. 

Enriched DEPs were used to conduct GO and KEGG pathway analyses to identify 

their overrepresented terms in biological process, molecular function, and cellular 

component. The DEPs from comparisons 1 and 3 were analyzed by Ingenuity 

Pathway Analysis (IPA) bioinformatics tool to track biological processes that 

became activated or more pronounced in aggressive malignancy. 

By GO enrichment analysis, 243 DEPs were involved primarily in vesicle-

mediated transport and cell surface receptor signaling with regard to biological 

process. The analysis also found that 76.6% of DEPs were extracellular region 

proteins. The molecular functions of the DEPs were primarily associated with 

peptidase activity and regulation (Figure 7A–C). By KEGG pathway analysis, the 

142 upregulated proteins were associated with the ribosome, oxidative 

phosphorylation, and endocytosis, whereas the 91 downregulated proteins were 
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linked to leukocyte transendothelial migration, focal adhesion, and ECM-receptor 

interaction (Figure 7D). 

The significantly changed proteins from comparison 1 and 3 were examined 

by IPA with regard to biological processes that are related to pancreatic cysts and 

aggressive malignancy. Core analysis in IPA was used to evaluate the biological 

functions that were most likely to be affected by changes in expression of proteins 

in our dataset. As a result, 149 DEPs in comparison 1 and 98 DEPs in comparison 3 

were associated with such terms as cellular movement and angiogenesis in Diseases 

and Functions, which are indicative of malignancy; the biological terms that 

correlated with aggressive malignancy are highlighted in yellow (Figure 8A, B). Cell 

growth and vasculogenesis were upregulated among the DEPs in comparison 1. A 

total of 98 DEPs in comparison 3 were upregulated in most Diseases and Functions 

terms, except for apoptosis of tumor cell lines—particularly metastasis-related terms, 

such as cell spreading and angiogenesis. 

Comparison analysis is usually performed to visualize trends in protein 

expression across several analyses. Consistent with our expectations, the Diseases 

and Bio functions heat map of the comparison analysis demonstrated that the DEPs 

that were associated with cell movement of endothelial cells and angiogenesis were 

more highly expressed in comparison 3 versus 1. The term “apoptosis of tumor cell 

lines” was downregulated in comparison 3 but unchanged in comparison 1 (Figure 

8C). A higher percentage of DEPs in comparison 3 was associated with pancreas-

specific diseases, such as chronic pancreatitis and associated diseases than DEPs in 

comparison 1 (Figure 8D). 
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Figure 6. Volcano plots and hierarchical heat map clusters of significant 

proteins by student’s t-test. 

The colored dots indicate the proteins that passed the t-test for significance between 

LGD versus HGD (A), HGD versus invasive IPMN (B), and LGD versus invasive 

IPMN (C). The blue dots represent downregulated proteins, and the red dots denote 

upregulated proteins. Hierarchical clustering of differentially expressed proteins 

after student’s t-test of LGD versus HGD (D), HGD versus invasive IPMN (E), and 

LGD versus invasive IPMN (F). By student’s t-test, the DEPs clustered in 

accordance with the histological groups of IPMN.
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Figure 7. Gene ontology analysis. 

The percentage of differentially expressed proteins belonging to (A) Biological process, (B) Cellular component, and (C) Molecular function are 

shown in pie charts. (D) A total of 142 upregulated proteins in all comparison groups were associated with the ribosome, oxidative phosphorylation, 

and endocytosis; the 91 downregulated proteins in all comparison groups were associated with leukocyte transendothelial migration, focal adhesion, 

and ECM-receptor interaction.
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Figure 8. Ingenuity Pathway Analysis. 

(A-B) The heat maps represent upregulation and downregulation of biological 

function based on z-score as squares of various sizes and colors. Larger squares 

reflect greater z-scores, with orange signifying positive values and blue signifying 

negative values. (A) The biological terms associated with 149 DEPs in LGD and 

HGD. (B) The biological terms associated with 98 DEPs in LGD and invasive IPMN. 

The terms related to malignancy are highlighted in yellow. (C) Various terms in 

Diseases and Functions were represented in accordance with the 2 comparison 

groups. Orange represents a positive z-score, and blue represents a negative z-score. 

(D) The p-values, which represent the correlation between DEPs and pancreatic 

diseases, are shown in accordance with the 2 comparison groups. Darker colors 

reflect greater association with the disease. 
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6. Biomarker candidates for IPMN malignancy 

Proteins that were shared by at least 2 comparison groups were chosen as the initial 

marker candidates. Our rationale was that significantly changed proteins that are 

common to several comparison groups are more likely to be associated with the 

malignancy of IPMNs (31). A total of 49 candidates expressed in at least 2 

comparison groups were selected from 243 DEPs. Then, the DEPs that had 

expression patterns that were consistent with the degree of IPMN malignancy were 

selected as the final candidates. Table 2 details the results of the statistical analysis 

of the 49 DEPs, including the p-value, fold-change, and t-test significance for each 

comparison group. Of the 49 DEPs, 38 were secreted proteins and 33 were confirmed 

to be expressed in the pancreas as mRNA or proteins in The Human Protein Atlas. 

In addition, 35 proteins were confirmed to be expressed in plasma, according to the 

Human Plasma Proteome Database (Table 2). 

Of the 49 shared DEPs between groups, 18 had expression patterns that 

were consistent with the degree of malignancy. PTPN6, MUC2, TLN1, and YBX1 

were expressed in lower amounts in LGD but gradually elevated in HGD and 

invasive IPMN. Conversely, SERPINA5, AKR1B10, and TFF1 expression 

decreased as IPMN histological grade progressed. Other proteins, such as HOOK1, 

TYMP, TEX12, FBN1, CLDN18, THY1, MUC5AC, CST6, WFDC2, PIK3IP1, and 

SERPINA4, were predominantly expressed in LGD or invasive IPMN but not in 

other groups (Figure 9). Based on these results, these 18 proteins were selected as 

potential biomarkers of IPMN dysplasia. 

 



37 

 

7. Validation by western blot 

Three DEPs (HOOK1, PTPN6, and SERPINA5) were validated by western blot 

using 19 pancreatic cyst fluid samples (10 LGD, 4 HGD, and 5 invasive IPMN) 

(Figure 10). The results were then compared with the MS analysis findings. 

Although not every western blot sample followed the trend in the MS analysis, the 

expression patterns of HOOK1 and PTPN6 generally correlated with the LFQ 

intensity values. HOOK1 was significantly upregulated in high-risk IPMN (P < 0.01), 

and PTPN6 was detected at higher levels in high-risk IPMN (P < 0.05). The 

expression pattern of SERPINA5 was not consistent with the MS analysis and was 

higher in high-risk IPMN.
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Table 2. Detailed statistical analysis of 18 final marker candidates. 

    LGD vs HGD HGD vs INV LGD vs INV SignalP SecretomeP TMHMM 
The Human 

Protein Atlas 

Human 

plasma 

proteome 

  Gene name 
T test 

Significance 

adjusted 

P value 

Log2(Fold 

Change) 

T test 

Significance 

adjusted 

P value 

Log2(Fold 

Change) 

T test 

Significance 

adjusted 

P value 

Log2(Fold 

Change) 
Passed Passed Passed 

RNA 

expression 

Protein 

expression 
Included 

Up 

TYMP   0.890 -0.327 + 0.008 5.612 + 0.013  5.285 - Y - Y - Y 

TEX12   0.756  -0.484  + 0.012  4.061 + 0.004  3.577 - Y - - - Y 

HOOK1   0.336  1.194 + 0.001  5.655 + 0.000  6.839 - - - Y - Y 

PTPN6 + 0.024  2.133   0.501  0.664 + 0.004  2.798 - - - Y - Y 

YBX1 + 0.042  2.626    0.621  0.738 + 0.001  3.365 - Y - Y Y Y 

MUC2 + 0.000  12.787    0.768  -1.824 + 0.033  10.964 Y - - - - Y 

TLN1 + 0.037  3.014    0.601  0.545 + 0.030  3.559 - - - Y Y Y 

Down 

AKR1B10   0.979  -0.105  + 0.008  -7.034 + 0.027  -7.139 - - - - - - 

PIK3IP1 + 0.007  -2.889    0.000  0.000 + 0.020  -2.877 Y - - Y - Y 

THY1 + 0.010  -3.068    0.000  0.000 + 0.012  -3.390 Y - - Y - Y 

TFF1 + 0.031  -2.095    0.324  -2.247 + 0.032  -4.342 Y Y - Y - Y 

SERPINA5 + 0.000  -1.585    0.070  -1.222 + 0.000  -2.807 Y Y - Y - Y 

SERPINA4 + 0.015  -2.655    0.687  0.502 + 0.012  -2.154 Y Y - Y Y Y 

FBN1 + 0.000  -5.833    0.437  0.951 + 0.000  -4.882 Y - - Y - Y 

CLDN18 + 0.000  -3.901    0.675  -0.571 + 0.001  -4.472 - - Y Y - - 

MUC5AC + 0.027  -1.608    0.697  -0.012 + 0.020  -1.620 Y - - - - - 

WFDC2 + 0.006  -3.726    0.830  -0.462 + 0.007  -4.188 Y Y Y Y - Y 

CST6 + 0.012  -4.284    0.000  0.000 + 0.032  -3.778 Y Y - - - Y 

LGD, low-grade dysplasia; HGD, high-grade dysplasia; TMHMM, Transmembrane Helices. 
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Figure 9. 18 biomarker candidates that had expression patterns that were consistent with the degree of IPMN malignancy. 

HOOK1 (A), PTPN6 (B), MUC2 (C), TYMP (D), TLN1 (E), YBX1 (F), and TEX12 (G) were predominantly expressed in invasive IPMN. FBN1 

(H), CLDN18 (I), SERPINA5 (J), AKR1B10 (K), WFDC2 (L), THY1 (M), PIK3IP1 (N), MUC5AC (O), SERPINA4 (P), CST (Q), and TFF1 (R) 

were primarily expressed in LGD. *, P < 0.05; **, P < 0.01, ***, P < 0.001, ****, P < 0.0001, NS: not significant. 
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Figure 10. Validation of HOOK1, PTPN6, and SERPINA5 as potential 

biomarker targets by western blot. 

(A) Ponceau S staining as an alternative loading control. Western blot band and 

scatter dot plots of HOOK1 (B), PTPN6 (C), and SERPINA5 (D).  
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DISCUSSION 

 

Most pancreatic neoplasms, which are predominantly IPMN, are discovered 

incidentally during routine check-ups (3). Nevertheless, the lack of a standardized 

guideline adds subjectivity and undesired variability in diagnosing the malignancy 

of IPMN lesions. Because the concentrations of tumor biomarkers are higher in cyst 

fluid than in blood, pancreatic cyst fluid of IPMN patients was analyzed to discover 

biomarker candidates that could address these inconsistencies in diagnosing IPMN 

malignancy (12, 13). Thus, analyzing proteins that vary significantly, depending on 

the malignancy of IPMN, can identify biomarkers that improve the diagnostic 

performance of current methods and decrease the number of patients who undergo 

unnecessary operations (14). 

As shown in our results, we generated a pancreatic cyst fluid proteome that 

comprised 2992 proteins (Figure 2A). Our proteome had 3 and 7 times the number 

of proteins versus studies by Cuoghi (16) and Gbormittah (17), respectively. Further, 

1291 additional proteins were identified over our previous study (18) by optimizing 

the standard proteomic profiling platform by constructing a peptide library of a 

pooled sample, methodically preparing samples, and reproducibly performing label-

free quantitative analysis in triplicates (Figure 4E). Normally, DDA acquisition 

cannot detect low-abundance proteins in individual samples, because high-

abundance proteins saturate the signal. By pooling and fractionating individual 

samples, these low-abundance proteins became distinct and detectable, as evidenced 
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by a dynamic range that spanned 7 orders of magnitude (Figure 3). Consequently, 

the number of identified and quantified proteins that were common to all individual 

samples rose substantially when the mass spectra of individual samples were 

matched to those of the peptide library (Figure 2E, F) (32, 33). This increase enabled 

us to select biomarker candidates from a larger pool of DEPs. 

Most identified proteins (79.7%) that had entries in the Plasma Proteome 

Database and all marker candidates in our study, except AKR1B10, CLDN18, and 

MUC5AC, were confirmed to be expressed in plasma (Figure 4C). This result 

suggests that the discovered candidates are potential blood marker candidates. 

Taking into account that 70.0% of proteins were expressed in the pancreas, according 

to The Human Protein Atlas, it is probable that the biomarker candidates are specific 

to the pancreas (Figure 4D). Considering the bioinformatics analysis results of 

secreted proteins, we conclude that secreted proteins that originate from pancreatic 

epithelial cells constitute a significant portion of cyst fluid (Figure 4A). The high 

percentage of matches in these comparative analyses confirms that virtually all of 

the debris was discarded and that only cyst fluid was collected during sample 

preparation. 

The high Pearson correlation coefficients (>0.9) that were obtained from 

the pairwise correlation analysis of LFQ intensity values indicated a strong 

correlation between technical triplicates and that the MS data were acquired without 

bias (Figure 5B–D). In contrast, the Pearson correlation coefficient of the biological 

replicates of the histology groups was low, as shown in Figure 5B–D, primarily due 

to the wide variety of cyst types, the variations in cyst size, and the presence of blood 
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contaminants (34). One possible source of variation is the contamination of cyst fluid 

by blood. Fortunately, the samples in this experiment were relatively clean, as 

evidenced by the inability to detect albumin and low (intensity rank 1475) IgG levels 

(Figure 3). Despite using relatively clean cyst fluid, the variation between individual 

cyst fluid samples remained large (Figure 2D). Based on this result, we infer that 

using contaminated samples will result in even greater individual variation. 

Selecting proteins that had at least 6 valid values within a histological group 

mitigated the likelihood of analyzing proteins that are not representative of their 

histology group, as evidenced from the low p-value of the t-test, the high fold-change 

value, and the clear division between clusters shown in the heat map (Figure 6D–F). 

After eliminating DEPs that were unique to single comparison group, 18 proteins 

that changed expression levels in accordance with the degree of IPMN malignancy 

were selected as biomarker candidates (Table 2, Figure 9). Overall, our stringent 

criteria—requiring at least 6 valid values in a histological group, rigorous statistical 

analysis parameters, and a consistent expression pattern across histology groups—

significantly increased the probability of finding more credible biomarker candidates. 

All 18 biomarker candidates were associated with pancreatic disease and 

malignancy. With the exception of HOOK1, TEX12, TLN1, and PIK3IP1, all 

candidates are expressed in pancreatic tissue. Twelve candidates were associated 

with pancreatic diseases, such as IPMN, pancreatic ductal adeno carcinoma (PDAC), 

and pancreatitis (35-46). According to Tanaka, CLDN18 is an early-stage marker of 

PDAC and is elevated in high-grade versus low-grade lesions, consistent with our 

data (2). Two types of mucin proteins were selected as biomarker candidates and 
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have been examined in studies on IPMN and pancreatic cancer. Our protein 

expression patterns were consistent with those of prior studies. One of the 2 mucin 

biomarkers, MUC5AC, is expressed at high levels during the early stages of 

pancreatic ductal dysplasia but is low in high-grade tumors (38). MUC2 is expressed 

in IPMNs but not normal pancreatic tissue or PDAC (47). 

PTPN6, YBX1, TYMP, CLDN18, WFDC2, SERPINA4, TFF1, MUC2, 

MUC5AC, CST6, THY1, and AKR1B10 overexpressed in PDAC and pancreatitis. 

PTPN6 has not been reported in human pancreatic samples but has been observed in 

PANC-1 cell lines and a rat model of pancreatitis (48). The upregulated proteins, 

YBX1 and TYMP, are expressed at higher levels in PDAC versus normal tissue, a 

pattern that is consistent with our proteomic data (43, 44). In addition, these 

candidates are overexpressed in other types of cancer, such as breast and bladder 

cancer (49, 50). The remaining 6 candidates, except SERPINA4 and MUC2, are 

overexpressed in PDAC (35-37, 41, 45, 51, 52). These proteins are involved in tumor 

progression and differentiation. Accordingly, they are regarded as marker candidates 

of various cancer types. WFDC2 is a potential early diagnostic marker of 

gynecological cancers, such as ovarian and endometrial cancer (53). Moreover, 

serum levels of WFDC2 are indicative of ovarian cancer (54). TFF1, THY1, and 

AKR1B10 are associated with various cancers and have been implicated as 

biomarker candidates (55-57). Although it is unknown whether SERPINA4 mediates 

the progression of pancreatic cancer, it is an early marker of severity in acute 

pancreatitis (58). These studies have demonstrated that our final list comprises bona 

fide candidate markers for IPMN. Our report has significance as the first study to 
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discover the following marker candidates of IPMN: HOOK1, TEX12, TLN1, 

SERPINA5, FBN1, and PIK3IP1. With the exception of TEX12, these proteins are 

associated with other cancers, such as hepatocellular carcinoma, breast cancer, and 

prostate cancer (59-64). Considering the literature regarding the 18 candidates, it is 

likely that they are related to IPMN malignancy, except for TEX12. 

In order to confirm the validity of the aforementioned marker candidates, 

we compared our MS analysis results with western blot results. Western blot with 

cyst fluids is difficult due to the lack of housekeeping proteins, such as alpha-tubulin 

and beta-actin. To address this issue, we used 0.1% Ponceau S solution as a loading 

control (Figure 10A) (65, 66). The CV% of the intensities of individual samples was 

14.19%, indicating that approximately equal amounts had been loaded onto the SDS-

PAGE gels. Three DEPs were selected for further validation: 2 upregulated (HOOK1 

and PTPN6) and 1 downregulated protein (SERPINA5). The selection criteria for 

validation were a low p-value, high LFQ intensities, and a lack of an association with 

IPMN in the literature (which suggests novelty). 

HOOK1 was highly expressed in HGD and invasive IPMN compared with 

LGD (P < 0.01). Although the difference in PTPN6 was not statistically significant 

between the 3 comparison groups, its overall expression pattern underwent similar 

changes as in the MS results (Figure 10B, C). The expression pattern of SERPINA5 

was not consistent with the MS analysis and was higher in high-risk IPMN (Figure 

10D). This inconsistency might have resulted from the inherent property of western 

blots, which depends on the affinity between an antibody and a single antigenic 

epitope (67, 68). Thus, if the antibody has weak affinity for the epitope, the western 
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blot results would not be an accurate measure of protein abundance. In this regard, 

although western blot has been the standard assay in proteomics, targeted proteomic 

analysis might be a better alternative for verifying our quantitative MS data. 

In summary, we have identified 2992 proteins in IPMN cyst fluid samples 

using mass spectrometry techniques. Our investigation demonstrates that the use of 

a peptide library is beneficial, because the increased number of identified proteins 

provides a wider selection to choose from as biomarkers. This is evident from our 

dataset, which contains the largest number of proteins for pancreatic cyst fluid. Our 

in-depth data on the pancreatic cyst fluid proteome will be a valuable resource for 

pancreatic disease research. 

Our bioinformatics analysis concluded that upregulated DEPs were 

associated with pancreatic cell proliferation and aggressive malignancy. Through 

statistical analysis, we designated 18 biomarker candidates that changed expression 

levels, depending on the histological grade of IPMN. Among them, 2 upregulated 

DEPs were consistent with our western blot analysis. The literature has also 

concluded that these proteins are involved primarily in pancreatic diseases and 

malignancy, rendering them promising biomarker candidates of IPMN malignancy. 

In future studies, we plan to collect a sufficient amount of cyst fluid samples from 

more patients to test the performance of these biomarkers by immunoassay and 

multiple reaction monitoring (MRM). 
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INTRODUCTION 

 

The incidental detection of pancreatic cystic lesions (PCLs) has increased in recent 

years due to the implementation of various screening methods and the advancement 

of medical imaging technologies, such as magnetic resonance imaging (MRI), 

computed tomography (CT), and endoscopic ultrasound (EUS) (69-71). In response, 

many studies have attempted to develop screening methods that aid in the therapeutic 

decision-making with regard to PCLs, including intraductal papillary mucinous 

neoplasm (IPMN), which has been detected most frequently as a precursor lesion of 

pancreatic cancer (71). 

IPMN stages vary significantly as the malignancy progresses from benign 

to malignant–low-grade dysplasia (LGD), high-grade dysplasia (HGD), and invasive 

IPMN (72). LGD is considered primarily to be amenable to active surveillance, 

whereas the lesions in HGD and invasive IPMN require surgical intervention (2), 

necessitating the accurate classification of cystic lesions for appropriate patient 

management. Currently, 3 guidelines are used widely for establishing the treatment 

strategy for IPMN patients (73-75). However, the standard for determining whether 

to conduct active surveillance or surgical intervention and the diagnostic accuracy in 

determining IPMN grade differ between guidelines. Thus, the same patient can be 

treated differently, depending on which guideline is followed by the clinician. 

Consequently, establishing a treatment strategy that is based solely on these 

guidelines is problematic in actual clinical practice (76). 
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To examine the discrepancy between these guidelines, nomograms have 

been developed to predict low-risk and high-risk IPMNs (77, 78). However, the 

nomogram-derived objective risk score has limited diagnostic accuracy. The 

following factors are used to calculate the risk score: (1) Abdominal imaging, such 

as MRI, CT, and EUS; (2) carcinoembryonic antigen (CEA) and carbohydrate 

antigen 19-9 (CA19-9) levels; (3) analysis of KRAS and GNAS mutations; and (4) 

cyst fluid cytology. MRI and CT scans are inconsistent in differentiating between 

cyst types, as evidenced by their wide range in diagnostic accuracy (20% to 80%) 

(79). EUS also suffers from poor accuracy (51% to 59%) and cannot distinguish 

benign cystic lesions from malignant cysts (80). The most extensively studied 

biomarker, CEA, has low accuracy (60% to 80%) when used to discriminate between 

mucinous and nonmucinous cystic lesions (6). Another tumor marker, CA19-9, has 

a specificity of 81%, which is offset by its low sensitivity (15%) in differentiating 

mucinous and nonmucinous cystic lesions (10). Analysis of KRAS mutations has 

100% specificity but is not sufficiently sensitive (50%) to determine IPMN dysplasia 

(81). Similarly, although analyzing GNAS mutations is adequate for distinguishing 

IPMNs from other types of pancreatic cysts, they cannot predict the grade of 

dysplasia, because they generally occur early in IPMN development (5). Cyst fluid 

cytology for mucinous cysts has low diagnostic accuracy (54% sensitivity and 93% 

specificity) (82). Further, cytological examination is only applicable to cases in 

which there is a sufficient concentration of observable cells in the cyst fluid (83). 

Thus, it is likely that patients have undergone unnecessary surgical interventions due 

to the absence of an accurate method for determining the malignancy of IPMN (3), 
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necessitating novel biomarkers that improve the accuracy of the diagnosis of IPMN. 

Pancreatic cyst fluid has several advantages over serum and plasma with 

regard to the discovery of markers for IPMN (84, 85). Because cyst fluid is 

composed of secreted proteins from surrounding tumor cells, the concentration of 

potential biomarkers in cyst fluid is approximately 1000 times higher than in blood. 

In addition, these candidates closely represent changes in the dysplastic epithelium 

(86), and cyst fluid can be collected by endoscopic ultrasound-guided fine needle 

aspiration (EUS-FNA), a safe and minimally invasive method (87). 

Mass spectrometry (MS)-based proteomic approaches are being 

increasingly applied to identify markers that are related to specific diseases, based 

on their ability to screen thousands of proteins simultaneously to obtain hundreds of 

differentially expressed proteins (DEPs) in small amounts of samples (88). For 

instance, a study by Jabbar et al. concluded that quantifying CEA by a conventional 

method requires 1000 times more cyst fluid than MS analysis (89). Thus, an MS-

based approach is the most suitable platform for screening biomarkers in cyst fluid. 

Existing diagnostic modalities (CT, MRI, EUS, CEA, and CA19-9 levels; 

KRAS and GNAS mutations; and cyst fluid cytology) are insufficient for accurately 

classifying IPMN patients due to their low diagnostic accuracy (5, 6, 10, 79-82). 

Consequently, many reports, including proteomic studies, have examined methods 

of discovering biomarkers to improve the diagnostic accuracy for PCLs. In our 

previous study, we identified potential biomarkers of the histological grades of 

IPMNs using cyst fluid that was obtained exclusively from IPMN patients by LC-

MS/MS (90). In the current study, we aimed to discover marker candidates for IPMN 
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dysplasia from an expanded cohort that included IPMNs and other PCLs (mucinous 

cystic neoplasm (MCN) and serous cystic neoplasm (SCN)) by mass spectrometry 

to better reflect actual clinical circumstances to help classify various PCLs and avoid 

unnecessary pancreatic resection for low-risk IPMN patients.  
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MATERIALS AND METHODS 

 

1. Patients and cyst fluid samples 

Cystic fluid samples were collected from 30 patient specimens (20 IPMN, 

5 MCN, and 5 SCN) immediately after pancreatectomy at Seoul National University 

Hospital between April 2013 and June 2017. IPMN samples were classified as low-

grade dysplasia (LGD, n = 10), high-grade dysplasia (HGD, n = 5), and invasive 

IPMN (n = 5). The same samples were also categorized as low-risk IPMN (LGD) 

and high risk-IPMN (HGD and invasive IPMN). The patient data and characteristics 

of the cystic lesions are summarized in Table 1. At least 200 µL of cyst fluid was 

aspirated from patients to acquire sufficient protein for analysis. The aspirated cyst 

fluid samples were stored at −80 °C until sample preparation. All contents of this 

research were approved by the Institutional Review Board (IRB No. 1304-121-486), 

and all participants provided written informed consent. 
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Table 1. Demographic and clinical characteristics of the study population. 

Group 

Pancreatic cyst fluids 

LGD HGD Invasive IPMN MCN SCN 

(N = 10) (N = 5) (N = 5) (N = 5) (N = 5) 

Age (years)      

Mean ± SD 65.80 ± 5.55 67.80 ± 9.88 50.80 ± 14.45 49.00 ± 11.60 51.60 ± 17.08 

Gender      

Male/Female 5/5 4/1 3/2 1/4 1/4 

Gland Type      

Gastric 9 2 (1) 2 (1)   

Intestinal 0 1 (1) 1   

Oncocytic 0 0 1   

Pancreatobiliary 0 1 0   

Pancreatic 0 0 (1)   

Unknown 1 0 0   

Duct Type      

Main 0 0 1   

Branch 4 4 1   

Mixed 4 1 3   

Unknown 2 0 0   

Cyst Focality      

Single 8 5 4 2 0 

Multiple 2 0 1 0 0 

Unknown 0 0 0 3 5 

Mural Nodule      

Y 2 3 5 0 0 

N 8 2 0 2 0 

Unknown 0 0 0 3 5 

Cyst Location      

Head 4 3 3 0 1 

Body/Tail 6 2 2 5 4 

CEA Concentration (mg/L) 1.44 ± 0.74 1.52 ± 1.04 5.48 ± 6.82 1.32 ± 0.96 1.44 ± 0.48 

CA 19-9 Concentration (mg/L) 11.86 ± 8.69 22.80 ± 29.77 90.28 ± 129.71 20.20 ± 30.35 19.76 ± 17.81 

Cyst Size 3.36 ± 1.33 3.56 ± 1.66 5.74 ± 3.69 7.50 ± 2.18 3.98 ± 1.93 

<3.0 cm 4 3 2 0 1 

≥3.0 cm 6 2 3 5 4 

LGD, low-grade dysplasia; HGD, high-grade dysplasia; MCN, mucinous cystic neoplasm; SCN, serous cystic 

neoplasm; * The number of patients with two different gland types is shown in parentheses.  
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2. Protein isolation from cell pellets and secreted protein 

PANC1, Mia Paca-2, and BxPC3 cells pellets were rinsed with cold PBS and 

homogenized by sonication for 30 s (Sonics & Materials Inc., Newtown, CT, USA) 

in lysis buffer (4% SDS, 1 mM TECP, 0.1 M Tris-Cl, pH 7.4). The samples were 

boiled in a water bath for 30 min at 100°C and then centrifuged (15,000 rpm, 20°C, 

20 min) to remove cell debris. Next, 100 µg of proteins from the 3 cell types were 

pooled for further processing. The pooled cell lysate and 300 µg of each secreted 

protein were precipitated with cold acetone (Sigma-Aldrich, St. Louis, MO, USA) 

at a ratio of 1:5 (sample:acetone, v/v). The mixture was incubated overnight at -20°C 

after being vortexed thoroughly. The precipitate was centrifuged for 10 minutes at 

15,000 rpm at 4°C, and the acetone was gently removed. After an additional rinse 

step with 500 µL cold acetone and centrifugation, the protein pellet was air-dried for 

2 h and stored for digestion. 

 

3. Pancreatic cyst fluid sample preparation 

In cases in which the cyst fluid was too viscous to be extracted with a pipette, the 

cyst fluid was sonicated briefly prior to mucus removal in a 1.5-mL Eppendorf tube 

(90). The samples were centrifuged (15,000 rpm, 20 min, 4°C) to separate the 

supernatant from the cellular debris and other solid contents. Only the supernatant 

was used in this study. The protein concentration was measured by BCA assay, and 

20 µg of proteins from each sample were pooled for further fractionation. One 

hundred fifty micrograms of proteins from each sample were precipitated with cold 

acetone in the same manner as the cell pellets. 
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4. Protein digestion and desalting 

The acetone-precipitated samples (1 pooled cyst fluid, 30 individual cyst fluids, 1 

pooled cell lysate, secreted proteins of 3 cell lines) were mixed with 30 µL SDT lysis 

buffer (4 % SDS, 0.1 M DTT, 0.1 M Tris-Cl, pH 7.4). After being vortexed gently, 

the mixture was boiled for 30 min at 100°C to denature the proteins. The denatured 

samples were mixed with 300 µL 0.22-µm-pore filtered UA buffer (8 M urea, 0.1 M 

Tris-Cl, pH 8.5) and then transferred to a 30-kDa centrifugal filter (Millipore, 

Billerica, MA, USA). The sample was then centrifuged 3 times (14,000 g, 15 min, 

20°C) to remove SDS. The washed samples were incubated in 200 µL 50 mM 

iodoacetamide (IAA) in UA buffer at room temperature (RT) for 1 h to alkylate the 

reduced cysteine. After exchanging the UA buffer with 40 mM ammonium 

bicarbonate (ABC), the samples were digested with 0.1 µg/µL trypsin at a ratio of 

1:50 (enzyme:substrate, wt/wt) for 18 h at 37°C.  

The pooled samples were subjected to a second digestion step (90). After 

being transferred to a new centrifuge tube, the filters were washed sequentially with 

200 µL UA buffer once and 300 µL 40 mM ABC twice. Then, the proteins were 

digested with 0.1 µg/µL trypsin (trypsin:sample ratio of 1:100, wt/wt). The 30 

individual cyst fluid digests were measured by tryptophan fluorescence assay to 

estimate the amounts of peptides. Equal amounts of peptides were acidified and 

desalted with homemade StageTips as described (21, 22). In contrast to the 

individual samples, all pooled samples were desalted without conserving any spare 

volume. The desalted samples were then lyophilized to dryness in a speed-vacuum 

centrifuge and stored at -80°C until fractionation and analysis. 
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5. High-pH reverse-phase peptide fractionation 

A total of 5 library samples (pooled cyst fluid; pooled cell lysate; and the secreted 

proteins of PANC-1, Mia PaCa-2, and BxPC3 cells) were further fractionated on a 

modified Stage-tip column in a high-pH environment to generate a peptide library 

(23). The desalted peptides from the first digest were reconstituted in 200 µL loading 

solution (15 mM ammonium hydroxide, pH 10, 2% acetonitrile) and separated on a 

pipette-based RP microcolumn, prepared by plugging the bottom of a 200-µL pipette 

tip with C18 Empore disk membrane (3M, St. Paul, MN, USA) and filling the tip 

with POROS 20 R2 resin. After 3 rinses each of 100% methanol, 100% acetonitrile 

(ACN), and loading buffer, the dissolved peptides were loaded onto the column and 

eluted into 20 fractions on a discontinuous ACN gradient (2, 5, 7.5, 10, 12.5, 15, 17.5, 

20, 22.5, 25, 27.5, 30, 32.5, 35, 40, 50, 60, 70, 80, and 100%). These 20 fractions 

were concatenated into 6 fractions with varying hydrophobicities to optimize 

coverage and liquid chromatography-tandem mass spectrometry (LC-MS/MS) run 

time. The 6 fractions were dried in a vacuum centrifuge and stored at -80°C until 

LC-MS/MS analysis. 

 

6. LC-MS/MS analysis 

The peptides were analyzed by a Q Exactive mass spectrometer that was equipped 

with an EASY-Spray ion source (Thermo Fisher Scientific, Waltham, MA, USA), 

coupled to an Easy-nano LC 1000 (Thermo Fisher Scientific, Waltham, MA, USA), 

following our established protocol (90). The peptide samples were separated on a 2-

column setup that comprised a trap column (75 µm I.D. x 2 cm, C18 3.0 µm, 100 Å) 
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and an analytical column (Easy-Spray Pepmap RSLC, 75 µm I.D. x 50 cm, C18 2.0 

µm, 100 Å). 

An ACN gradient (6% to 40%) run of 180 minutes was achieved by mixing 

solvent A (2% ACN and 0.1% v/v formic acid) and solvent B (100% acetonitrile and 

0.1% v/v formic acid) in varying proportions. Peptides that were eluted from the 

analytical column were ionized at a spray voltage of 2.0 kV in positive ion mode. 

MS1 spectra were collected in data-dependent acquisition (DDA) mode using a top 

15 method with a resolution of 70,000 at m/z 200 with a mass range of 350-1700 

m/z. The 15 most abundant ions were fragmented by higher-energy collisional 

dissociation (HCD) with a normalized collision energy (NCE) of 27 at a resolution 

of 17,500 at m/z 200. The maximum ion injection times for the survey and MS/MS 

scans were 20 ms and 80 ms, respectively. The dynamic exclusion was set to 30 s to 

prevent repeated sequencing. 

 

7. Raw data search 

All raw MS files (120 files) from the Q Exactive were processed in MaxQuant, 

version 1.6.0.16 (24) with the built-in Andromeda search engine (91) against the 

Uniprot human database (88,717 entries, version from December 2014), containing 

the forward and reverse amino acid sequences. In accordance with the established 

target-decoy search procedures (25), the search results were filtered at a false 

discovery rate (FDR) < 1% for identifying peptides, modification sites, and proteins. 

The database search was performed with the following parameters: 

digestion mode trypsin/P; main search and first search tolerances of 6 ppm and 20 
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ppm, respectively; tolerance of up to 2 missed cleavages; carbamidomethylation of 

cysteine as a fixed modification; oxidation of methionine and protein N-terminal 

acetylation as variable modifications; and peptide length of at least 6 residues. 

Peptides were assigned to protein groups by the principle of parsimony (26). The 

principle was applied to reduce the number of ambiguous proteins, the identified 

peptides of which could belong to several proteins. The retention times of all raw 

files were aligned through the “match between runs” feature in MaxQuant, which 

allows the transfer of MS/MS spectra and sequence information within a retention 

time window of 0.7 min to other raw files that have insufficient MS/MS spectra to 

identify the sequences (92). 

All generated proteomic data have been submitted to the ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org/) via the PRIDE partner 

repository, with PXD016127 as the identifier (27). 

 

8. Label-free quantification and statistical analysis 

Label-free quantification (LFQ) and statistical analysis were performed in 

MaxQuant (version 1.6.0.16) and Perseus (version 1.6.1.1), respectively, in 

accordance with our previous studies (90). Normalized spectral protein intensity 

values (LFQ intensity values) were used to estimate the protein abundance (28). 

LGD had 30 LFQ intensity values (10 biological replicates × 3 technical replicates), 

whereas the others had 15 LFQ intensities (5 biological replicates × 3 technical 

replicates). LFQ intensity values that were greater than 0 were deemed to be valid. 

From the list of identified peptides, proteins that had 70% or more valid 
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values in at least 1 histological group were used for the statistical analysis. This 

standard was used to exclude proteins that could not characterize at least 1 sample 

group. The missing values were estimated, based on a normal distribution 

(imputation width = 0.3, shift = 1.8) of log2-transformed LFQ intensities (90). 

Student’s t-test (P < 0.05) was applied to identify significantly changed proteins. The 

seven comparative pairs that were used in the statistical analysis were LGD versus 

HGD (comparison 1), HGD versus invasive IPMN (comparison 2), and LGD versus 

invasive IPMN (comparison 3), SCN versus LGD (comparison 4), MCN versus LGD 

(comparison 5), SCN versus invasive IPMN (comparison 6), and MCN versus 

invasive IPMN (comparison 7). Proteins that were differentially expressed in at least 

2 comparative pairs within comparisons 1 to 3 were considered initial biomarker 

candidates. 

Subsequently, DEPs that increased or decreased consistently with greater 

malignancy of IPMN but not in the MCN and SCN groups were selected as final 

biomarker candidates of IPMN progression–i.e. the final candidates of Invasive 

IPMN must have been statistically significant in comparisons 6 and 7 and increased 

sequentially with greater IPMN malignancy. Similarly, the final candidates of LGD 

must have been statistically significant in comparisons 4 and 5 and decreased 

sequentially with greater IPMN malignancy. 

 

9. Bioinformatics analysis 

The gene ontologies (GOs) of the analyzed DEPs were explicated with the DAVID 

bioinformatics tool (http://david.abcc.ncifcrif.gov/) and UniprotKB database 
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(http://www.uniprot.org/). Pathway analysis was performed using the KEGG 

database (http://www.genome.jp/kegg/). Putative secretory proteins were confirmed 

using SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/), SecretomeP 2.0 

(http://www.cbs.dtu.dk/services/SecretomeP/), and TMHMM, server 2.0 

(http://www.cbs.dtu.dk/services/TMHMM/) (93-95). The Plasma Proteome 

Database (PPD) was used to estimate the percentage of proteins that were identified 

simultaneously in human plasma and in this study (29). The proteins that were 

identified in this study were crossreferenced with mRNA and protein expression in 

the “pancreatic category” of the Human Protein Atlas (http://www.proteinatlas.org/). 

Ingenuity Pathway Analysis (IPA) was used for the functional analysis (Ingenuity 

Systems, http://www.ingenuity.com/). Fisher’s exact test (P < 0.05) was used in IPA 

to estimate the probability that a specific set of proteins was related to a pathway. 

 

10. Enzyme-Linked Immunosorbent Assay (ELISA) 

CD55 protein was measured using a commercial quantikine ELISA kit (CSB-

E05121h, CUSABIO, China) per the manufacturer’s instructions. Seventy cyst fluid 

samples–22 LGD, 5 HGD, 14 invasive IPMN, 13 MCN, and 16 SCN–were 

centrifuged to isolate the supernatant for the ELISA. Equal amounts of proteins (298 

µg, as measured by BCA assay) were loaded into each well of a 96-well plate. The 

protein concentration data were analyzed statistically by student′s t-test. 

The intraplate repeatability of the CD55 ELISA was calculated by 

measuring 3 replicates of 10 positive control (cyst fluid from 2 HGD and 8 invasive 

IPMN) and 11 negative control samples (cyst fluid from 4 LGD and 7 SCN) on a 
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single plate. Three independent ELISA analyses were conducted at different times to 

analyze the interplate repeatability using a total of 21 samples (10 positive and 11 

negative controls). The optical density (OD) was measured at a wavelength of 450 

nm to calculate the standard deviation (SD) and coefficient of variation (CV) for 

each sample. 

 

11. Western blot of CD55 

Among the 70 cyst fluid samples that were used for ELISA, a portion of the samples 

(8 LGD, 4 HGD, 8 invasive IPMN, 5 MCN, and 5 SCN) were selected, based on 

their suitable protein concentration and remaining protein content, for further 

validation by western blot. Forty micrograms of cyst fluid samples, mixed with 5X 

SDS loading dye, were separated on 7% SDS-PAGE gels and transferred to PVDF 

membranes. The membranes were stained with Ponceau S (P7170, Sigma-Aldrich, 

MO, USA), blocked with 5% BSA for 2 h at RT, and incubated overnight at 4°C with 

CD55 rabbit monoclonal antibody (38730, Cell Signaling Tech., MA, USA) at 

1:1000 (90). The membranes were washed 5 times with TBS-T for 10 minutes each 

and then incubated with goat anti-rabbit IgG (HRP) (ab6721, Abcam, Cambridge, 

UK) at 1:1000 for 2 h at RT. All signals were detected by LAS-4000 (Fujifilm, Tokyo, 

Japan) after incubation with ECL solution (West-Q Chemiluminescent Substrate Kit-

plus, GenDEPOT, TX, USA). 

 

12. Immunohistochemistry 

The immunohistochemical analysis was performed on 4-µm-thick unstained sections, 
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cut from formalin-fixed paraffin-embedded tissues, with CD55 rabbit monoclonal 

antibody (31759, Cell Signaling Tech., MA, USA) at 1:600 and myeloperoxidase 

(MPO) rabbit polyclonal antibody (A0398, Dako, Glostrup, Denmark) at 1:5000 on 

a BenchMark XT (Ventana Medical System, Tucson, AZ, USA) as described (96). 

All immunohistochemical stains were conducted and reviewed by an expert 

hepatopancreaticobiliary pathologist (Haeryoung Kim). 
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RESULTS 

 

1. Cyst fluid sample characteristics 

The demographics and clinical information of the study sample are described in 

Table 1. The histological composition of the 30 pancreatic cyst fluid samples 

consisted of LGD (n=10), HGD (n=5), invasive IPMN (n=5), MCN (n=5), and SCN 

(n=5). Among the 5 PCLs, there was no significant difference in composition, with 

the exception of cyst size and serum CEA and CA 19-9 levels, as measured by 

chemiluminescent microparticle immunoassay. Of the PCLs, the invasive IPMN 

patient group had the highest average concentrations of CEA and CA19-9 at 5.48 ± 

6.82 mg/L and 90.28 ± 129.71 mg/L, respectively. The average CEA concentrations 

were similar between all groups, except for invasive IPMN, and increased gradually 

with the progression of IPMN dysplasia. Serum CA19-9 levels were generally higher 

in the more severe forms of IPMN, as were CEA levels. The average CEA level was 

approximately 4 times higher in invasive IPMN than in LGD and HGD. In addition, 

the average concentration of CA19-9 in invasive IPMN was approximately 8 times 

that of LGD and 4 times that of HGD. A baseline of 3 cm was used to classify cyst 

sizes (97). The MCN group had the largest average cyst size (7.50 ± 2.18 cm), 

followed by invasive IPMN (5.74 ± 3.69 cm). 

 

2. In-depth quantitative proteomics of pancreatic cyst fluid 
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A mass spectrometry-based method, based on our previous study, was used to 

analyze a cohort of cyst fluid samples to measure the changes in protein expression 

with respect to the progression of IPMN (90). The overall procedure for discovering 

markers of IPMN progression, from sample preparation to the LC-MS/MS analysis, 

is depicted in Figure 1. The discovery cohort included 30 pancreatic cyst fluid 

samples from 3 types of IPMN (LGD, HGD, and invasive IPMN) and other PCLs 

(MCN and SCN). The pooled samples were fractionated and analyzed in parallel to 

generate a peptide library, which was used to expand the coverage of identified 

proteins for individual samples. Each fractionated sample was analyzed once, 

whereas all individual samples were analyzed in triplicate on a Q Exactive mass 

spectrometer. 

Raw MS data were processed in MaxQuant (version 1.6.0.16), and the 

statistical analysis was performed with Perseus (version 1.6.1.1). The MaxQuant 

analysis identified 1,314,934 spectral matches, 56,583 peptides, and 5834 protein 

groups, 5774 of which were quantifiable. For label-free quantification, 5578 and 

3249 proteins were identified in the peptide library and 30 individual cyst fluid 

samples, respectively. A total of 2993 proteins (92.1%) that were identified in 

individual samples overlapped with the peptide library (Figure 2A). The quantified 

proteins in individual cyst fluids accounted for 86.5% of the 3249 identified proteins 

(Figure 2B). Notably, the 3 IPMN groups had approximately twice the number of 

quantified proteins (2220–2500) than MCN (1218) and SCN (1346) (Figure 2C). 

Overall, the number of quantified proteins varied significantly, even within 

histological groups. Specifically, the identified and quantified proteins in each 
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sample ranged from a minimum of 657 identified (298 quantified) in LGD 10 to a 

maximum of 2587 identified (2014 quantified) in invasive IPMN 1 (Figure 2D). 

To improve the proteome coverage, the “match between runs” feature in 

MaxQuant was utilized to align the retention times and MS/MS spectra of the 

individual sample against the peptide library (31). In total, an additional 773 and 420 

proteins were identified and quantified, respectively, across all individual samples. 

LGD 6 showed the largest increase in the number of identified and quantified 

proteins–by 457 and 235, respectively. On average, 100 more peptides were 

identified in each sample (Figure 2C). This result demonstrates that the overall 

proteome coverage of individual cyst fluid samples rose, thereby enlarging the pool 

of potential biomarker candidates. 

The dynamic range of protein expression levels spanned over 7 orders of 

magnitude, but most proteins (95%) were expressed within 4 orders of magnitude 

(Figure 3). Of these proteins, the levels of pancreatic cancer-associated proteins, 

such as MUC5AC, MUC2, and CEA, were high. Five proteins (PNLIP, CPA1, CPB1, 

PRSS1, and PRSS2) in a smaller dynamic range, as shown in Figure 3, are known to 

be significantly expressed in the pancreas compared with other organs (98). In 

addition, with the exception of PRSS1, these proteins, denoted in blue, are generally 

exclusive to the pancreas, per Wilhelm (98). This result confirms the presence of 

pancreas-specific proteins in our proteome data. 
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Figure 1. Experimental workflow. 

The overall experimental workflow comprises 3 sections: (1) Preparation of 30 

individual samples, (2) peptide library construction, and (3) validation by ELISA. 

LGD, low-grade dysplasia; HGD, high-grade dysplasia; MCN, mucinous cystic 

neoplasm; SCN, serous cystic neoplasm. 
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Figure 2. Comparison of protein identification and quantification in total 

dataset and in sample groups. 

(A) Among the 5834 proteins in the dataset, 5578 and 3249 were identified in the 

peptide library and individual samples, respectively, and 92.1% of the proteins 

overlapped. (B) Identified and quantified proteins in 30 individual cyst fluids; 86.5% 

of proteins were quantifiable. (C) Bar graph of the extra coverage enabled by the 

peptide library in the identified and quantified proteins of each sample group. (D) 

The number of identified and quantified proteins in each individual sample is 

indicated in a single bar graph. 
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Figure 3. Dynamic range of quantified proteins. 

The expression levels of quantified proteins exceeded 7 orders of magnitude. Several 

markers of pancreatic cancer (MUC5AC, MUC2, and CEA) were high in abundance. 

Five pancreas-specific proteins (PNLIP, CPA1, CPB1, PRSS1, and PRSS2) were 

ranked in the top 25.  
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3. Reproducibility of label-free quantification data 

All CV values for the sums of log2-transformed LFQ intensities across technical 

replicates of individual samples were less than 20% (0.959% to 13.279%). These 

data support that the variance that is attributed to the sample injection and 

quantification was low. The median CVs of log2-transformed LFQ intensities 

between technical triplicates of each sample ranged from 0.555% to 3.564%, 

indicating that the label-free quantification of cyst fluid samples had high 

reproducibility (Figure 4A). In addition, the average Pearson correlation coefficients 

of the technical triplicates ranged from 0.871 to 0.954 (Figure 4B–F). The high 

Pearson correlation coefficients between technical replicates of individual samples 

indicate that the reproducibility between replicates is high and that the data are 

suitable for statistical analysis. 
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Figure 4. Coefficient of variation (CV%) values and Pearson correlation 

coefficients between technical triplicates in each individual sample. 

(A) The median coefficient of variation (CV%) of log2-transformed LFQ intensity 

values between the technical triplicates in each individual is represented as box plots. 

Pearson correlation coefficients of technical replicates (TRs) in LGD (B), HGD (C), 

invasive IPMN (D), MCN (E), and SCN (F). The red markers represent Pearson 

correlation coefficient values of each pair of 3 technical replicates. The horizontal 

line represents the average of 3 Pearson correlation coefficient values in each 

individual sample. 
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4. Comparison with proteome databases and other researches 

To examine the composition of pancreatic cyst fluid proteins, our data were 

compared with various proteome data from databases and past studies. The proteins 

that were identified in individual cyst fluid samples were compared with 3 public 

databases to screen for secreted proteins. As a result, 1578, 668, and 432 proteins 

were identified in SecretomeP, SignalP, and TMHMM, respectively (Figure 5A) 

(93-95). Secreted proteins accounted for 58.1% (1889 proteins) of the 3249 proteins 

that were identified in individual cyst samples (Figure 5B).  

All protein accession numbers were mapped to gene symbols to compare 

them with 3 proteome databases: (1) the Human Plasma Protein Database, (2) the 

Human Protein Atlas (http://www.proteinatlas.org, June 11, 2018), and (3) the “core” 

proteome in Wilhelm et al (98). A total of 3039 proteins were listed with their 

corresponding gene symbols after redundant genes were removed. When compared 

with the Human Plasma Proteome Database, 79.8% (2424) of the 3039 identified 

proteins were confirmed to be expressed in plasma or serum (Figure 5C) (29). Our 

dataset was compared with the Human Protein Atlas to estimate the percentage of 

pancreatic tissue-specific proteins. As a result, 2937 (96.6%) genes had evidence of 

corresponding mRNA entries, and 2665 (87.7%) genes had evidence of 

corresponding protein entries in the pancreas (Figure 5D). Our data were compared 

with the core proteome in Wilhelm et al., which compiled 5 of the largest proteomic 

databases and extracted 11,578 human proteins that were ubiquitously expressed in 

all databases. The comparison found that 2714 (89.3%) of the identified proteins 

overlapped with those of the core proteome (Figure 5E) (98, 99). 
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Our previous study identified 2992 proteins in pancreatic cyst fluid samples 

of IPMN patients by LC-MS/MS analysis. This study identified 5834 proteins, 

surpassing the earlier report in terms of proteome coverage (Figure 5F) (90). In 

addition, the expression patterns of the marker candidates (AKR1B10, TFF1, 

SERPINA5, SERPINA4, MUC5AC, MUC2, TLN1, and TYMP) from our previous 

study were replicated here (Figure 6). 
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Figure 5. Comparative analysis with various proteome databases and other 

proteomic studies. 

(A) Of the 1889 secreted proteins, 1578, 668, and 432 were predicted to be secreted 

by SecretomeP, SignalP, and TMHMM, respectively. (B) In total, secreted proteins 

accounted for 58.1% (1889 proteins) of the 3249 proteins identified in cyst fluid. (C) 

In comparison with the Human Plasma Proteome Database, 2424 (79.8%) proteins 

were observed in plasma or serum. (D) Compared with the Human Protein Atlas, 

2937 (96.6%) and 2665 (87.7%) proteins had evidence of corresponding mRNA and 

protein entries, respectively, in the pancreas. (E) In a comparative analysis with 

identified proteins in individual cyst samples and the core proteome in Wilhelm et 

al., 2714 (89.3%) proteins were found to be core proteins. (F) A total of 5834 proteins 

were identified in our dataset, which was approximately twice that of our previous 

study (Do et al.).
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Figure 6. Comparison of the expression patterns of the final marker candidates 

between our previous and present studies. 

In comparison with our previous study, the protein expression patterns in IPMN 

dysplasia of this dataset were consistent with the 8 final marker candidates 

(AKR1B10, TFF1, SERPINA5, SERPINA4, MUC5AC, MUC2, TLN1, and TYMP) 

from our earlier study. LGD, low-grade dysplasia; HGD, high-grade dysplasia; INV, 

invasive IPMN; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; NS, not 

significant.  
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5. Differentially expressed proteins between IPMN dysplasia 

The diagram in Figure 7 details the discovery of potential markers of IPMN dysplasia. 

Of the 5834 identified proteins, 2809 were quantifiable in individual cyst fluid 

samples and had LFQ intensity values in at least 2 technical replicates in 1 biological 

replicate. Of the 2809 quantified proteins, 1019 had more than 70% measurable LFQ 

intensities in at least 1 histological group and were deemed usable for the statistical 

analysis. This criterion was established to ensure that a putative marker candidate 

represented at least 1 histological group. 

To identify DEPs, student’s t-test (P < 0.05) was performed for each 

comparative pair (comparisons 1 to 7). In comparisons 1 (LGD versus HGD), 2 

(HGD versus invasive IPMN), and 3 (LGD versus invasive IPMN), 216, 84, and 247 

proteins were differentially expressed, respectively–of which 164, 61, and 192 were 

upregulated. 

The variance in expression between comparisons 1 to 3 was depicted in 

volcano plots. The highlighted final marker candidates including the validation target, 

CD55, underwent significantly large fold-changes (Figure 8). In the statistical 

analysis of comparisons 1 to 3, 364 DEPs remained after overlapping proteins were 

removed from each comparative group. Of the 364 DEPs, 261 were exclusively 

upregulated, and 80 proteins were exclusively downregulated. The remaining 23 

proteins did not have consistent expression patterns across the 3 comparisons. 
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Figure 7. Flowchart of the discovery of potential markers of IPMN dysplasia. 

Potential markers of the histological grades of IPMN were discovered following this 

logically sound step-by-step procedure. The procedure is composed of 6 steps for 

discovering potential markers of IPMN dysplasia and 2 steps for selecting a target 

for validation. The 70% valid value criterion in the step 2 was applied to eliminate 

proteins that failed to represent any histological group.



79 

 

 

Figure 8. Volcano plots of differentially expressed proteins in three comparison groups. 

Student’s t-test (P < 0.05) was conducted for comparisons 1 (LGD versus HGD) (A), 2 (HGD versus invasive IPMN) (B), and 3 (LGD versus 

invasive IPMN) (C) to discover differentially expressed proteins (DEPs). The DEPs that were significantly expressed in each comparison group 

are indicated as colored dots (red: upregulated DEPs, blue: downregulated DEPs). Several marker candidates, including the validation target CD55, 

are highlighted in each comparison.
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6. Molecular characterization of DEPs of IPMN dysplasia 

Gene ontology (GO), KEGG pathway analysis, and Ingenuity Pathway Analysis 

(IPA) were used to characterize the 364 DEPs obtained from the statistical analysis 

of IPMN dysplasia. A total of 364 proteins were subsequently subjected to gene 

ontology (GO) analysis and filtered using a P < 0.05. The top 8 biological process 

(BP) terms were significantly associated with molecular transport and malignancy, 

such as “vesicle-mediated transport,” “secretion,” “exocytosis,” “cell death,” and 

“cell motility.” In addition, cellular components (CCs) of the DEPs were primarily 

related to the extracellular compartment, indicating that the proteins in pancreatic 

cyst fluid are secreted mainly from the surrounding cells and originally reside in the 

extracellular matrix. The terms that were associated with peptidase activity were 

present at higher proportions in molecular function (MF), demonstrating that 

pancreatic cyst fluid contains many digestive enzymes generated from the pancreas 

(Figure 9) (9). According to the KEGG pathway enrichment (P < 0.05), all DEPs of 

IPMN dysplasia belonged to the “pancreatic secretion pathway” and 

“glycosylation/gluconeogenesis pathway” (Figure 9). 

IPA was conducted to better understand the association of DEPs with 

malignancy and their nature regarding pancreatic cyst fluid. A total of 216 and 247 

DEPs from comparisons 1 (LGD vs HGD) and 3 (LGD vs invasive IPMN) were 

analyzed, respectively. To evaluate the biological functions that were associated with 

the DEPs of comparisons 1 and 3 and their activation levels, core analysis was 

conducted by using the protein accession numbers and their fold-change values 

(Figure 10A, B). As expected, the biological functions that were related to 
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malignancy and molecular secretion had a higher rank among the biological 

functions that were associated with the DEPs of comparisons 1 and 3. The 

representative functions included “cellular movement,” “cancer,” “organismal injury 

and abnormalities,” “organismal development,” and “molecular transport,” which 

included such subcategories as “cell spreading,” “angiogenesis,” “secretion of 

molecules,” and “secretion of proteins.” 

Heat maps of the comparative analysis were used to visualize the diseases 

and biological function terms across analyses simultaneously to detect trends and 

significant clusters (Figure 10C, D), allowing us to identify the diseases and 

biological functions that are predicted to increase or decrease similarly across 

comparisons 1 and 3. Consistent with our expectations, the biological functions that 

were related to malignancy (cell spreading, vasculogenesis, and cancer) and 

molecular secretion (secretion of molecules and secretion of proteins) were highly 

expressed in comparisons 1 and 3. In addition, the expression levels of malignancy-

related terms and molecular secretion-related terms were higher in comparison 3 than 

in comparison 1, and “cell death of pancreatic cancer cell lines” decreased in 

comparison 3 (Figure 10C). Pancreas-specific diseases (chronic pancreatitis and 

poorly differentiated malignant pancreatic tumor) and cancer were significantly 

associated with the DEPs of comparison 3 (Figure 10D). 
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Figure 9. Results of Gene Ontology and KEGG pathway analyses. 

GO and KEGG pathway analyses were conducted using the DAVID bioinformatics 

tool. A total of 364 DEPs that originated from the statistical analysis between IPMN 

dysplasia were subjected to GO and KEGG pathway analyses. Each colored bar 

graph indicates the enriched terms in biological process (BP), cellular component 

(CC), molecular function (MF), and KEGG pathway. The number of participating 

proteins is shown on the left y-axis for GO terms and the right y-axis for KEGG 

pathway terms. 
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Figure 10. Ingenuity Pathway Analysis. 

Core analysis of IPA was conducted to evaluate the biological functions associated 

with the 216 DEPs of comparison 1 (LGD versus HGD) (A) and the 247 DEPs in 

comparison 3 (LGD versus invasive IPMN) (B). The heat maps indicate the 

upregulated and downregulated biological functions. The z-score of each biological 

function is represented by the sizes and colors of the boxes. Larger boxes signify 

higher z-scores. Orange indicates positive z-scores, and blue denotes negative z-

scores. (C, D) Comparative analysis of IPA, visualizing the diseases and biological 

function terms across multiple analyses (comparisons 1 and 3) simultaneously. (C) 

The disease and biological function terms related to malignancy and molecular 

secretion were highly expressed in both comparisons. (D) Pancreas-specific diseases 

and cancer were significantly associated with the DEPs of comparison 3.  
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7. Biomarker candidates of IPMN dysplasia 

A total of 364 DEPs passed the statistical analysis. Following the rationale that 

proteins with significant differences in expression in more comparisons are more 

likely to be biomarkers, 179 DEPs were designated as initial marker candidates, 

because they were present in at least 2 of 3 comparative pairs (1 to 3) (31, 90). 

Subsequently, 27 DEPs had expression patterns that consistently increased or 

decreased with greater IPMN malignancy. Of them, 13 DEPs that were preferentially 

expressed in invasive IPMN were statistically significant in comparisons 6 (SCN 

versus invasive IPMN) and 7 (MCN versus invasive IPMN). Similarly, the 

remaining 14 DEPs were expressed in LGD and showed significant differences in 

comparisons 4 (SCN versus LGD) and 5 (MCN versus LGD). Based on the rationale 

that tumor-associated proteins are generally secreted from surrounding tumor cells, 

the 19 DEPs predicted to be secreted by SecretomeP, SignalP, and TMHMM were 

selected as the final marker candidates (100, 101). 

The heat map in Figure 11 provides an overview of the expression of the 

19 final marker candidates of IPMN dysplasia: 7 invasive IPMN-specific marker 

candidates and 12 LGD-specific marker candidates based on their expression 

patterns. DEFA3, MUC13, CD55, CPS1, RAB11B, HEXA, and SOD2 were highly 

expressed in invasive IPMN and expressed at statistically lower levels in other PCLs. 

In contrast, LEFTY1, AMY2A, KLK1, RNASE1, CELA2A, CELA3A, CPA1, 

CPB1, CEL, AMY2B, GP2, and CTRC were highly expressed in LGD and but 

significantly lower in other cystic lesions (Figure 12). 
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Table 2 details the results of the statistical analysis of the 19 potential 

markers (7 upregulated proteins and 12 downregulated proteins), including statistical 

significance, p-values, and fold-changes for 3 comparative groups (1 to 3). A total 

of 16 proteins, with the exception of RAB11B, KLK1, and CELA2A, were 

pancreatic tissue-specific proteins, according to the Human Protein Atlas. In addition, 

15 proteins, with the exception of DEFA3, MUC13, RAB11B, and LEFTY1, were 

observed in plasma or serum, per the Plasma Proteome Database (PPD). 

The fold-changes of the 19 final marker candidates were assessed in 

relation to the general distribution of the 1019 proteins that were used for the 

statistical analysis. To this end, potential markers from comparisons 1 and 3 were 

displayed in a dynamic range and ordered, based on their fold-change. (Figure 13A, 

B). Excluding CD55, RAB11B, and CPS1 in comparison 1, 16 proteins had p-values 

below 0.05 and lay generally near the 2 extremes of the dynamic range. Similarly, in 

comparison 3, 19 candidates were statistically significant (P < 0.05) and located near 

the upper and lower extremes of the dynamic range. All potential markers had higher 

fold-changes than CEA, the most well-established pancreatic cancer-associated 

marker. 

Upstream regulator analysis in IPA was conducted to predict the upstream 

proteins of the final candidates and their biological functions. This analysis predicted 

the top 20 likely upstream regulators that modulate the 5 final candidates (MUC13, 

CD55, CPS1, SOD2, and LEFTY1). A total of 11 regulator proteins were associated 

with SOD2, 4 proteins correlated with CD55, 4 proteins were linked to LEFTY1, 

and 1 was associated with CPS1 and MUC13 (Figure 13C, Table 3). The upstream 
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regulators were the following molecular types: Kinase, enzyme, g-protein-coupled 

receptor, transcription regulator, transporter, and ion channel. The upstream 

regulators were tumor suppressors, pancreatic mitogens, and other key factors of 

cancer progression, according to several publications, supporting the credibility of 

the marker candidates (102-107). 
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Figure 11. Overview of protein expression of the 19 final marker candidates of 

IPMN dysplasia. 

The heat map represents the expression patterns of the 19 final potential markers of 

IPMN dysplasia, based on z-score. Z-scores were calculated by averaging the LFQ 

intensities of the 3 technical replicates of each biological replicate. Red and blue 

reflect positive and negative values, respectively. Seven invasive IPMN-specific 

marker candidates were highly expressed in invasive IPMN. In contrast, 12 LGD-

specific marker candidates were predominantly expressed in LGD. The percentage 

reflects the proportion of the 5 invasive IPMN samples showed upregulation of the 

given protein. Similarly, the percentage of LGD-specific marker candidates 

represents the number of LGD samples that showed upregulation for the given 

protein. 
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Figure 12. 19 potential markers that were differentially expressed in accordance 

with the degree of IPMN malignancy. 

DEFA3 (A), MUC13 (B), CD55 (C), CPS1 (D), HEXA (E), SOD2 (F), RAB11B (G), 

AMY2A (H), (I) CPB1, (J) LEFTY1, (K) AMY2B, (L) KLK1, (M) RNASE1, (N) 

CELA2A, (O) CELA3A, (P) CPA1, (Q) CEL, (R) GP2, and (S) CTRC were 

differentially expressed, in accordance with the histological grades of IPMN. *, P < 

0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; NS, not significant. 
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Figure 13. The dynamic range of protein fold-changes in comparisons 1 and 3 

and the results of upstream regulator analysis in Ingenuity Pathway Analysis. 

The dynamic range with marked fold-changes of the 19 final marker candidates in 

comparisons 1 (LGD versus HGD) (A) and 3 (LGD versus invasive IPMN) (B). The 

red and blue dots indicate the log2-transformed fold-changes of the 7 upregulated 

and 12 downregulated proteins. The yellow dot represents the log2-transformed fold-

change of CEA protein. (C) Five potential markers (MUC13, CD55, CPS1, SOD2, 

and LEFTY1) and their upstream regulators are connected by dotted lines. The 

molecular types of each upstream regulator are shown in parentheses. Each marker 

candidate is listed in order of decreasing fold-change, whereas the upstream 

regulators are listed in order of increasing p-values. 
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Table 2. Detailed statistical analysis of 19 final marker candidates. 

    LGD vs HGD HGD vs INV LGD vs INV 

  Gene name 
T test 

Significance 

adjusted 

P value 

Log2(Fold 

change) 

T test 

Significance 

adjusted 

P value 

Log2(Fold 

change) 

T test 

Significance 

adjusted 

P value 

Log2(Fold 

change) 

Up 

DEFA3 + 0.022 2.772 + 0.016  2.695 + 0.000  5.467 

MUC13 + 0.021  1.776 + 0.002  4.291 + 0.000  6.067 

CD55   0.234  1.054 + 0.000  4.652 + 0.000  5.706 

CPS1   0.351  0.479 + 0.038  3.770 + 0.002  4.249 

HEXA + 0.032  1.237   0.952  0.043 + 0.036  1.280 

SOD2 + 0.024  1.585   0.402  0.878 + 0.003  2.463 

RAB11B   0.541  0.625 + 0.030  1.811 + 0.011  2.436 

Down 

AMY2A + 0.018  -3.272   0.416  -1.925 + 0.001  -5.197 

CPB1 + 0.013  -3.255   0.611  -1.109 + 0.003  -4.364 

LEFTY1 + 0.003  -3.271   0.719  -0.382 + 0.000  -3.653 

AMY2B + 0.026  -2.798   0.440  -1.530 + 0.001  -4.327 

KLK1 + 0.050  -2.349   0.375  -1.523 + 0.001  -3.872 

RNASE1 + 0.002  -2.995   0.567  -0.950 + 0.001  -3.945 

CELA2A + 0.013  -3.263   0.353  -1.955 + 0.001  -5.219 

CELA3A + 0.028  -3.265   0.570  -1.327 + 0.003  -4.592 

CPA1 + 0.034  -2.963   0.267  -2.544 + 0.001  -5.507 

CEL + 0.042  -4.237   0.915  -0.290 + 0.016  -4.527 

GP2 + 0.009 -3.704   0.615  -1.202 + 0.003  -4.906 

CTRC + 0.049 -2.788   0.394  -1.933 + 0.002  -4.721 

LGD, low-grade dysplasia; HGD, high-grade dysplasia.  
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Table 3. Results of upstream regulator analysis in Ingenuity Pathway Analysis. 

No. 
Target molecules 

in dataset 
Upstream regulator Protein IDs Protein names Molecule type p-value of overlap 

1 SOD2 

NCF2 P19878 Neutrophil cytosol factor 2 enzyme 0.001 

NOXO1 Q8NFA2 NADPH oxidase organizer 1 other 0.002 

IGFBP7 Q16270 Insulin-like growth factor-binding protein 7 transporter 0.004 

CYBA P13498 Cytochrome b-245 light chain enzyme 0.005 

TRPM2 O94759 Transient receptor potential cation channel subfamily M member 2 ion channel 0.006 

TFAP2B Q92481 Transcription factor AP-2-beta transcription regulator 0.006 

KL Q9UEF7 Klotho enzyme 0.008 

DYRK1B Q9Y463 Dual specificity tyrosine-phosphorylation-regulated kinase 1B kinase 0.008 

DDB2 Q92466 DNA damage-binding protein 2 other 0.008 

NTRK1 P04629 High affinity nerve growth factor receptor kinase 0.008 

BTG2 P78543 Protein BTG2 transcription regulator 0.008 

2 CD55 

CMKLR1 Q99788 Chemikine-like receptor 1 g-protein coupled receptor 0.001 

TFF3 Q07654 Trefoil factor 3 other 0.001 

C3AR1 Q16581 C3a anaphylatoxin chemotactic receptor g-protein coupled receptor 0.007 

C5AR1 P21730 C5a anaphylatoxin chemotactic receptor 1 g-protein coupled receptor 0.008 

3 LEFTY1 

CHCHD2 Q9Y6H1 Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 other 0.005 

ACVR1B P36896 Activin receptor type-1B kinase 0.006 

ACVR1C (ALK7) Q8NER5 Activin receptor type-1C kinase 0.007 

FST P19883 Follistatin other 0.008 

4 CPS1, MUC13 HNRNPA2B1 P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 other 0.008 
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8. Determination of CD55 by ELISA 

The selection of the validation target was based on a protein’s predominance in LGD 

or invasive IPMN and its statistical significance (Figure 7). Accordingly, CD55 was 

chosen as a validation target of IPMN dysplasia for 3 main reasons: (1) It was highly 

expressed in all (100%, 5/5) invasive IPMN samples (Figure 11), (2) it had the 

smallest p-value of all potential markers from all comparative groups that involved 

invasive IPMN (Figure 12, Table 2), and (3) it had the highest fold-change between 

comparisons 2 (HGD vs. invasive IPMN) and 3 (LGD vs. invasive IPMN) (Figure 

8). 

CD55 was validated in 70 cyst fluid samples (22 LGD, 5 HGD, 14 invasive 

IPMN, 13 MCN, and 16 SCN) by ELISA. CD55 concentrations in individual cyst 

fluid samples were calculated and demonstrated in 2 types of IPMN classification 

(Figure 14A, B). The concentration of CD55 was the highest in invasive IPMN, and 

its expression patterns generally correlated with LFQ intensity values. CD55 

concentrations in invasive IPMN (mean: 1.354 ng/mL, STDEV: 1.532 ng/mL) were 

significantly higher than in LGD (mean: 0.598 ng/mL, STDEV: 1.045) (P < 0.05). 

In addition, CD55 concentrations in high-risk IPMN (mean: 1.219 ng/mL, STDEV: 

1.567) were significantly higher versus low-risk IPMN (mean: 0.598 ng/mL, 

STDEV: 1.045). The expression levels of CD55 in invasive IPMN compared with 

SCN and MCN were statistically significant (P < 0.05). 

The intraplate and interplate repeatability of the ELISA were calculated to 

evaluate the precision of the CD55 ELISA. The range of CV values of each control 

sample is summarized in Figure 14C. The OD450 values of 3 replicates with 10 
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positive and 11 negative control samples were measured in a single ELISA plate to 

evaluate the intraplate repeatability. The OD450 values had CVs of between 0.363% 

and 12.663%, with an average CV value of 3.645%. The OD450 value of each control 

sample was measured at different times to evaluate the interplate repeatability. The 

analysis yielded an average CV value of 7.130%, and individual CVs ranged from 

1.378% to 19.846%. The CV values for the intra-assay and inter-assay comparisons 

were less than 20%, indicating that the CD55 ELISA is highly reproducible and 

stable. 

 

9. Western blot of CD55 

To reconfirm CD55 expression between the 5 cystic lesions, Western blot was 

conducted using 30 cyst fluid samples (8 LGD, 4 HGD, 8 invasive IPMN, 5 MCN, 

and 5 SCN). Ponceau S staining was included as a loading control to confirm that 

comparable amounts of individual samples were loaded onto each gel. The resulting 

CV value was 12.53% (Figure 15A). The signal intensity of CD55 was the highest 

in invasive IPMN, and its expression patterns correlated with the MS analysis 

findings. The signal intensities in invasive IPMN were significantly higher than in 

LGD (P < 0.001), MCN (P < 0.01), and SCN (P < 0.01) (Figure 15B). In addition, 

the signal intensities in high-risk IPMN were significantly higher versus low-risk 

IPMN (P < 0.001) (Figure 15C). 

 

10. Immunohistochemistry of CD55 and Myeloperoxidase 
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Immunohistochemical stains for CD55 and MPO were performed on formalin-fixed 

paraffin-embedded (FFPE) tissue sections from SCN, LGD, HGD, and invasive 

IPMN (Figure 16). CD55 expression was observed predominantly in the apical 

border of the tumor epithelial cells, showing increased distribution and intensity, in 

accordance with the histological grades of IPMN, whereas strong membranous 

staining was observed in invasive IPMN (Figure 16A–D). Also, we examined MPO, 

a neutrophil marker, to identify neutrophil infiltration in invasive IPMN, based on a 

previous study that reported that CD55 is responsible for transepithelial migration of 

neutrophils (108). As expected, neutrophil infiltration increased from LGD to HGD 

and invasive IPMN, which had the highest neutrophil counts (Figure 16E–H). CD55 

expression and neutrophil infiltration were not observed in SCN. 
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Figure 14. Validation of CD55 as a potential biomarker target by ELISA. 

The CD55 concentrations are indicated according to two types of IPMN 

classification. The median CD55 concentrations were highest in invasive IPMN (A) 

and high-risk IPMN (B). (C) The coefficient of variation values of 3 replicates of 

negative controls (N1–N11) and positive controls (P1–P10) in intraplate and 

interplate repeatability of CD55 by ELISA. Intraplate repeatability was measured by 

using 3 replicates for each of the 21 control samples on a single plate. Interplate 

repeatability was evaluated by operating 3 plates, including 21 control samples at 

different times. *, P < 0.05; **, P < 0.01; NS, not significant.  
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Figure 15. Validation of CD55 as a potential marker by Western blot. 

(A) Western blot band of CD55, with Ponceau S staining used as a loading control. 

The scatter dot plots of signal intensities are indicated according to two types of 

IPMN classification (B, C). *, P < 0.05; **, P < 0.01; ***, P < 0.001; NS, not 

significant. 
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Figure 16. Immunohistochemical staining of CD55 and MPO. 

CD55 expression in serous cystic neoplasm (A), low-grade dysplasia (B), high-grade 

dysplasia (C), and invasive IPMN (D). Neutrophil infiltration in serous cystic 

neoplasm (E), low-grade dysplasia (F), high-grade dysplasia (G), and invasive IPMN 

(H). A–D: CD55 immunohistochemistry, E–H: myeloperoxidase (MPO) 

immunohistochemistry, original magnification x400.   
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DISCUSSION 

 

In this study, we discovered reliable marker candidates of IPMN dysplasia using cyst 

fluid from IPMN, MCN, and SCN patients by LC-MS/MS and investigated their 

molecular characterization, based on the advantages of pancreatic cyst fluid and MS-

based proteomic approaches (86-88). The current diagnostic screens cannot 

accurately determine the IPMN-associated grade of dysplasia (109), leading to 

unnecessary surgical resections for low-risk IPMN patients (3). In addition, most 

studies have focused on discovering diagnostic markers that differentiate IPMNs 

from other PCLs, rather than the grade of dysplasia in IPMN (110). Our report is the 

first study to discover potential markers of IPMN dysplasia using cyst fluid from 3 

major types of PCL by LC-MS/MS and validated them by orthogonal method. 

Our proteome data have 3 notable aspects: (1) increased depth of proteome 

coverage through the use of a peptide library, (2) high reproducibility, and (3) an 

abundance of pancreas-associated proteins. We hypothesized that a high proportion 

of proteins are coexpressed in cyst fluid and pancreatic cancer cell lines. Thus, we 

expected that the “match between runs” feature in MaxQuant would help identify 

proteins in cyst fluid that are normally unidentifiable without a peptide library (92). 

Consistent with our expectation, approximately twice as many proteins were 

identified in this dataset than in our previous study (Figure 5F), constituting the 

largest proteomic dataset of pancreatic cyst fluid (16, 17, 90). Consequently, we 

discovered potential markers of the histological grades of IPMN in a larger pool of 
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proteins. Further, the low median CV values and high Pearson correlation 

coefficients of LFQ intensities between technical replicates indicated that the 

individual samples were injected into the mass spectrometer without significant 

variance and that the technical replicates were analyzed reproducibly. (Figure 4). In 

previous studies, it was concluded that pancreatic cyst fluid contains secreted 

proteins from surrounding tumor cells (100, 101) and plasma proteins that penetrate 

into the cyst epithelium due to tissue injury or the enhanced permeability and 

retention (EPR) effect of the surrounding blood vessels (111). Tumor-promoting 

mediators, such as immunosuppressive cytokines, that are released from cancer-

associated fibroblasts and mast cells in the tumor microenvironment can promote the 

neoplastic evolution of IPMN (112-114). They induce an aggressive phenotype and 

drug resistance in premalignant pancreatic lesions. One possible mechanism of the 

malignant evolution of IPMN, in light of our findings and existing literature, is that 

the expression of CD55, promoted by the immunosuppressive cytokine, interleukin-

4, prevents complement-dependent cytotoxicity in cancer cells, which consequently 

accelerates the malignant transformation of IPMN dysplasia (115, 116). The results 

of the comparative analyses with the 3 databases for the secretome analysis and the 

Human Plasma Protein Database (Figure 5A–C) support these findings (100, 101, 

110). In addition, 15 of the final marker candidates were detected in plasma and 

serum, supporting their viability in a blood-based assay (29). A high proportion 

(approximately 90%) of pancreas-associated proteins were identified in our dataset 

(Figure 5D, E) and 5 pancreas tissue-specific proteins, as defined by Wilhelm et al. 
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(98), were in the top 25 proteins (Figure 3), demonstrating that our proteome has 

sufficient coverage of pancreas-specific proteins. 

GO and KEGG pathway analyses were performed to identify key processes 

of the 364 DEPs in IPMN dysplasia. The results indicated the enrichment of terms 

that pertained to tumorigenesis: pancreatic secretion, enzymatic activity, and 

malignancy (Figure 9). GO terms that were related to “pancreatic secretion” and 

“molecular transport” were highly ranked in the GO and KEGG analyses, suggesting 

that the DEPs in IPMN dysplasia are generally secreted from the surrounding tumor 

cells. One of the most highly enriched GO terms, “proteolysis,” is the most 

fundamental feature of malignancy (117). Proteolytic degradation of ECM 

constituents accelerates tumor cell growth, migration, and angiogenesis. The most 

highly enriched KEGG pathway, “complement and coagulation cascades,” is 

associated with tumor growth and metastasis (118, 119). Complement activation 

promotes an immunosuppressive microenvironment and thus induces angiogenesis, 

activating cancer-related signaling pathways. In addition, several studies have 

reported increases in complement activity in biological fluids from cancer patients 

(120, 121). Coagulation cascades can be activated directly by cancer procoagulants, 

which are released by tumor cells. 

The criteria for discovering marker candidates of IPMN dysplasia that 

comprised 8 steps (Figure 7) and the association of the final marker candidates with 

the pancreas-related disease (IPMN and PDAC) and malignancy support the 

credibility of the potential markers. For instance, MUC13 has been studied 

extensively. According to 2 previous studies with similar goals as ours, MUC13 
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increased with histological grade of IPMN (122, 123). In addition, several studies 

have indicated that MUC13 is highly upregulated in PDAC tissue but not in adjacent 

normal tissue and is related to PDAC progression (124, 125). CD55 is involved in 

the dedifferentiation, invasiveness, migration, and metastasis of tumors and 

association with pancreatic cancer (126, 127). Further, Iacobuzio-Donahue 

confirmed that CD55 is highly expressed in pancreatic cancer when measured by 

microarrays (128). Two previous studies that aimed to discover protein markers of 

mucinous and nonmucinous cysts selected AMY2A as a biomarker, consistent with 

the expression patterns in our study (17, 85). In addition, AMY2A was expressed at 

higher levels in nontumor versus PDAC tissues (129). According to the label-free 

quantification data of another group, CPB1, a member of the carboxypeptidase 

family, was confirmed to be downregulated in PDAC tissue (130). The biological 

functions and expression patterns of our potential markers are consistent with 

previous studies. 

Our data also showed that most of the 20 upstream regulators that modulate 

5 of the potential markers were tumor suppressors, pancreatic mitogens, and 

angiogenesis-related molecules, which are significantly related to pancreatic cancer 

according to previous publications (Figure 13C, Table 3) (102-107). The association 

between upstream proteins of the potential markers and cancer progression increases 

the credibility of our candidates. For instance, it is plausible that the downregulation 

of 3 upstream regulators of SOD2 (IGFBP7, KL, BTG2), which are potential tumor 

suppressors, leads to an increase in SOD2 when the malignancy of IPMN worsens. 
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Of the final marker candidates, CD55 was validated using 70 individual 

cyst fluid samples by ELISA as it evidently differed in expression between the 

histological groups of IPMN. In specific, CD55 had the lowest p-values between all 

comparative groups and the highest fold-changes in comparisons 2 (HGD versus 

invasive IPMN) and 3 (LGD versus invasive IPMN) (Figure 8, Figure 12, Table 2). 

Although previous studies have concluded that CD55 is associated with the 

dedifferentiation and invasiveness of tumors (126, 127), this study is the first to 

report CD55 as a marker of IPMN dysplasia. The statistical significance in the 

ELISA analysis was lower compared with the MS analysis. Further, the CD55 

concentrations by ELISA were generally lower in all sample groups (Figure 8A, B). 

However, the low statistical power and concentrations do not diminish the value of 

this potential marker because the expression patterns of CD55 by ELISA were 

consistent with our MS data. In addition, the Western blot and IHC results for CD55 

were consistent with the MS expression data, further supporting CD55 as a potential 

marker of IPMN dysplasia (Figure 15, Figure 16). 

Several studies have examined CD55 as a potential biomarker and 

therapeutic target, establishing that CD55 is frequently upregulated in various cancer 

types and can serve as an indicator of cancer progression (131). In a preclinical study, 

Saygin et al. demonstrated that CD55 maintains self-renewal and cisplatin resistance 

in endometrioid tumors to accelerate tumor development (132). Other preclinical 

studies concluded that silencing CD55 enhances the therapeutic efficacy of 

rituximab (133) and the anti-HER2 monoclonal antibodies trastuzumab and 

pertuzumab (134). In this context, it is evident that CD55 has a significant function 
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in tumor progression, based on past studies and our findings. When considering the 

aforementioned preclinical studies regarding CD55, this marker has a significant 

potential as a reflection of the neoplastic evolution of IPMN. 

We demonstrated that the CD55 expression is responsible for neutrophil 

infiltration by using immunohistochemical stains. This result is consistent with 

previous studies that represent an association between tumor-associated neutrophils 

and advanced IPMN lesions (135, 136). In Sadot et al., MPO, a neutrophil marker, 

is highly expressed in IPMN with a higher grade of dysplasia and represented that 

the neutrophil is responsible for the malignant progression of IPMN dysplasia (136). 

These results raise the possibility of CD55 protein as a marker in association with 

the IPMN malignancy. 

In our previous study, which applied a similar MS-based approach, we 

reported potential markers that can differentiate the histological grades of IPMN 

using only cyst fluid from IPMN patients (90). However, the exclusion of other PCLs, 

such as MCNs and SCNs, is not applicable to an actual clinical environment. To 

compensate for this limitation, cyst fluid from other PCLs (MCN and SCN) as well 

as IPMN were included to increase the likelihood of discovering more clinically 

relevant marker candidates. Further, we increased the size of our validation cohort 

by 4-fold and measured protein levels by ELISA instead of Western blot, due to the 

higher sensitivity and specificity of the former. In contrast to Western blot, which 

cannot distinguish proteins with similar molecular weights, ELISA is highly specific 

to its target epitope and consequently generates credible quantitative concentrations 

(137). 
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However, several challenges remain to be addressed. Our study was limited 

by its simplistic design (single-center). Using a larger cohort from multiple centers 

would decrease the potential bias that might have been unique to the cohort in this 

study. Thus, it would be necessary to examine the clinical potential of CD55 through 

randomized, controlled, multicenter validation in a large cohort. Although 5 marker 

candidates, including CD55, were statistically significant (P < 0.05) in the univariate 

analysis for predicting the neoplastic evolution of IPMN, no significant covariates 

were identified in the multivariate analysis. One explanation is the relatively small 

sample size used in the study, which comprised 10 low-risk IPMN and 10 high-risk 

IPMN samples. Thus, further validation with more samples is necessary for 

obtaining more reliable results. Another limitation is that all of the cyst fluid in this 

study was collected from the tissue of patients who were undergoing resection rather 

than EUS-guided aspiration, which is a closer representation of clinical practice. 

Thus, the evaluation of CD55 using preoperative EUS-guided cyst fluid is a natural 

next step in validating the diagnostic value of CD55 as a marker for IPMN dysplasia. 

In summary, we have generated the largest proteomic dataset of pancreatic 

cyst fluid to date and discovered potential markers of IPMN dysplasia using cyst 

fluid from 3 major types of PCLs (IPMN, MCN, and SCN) by LC-MS/MS. We 

significantly increased the protein coverage of each sample with a peptide library 

and discovered markers from a larger pool of candidates. By bioinformatics analyses, 

the DEPs were associated with biological functions that were related to pancreatic 

cancer, malignancy, and molecular secretion. Our process for discovering potential 

markers of IPMN dysplasia was logically sound. The agreement in the expression 
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pattern of CD55 between the MS and ELISA data demonstrates that we have 

discovered reliable marker candidates of IPMN dysplasia. The development of cyst 

fluid markers can facilitate an accurate assessment of the degree of IPMN dysplasia 

and effectively guide surgical decision-making. Ultimately, if the developed marker 

is implemented in clinical practice, the accurate assessment of IPMN dysplasia will 

prevent unnecessary surgical resection for low-risk IPMN patients. 
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INTRODUCTION 

 

Human epidermal growth factor receptor 2 (HER2) is a transmembrane protein that 

can promote the differentiation, development, and survival of cancer cells (138, 139). 

It is often overexpressed in breast cancer and correlates with a worse prognosis (138, 

140). In targeted therapy, anti-HER2 therapy is administered to patients who 

overexpress HER2 in cancer cells, inhibiting its downstream signaling pathways 

(141). Thus, accurate detection of HER2 using optimal techniques is crucial for 

providing the appropriate care to patients. 

Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), 

approved by the Food and Drug Administration, are the most widely used methods 

for assessing HER2 status (142). Although these techniques have been the gold 

standard for HER2 evaluation, they have limitations (143). The semiquantitative 

nature and subjectivity of IHC contribute to its high variation and cost, in association 

with false positive and negative results (144, 145). In addition, FISH, which should 

be used to verify equivocal HER2 cases (146, 147), has several disadvantages: 

automated slide stainers are expensive and not always readily available in routine 

pathology laboratories, and the additional staining is time-consuming and costly 

(148, 149). Thus, a novel technique that can accurately evaluate whether patients 

could benefit from HER2-targeted therapy than IHC is needed to improve the 

throughput and economic viability of the overall workflow (150). 

Targeted mass spectrometry (MS)-based approaches are emerging as 
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alternatives to IHC, based on their high reproducibility and quantitative nature (151, 

152). Multiple reaction monitoring (MRM) has been widely applied to various 

clinical samples (153-155), including formalin-fixed paraffin-embedded (FFPE) 

tissue, which has several advantages: plentiful access to vast archives of 

pathologically characterized clinical samples, and ability to be stored for extended 

periods without requiring expensive equipment (156). 

Three notable studies have previously aimed to quantify HER2 expression 

levels using FFPE tissues and targeted MS-based approaches (153, 157, 158) to 

stratify HER2 status more accurately and improve the selection of patients for 

HER2-targeted therapy compared with conventional methods. However, their 

complex and time-consuming sample preparation procedures make the MRM-MS 

assay less practical as a clinical assay. 

Comparing the expression levels of cellular target proteins by MS-based 

analysis is predicated on defining the number of cells analyzed per sample. Currently, 

the total protein or peptide concentrations in each processed sample are used for 

convenience (21, 159) when i) normalizing the amount of specific target proteins, ii) 

reducing the potential analytical variability that might originate when dramatically 

different protein amounts are processed, and iii) ensuring an adequate amount of 

analyte for reliable detection. However, current total protein and peptide measures 

are poor representations of cell counts, because only a portion of the protein 

originates from the cells of interest. In addition, the accompanying assays lengthen 

the overall process and generate inter-experimenter variation. Thus, we designed an 

alternative protocol to facilitate the clinical application of HER2 quantification by 



110 

 

MRM-MS assay. Because HER2 expression is exclusive to the surface of epithelial 

cells (160), normalizing HER2 using a factor exclusive to epithelial cells in a breast 

tumor can result in a more accurate stratification of HER2 status. Thus, we applied 

the quantitative data of an epithelial cell-specific protein as a new normalization 

factor for calculating HER2 expression levels in an MRM-MS assay. 

However, applying the novel protocol is not feasible without addressing the 

discrepancy between the tumor size and the corresponding tumor content across 

individual FFPE tissue specimens. To address this problem, we devised a two-part 

solution: (1) determining the number of FFPE tissue slides, based on the cell count 

from a single slide, to ensure adequate amounts of protein per analysis; and (2) using 

the expression level of an epithelial cell-specific protein as a normalization factor 

when measuring HER2 expression levels. 

We aimed to establish a novel MRM-MS assay to determine HER2 status, 

especially for ambiguous IHC results in FFPE breast cancer samples, by determining 

an adequate number of FFPE slides per sample to perform a reliable MS analysis 

and using the expression levels of an epithelial cell-specific protein as a 

normalization factor.   
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MATERIALS AND METHODS 

 

1. Patients and tissue samples 

Two hundred ten patients who underwent surgical resection after being diagnosed 

with invasive ductal carcinoma at Seoul National University Hospital from January 

2010 to December 2017 were selected. Those who had received neoadjuvant 

chemotherapy were excluded. The final cohort was composed of HER2 0 (n=30), 

HER2 1+ (n=30), HER2 2+/FISH-negative (n=61), HER2 2+/FISH-positive (n=59), 

and HER2 3+ cases (n=30). Pathological and clinical data were reviewed thoroughly 

and obtained from the electronic medical records system. A summary of the patients 

and the characteristics of their breast cancer tissues is presented in Table 1. All 

contents of this study were approved by our institutional review board (Institutional 

Review Board No. 1709-037-883), and all participants provided written informed 

consent. 
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Table 1. Demographic and clinical characteristics of the study population in the 

MRM-MS analysis (N = 210). 

    HER2 status 

Group 
HER2 0 HER2 1+ 

HER2 2+/ 

FISH-negative 

HER2 2+/ 

FISH-positive 
HER2 3+ 

(N = 30) (N = 30) (N = 61) (N = 59) (N = 30) 

Age (years)           

  mean ± SD 53.80 ± 9.57 53.60 ± 11.39 48.62 ± 9.86 54.22 ± 10.95 50.57 ± 11.66 

FISH status           

  Negative 0 2 61 0 0 

  Positive 0 0 0 59 20 

  NA 30 28 0 0 10 

Estrogen Receptor           

  Negative 18 7 4 20 20 

  Positive 12 23 57 39 10 

Progesterone Receptor           

  Negative 21 7 11 30 24 

  Positive 9 23 50 29 6 

Subtype           

  HER2 0 0 0 21 20 

  Luminal A 10 23 53 0 0 

  Luminal B 3 0 4 38 10 

  TNBC 17 7 4 0 0 

Nuclear grade           

  1 0 1 0 1 0 

  2 5 15 38 13 5 

  3 25 14 22 45 25 

  NA 0 0 1 0 0 

Histological grade           

  Ⅰ 1 3 6 1 0 

  Ⅱ 4 16 37 25 8 

  Ⅲ 25 11 17 33 22 

  NA 0 0 1 0 0 

Tumor size           

  < 2.0 cm 7 12 28 30 19 

  2.0 - 4.9 cm 21 17 32 27 10 

  ≥ 5.0 cm 2 1 1 2 1 

FISH, fluorescence in situ hybridization.  
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2. Assessment of HER2 status in breast cancer 

The diagnostic algorithm for scoring HER2 was to perform IHC in all cases, 

supplemented by FISH in equivocal IHC cases (HER2 2+), per the 2007 and 2013 

American Society of Clinical Oncology/College of American Pathologists 

guidelines (142, 147). IHC and FISH were performed on 4 µm tissue sections. HER2 

protein expression was determined in FFPE sections on a Benchmark Ultra 

automatic immunostaining device (Ventana Medical System, Tucson, AZ, USA) 

with anti-HER2/neu (4B5) rabbit monoclonal antibody (Ventana Medical System, 

Tucson, AZ, USA) as described (161). All immunohistochemical stains were 

reviewed by 2 expert breast pathologists (I. A. Park and H. S. Ryu). ETV6 

rearrangements were identified by interphase FISH with ETV6 (TEL) split-apart 

dual-color probes by PathVysion assay (Abbott Molecular, Downers Grove, IL, 

USA), following the manufacturer’s instructions. At least 100 interphase nuclei were 

analyzed to interpret ETV6 rearrangements (162). 

 

3. Protein extraction and digestion of FFPE tissue samples 

FFPE tissue sections (10 µm thick) were cut from whole-mount breast cancer tissue 

FFPE blocks and placed onto glass slides. Paraffin was removed in 6 min washes 

with xylene (Merck KGaA, Darmstadt, Germany), followed by rehydration steps in 

a series of ethanol (Merck KGaA, Darmstadt, Germany) for 3 min at 100%, 100%, 

85%, 70%, 50%, and 0%. After the remaining solution was blotted, the tumor tissue 

was manually scraped off from the glass slide and transferred into Eppendorf tubes. 

After the sample was incubated for 30 min at 95°C for antigen retrieval, the tissue 
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was homogenized and sonicated for 80 seconds (Sonics & Materials, Newtown, CT, 

USA) in 100 µL lysis buffer, containing 30 mM Tris HCl, pH 8.5 and 0.5% RapiGest 

(Waters, Manchester, UK). The sample was incubated again for 3 h at 95°C, followed 

by sonication. The sample was centrifuged (16,602 g, 20°C, 30 min) to separate 

supernatant from debris and other solid contents, and the pellet was discarded. 

Protein concentration was measured by bicinchoninic acid assay (159). 

Eighty microliters of each sample was incubated with 20 µL 100 mM 

dithiothreitol for 1 h at 60°C. After the incubation, the sample was alkylated with 20 

µL 240 mM iodoacetamide and incubated in the dark for 1 h at room temperature. 

Then, the sample was digested with 60 µL trypsin solution (a fixed amount of trypsin, 

4 µg) (Promega, Madison, WI, USA) for 4 h at 37°C (Figure 1). The digestion was 

completed by adding 20 µL 30% formic acid. The sample was centrifuged (16,602 

g, 1 h, 4°C) to remove insoluble chemicals, such as RapiGest byproducts. 

One hundred microliters of the supernatant were transferred to a new tube 

and spiked with 1000 fmol of unpurified stable isotope-labeled internal standard (SIS) 

peptides as an internal standard, which contained isotopically labeled (13C and 15N) 

arginine or lysine (JPT, Berlin, Germany) (30% to 70% purity, according to the 

manufacturer) for MRM-MS assay (Figure 2). Subsequently, the remaining 

supernatant was transferred to another tube for tryptophan fluorescence assay (21). 

All incubation steps were performed on a Thermomixer C (Eppendorf, Westbury, 

NY, USA). 

The use of purified synthetic peptides limited the practicality of developing 

assays for all confirmed candidate peptides. Thus, only purified synthetic peptides 
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for HER2 and JAM1 were used. Purified synthetic peptides (light, unlabeled forms) 

for HER2 and JAM1 were obtained from 21st Century Biochemicals, Inc. 

(Marlborough, England), to calculate the purity of the unpurified synthetic peptides 

(heavy, labeled forms). After synthesis, the peptides were purified by high-

performance liquid chromatography (HPLC), with subsequent quantification by 

amino acid analysis (purity > 95%). 

 

 

Figure 1. Determination of optimal incubation time for tryptic digestion. 

With regard to reaction time, various times (1, 2, 4, 8, 12, 16, 20, and 24 h) were 

tested with a fixed amount of trypsin (4 µg). Four micrograms of trypsin and a 4-h 

reaction time were selected as the optimal parameters for tryptic digestion. Error bars 

represent the standard deviation of the 3 measurements. 
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Figure 2. Schematic of overall procedure, from sample preparation to MRM-

MS assay, for determining HER2 status. 

Four- and 10-µm-thick formalin-fixed paraffin-embedded (FFPE) tissue sections per 

sample were used for hematoxylin and eosin staining and protein extraction, 

respectively. Hematoxylin and eosin-stained images were reviewed by pathologists 

to identify and assess tumor regions. After determining the number of FFPE slides 

based on the tumor cell counts in a single slide to ensure an adequate amount of 

protein, FFPE tissue sections were deparaffinized and rehydrated. The resulting 

tryptic peptides were analyzed by MRM-MS assay for measuring HER2 expression 

levels.   
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4. Parameters for representing tumor content 

The light-to-heavy peptide peak area ratios (PARs) for HER2 surrogate peptides 

were used to estimate the amount of HER2 protein. Five categories of normalization 

factors that represent tumor content were acquired and evaluated to normalize the 

amount of HER2 protein, as follows: (1) tumor area (µm2), (2) total cell count, (3) 

total protein amount (µg), (4) total peptide amount (µg), and (5) light-to-heavy 

peptide PARs for surrogate peptides from 10 epithelial cell-specific proteins and 20 

housekeeping proteins, as assessed by MRM-MS analysis. 

The 2 types of normalization factors–tumor area and total cell count–were 

estimated from hematoxylin and eosin-stained tissue sections by Aperio ImageScope, 

ver. 12.3.0.5056 (Leica Biosystems, Buffalo Grove, IL, USA) (163, 164). After the 

tumor area was annotated using a pen tool, the area and total cell count of the 

annotated region were measured with the nuclear counting algorithm. Morphological 

operators (dilation, erosion, and connected component labeling) were used to 

identify individual nuclei. In addition, nuclei were further discriminated from other 

components, based on size and shape (compactness, roundness, and elongation)–

essential for automatically ignoring connective tissue, adipose tissue, and other 

undesired components. The third normalization factor was the total amount of 

proteins that were extracted from the tumor region of 10 µm thick FFPE tissue 

sections, the concentrations of which were determined by bicinchoninic acid assay. 

After tryptic digestion, the digests from FFPE tissues were estimated by tryptophan 

fluorescence assay to measure the total peptide amount, which was the fourth 

normalization factor. The fifth normalization factor was the light-to-heavy peptide 
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peak area ratios (PARs) for surrogate peptides of 10 epithelial cell-specific proteins 

and 20 housekeeping proteins, which were monitored in parallel with the 6 HER2 

surrogate peptides in the final MRM-MS method. The final protein list and surrogate 

peptide sequences that were analyzed in the MRM-MS assay are detailed in Table 2. 

The following formula was used to normalize the light-to-heavy peptide PARs for 

HER2 surrogate peptides. 

Peak area ratio for HER2 surrogate peptide

Normalization factor
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Table 2. The final protein list and peptide sequences analyzed in the MRM-MS assay. 

No. 

    
        

Uniprot ID Peptide Sequence   
Precursor ion. 

Light (m/z) 

Precursor ion. 

Heavy (m/z) 

Precursor ion 

charge 

Product ion. 

Light (m/z) 

Product ion. 

Heavy (m/z) 

Product ion 

charge 

Product ion 

Type 
  

1 ERBB2 VLQGLPR   391.7 396.8 2 570.3 580.3 1 y5   

2 ERBB2 GIWIPDGENVK   614.3 618.3 2 758.4 766.4 1 y7   

3 ERBB2 LLDIDETEYHADGGK   559.3 561.9 3 725.3 729.3 2 y13   

4 ERBB2 ELVSEFSR   483.7 488.8 2 625.3 635.3 1 y5   

5 ERBB2 FVVIQNEDLGPASPLDSTFYR   790.1 793.4 3 998.5 1008.5 1 y8   

6 ERBB2 GLQSLPTHDPSPLQR   549.3 552.6 3 574.3 579.3 2 y10   

7 CALR FVLSSGK   369.2 373.2 2 491.3 499.3 1 y5   

8 CALR FYALSASFEPFSNK   804.4 808.4 2 1113.5 1121.5 1 y10   

9 COF1 NIILEEGK   458.3 462.3 2 575.3 583.3 1 y5   

10 CTND1 GYELLFQPEVVR   725.4 730.4 2 874.5 884.5 1 y7   

11 DDX3X SFLLDLLNATGK   646.4 650.4 2 831.5 839.5 1 y8   

12 DESP AELIVQPELK   570.3 574.3 2 713.4 721.4 1 y6   

13 JAM1 VTFLPTGITFK   612.4 616.4 2 763.4 771.4 1 y7   

14 G3P GALQNIIPASTGAAK   706.4 710.4 2 815.5 823.5 1 y9   

15 G3P   VPTANVSVVDLTCR   510.9 514.3 3 664.3 674.3 1 y5   

16 GELS HVVPNEVVVQR   425.9 429.2 3 501.3 511.3 1 y4   

17 GELS TGAQELLR   444.3 449.3 2 530.3 540.3 1 y4   
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18 K1C18 STFSTNYR   488.2 493.2 2 640.3 650.3 1 y5   

19 K1C18 VIDDTNITR   523.8 528.8 2 834.4 844.4 1 y7   

20 K1C18 ASLENSLR   445.2 450.2 2 618.3 628.3 1 y5   

21 K1C19 ILGATIENSR   537.3 542.3 2 847.4 857.4 1 y8   

22 K1C19 AALEDTLAETEAR   695.3 700.4 2 1005.5 1015.5 1 y9   

23 K2C7 SAYGGPVGAGIR   552.8 557.8 2 783.4 793.5 1 y9   

24 K2C7  EVTINQSLLAPLR   727.4 732.4 2 1011.6 1021.6 1 y9   

25 K2C7 LPDIFEAQIAGLR   481.6 484.9 3 529.3 539.4 1 y5   

26 K2C8 ISSSSFSR   435.7 440.7 2 670.3 680.3 1 y6   

27 K2C8  ASLEAAIADAEQR   448.9 452.2 3 618.3 628.3 1 y5   

28 LDHA VTLTSEEEAR   567.8 572.8 2 934.4 944.5 1 y8   

29 NECT4 YEEELTLTR   577.3 582.3 2 861.5 871.5 1 y7   

30 PDIA4 FDVSGYPTLK   563.8 567.8 2 765.4 773.4 1 y7   

31 PDIA6 TGEAIVDAALSALR   693.9 698.9 2 915.5 925.5 1 y9   

32 PDIA6  ELSFGR   354.7 359.7 2 477.2 477.2 1 b4   

33 PPIB IGDEDVGR   430.7 435.7 2 747.3 757.3 1 y7   

34 RAB7A VIILGDSGVGK   529.3 533.3 2 619.3 627.3 1 y7   

35 RAB7A   EAINVEQAFQTIAR   530.6 534.0 3 588.3 598.4 1 y5   

36 RAN FNVWDTAGQEK   647.8 651.8 2 934.4 942.4 1 y8   

37 RL22 AGNLGGGVVTIER   621.8 626.8 2 887.5 897.5 1 y9   

38 RL22  ITVTSEVPFSK   604.3 608.3 2 894.5 902.5 1 y8   

39 RL30 SLESINSR   453.2 458.2 2 705.4 715.4 1 y6   
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MRM-MS, multiple reaction monitoring-mass spectrometry; EC protein, epithelial-cell specific protein; HK protein, housekeeping protein; CE, 

collision energy; AuDIT, the automated detection of inaccurate and imprecise transitions; P, p-value; CV, coefficient of variation. 

a Product ions in bold are the best single transition chosen for quantification.

40 RL30  LVILANNCPALR   677.4 682.4 2 894.5 902.5 1 y8   

41 RL32 AAQLAIR   371.7 376.7 2 472.3 482.3 1 y4   

42 RL9 TILSNQTVDIPENVDITLK   705.1 707.7 3 1028.6 1036.6 1 y9   

43 RL9  GVTLGFR   375.2 380.2 2 379.2 389.2 1 y3   

44 RS10 IAIYELLFK   555.3 559.3 2 925.5 933.6 1 y7   

45 RS13 GLTPSQIGVILR   627.4 632.4 2 982.6 992.6 1 y9   

46 RS13  LILIESR   422.3 427.3 2 617.4 627.4 1 y5   

47 RS16 GGGHVAQIYAIR   414.6 417.9 3 522.3 532.3 1 y4   

48 RS17 VCEEIAIIPSK   629.8 633.8 2 999.6 1007.6 1 y9   

49 TBB5 ISVYYNEATGGK   651.3 655.3 2 1002.5 1010.5 1 y9   

50 TBB5  ALTVPELTQQVFDAK   554.0 556.6 3 638.3 642.3 2 y11   

51 TERA WALSQSNPSALR   665.3 670.4 2 959.5 969.5 1 y9   

52 VINC AIPDLTAPVAAVQAAVSNLVR   692.7 696.1 3 758.5 768.5 1 y7   

53 VINC   AQQVSQGLDVLTAK   486.6 489.3 3 646.4 654.4 1 y6   

54 VINC   SLGEISALTSK   553.3 557.3 2 905.5 913.5 1 y9   

55 VINC   ELTPQVVSAAR   585.8 590.8 2 827.5 837.5 1 y8   
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5. Capillary liquid chromatography 

Chromatographic separation was performed on a fully automated online 1260 

Capillary LC system (Agilent Technologies, Santa Clara, CA, USA) prior to MRM-

MS analysis. The sample vials of the autosampler were maintained at 4°C. Forty 

microliters of the digested sample was injected into a guard column (2.1 × 15.0 mm, 

1.8 µm, 80 Å) (Agilent Technologies, Santa Clara, CA, USA), and online desalting 

was performed with the effluent directed to waste, at 40 µL/min for 10 min in 3% 

solvent B [0.1% formic acid/acetonitrile (v/v)] (Thermo Fisher Scientific, Waltham, 

MA, USA) at 40°C. After the valve was switched, the sample was transferred from 

the guard column to analytical column (0.5 × 35.0 mm, 3.5 µm, 80 Å) (Agilent 

Technologies, Santa Clara, CA, USA) in 3% solvent B, running at a flow rate of 40 

µL/min for 5 min. Subsequently, chromatographic peptide separation was performed 

on the analytical column at 40°C. Bound peptides were then separated on a binary 

gradient from 3% to 60% solvent B at a flow rate of 40 µL/min for 40 min. The 

columns were washed with 60% solvent B at 40 µL/min for 2 min and then 

equilibrated with 3% solvent B for 1 min. The injector needle and tubing were 

washed with aqueous 50% acetonitrile solution after each sample was injected. 

 

6. Mass spectrometry 

MRM-MS assay was performed on an Agilent 6490 triple quadrupole (QQQ) mass 

spectrometer with a Jetstream electrospray source (Agilent Technologies, Santa 

Clara, CA, USA). The acquisition parameters were as follows: positive ion mode, 

gas temperature 250°C, gas flow 15 L/min, nebulizer 30 psi, sheath gas temperature 
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350°C, and sheath gas flow 12 L/min. The fragment voltage was adjusted to 380 V, 

the delta electron multiplier voltage (EMV) was set to 200 V, and the cell accelerator 

voltage was 5 V. The dwell time and cycle time of the mass transitions were 20 

milliseconds (ms) and 2000 ms, respectively. The resolution parameters of the Q1 

quadrupole and Q3 quadrupole were set to “unit”: 0.7 Da at half height. 

 

7. Data analysis 

The raw MRM-MS data files were analyzed in Skyline, ver. 4.2.0.19009 (MacCoss 

Lab., University of Washington, USA), which aligned the quantitative features (165). 

The relative abundance of transitions was determined by the normalized peak areas 

of the unpurified SIS peptides. The Savitzky-Golay method was applied to smooth 

the peak chromatograms (166). Statistical analysis (Mann–Whitney U test, area 

under the receiver operating curve, correlation analysis) and visualizations were 

performed in MedCalc, ver. 12.7 (MedCalc, Mariakerke, Belgium); IBM SPSS, ver. 

19.0 (SPSS, Chicago, IL, USA); and Graph Pad Prism, ver. 6.0 (Graph PAD, San 

Diego, CA, USA). 

All data have been deposited to Panorama Public (167) and 

ProteomeXchange ID (PXD017691) (168).  
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RESULTS 

 

1. Tissue and patient characteristics 

A total of 210 breast cancer patients were classified into 5 groups, based on HER2 

status, as determined by IHC and FISH (Table 1). All 120 samples that were HER2 

2+ (HER2 equivocal) by IHC were tested by FISH to determine whether they were 

HER2-negative or -positive. With the exception of 7 specimens, the tumor sizes of 

all samples were less than 5 cm; 96 specimens (45.7%) were less than 2 cm, and 107 

specimens (51.0%) were between 2 and 4.9 cm. 

 

2. Optimization of trypsin digestion 

To determine the optimal conditions for the trypsin digestion, we examined the 

relationship between digestion efficiency and reaction time. Protein extracts from 6 

HER2 3+ FFPE tissue samples were pooled and divided into 8 aliquots. The aliquots 

were digested for varying times (1, 2, 4, 8, 12, 16, 20, and 24 h), each with 4 µg 

trypsin at 37°C. All digested samples were spiked with 1000 fmol of 6 SIS peptides 

of HER2 (VLQGLPR, GIWIPDGENVK, LLDIDETEYHADGGK, ELVSEFSR, 

FVVIQNEDLGPASPLDSTFYR, and GLQSLPTHDPSPLQR) as an internal 

standard. After selecting the top 4 transitions with reproducible PARs, the average 

PAR was plotted versus trypsin reaction time, reflecting the efficiency of the 
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digestion (Figure 1). The average PAR was the highest when the trypsin digestion 

time was set to 4 h, which was subsequently selected as the optimal digestion time. 

 

3. Equation for predicting protein amounts extracted from individual samples 

The amounts of proteins extracted from a single tissue section unpredictably differ 

between individual samples because the tumor area and protein content, even in 

cases with the same tumor area, vary between individuals. This variation can 

eventually translate into errors in the quantitative MRM-MS assay. In addition, the 

extracted protein amounts may be insufficient for the MRM-MS assay because the 

number of slides required to obtain adequate initial protein amounts can be difficult 

to predict. Conversely, the excessive use of FFPE tissue slides can result in the 

unnecessary waste of samples. Thus, a guideline was needed for how many FFPE 

tissue sections from each sample were required to obtain the required amounts of 

extracted proteins prior to the sample preparation procedures. 

A linear regression equation of the calibration curve was obtained by 

plotting the expected extracted protein amounts against the cell counts in the tumor 

area. The obtained equation was used as a standard guideline for estimating the 

protein amounts extracted from each FFPE section, based on the cell counts 

calculated by the Aperio software (163, 164). Based on the assumption that the 

amount of extracted protein would be proportional to the number of cells, proteins 

were extracted and measured from 30 FFPE slides, which comprised 3 consecutive 

tissue sections, 10 µm apart, from 10 individual samples. Total cell counts for each 
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tumor area were estimated in hematoxylin and eosin-stained tissue sections, using 

the nuclear counting algorithm in Aperio (163, 164). The curve of extracted proteins 

versus tumor cell counts was linear (Figure 3), with a regression coefficient of 0.991, 

showing that the quality of this calibration curve was sufficient to yield reliable 

results between cell counts and extracted proteins. In addition, all coefficient of 

variation values for the amounts of proteins that were extracted from the 3 

consecutive FFPE tissue sections were < 20% in each individual, confirming that the 

relation between estimated protein amounts and cell counts in a tumor area was 

proportional. 

To assess how representative the 30 slides (from 10 samples) that were used 

to derive a linear regression equation, shown in Figure 3, were of the entire study 

(579 slides from 210 samples), the sampling error was calculated and found to be 

17.44% at the 95% confidence level. In addition, the major histopathological 

characteristics were compared between the two sample groups. A total of six 

histopathological characteristics [tumor area (µm2), cell counts, fat content within 

the tumor (%), necrosis area (%), tumor content (%), and tumor-infiltrating 

lymphocytes (%)] were statistically analyzed by the Mann–Whitney U test. As a 

result, no significant differences were found between the entire 210-sample cohort 

and the 10 samples used to develop the linear regression equation, except for the 

necrosis area (%), which was marginally significantly different between the two 

sample groups (P = 0.045) (Figure 4). This result demonstrated that the 10 individual 

samples were representative of the 210 samples used in this study. 
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After counting the total number of cells in tumor areas of 210 individual 

samples using Aperio (163), we converted the estimated cell counts into protein 

amounts per the equation (Y = 0.0002X + 5.4989) generated by the calibration curve. 

The number of FFPE tissue sections necessary to obtain a minimum of 150 µg of 

proteins was determined to prepare samples for MRM-MS assay, and the required 

amount of protein was obtained from 87.6% of samples. 

 

 

Figure 3. Calibration curve, constructed from plotting the extracted protein 

amount against the total cell count in the tumor area. 

A total of 30 formalin-fixed paraffin-embedded (FFPE) slides from 10 individual 

samples were used to construct the calibration curve. Error bars represent SD values 

for the extracted proteins from the 3 consecutive tissue sections. The smaller curve 

in the inset is a magnification of the low-concentration region. 
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Figure 4. Comparison of six histopathological characteristics between two 

sample groups. 

The comparison of six histopathological characteristics–tumor area (µm2) (A), total 

cell counts (B), fat content within the tumor (%) (C), necrosis area (%) (D), tumor 

content (%) (E), and tumor-infiltrating lymphocytes (%) (F)–between the 10-sample 

set used to derive the linear regression equation in Fig. 2 and the 210-sample set used 

in the study. Significant differences were not found for any histopathological 

characteristics, with the exception of the percentage of necrosis (P = 0.045). Top bars: 

Mann–Whitney U test, *, P < 0.05, NA, Not available.  
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4. Target candidate selection and interference screen of peptides 

A novel normalization factor was needed to measure HER2 expression levels 

without measuring the amounts of proteins and peptides, as done in conventional 

sample preparation methods. Several epithelial cell-specific proteins were selected 

as candidate normalization factors for HER2 expression levels because HER2 is 

expressed exclusively in epithelial cells (160, 169). Housekeeping proteins that are 

expressed at similar levels in all cells were also evaluated as normalization factors 

(170). In addition to the HER2 proteins, 23 housekeeping proteins and 23 epithelial 

cell-specific proteins were data-mined from previous reports and public databases as 

candidates for normalizing the amount of HER2 protein. 

Including HER2, 47 proteins (123 tryptic peptides) with well-matched 

MS/MS libraries from the National Institute of Standards and Technology (NIST) 

were analyzed by mass spectrometry (171). To select peptides that were detected 

reproducibly, semiquantitative MRM-MS was performed on FFPE tissue samples 

that were pooled from 10 patients with HER2 3+ cases. This sample was analyzed 

in triplicate to select MS-detectable peptides. As a result, 37 proteins and 62 tryptic 

peptides were selected as detectable peptides for further analysis. 

In total, 62 unpurified SIS peptides that corresponded to the endogenous 

peptides of 37 proteins were synthesized with stable isotope-labeled lysine or 

arginine residues at their C-termini (SIS peptides). The SIS peptide mixture was 

spiked into a pool of the fully digested FFPE samples (10 HER2 3+), and the 

resulting peptide mixture was analyzed in triplicate. The automated detection of 
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inaccurate and imprecise transitions (AuDIT) algorithm was used to eliminate falsely 

detected ions to select 3 transitions that had high and reproducible intensity for each 

tryptic peptide (172). Transitions with P > 0.05, between the product ion intensities 

of endogenous peptides and SIS peptides, and constant peak area without regard to 

the repeated analysis (coefficient of variation [CV] < 0.2), were selected as final 

targets. Among the 62 tryptic peptides that were surveyed, 55 surrogate peptides, 

corresponding to 31 proteins, were confirmed as interference-free transitions in a 

pool of the fully digested FFPE samples of HER2-positive breast cancers (Table 2). 

 

5. MRM-MS assay development 

Reverse calibration curves were generated for an FFPE tissue sample that was pooled 

from 18 patients with HER2 3+ cases to confirm the suitability of the peptide for the 

MRM-MS assay and to determine the limit of detection (LOD), the limit of 

quantification (LOQ), the lower limit of quantification (LLOQ), and the upper limit 

of quantification (ULOQ) for each MRM-MS assay. The LOD and LOQ were 

determined by adding 3 and 10 times the standard deviation (SD), respectively, to 

the mean values of the zero samples. The LLOQ and ULOQ were defined as the 

lowest and highest concentrations that met the precision (CV < 20%) and signal-to-

noise (S/N > 5) criteria, respectively. 

The concentration points of the reverse calibration curves were established 

to cover 3 orders of magnitude by making 2-fold serial dilutions of the unpurified 

SIS peptide (heavy form) mixture. Each calibration point was spiked into the matrix, 
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which was composed of digested FFPE tissue samples. All calibration points were 

analyzed in technical triplicates, which demonstrated high precision in the assay with 

3 transitions (Figure 5). 

Overall, the linear responses spanned 3 orders of magnitude, from 0.647 

(LLOQ) to 1325 (ULOQ) fmol and from 2.587 (LLOQ) to 1325 (ULOQ) fmol, for 

the HER2 and junctional adhesion molecule A (JAM1) surrogate peptides, 

respectively. The calibration points in Figure 5 were adjusted based on the purity of 

the unpurified SIS peptides (Figure 6). The 3 replicates demonstrated high precision 

in the assay with the 3 transitions when measuring both HER2 and JAM1 surrogate 

peptides, with minimal interference from endogenous peptides (Figure 5A, B). The 

PARs of the SIS peptide and the endogenous peptide were plotted against their 

concentrations to generate a calibration curve (Figure 5C, D). For the HER2 MRM-

MS assay, the LOD was 0.399 fmol and the LOQ was 0.985 fmol, with a linear 

regression value of R2 = 0.999 (Y = 1.029X – 4.732) for the assay calibration curve. 

CVs were in the range of 4.02% to 19.21%, as analyzed in triplicate. The calibration 

curve for the JAM1 surrogate peptide had the following parameters: LOD of 2.212 

fmol, LOQ of 5.043 fmol, and linear regression value of R2 = 0.998 (Y=1.113X – 

3.772). CVs ranged from 4.91% to 23.45% in technical triplicates of each 

concentration point. 
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Figure 5. Evaluation of calibration curves. 

The linearity of the MRM-MS assay was determined by spiking stable isotope-

labeled internal standard peptides into FFPE tissue lysates at various concentrations 

(0.647–1,325 fmol for HER2, 2.587–1,325 fmol for JAM1). Logarithmic plots of the 

peak areas, calculated from the average of three replicates, for all product ions of the 

HER2 peptide (VLQGLPR) (A) and JAM1 peptide (VTFLPTGITFK) (B). Reverse 

calibration curves for the HER2 peptide (VLQGLPR) (C) and JAM1 peptide 

(VTFLPTGITFK) (D) were constructed with 12 and 10 concentration points, 

respectively. LOD, LOQ, LLOQ, and ULOQ are the limit of detection, the limit of 

quantification, the lower limit of quantification, and the upper limit of quantification, 

respectively.   
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Figure 6. Measurement of purity of unpurified synthetic peptide. 

Extracted ion chromatograms (XICs) for unpurified (blue line) and purified (red line) 

synthetic HER2 (A) and JAM1 (B) peptides, assessed by the MRM-MS assay. The 

spiking concentration used for synthetic peptides (unpurified and purified) was 200 

fmol, and peptides were analyzed 3 times by MRM-MS assay. MRM-MS traces 

show the coelution of unpurified and purified synthetic peptides. The peak area ratio 

(unpurified/purified) allowed the purity of unpurified synthetic HER2 and JAM1 

peptides to be calculated (C).   
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6. Calculating the purity of the unpurified synthetic peptides 

Two types of synthetic peptides were used to calculate the purity of the unpurified 

HER2 and JAM1 synthetic peptides: (1) unpurified synthetic peptides (heavy, 

labeled forms) and (2) purified synthetic peptides (light, unlabeled forms). We 

calculated the purity of the unpurified synthetic peptides by synthesizing purified 

synthetic HER2 and JAM1 peptides. The purity of the purified synthetic peptides 

exceeded 95%, according to the amino acid analysis (AAA) conducted by the 

manufacturer. The purified and unpurified synthetic peptides were then injected in 

equal amounts (200 fmol) and analyzed 3 times using the MRM-MS assay, to 

confirm the purity of the unpurified synthetic peptides, using the PARs of unpurified 

and purified synthetic peptides. 

Figure 6 shows the coelution of the transitions, from the unpurified and 

purified synthetic peptides. The PAR (unpurified:purified) was calculated to 

determine the purity of the unpurified synthetic peptide. The purity of the unpurified 

synthetic peptide VLQGLPR (isotope-labeled form), derived from HER2, was 

44.30%. The purity of the unpurified synthetic peptide VTFLPTGITFK, derived 

from JAM1, was 43.89%. 

 

7. Evaluating the stability and reproducibility of the assay 

The stability and reproducibility characteristics of HER2 and JAM1 surrogate 

peptides were determined according to Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) guidelines (173) (Figure 7); information regarding these 
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transitions is listed in Table 2. The stability evaluates the storage conditions of target 

peptides in the fully digested FFPE samples: (1) 0, 6, and 24 h at 4°C; (2) 1 freeze-

thaw cycle; (3) 2 freeze-thaw cycles; and (4) 4 weeks at -80°C. The reproducibility 

measures the reproducibility of a quantified endogenous analyte in the overall 

process to evaluates the reproducibility of the entire procedure for the MRM-MS 

assay. 

Stability studies were conducted with 2 types of quality control (QC) 

samples, under various storage conditions. A pool of the fully digested FFPE 

samples was used as a matrix to prepare 12 aliquots for each of the low- and the 

medium-QC samples. To assess short-term storage stability, three aliquots of each 

QC sample (the 1st batch) were stored in an autosampler at 4°C and analyzed after 

0, 6, and 24 h. Long-term storage stability was assessed by analyzing each QC 

sample after storing in a freezer at -80°C. Six of each QC sample were thawed, and 

3 were immediately analyzed (the 2nd batch, 1 freeze-thaw cycle). The remaining 3 

thawed aliquots were analyzed after an additional freeze-thaw cycle (the 3rd batch, 

2 freeze-thaw cycles). The last 3 aliquots of each QC sample were thawed after 4 

weeks of storage at -80°C and analyzed (the 4th batch). All analyses were repeated 

in duplicates. 

The variability among the PARs for HER2 and JAM1 peptides in 

measurements of low- and medium-QC samples was similar under the 6 conditions 

(Figure 7A). The mean CV values for the HER2 and JAM1 peptide PARs across all 

batches were less than 7% in both low- and medium-QC samples. The PARs for 
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HER2 and JAM1 peptides at time zero (1st batch, 0 h) were compared with those of 

the other 5 conditions. The deviations from baseline values were within the 

acceptable limit (< ± 20%) in both low- and medium-QC samples (Figure 7B). 

The reproducibility of the entire MRM-MS assay workflow was evaluated 

by preparing and analyzing individual FFPE slides from the same sample on 

different days. Each FFPE specimen was analyzed in duplicate on each of 5 days (10 

analyses in total) by taking a fresh FFPE slide each day throughout the entire 

workflow. 

The CV for each peptide was calculated, based on the mean PAR of 

duplicates of each day across the 5-d period. The mean CVs of the two surrogate 

peptides over the 5-d period were less than 13% for all samples. In addition, the 

mean CV values for the light-to-heavy peptide PARs for the HER2 surrogate peptide 

(VLQGLPR), normalized by those for the JAM1 surrogate peptide 

(VTFLPTGITFK), over the 5-d period were within 11% for all samples. This result 

demonstrated that the overall MRM-MS assay workflow was stable when using 

FFPE tissue specimens over several days (Figure 7C–E). 
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Figure 7. Evaluation of stability and reproducibility of HER2 and JAM1 

surrogate peptides. 

The stability of the HER2 (VLQGLPR) and JAM1 (VTFLPTGITFK) surrogate 

peptides were determined under six different storage conditions. The mean 

coefficient of variation (CV) values for the PARs for HER2 and JAM1 surrogate 

peptides in low- and medium-QC samples, for all batches, are shown (CV < 7%) (A). 

The variability of PARs for the two target protein surrogate peptides, compared with 

the baseline values of time zero (B). The reproducibility of HER2 (C), JAM1 (D) 

surrogate peptides, and the light-to-heavy peptide peak area ratio for the HER2 

surrogate peptide, normalized by that for the JAM1 surrogate peptide (E), was 

evaluated using 6 FFPE tissue specimens (3 HER2 2+/FISH- and 3 HER2 2+/FISH+). 

Injections were performed 2 times per day. The black dashed line signifies the mean 

value over 5-d period.   
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8. Measurement of surrogate peptides for estimation of HER2 expression levels 

The workflow for determining HER2 status by the MRM-MS assay is depicted in 

Figure 2. The reviewed hematoxylin and eosin images, which are marked with bold 

lines that delineate the tumor area, were used to estimate the total cell count for the 

tumor area using the nuclear counting algorithm in Aperio (163). The number of 

slides necessary to extract a minimum of 150 µg of proteins per sample was 

calculated from the calibration curve in Figure 3. A total of 55 surrogate peptides–6 

HER2 peptides and 49 candidate peptides for normalization (19 surrogate peptides 

from 10 epithelial cell-specific proteins and 30 surrogate peptides from 20 

housekeeping proteins)–were quantified by MRM-MS analysis to determine HER2 

status. The entire list of proteins and surrogate peptide sequences for the MRM-MS 

assay is detailed in Table 2. By Spearman rank correlation analysis, all 6 HER2 

surrogate peptides correlated positively and significantly with each other (Figure 8). 

 

9. Comparison of normalization factors for determining HER2 status 

Five categories of normalization factors for the normalization of the light-to-heavy 

peptide PARs for HER2 surrogate peptides were measured and compared: tumor 

area (µm2), total cell count, total protein amount (µg), total peptide amount (µg), and 

light-to-heavy peptide PARs for the surrogate peptides of 10 epithelial cell-specific 

proteins and 20 housekeeping proteins from the MRM-MS assay. This generated 5 

types of normalized quantitative data for HER2 surrogate peptides, which were then 

compared with IHC and FISH data on 210 individual samples. 
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To select the normalization factor that best represents the number of tumor 

cells, which in turn determines HER2 expression levels used to discriminate between 

equivocal HER2 subgroups, area under the receiver operating curve (AUROC) 

values were calculated using each normalized value of 120 HER2 2+ samples. A 

total of 318 AUROC values were generated when considering 53 normalization 

factors and 6 HER2 surrogate peptides. When the 318 combinations were arranged 

according to decreasing AUROC values, the combination between the light-to-heavy 

peptide PAR for the HER2 surrogate peptide (VLQGLPR) and that for the JAM1 

surrogate peptide (VTFLPTGITFK) showed the highest AUROC value of 0.908 (95% 

confidence interval [CI], 0.842–0.953), followed by AUROC values of 0.810 (95% 

CI, 0.728–0.875) for total cell count, 0.802 (95% CI, 0.719–0.869) for total peptide 

amount (µg), 0.777 (95% CI, 0.692–0.848) for total protein amount (µg), and 0.771 

(95% CI, 0.685–0.842) for tumor area (µm2) (Figure 9A). 

Additionally, a single HER2 surrogate peptide (VLQGLPR) was found to 

be superior to the average of HER2 surrogate peptides for the discrimination of 

equivocal HER2 subgroups. The light-to-heavy peptide PAR for the superior HER2 

surrogate peptide (VLQGLPR), normalized by that for JAM1 (VTFLPTGITFK), 

had an area under the receiver operating curve (AUROC) value of 0.908, whereas 

the average light-to-heavy peptide PAR for the pair of HER2 surrogate peptides with 

the highest Spearman correlation (VLQGLPR and GLQSLPTHDPLQR, Spearman 

correlation coefficient, ρ=0.872) (Figure 8), normalized by that for JAM1 

(VTFLPTGITFK), had an AUROC value of 0.858 (95% CI, 0.788–0.928), and the 

average light-to-heavy peptide PAR for all 6 HER2 surrogate peptides, normalized 
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by that for JAM1 (VTFLPTGITFK), had an AUROC value of 0.827 (95% CI, 0.752–

0.903) (Figure 9B). 

When using the light-to-heavy peptide PAR for the HER2 surrogate peptide 

(VLQGLPR), normalized by that for the JAM1 surrogate peptide (VTFLPTGITFK), 

54 of 61 HER2 2+/FISH-negative samples (88.52%) were classified as HER2-

negative by the MRM-MS assay, whereas 52 of 59 HER2 2+/FISH-positive samples 

(88.14%) were categorized as HER2-positive by the MRM-MS assay. In total, 106 

(88.33%) of 120 samples were correctly classified by the MRM-MS assay (Table 3). 

 

Table 3. The discriminatory power of the normalized HER2 expression levels 

for 120 equivocal HER2 cases. 

Equivocal 

HER2 cases 

Gold standard (IHC/FISH) 

Positive Negative 

M
R

M
-M

S
 

Positive 52 7 

Negative 7 54 

    Percent of cases correctly classified: 88.33%  
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Figure 8. Scatterplots of Spearman rank correlation coefficients between six 

HER2 peptides. 

Scatterplots of Spearman rank correlation coefficients (ρ) between six HER2 

peptides, showing that all six HER2 peptides correlated positively and significantly 

with each other. (A) Heat maps representing the scatterplots and Spearman rank 

correlation coefficients between each HER2 peptide. Pink denotes greater 

association (0.8 < Spearman rank correlation coefficients < 1) between two 

peptides, in contrast to blue, which indicates less association (0.5 < Spearman rank 

correlation coefficients < 0.8). Amino acid sequences designations were 

determined by the first three amino acid sequences. (B) A total of 15 scatterplots 

between HER2 peptides, representing the equation of the linear regression and 

Spearman rank correlation coefficients. VLQ., VLQGLPR; GIW., 

GIWIPDGENVK; LLD., LLDIDETEYHADGGK; ELV., ELVSEFSR; FVV., 

FVVIQNEDLGPASPLDSTFYR; GLQ., GLQSLPTHDPSPLQR. 
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Figure 9. Area under the receiver operating curve (AUROC) with respect to 

normalized quantified data on HER2 peptide in HER2 2+/FISH-negative versus 

HER2 2+/FISH-positive. 

(A) Five types of normalized quantitative data for HER2 surrogate peptides were 

used to generate the AUROC curve. (B) The AUROC values were calculated using 

the normalized values in samples from the equivocal HER2 subgroups (61 HER2 

2+/FISH-negative, 59 HER2 2+/FISH-positive). A single HER2 surrogate peptide 

(VLQGLPR) was superior to the average of the pair of HER2 surrogate peptides 

with the highest Spearman correlation and to the average of all HER2 surrogate 

peptides. VLQ., VLQGLPR; GLQ., GLQSLPTHDPSPLQR.   
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10. Diagnostic performances of single- and multi-marker panels 

The diagnostic performances of normalized HER2 surrogate peptide values were 

evaluated using classical statistical analysis. A total of 60 samples (30 HER2 

2+/FISH-negative and 30 HER2 2+/FISH-positive) in the training set were randomly 

selected from the 120 equivocal HER2 cases. Single- and multi-marker analyses 

were performed by logistic regression to determine the best predictive model (174). 

AUROC values were generated by 5-fold cross-validation in the training set. The 

best cutoff value was defined as the value with the maximal sum of sensitivity and 

specificity (175). 

When selecting marker candidates, only the AUROC value was considered 

when evaluating the performance of the marker. The sensitivities and specificities of 

the final single and multiple markers were assessed to confirm the performance of 

the marker and the accuracy of the diagnostic method. 

In the single-marker analysis, the light-to-heavy peptide PAR for the HER2 

surrogate peptide (VLQGLPR), normalized by that for the JAM1 surrogate peptide 

(VTFLPTGITFK), demonstrated the best diagnostic performance for both the 

training set (AUROC = 0.950, sensitivity = 93.3%, specificity = 93.3%) and the test 

set (AUROC = 0.891, sensitivity = 82.8%, specificity = 90.3%) (Table 4). 

In the multi-marker analysis, the combination of three peptide pairs, i) the 

light-to-heavy peptide PAR for the HER2 surrogate peptide (VLQGLPR), 

normalized by that for the JAM1 surrogate peptide (VTFLPTGITFK), ii) the light-

to-heavy peptide PAR for the HER2 surrogate peptide (ELVSEFSR), normalized by 
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that for the RS16 surrogate peptide (GGGHVAQIYAIR), and iii) the light-to-heavy 

peptide PAR for the HER2 surrogate peptide (VLQGLPR), normalized by that for 

the VINC surrogate peptide (SLGEISALTSK), exhibited the best diagnostic 

performance for both the training set (AUROC = 0.969, sensitivity = 93.3%, 

specificity = 93.3%) and the test set (AUROC = 0.899, sensitivity = 76.7%, 

specificity = 96.7%) (Table 4). To determine whether the AUROC values differed 

between single- and multi-marker analyses, the DeLong test was conducted in the 

test set. The DeLong test concluded that the single-marker analysis did not 

significantly differ from the multi-marker analysis (P = 0.8432). 

 

Table 4. Cross-validation results of the single- and multi-marker analyses, as 

measured by MRM-MS assay, between the training and test sets. 

    Single-marker analysis Multi-marker analysis 

Group   Training set Test set Training set Test set 

HER2 2+FISH- vs. 

HER2 2+FISH+ 

AUROC 0.950 0.891 0.969 0.899 

Sensitivity 0.933 0.828 0.933 0.767 

Specificity 0.933 0.903 0.933 0.967 
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11. Agreement between MRM-MS data and IHC/FISH data 

To determine whether the data that were generated by MRM-MS matched well with 

the IHC and FISH scores, the light-to-heavy peptide PARs for the HER2 surrogate 

peptide (VLQGLPR) that was normalized by those for the JAM1 surrogate peptide 

(VTFLPTGITFK) in 210 samples were examined. By Mann–Whitney U test, 

significant differences were found in 5 HER2 groups, and particularly the MRM-MS 

data distinguished between HER2 2+/FISH-negative and HER2 2+/FISH-positive 

groups (P < 0.001), which could not be differentiated by IHC (Figure 10A). The 

MRM-MS assay also distinguished HER2-negative from HER2-positive breast 

cancer, which would be expected to benefit from HER2-targeted therapy (P < 0.001) 

(Figure 10B). An AUROC analysis was conducted to further assess the ability of the 

MRM-MS assay to distinguish between HER2-negative and HER2-positive breast 

cancer. An optimal cutoff value of 0.2635 (log2-scaled normalized PAR = -1.9241) 

was defined as the value that provided the highest levels of clinical sensitivity and 

specificity, as evidenced by the proximity of this value to the top left corner of the 

curve, correlating with an AUROC value of 0.960 (95% CI, 0.933–0.987) (Figure 

10C).
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Figure 10. Scatter dot plots and an area under the receiver operating curve (AUROC) of the light-to-heavy peptide peak area ratios for a 

HER2 surrogate peptide normalized by those for a JAM1 surrogate peptide plotted against IHC/FISH score.  

In scatter dot plots (A, B) and an AUROC curve (C), the light-to-heavy peptide peak area ratios for the HER2 surrogate peptide (VLQGLPR), 

normalized by those for the JAM1 surrogate peptide (VTFLPTGITFK), with the highest AUROC value used to determine whether the data 

generated by MRM-MS assay followed the tendencies in the IHC and FISH data. Top bars: Mann–Whitney U test; **, P < 0.01; ***, P < 0.001. 
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DISCUSSION 

 

In this study, we adopted MS-based targeted proteomics, which has become the 

preferred method for biomarker studies of various human samples due to its high 

analytical sensitivity, reproducibility, accuracy, and precision (176), by 

complementing the limitations of conventional techniques for determining HER2 

status: semiquantitative scores, high interobserver variability, and extra labor 

required by additional staining to arbitrate equivocal HER2 cases (177, 178). This 

report details the development of a clinical MRM-MS assay with FFPE breast cancer 

tissues that can overcome the aforementioned limitations of conventional methods 

by stratifying HER2 status more simply and precisely. 

Two previous representative studies aimed to determine the HER2 status 

more accurately with FFPE tissues using a targeted MS-based approach (158, 179), 

and our study complements these studies. A more recent study analyzed 40 

individual samples, which was a substantially smaller cohort than ours. Notably, the 

creation of an aptamer-peptide probe entailed in the previous study is complex and 

laborious (179). The complexity of the sample preparation procedures described in 

both studies renders them impractical for use as clinical assays. In contrast, rather 

than controlling the total protein and peptide amounts within the workflow by 

directly measuring these components, we simplified the workflow by estimating the 

number of slides upfront that would be required to ensure a sufficient amount of 

extracted protein for each analysis and by using the expression levels of an epithelial 
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cell-specific protein as a normalization factor for measuring HER2 expression levels. 

As such, our method has the potential to save time and costs as part of an overall 

workflow in determining HER2 status, which may accelerate the clinical adoption 

of similar MRM-MS assays. 

We compared 5 categories of normalization factors to select the most 

suitable alternative to conventional normalization methods in sample preparation (21, 

159). Consistent with our hypothesis, the light-to-heavy peptide PAR for a surrogate 

peptide of JAM1, a breast epithelial cell protein, was found to be the most suitable 

normalization factor for measuring HER2 expression levels, followed by total cell 

count, total peptide amount (µg), total protein amount (µg), and tumor area (µm2) 

(Figure 9A). Tumor area had the worst performance because it merely provided 

indirect values of tumor content. Specifically, larger tumor sizes do not necessarily 

represent greater tumor content, because tumor cell densities differ substantially 

between samples. Similarly, aside from JAM1, all examined normalization factors 

reflect both tumor cells and nontumor cells (macrophages, fibroblasts, and 

lymphocytes), which likely lower their normalization performances. 

Two notable aspects of our study differentiate it from earlier efforts to 

quantify HER2 expression levels by mass spectrometry: (1) simplifying the overall 

workflow by predicting the protein amounts that can be extracted from each FFPE 

specimen and by using an epithelial cell-specific protein as a normalization factor 

for quantifying HER2 expression levels (160); and (2) potentially reducing the 

number of equivocal HER2 cases, which account for 18% of all newly diagnosed 

breast cancers (180). As a result of the superior accuracy of MRM-MS assay relative 



150 

 

to IHC reducing the number of equivocal cases requiring FISH assessment, we 

estimate that our MRM-MS/FISH workflow would reduce the mean analytical time 

by 1 hour and reduce the mean cost per analysis 3.5-fold relative to an IHC/FISH 

workflow (180-182). When using normalized HER2 quantitative data, 106 (88.33%) 

of 120 equivocal HER2 cases were correctly classified (Table 3). 

However, several challenges remain to be addressed. To implement our 

developed MRM-MS assay in clinical practice, an absolute cutoff value for 

normalized HER2 quantitative data should be established by using purified SIS 

peptides in a future study. In addition, variable cell counts and the poor correlation 

observed between cell counts and extracted protein amounts across all 210 samples 

were attributed to variations in tumor sizes and cell densities in FFPE tissues and the 

imprecision of the manual scraping procedure, respectively. Thus, compared with 

the calibration curve in Figure 3, the correlation between the cell counts and 

extracted protein amounts was lower in 210 samples because the proteins were 

extracted from multiple slides, which further compounded variations in extracted 

protein amounts. However, we do not believe that this poor correlation adversely 

affected the sample preparation procedure. The required amount of protein (> 150 

µg) was obtained from most of the samples, using the linear regression equation in 

Figure 3. In addition, variations in the extracted protein amounts across samples were 

likely reduced by determining the number of FFPE slides to use for each sample, 

based on the equation in Figure 3, which provides a clear guideline for sample use, 

as opposed to previous subjective decisions. A possible solution is to increase the 

precision in excising the tumor area using laser-capture microdissection, which 
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would likely improve the correlation between the extracted protein amounts and the 

cell counts by limiting the obtained tissue to the exact tumor area and also reduce the 

required labor costs compared with manually scraping the FFPE slides with a scalpel 

(183). In addition, several post-translational modifications (PTMs) induced by 

formaldehyde fixation and the sample preparation may be considered to hinder the 

exact quantification of the target peptides (184). However, PTMs are generally low 

in abundance and even the most frequent modification, such as lysine methylation, 

accounts for only around 2% of all peptides (185, 186). Therefore, PTMs due to 

FFPE sample preparation has little effect on the quantitative accuracy of target 

peptides by MRM-MS. 

In summary, our MRM-MS assay, which distinguishes between equivocal 

HER2 subgroups, can potentially decrease the time and costs required for the 

diagnosis of breast cancer patients by reducing the number of cases that require 

ancillary FISH tests (Figure 11). In addition, the simplified assay procedure can 

reduce the barriers to entry for the clinical application of the MRM-MS assay. The 

proposed protocol would provide clinicians with valuable diagnostic information 

and facilitate the proper treatment for breast cancer patients. 
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Figure 11. Conventional diagnostic strategy using immunohistochemistry (IHC) 

and the proposed strategy using MRM-MS assay for HER2-targeted therapy. 

(A) The conventional diagnostic strategy for HER2 scoring entails performing IHC 

in all cases, supplemented by fluorescence in situ hybridization (FISH) in equivocal 

IHC cases (HER2 2+). (B) The novel application of MRM-MS assay to breast cancer 

patients discriminates between equivocal HER2 subgroups (HER2 2+/FISH-

negative and HER2 2+/FISH-positive), reducing the number of cases that require 

ancillary FISH tests. 
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GENERAL CONCLUSION 

 

MS-based proteomic analysis has evolved continuously and emerged as a prominent 

tool in the field of biomarker discovery. In addition, targeted mass spectrometry 

analysis is increasingly considered as an effective tool for complementing the 

limitations of conventional methods, such as immunoassay, for detecting protein 

biomarkers due to its high analytical sensitivity, reproducibility, accuracy, and 

precision. However, there are issues that must be solved in order for MS-based 

proteomics to be applied more widely in the field of biomarker discovery and clinical 

practice: (1) preparation methods for various pathological specimens in biomarker 

discovery have not been well established; (2) the sample preparation process is so 

cumbersome that it is difficult be applied to clinical practice. Therefore, I intended 

to solve these issues in these MS-based proteomic studies. Specifically, I have 

established a novel preparation method for rare clinical specimen, pancreatic cyst 

fluid, in biomarker discovery and simplified the sample preparation procedures for 

MRM-MS assay. 

In chapter I and II, pancreatic cyst fluid was used to discover potential 

biomarkers for IPMN dysplasia. Cyst fluid is composed of secreted proteins from 

surrounding tumor cells, the concentration of potential biomarkers in cyst fluid is 

higher than in blood. Therefore, pancreatic cyst fluid has several advantages over 

serum and plasma with regard to the discovery of markers for IPMN. However, 

biomarker discovery using cyst fluid has not been studied much because relatively 

low protein concentration and high mucus make cyst fluid difficult to handle. To 
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overcome the inherent characteristics of cyst fluid and discover potential biomarkers 

in it, I have removed the mucus by sonicating viscous cyst fluid and increased the 

depth of proteome coverage by generating a peptide library through high-pH 

fractionation. In this series of the sample preparation process, the largest number of 

cyst fluid proteins have been identified to date and potential markers of the degree 

of IPMN malignancy have been discovered. Especially, in chapter II, more clinically 

relevant biomarker candidates of IPMN malignancy were discovered by adding 

pancreatic cyst fluid from other pancreatic cystic lesions (MCN and SCN) as well as 

IPMN. 

In chapter III, I devised a simplified assay procedure to yield more accurate 

HER2 expression levels relative to immunohistochemistry and reduce the barriers to 

entry for the clinical application of the MRM-MS assay. I applied the quantitative 

data of an epithelial cell-specific protein as a new normalization factor for 

calculating HER2 expression levels instead of total protein or peptide amounts 

measured by BCA assay and tryptophan fluorescence assay. I could shorten the 

overall process and decrease inter-experimental variation by removing 

accompanying assays in the newly devised procedure. As a result, a novel MRM-

MS assay distinguished between equivocal HER2 subgroups that could not be 

differentiated by IHC. This can potentially decrease the time and costs required for 

the diagnosis of breast cancer patients by reducing the number of cases that require 

ancillary FISH tests. 

In these studies, two approaches to biomarker studies through MS-based 

proteomics were conducted: (1) discovering novel biomarkers of IPMN malignancy 
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using cyst fluid with high-resolution mass spectrometry, (2) establishing a novel 

MRM-MS assay to determine HER2 status using FFPE tissue specimens of breast 

cancer patients. I have generated the largest proteomic dataset of pancreatic cyst fluid 

to date and discovered potential markers of the degree of IPMN dysplasia. The 

development of cyst fluid markers can facilitate an accurate assessment of the IPMN 

malignancy and effectively guide surgical decision-making. In addition, the newly 

established MRM-MS assay yields more accurate HER2 expression levels relative 

to immunohistochemistry and should help to guide clinicians toward the proper 

treatment for breast cancer patients, based on their HER2 expression. However, 

several challenges remain to be addressed. It would be necessary to examine the 

clinical potential of IPMN markers through randomized, controlled, multicenter 

validation in a large cohort. In addition, more simple and automatic sample 

preparation procedures should be established by excising the tumor area using laser-

capture microdissection to implement our developed MRM-MS assay in clinical 

practice. 

Despite these difficulties, a series of proteomic analyses demonstrated that 

MS-based proteomics remains one of the most powerful tools to discover potential 

markers of specific diseases and assess known biomarkers, based on their high 

reproducibility and quantitative nature.  
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ABSTRACT IN KOREAN 

국문 초록 

 

서론: 질량분석학 기반 단백체학적 접근법은 미량의 시료에서 수백 개의 

차등적으로 발현되는 단백질을 발굴하기 위해 수천 개의 단백질을 

동시에 스크리닝할 수 있는 능력을 기반으로, 특정 질병과 연관된 

바이오마커를 식별하는 데 점점 더 많이 적용되고 있다. 일반적으로 

임상 코호트로부터 수집된 체액과 포르말린 고정 파라핀 포매조직절편 

(FFPE)과 같은 병리학적 검체를 분석한다. 단백체 분석에 있어 높은 

처리량과 감도를 가진 질량분석학 기반 접근법은 바이오마커 발굴 및 

임상 진단 분야에서 강력한 도구로 활용될 수 있다. 또한 단백체 연구는 

질병의 생물학적 메커니즘을 이해하는데 도움을 준다. 

 

방법: 1 장과 2 장에서, 고분해능 질량분석기 기반 단백체학 분석을 

수행하여 췌장낭종액 시료에서 췌관내 유두상 점액 종양 (IPMN)의 

악성도를 예측할 수 있는 바이오마커를 발굴하였다. 2 장에서는 실제 

임상 상황을 더 잘 반영하기 위해 췌관내 유두상 점액 종양 뿐만 아니라 

점액성 낭성 종양 (MCN)과 장액성 낭성 종양 (SCN)을 추가한 확장된 

코호트에서 시료를 수집하였다. 3 장에서, 표적 단백체 기술인 

다중반응검지법을 FFPE 조직에 적용하여 유방암 환자의 인간 상피 

증식 인자 수용체 2 (HER2) 상태를 결정할 수 있는 새로운 분석법을 

확립하였다. 
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결과: 1 장에서, IPMN 환자의 췌장낭종액 시료에서 2,992 개의 단백질을 

동정하였다. IPMN 의 조직학적 등급에 따라 차등적으로 발현되는 

18 개의 바이오마커 후보군이 발견되었으며, 그 중 일부는 독립적인 

코호트를 이용하여 웨스턴 블롯으로 검증하였다. 그 결과는 단백체 

데이터와 일치하였다. 2 장에서, IPMN, MCN, SCN 환자의 

췌장낭종액에서 5,834 개의 단백을 동정하였다. IPMN 이형성증간에 

차별적으로 발현되는 364 개의 단백질 중, 19 개의 최종 바이오마커 

후보군은 IPMN 의 악성도에 따라 연속적으로 증가하거나 감소하였다. 

독립코호트에서 CD55 단백질을 효소면역측정법 (ELISA), 웨스턴블롯, 

면역화학염색 (IHC)을 통해 검증하였으며, 단백체 데이터와 일치하는 

결과를 얻을 수 있었다. 3 장에서, 우리는 HER2 상태를 구별하기 위한 

기존 방법을 개선하는 다중반응검지법을 확립하였다. 충분한 양의 

단백질을 확보하는 데 필요한 FFPE 슬라이드 수를 산출하고, 상피 세포 

특이적 단백질의 발현량을 HER2 발현량 측정을 위한 정규화 인자로 

사용함으로서 시료 전처리를 단순화하였다. 이에 따라 HER2 단백질 

정량의 정확성과 정밀도가 향상되었다. 

 

결론: 1 장과 2 장에서, 우리는 현존하는 최대의 췌장낭종액 단백체 

데이터를 생성했으며, IPMN 이형성증의 잠재적 바이오마커를 

발굴하였다. 췌장낭종액 바이오마커의 발굴은 IPMN 의 악성도를 

정확하게 평가하는데 도움이 되며, 외과적 의사 결정을 효과적으로 도울 

수 있을 것이다. 궁극적으로, 발굴한 마커가 임상에서 유용하게 사용될 

수 있다면, IPMN 이형성증에 대한 정확한 평가를 통해 저위험군 IPMN 
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환자의 불필요한 수술적 절제를 방지하는데 기여할 수 있을 것이다. 

3 장에서, 모호한 HER2 그룹을 구별할 수 있는 우리의 프로토콜은 

형광동소혼성화 (FISH) 테스트가 필요한 사례의 수를 줄임으로써 

유방암 환자의 진단에 필요한 시간과 비용을 잠재적으로 줄일 수 있다. 

또한 우리가 개발한 단순화된 분석 절차는 MRM 분석법을 임상에 

적용하기 위한 진입 장벽을 낮춰준다. 우리가 확립한 MRM 분석법은 

IHC 에 비해 보다 정확한 HER2 발현 수준을 산출함으로서, 임상의가 

유방암 환자를 위한 적절한 치료 방침을 결정하는데 도움을 줄 수 있을 

것이다. 

 

 

주요어: 단백체학; 질량분석학; 다중반응검지법; 췌장낭종액; 췌관내 

유두상 점액 종양; 바이오마커; 인간 상피 증식 인자 수용체 2; 

포르말린 고정 파라핀 포매조직절편 

 

학  번: 2014-25061 

 

* 본 내용은 학술지에 게재된 세 논문, Clinical Proteomics (2018, 

15:17), Cancers (2020, 12:9), 그리고 Clinical Chemistry (2020, 

66:10)을 바탕으로 작성하였음. 
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