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Abstract

Anti-tumor activity and mechanism
of selective CDK4/6 inhibitor In

human colorectal cancer cell lines

Hyun Jung Lee
Molecular Oncology
The Graduate School

Seoul National University

Purpose: Colorectal cancer (CRC) is the third most common cancer and the
second highest cause of cancer related mortality worldwide. Selective cyclin
dependent kinase (CDK) 4/6 inhibitors have been evaluated as promising
therapeutic strategy in many cancers. However, targeting cell cycle regulation in

colorectal cancer has not been fully evaluated. The aim of our study was to



investigate the anti-tumor activity of the selective CDK4/6 inhibitors and to
explore the mechanism of action of selective CDK4/6 inhibitors in human CRC

cell lines.

Materials and Methods: We investigated the anti-proliferative efficacy of
selective CDK4/6 inhibitors, palbociclib, abemaciclib, and ribociclib. With the
most potent selective CDK4/6 inhibitor, we explored the mechanism of anti-
proliferative activity and optimal combination agents with a synergistic
interaction in colorectal cancer cell lines. To identify the possible predictive
biomarkers for selective CDK4/6 inhibitors, multiple in vitro models of colorectal
cancer cell lines were used. Tumor xenograft model of human colorectal cancer

cell lines were established using athymic nude mice for in vivo validation.

Results: Growth inhibition assay with multiple colorectal cancer cell lines
revealed that abemaciclib was the most potent among the three selective CDK4/6
inhibitors tested. Abemaciclib monotherapy inhibited cell cycle progression and
proliferation especially in Caco-2 and SNU-C4 cells. CDK2-cyclin E complex
mediated Rb phosphorylation and AKT phosphorylation appeared to be potential
resistance mechanisms to abemaciclib monotherapy. Abemaciclib/BYL719
(selective PI3K pl110a inhibitor) combination therapy demonstrated synergistic
effects regardless of PIK3CA mutation status but showed greater efficacy in the
PIK3CA mutated SNU-C4 cell line. Growth inhibition, cell cycle arrest, and
migration inhibition were confirmed as mechanisms of action for this
combination. In a mouse xenograft model with SNU-C4 cell line harboring
PIK3CA mutation, abemaciclib/BYL719 combination resulted in tumor growth

inhibition and apoptosis with tolerable toxicity.



Conclusion: Abemaciclib showed anti-tumor activity in human colorectal cancer
cell lines and dual blockade of PI3K p110a and CDK4/6 showed synergistic anti-
tumor effects in vivo and in vitro. PIK3CA mutation could be an additional
predictive marker for the efficacy of abemaciclib in combination with BYL719.
These findings provide novel insight into a possible therapeutic strategy for

patients with metastatic CRC.

Keywords: Colorectal cancer, Abemaciclib, BYL719 (Alpelisib), Cell cycle,
Migration, Apoptosis, PIK3CA
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Introduction

The overall survival (OS) of advanced colorectal cancer (CRC) has
improved with the introduction of anti-angiogenic and anti-epithelial growth
factor receptor (EGFR) agents since the early 2000°’s. However, total CRC
survival in Korea has plateaued (around 75%) over the past decade [1]. CRC
is the third most common in terms of incidence after lung and breast cancer
and the second highest in terms of cancer related mortality after lung cancer
worldwide [2]. According to the US National Cancer Institute Surveillance,
Epidemiology, and End Results (SEER) reports, the 5-year survival of CRC
patients with distant metastases is still poor (<15%), whereas the 5-year
survival of locoregional disease is approximately 70-90% [3]. This reveals
the unmet need of developing effective therapeutic approaches in patients
with metastatic CRC after the failure of two kinds of target agents such as

anti-angiogenic and anti-EGFR agents.

Cell cycle progression from G; to S phase is regulated by cyclin dependent
kinase (CDK) 4/6 and cyclin D1 complex-mediated phosphorylation of the
retinoblastoma (Rb) tumor suppressor. The intrinsic CDK4/6 inhibitor,
pl6INK4a, inhibits the enzymatic activity of the CDK4/6-cyclin D1
complex. In cancer cells, the cell cycle is dysregulated by cyclin D1
overexpression, pl16 loss, CDK4 mutation, and Rb loss [4]. Similarly, cell
cycle dysregulation in CRC is associated with cyclin D1 dysregulation, and
a variable frequency of cyclin D1 dysregulation in CRC has been reported
according to the types of structural and genetic variants: CCND1
amplification (2.5%) [5], cyclin D1 overexpression (55%) [6], and genomic
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aberrations called D-cyclin-activating features (DCAFs, <10 %) [7]. The
expression of cyclin D1 is regulated by several extracellular signaling
pathways [8]. In particular, cyclin D levels and CDK4/6 activity are
regulated by mitogenic signaling pathways. The mitogen-activated protein
kinase (MAPK) pathway promotes cyclin D1 upregulation [9]. MAPK
pathway genes KRAS, NRAS, and BRAF represent important molecular
targets in colorectal cancer and serve as predictive factor in the
identification of patients who potentially benefit from anti-EGFR treatment
[10]. In general, mitogenic signaling via the phosphatidylinositol-3-kinase
(PI13K)-AKT pathway promote cell proliferation and tumor growth. PISK—
encoded by the PI3KCA gene—is activated by different receptor tyrosine
kinases (such as IGFR, EGFR, VEGFR, FGFR, and RET) and activates AKT,
which leads to inhibition of TSC1/2 (Tuberous sclerosis complex 1/2) and
consequently to activation of mMTORC1/p70S6K [11]. Mitogenic signaling
via the PI3K-AKT pathway also increases cyclin D1 levels by blocking
glycogen synthase kinase-3p (GSK-3p)-mediated cyclin D1 proteolysis and
subcellular localization [12]. In contrast, the CDK4/6-cyclin D1 complex
stimulates mammalian target of rapamycin complex 1 (mTORC1), which is
located downstream of PI3K [13]. These findings give rationale for the
combination of CDK4/6 inhibitors and mitogenic signaling inhibitors in
CRC treatment. Currently, CDK is known as a modifiable key factor of cell
cycle transition, and some CDK4/6 inhibitors are used in numerous clinical

settings.

This study was designed to investigate the anti-tumor activity of the
selective CDK4/6 inhibitors and identify an optimal combination agent with

selective CDK4/6 inhibitors in CRC cell lines. In addition, this study was

2



performed to explore mechanisms of resistance to selective CDK4/6
inhibitors and mechanisms of action for possible combination therapy in

CRC cell lines.



Materials and Methods

Materials

Palbociclib, abemaciclib, ribociclib, BYL719, buparlisib, AzZD8186,
ipatasertib, AZD5363, and MK2206 were purchased from Selleckchem
(Houston, TX, USA). Antibodies against the following proteins were
purchased from Santa Cruz Biotechnology (Dallas, TX, USA): p107 (sc-
250), p130 (sc-9963), cyclin A (sc-751), cyclin D1 (sc-753), cyclin E (sc-
481), CDK2 (sc-163), and GAPDH (Glyceraldehyde 3-phosphate
dehydrogenase, sc-47724). Antibodies against Rb (cs#9309), p-Rb
(cs#8180), E2F (cs#3742), pl6 (cs#92803), p-AKT S473 (cs#4058), p-AKT
T308 (cs#9275), AKT (cs#4685), p-TSC2 (cs#3617), TSC2 (cs#4308), and
vinculin (cs#13901) were purchased from Cell Signaling Technology
(Danvers, Massachusetts, USA). Recombinant protein human epithelial
growth factor (rhEGF) and recombinant protein human fibroblast growth
factor (rhFGF) were purchased from R&D Systems (Minneapolis, MN,
USA). Mitomycin C (MMC), propidium iodide (PIl), RNase, Leibovitz's L-
15, Eagle’s Minimum Essential Medium (EMEM), and sodium dodecyl
sulfate (SDS) were purchased from Sigma Aldrich (USA). Phosphate
buffered saline (PBS) and fetal bovine serum (FBS) were purchased from
Gibco (Grand Island, NY, USA). Roswell Park Memorial Institute (RPMI)
1640 and Dulbecco’s modified Eagle’s medium (DMEM) were purchased
from Welgene (Daejeon, South Korea). All chemicals and reagents were of

analytical grade and were obtained from commercial sources.



Cell culture

HCT-15, DLD-1, HCT-8, SwW480, SNU-175, SNU-C5, HT-29, Caco-2,
SNU-C2B, Lovo, Colo320DM, and SNU-C4 cells were purchased from the
Korean Cell Line Bank (Seoul, South Korea). SW48 cells were purchased
from American Type Culture Collection (ATCC, Manassas, VA, USA). DiFi
cell line was kindly provided by Prof. Joonoh Park at Sungkyunkwan

University, Seoul, Republic of Korea.

HCT-15, DLD-1, HCT-8, SW480, SNU-175, SNU-C5, HT-29, Lovo, SNU-
C2B, Colo320DM, and SNU-C4 cells were maintained in RPMI 1640 with
10% FBS, 4mM L-glutamine, and 1% penicillin/streptomycin at 37°C with
5% CO2. SW48 was maintained in Leibovitz's L-15 with 10% FBS, and 1%
penicillin/streptomycin at 37°C with 100% air. Caco-2 cells were
maintained in DMEM with 10% FBS, 4mM L-glutamine, and 1%
penicillin/streptomycin at 37°C with 5% CO2. Normal colon epithelial
CCD8410CoN cell line was kindly provided by Prof. Nayoung Kim at Seoul
National University, Seoul, Republic of Korea. CCD841CoN cells were
maintained in an EMEM with 10% FBS, 4mM L-glutamine, and 1%

penicillin/streptomycin at 37°C with 5% CO2.

Cell proliferation assay

The cell proliferation assay was performed using the CellTiter-Glo
Luminescent Cell Viability Assay (Promega, Madison, WI, USA) according
to manufacturer’s instructions. On day 0, 96-well plates were seeded with
3,000 cells/well and incubated overnight. The next day, cells were treated

5



with the indicated compounds. On day 4, plates were incubated for 1 h at
room temperature, and 100 pL of CellTiter-Glo reagent was added to each
well, followed by mixing on an orbital shaker for 5 min. Luminescence was
measured on a GloMax 96-well luminometer from Promega (Madison, WI,

USA).

Colony-forming assay

Caco-2 and SNU-C4 cells were seeded into 6-well plates and grown for 72
h before being subjected to the indicated treatments for 10 days, and the
media was changed at regular time intervals. After 10 days of culture at
37°C with 5% CO2, colonies were washed with PBS, stained with
Coomassie Brilliant Blue for 30 min at room temperature, then washed with
water, and air-dried. The colonies were photographed using the ChemiDoc
Touch (Bio-Rad) and measured using ImageJ software (National Institutes

of Health, Bethesda, MD, USA).

Cell migration assay

Caco-2 and SNU-C4 cells were seeded into 96-well plates and grown for 24
h. Confluent monolayers were gently scratched using a WoundMaker (Essen
Bioscience, Ann Arbor, MI, USA). Cells were washed twice with PBS to
remove floating cells and then incubated for 40 h in growth medium
supplemented with 10 ng/mL rhEGF, 10 ng/mL rhFGF2, and 10 pg/mL

MMC. The rate of cell migration was expressed as the area of the scratch



relative to total area of the cell-free region immediately after the scratch

using IncuCyte Zoom (Essen Bioscience).

Cell cycle analysis

Caco-2 and SNU-C4 cells were seeded into 100-mm plates and grown
overnight and were then subjected to the indicated drug treatments for 48 h.
After trypsinization, cells were washed twice in PBS, fixed overnight at 4°C
in ethanol, washed three times with PBS, and incubated in PBS containing
20 pg/mL PI and 100 pg/mL RNAse at 37°C for 30 min. After washing in
PBS, cells were resuspended in 1 mL PBS and examined using a
FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA).
Cell cycle distribution was determined using FlowJo software (Tree Star,

Ashland, OR, USA).

Combination index analysis

HT-29, Caco-2, and SNU-C4 cells were seeded into 96-well plates at 3,000
cells/well in a total volume of 100 pL basal media containing 10% FBS. The
following day, cells were treated in pentaplicate with single agents and their
fixed-ratio combination for 72 h over a seven-point titration, which was
centered on the single-agent concentrations that inhibited viability by 50%
(ICs0). Cell viability was measured by the CellTiter-Glo Luminescent Cell
Viability Assay (Promega, Madison, WI, USA) according to manufacturer's

instructions. Combination index (Cl) scores were calculated as previously



described [14] using CalcuSyn software (Biosoft). This software uses the
Chou-Talalay combination index method, which is based on the median-
effect equation, itself a derivation from the mass-action law. For this
analysis, abemaciclib was combined with BYL719 at a constant ratio
determined by Glso abemaciclib/ICso BYL719. We entered the resulting
proliferation data, along with the data obtained from single drug treatments,
into CalcuSyn to determine a CI value for each combination point, which
quantitatively defines synergy (CI < 1), additivity (Cl = 1), and antagonism
(Cl>1).

Western blot analysis

Colon cancer cell lines lysates were obtained by centrifugation at 12,000 x
g for 30 min at 4°C. Protein concentration in the supernatant was measured
by Bradford assay (BioLegend, San Diego, CA, USA). Proteins (20 pg) were
separated by SDS polyacrylamide gel electrophoresis, transferred to a
polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA, USA) that
was blocked in blocking buffer containing 5% skim milk, and then probed
overnight with primary antibodies. Secondary antibodies conjugated with
horseradish peroxidase (1:4,000 dilution; Bio-Rad) were applied for 1 h.
Immunoreactivity was detected by enhanced chemiluminescence (Biosesang,

Seongnam, South Korea) and a ChemiDoc Touch imager (Bio-Rad).



Mouse xenograft

All mice were housed in a specific pathogen-free facility at the Seoul
National University Bundang Hospital, Seongnam, Republic of Korea. The
project was approved by the Institutional Animal Care and Use committee
of Seoul National University Bundang Hospital (IACUC approval number:
51-2018-046). For xenograft mouse studies, male athymic nude mice,
weighing 26-28 g (5 weeks old), were purchased from Orient Bio Co.
(Kapyong, Republic of Korea). Mice were provided with NIH-07 rodent
chow (Zeigler Brothers, Gardners, PA, USA) purchased from Central Lab
Animal Inc. (Seoul, Republic of Korea). Animals were acclimated to
temperature (20-24°C) and humidity (44.5-51.8%) and a 12-h light/dark
cycle for 1 week prior to use. SNU-C4 cells (1 x 107) were subcutaneously
implanted with Matrigel (BD Biosciences, San Jose, CA) into the flank of
each mouse. Ten days after cell inoculation, when palpable tumors were
observed, mice were randomly assigned to receive one of the following
treatments: (A) three times weekly oral administration of vehicle, i.e., sterile
water (control group), (B) daily oral administration of abemaciclib (25
mg/kg/day of body weight) in sterile water, (C) daily oral administration of
abemaciclib (50 mg/kg/day of body weight) in sterile water, (D) daily oral
administration of BYL719 (15 mg/kg/day of body weight) in sterile water,
(E) daily oral administration of BYL719 (30 mg/kg/day of body weight) in
sterile water, (F) daily oral administration of abemaciclib (25 mg/kg/day of
body weight) combined with BYL719 (15 mg/kg/day of body weight) in
sterile water, or (G) daily oral administration of abemaciclib (50 mg/kg/day
of body weight) combined with BYL719 (30 mg/kg/day of body weight) in

sterile water. The mice (five per treatment group) were weighed, and tumor
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areas were measured throughout the study. Treatments were continued for 4
weeks, and the mice were euthanized by CO2 asphyxiation, weighed, and
subjected to necropsy. The volume and weights of xenograft tumors were
recorded. Selected tissues were further examined by routine hematoxylin

and eosin (H&E) staining and immunohistochemical (IHC) analyses.

Immunohistochemistry

Paraffin-embedded tissue blocks from the xenograft tumors were extracted
and sectioned at a thickness of 5 um. Tissue sections from mouse xenograft
tumors, mounted on poly-L-lysine-coated slides, were deparaffinized by
standard methods. Endogenous peroxidase was blocked by 3% hydrogen
peroxide in PBS for 10 minutes. Antigen retrieval was done for 5 minutes
in 10 mM sodium citrate buffer (pH 6.0) heated at 95°C in a steamer,
followed by cooling for 15 minutes. Slides were washed with PBS and
incubated for 1 hour at room temperature with a protein-blocking solution
(VECTASTAIN ABC kit, Vector Laboratories, Burlingame, CA, USA).
Excess blocking solution was drained, and samples were incubated
overnight at 4°C with one of the following: a 1:500 dilution of p-AKT S473
and KI67 antibodies. Sections were then incubated with biotinylated
secondary antibody followed by streptavidin (VECTASTAIN ABC Kit).
Color was developed by exposing the peroxidase to diaminobenzidine
reagent (Vector Laboratories), which forms a brown reaction product.
Sections were then counterstained with Gill's hematoxylin (Sigma) for 1

minute. Brown staining identified p-AKT S473, and KI67 expression.

10



Apoptosis assay

TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)
assay was used to detect apoptotic cells and performed with ApopTag®
Peroxidase In situ Apoptosis detection kit. Paraffin-embedded tissue blocks
from the xenograft tumors were extracted and sectioned at a thickness of 5
pm. Tissue sections from mouse xenograft tumors, mounted on poly-L-
lysine-coated slides, were deparaffinized and washed according to
manufacturer’s manual. Endogenous peroxidase was blocked by 3%
hydrogen peroxide in PBS for 5 minutes in room temperature. Tissues were
treated with equilibration buffer and incubated for 10 seconds at room

temperature. Slides were washed with PBS and incubated for 1 hour at 37 C

with terminal deoxynucleotidyl transferase (TdT) enzyme in a humidified
chamber followed by incubation with anti-digoxigenin conjugate in a
humidified chamber for 30 minutes at room temperature. Color was
developed by exposing the peroxidase to diaminobenzidine reagent (Vector
Laboratories), which forms a brown reaction product. Sections were then

counterstained with Gill's hematoxylin (Sigma) for 1 minute.

Statistical analysis

Statistical analyses were performed using SPSS v.12.0 software (SPSS Inc.,
Chicago, IL, USA). One-way analysis of variance was used for comparisons
among groups. Significant differences between mean values were assessed

with Duncan’s test. A p-value < 0.05 was considered statistically significant.

11



The Student’s t-test was also used to compare two independent groups. *p

< 0.05; **p < 0.01; or ***p < 0.001.
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Results

Abemaciclib is the most potent selective CDK4/6 inhibitor in human

colorectal cancer cell lines

The growth inhibitory activity of palbociclib, abemaciclib and ribociclib
were evaluated in 14 human CRC cell lines. These CRC cell lines harbored
distinct genetic alterations (Table 1). Key genetic alterations which could
be possible predictive markers for response to selective CDK4/6 inhibitors
were obtained from the Cancer Cell Line Encyclopedia (CCLE) database [15]

and Catalogue Of Somatic Mutations In Cancer (COSMIC) database [16].

Abemaciclib (Figure 1B) seemed to be the most potent among the three
selective CDK4/6 inhibitors, followed by palbociclib (Figure 1A). Mean
Glso of abemaciclib, palbociclib, and ribociclib were 2.05 uM (range, 0.07
— 8.45), 4.14 uM (range, 0.09 — 10.67), and 17.7 uM (range, 1.18 — 47.41),
respectively. Most of the human colorectal cancer cell lines tested were
initially resistant to ribociclib in growth inhibition assay (Figure 1C). KRAS
wild-type colorectal cancer cell lines (Red letters in Figure 1) showed

tendency to be more sensitive to abemaciclib (Figure 1B).
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Table 1. Key genetic alterations in each of the colorectal cancer cell lines

A &-tf) &3

e

HCT-15 DLD-1 HCT-8 SW480 SNU-175 | SNU-C2B LoVo SNU-C5 HT-29 Caco-2 SNU-C4 DiFi Colo320DM SW48
MSI status MSI MSI MSI MSS MSI MSI MSS MSS MSI MSS MSI
KRAS G13D GI13D G13D G12v AS9T GI12D G13D WT WT WT WT WT WT WwT
BRAF WT wWT WT WT wWT wWT G70G V600E v 600]85 e WT D22N WT WwT WwT
E545K E545K E545K E545G WwT WT WT
PIK3CA WT wWT D725G WT HI1047R P449T WT
D549N D549N D549N V711
E288fs WT WT WT
PTEN WT WT WT WT wT wT WT WT wT WT
F2418
R273H R273H R248W p.CI135F K132R R248W WT
WT
TP53 S241F S241F wWT P3098 wWT R273C V2I8L R273H p.E204* G2458
S1858
ERBB2 WT - WT E1229+ R1146W R678Q WT WT WT WT WT WT WT WT
R66TH I65M D857N
ERBB3 NI26K - WT WT WT WT WT WT WT WT WT WT
P1142H
T716T RI1250W WT R782Q
ERBB4 wWT WT WT WT WT WT N1062S WT WT P1196S
L3691 G1069G
14

]
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Figure 1. Glso concentrations of selective CDK4/6 inhibitors for each of

the colorectal cancer cell lines

Each of the colorectal cancer cells were exposed to palbociclib (A),

abemaciclib (B), and ribociclib (C) at the indicated concentrations for 5 days.

Glso concentrations were calculated using CalcuSyn software.
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Abemaciclib differentially regulates cell proliferation depending on

cyclin D1 and pl16 expression in colorectal cancer cell lines

We examined the anti-proliferative activity of abemaciclib in human normal
colon epithelial CCD841CoN cell line and CRC cell lines according to
sensitivity. As shown in Figure 2A, the anti-proliferative effect of
abemaciclib was relatively higher in SNU-C4, Caco-2, HT-29, and SNU-C5
cell lines (Glso < 2.0 uM) compared with the SNU-175, SW480, HCT-8,
DLD-1, and HCT-15 cell lines (Glso > 2.0 uM). Whereas abemaciclib was
approximately three to fifteen fold less toxic against normal colon epithelial

CCD841CoN cell compared with CRC cell lines.

Cyclin D1 expression was higher in some abemaciclib-resistant cell lines
(HCT-15, DLD-1, HCT-8, and SW480). HCT-15 was the most resistant cell
line, and it also showed high p16 expression and low Rb expression (Figure
2B). Abemaciclib-sensitive cell lines (SNU-C5, HT-29, Caco-2, and SNU-
C4) reported some common features, including intact Rb expression and
relatively low cyclin D1 and pl6 expression, when compared with the
resistant HCT-15 cell line. As more clinically relevant in vitro models,
Caco-2 and SNU-C4 cells, which showed the lowest Glso concentrations (<1

pM) in our experiment, were selected.
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Figure 2. Effect of abemaciclib on cell viability and cell cycle in

colorectal cancer cell lines

(A)

(B)

Cells were exposed to abemaciclib at the indicated
concentrations for 5 days. Glsg concentrations were calculated

using CalcuSyn software.
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The protein expression levels of Rb, cyclin D1, p16, and GAPDH
were evaluated in HCT-15, DLD-1, HCT-8, SW480, SNU-176,
SNU-C5, HT-29, Caco-2, and SNU-C4 cells. GAPDH was used

as a protein-loading control.
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Among the abemaciclib-sensitive CRC cell lines, all four cell lines lacked
mutations in CCND1, RB1, and KRAS. The CDKN2A gene was wild-type in
HT-29, Caco-2, and SNU-C4 cells, but not in SNU-C5 cells, which harbor a
CDKN2A-silencing mutation. HT-29 and SNU-C4 cells were confirmed to

have BRAF and PIK3CA mutations concurrently (Table 2).
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Table 2. Genetic alterations in colorectal cancer cell lines according to sensitivity to abemaciclib

Primary resistance cell lines to CDK4/6 inhibitors

Sensitive cell lines to CDK4/6 inhibitors

HCT-15 DLD-1 HCT-8 SW480 SNU-175 SNU-C5 HT-29 Caco-2 SNU-C4
CCNDI WT - - WT WT WT WT WT WT
CDKN24 WT - - WT DEL Silent WT WT WT
R798Q
RBI WT - - WT WT WT WT WT
D921D
KRAS G13D G13D G13D G12vV AS9T WT WT WT WT
V600E
BRAF WT WT WT WT WT V600E WT D22N
T119S
E545K E545K E545K E545G
PIK3CA WT WT H1047R P449T WT
D549N D549N D549N V711
F288fs
PTEN WT WT WT WT WT WT WT WT
F288S
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Cell cycle analysis was performed by flow cytometry to confirm the effect
of abemaciclib on cell cycle progression. Abemaciclib treatment for 48 h
increased the fraction of Caco-2 and SNU-C4 cells in the Go/G: phase and
decreased that of cells in the S phase (Figure 3). A cell cycle regulation-
related gene expression assay revealed that Rb phosphorylation in Caco-2
and SNU-C4 cells decreased after exposure to abemaciclib. Cyclin E and
CDKZ2 expression were not affected by abemaciclib treatment in Caco-2 and
SNU-C4 cells (Figure 4). Moreover, we conducted colony-forming assays
to evaluate the long-term effects of abemaciclib on CRC cell lines. Colony
formation in Caco-2 and SNU-C4 cells decreased after abemaciclib

treatment in a dose-dependent manner (Figure 5).
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Figure 3. Effect of abemaciclib on cell cycle progression

Cell cycle analysis was conducted by FACScalibur after propidium iodide
(P1) staining. A total of 2 x 10° cells was seeded into 100-mm plates and
treated with or without abemaciclib. Data are presented as histograms (black,

0 uM abemaciclib; gray, 1 uM abemaciclib; dark gray, 5 uM abemaciclib.
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Figure 4. Changes of expression levels of cell cycle proteins during

abemaciclib treatment

Expression levels of p-Rb, p130, p107, E2F, cyclin D1, cyclin E (lower
band), and CDK2 were determined by western blot. GAPDH was used as a

protein-loading control.
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Figure 5. Colony-forming assay in abemaciclib sensitive cell lines

Colony-forming assays were conducted in Caco-2 and SNU-C4 cells. A total

of 5 x 102 cells was seeded into 6-well plates and treated with abemaciclib

for 7 days. Colony area was quantified using ImageJ software (National

Institutes of Health, Bethesda, MD, USA). Data are expressed as the mean

+ S.D. Different letters (a, b, c, d) indicate significant differences (p < 0.05).
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Abemaciclib and BYL719 combination shows synergistic anti-

proliferative activity in PIK3CA mutated cell lines

Primary resistance cell lines against abemaciclib (HCT-15 and DLD-1) and
abemaciclib sensitive cell lines (HT-29, Caco-2 and SNU-C4) were treated
with 5 uM abemaciclib for 0, 5, 15, 30, 45, and 60 min. Western blot analysis
of HT-29, Caco-2 and SNU-C4 cells displayed increased AKT
phosphorylation by exposure to abemaciclib in a time-dependent manner
(Figure 6). Delayed tuberous sclerosis complex 2 (TSC2) phosphorylation
was also observed in HT-29, Caco-2, and SNU-C4 cells with abemaciclib

treatment. However, this was not evident in HCT-15 and DLD-1 cells.
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Figure 6. Changes in AKT phosphorylation by exposure to abemaciclib

HCT-15, DLD-1, HT-29, Caco-2, and SNU-C4 cells were treated with 5 uM abemaciclib for 0, 5, 15, 30, 45, and 60 min. Expression

levels of p-AKT S473, p-AKT T308, total AKT, p-TSC2, and total TSC2 were determined by Western blot. GAPDH was used as a

protein-loading control.
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To find the optimal agent for overcoming the CDK4/6 inhibitor-resistance
mechanism, several PI3K-AKT inhibitors, including AZD8186, ipatasertib,
buparlisib, AZD5363, MK2206, and BYL719, were tested. Dose responses
for these PISK-AKT pathway inhibitors were characterized in HCT-15,
DLD-1, HT-29, Caco-2 and SNU-C4 cells (Figure 7). BYL719 was selected
as a combination agent with abemaciclib against HT-29, Caco-2 and SNU-
C4 cell survival to identify the effect of selective PI3K pl110a inhibition

according to the PIK3CA mutation status of the CRC cell lines.
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Figure 7. 1Cso concentrations of PI3K-AKT inhibitors in colorectal cancer cell lines

HCT-15, DLD-1, HT-29, Caco-2, and SNU-C4 cells were treated with the indicated concentrations of AZD8186, ipatasertib,

buparlisib, AZD5363, MK2206, and BYL719 for 72 h.
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Abemaciclib/BYL719 combination treatment was effective in HT-29, Caco-
2 and SNU-C4 cells and showed additive anti-proliferative activity in
PIK3CA mutated HT-29 and SNU-C4 cells. In addition, we observed that
5uM of abemaciclib and SuM of BYL719 combination treatment showed
approximately two fold less toxic in normal colon epithelial CCD841CoN
cell line compared with HT-29, Caco-2, and SNU-C4 cell lines (Figure 8).
Chou and Talalay multiple drug interaction analysis revealed further
increased anti-proliferative effect of abemaciclib/BYL719 in HT-29
(C1=0.335, Fa<0.5), Caco-2 (Cl = 0.447, Fa < 0.5) and SNU-C4 (CI = 0.286,
Fa < 0.5) cells (Figure 9 and Table 3).
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Figure 8. Abemaciclib/BYL719 combination treatment in colorectal cancer cells and normal colon epithelial cell

HT-29, Caco-2, SNU-C4, and CCD840CoN cells were treated with 0, 1, and 5 uM abemaciclib and/or 0, 1, and 5 uM BYL719 for

72 h. Data represent the mean + S.D. Different letters (a,b,c,d,e, and f) indicate significant differences (p < 0.05)
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Figure 9. Chou and Talalay multiple drug interaction analysis in colorectal cancer cell lines

HT-29, Caco-2, and SNU-C4 cells were exposed to increasing concentrations of abemaciclib and BYL719 at a fixed ratio. The anti-

proliferative potential of abemaciclib combined with BYL719 was determined by calculating the combination index (CI) using

CalcuSyn software according to the Chou-Talalay method.
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Table 3. Chou

and Talalay multiple drug interaction analysis in colorectal cancer cell lines

HT-29 Caco-2 SNU-C4
Abemaciclib  BYL719 . Abemaciclib BYL719 Abemaciclib  BYL719
Fa CI Est. S.D. (M) (D Fa Cl Est. S.D. (M) (U D Fa CI Est. S.D. (M) (M)
0.02 0.011 0.025 2E-06 1E-05 0.02 0.513 0.579 2E-04 9E-04 0.02 0.336 1.306 2E-04 2E-04
0.05 0.025 0.04 3E-05 2E-04 0.05 0.472 0.387 0.001 0.006 0.05 0313 0.805 0.001 0.001
0.1 0.048 0.057 3E-04 0.001 0.1 0.447 0.271 0.005 0.026 0.1 0.299 0.549 0.005 0.005
0.15 0.072 0.068 9E-04 0.004 0.15 0.437 0.212 0.012 0.065 0.15 0.293 0.432 0.013 0.011
0.2 0.098 0.077 0.002 0.012 0.2 0.432 0.173 0.024 0.131 02 0.29 0.359 0.026 0.022
0.25 0.127 0.084 0.005 0.026 0.25 0.429 0.145 0.043 0.233 0.25 0.288 0.307 0.045 0.038
03 0.158 0.089 0.01 0.051 03 0.43 0.124 0.072 0.385 03 0.287 0.267 0.073 0.062
0.35 0.193 0.092 0.019 0.096 0.35 0.432 0.108 0.113 0.608 0.35 0.286 0.235 0.113 0.096
0.4 0.234 0.094 0.035 0.174 04 0.435 0.096 0.174 0.933 04 0.286 0.209 0.17 0.145
0.45 0.28 0.095 0.061 0.306 0.45 0.44 0.088 0.261 1.405 0.45 0.286 0.187 0.252 0.215
0.55 0.401 0.098 0.186 0.928 0.55 0.457 0.083 0.583 3.135 0.55 0.287 0.159 0.545 0.464
0.6 0.482 0.108 0.327 1.634 0.6 0.469 0.087 0.879 4.722 0.6 0.288 0.153 0.807 0.687
0.65 0.583 0.134 0.59 2.948 0.65 0.484 0.095 1.347 7.239 0.65 0.289 0.155 1.215 1.035
0.7 0.716 0.19 1.108 5.539 0.7 0.505 0.107 2.126 11.43 0.7 0.291 0.165 1.882 1.603
0.75 0.899 0.296 2218 11.09 0.75 0.534 0.124 3.515 18.89 0.75 0.294 0.185 3.047 2.596
0.8 1.166 0.489 4912 24.56 0.8 0.575 0.147 6.248 33.59 0.8 0.298 0.22 529 4.506
0.85 1.602 0.873 12.86 64.29 0.85 0.639 0.183 12.54 67.41 0.85 0.304 0.276 10.31 8.787
0.9 2.447 1.792 46.16 230.8 0.9 0.756 0.246 31.64 170 0.9 0.313 0.372 25.04 21.33
0.95 4.888 5312 363.8 1819 0.95 1.051 0.415 141 758 0.95 0.332 0.593 104.9 89.39
0.99 23.37 51.85 34787 2E+035 0.99 2.614 1.54 3830 20584 0.99 0.395 1.572 2486 2117
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Abemaciclib and BYL719 combination induces Go/G; phase arrest and

alters regulatory protein expression in Caco-2 and SNU-C4 cell lines

Cell cycle analysis was performed to confirm the effects of abemaciclib and
BYL719 on the cell cycle in Caco-2 and SNU-C4 cells (Figure 10).
Abemaciclib monotherapy induced Go/G; arrest in Caco-2 and SNU-C4 cells.
Abemaciclib/BYL719 combination also showed cell cycle arrest in the

Go/G1 phase, but BYL719 monotherapy did not induce cell cycle arrest.
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Figure 10. Abemaciclib and BYL719 combination inhibits the cell cycle

in Caco-2 and SNU-CA4 cell lines

A total of 1 x 10° cells was seeded in 60-mm plates and treated with the

indicated concentrations of abemaciclib and BYL719 (n = 3). Bar graph

shows the quanti

fication of cell cycle distribution in Caco-2 and SNU-C4

cells. (Black, 0 uM abemaciclib and 0 uM BYL719; gray, 5 uM abemaciclib

and 0 uM BYL719; dark gray, 0 uM abemaciclib and 5 uM BYL7190; light

gray, 5 uM abemaciclib and 5 pM BYL719). ND no difference; *p < 0.05;

**p < 0.01; and ***p < 0.001.
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Changes in the protein expression levels of cell cycle regulators were
evaluated in Caco-2 and SNU-C4 cells according to abemaciclib and
BYL719 treatment (Figure 11). Abemaciclib monotherapy decreased the
expression of phosphorylated Rb (p-Rb), Rb, E2F, and cyclin A in Caco-2
and SNU-C4 cells. Rb phosphorylation was transiently inhibited with
abemaciclib treatment in Caco-2 and SNU-C4 cells, but prolonged exposure
(48 h) to abemaciclib monotherapy increased Rb phosphorylation in SNU -
C4 cells. BYL719 alone did not affect p-Rb expression in both cell lines.
Abemaciclib/BYL719 combination decreased the protein expression of p-
Rb, and this effect was sustained longer compared with abemaciclib
monotherapy. Sustained expression of cyclin D1, cyclin E, and CDK2 after
abemaciclib monotherapy was also observed in this study. Cyclin A, cyclin
E, and cyclin D1 were downregulated with abemaciclib/BYL719
combination in Caco-2 and SNU-C4 cells. CDK2 expression was not

affected by any treatment in both cell lines.
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Figure 11. Abemaciclib and BYL719 combination changes the
expression of cell cycle regulatory proteins in Caco-2 and SNU-C4 cell

lines

The expression levels of p-Rb, Rb, E2F, p16, cyclin A, cyclin E (lower band),
cyclin D1, and CDK2 were evaluated by western blot using vinculin as a

protein-loading control.
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Abemaciclib and BYL719 combination inhibits colony-forming activity

and cell migration

We  performed colony-forming assays to determine  whether
abemaciclib/BYL719 combination could enhance the anti-proliferative
activity in Caco-2 and SNU-C4 cells compared with abemaciclib and
BYL719 monotherapy (Figure 12). In both Caco-2 and SNU-C4 cells,
abemaciclib and BYL719 monotherapies significantly suppressed colony-
forming activity, whereas abemaciclib/BYL719 combination synergistically
increased the inhibitory effects of abemaciclib and BYL719 alone in a dose-

dependent manner.

37



Figure 12. Combination effects of abemaciclib and BYL719 on colony

formation in Caco-2 and SNU-CA4 cell lines

Colony-forming assays were conducted in Caco-2 and SNU-C4 cells treated
with 0, 0.05, and 0.1 uM abemaciclib and/or 0, 1, and 5 pM BYL719 for 10

days.
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The effect of abemaciclib/BYL719 combination on migration was evaluated
using a scratch wound healing assay (Figure 13). Although abemaciclib
monotherapy significantly inhibited cell migration in Caco-2 cells, BYL719
monotherapy and abemaciclib/BYL719 combination did not inhibit cell
migration. In contrast, although abemaciclib alone was insufficient to alter
the migration ability of SNU-C4 cells below 5 uM, abemaciclib/BYL719
combination and BYL719 monotherapy resulted in potent migration

inhibition in SNU-CA4 cells.
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Figure 13. Combination effects of abemaciclib and BYL719 on

migration in Caco-2 and SNU-C4 cell lines

The migration of Caco-2 and SNU-C4 cells was assessed by wound healing
assays after 40 h of treatment. Representative images of the scratched areas

are shown. Cell migration was quantified using ImageJ software.
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Abemaciclib and BYL719 combination inhibits tumor growth and

induces apoptosis in vivo

SNU-C4 cells showed a more potent synergistic response when treated with
abemaciclib/BYL719 combination than Caco-2 cells (Figure 10, 11, 12, 13).
Using a mouse xenograft model of SNU-C4 cells, the in vivo anti-tumor
activity of abemaciclib/BYL719 combination was evaluated. Mice were
randomly assigned to receive one of the following treatments: (A) three
times weekly oral administration of vehicle, i.e., sterile water (control group,
n=5), (B) daily oral administration of abemaciclib (25 mg/kg/day of body
weight) in sterile water (n=5), (C) daily oral administration of abemaciclib
(50 mg/kg/day of body weight) in sterile water (n=5), (D) daily oral
administration of BYL719 (15 mg/kg/day of body weight) in sterile water
(n=5), (E) daily oral administration of BYL719 (30 mg/kg/day of body
weight) in sterile water (n=5), (F) daily oral administration of abemaciclib
(25 mg/kg/day of body weight) combined with BYL719 (15 mg/kg/day of
body weight) in sterile water (n=5), or (G) daily oral administration of
abemaciclib (50 mg/kg/day of body weight) combined with BYL719 (30
mg/kg/day of body weight) in sterile water (n=5). During the 4 weeks of
treatment, there was no significant change in body weight among the seven
treatment groups (Figure 14A). However, three deaths were reported in
group G at week 3 (Figure 14B), whereas there were no deaths in the other

groups.
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Figure 14. Tolerability of abemaciclib combined with BYL719 in SNU-

C4 mouse xenograft models

Athymic nude mice bearing SNU-C4 xenografts were administered with
vehicle, abemaciclib alone, BYL719 alone, or the combination of

abemaciclib and BYL719.
(A) Body weight were evaluated every 7 days.

(B) Survival data of mice were evaluated every 7 days.
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The volume of tumors in the control group increased during the follow-up
(Figure 15). Abemaciclib or BYL719 monotherapy significantly inhibited
tumor growth compared with the control group (p < 0.05).
Abemaciclib/BYL719 combination showed a more potent inhibitory growth
effect compared with the abemaciclib or BYL719 monotherapy groups (p <

0.05).
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Figure 15. The overall anti-tumor efficacy of treatment regimens in

SNU-C4 mouse xenograft models

The overall anti-tumor efficacy of drugs was measured by tumor volume

every 7 days. Error bars represent the standard error of the mean.
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Formalin-fixed paraffin-embedded tumor tissues from the SNU-C4 mouse
xenograft model were stained with H&E and for p-AKT S473, Ki67, and
TUNEL assay (Figure 16). Ki67 expression dramatically decreased in the
combination groups, indicating less cell proliferation, compared with the
control and monotherapy groups (Figure 17). In the abemaciclib and
BYL719 monotherapy groups, there was only a slight increase in the amount
of TUNEL-positive cells, suggesting apoptosis, at high doses (30 mg/kg/day)
of BYL719 monotherapy compared with the control group. However,
abemaciclib/BYL719 combination treatment appeared to increase TUNEL-
positive cells compared with abemaciclib or BYL719 monotherapies

(Figure 18).
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Figure 16. Tumor sections from the SNU-C4 mouse xenograft model (x100)
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Figure 17. Ki-67 expression of tumor tissues from the SNU-C4 mouse xenograft model (x400)
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Figure 18. TUNEL staining of tumor tissues from the SNU-C4 mouse xenograft model (x400)
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Discussion

This study demonstrates that abemaciclib monotherapy induces cell cycle
arrest and inhibits cell proliferation in CRC cell lines. Furthermore,
abemaciclib has a synergistic effect in combination with BYL719 both in in
vivo and in vitro CRC cell line models. This synergistic effect was more
significantly demonstrated in the PIK3CA mutated cell line than in the
PIK3CA wild-type cell line. We also found that cell cycle arrest,
proliferation and migration inhibition, and apoptosis contributed to the anti-
tumor activity of abemaciclib/BYL719 combination therapy in the PIK3CA

mutated CRC cells.

Previous studies using different selective CDK4/6 inhibitors reported that
abemaciclib (ICso 2 nM) is the most potent selective CDK4/6 inhibitor
against the cyclin D1/CDK4 complex and palbociclib (ICso 11 nM) showed
similar potency with ribociclib (ICso 9 nM) against the cyclin D1/CDK4
complex [17]. Abemaciclib is the most recently developed selective CDK4/6
inhibitor with distinct characteristics from other selective CDKA4/6
inhibitors, such as palbociclib and ribociclib. Abemaciclib has shown
superior single-agent activity when compared with palbociclib and
ribociclib [18-20], and it is more selective against CDK4 than CDK®6
compared with other CDK4/6 inhibitors [21]. Consequently, abemaciclib has
shown higher clinical activity while reducing the episodes of severe
neutropenia that result from CDKG6 inhibition [22]. Less frequent
neutropenia allows continuous dosing of abemaciclib to achieve durable cell
cycle inhibition, and continuous exposure to higher plasma concentrations
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of abemaciclib is a key mechanism for inducing apoptosis in preclinical
models [23]. In our study with CRC cell lines, abemaciclib was the most
effective (mean Glso 2.05 uM) of the selective CDK4/6 inhibitors tested,
followed by palbociclib (mean Glso 4.14 uM) and ribociclib (mean Glso
17.77 uM). Cell lines with ICso below 1 puM are defined to represent
sensitive cell lines to palbociclib and ribociclib according to previous
preclinical studies [24,25]. Gong, et al. reasoned that 1Csq below 1 uM
represent the clinically available dose that tumors could be responsive to
abemaciclib monotherapy [7]. Based on these previous literatures, we
decided the sensitivity cut-off of all selective CDK4/6 inhibitors’
concentration as Glso concentrations <1 pM. The limitation of our study is
a concurrent use Glso and ICsp values in the process of confirming the effect
of the drug. In the initial stage of this study, we hypothesize that the main
mechanism of anti-tumor activity of abemaciclib would be growth inhibition
like any other previously developed CDK4/6 inhibitors. As a result, Glso
was used for confirming antitumor activity of abemaciclib in CRC cell lines.
In the course of our study, we realized that abemaciclib exerts the anti-tumor
activity beyond enforcing cytostatic growth arrest. Thus, we have performed
cell viability test and calculate ICso to analyze the anti-tumor activity of
molecular-targeted agents and abemaciclib combination treatment.
Abemaciclib demonstrated relatively potent growth inhibitory activity with
the lowest mean Glso concentration whereas the most of the CRC cell lines
were resistant to ribociclib. As a result, abemaciclib was selected to explore
the efficacy and mechanism of action in CRC cell lines in further

experiments.
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In our study, abemaciclib-sensitive CRC cell lines presented some common
features, including KRAS wild-type, intact Rb expression, low pl6
expression, and relatively low cyclin D1 expression. An early phase clinical
trial with abemaciclib had reported that disease control rate for the KRAS
mutant population was 55% (16 of 29 patients), whereas that for the KRAS
wild-type population was 39% (13 of 33 patients) especially in non-small
cell lung cancer (NSCLC) cohort [26]. However, this result did not translate
into late stage clinical trial. A phase Ill trial with abemaciclib monotherapy
in KRAS-mutated, NSCLC did not meet its primary endpoint of OS [27].
KRAS mutation are reported in 50% of CRC [28] and still remains a
challenging target that has no effective therapeutic option in many human
cancers. KRAS mutation status as a single predictive marker for selective
CDK4/6 inhibitors in CRC have not been reported yet and need to be further
validated in other preclinical and clinical trials. Various clinical and
preclinical studies have demonstrated that Rb could be the most important
predictive marker for CDK4/6 inhibitors [29-31]. Consistent with these
reports, our study showed that intact Rb is a sensitivity biomarker for
CDK4/6 inhibitors. However, a recent study, which assessed abemaciclib
sensitivity across many human cancer cell lines, suggested that loss of p16
and low cyclin D1 expression were associated with abemaciclib resistance
[7]. Among these markers, the role of cyclin D1 and pl16 expression as
prognostic markers for CDK4/6 inhibitors is still controversial, even in
similar groups of patients with ER+/HER2- breast cancer [32,33], and

requires further evaluation in preclinical and clinical models.

CDK2 and its regulatory cyclin-cyclin E are also known as another key

factors in the progression of cell cycle transition from G1 to S phase as well
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as CDK4/6-cyclin D1 complex [34]. In addition, it was previously reported
that PIBK/AKT/mTOR signaling pathway activation promotes cell cycle
progression in CDK4/6 inhibitor resistant breast cancer cells through
increased CDK2 and cyclin E [35]. Sustained expression of cyclin E, and
CDK2 (Figure 11) after abemaciclib monotherapy was observed in our
study. This might result in delayed Rb phosphorylation in abemaciclib
monotherapy. However, Rb phosphorylation and cyclin E expression
decreased with abemaciclib/BYL719 combination therapy in our study.
These findings suggest that CDK4/6-independent signaling pathways, which
could be blocked by BYL719 combination treatment, could exist in CRC
cell lines like breast cancer cell lines. In a preclinical study by Herrera-
Abreu, et al., elevated cyclin E expression and failed inhibition of Rb
phosphorylation were detected in PIK3CA mutated breast cancer cell lines
[36]. Prolonged CDK4/6 single inhibition and PI3K and CDK4/6 dual
inhibition resulted in loss of Rb phosphorylation and reduced cyclin E
expression in the same study [36]. Our study with CRC cell lines suggested
that CDK2-mediated Rb phosphorylation in combination with cyclin E

expression could be a mechanism of resistance to CDK4/6 inhibition.

AKT phosphorylation (Figure 6) after abemaciclib monotherapy was also
observed in this study. AKT phosphorylation is known as a potential
acquired resistance mechanism for CDK4/6 inhibitors [35]. This finding
indicated that activated AKT signaling by abemaciclib could be an acquired
resistance mechanism against abemaciclib treatment, which could be
blocked by combination therapy with PI3K-AKT signaling inhibitors.
PIBK/AKT/mTOR signaling pathway activation via AKT phosphorylation is

a well-known resistance mechanism against CDK4/6 inhibitors [35-37]. The
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PIBK/AKT/mTOR pathway is activated in many kinds of cancers and the
activation of PIBK/AKT/mTOR pathway is mainly mediated by mutations
in the pl10o subunit of PI3K called PIK3CA (>80%) [38]. PIK3CA
mutations have been found in approximately 16-21% of CRC [39]. It was
previously reported that CDKA4/6 inhibitors activated the PI3K/AKT
pathway through the phosphorylation of S473/T308 on AKT, and CDK4/6
and PI3K inhibitor combination reduced AKT phosphorylation in PIK3CA
mutated breast cancer cell lines. In the same study, PI3K inhibition
downregulated cyclin D1 expression [24]. These findings are consistent with
our findings in CRC cell lines and suggest that PI3K inhibition in
combination with CDK4/6 inhibition might have the potential to overcome

resistance to CDK4/6 inhibitors.

Some preclinical and early clinical studies have suggested the potential
efficacy of PIK3CA-targeting agents [40]; however, the clinical applications
of PI3K inhibitors have not advanced to late-phase clinical trials due to the
lack of rationale for combination strategies and toxicities. Isoform-specific
PI3K inhibitors are expected to have a wider range of therapeutic index and
less off-target effects, resulting in lower toxicity. BYL719 is a selective
PI3K pl110a inhibitor with potent activity against its activation [41]. In our
data, abemaciclib and BYL719 combination showed different outcomes
according to the PIK3CA mutation status in each CRC cell line. SNU-C4
cells harbor the PIK3CA mutation, whereas Caco-2 cells do not harbor any
actionable mutations in the same gene. lida et al. reported that CDK4/6
inhibitor-resistant breast cancer cell lines were more dependent on the
PIBK/AKT/mTOR pathway [42]. Almost all of the CRC cell lines used in

our study were more resistant to abemaciclib (Glso > 1.0 uM) compared with
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breast cancer cell lines (mean ICso = 168 nM) [43]. CDK4/6 inhibitors limit
cell proliferation by decreasing Rb phosphorylation, but inhibiting Rb
phosphorylation with CDK4/6 inhibitors leads to mammalian target of
rapamycin complex 2 (mTORC2)-mediated AKT activation in Rb-proficient
cells [44]. Delayed AKT and TSC2 phosphorylation with abemaciclib
treatment was observed in SNU-C4 cells in our study (Figure 6). These
findings support the hypothesis that there can be complex crosstalk between
cell cycle and mitogenic signaling pathways in CRC cells, and that PIK3CA
mutated CRC cells might be more dependent on the PI3K/AKT/mTOR

pathway than breast cancer cells.

Among the multiple PISK-AKT inhibitors tested in our study, BYL719
showed potent anti-proliferative efficacy against Caco-2 and SNU-C4 cells,
which was more prominent in the SNU-C4 cells. Interestingly, abemaciclib
and BYL719 combination therapy significantly decreased colony-forming
activity and migration in SNU-C4 cells but displayed antagonism in Caco-2
cell migration (Figure 13). Therefore, we evaluated the in vivo efficacy of
abemaciclib and BYL719 combination therapy using a mouse xenograft
model of PIK3CA mutated SNU-C4 cells. The SNU-C4 tumor xenograft
model revealed that combining abemaciclib and BYL719 could not only
inhibit tumor growth (Figure 15), but also induce apoptosis (Figure 16-18).
Abemaciclib has proven its cytostatic properties in various cancer types, but
it sometimes exhibits cytotoxic properties alone or in combination with
other agents [26,43]. In vitro data from our study gave rationale for
abemaciclib and BYL719 combination therapy, and in vivo data with a
PIK3CA mutated CRC mouse xenograft model confirmed the efficacy of

abemaciclib and BYL719 combination therapy. Thus, it could be reasonable
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to suggest that adding BLY 719 with abemaciclib leads to durable anti-tumor

effects in some tumor types with PIK3CA mutations.

Unfortunately, specific predictive markers for abemaciclib have yet to be
discovered, except for Rb proficiency in some studies [45]. The single-agent
activity of abemaciclib has resulted in limited outcomes in many clinical
trials, so the focus of recent clinical trials with CDK4/6 inhibitors has moved
to combination therapy and to find alternative predictive markers in
response to combination therapy. There are some ongoing clinical trials to
evaluate the safety and efficacy of CDK4/6 and PI3K/AKT dual inhibition.
Palbociclib with PISK/mTOR inhibitor PF-05212384 in patients with
estrogen receptor positive (ER+) metastatic breast cancer (MBC) reported
promising preliminary anti-tumor activity with manageable toxicities [46].
Palbociclib and PI3K inhibitor, taselisib, combination treatment in patients
with PIK3CA mutated advanced breast cancer revealed clinical benefit with
tolerable toxicities [47]. Aromatase inhibitor in combination with ribociclib
and BYL719 demonstrated enhanced anti-tumor activity without evidence
of drug interaction in patients with ER+ HER2 negative breast cancer [48].
Although there is a lack of clinical data for abemaciclib because of its short
developmental history, abemaciclib and selective PI3K pl110a inhibitor
combination are expected to be promising in clinical use. In consistent with
our data, abemaciclib and selective PI3K p110a inhibitor combination was
superior to single agent treatment in patient-derived xenograft models with
PIK3CA mutated head and neck squamous cell carcinoma [49]. Until now,
there are few studies to explore the efficacy and feasibility of CDK4/6
inhibitors in combination with PI3K inhibitors in patients with CRC.

Moreover, KRAS mutation status was not evaluated or stratified in most of
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the previous studies to evaluate the anti-tumor activity of CDK4/6 and
PISK/AKT dual inhibition. Our study also did not demonstrate the effect of
selective CDK4/6 and PI3K p110a dual inhibition in KRAS mutated CRC
cell lines. The findings of our study propose that PIK3CA mutation could be
a predictive marker for the response to abemaciclib and BYL719
combination therapy in colorectal cancer treatment, and it should be
validated in further preclinical and clinical trials according to the KRAS

mutational status.

In the present study, our findings suggest that abemaciclib and BYL719
combination therapy is effective in preclinical CRC cell line models. Cell
cycle arrest, proliferation and migration inhibition, and apoptosis are the
main contributors to the anti-tumor activity of abemaciclib and BYL719
combination therapy. Moreover, our study suggests that PIK3CA mutation
could be an additional predictive marker for the efficacy of abemaciclib in
combination with BYL719. These findings provide novel insight into a

possible therapeutic strategy for patients with refractory metastatic CRC.
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