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Abstract

Effective potential and machine learning
approaches to synchronization of coupled

oscillators

Je Ung Song
Department of Physics and Astronomy

The Graduate School
Seoul National University

Systems with multiple interacting elements exhibit collective behaviors. As one

of examples of collective behaviors, synchronization is a process of coordinating two

or more elements to realize the system in unison. It is an omnipresent phenomena in

nature, for instance, firefly flashing, cricket chirping, cardiac pacemaker cell, and so

on. To understand and describe the mechanism of synchronization phenomena, cou-

pled oscillator system is often adopted as the most conventional and suitable model for

interacting system. Each oscillator has own frequency representing each unique char-

acteristics, and its phase is adjusted through the interaction with other oscillators on

the system. On the way to phase synchronization, such interactions or connections be-

tween oscillators can be expressed as links on the complex network and each element

(oscillator) is then denoted by a node. A number of studies for coupled oscillators on

complex networks have been progressed over the past two decades.

Among the studies for synchronization of coupled oscillator systems, the Ku-

ramoto model has played a crucial role as a simple and representative model for de-

scribing such collective behavior. Owing to its rich properties such as chaotic dynam-

ical behavior and synchronization transition, the Kuramoto model is an appropriate
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model to explore. First, fundamental results of previous studies on synchronization of

the coupled oscillator system, especially the Kuramoto model, are introduced.

This dissertation is composed of two main studies for the coupled oscillator sys-

tem by adopting two different approaches, respectively. As the first main study of

this dissertation, we examine the Kuramoto model using analytical way, the effective

potential approach. The Kuramoto model exhibits different types of synchronization

transitions depending on the type of natural frequency distribution. To obtain these

results, the Kuramoto self-consistency equation (SCE) approach has been used suc-

cessfully. However, this approach affords only limited understanding of more detailed

properties such as the stability. We here extend the SCE approach by introducing an

effective potential, that is, an integral version of the SCE. We examine the landscape of

this effective potential for second-order, first-order, and hybrid synchronization transi-

tions in the thermodynamic limit. In particular, for the hybrid transition, we find that

the minimum of effective potential displays a plateau across the region in which the

order parameter jumps. This result suggests that the effective potential can be used to

determine a type of synchronization transition.

In the second study for the coupled oscillator systems, we applied the machine

learning approach to investigate the system based on data-driven analysis and to figure

out whether the methodology can be extended to the real world system. With growing

interest in the machine learning, recent works on physical systems has demonstrated

successful progresses by adopting the machine learning approaches for tasks of clas-

sification and generation. We here perform various machine learning approaches to

the Kuramoto system which is basic model for synchronization phenomena and ex-

hibits complicated chaotic behavior. As the system displays rich properties such as

synchronization transition and nonlinearity with varying parameters, we applied ma-

chine learning for finding the value of the coupling strength and the critical value.

Considering the finite size scaling, we confirm that results follow the critical behavior
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of the Kuramoto system. By focusing on the phase dynamics of all oscillators, we ap-

plied the performance of the artificial neural network for predicting future behaviors of

all oscillators and detecting underlying real brain network topology. As the Kuramoto

model offers support for the application on real-world systems exhibiting synchro-

nization phenomena or nonlinear behaviors, our work has potential for utilizing the

machine learning approaches to such systems.

Keywords: Complex network, Synchronization, Phase transition, Hybrid transi-

tion, Nonlinear dynamics, Chaotic system, Coupled oscillators, Kuramoto model,

Self-consistency equation, Landau theory, Effective potential, Data-driven approach,

Machine learning, Artificial neural network, Feedforward neural network, Convolu-

tional neural network, Recurrent neural network, Reservoir computing

Student number: 2014-30109

iii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Complex network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Coupled oscillators on complex networks . . . . . . . . . . . . . . . 2

1.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Synchronization of coupled oscillators . . . . . . . . . . . . . . . . . . . 6

2.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Coupled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The Kuramoto model . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Natural frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Lorentzian distribution . . . . . . . . . . . . . . . . . . . . . 10

2.4.3 Uniform distribution . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Sampling of natural frequency . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Random sampling . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.2 Regular sampling . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Order parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7.1 Synchronization transition . . . . . . . . . . . . . . . . . . . 14

iv



2.7.2 Hybrid phase transition . . . . . . . . . . . . . . . . . . . . . 15

2.7.3 Type of synchronization transition . . . . . . . . . . . . . . . 16

2.8 Finite-size scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8.1 Critical exponents . . . . . . . . . . . . . . . . . . . . . . . 19

2.8.2 Finite-size effect . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Effective potential approach to synchronization transition . . . . . . . . 26

3.1 Analytic approaches to the Kuramoto model . . . . . . . . . . . . . . 29

3.1.1 Self-consistency analysis . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Ott-Antonsen ansatz . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Ad hoc free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Second-order synchronization transition . . . . . . . . . . . . . . . . 37

3.4 First-order synchronization transition . . . . . . . . . . . . . . . . . . 38

3.4.1 Degree-frequency correlation on a scale-free network with 2 <

λ < 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Dependence of interaction strength on the frequency . . . . . 42

3.5 Hybrid synchronization transition . . . . . . . . . . . . . . . . . . . 45

3.5.1 Uniform distribution g(ω) . . . . . . . . . . . . . . . . . . . 45

3.5.2 Degree-frequency correlation on scale-free networks with λ = 3 49

3.5.3 Flat distribution with exponential tails . . . . . . . . . . . . . 50

3.5.4 Flat distribution with power-law tails . . . . . . . . . . . . . 51

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Machine learning approaches to coupled oscillators . . . . . . . . . . . 56

4.1 Machine learning models . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Feed-forward neural network . . . . . . . . . . . . . . . . . . 58

4.1.2 Fully-connected neural network . . . . . . . . . . . . . . . . 59

4.1.3 Convolutional neural network . . . . . . . . . . . . . . . . . 59

4.1.4 Recurrent neural network . . . . . . . . . . . . . . . . . . . . 59

v



4.1.5 Reservoir computing . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Finding the coupling strength . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Finding the synchronized state . . . . . . . . . . . . . . . . . . . . . 65

4.5 Application I : Prediction of the phase dynamics . . . . . . . . . . . . 68

4.6 Application II : Reconstruction of the network structure . . . . . . . . 72

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendix A Numerical simulation method . . . . . . . . . . . . . . . . . . 80

A.1 Runge-Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Kahan summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3 Simulation of the Kuramoto equation . . . . . . . . . . . . . . . . . . 82

Appendix B Asymmetric interaction-frequency correlated model . . . . . 84

Appendix C Effective potential approaches for finite size systems . . . . . 87

C.1 Random sampling of {ωi} . . . . . . . . . . . . . . . . . . . . . . . 87

C.2 Regular sampling of {ωi} . . . . . . . . . . . . . . . . . . . . . . . . 91

C.3 Trapped at metastable states . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Abstract in Korean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



List of Figures

1.1 Degree distributions for Erdos-Renyi and scale-free networks . . . . . 2

2.1 Natural frequency distributions . . . . . . . . . . . . . . . . . . . . . 11

2.2 Complex order parameter . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Synchronization transition . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Types of phase transitions . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Finite-size scaling for the order parameter . . . . . . . . . . . . . . . 22

2.6 Order parameter as a function of N at the criticality . . . . . . . . . . 23

2.7 Finite-size scaling for the susceptibility . . . . . . . . . . . . . . . . 24

2.8 Susceptibility as a function of N at the criticality . . . . . . . . . . . 25

3.1 Schematic plots of the Landau free energy . . . . . . . . . . . . . . . 28

3.2 Ad hoc potential for the Gaussian distribution . . . . . . . . . . . . . 39

3.3 Ad hoc potential for the degree-frequency correlated Kuramoto model

on SF network with 2 < γ < 3 . . . . . . . . . . . . . . . . . . . . . 43

3.4 Ad hoc potential for the interaction-frequency correlated Kuramoto

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Ad hoc potential for the uniform distribution . . . . . . . . . . . . . . 48

3.6 Ad hoc potential for flat distribution with exponential tails . . . . . . 52

3.7 Ad hoc potential for flat distribution with power-law tails . . . . . . . 53

4.1 Schematic plots of the feed-forward neural network . . . . . . . . . . 58

4.2 Schematic plots of the recurrent neural network training and reservoir

computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Schematic plots of the process for finding the coupling strength . . . . 63

4.4 Plots for prediction of coupling strength . . . . . . . . . . . . . . . . 66

vii



4.5 Comparison for prediction of coupling strength between two different

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Plots for prediction of synchronized state . . . . . . . . . . . . . . . 69

4.7 Schematic plots of the process for prediction of phase dynamics . . . 70

4.8 Plots for prediction of phase dynamics . . . . . . . . . . . . . . . . . 71

4.9 Plots for reconstruction of visual cortex network . . . . . . . . . . . . 73

B.1 Ad hoc potential for the interaction-frequency correlated Kuramoto

model with asymmetric distribution . . . . . . . . . . . . . . . . . . 86

C.1 Ad hoc potential for finite size system with random sampling of {ωi} 89

C.2 Different initial condition for order parameter dynamics of random

sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.3 Ad hoc potential for finite size system with regular sampling of {ωi} . 93

C.4 Positions of local minima for finite size system with regular sampling

of {ωi} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.5 Time evolution of order parameter distribution . . . . . . . . . . . . . 95

C.6 Order parameter distributions for various system sizes . . . . . . . . . 97

C.7 〈tc(ti)〉 for various system sizes . . . . . . . . . . . . . . . . . . . . 98

viii



List of Tables

2.1 Natural frequency distributions and their regular sampling . . . . . . 13

4.1 Symbols for machine learning models . . . . . . . . . . . . . . . . . 61

ix



Chapter 1

Introduction

1.1 Complex network

A wide variety of natural and artificial systems are described by complex organization

of entities. For example, the Internet is a complex network of routers and computers

linked by physical or wireless links; proteins can be nodes on a protein-protein in-

teraction network with interaction between them denoted by links. Investigating the

mechanisms of such interwoven systems leads to determine the topology of complex

networks. In view of graph theory, a complex network is described mathematically as

a graph G consisting of N nodes connected by L links. And the the degree of node i

is denoted by ki. And this graph can be represented by the adjacency matrix A with

entries aij = 1 if a directed link from j to i exists, and 0 otherwise. For more general

case of a weighted network W , its entries wij represent the strength (or weight) of

the directed link from j to i. Through the investigation for the statistical properties

of various forms of complex networks, one can classify complex networks in several

categories. The degree distribution P (k) which indicates the probability of a node to

have a degree k, is the most representative of these statistical properties of complex

networks. As the difference in the tail of the distribution is observed, homogeneous

and heterogeneous networks are distinguished through the distribution P (k). If it de-

cays exponentially with the degree, the network is referred to as homogeneous. As a

network composed of randomly connected nodes, the Erdos-Renyi (ER) network [1]

is the most representative example. On the contrary, when the tail of the distribution
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(a) (b)

Figure 1.1: Degree distributions for Erdos-Renyi (ER) and scale-free (SF) networks.
(a) The degree distribution for ER network follows the Poisson distribution. (b) The
degree distribution for SF network follows a power-law distribution.

is heavy, one can refer to as heterogeneous network. As the most representative exam-

ple of heterogeneous network, scale-free (SF) networks exhibit a power-law form of

degree distribution, expressed as P (k) ∼ k−γ . By following a mechanism where all

incoming nodes are linked preferentially to the existing nodes, Barabasi-Albert (BA)

network is constructed as one of the model for describing the formation of scale-free

networks [2]. It is well-known that many interaction patterns of natural and artificial

networks such as the Internet, the World-Wide Web, scientific collaboration network,

and biological networks, follow a power-law behavior, having a form of scale-free

networks [3–9].

1.2 Coupled oscillators on complex networks

By focusing not only on the the network structure of real world network but also on

the dynamics and interactions between nodes, studies for various real systems have

been progressed by implementing complex network approaches. Among a number of

complex systems, neural network in human brain is one of remarkable system to iden-

tify behavior of neurons and their collective phenomena. In the late 80’s, studies for

synchronization of coupled oscillators on a complex network were fostered to describe

and understand such biological neural networks.

Strogatz and Mirollo [10] investigated the collective behavior of interacting limit

2



cycle oscillators with random intrinsic frequencies on lattice structures. One of the

impressive findings in this study is that adding long-range connections leads to a more

rapid and robust synchronization. This observation triggers vibrant studies of coupled

oscillators on complex networks.

All nodes in models for describing this system are represented by oscillators which

adjust their phases and finally set the phases to almost mean phase of their neighbors

through non-linear interaction. Due to this interaction between oscillators, the model

for this coupled oscillator system, governed by deterministic laws, demonstrates the

chaotic behavior, where a small change in the initial state can result in large differences

in the final state. This yields that prediction for long-term behavior becomes impossible

in general although the deterministic mechanism is embedded.

1.3 Machine learning

In the meanwhile, we have witnessed remarkable advances of artificial intelligence

applications in various fields of research areas over the past decade. As a sub-field of

artificial intelligence, machine learning provides expectation for one of the ways of

achieving artificial intelligence (AI). As the computer scientist and machine learning

pioneer, Tom M. Mitchell defined the machine learning as : “Machine learning is the

study of computer algorithms that allow computer programs to automatically improve

through experience.” in his book [11], machine learning relies on work with datasets

by examining and comparing for desired purposes.

In the fields of science, experimental data can be the experience required to learn

the machine. Such data-based or data-driven method is applied across many disci-

plines of science. For studies of statistical physics as well, machine learning method

is implemented to verify the results obtained through other theoretical methods or to

figure out new result which cannot be obtained through analytical or numerical ways.

For phase transitions appearing in various systems such as classical Ising model, XY

model, and quantum systems, machine learning methods have been adopted for clas-
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sifying phases and finding the critical point [12–18]. For chaotic systems, in addition,

prediction for the dynamical long-term behavior and inference of underlying variables

have been proceeded steadily using the reservoir computing [19–29]. Nevertheless,

there is lack of researches utilizing the machine learning approach to coupled oscil-

lator systems yielding synchronization phenomena. As the synchronization transition

and chaotic behavior both are exhibited on this coupled oscillator system, it is neces-

sary and meaningful to identify the applicability of the machine learning approaches

on such system and to which future work it can be helpful by extending the methods.

In this thesis, we investigate the coupled oscillator system with both analytic ap-

proach and data-driven approach. In chapter 2, we provide basic conception and back-

grounds for synchronization which is a ubiquitous phenomena in nature and can be

described by the coupled oscillator system. As one of the quintessential coupled os-

cillator model describing synchronization phenomena, the Kuramoto model and the

corresponding synchronization transition arising as coupling strength increases is in-

troduced and explained by defining the order parameter of the system.

In chapter 3, we investigate the synchronization transition with effective potential

approach. From the self-consistency equation, the ad hoc potential for the Kuramoto

model is constructed to provide intuitive understanding for behavior of the system,

like the Landau potential energy scheme for phase transition of thermal system. Such

methodology is applied to various natural frequency distributions and modified Ku-

ramoto models exhibiting second, first, and hybrid synchronization transitions. In par-

ticular, models with the hybrid synchronization transition, display the plateau of the ad

hoc potential landscape at the critical point and this quantity satisfies the criterion for

the hybrid phase transition of thermal system. By analyzing the potential scheme for

such non-equilibrium systems, our results imply that the methodology can be extended

to other Kuramoto-type models to identify their transition types and properties.

In chapter 4, we demonstrate studies of machine learning approach to one of the

coupled oscillator system, the Kuramoto model. We examine whether underlying pa-
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rameters of the system can be deduced from the limited amount of information by

introducing machine learning techniques. In the first work of this chapter, exploiting

the machine learning to predict the coupling strength from the dynamics of the order

parameter, we demonstrate that accurate value of coupling is obtained from the well-

trained machine. Next, the snapshot of phases for all oscillators are also adopted to

discriminate synchronized and asynchronized states and to determine the critical value

of the Kuramoto system. As the learning the neural network with parameters of the

Kuramoto model is achieved, we applied it to other model-free tasks. We predict the

future evolution of the system by considering a situation where a detailed description

for the dynamics of the system is unavailable or insufficient, but observational data of

time evolution is given. Finally, underlying connections between oscillators are recon-

structed from phase dynamics of all oscillators using the machine learning techniques.

As the Kuramoto model offers support for the application on real-world systems ex-

hibiting synchronization phenomena or nonlinear behaviors, our work has potential for

utilizing the machine learning approaches to such systems.

We conclude in the final chapter.
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Chapter 2

Synchronization of coupled oscillators

2.1 Synchronization

In the jungles of Southeast Asia (particularly in Malaysia, Thailand, and the Philip-

pines), one can observe the nature’s dramatic light shows by fireflies. By coordinating

their flashing patterns, thousands of fireflies blink in perfect unison for minutes, some-

times hours. Meanwhile, on 10 June 2000, the day of opening of millennium bridge,

thousands of people walked on the bridge at a time and the natural sway motion of peo-

ple walking caused sideways oscillations in the bridge. And this bridge’s movements

caused people to sway in step, which induces the increase in the amplitude of the

bridge again, and the “positive feedback” occurs. Due to this unexpected lateral vibra-

tion, the bridge was closed in 12 June for modifications. These two cases have features

in common that individual’s states or characteristics match with the neighbor’s as time

goes by, which are called “synchronization” phenomena.

Synchronization is a process of precisely coordinating or matching two or more

things to realize the system in unison or the collective synchronous behavior. Besides

the two examples mentioned above, there are a number of examples of synchroniza-

tion in nature. Crickets can achieve synchronization by either lengthening or short-

ening their chirp intervals. Cardiac pacemaker cells are synchronized to control the

contraction of heart muscles. And cellular clocks in the brain are integrated into a sta-

ble and robust pacemaker to sustain the rhythm of 24-hours-period. Rhythmic clapping

of humans in an audience is also an example of the synchronization.
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Such collective behaviors emerge due to interactions between individuals in the

system. Through diverse form of active positive interactions between them, individ-

ual intrinsic properties can be restrained and the unity of the whole system can be

achieved. As a variety of examples are observed in nature, analysis for real systems

and the modeling for the synchronization phenomena are essential to understand the

nature and utilize them.

2.2 Coupled oscillators

To describe the synchronization phenomena or setup the model, oscillators are usually

adopted to represent elements in the system. Each oscillators have its own phases and

such phases are changed with time as oscillators interact with each other.

One can consider two types of synchronization of coupled oscillators system: fre-

quency synchronization and phase synchronization. Frequency synchronization indi-

cates the state where all oscillators have equivalent frequencies or angular velocities

regardless of their phases. On the other hand, the phase synchronization requires the

condition that all oscillators have equal phases, which guarantees the equal frequencies

as well.

There are various models which have been dealt with for studying synchronization

of the coupled oscillator system. For example, the pulse-coupled model contains the

interaction between oscillators with the form of a pulse. In particular, the integrate-and-

fire oscillators, one of the pulse-coupled model, is used for describing the behavior of

neurons in the brain. The system composed of this type of oscillators exhibits interest-

ing dynamics and properties, however, we do not take into account such models in this

dissertation, but the most representative model consisting of the limit cycle oscillators,

the Kuramoto model.
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2.3 The Kuramoto model

As one of the model describing the synchronization phenomena, the Kuramoto model

has been widely dealt with as a mathematical model for the collective synchronization

behavior [30, 31]. The Kuramoto model consists of N globally coupled oscillators

interacting with each other via nonlinear coupling, which is written as

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) (2.1)

where θi is the phase of oscillator i. ωi is the natural frequency of oscillator i that fol-

lows the distribution g(ω) and this represents intrinsic characteristic of each oscillator.

And K denotes the coupling strength which indicates that how strongly the oscilla-

tors interact with each other. Hence, the phase of each oscillator evolves with time as

the result of the combination of two terms in the right hand side of the Eq. (2.1). The

first term is the oscillation term representing the velocity of the oscillator without any

interactions. The second term is the interaction term representing the force to reduce

phase differences by comparing with phases of other oscillators.

As K indicates the coupling strength, the system is in incoherent (asynchronous)

state for sufficiently small value ofK. AsK increases, the system becomes in coherent

(synchronous) state and oscillators in the system are synchronized. And the transition

from the incoherent state to coherent state is referred as “synchronization transition”

which will be treated in the Sec. 2.7.1.

The Kuramoto model of globally coupled oscillators given in Eq. (2.1) can be

generalized for complex networks as

θ̇i = ωi +K
N∑
j=1

Aij sin(θj − θi) . (2.2)
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Another form for complex networks is written as

θ̇i = ωi +
K

ki

N∑
j=1

Aij sin(θj − θi) (2.3)

where ki is the degree of node i. And all these can be generalized by

θ̇i = ωi +
K

k1−α
i

N∑
j=1

Aij sin(θj − θi) (2.4)

using the parameter α. When α = 1, the Eq. (2.4) reduces to the Eq. (2.2) and when

α = 0, it reduces to the Eq. (2.3).

2.4 Natural frequency

As natural frequencies indicate intrinsic characteristic of oscillators in the system, the

set of natural frequencies, {ωi}, is constant with time. This set of natural frequen-

cies, {ωi}, is drawn from the natural frequency distribution g(ω) for finite size system.

And such difference between oscillators induces the disorder in the system. Since the

form of natural frequency distribution is important as it determines the type of phase

transitions, we here introduce some distributions used frequently in the study of syn-

chronization. We consider the case of thermodynamic limit ofN →∞ for all contents

in this section.

2.4.1 Gaussian distribution

Gaussian distribution for the set of natural frequencies is given by

g(ω) =
1√

2πσ2
e−

(ω−ω0)2

2σ2 (2.5)

where ω0 is the mean of the distribution and σ is its standard deviation. For this case,

the system exhibits the second-order transition with the critical coupling of Kc =

9



2/[πg(ω0)] [30, 31]. For the special case of the normal distribution with ω0 = 0 and

σ = 1, the critical coupling is given by Kc =
√

8/π.

2.4.2 Lorentzian distribution

Lorentzian distribution is given by

g(ω) =
γ/π

(ω − ω0)2 + γ2
. (2.6)

where γ is the scale parameter. For this distribution, the second-order transition ap-

pears with the critical value of Kc = 2γ [32, 33]. In particular, for the case of γ = 1

and ω0 = 0, the critical coupling is given by Kc = 2.

2.4.3 Uniform distribution

Uniform distribution with zero mean is given by

g(ω) =


1

2γ for |ω| ≤ γ

0 for |ω| > γ

. (2.7)

In this case, the hybrid synchronization transition occurs and the critical value and the

jump height are given by Kc = 2/[πg(0)] = 4γ/π and rc = π/4, respectively [34]. It

is introduced in section 3.5.1 which exhibits the hybrid synchronization transition.

2.5 Sampling of natural frequency

For the study of synchronization of the system with finite size, numerical simulations

are required to verify the analytical approaches or observe the scaling behavior. To im-

plement simulations, the set of natural frequencies, {ωi} are selected from the distri-

bution, g(ω), given in the previous section. Generally, there are two sampling methods

: random sampling and regular sampling.

10



0.5

1

1.5

−3 −2 −1 0 1 2 3

g(ω)

ω

Gaussian
Lorentzian

Uniform

Figure 2.1: Various forms of natural frequency distribution. Blue line denotes the Gaus-
sian distribution given in Eq. (2.5) with ω = 0 and σ = 1. Green line denotes the
Lorentzian distribution given in Eq. (2.6) with γ = 1 and ω0 = 0. Red line denotes the
uniform distribution given in Eq. (2.7) with γ = 1.

2.5.1 Random sampling

For this sampling, all the natural frequencies are randomly selected from the distri-

bution g(ω). Here, we used the “xorshift” for the random number generator in this

study.

2.5.2 Regular sampling

For regular sampling, the set of natural frequencies can be assigned according to the

equation

∫ ωj

−∞
g(ω)dω =

−0.5 + j

N
(2.8)

for j = 1, 2, ..., N , which indicates that the area under the distribution function curve

are equally divided by N. In this case, the frequency-disorder fluctuation in natural

frequency does not emerge, as the set of frequencies is determined as the form of

distribution g(ω) is given.
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(a) Gaussian distribution

By substituting Eq. (2.5) with ω = 0 into Eq. (2.8), the natural frequencies are

obtained as

ωj =
√

2σ2erf−1

(
−1 +

2j − 1

N

)
, j = 1, 2, ..., N . (2.9)

(b) Lorentzian distribution

In the same way, we can obtain the set of natural frequencies by inserting Eq. (2.6)

into Eq. (2.8),

ωj = γ tan

(
π

2

(
−1 +

2j − 1

N

))
, j = 1, 2, ..., N . (2.10)

Another regular sampling of the Lorentzian distribution is used by the authors in the

paper [35], which is given by

ωj = γ tan

(
π

2

(
−1 +

2j

N + 1

))
, j = 1, 2, ..., N , (2.11)

instead of Eq. (2.10).

(c) Uniform distribution

To assign N natural frequencies for the uniform distribution, there are two ways

of regular sampling referred to as the midpoint rule and the endpoint rule [36]. For the

uniform distribution with the range of [−γ, γ], the midpoint rule is given by

ωj = γ

(
−1 +

2j − 1

N

)
, j = 1, 2, ..., N , (2.12)

where the values of ω = ±γ are not included in the sampling of {ωi}. And the endpoint

is given by

ωj = γ

(
−1 +

2j − 2

N − 1

)
, j = 1, 2, ..., N (2.13)
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Table 2.1: Natural frequency distributions and their regular sampling.

Distribution g(ω) Regular sampling ωi

Gaussian 1√
2πσ2

e−
(ω−ω0)2

2σ2
√

2σ2erf−1
(
−1 + 2j−1

N

)
Lorentzian γ/π

(ω−ω0)2+γ2 γ tan
(
π
2

(
−1 + 2j

N+1

))
Uniform

{
1
2γ for |ω| ≤ γ
0 for |ω| > γ

{
γ(−1 + 2j−1

N ) mid-point rule
γ(−1 + 2j−2

N−1 ) end-point rule

where the values of ω = ±γ are included in the sampling of {ωi}. Details for these

two sampling methods are investigated in Ref. [36].

2.6 Order parameter

The collective behavior of the system with coupled oscillators is quantified by the

complex order parameter Z, which is defined as

Z = reiψ =
1

N

N∑
j=1

eiθj (2.14)

where ψ is the average phase and r indicates the phase coherence of oscillators and

serves as a role of the order parameter during synchronization. In the thermodynamic

limit of N → ∞, when the system is in asynchronous state, the order parameter r

is equal to zero which means that there is no coherence among oscillators. When the

system is in synchronous state, r becomes a nonzero value and this means that there is

phase coherence of oscillators.

Since phases of oscillators evolve with time, one can obtain the dynamics of the

order parameter, r(t). Generally, for given value of the coupling strength, the time-

averaged value of the order parameter, 〈r(t)〉, in the steady state is taken for the statis-
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Figure 2.2: Complex order parameter as the centroid of all phases presented on com-
plex plane.

tical analysis.

2.7 Phase transition

In statistical physics and thermodynamics, phase transition indicates the process of

physical change in states of the system. As it is not confined only to the thermody-

namic systems but also to the non-thermodynamic systems where temperature is not a

parameter, phase transition appears in diverse complex systems.

2.7.1 Synchronization transition

As a mathematical model of ferromagnetism, the Ising model allows simple identifi-

cation of phases and phase transitions. For this model, spins variables, si, are assigned

on each sites and take only one of two possible values :

si = ±1 . (2.15)
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As the order parameter is a measure of order for the system, the net magnetization de-

fined as the sum of all spin vectors can be one of the order parameter for this magnetic

spin model. And the value of this order parameter changes with the temperature. When

the temperature T is sufficiently large, spins are not aligned and the magnetization is

nearly zero, which is corresponding to the disordered state. When T is small, how-

ever, spins are aligned in the same direction, and the order parameter becomes nearly

one, which indicates the ordered state. Between these two states, the system exhibits a

phase transition from disordered state to ordered state at the critical value of Tc.

Similarly, one can identify phases and phase transitions for the Kuramoto model as

well. Without coupling strength, or K = 0, oscillators rotate with their given natural

frequencies and their phases are distributed on a circle randomly. This is corresponding

to the disordered state, or asynchronous state. In the thermodynamic limit of N →∞,

the order parameter r remains at the value of zero for a sufficiently small value ofK as

in the Ising model. As K increases, r becomes a nonzero value at the critical strength

Kc, which implies the occurrence of the ordered state, or the synchronous state, as

shown in Fig 2.3. And such phase transition for synchronization phenomena is called

“synchronization transition”.

2.7.2 Hybrid phase transition

Phase transitions in equilibrium systems are conventionally classified according to the

Ehrenfest classification scheme [37]. When the n-th derivative of the free energy with

respect to its argument first becomes discontinuous, the phase transition is of the n-

th order. Many phase transitions are either second-order or first-order, where an or-

der parameter such as the magnetization changes from zero to a finite value contin-

uously or discontinuously, and fluctuations are divergent or finite, respectively. How-

ever, this classification scheme does not accommodate some phase transitions. For

instance, although the order parameter is discontinuous, critical behavior appears at

the same transition point; e.g., the fluctuations of the order parameter and/or the cor-
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Figure 2.3: The change of the order parameter r as a function of the coupling strength
K in the thermodynamic limit. The order parameter is equal to zero when the coupling
strength is smaller than the critical coupling Kc, which is according to the disordered
state, or the asynchronous state. When the coupling strength is larger than the critical
coupling, r becomes a nonzero value implying the ordered state, or the synchronous
state.

relation length diverge. This type of abnormal phase transition is called a mixed-order

transition. In addition, a new type of phase transition has been observed, in which

the order parameter exhibits the first-order and the second-order transition behavior

at the same transition point. This type of transition is called a hybrid phase tran-

sition (HPT). The terms mixed-order and HPT may often be used interchangeably.

Examples appear in various equilibrium and nonequilibrium systems, including the

Ising model with long-range interactions in one dimension [38–41], the Ashkin–Teller

(AT) model on scale-free networks [42], k-core percolation [43–47], DNA denatura-

tion [48–50], jamming [51–53], crystallization of colloidal magnets [54], and coupled

oscillators [34, 55–57].

2.7.3 Type of synchronization transition

For the Kuramoto system, the type of synchronization transition varies according to the

topology or the setup of the model, such as the form of the natural frequency distribu-

tion. For example, it is well known that the Kuramoto model with natural frequencies
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(a) (b)

(c)

Figure 2.4: Schematic plots of several types of phase transitions. (a) For the second-
order transition, the magnetization exhibits continuous transition and the critical be-
havior appears at the critical point. (b) For the first-order transition, the magnetization
changes from zero to a finite value discontinuously at the critical point. (c) The change
of magnetization is discontinuous and the critical behavior appears at the critical point
for the hybrid phase transition.
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following the normal distribution given by

g(ω) =
1√
2π
e−

ω2

2 (2.16)

exhibits the second-order synchronization transition arising at the critical point Kc =

2/[πg(0)] =
√

8/π in the limit N → ∞ [30, 31]. And the critical value Kc =

2/[πg(0)] is valid for any other unimodal symmetric distributions. For bimodal distri-

bution, on the other hand, the first-order synchronization transition emerges [58–60].

And as a boundary case between unimodality and bimodality, the discontinuous tran-

sition with critical behavior, or the hybrid synchronization transition, appears for the

uniform distribution [34].

2.8 Finite-size scaling

Since real systems are always finite, investigating the finite size effect is important

to evaluate the unknown behavior of the system with the particular size. For the Ku-

ramoto model, the finite number of oscillators induces different behaviors in physical

quantities from the system in the thermodynamic limit of N → ∞. Starting at the

initial value of r0, the order parameter is saturated after the relaxation time. And this

saturated value of the order parameter r in the steady state depends on the system size

N . In the subcritical regime, the dependence is given by r ∼ N−1/2, since the system

is in asynchronous state and the randomness in natural frequencies dominate the dy-

namics of the system. As the coupling strength becomes larger and approaches to the

critical value, K → Kc, the order parameter exhibits another power-law behavior for

different system sizes. This behavior can be understood using the finite-size scaling

for various physical quantities, such as order parameter and susceptibility.
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2.8.1 Critical exponents

The critical exponents describe the behavior of physical quantities near the critical

point for the second-order phase transition or the hybrid phase transition with critical-

ity. We here introduce several critical exponents of coupled oscillator systems in the

thermodynamic limit. As one of the physical quantities, the correlation length diverges

at the critical point K = Kc, which can be written as

ξ ∼ ε−ν⊥ (2.17)

where ε = (K −Kc)/Kc and ν⊥ is the critical exponent relating the size of correla-

tions to the temperature (coupling strength in this case). And the correlation time also

diverges at the critical point K = Kc,

τ ∼ ε−ν‖

∼
(
ξ−1/ν⊥

)−ν‖
= ξν‖/ν⊥ ≡ ξz (2.18)

where z denotes the dynamical exponent. And the saturated value of the order param-

eter r exhibits the behavior of

r ∼ εβ (2.19)

in the supercritical region. The susceptibility χ for the Kuramoto model is defined as

χ ≡ N [〈(r − 〈r〉)2〉]

= N [〈r2〉 − 〈r〉2] (2.20)

19



where 〈·〉 denotes the time average in the steady state of a given sample and [·] denotes

the sample average, respectively. Near the criticality, the susceptibility diverges as

χ ∼ |ε|−γ . (2.21)

2.8.2 Finite-size effect

Although the physical quantities such as the correlation length, correlation time and

the susceptibility diverge at the critical point in the thermodynamic limit of N → ∞,

quantities for the finite-size systems does not diverge any longer. For example, as the

correlation length cannot exceed the system size L = N1/d even at the critical value

ε = 0, one should consider the “finite-size effect” to evaluate the behavior of the

correlation length near the critical point for the finite-size system. And this can be

expressed as

ε−ν⊥ ∼ ξ ∼ L = N1/d . (2.22)

Rewriting Eq. (2.22), we obtain

ε ∼ N−1/dν⊥ ≡ N−1/ν̄ (2.23)

and

εN1/ν̄ = const . (2.24)

Using Eq. (2.23), one can identify the behavior of the order parameter and the

susceptibility for the system with finite size N . Combining Eq. (2.19) and Eq. (2.23),

we get

r ∼ εβ ∼ N−β/ν̄ . (2.25)
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And this equation can be generalized by writing

r ∼ N−β/ν̄fr(εN1/ν̄) (2.26)

where fr(x) is the scaling function for the order parameter. As the scaling function

behaves as fr(x) ∼ xβ for x � 1 and constant for x → 0, relations r ∼ N−β/ν̄ for

ε = 0 and r ∼ εβ for N →∞ are recovered.

In the same way, the finite-size effect for the susceptibility is written as

χ ∼ |ε|−γ ∼ Nγ/ν̄ . (2.27)

And this equation can be generalized as

χ ∼ Nγ/ν̄fχ(εN1/ν̄) (2.28)

where fχ(x) is the scaling function for the susceptibility. As the scaling function be-

haves as fχ(x) ∼ |x|−γ for x � 1 and constant for x → 0, relations χ ∼ Nγ/ν̄ for

ε = 0 and χ ∼ |ε|−γ for N →∞ are recovered.

These critical exponents can be obtained through the numerical calculation for the

Kuramoto model with finite size systems. For example, it is well known that β =

1/2, γ = 1 and ν̄ = 5/2 are obtained for the Gaussian distribution of {ωi} [61–64].

As shown in Figs. 2.5 to 2.8, we verify critical exponents numerically and obtained

β/ν̄ ≈ 0.224 and γ/ν̄ ≈ 0.425.
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Figure 2.5: Finite-size scaling for the order parameter r. Here, the case of Gaussian
distribution of {ωi} with random sampling is considered where the critical coupling
Kc =

√
8/π ≈ 1.59577 is given. 1000 ensembles for each points are calculated. (a)

The order parameter as a function of coupling strength K for various system sizes are
obtained numerically. (b) With given exponents of β = 1/2 and ν̄ = 5/2, the data
collapse is performed.
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Figure 2.6: The change of the order parameter r as a function of system size N at
the critical coupling K = Kc. 1000 ensembles for each points are calculated. As the
slope denotes −β/ν̄, we obtained β/ν̄ ≈ 0.224 which is consistent value to critical
exponents β = 1/2 and ν̄ = 5/2.
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Figure 2.7: Finite-size scaling for the susceptibility χ. Here, the case of Gaussian
distribution of {ωi} with random sampling is considered where the critical coupling
Kc =

√
8/π ≈ 1.59577 is given. 1000 ensembles for each points are calculated. (a)

The susceptibility as a function of coupling strengthK for various system sizes are ob-
tained numerically. (b) With given exponents of γ = 1 and ν̄ = 5/2, the data collapse
is performed.
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Figure 2.8: The change of the susceptibility χ as a function of system size N at the
critical coupling K = Kc. 1000 ensembles for each points are calculated. As the slope
denotes γ/ν̄, we obtained γ/ν̄ ≈ 0.425 which is consistent value to critical exponents
γ = 1 and ν̄ = 5/2.
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Chapter 3

Effective potential approach to synchronization tran-

sition

Landau theory has been useful for determining the type of phase transition in equi-

librium systems and determining the critical exponents in the mean-field limit for the

second-order transition. The Landau free energy L(m) in Euclidean space is expanded

with respect to the order parameter m (the magnetization) in polynomial form as

L(m) =
1

2
(T − Tx)m2 − 1

3
a3m

3 +
1

4
a4m

4 + · · · . (3.1)

For the second-order transition, a3 is zero when L(m) = L(−m) is symmetric, and

a4 > 0. Tx becomes a transition point Tc, across which the position of the global

minimum of L(m) changes from m = 0 for T > Tc to finite m (e.g., m > 0) for

T < Tc. ∂L/∂m = 0 and ∂2L/∂m2 < 0 at m = 0 and T = Tc. For the first-order

transition, a3 > 0. L(m) has a minimum at m = 0 for T > Tx. Moreover, there exists

m∗(T ) > 0 such that ∂L/∂m = 0 at m∗ when a2
3 > 4a4(T − Tx) for T > Tx. The

local minimum of L at m∗ becomes a global minimum at Tc. Then, for T < Tc, a

global free energy minimum exists at m = m∗. Thus, the first-order transition occurs

at Tc, which is higher than Tx. Therefore, the order parameter is discontinuous across

Tc. We remark that ∂2L/∂m2 > 0 at m = 0 for Tc.

Recently, the Landau theory was extended to the HPT. The authors of Ref. [42]

investigated the AT model on scale-free networks. In the AT model, two types of Ising

spins are located on each node of a scale-free network. Two spins of each type at the
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nearest-neighbor nodes interact with strength J2, and four spins of both types at the

nearest-neighbor nodes interact with strength J4. The Landau free energy was estab-

lished. Owing to the power-law behavior of the degree distribution of scale-free net-

works, the Landau free energy contains m terms with non-integer powers. For specific

cases in the parameter space (T, J4/J2, λ), where λ is the exponent of the degree dis-

tribution, an HPT occurs at the so-called critical endpoint. The order parameter jumps

and includes critical behavior at the same transition point. The fluctuations of the order

parameter are finite and diverge on either side of the transition point. The authors of

Ref. [42] investigated the profile of the Landau free energy at this critical endpoint and

established the criterion for the HPT within the Landau theoretical scheme as follows:

At T = Tc, the free energy has two global minima at m = 0 and m∗ > 0. Thus, for

T > Tc, the global minimum occurs at m = 0, and for T < Tc, the global minimum

occurs at m∗(T ). Mathematically, the criterion for the HPT is written as

L = 0,
∂L
∂m

= 0, and
∂2L
∂m2

= 0 at m = 0 and T = Tc,

L = 0,
∂L
∂m

= 0, and
∂2L
∂m2

≥ 0 at m = m∗ and T = Tc,

L < 0,
∂L
∂m

= 0, and
∂2L
∂m2

> 0 at m = m∗ and T < Tc. (3.2)

The profiles of the Landau free energy as a function of the order parameter for dif-

ferent types of phase transitions are shown in Fig. 3.1. This criterion was confirmed

by theoretical and experimental studies of the crystallization of colloidal magnets, in

which the free energy is zero throughout the region m = [0,m∗] [54].

We note that the Landau theory criterion for the HPT was established in equilib-

rium thermal systems. Thus, in this section, we aim to examine whether there exists a

quantity corresponding to the Landau free energy and then to check whether the cri-

terion for the HPT is still valid and useful in nonequilibrium dynamic systems. For

this purpose, we consider Kuramoto models (KMs) with particular types of natural

frequencies that exhibit HPTs [34, 56, 57].
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(a)
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Figure 3.1: Schematic plots of the Landau free energy L(m) as a function of the order
parameter m for (a) second-order, (b) first-order, and (c) hybrid phase transitions in
thermal systems.
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3.1 Analytic approaches to the Kuramoto model

Here, we will treat the way of understanding the Kuramoto model with analytic ap-

proaches. By substituting Eq. (2.14) into Eq. (2.1), one can obtain the equation

θ̇i = ωi +Kr sin(ψ − θi) . (3.3)

which is the dynamic equation for oscillator i only and describes its behavior of time

evolution.

3.1.1 Self-consistency analysis

The solutions of Eq. (3.3) exhibit two types of behavior. Oscillators with natural fre-

quencies satisfying |ωi| ≤ Kr are phase-locked in the rotating frame. These oscillators

contribute to the nonzero coherence r. For these oscillators, the distribution of phases

θ at given ω is given by

ρω(θ) = δ
(
θ − arcsin

( ω

Kr

))
. (3.4)

By contrast, the oscillators with |ωi| > Kr from a symmetric distribution of g(ω)

are drifting around the circle and do not contribute to r [65–67]. For these drifting

oscillators, the distribution is given by

ρω(θ) =
C

|θ̇|

=
C

|ω −Kr sin θ| (3.5)

where C is constant. Using the invariance under global rotation, we can set ψ = 0

without loss of generality. As oscillators in the system are divided into two groups,
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this gives the order parameter equation in the N →∞ limit as

r = 〈eiθ〉

= 〈eiθ〉lock + 〈eiθ〉drift

= rlock + rdrift . (3.6)

The first term for locked oscillators, rlock, becomes

rlock = 〈eiθ〉lock

=

∫ Kr

−Kr
eiθg(ω)dω

=

∫ Kr

−Kr
cos θ(ω)g(ω)dω + i

∫ Kr

−Kr
sin θ(ω)g(ω)dω

=

∫ Kr

−Kr
cos θ(ω)g(ω)dω . (3.7)

Here, the imaginary term is vanished since sin θ(ω) = ω
Kr has a form of odd function

and g(ω) is assumed as an even function. And the drifting term for the order parameter

can be written as

rdrift = 〈eiθ〉drift

= 〈cos θ〉drift + i〈sin θ〉drift . (3.8)

30



Here, 〈cos θ〉drift becomes

〈cos θ〉drift =

∫ π

−π

∫
|ω|>Kr

cos θρω(θ)g(ω)dωdθ

=

∫ 0

−π

∫ −Kr
−∞

cos θρω(θ)g(ω)dωdθ

+

∫ 0

−π

∫ ∞
Kr

cos θρω(θ)g(ω)dωdθ

+

∫ π

0

∫ −Kr
−∞

cos θρω(θ)g(ω)dωdθ

+

∫ π

0

∫ ∞
Kr

cos θρω(θ)g(ω)dωdθ . (3.9)

Using ρω(θ) = ρ−ω(θ + π) and g(ω) = g(−ω), we get

〈cos θ〉drift = 0 . (3.10)

In the same way, it can easily be shown that the 〈sin θ〉drift is also equal to zero. It indi-

cates that the contribution to the value of order parameter comes only from 〈cos θ〉lock.

Thus, in the steady state, the order parameter r satisfies the self-consistency equation

(SCE)

r =

∫ π

−π
dθ

∫ Kr

−Kr
dω cos θg(ω)δ

(
θ − arcsin

( ω

Kr

))
=

∫ Kr

−Kr
dω

√
1− ω2

K2r2
g(ω) ≡ f(r) . (3.11)

And the SCE is reduced to f(r)− r = 0.

3.1.2 Ott-Antonsen ansatz

Another analytic approaches to the Kuramoto model was introduced in Ref. [32]. Ott

and Antonsen, authors of the paper [32], obtained analytical description for the macro-

scopic dynamics of Kuramoto systems by reducing the dimension.
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For this explanation, we can start by considering the continuum limit of infinitely

many Kuramoto oscillators. As in the previous section, we again set the distribution

density of oscillators as ρ(θ, ω, t) for given phase θ, natural frequency ω, and time t

satisfying

z∗(t) =

∫ ∞
−∞

∫ π

−π
e−iθρ(θ, ω, t)dθdω . (3.12)

For N → ∞, the time evolution of ρ(θ, ω, t) must obey the continuity equation such

that

∂ρ(θ, ω, t)

∂t
+
∂ρ(θ, ω, t)

∂θ
(θ̇ρ(θ, ω, t)) = 0 . (3.13)

For the Kuramoto oscillators, it becomes

∂ρ(θ, ω, t)

∂t
+
∂ρ(θ, ω, t)

∂θ

[(
ω +

K

2i

(
ze−iθ − z∗eiθ

))
ρ(θ, ω, t)

]
= 0 . (3.14)

Authors considered the Fourier expansion of ρ in θ of the form

ρ(ω, θ, t) =
g(ω)

2π

[
1 +

∞∑
k=1

ρ̂k(ω, t)e
inθ + c.c.

]
(3.15)

where ρ̂k denotes the n-th Fourier coefficient and c.c. stands for the complex conjugate.

By considering a restriction on phase space, Ott-Antonsen(OA) ansatz is suggested :

ρ̂k(ω, t) = αk(ω, t) (3.16)

with analytic function of α(ω, t). Using the OA ansatz, substitution of Eq. (3.15) into

Eq. (3.12) and Eq. (3.14) leads to

z∗ =

∫ ∞
−∞

α(ω, t)g(ω)dω (3.17)
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and

∂α

∂t
+ iωα+

K

2
(zα2 − z∗) = 0 , (3.18)

respectively.

To proceed further, the contour integration in Eq. (3.17) have to be evaluated us-

ing the residue theorem for appropriate distribution of g(ω). In particular, for the

Lorentzian distribution given in Eq. (2.6), the integration can be analytically calcu-

lated as g(ω) have simple poles, which are given by ω0 ± iγ, in the complex ω plane.

Then, the contour integration of Eq. (3.17) along the path encircling the lower complex

half-plane gives the result

z∗ = α(ω0 − iγ, t) . (3.19)

By inserting into Eq. (3.18), it becomes

ż = (−γ + iω0)z +
K

2
(z − |z|2z)

=

(
K

2
− γ
)
z + iω0z −

K

2
|z|2z (3.20)

which is the ordinary differential equation for the complex order parameter z. Thus,

this equation provides the order parameter dynamics of the Kuramoto system with

infinite number of oscillators. Also, one can notice that a supercritical Hopf bifurcation

emerges at Kc = 2γ which indicates that the solution for stable synchronous state

arises.

3.2 Ad hoc free energy

To investigate the dynamic flow and the stability of the SCE, one may choose an ad hoc

potential, which makes it possible to visualize the entire landscape in a given parameter
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space. Like the Landau theory, this landscape may give some clues to determining the

synchronization transition types.

In physics, the concept of potential energy is well established as that is associated

with the configuration of a system in which a force acts. This is formulated as

F (r) = −dU
dr

. (3.21)

When the system is dynamic near an equilibrium state, the relaxation to a stable equi-

librium is expressed as the overdamped equation

µ
dr

dt
= F (r) = −dU

dr
, (3.22)

where µ is the friction coefficient and acts as the inverse of relaxation rate. This for-

mulation may not be suitable to a far-from equilibrium system including the systems

associated with the Kuramoto equation. Nevertheless, there was an attempt [68] to

introduce a fictitious potential along the idea of near equilibrium system as:

dθi
dt

= −∂U({θi})
∂θi

, (3.23)

where

U({θi}) = −ωiθi −
K

2N

∑
i,j

cos(θj − θi) . (3.24)

ωi is regarded as a random field applied to oscillator i and the second term on the r.h.s

is called the Lyapunov function.

In this dissertation, we do not follow the formalism (3.23). Let us define

F (r) ≡ f(r)− r = 0 (3.25)

from the SCE and the ad hoc potential U(r) through the relation F (r) = −dU(r)/dr.
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In turn, U(r) is written as

U(r) =

∫ r

0
(r′ − f(r′))dr′, (3.26)

where we set U(0) = 0 for simplicity. This suggests that for a given frequency distri-

bution g(ω), f(r) as defined in Eq. (3.11) allows us to explore the potential across the

order parameter region.[
∂U/∂r

]
r=r∗

= 0 implies that r∗ can be a solution of the SCE, but with losing the

stability information. To guarantee the solution being stable, we need

[
∂2U

∂r2

]
r=r∗

> 0 , (3.27)

so that the stable solution is confined in the potential well. We find that the choice of

F (r) = f(r) − r satisfies this stability criterion for the Kuramoto models discussed

later. In fact, setting up a rigorous stability criterion for the SCE of the Kuramoto-

type equation is not simple. An empirical linear stability condition of the complex

SCE was proposed [69], which has been validated numerically for many cases. When

g(ω) is symmetric, the cases we consider throughout this section, their stability con-

dition is reduced to the above
[
∂2U/∂r2

]
r=r∗

> 0. Under these stability criteria[
∂U/∂r

]
r=r∗

= 0 and
[
∂2U/∂r2

]
r=r∗

> 0, at the transition point, a second-order

transition has a single stable solution at r∗ = 0; a first-order transition has two stable

solutions at r∗0 = 0 and r∗2, and one unstable solution at r∗1 between the two stable

solutions; and a hybrid phase transition in finite systems has many solutions r∗ of[
∂U/∂r

]
r=r∗

= 0, but their signs of stability alternate. As the determining of F (r)

can be somewhat ambiguous in Kuramoto models, we tried to pay attention on the

state achieved by the system, hence our choice of F (r) ≡ f(r)− r is consistent with

the expected outcome and useful for the construction of U(r).

In the mean time, the equation of motion for the order parameter r was derived

using the Ott-Antonsen ansatz for the case of Lorentzian natural frequency distribu-
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tion [32] as follows:
dr

dt
=
(K

2
− γ
)
r − K

2
r3. (3.28)

On the other hand, our ad-hoc potential is obtained as:

F (r) =

∫ Kr

−Kr
dω

γ/π

ω2 + γ2

√
1− ω2

K2r2
− r

=

√
K2r2 + γ2 − γ

Kr
− r

=
(K

2γ
− 1
)
r − K3r3

8γ3
+O(r5). (3.29)

Up to the leading order, the equation of motion (3.28) is also obtained approximately

by the following relaxation equation

dr

dt
= γF (r), (3.30)

from the ad-hoc potential at the transition point.

We emphasize that our method can serve as a useful framework for determining

the phase transition type for various frequency distributions other than Lorentzian,

which is hard to achieve otherwise. The method clearly reveals the role of the shape of

natural frequency distribution, expressing it in a much interpretable picture: a potential

landscape. In the following, we investigate the profiles of ad hoc potentials for second-

order, first-order, and hybrid synchronization transitions for different types of natural

frequency distributions in thermodynamic limit ofN →∞. (Ad hoc potential analysis

for the system with finite size is described in Appendix C.)
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3.3 Second-order synchronization transition

Here we consider the ad hoc potential of the SCE for the Gaussian distribution g(ω)

given by

g(ω) =
1√
2π
e−

ω2

2 . (3.31)

We obtain the SCE as

r =

√
πA

2
e−A [I0 (A) + I1 (A)] , (3.32)

where A = K2r2/4, and Iα (α = 0 and 1) denotes the modified Bessel functions of

the first kind. For this g(ω), the order parameter increases continuously from r = 0 to

finite r as K is increased from a transition point Kc = 2/[πg(0)] [30, 31].

Thus, we expand the r.h.s. of Eq. (3.32) with respect to r at r = 0 for K = Kc and

obtain that

r =
K

Kc
r − K3

πK3
c

r3 +O(r5) . (3.33)

The ad hoc potential is obtained as

U(r) =
K −Kc

2Kc
r2 − K3

4πK3
c

r4 +O(r6) . (3.34)

The profile of the ad hoc potential is shown in Fig. 3.2(a) for various K values. The

sign of the coefficient of the r2 term changes from positive to negative as K is de-

creased beyond Kc, implying that the stability at r = 0 is also inverted. We again

investigate the relationship between the position of the minimum and the coupling

strength, and obtain

r ∼ (K −Kc)
1/2 (3.35)
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for K → Kc. Using numerics, we plot r∗, at which the minimum of U(r) appears, in

Fig. 3.2(b) as a function of the coupling strength K. Starting from a small value of K,

the minimum remains at r = 0 until K approaches Kc, and it increases continuously

for K > Kc following the relation given in Eq. (3.35) [30, 31].

3.4 First-order synchronization transition

3.4.1 Degree-frequency correlation on a scale-free network with 2 < λ <

3

Refs. [55, 56] consider the KM with degree–frequency correlation on scale-free net-

works with a power-law degree distribution Pd(q) ∼ q−λ. Using the annealed network

approach, the KE is written as

θ̇i = ωi +

N∑
j=1

Kqiqj
N〈q〉 sin(θj − θi), (3.36)

where qi and qj are the degrees of nodes i and j, respectively, and 〈q〉 is the mean

degree, which is defined as 〈q〉 =
∑

j qj/N . The degree–frequency correlation is

given in the form of ωi = qi. The complex order parameter of the system is defined as

Z = reiψ =
1

N〈q〉
N∑
l=1

qle
iθl , (3.37)

where r is the coherence, and ψ is the average phase. One can write the imaginary part

of the equation as

r sin(ψ − θj) =
1

N〈q〉
N∑
l=1

ql sin(θl − θj) . (3.38)
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(a)

(b)

K

Figure 3.2: (a) Plot of ad hoc potential U(r) given by Eq. (3.34) versus r. The potential
exhibits a global minimum at r = 0 for K ≤ Kc. For K > Kc, the position of the
minimum increases continuously from 0 as K is increased. (b) Plot of the position of
the minimum of U(r), denoted as r∗, versus K for the Gaussian distribution g(ω).
Here, a continuous transition occurs at Kc, and r∗ follows the formula (3.35) above
the critical point.
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By substituting this into the Eq. (3.36), we obtain

θ̇j − Ω = ωj − Ω−Kqjr sin(θj − ψ) . (3.39)

where Ω is the group angular velocity defined as Ω = ψ̇. In the limit of t → ∞ and

N →∞, the system approaches to a steady state with a constant angular velocity such

that Ω̇ = 0. The solutions of Eq. (3.39) exhibit two types of behavior. Oscillators with

|ωj − Ω| ≤ Kqjr are locked and have a stable solution taking the form of

ωj − Ω = Kqjr sin(θj − ψ) . (3.40)

On the other hand, oscillators with |ωj − Ω| > Kqjr are drifting and never reach

a steady state. And, for this model, the natural frequency of oscillator has a linear

relation with the degree of respective node as follows,

ωj = aqj + b . (3.41)

Using a rotating frame ωj → ωj−b, and rescaling the coupling constant,K → K/|a|,
we can simply reduce to the model with a = 1 and b = 0, i.e.,

ωj = qj . (3.42)

We will take this assumption for the following analysis. By dividing the system into

locked and drifting oscillators, Eq. (3.37) can be written as

r =
1

N〈q〉
N∑
j=1

qje
i(θj−ψ)Θ

(
1−

∣∣∣∣ωj − Ω

Krqj

∣∣∣∣)

+
1

N〈q〉
N∑
j=1

qje
i(θj−ψ)Θ

(∣∣∣∣ωj − Ω

Krqj

∣∣∣∣− 1

)
. (3.43)
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In the thermodynamic limit, using Eq. (3.42), the term related to the order parameter

of the locked oscillators becomes

1

N

N∑
j=1

qje
i(θj−ψ)Θ

(
1−

∣∣∣∣ωj − Ω

Krqj

∣∣∣∣)

'
∫ ∞

1
dqp(q)q

√
1−

(
q − Ω

Krq

)2

Θ

(
1−

∣∣∣∣q − Ω

Krq

∣∣∣∣)
+ i

∫ ∞
1

dqp(q)
q − Ω

Kr
Θ

(
1−

∣∣∣∣q − Ω

Krq

∣∣∣∣) . (3.44)

And the contribution of the drifting oscillators to the order parameter is given by

1

N

N∑
j=1

qje
i(θj−ψ)Θ

(∣∣∣∣ωj − Ω

Krqj

∣∣∣∣− 1

)

' i
∫ ∞

1
dqp(q)

q − Ω

Kr

1−
√

1−
(
Krq

q − Ω

)2
Θ

(∣∣∣∣q − Ω

Krq

∣∣∣∣− 1

)
. (3.45)

Substituting Eqs. (3.44) and (3.45) into Eq. (3.43) and considering imaginary and real

parts of the order parameter separately, one can obtain SCEs for two parameters, α ≡
rK and the group angular velocity, Ω, as

〈q〉 − Ω =

∫ ∞
1

dqPd(q)(q − Ω)

√
1−

(
αq

q − Ω

)2

Θ

(∣∣∣∣q − Ω

αq

∣∣∣∣− 1

)
(3.46)

and

r =
α

K

=
1

〈q〉

∫ ∞
1

dqPd(q)q

√
1−

(
q − Ω

αq

)2

Θ

(
1−

∣∣∣∣q − Ω

αq

∣∣∣∣) (3.47)

where Θ(x) denotes the heaviside step function.

It is known that when the degree exponent λ is in the range 2 < λ < 3, the

synchronization transition is first-order [56]. For 2 < λ < 3, by solving SCEs (3.46)
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and (3.47) for α and Ω, one can evaluate the ad hoc potential. Because it is not as

simple to calculate analytically, we first obtained the solution of Ω(α) from Eq. (3.46)

numerically and then solved for the SCE by substituting it into Eq. (3.47). As shown

in Fig. 3.3(a), in this case, U(r) exhibits a minimum at r = 0 when K < Kc1 and two

minima at r = 0 and r > 0 when Kc1 < K < Kc2, where Kc1 and Kc2 are defined in

the caption of Fig. 3.3. AsK is increased beyondKc defined in the caption of Fig. 3.3,

the minimum at r > 0 becomes a global minimum. As K is further increased to

K > Kc2, the minimum at r = 0 no longer exists. This change in the potential shape as

a function of K provides an intuitive understanding of the first-order synchronization

transition as it appears for the first-order transition in the Landau theory for thermal

systems. The order parameter behaves as shown in Fig. 3.3(b).

3.4.2 Dependence of interaction strength on the frequency

Another model exhibiting a first-order synchronization transition, the explosive syn-

chronization model, was introduced in Ref. [67]. The model equation is written as

θ̇j = ωj +
K|ωj |∑N
l=1Ajl

N∑
l=1

Ajl sin(θl − θj), (3.48)

where Ajl denotes an element of the adjacency matrix. The complex order parameter

is defined as

Z = reiψ =
1

N

N∑
l=1

eiθl . (3.49)

For all-to-all networks, Eq. (3.48) becomes

θ̇j = ωj +
K|ωj |
N

N∑
l=1

sin(θl − θj) , (3.50)
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(a)

(b)

K

Figure 3.3: (a) Ad hoc potential shape U(r) for different K values for the KE given by
Eq. (3.36) on scale-free networks with degree exponent λ = 2.8. The potential exhibits
only a minimum at r∗ = 0 for K < Kc1. As K is increased, another local minimum
is generated at r∗ > 0 for K > Kc1. As K is further increased, U(r) becomes smaller
at this local minimum position; eventually, when K = Kc, U(r) becomes zero at a
certain r∗ > 0. Thus, there exist two global minima at r∗ = 0 and r∗ > 0. The
minimum at r∗ > 0 becomes only a global minimum as K is further increased. By
contrast, the minimum at r = 0 disappears when K = Kc2. (b) Position r∗ at which
U(r) becomes either a local or a global minimum in (a) as a function of K. r∗ exhibits
a discontinuous transition in the region [Kc1, Kc2]. Blue dashed curve is the trajectory
of the local maximum position of U(r) as K is increased indicating an unstable curve.
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and using Eq. (3.49), we get

∆θ̇j = ωj − Ω−K|ωj |r sin(∆θj) . (3.51)

where Ω is the group angular velocity defined as Ω = ψ̇ and ∆θj ≡ θj−ψ. {ωi} has a

distribution g(ω). As we can set Ω = 0 for symmetric g(ω) in all-to-all networks, one

can then obtain the equation

∆θ̇j = ωj −K|ωj |r sin(∆θj) . (3.52)

When all the oscillators are phase-locked, i.e., ∆θ̇j = 0 for all j, the solution is ob-

tained as

∆θj =


arcsin

(
1
Kr

)
for ωj > 0

arcsin
(
− 1
Kr

)
for ωj < 0 .

(3.53)

From Eq. (3.49), the SCE can be written as

r =
1

2

∫ π

−π
dθ

∫ ∞
−∞

dωg(ω) cos θ Θ
(
ω −

∣∣∣ ω
Kr

∣∣∣)×(
δ

(
θ − arcsin

(
1

Kr

))
+ δ

(
θ − arcsin

(
− 1

Kr

)))

=

√
1−

(
1

Kr

)2

Θ

(
1−

∣∣∣∣ 1

Kr

∣∣∣∣) . (3.54)

Hence, f(r) is determined as follows:

f(r) =


0 for Kr ≤ 1√

1−
(

1
Kr

)2 for Kr > 1 .

(3.55)
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Accordingly, U(r) is obtained as follows:

U(r) =


r2

2 for r ≤ 1
K

r2

2 − r
√

1−
(

1
Kr

)2 − 2
K arctan

(√
Kr+1
Kr−1

)
for r > 1

K .

(3.56)

Fig. 3.4 shows a discontinuous transition at K = Kc1, from which a minimum

of U(r) at r > 0 starts to develop. At Kc, the minimum of U(r) becomes zero for

r∗ > 0. As K is increased further, this minimum at r∗ > 0 is a global minimum. Note

that unlike the case in the previous subsection, Kc2, at which the second derivative of

U(r) with respect to r at r = 0 becomes zero, does not exist. It is always positive

as long as K is finite. Therefore, there is no hysteresis curve. In the limit K → ∞,

the minimum at r∗ > 0 becomes the dominant solution, and the minimum at r = 0

disappears.

3.5 Hybrid synchronization transition

3.5.1 Uniform distribution g(ω)

We consider the ad hoc potential for the uniform distribution g(ω) given by

g(ω) =


1

2γ for |ω| ≤ γ

0 for |ω| > γ

, (3.57)

where γ is the half-width of the distribution. Thus, f(r) becomes

f(r) =


K
Kc
r for Kr ≤ γ

1
2

√
1− γ2

K2r2 + Kr
2γ arcsin

( γ
Kr

)
for Kr > γ

, (3.58)
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(a)

(b)

K

Figure 3.4: (a) Ad hoc potential U(r) given in Eq. (3.56). The potential exhibits one
minimum at r = 0 for K < Kc1. As K is increased, local minimum develops at
r∗ > 0 for K > Kc1, but it is not a global minimum yet. As K is increased further,
U(r) at the minimum point becomes smaller. When K = Kc, U(r) becomes zero at
both r = 0 and r∗ > 0. So U(r) at r∗ > 0 reaches a global minimum as K is further
increased. Note that minimum of U(r) at r = 0 remains as long as K is finite. (b)
Values of r∗ versus K.
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where Kc is the transition point in the thermodynamic limit, determined by Kcrc =

γ [34]. Explicitly, Kc = 4γ/π, and rc = π/4. The potential is determined as

U(r) =


Kc−K

2Kc
r2 for r ≤ γ

K∫ r
0

(
r′ − 1

2

√
1− γ2

K2r′2 − Kr′

2γ arcsin
( γ
Kr′

))
dr′ for r > γ

K

. (3.59)

Numerical evaluations of U(r) for arbitrary values of K are plotted in Fig. 3.5(a).

ForK < Kc, the coefficient of r2 is positive for r ≤ γ/K in Eq. (3.59), so the solution

at r = 0 is stable. As K is increased, the coefficient approaches zero, and the potential

becomes flatter near the origin. AtK = Kc, the coefficient becomes zero, and a plateau

is formed across the range r ≤ γ/Kc = rc, as shown in Fig. 3.5(a). When K > Kc,

the coefficient is negative, and thus the solution r = 0 becomes unstable. In this case,

a stable minimum emerges in the region r > rc.

The minimum of the potential in the region r > rc can be calculated by performing

an expansion above both Kc and rc as

K = Kc + ε and r = rc + δ . (3.60)

By substituting these expressions into Eq. (3.59) and taking the limit ε and δ → 0, we

obtain the potential for r > γ/K,

U(r) = − π
2ε

16γ
δ +

32
√

2

15π3/2
δ5/2 +O(δ3) (3.61)

Minimizing the potential (or, dU(r)/dr = 0), we obtain the hybrid synchronization

transition behavior of the order parameter as

r − rc =

(
9π7

217γ2

)1/3

(K −Kc)
2/3 . (3.62)

The stable fixed point of the order parameter follows this relation, which is consistent
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(a)

(b)

K

Figure 3.5: (a) Plot of ad hoc potential U(r) as a function of the order parameter r
for the case (3.59). The potential exhibits a global minimum at r = 0 for K < Kc

and forms a plateau at K = Kc in the region r ∈ [0, rc = π/4]. When K > Kc, a
global minimum appears above rc = π/4, and it increases gradually as K is increased
further. (b) Plot of r∗ values, at which global minima of U(r) are positioned for given
Ks, as a function ofK for the uniform distribution g(ω). r∗ undergoes a discontinuous
transition at K = Kc and follows Eq. (3.62) above the critical point Kc.
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with the result obtained in Ref. [34]. Fig. 3.5(b) shows that the position of the minimum

r∗ exhibits a discontinuous jump at the critical value Kc. We remark that the potential

U(r) satisfies the Landau criterion for the HPT in thermal systems given in Eq. (3.2).

3.5.2 Degree-frequency correlation on scale-free networks with λ = 3

Here we consider the Kuramoto dynamics on scale-free networks that exhibit a power-

law degree distribution Pd(q) ∼ q−λ, where q denotes the degree, for λ = 3. In

this case, the KE is known to exhibit a hybrid synchronization transition [55, 56]. The

KE is written as Eq. (3.36). In particular, the condition ωi = qi, at which a hybrid

synchronization transition occurs, is given.

The SCE for a scale-free network with λ = 3 was derived in the appendix of

Ref. [56]:

r =
1

2

∫ 1

−1
dx

√
1−

(x
α

)2
Θ
(

1−
∣∣∣x
α

∣∣∣) . (3.63)

By using α = rK, the equation can be written as

r =


K
Kc
r for Kr ≤ 1

1
2

√
1− 1

K2r2 + Kr
2 arcsin

(
1
Kr

)
for Kr > 1

, (3.64)

where Kc = 4/π, and rc = π/4. This result is reduced to the same as that for the

uniform distribution of g(ω) in all-to-all connected networks discussed in Sec. 3.5.1.

Therefore, one can obtain exactly the same potential U(r) as that given for the uniform

frequency distribution γ = 1.
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3.5.3 Flat distribution with exponential tails

In Ref. [57], the uniform natural frequency distribution was extended by adding tails

on each side as follows:

g(ω) =


g(0) for |ω| ≤ α

g(0)[1− c(|ω| − α)m] for α ≤ |ω| ≤ α+ c−
1
m

0 otherwise

(3.65)

where c is a positive constant, and g(0) is given by

g(0) =
1

2

1

α+ [m/(m+ 1)]c−1/m
(3.66)

according to the normalization condition. For this distribution, we obtain f(r) as

f(r) =
K

Kc
r − h(r) (3.67)

where

h(r) =



0 for Kr ≤ α

2g(0)c
∫Kr
α

(√
1− ω2

K2r2 (ω − α)m
)
dω for α < Kr ≤ α+ c−

1
m

2g(0)c
∫ α+c−

1
m

α

(√
1− ω2

K2r2 (ω − α)m
)
dω for α+ c−

1
m < Kr

(3.68)

andKc = 2/[πg(0)]. U(r) was also calculated numerically using Eq. (3.67), as shown

in Fig. 3.6(a). As in previous sections, plateau region of g(ω) leads the system to

exhibit a hybrid synchronization transition with a flat potential at the critical point. A
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calculation of r∗ for the potential confirms that

r − rc ∼ (K −Kc)
2/(2m+3), (3.69)

which was studied in Ref. [57]. When m = 0, the exponent β becomes 2/3, which is

consistent with that of the uniform distribution.

3.5.4 Flat distribution with power-law tails

We consider the Lorentzian distribution with an upper cutoff defined as

g(ω) =


g(0) |ω| ≤ α
1
N

γ/π
γ2+ω2 |ω| > α

, (3.70)

where the normalization is calculated as

N = 1− 2

π
arctan

(
α

γ

)
+

2γα

π (γ2 + α2)
, (3.71)

and

g(0) =
1

N
γ/π

γ2 + α2
. (3.72)

g(ω) is thus flat in (−α, α) and has a long-decay tail ∼ |ω|−2 on each side. We find

a universal hybrid critical exponent β = 2/5, together with a plateau of U(r) similar

to that in Fig. 3.6(a), for this distribution and for any flat distribution with power-law

tails.

Now, we consider a g(ω) that is flat in the interval [−α, α] and decays in a power-
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(a)

(b) (c)

K

Figure 3.6: (a) Plot of ad hoc potential U(r) as a function of r for the case (3.67) with
m = 1. The potential exhibits a plateau in the region [0, rc]. (b) Plot of r∗ values at
which minima of U(r) are positioned as a function of K for various sets of (m,α).
From the left, the curves are for (m,α) = (0.5,1) (in red), (1,1) (in green), and (2,1) (in
blue). For all cases, r∗ undergoes a discontinuous transition at the critical point Kc.
(c) Above Kc, the exponent β of the order parameter is measured for m = 0.5 (red), 1
(green), and 2 (blue). The straight lines are drawn according to the theoretical formula
[Eq. (3.69)] for each case.
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Figure 3.7: (a) Flat-with-tails distribution for various values of (α,m): solid, (1, 3);
dotted, (1, 2); and dashed, (2, 3). (b) Order parameter curve obtained using the SCE.
(c) β = 0.40 is measured for all cases.
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law manner, ∼ |ω|−m (m > 1), for ω > α.

g(ω) =


g(0), |ω| ≤ α
g(0)αm

|ω|m , |ω| > α

, (3.73)

where

g(0) =
m− 1

2αm
(3.74)

by the normalization condition,
∫
g(ω)dω = 1, which is depicted in Fig. 3.7(a). For

Kr ≥ α, the SCE is written as

r =Krg(0)

∫ α/(Kr)

−α/(Kr)
dx
√

1− x2

+
2g(0)αm

(Kr)m−1

∫ 1

α/(Kr)
x−m

√
1− x2dx

=2Krg(0)

∫ θ0

0
dθ cos2 θ

+
2g(0)αm

(Kr)m−1

∫ 1

sin2 θ0

1

2
y−

m+1
2 (1− y)

1
2dy , (3.75)

where α/Kr ≡ sin θ0. Notice that at θ0 = π/2, the SCE shows that the order param-

eter jumps by as much as rc = πg(0)α/2 at Kc = 2/[πg(0)].

Using the SCE, we obtain that

r − rc ∼
α

2Kc

(
15π

4mKc

)2/5

(K −Kc)
2/5 (3.76)

within the leading order as shown in Fig. 3.7(b) and (c). Therefore, the transition is

hybrid, and the associated exponent is β = 2/5, which differs from the value of β =

2/3 for the uniform distribution. Notice that in the limit m → ∞, the second term of

Eq. (3.75) vanishes because sin θ0 < 1, and thus β = 2/3 is recovered.
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3.6 Summary

We reconsidered the hybrid synchronization transitions arising in the KM by con-

structing an ad hoc potential analogous to the Landau free energy conventionally used

in thermal equilibrium systems. In particular, we considered KEs with several different

types of natural frequency distributions which generate hybrid synchronization transi-

tions. From the SCEs of the KMs, we constructed ad hoc potentials and showed that

the ad hoc potential in the thermodynamic limit satisfies the criterion of the Landau

theory for an HPT established for thermal systems [42]. Moreover, we applied the

proposed methodology to the Kuramoto systems with various natural frequency dis-

tributions and coupling strengths for diverse types of synchronization transitions such

as second-order, first-order, and hybrid, transitions. Consequently, this approach could

be useful for determining transition types of synchronizations and understanding tran-

sition properties for other Kuramoto-type models.
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Chapter 4

Machine learning approaches to coupled oscillators

Incorporating machine learning (ML) approaches, recent progressive advances have

been achieved in diverse fields of science and engineering. In particular, here we fo-

cus on the dynamical systems that exhibit synchronization transitions and chaotic dy-

namical patterns. Chaotic behaviors are observed in a variety of systems in nature

such as cardiac cycle, neuroscience, climate and stock market. The utmost interests in

such systems are to explore the chaotic signals for predicting dynamical evolution. To

achieve this, in a traditional approach, once an appropriate model to the current chaotic

pattern is set up and then dynamical evolution is predicted by simulating the model.

However, ML approach using reservoir computing [19–21] identifies underlying fac-

tors of the current chaotic behavior and then provides so-called model-free prediction

of the dynamical evolution [22–29].

Chaotic patterns are often created by the cooperation of multiple elements in the

system. It may be necessary to figure out how these elements are interwoven and coop-

erated among them [70–72]. For instance, in neurophysiology, researches on classify-

ing and capturing physiological events such as seizure, stroke, or headache have been

progressed by identifying the correlations between EEG signals. Recently, ML ap-

proaches accelerate the progress of identifying the cooperation among neuronal com-

ponents [73–76].

Synchronization of the chaotic patterns created by multiple elements in such neu-

ral systems may be a signal of stable state. Hence, a phase transition from a disor-

dered state to an ordered state naturally arises as an interesting issue in such complex
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systems. Along with the recent advance of ML algorithms for the studies of phase

transitions in equilibrium and nonequilibrium systems such as Ising models and per-

colation [12–18], it is interesting to consider the synchronization transition using the

ML approach.

As a model for describing the behavior of coupled oscillators, the Kuramoto model

[30, 31] is a suitable candidate for the platform to deal with above three issues at the

same time. The system exhibits not only the chaotic dynamics provoked by non-linear

couplings between oscillators, but also different types of the synchronization transition

depending on underlying connection topologies or variations on the model [34,56,57,

77, 78]. Despite the rich properties of the Kuramoto oscillators, the applications of

machine learning approaches on this system has not yet been worked out thoroughly.

Here, we examine the Kuramoto model through the data-driven approaches by

focusing on issues mentioned above. We adopt several machine learning models for

finding and predicting the underlying properties of the Kuramoto system from the data

obtained through numerical simulations. Along with the confirmation of consistency

with results already demonstrated in previous studies for the Kuramoto model, we

identify that this approach to the coupled oscillators is applicable to the real-world

system by establishing plausible tasks and reporting successful performance.

4.1 Machine learning models

Before demonstrating the tasks performed, we first introduce the machine learning

models adopted in this dissertation. All the models used here are a class of artificial

neural networks which mimic the human brain through a set of algorithms operated by

a collection of artificial neurons.
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Figure 4.1: Schematic illustration of the feed-forward neural network. Information of
input is always propagated in one direction and never moves backward.

4.1.1 Feed-forward neural network

As one class of the artificial neural network, the feed-forward neural networks (FNNs)

are quintessential deep learning models that were invented as the first type of artificial

neural networks. When the inputs are fed into the input layer, FNNs propagate the input

information from one layer to the next layer in one direction only, without forming

a cycle structure as illustrated in Fig. 4.1. Neurons in one layer are connected with

neurons in the next layer, and all such connections between two consecutive layers are

represented by the weight matrix W. For a given input of x, states of neurons y are

updated by the equation

y = f(Wx + b) (4.1)

where b denotes the bias exerted on neurons and f(x) is the activation function. In

general, non-linear functions such as sigmoid, hyperbolic tangent (tanh), rectified lin-

ear unit (ReLU) and softmax are used for the activation function and one can choose

different form of activation function for each layers. For FNN, neuron states act as the

input in subsequent layer until it reaches to the final output layer.
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4.1.2 Fully-connected neural network

Fully-connected neural networks (FCNs) consisting of fully-connected layers (FL)

only is a basic structure of feed-forward neural network (FNN). Neurons in each FL

are connected with all input components in the precedent layer. The major advantage

of FCNs is independence in structural information of input data which means that any

special assumptions about the input is not necessary.

4.1.3 Convolutional neural network

By combining FLs, convolutional layers (CL), and pooling layers, one can construct

a convolutional neural networks (CNNs). By passing through CL, the input data is

transformed by filters in CL, which are useful for maintaining spatial information and

identifying the spatial patterns of the input such as translational symmetry and rota-

tional symmetry. These networks are applied for image classification, image and video

recognition, objects detection, and so on.

4.1.4 Recurrent neural network

As another deep learning model for dealing with the sequential data, recurrent neural

network (RNN) has recurrent layers with cyclic connection topology, which leads to

distinction from the FCN. This structure of RNN resembles biological brain modules

which also exhibits recurrent connection pathways. These cyclic connections of RNNs

allow to have applications in natural language processing, image captioning, machine

translation, predicting time sequential data such as stock market, weather forecast, and

so on.

4.1.5 Reservoir computing

Reservoir computing (RC), a class of recurrent neural networks, is composed of an

input layer, an output layer and a reservoir layer which connects between input and
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input
output

error

(a)

(b)

Figure 4.2: Schematic illustration of (a) the RNN training and (b) reservoir comput-
ing. For a traditional RNN training methods, all elements in input-to-hidden weight,
internal weight of hidden, and hidden-to-output weight are adapted for training, while
only elements in the hidden-to-output weight are updated for reservoir computing.

output layers. And neurons in the reservoir layer has internal links including the self-

loop as in the recurrent layer.

In this thesis, as the input vector u(t) goes in, the state vector r is updated accord-

ing to the equation

r(t+ 1) = (1− λ)r(t) + λ tanh

Ar(t) + Win

 bin

u(t)

 (4.2)

where A is the weighted adjacency matrix of the reservoir network, Win is the random

matrix which maps an input vector u(t) into a state vector r(t), λ is the leaking rate,
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Table 4.1: Symbols for machine learning models.

Symbol Model

FNN Feed-forward neural network
FCN Fully-connected neural network
CNN Convolutional neural network
RNN Recurrent neural network
RC Reservoir computing

and bin is the bias term. And the output vector y(t) is determined by a linear function

y(t) = Wout


bout

u(t)

r(t)

 (4.3)

where Wout denotes the output matrix which maps a reservoir state into a output vector

for given bias of bout.

4.2 Supervised learning

Although a variety of structures can be designed, FNN F is determined by model

parameters {w} including the weight and the bias. The model produces the output y

for a given input x, which is expressed as the functional form

y = F [{w}] (x) . (4.4)

For supervised learning, model parameter {w} of FNN is adjusted for the output y to

be close to the desired output ȳ according to the given input x of a training dataset.

To minimize the difference between y and ȳ, or the cost (loss, energy) function E,

determined by the root mean square, the mean absolute, or the cross entropy, model
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parameter w is tuned through the gradient descent method which is the fundamental

method for training FNN including RNN :

wnew = w − α∂wE(y, ȳ) (4.5)

where α is the learning rate. With random initial values of {w}, the well-trained FNN

is obtained by repeating the learning process of Eq. (4.5) [79].

In the case of RC, when the updated state vector r of the reservoir is given through

Eq. (4.2), the output weights Wout are determined by the equation [21, 27]

Wout = YX>(XX> + γI)−1 (4.6)

where γ is the ridge regularization parameter and I is an identity matrix. And X and Y

are the collecting matrix of state vector [bout,u(t), r(t)]> and the desired output vector

ȳ(t) in the training process, respectively. While the classical RNN adopts the back-

propagation through time which is based on a gradient descent method for recurrent

layers, for RC, A and Win are randomly created and unchanged during training, and

only the output weights Wout are computed.

4.3 Finding the coupling strength

Assuming a situation where any concrete form of dynamics is unavailable, we inves-

tigate that how accurate values of underlying coupling strengths can be obtained by

the neural network from the data for the dynamics of the order parameter, r(t), only.

As phases of oscillators and the corresponding order parameter proceed according to

Eq. (2.1), r(t) is obtained for given value of J . Once the generated time series of the

order parameter for given J goes into the neural network as an input, learning process

is carried out by a model as shown in Fig. 4.3. Taking the trained neural network, we

tested for other generated 104 sets of r(t) with randomly chosen J in the range of
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Figure 4.3: Schematic illustration of the process carried out for finding the coupling
strength.

[0, 2].

Here, we produced configurations of r(t) for the system of N = 1000 using the

fourth-order Runge-Kutta method with a discrete time step δt = 0.05 up to a total of

2× 103 time steps. The sets of natural frequencies, {ωi}, are selected randomly from

the normal distribution given in Eq. (2.5) and initial phases, {θi(t = 0)}, are chosen

randomly from the range of [0, 2π]. We generate 2 × 104 training datasets of r(t) for

each value of J ∈ [0.02, 2] with an interval of δJ = 0.02.

As shown in Fig. 4.4(a), output values, JML, using RNNs fits well with exact

values of J in supercritical (J > 1) and subcritical (J < 1) regions both. To eval-

uate how accurate values of JML are obtained, we calculated the Pearson correlation

coefficient and the root mean square (RMS) error, and obtained 0.9921 and 0.0727, re-

spectively. By measuring the mean µML and the standard deviation σML with varying

actual coupling strength J , one can confirm that µML is close to J in both super and

subcritical regions, while the difference in standard deviations between two regions

appears as depicted in Fig. 4.4(b). Although outputs are scattered broader in the region

J < 1 than J > 1, the tendency following the correct value of J provides the fact that

the neural network can distinguish configurations of r(t) and identify corresponding
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coupling strengths.

As the result obtained can lead one to wonder what information is extracted from

the data by the neural network during training, we also compare the result with the

estimation of J through the calculation for values of the order parameter to support the

quality of the result and investigate the learning of the neural network. Here, we used

time averaged value of the order parameter, r̄, over final 1000 steps of each training

datasets and calculated mean, 〈r̄〉, over all configurations with same value of J . As 〈r̄〉
increases monotonically with J as shown in Fig. 4.4(c), one can estimate the coupling

strength for each test datasets by obtaining r̄ and comparing with Fig. 4.4(c). From

results of this estimation, denoted as J〈r̄〉, their mean µ〈r̄〉 and standard deviation σ〈r̄〉

are plotted in Fig. 4.4(a) and (b) for comparison with µML and σML. One can find

that J〈r̄〉 is distributed in broader range than JML in subcritical region as the Pearson

correlation and the RMS error with 0.9870 and 0.0945 are obtained respectively for

the case of J〈r̄〉. And the larger value of σ〈r̄〉 than σML in J < 1 region demonstrates

the better quality of the result achieved by the machine learning.

In addition, narrow deviation in supercritical region is observed for the correla-

tion between JML and J〈r̄〉 as depicted in Fig. 4.4(d) while the deviation in subcritical

region is broader. This implies that the information of the time-averaged value is dom-

inant for the neural network to evaluate the coupling strength in supercritical region,

while it can evaluate through acquisition of more information than the time-averaged

value from the data of r(t) in subcritical region, as smaller deviations for the machine

learning case are shown in Fig. 4.4(b).

We performed the estimation of the coupling strength for the case of uniform natu-

ral frequency distribution, where the hybrid synchronization transition occurs, as well.

As shown in Fig. 4.5(a), estimations for both cases of the Gaussian distribution, Jg,

and the uniform distribution, Ju exhibit outstanding accurate. For the result in the

subcritical region, the standard deviation of estimations in the uniform distribution

case is similar to the case of Gaussian distribution as depicted in Fig. 4.5(b), but an
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evident difference between two standard deviations in the supercritical region is ob-

served. Since all oscillators are phase-locked in the supercritical region for the case of

uniform distribution, which leads to absence of time fluctuation in the order parame-

ter (zero susceptibility), it is easier to distinguish and identify the value of coupling

strength and thus, we obtain smaller value of σu than σg.

4.4 Finding the synchronized state

As the machine learning of thermodynamical phase transitions for diverse systems

have been paid much attention in previous studies [12–14, 16–18], we also performed

another study of machine learning model for the phase transition of the Kuramoto

system. Here, taking the neural network, we classify phase snapshots of all oscillators

in the steady state into subcritical and supercritical regimes and eventually find the

critical point of the system.

Again, the fourth-order Runge-Kutta method with a time step of δt = 0.01 is

adopted for generating 2 × 104 datasets of {θi} for each values of system size N and

J ∈ [0.01, 2.20] with δJ = 0.01. As in the previous section, for each configuration,

natural frequencies and initial phases are selected randomly from the normal distri-

bution and the uniform distribution, respectively. To avoid any transient behavior, we

collect snapshots of phases, {θi}, after the first 106 steps. For training datasets, each

snapshots are labelled through one-hot encoding where configurations obtained in su-

percritical region of J ∈ [0.01, 0.6] are encoded as (0, 1) and ones in supercritical

region of J ∈ [1.6, 2.2] are encoded as (1, 0). And we used data preprocessing by tak-

ing cos θi and sin θi for each phases as an input, due to the cyclic feature of θi which

contains the 2π periodicity.

Constructing the FCN, we train the machine with labelled snapshots of N phases

{cos θi, sin θi}. When the network is optimized after the training, generated snapshots

in whole region of J goes in as an input at the test stage.

The trained neural network produces two outputs representing predictabilities for
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Figure 4.4: (a) The scatter plot of prediction for coupling strength using RNN (light
red) and using 〈r̄〉 (light blue). The line of y = x indicates the correct value of J . For
both methods of RNN (red) and 〈r̄〉 (blue), the mean µ and the standard deviation σ
are depicted in (a) and (b), respectively. (c) Ensemble and time averaged value of the
order parameter, 〈r̄〉, as a function of coupling J for generated sample data of r(t).
The system exhibits the synchronization transition near the critical value Jc = 1. (d)
2D histogram of JML and J〈r̄〉 obtained for each given test datasets.
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Figure 4.5: (a) The scatter plot of prediction for coupling strength in the case of the
uniform natural frequency distribution (light red) and the Gaussian natural frequency
distribution (light blue). The line of y = x indicates the correct value of J . For both
cases of the uniform distribution (red) and the Gaussian distribution (blue), the mean
µ and the standard deviation σ are depicted in (a) and (b), respectively. (c) Ensemble
and time averaged value of the order parameter, 〈r̄〉, and (d) susceptibility, χ, as a
function of coupling J for generated sample data of r(t) in both cases. The second-
order synchronization transition occurs for the Gaussian distribution while the hybrid
synchronization transition occurs for the uniform distribution.
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the system to be in subcritical and supercritical region, respectively, as illustrated in

Fig. 4.6(a). And the crossing point of two output lines indicates a transition point

Jc(N) for given system size N . Since Jc(N) approaches to the critical point Jc = 1

as N is increased, we can determine the value of ν̄ using the behavior |Jc(N)− Jc| ∼
N−1/ν̄ . Fig. 4.6(b) exhibits the finite size scaling of the Jc(N) with the exponent of

1/ν̄ = 0.417±0.021 which is consistent with the exponent obtained in Refs. [61–64].

Using Eq. (2.26) and the exponent 1/ν̄ = 0.417 calculated, output lines for different

sizes are collapsed as depicted in Fig. 4.6(c).

In terms of phase transition and critical phenomena, machine learning approaches

for classifying phases and finding the critical point have been reported in classical spin

models, closed and open quantum models so far [12–15]. We here observe that such

studies on the nonlinear dynamical system are also achieved where the synchronization

transition is exhibited.

4.5 Application I : Prediction of the phase dynamics

Since the sine function in the coupling term of Eq. (2.1) induces nonlinear/chaotic

behavior of oscillators, the system has a sensitive dependence on initial conditions.

With the outstanding progress on the model-free prediction of chaotic dynamical sys-

tems [25–29], widespread application of the KM provide sufficient motivation for the

study of predicting the dynamics of each oscillators in the KM. In particular, RC ap-

proach has recently been adopted for various studies of low-dimensional nonlinear

systems due to its simplicity and efficiency. In addition to the RC, we here used FCNs,

CNNs, and RNNs for prediction of the future behavior of the Kuramoto system.

As an input for this study, time series of phase, θi(t), for each oscillators are gener-

ated. We implemented the fourth-order Runge-Kutta method with a discrete time step

δt = 0.005 up to a total of 1.95 × 105 time steps for this generation of datasets. To

examine predictability for behaviors of all oscillators, for RC, we take 9 × 104 steps

of {cos θi(t), sin θi(t)} as washout period and subsequent 105 steps as an training data
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Figure 4.6: (a) Outputs of the neural network trained using data of phase snapshots as
a function of J with system size of N = 200, 400, 800, 1600 and 3200. The crossing
point of two output lines indicates Jc(N) for given N . (b) Behavior of |Jc(N) − Jc|
with increasing N . The straight line is the fitting line with slope of −0.417 ± 0.021.
(c) Scaling plot for output lines against (J − Jc)N1/ν̄ with 1/ν̄ = 0.417.
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Figure 4.7: Schematic illustration of learning processes by neural networks for predic-
tion of phase dynamics. Using feedback process for given length of the time window,
L, inputs for all models are determined from the data of phase dynamics {θi(t)} for
all oscillators.

to produce phases for last 5 × 103 time steps by feeding the output data back to the

reservoir in turn. For other models, taking 1.9× 105 steps for training datasets, subse-

quent 5× 103 time steps of phases are produced as an output by the neural network to

compare with the exact dynamics of θi(t). The detailed description for these methods

is illustrated in Fig. 4.7. For RC, we set time length L = 1 to predict the henceforth

phase dynamics, while L = 200 is given for inputs of the other models.

Fig. 4.8 shows the prediction for phase dynamics using 4 machine learning mod-

els. As shown in Fig. 4.8(b), RC produces accurate predicted data for observed time

steps. And one can also obtain the accurate phase dynamics for around 2000 ∼ 4000

steps using classical RNN, CNN and FCN as depicted in Figs. 4.8(c)-(e). Although

the Kuramoto model with Eq. (2.1) contains nonlinearity and exhibits chaotic behav-

ior for oscillators, machine learning approaches can be applied to learn the behavior

of the phase dynamics and predict future behaviors.
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Figure 4.8: Prediction for the phase dynamics of the Kuramoto oscillators using several
machine learning methods. (a) The actual evolution of {θi(t)}. The difference between
the actual data and the predicted solution obtained using (b) RC, (c) classical RNN,
(d) CNN, and (e) FCN.
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4.6 Application II : Reconstruction of the network structure

Identifying the network topology can be one of the main problem for predicting the

behavior of the system and understanding properties of individuals or implicit mech-

anisms in various systems such as neuronal connections in the brain and epidemics

in social networks. Since it is impossible to directly determine the neuronal structure,

for example, developments for measuring the time evolution of nodes has been stud-

ied to indirectly recover the structure. In the Kuramoto model, it has been studied for

the relationship between the modular structure and the synchronization dynamics by

observing the correlation between pairs of oscillators which is ordered in a hierarchi-

cal way [80]. Applying to more general networks than the modular network, we here

assume the situation where the connections of network are not provided but only indi-

vidual patterns which is produced through inherent interactions between them. As it is

of great potential application, machine learning approach is performed to detect whole

network topology by comprehending interactions between signals.

For this purpose, we produce 106 training datasets for the coupled oscillators on

random networks and calculate dynamics of each oscillators following the equation

θ̇i = ωi +K

N∑
j=1

Aij sin(θj − θi) (4.7)

where Aij is the adjacency matrix of the given network. Here we adopt N = 29 and

the natural frequency set, {ωi}, selected regularly from the normal distribution, given

in Eq. (2.5). And the given set of {ωi} are shuffled and assigned to the 29 nodes on

the visual cortex network [81], and calculation for Eq. (4.7) is progressed to generate

test datasets. As in the previous section, implementing the fourth-order Runge-Kutta

method with a time step δt = 0.05 up to a total of 200 steps, sets of time series of

phases, {θi(t)}, are generated for input. And we set the initial phase as θi(0) = 0 for

all i.
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Figure 4.9: Reconstruction of the visual cortex network with N = 29. (a) An input
dataset of the actual phase evolution, {θi(t)}, for one of the sample set of shuffled nat-
ural frequencies. (b) The actual adjacency matrix of the visual cortex network. Black
square indicates the link existing on the network. (c) Outputs obtained through RNN.
Output elements are in a range of [0, 1]. (d) Comparison between the actual adjacency
matrix and the rounded values of obtained output elements in Panel (c). Blue (green)
square denotes the case when the corresponding element in the actual network is zero
(one) and the one in the rounded output element is also zero (one). Red (yellow) square
denotes the case when the corresponding element in the actual network is zero (one)
and the one in the rounded output element is one (zero).
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Fig. 4.9(a) illustrates one of the pattern samples used for testing the neural network.

The actual given network topology for this pattern is depicted as the adjacency matrix

shown in Fig. 4.9(b). As the trained neural network produces real numbers in the range

of [0, 1] (see Fig. 4.9(c)) which implies the probabilities for each links or elements in

the adjacency matrix to exist, these outputs are rounded off to 0 or 1 as in Fig. 4.9(d),

to compare with the actual matrix. Although phase dynamics of all oscillators exhibit

irregular and complex behaviors, the prediction for the underlying network topology

is successfully achieved by the neural network as shown in Fig. 4.9(b) and (d). We

obtained the accuracy of 93.5% for all elements in adjacency matrices of total 103

samples.

4.7 Summary

To summarize, with machine learning methods for the coupled oscillator system, we

have performed phase classification and model-free prediction based on exploiting

chaotic property of the system. We demonstrate that the scaling behavior is not only

verified for the second-order synchronization transition through the discrimination

between the asynchronous state and the synchronous state with neural network ap-

proaches, but also identified for the model where numerical analysis for finite size

scaling is demanding. Furthermore, despite of the nonlinearity of the system, success-

ful prediction for the future behavior of the phase dynamics is achieved by employing

machine learning approaches. As the learning for chaotic dynamics of coupled oscilla-

tors is confirmed, artificial neural networks are trained with the patterns of individual

elements on real brain network. Underlying connections between them can be identi-

fied through the well-trained machine and this can be extended to other problems for

detecting the topology of the system. Additionally, as the model-free prediction for

nonlinear dynamics has been performed, such machine learning methods overcome

the disadvantages of analysis with modelling and simulation, and thus, have exten-

sive applicability to other nonlinear models or systems in nature. Consequently, we

74



believe that our work may shed light on the further studies of machine learning on

nonlinear/chaotic systems.
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Chapter 5

Conclusion

We investigated the synchronization of coupled oscillator system through both analytic

approach and data driven method. Synchronization is ubiquitous phenomena observed

in nature. The system with interacting oscillators on complex network are one of the

most proper model to describe such collective behavior. In particular, the Kuramoto

model is the most representative model for the phase synchronization achieved by

adjusting oscillators’ phases through the interaction between them. As this model ex-

hibits rich properties such as the synchronization transition and chaotic behavior, it is

worthful to explore and adopt for figuring out synchronization or chaotic dynamics

emerging in natural and artificial systems.

We analytically constructed the ad hoc potential regarding to the coupled oscillator

system, which demonstrates the landscape over the order parameter space and provides

support for intuitive understanding of phase transition. As the Landau theory is estab-

lished to describe what happens at and near the critical point, the potential scheme

has been conventionally applied for the thermal equilibrium system exhibiting various

types of phase transition. Along with the second-order and the first-order phase transi-

tion, the hybrid transition has been observed in various systems and the criteria of the

Landau theory for this hybrid phase transition was constructed for thermal systems.

We here developed the potential approaches for the nonequilibrium system, the Ku-

ramoto system from the self-consistency equation derived. As we confirmed that this

scheme is valid up to the dominant order, the ad hoc potential approach to the phase

transition is applied for the synchronization transition of the Kuramoto system. With
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varying the natural frequency distributions and models, we identified that the profile

of the ad hoc potential in the thermodynamic limit behaves as the Landau potential

for the same type of phase transition. In particular, for the model exhibiting the hy-

brid synchronization transition, the ad hoc potential satisfies the criteria of the Landau

potential for hybrid phase transition. We believe that the introduced methodology can

potentially be applied to the Kuramoto systems with various sets of natural frequencies

and models. Consequently, this approach may can shed light on the interpretation of

the system dynamics and the phase transition for any model consisting of Kuramoto

oscillators.

As recent advances in a diverse fields of science and engineering have been achieved

by adopting the machine learning methods, we also performed the machine learning

approach to the coupled oscillator system. By assuming the situation where the lim-

ited amount of information is given, we examined that whether target parameters can

be inferred. Based on the data obtained through the numerical simulation for the Ku-

ramoto model, predicting the future dynamical evolution of the system and identifying

underlying parameter and structure are performed. Once the data for the order pa-

rameter dynamics obtained numerically, these are used as an input for training the

machine, the fully-connected neural network in this case, to deduce the inherent cou-

pling strength. The machine learning approach demonstrates more precise results than

the inference through statistical quantities. Additionally, by feeding all phases of os-

cillators, the machine is also trained to classify the ordered state, or the synchronous

state, and the disordered state, or the asynchronous state. By obtaining predictibilities

for each configuration to be in subcritical and supercritical region, we identify the crit-

ical value with scaling behavior for synchronization transition of the Kuramoto model.

Also, utilizing the property of the nonlinear and chaotic behavior for the coupled os-

cillators, we construct tasks which can be applicable to general systems exhibiting

intricate dynamical evolution. Long-term prediction for future chaotic phase dynam-

ics for all oscillators was successfully achieved by 4 machine learning models, FCN,
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CNN, RNN, and RC. We also reconstructed the underlying topology of the real brain

network by learning all the phase dynamics. It is believed that our work for application

of machine learning on coupled oscillator system has potential for the further studies

of machine learning on chaotic systems or synchronization transition.

78



Appendices

79



Appendix A

Numerical simulation method

Guidance and tips for numerical simulation of the Kuramoto model are introduced in

this part.

A.1 Runge-Kutta method

For the most differential equations given in the real world, it is not simple to obtain

algebraic solutions. As a result, one can figure out solutions of such differential equa-

tions by solving them numerically. As one of the numerical approach for solving them,

simple Euler method is the most basic method for numerical integration with a given

initial value. The improved version of the Euler method, Heun’s method can also be

adopted to overcome shortcomings of the Euler method, inaccuracy and slowness. All

these methods are generalized as a collection of Runge-Kutta methods by adding mul-

tiple steps for calculation. That is, the Euler method and Heun’s method are represented

by the first-order Runge-Kutta method, and the second-order Runge-Kutta method, re-

spectively. Beyond that, the fourth-order Runge-Kutta method, or RK4 method, is the

technique commonly used as it achieves balance between computational cost and accu-

racy. Most computer packages are designed to use this method by default for numerical

calculation of differential equations.

The initial value problem is given by

dy

dt
= f(t, y) and y(t0) = y0 (A.1)
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where y is an unknown function of time t and initial conditions y0 and t0 are given.

The procedure for calculation of the differential equation as follows :

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (A.2)

and

tn+1 = tn + h (A.3)

where h is the size of the interval and four slopes,

k1 = f (tn, yn)

k2 = f

(
tn +

h

2
, yn +

hk1

2

)
k3 = f

(
tn +

h

2
, yn +

hk2

2

)
k4 = f (tn + h, yn + hk3) (A.4)

are determined. Therefore, the next value of y is calculated by weighed averaging the

four slopes given in the range of time interval h. As the RK4 method is a fourth-order

method, the local truncation error is an order ofO(h5) and the total accumulated error

is an order of O(h4).

We applied this RK4 method for the numerical calculation of the Kuramoto model,

the time-invariant system where the function f({θi,n}) is given by

f({θi,n}) = ωi +
K

N

N∑
j=1

sin(θj,n − θi,n) . (A.5)

For fixed value of h, one can obtain four slopes, k1, k2, k3 and k4, and the next values

of phases, {θi,n+1}, in turn.
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A.2 Kahan summation

For iteratively adding a sequence of finite-precision floating numbers, numerical er-

ror in total summation can arise. When n numbers are summed in sequence, a root

mean square error of the summation grows as
√
n in the worst case. With the Kahan

summation, one can minimize this loss of significance in accumulation as it include the

compensated summation in the calculation loop. By doing so, the error bound becomes

effectively independent of n. The pseudocode for this algorithm is given as follows :

Algorithm 1 Kahan summation algorithm
1: procedure KAHANSUM (input)
2: var sum← 0.0
3: var c← 0.0
4: for i← 1, input.length do
5: var y ← input[i]− c
6: var t← sum+ y
7: c← (t− sum)− y
8: sum← t

9: return sum

A.3 Simulation of the Kuramoto equation

Evaluation for sine function is the most time consuming process over the whole nu-

merical calculation of the Kuramoto model given by

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) . (A.6)

Naive evaluation and summation of sine functions in interaction term of the Kuramoto

model given in Eq. (A.6) require cost as much as O(N2) sine calculation. To reduce

the time taken for evaluation of sine functions and improve the speed of the calculation,

one can develop the calculation by considering the order parameter at each time step.
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Using the definition of order parameter given in Eq. (2.14), Eq. (A.6) can be rearranged

by the trigonometric identity as below :

θ̇i = ωi +Kr sin(ψ − θi)

= ωi +Kr(sinψ cos θi − cosψ sin θi) . (A.7)

In the meanwhile, since the order parameter equation can be rewritten as

Z = reiψ =
1

N

N∑
j=1

eiθj

=
1

N

N∑
j=1

cos θj + i
1

N

N∑
j=1

sin θj , (A.8)

we simply obtain that

r cosψ =
1

N

N∑
j=1

cos θj

r sinψ =
1

N

N∑
j=1

sin θj . (A.9)

Therefore, once the cosine and sine evaluation for all phases are processed, simple

summation and multiplication allow the calculation for all phase updates given in

Eq. (A.6). And the total number of sine evaluation is reduced to O(N) which is much

faster than the case of naive calculation for sin(θj − θi).
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Appendix B

Asymmetric interaction-frequency correlated model

For the model following Eq. (3.48), it is known that the explosive synchronization also

occurs for asymmetric g(ω) such as power-law frequency distribution given by

g(ω) ∼ ω−γ (B.1)

with ω > 0. In this case, Eq. (3.51) can be written as

∆θ̇j = ωj − Ω−Kωjr sin(∆θj) . (B.2)

As in Sec. 3.4.1, following the same derivation in the thermodynamic limit, we obtain

two equations

1− γ − 1

γω0
Ω =

∫ ∞
ω0

dωg(ω)

(
ω − Ω

ω

)√
1−

(
αω

ω − Ω

)2

Θ

(∣∣∣∣ω − Ω

αω

∣∣∣∣− 1

)
(B.3)

r =

∫ ∞
ω0

dωg(ω)

√
1−

(
ω − Ω

αω

)2

Θ

(
1−

∣∣∣∣ω − Ω

αω

∣∣∣∣) (B.4)

for two parameters α ≡ Kr and Ω. Here, ω0 is the minimum value of the natural

frequency. Note that these two equations have very similar form with Eqs. (3.46) and

(3.47). As the system exhibits second-order, hybrid and first-order transitions for γ >

3, γ = 3, and 2 < γ < 3, respectively, in Sec. 3.4.1, corresponding transitions occur

for γ > 2, γ = 2, and 1 < γ < 2 in this system. In particular, further analytical
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calculation can be performed for the case of γ = 2.

First, introducing new variable x ≡ q/(q − Ω), Eq. (B.3) becomes

Ωγ−1

ωγ0

(
ω0

γ − 1
− Ω

γ

)
= −

(∫ −∞
ω0

ω0−Ω

dx+

∫ 1

∞
dx

)
x−3

(
x

x− 1

)2−γ√
1− (αx)2Θ(1− |αx|) . (B.5)

For the case of γ = 2, this equation is reduced to

Ω(2ω0 − Ω)

2ω2
0

= −
(∫ ∞

ω0
Ω−ω0

dx−
∫ ∞

1
dx

)
x−3

√
1− (αx)2Θ(1− |αx|) (B.6)

which is exactly the same equation with the system in Sec. 3.4.1 with γ = 3 and it

also has a solution Ω = 2ω0 for any α. In a similar way, introducing new variable

x ≡ (ω − Ω)/ω, Eq. (B.4) becomes

r = (γ − 1)

(
Ω

ω0

)1−γ ∫ 1

ω0−Ω
ω0

dx(1− x)γ−2

√
1−

(x
α

)2
Θ
(

1−
∣∣∣x
α

∣∣∣) . (B.7)

For a simple case of γ = 2, using Ω = 2ω0, Eq. (B.7) is reduced to

r =
1

2

∫ 1

−1

√
1−

( x

Kr

)2
Θ
(

1−
∣∣∣ x
Kr

∣∣∣) dx (B.8)

=


K
Kc
r for Kr ≤ 1

1
2

√
1− 1

K2r2 + Kr
2 arcsin

(
1
Kr

)
for Kr > 1

(B.9)

Solving equations numerically, we obtain U(r) for γ = 1.8, 2.0 and 2.8 as shown in

Fig. B.1(a), (c), and (e), respectively. As in the degree-frequency correlated model, the

type of synchronization transition changes with varying γ. In this case, however, the

hybrid transition occurs for the case of γ = 2.0, not 3.0 as in the former model.
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Figure B.1: Ad hoc potential U(r) for the KE given by Eq. (3.48) with power-law
natural frequency distribution in Eq. (B.1). The change of U(r) with varying K is
obtained for (a) γ = 1.8 (c) 2.0 and (e) 2.8. And the position of minima r∗ exhibits (b)
first-order, (d) hybrid, and (f) second-order transitions, respectively.
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Appendix C

Effective potential approaches for finite size systems

In finite systems, the SCE given in Eq. (3.11) is written as

r =
1

N

∑
|ωi|≤Kr

√
1− ω2

i

K2r2
≡ f(r) . (C.1)

with a sample-dependent correction δf ≡ f − 〈f〉 ∝ √Ns/N where 〈·〉 indicates

sample average and Ns is the number of entrained oscillators with ωi ≤ Kr [62, 64,

82, 83]. This SCE may also be written in the form x/K = h(x), where

h(x) ≡ 1

N

∑
|ωi|≤x

√
1− ω2

i

x2
=

x

K
, (C.2)

where x ≡ Kr and h(x) replaces f(r). Here we consider that g(ω) is uniform. The ad

hoc potential is defined as it was above:

U(r) =

∫ r

0
(r′ − f(r′))dr′. (C.3)

We consider two cases in which the natural frequencies of each oscillator are taken

randomly and regularly.

C.1 Random sampling of {ωi}

We first consider the case that ωi is selected randomly from the uniform distribution

g(ω) given by (3.57) for half of the oscillators (i = 1, . . . , N/2), and the other half
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are assigned values following ωi = −ωN−i+1 for i = N/2 + 1, . . . , N , so that the

mean natural frequency becomes zero. The ad hoc potential of the SCE for each case

is obtained as shown in Fig. C.1(a). For a given K, there exist local minima, which are

stable solutions of the SCE. The global minimum of the potential develops from r = 0

as K is increased, leading the order parameter to jump to a finite value. This abrupt

change of the position of the global minimum suggests the possibility of a hybrid

synchronization transition in the limit N →∞, as discussed in Sec. 3.5.1.

To validate this scheme in view of the effective potential, we perform simulations

for a system size N = 6400 using the fourth-order Runge-Kutta method up to t = 106

time in steps of δt = 10−2.

Fig. C.1(b) shows the evolution of the order parameter under the same condition

used in Fig. C.1(a). Because initial phases of each oscillators are distributed randomly,

the order parameter is r ∼ O(N−1/2) at t = 0. As time runs, the dynamics proceeds

according to the effective potential landscape. As shown in Fig. C.1(b), r(t) exhibits

a plateau with some fluctuations for a certain period of time. Comparing with the

profile of the ad hoc potential, this pattern results from that the system is confined in a

corresponding potential well before jumping to the next.

As r increases, the number of drifting oscillators decreases according to 〈Nd〉 =

(1− r/rc)N and so do the dynamic fluctuations of the order parameter [see the width

of the fluctuations in Fig. C.1(b)]. Moreover, the potential barrier from r ≈ 0.4 to

the left is higher than that to the right in Fig. C.1(a)], and thus the system tends to

move to the right side of the landscape (larger r). Consequently, the system beginning

at r ∼ O(N−1/2) passes through metastable states of local potential wells and then

reaches the steady state, which corresponds to the rightmost position, as far as possible,

among the positions of the local minima.

We also consider the evolution of the order parameter from different initial values

of r. For the same randomly sampled set used in Fig. C.1, the dynamics begins in a

totally synchronized state, r = 1, and flows to the steady state coinciding with the final
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(b)

(a)

Figure C.1: (a) Plot of ad hoc potential U(r) as a function of r for the case of ran-
dom sampling of {ωi} from the uniform distribution g(ω) with γ = 1 for K =
1.222, 1.230, 1.238, 1.244, and 1.250. Except the minimum at r = 0, local minima
of U(r) are marked by red dots for K = 1.238. (b) Time evolution of the order pa-
rameter m(t) for the set of oscillators used in (a) with K = 1.238 and random initial
phases. The three local minima positions in (a) are indicated by red lines.
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(a)

(b)

Figure C.2: Comparison of the order parameter behavior as a function of t from dif-
ferent initial configurations with r(0) ∼ O(N−1/2) (blue, dark) and 1 (green, gray).
Natural frequencies of each oscillator are selected randomly in (a) and regularly in (b).
Numerical simulations are performed for the case N = 6400 at K = 1.238 (a) and
Kc (b).
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state of the dynamics beginning at r ∼ O(N−1/2). This can be intuitively understood

in terms of the ad hoc potential shown in Fig. C.1(a). At the initial value of r = 1, the

dynamics of the system moves down from the far right side of the potential and first

encounters a minimum at a certain value of r. As the fluctuations at this minimum are

not sufficiently large to overcome the barrier on the left, the dynamics remains at this

minimum, as shown in Fig. C.2(a). This result does not differ much from that of other

general random sets of {ωi}.

C.2 Regular sampling of {ωi}

We consider that {ωi} is selected regularly from the uniform distribution given in

Eq. (3.57). In this case, ωi is given as

ωi = −γ +
γ

N
(2i− 1) (C.4)

for i = 1, . . . , N . The SCE of Eq. (C.2) is rewritten as

x

K
=

1

N

n∑
i=N−n+1

√
1− ω2

i

x2
= h(x), (C.5)

where n is the index satisfying ωn ≤ x < ωn+1, so phase-locked oscillators contribute

to the summation.

Fig. C.3(a) illustrates the behaviors of both sides of Eq. (C.5) along with the pa-

rameter x. h(x) is a continuous function; however, it is not smooth in shape because

the range of the summation varies with x. Because the slope of the l.h.s. of the equa-

tion is 1/K, it is instructive to notice how solutions of Eq. (C.5), denoted as {r∗},
change as K is increased by examining the crossing points of the linear line and h(x).

For instance, in Fig. C.3(a), when the slope 1/K is sufficiently large, a linear line with

slope 1/K meets h(x) only at r∗ = 0, which is a solution of the SCE. As 1/K is

decreased, the number of solutions r∗ increases, and there exists K∗∗(N) at which the
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number of solutions becomes N for the first time. At this point, the SCE has a non-

trivial solution in the range x > ωN , as shown in Fig. C.3(a). This solution becomes a

local minimum of U(r) at the largest r∗, denoted as r∗∗ which implies that all the os-

cillators are phase-locked. Thus, when dynamics starts from r = 1, the system reaches

to the state with the r∗∗ value as shown in Fig. C.3(b). When 1/K is decreased further

and reaches 1/Kc(N), U(r∗∗) at r∗∗ becomes zero. This is another global minimum

for finite r. Between these two values of K∗∗(N) and Kc(N), there exists the transi-

tion point Kc(∞) in the thermodynamic limit. For brevity, we denote it as Kc. At this

Kc, the ad hoc potential U(r) exhibits underdamped oscillation around a plateau as

depicted in Fig. C.3(b).

In Figs. C.4(a) and (b), we show the positions r∗ of local minima for each given

K. For instance, when N = 10, there exist five nonzero r∗ values when K = Kc(N),

which correspond to the positions of the five local minima in Fig. C.3(b).

C.3 Trapped at metastable states

Here, we note that for the regular sampling case, the system can be more easily trapped

at a longstanding metastable local minimum positioned at r∗ < rc. For instance, as

shown in Fig. C.2(b), when dynamics starts from r = 1, the system stays at r ≈ 0.8

for a long time within the limit of our simulation time, which differs from r ≈ 0.2

reached from an initial state with r ∼ O(N−1/2). Thus, we need more careful check

if the system indeed remains at some metastable state with r∗ 6= rc(∞) as N →∞.

We perform numerical simulations for the KM (2.1) with the uniform distribution

of g(ω) given by Eq. (3.57) at a fixed Kc = 4γ/π. The system size is controlled.

We remind that at Kc, the potential U(r) exhibits underdamped oscillation around a

plateau, whereas at Kc(N), the potential U(r) is slanted. We first assign a random set

of initial phases {θi(0)} (i = 1, . . . , N) and trace the order parameter as a function

of time for 103 realizations. For better statistics, we take time intervals specified in

the legend of Fig. C.5(a). Each of these intervals contains 104 times. Taking all order
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(b)

(a) K

K

Figure C.3: (a) Schematic plot of each side of Eq. (C.5) for N = 10 and γ = 1. The
r.h.s. of the equation, h(x) (red line), increases abruptly at the points where x is equal
to each value of ωi marked on the x axis. Linear lines with various slopes indicate the
l.h.s. of the equation with different values of K (gray line), including K = K∗∗(N)
(green line). (b) Potential U(r) versus r at K = K∗∗(N) (green), Kc (blue), and
K = Kc(N) (red). At K = Kc(N), there exist N/2 local minima and U(r∗) = 0 at
the largest r∗, representing rc(N). Thus, a global minimum occurs at rc(N).
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(b)

(a)

Figure C.4: (a) Positions r∗ for the local minima of U(r) for a given K are unstable
unless U(r∗) is a global minimum with N = 10 and γ = 1. (b) Solutions r∗ of the
SCE (C.5) for two different system sizes N = 10 and 20.
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(a)

(b)

Figure C.5: (a) Plot of the distribution P (r(t)) versus r(t) obtained from time intervals
t ∈ [0, 10000], [5000, 15000], [10000, 20000], [20000, 30000], and [40000, 50000] and
103 realizations at Jc(N). The system size is fixed as N = 6400. (b) Plot of D(ti)
versus ti for various system sizes.
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parameter values in each given time interval, the distribution of the order parameter

P (r(t)) is constructed as shown in Fig. C.5(a). Whereas in early time intervals, the

order parameters are distributed in broad range of r, as time goes on, the distribution

becomes narrower; the mean value is shift; and it finally approaches to a stationary

distribution, being insensitive to when the interval is taken. To check the stability of

the distribution function, we use the so-called Kullback-Leibler (KL) divergence, in

which measure D is introduced as

D ≡
∫
a(r) ln

(
a(r)

b(r)

)
dr +

∫
b(r) ln

(
b(r)

a(r)

)
dr. (C.6)

This measure indicates to what extent two distributions a(r) and b(r) differs from

each other. When the two distributions are exactly the same, D = 0. To check the

KL divergence for P (r(t)), we take the P (r(t)) obtained from the latest time interval

t ∈ [9.9×104, 105] as a(r) and the distribution at different time interval [ti, ti+ 1000]

as b(r). Then, the dependence of D on ti is calculated with increasing ti. Since the

distribution P (r) converges to a certain form as illustrated in Fig. C.5(a), we expect

that D gradually decreases and approaches to zero. Indeed, D(ti) behaves as shown

in Fig. C.5(b). Moreover, we trace D(ti) values as a function of ti for different system

sizesN , finding that the saturation time becomes longer as the system size is increased.

Based on these results, we conclude that the distribution P (r) for N ≤ 12800 is in

steady state at the time t = 105.

We examine the distribution P (r) for different system sizes N in steady states.

As the system size N is increased, the peak position of P (r) moves to the left and

the width becomes narrower, as shown in Fig. C.6(a). By measuring the mean values

〈r〉 of P (r) and the standard deviation σr for various system sizes, we obtain power-

law decays as 〈r〉 ∼ N−0.24 and σr ∼ N−0.39, as shown in Figs. C.6(b) and C.6(c),

respectively. These power-law behaviors suggest that the system stays at r = 0 in the

limit N →∞, which is in agreement with the previous result in Sec. 3.5.1. Moreover,

this result may explain the reason for the discrepancy of the steady states reached from
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(a)

(b) (c)

Figure C.6: (a) Plot of the distribution P (r) versus the order parameter value r. Data
points are obtained from different 106 time steps in steady state and 103 samples for
various system sizes N at Kc(∞). (b) Plot of 〈r〉 versus N . The straight line is a
guideline with slope −0.24. (c) Plot of the standard deviation of P (r) versus N . The
straight line is a guideline with slope −0.39.
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(a)

(b)

Figure C.7: (a) Plot of 〈tc(ti)〉 for various system sizes. The data points are averaged
over 103 samples. The order parameter r(t) was measured until time t = 105 in steps
of ∆t = 5000 (light, cross) and 10000(dark, circle) to evaluate tc. The obtained values
of 〈tc〉 seems to be saturated for N ≤ 12800, while they are not for the case of N =
51200. (b) Plot of the estimated values of 〈tc〉 versus N up to 12800. The straight line
is a guideline with estimated slope 1.20.
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different initial configurations for the regular sampling case shown in Fig. C.2(b).

Finally, we estimate a characteristic time 〈tc〉, beyond which the order parameter

reaches a steady state. We perform simulations up to t = 105 for the system size

N ≤ 51200 in the following way. First, we take time intervals [ti, ti + ∆t], where ti

is taken as the dotted ones in Fig. C.7(a) and ∆t is taken appropriately as represented

in the caption of Fig. C.7. Second, the order parameter is averaged over each time

interval, which is denoted as r̄(ti). Next, we determine the characteristic time tc(ti)

at which r(t) becomes larger than r̄(ti) for the first time. We repeat this process until

ti + ∆t = 105. Next, tc(ti) are averaged over 103 realizations, and the resulting mean

is denoted as 〈tc(ti)〉. Fig. C.7(a) shows that 〈tc(ti)〉 seems to be saturated to a constant

value (denoted as 〈tc〉) as ti is increased for N ≤ 12800. However, when N = 51200,

the simulation time 105 seems to be insufficient, and longer simulation time is required.

Finally, we check the characteristic time 〈tc〉 as a function ofN . Fig. C.7(b) shows that

〈tc〉 exhibits power-law behavior with respect to N as 〈tc〉 ∼ N1.2. Thus, the dynamic

exponent for the system size N is estimated to be z̄ ≈ 1.2.
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초록

서로간의상호작용이있는다수의개체로구성된계는집단적인행동을보인다

는것이잘알려져있다.그러한집단적인행동의대표적인예로써,동기화현상은두

개이상의개체가상호작용을통해모두동일한상태에이르게되는과정을뜻한다.

반딧불의 깜빡임, 귀뚜라미의 울음소리, 심장박동원세포 등 자연에는 동기화 현상

의 수많은 예들이 있다. 동기화 현상을 이해하고 묘사하기 위한 가장 대표적이고

적합한모형으로,결합된진동자들로이루어진시스템을생각해볼수있다.시스템

에있는각각의진동자들은각자의특성을나타내는고유진동수(natural frequency)

를 갖고 있으며, 각각의 위상(phase)들은 시스템의 다른 진동자들과의 상호작용을

통해 시간이 지남에 따라 점차 맞추어 나가게 된다. 이 때, 이러한 위상 동기화가

일어나는과정에서진동자들사이의연결또는상호작용들은복잡계네트워크위의

링크(link)로 표현될 수 있으며, 각각의 개체 혹은 진동자들은 노드(node)로 표현된

다.이러한결합된진동자들에대한수많은연구들이지난 20여년간이루어져왔다.

집단현상을 묘사하는 간단하면서도 대표적인 모형인 구라모토 모형을 차용하

여 결합된 진동자들의 동기화 현상에 대한 많은 연구들이 진행되어왔다. 구라모토

모형은카오스동역학,동기화상전이등의다양한특성을나타내는만큼,흥미로운

연구들이많이이루어져왔는데,먼저,구라모토모형에서나타나는동기화현상에

대한 선행연구들에서 밝혀진 중요한 결과 및 배경들을 이 학위 논문의 앞부분에서

소개하였다.

그리고각각을주요한연구주제로써,결합된진동자들의시스템에대한두가지

방법론을사용하여논문을구성을하였다.첫번째연구에서는,유효포텐셜(effective

potential)을이용한방법론을도입하여해석적인방법으로구라모토모형을분석하

였다.구라모토모형에서는고유진동수의분포형태가변함에따라동기화상전이의

유형또한변하게되는데,구라모토방정식으로부터유도한자기일관성방정식(self-

consistency equation)을 사용하여 이러한 결과를 해석적으로 분석할 수 있다. 하지
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만,이러한방법은시스템의안정성과같은상세한특징을파악하는데에는어려움

이있다.이연구에서는,자기일관성방정식을적분하여유도한유효포텐셜방법론

을 도입하여, 열역학적 극한에 있는 시스템에 대하여 1차 상전이, 2차 상전이 뿐만

아니라 하이브리드 동기화 상전이가 나타날 때의 포텐셜 경관(potential landscape)

을 파악하였으며, 특히, 하이브리드 상전이에서는 유효 포텐셜의 최솟값이 임계점

에서 평평한 형태를 보인다는 것을 확인하였다. 이러한 결과들은 동기화 상전이의

형태를 파악하는 데에 있어서 유효 포텐셜이 주요한 역할을 해줄 수 있음을 의미

한다.

두번째연구에서는,데이터기반방법론인기계학습을사용하여결합된진동자

들의 시스템을 파악하고, 이러한 방법이 실제의 시스템에 대해서도 확장이 가능한

지에대하여연구하였다.최근,과학분야뿐만아니라여러다양한분야에서기계학

습에 대한 관심이 높아져 왔는데, 물리적 계에 대해서도 기계학습을 이용한 분류

및 생성 작업을 통해 많은 발전이 이루어져왔다. 본 연구에서는, 여러 기계학습의

모형들을이용해구라모토모형에서보이는동기화상전이및비선형,카오스동역

학을분석하였다.질서변수의시간에따른동역학으로부터진동자들사이에내재된

상호작용을찾고,진동자들의위상으로부터동기화된상태와비동기화된상태를구

분하여임계점을찾는데에기계학습방법을적용시켜보았다.유한크기축적방법

(finite-size scaling)을이용하여이러한결과들이기존의알려진구라모토모형에대

한눈금바꿈행태(scaling behavior)의결과와일관성이있는것을확인하였다.또한,

모든진동자들의위상동역학을인공신경망에입력으로넣어줌으로써,진동자들의

이후의 동역학 행태를 파악할 뿐만 아니라, 기저에 깔려 있는 실제 쥐의 시각 피질

네트워크를알아내는연구를진행하였다.따라서,동기화현상및비선형동역학을

보이는 여러 실제의 시스템들에 대한 구라모토 모형의 응용이 가능함에 따라, 본

연구는 그러한 시스템에 대해서도 기계학습 방법을 활용할 수 있는 가능성을 내포

한다.

109



주요어:복잡계네트워크,동기화현상,상전이,하이브리드상전이,비선형동역학,

카오스계, 결합된 진동자, 구라모토 모형, 자기일관성 방정식, 란다우 이론, 유효

포텐셜,데이터기반방법론,기계학습,인공신경망,순방향신경망,합성곱신경망,

순환신경망,축적컴퓨팅

학번: 2014-30109

110


	1 Introduction
	1.1 Complex network
	1.2 Coupled oscillators on complex networks
	1.3 Machine learning

	2 Synchronization of coupled oscillators
	2.1 Synchronization
	2.2 Coupled oscillators
	2.3 The Kuramoto model
	2.4 Natural frequency
	2.4.1 Gaussian distribution
	2.4.2 Lorentzian distribution
	2.4.3 Uniform distribution

	2.5 Sampling of natural frequency
	2.5.1 Random sampling
	2.5.2 Regular sampling

	2.6 Order parameter
	2.7 Phase transition
	2.7.1 Synchronization transition
	2.7.2 Hybrid phase transition
	2.7.3 Type of synchronization transition

	2.8 Finite-size scaling
	2.8.1 Critical exponents
	2.8.2 Finite-size effect


	3 Effective potential approach to synchronization transition
	3.1 Analytic approaches to the Kuramoto model
	3.1.1 Self-consistency analysis
	3.1.2 Ott-Antonsen ansatz

	3.2 Ad hoc free energy
	3.3 Second-order synchronization transition
	3.4 First-order synchronization transition
	3.4.1 Degree-frequency correlation on scale-free network with 2 < λ < 3
	3.4.2 Dependence of interaction strength on the frequency

	3.5 Hybrid synchronization transition
	3.5.1 Uniform distribution g(ω)
	3.5.2 Degree-frequency correlation on scale-free networks with λ  3
	3.5.3 Flat distribution with exponential tails
	3.5.4 Flat distribution with power-law tails

	3.6 Summary

	4 Machine learning approaches to coupled oscillators
	4.1 Machine learning models
	4.1.1 Feed-forward neural network
	4.1.2 Fully-connected neural network
	4.1.3 Convolutional neural network
	4.1.4 Recurrent neural network
	4.1.5 Reservoir computing

	4.2 Supervised learning
	4.3 Finding the coupling strength
	4.4 Finding the synchronized state
	4.5 Application I : Prediction of the phase dynamics
	4.6 Application II : Reconstruction of the network structure
	4.7 Summary

	5 Conclusion
	Appendices
	Appendix A Numerical simulation method
	A.1 Runge-Kutta method
	A.2 Kahan summation
	A.3 Simulation of the Kuramoto equation

	Appendix B Asymmetric interaction-frequency correlated model
	Appendix C Effective potential approaches for finite size systems
	C.1 Random sampling of frequencies
	C.2 Regular sampling of frequencies
	C.3 Trapped at metastable states


	Bibliography
	Abstract in Korean


<startpage>14
1 Introduction 1
 1.1 Complex network 1
 1.2 Coupled oscillators on complex networks 2
 1.3 Machine learning 3
2 Synchronization of coupled oscillators 6
 2.1 Synchronization 6
 2.2 Coupled oscillators 7
 2.3 The Kuramoto model 8
 2.4 Natural frequency 9
  2.4.1 Gaussian distribution 9
  2.4.2 Lorentzian distribution 10
  2.4.3 Uniform distribution 10
 2.5 Sampling of natural frequency 10
  2.5.1 Random sampling 11
  2.5.2 Regular sampling 11
 2.6 Order parameter 13
 2.7 Phase transition 14
  2.7.1 Synchronization transition 14
  2.7.2 Hybrid phase transition 15
  2.7.3 Type of synchronization transition 16
 2.8 Finite-size scaling 18
  2.8.1 Critical exponents 19
  2.8.2 Finite-size effect 20
3 Effective potential approach to synchronization transition 26
 3.1 Analytic approaches to the Kuramoto model 29
  3.1.1 Self-consistency analysis 29
  3.1.2 Ott-Antonsen ansatz 31
 3.2 Ad hoc free energy 33
 3.3 Second-order synchronization transition 37
 3.4 First-order synchronization transition 38
  3.4.1 Degree-frequency correlation on scale-free network with 2 < λ < 3 38
  3.4.2 Dependence of interaction strength on the frequency 42
 3.5 Hybrid synchronization transition 45
  3.5.1 Uniform distribution g(ω) 45
  3.5.2 Degree-frequency correlation on scale-free networks with λ  3 49
  3.5.3 Flat distribution with exponential tails 50
  3.5.4 Flat distribution with power-law tails 51
 3.6 Summary 55
4 Machine learning approaches to coupled oscillators 56
 4.1 Machine learning models 57
  4.1.1 Feed-forward neural network 58
  4.1.2 Fully-connected neural network 59
  4.1.3 Convolutional neural network 59
  4.1.4 Recurrent neural network 59
  4.1.5 Reservoir computing 59
 4.2 Supervised learning 61
 4.3 Finding the coupling strength 62
 4.4 Finding the synchronized state 65
 4.5 Application I : Prediction of the phase dynamics 68
 4.6 Application II : Reconstruction of the network structure 72
 4.7 Summary 74
5 Conclusion 76
Appendices 79
 Appendix A Numerical simulation method 80
  A.1 Runge-Kutta method 80
  A.2 Kahan summation 82
  A.3 Simulation of the Kuramoto equation 82
 Appendix B Asymmetric interaction-frequency correlated model 84
 Appendix C Effective potential approaches for finite size systems 87
  C.1 Random sampling of frequencies 87
  C.2 Regular sampling of frequencies 91
  C.3 Trapped at metastable states 92
Bibliography 100
Abstract in Korean 108
</body>

