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Abstract

Deep metric learning is a widely used learning method in the field of image search

and face verification. This learning method learns the semantic distance between

features while mapping each data to a specific embedding space. For learning metrics

in the embedding space, various loss functions and data sampling methods have been

developed recently. In particular, the proxy-based loss function is widely used because

of the excellent computation speed. Previous researches on the proxy-based loss have

assumed the feature vectors and the corresponding proxies coming close after enough

training. Although this assumption highly related to the performance of classification,

the actual behavior of vectors in embedding space has not been analyzed explicitly. This

study analyzes the softmax loss function used as the basic frame in proxy-based loss to

determine when the assumption will match the real training result. The analyzed results

indicate the new loss will improve performance. The experimental result confirms that

this new loss function can effectively improve the performance of the ResNet-50 model.

keywords: Deep Metric Learning, Image Retrieval, Fine-tuning, Feature Vector,

Intra-Class Distance, Inter-Class Distance

student number: 2018-29521
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Chapter 1

Introduction

Deep learning has played a major role in discovering the semantic meanings hiding in

data that machines cannot easily discover. In particular, many developments have been

made in image analysis. It was not an easy task to discover the meaning inherent in the

image and classify it accordingly, but as the deep neural network developed, it became

possible to effectively analyze large image sets such as ImageNet [1].

There are several types of image classification tasks: identification and verification.

The identification task is a problem of checking whether a given image and testing

gallery are entered, and the verification task is a problem of checking whether two

given images belong to the same class or different classes. Learning of deep neural

networks enables these tasks to distinguish not only the known classes, but also the

features of images corresponding to classes not used for learning. Various studies on

face-verification have been developed [2, 3].

Among the various methods proposed to solve image tasks, there is deep metric

learning that learns the semantic metric. In deep metric learning, images are converted

into vectors of the same length through a neural network, and images are identified

through distances in the space where this vector is embedding. The main purpose here

is to embedding the vector of the image corresponding to the same class closer together

and the vector of the image corresponding to different class farther away.
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The loss of deep metric learning used to learn the metric is largely divided into

pair-based loss and proxy-based loss. Pair-based loss is a loss that contains the purpose

of moving images of the same class closer and farther away. Triplet loss [3], Contrastive

loss [4] and Multi-Similarity loss [5] are such examples of pair-based loss.

On the other hand, proxy-based loss is a method in which the motion of image

vectors is determined based on the proxy vector. The concept of a proxy vector corre-

sponding to each class has been introduced [6]. Among them, cross-entropy loss, which

is widely used in classification tasks, is commonly applied [2, 7, 8]. The weight of the

fully connected layer used for cross-entropy loss corresponds to the concept of proxy.

This operation method is called softmax loss [7]. In fact, lots of proxy-based loss is a

variation of softmax loss.

Paired-based loss has a relatively long learning time, such as O(N2) or O(N3) [9],

due to the feature of considering various pairs of data. Here, N is the total number of

data. On the other hand, since proxy-based loss only needs to consider the relationship

between data and proxy, the learning time is O(NC) or O(NC2) [10], which requires

relatively little learning time. Here, C is the number of classes of training data, and in

most tasks, C ⌧ N . Therefore, there are cases in which proxy-based loss is preferred

due to the advantage of learning time [10].

Paired-based loss requires a lot of learning time, but because the loss function is

intuitive and simple. It is possible to accurately analyze the gradient of the loss, and

there are many studies that improve performance by using the analysis result [11].

However, since proxy-based loss is based on the method of using the classification, it is

not clear what behaviors the vectors specifically show in the embedding space in the

learning process. Various assumptions are used, such as that proxy and image vectors

become closer [8, 10], but there are not many cases where detailed analysis has been

discussed. The purpose of this study is to clearly analyze proxy-based loss, especially

softmax loss, to check whether there is any posibilities for improvement.
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Chapter 2

Related Works in Deep Metric Learning

2.1 Basic Concepts of Proxy-based Loss and Notations

Before describing the contents, we begin by introducing a basic concepts of proxy-based

loss defining the symbols to be used in this paper.

Suppose that we have a training data with images of C classes. The model embeds

each images in D-dimensional space. For example, ResNet-50 [12] model extracts each

image to 2048-dimensional vector so we can consider ResNet-50 embeds each image

in 2048-dimensional space. This space is called as embedding space.

Definition 1. The feature vector is an embedded vector of training image in embedding

space. We denote fc,i 2 RD as an feature vector of ith image in cth class.

In deep metric learning, the commonly used metric of the embedding space is cosine-

similarity [13]. If two feature vectors x1, x2 2 Rn are given, the cosine-similarity of

two vectors,
⇣

x1
kx1k2

⌘>
x2

kx2k2 , is a measurement of distance between two vectors where

k · k2 is a Euclidean distance in embedding space RD. (We do not embed the images

to the zero vector.) If the cosine-similarity is small, two vectors are considered close.

Therefore the norm of each vectors has no effect on training. From now on, we assume
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Figure 2.1: Diagram of image training in deep metric learning.

that all feature vectors x has norm 1, i.e. kxk2 = 1. Then, every extracted feature vector

will be contained in the unit-hypersphere SD = {v 2 RD
|kxk2 = 1}. Also, we denote

cosine-similarity as

s(x1,x2) := x>
1 x2. (2.1)

The main object of the metric learning is to embed train feature vector of the same class

gather together. Moreover, it can be said well trained when feature vectors of each class

is better distinguished [14]. The feature vectors from same class should become more

closer, which can be called intra-class variation is small. Also the feature vectors from

different class should become more further, which can be called inter-class variation

is large. The behavior of is determined by training loss. For example, consider the

standard triplet loss [3]

Lt(x,x
0,y) = g(kx� x0

k2)� g(kx� yk2), (2.2)

where x and x0 are feature vectors from the same class, y is another feature vector from

another class, and g is a non-decreasing differentiable function. If the model is trained

by triplet loss, x0 will be close to x, and y will move away from x to reduce the triplet
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loss. Note that if g(x) = x2, from kxk2 = kx0
k2 = kyk2 = 1, we can rewrite (2.2) as

Lt(x,x
0,y) = �x>x0 + x>y, (2.3)

which is the term of cosine-similarity.

Unlike the loss function that is designed in consideration of a pair of data, [6]

suggests the concept of proxy, which is a representation vector of each classes. Here,

we describe a two motivations of introducing proxies.

2.1.1 The View of Proxy - Fully Connected Layer in Classification

To classify data with C classes, D ⇥ C fully connected layer and cross-entropy loss

are commonly used where D is the length of extracted vector from training model. Let

vI 2 RD be an extracted vector from given image tensor I. Then, W 2 RD⇥C fully

connected layer with bias b 2 RC extracts new vector W>vI+b 2 RC . Here, W and

b are trainable parameters. Now, the cross-entropy loss is applied which is defined as

L(I) = � log
exp(uyI)PC
j=1 exp(uj)

(2.4)

where yI denotes the class index of image tensor I, and u = [u1, u2, · · · , uC ]>. Note

that if the model is trained with loss (2.4), then uyI becomes larger than other yj’s, and

argmaxj uj might become yI. After training, we can determine the class of test image

tensor I0 by argmaxj u
0
j where u = [u1, u2, · · · , uC ]> = W>vI0 + b.

For simplification, if we set b = 0, the cross-entropy loss (2.4) becomes

L(I) = � log
exp(uyI)PC
j=1 exp(uj)

= � log
exp(w>

yIvI)PC
j=1 exp(w

>
j vI)

,

when we write W as [w1, w2, · · · , wC ]>. Note that wj 2 RD (1  j  C). In this

view, vI can be considered as feature vector, and w>
j vI as a “relation” between class

j and image tensor I. In the context of the classification above, we can train the fully
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connected layer W to make “relation” between class yI and image tensor I larger than

other relations.

Moreover, if kvIk2 = 1 and kwjk2 = 1 for all j, w>
j vI becomes a cosine-similarity

between wj and vI, which is a metric on the D-dimensional unit hypersphere described

in (2.1). The metric learning and classification can be related in this sense. From now

on, W and wj will be called proxy (or proxy of class j).

2.1.2 The View of Proxy - Learning a Semantic Vector

To distinguish features from image data, we have to determine some semantic object

which is trainable. Thinking independently of classification, we should consider each

point of the unit-hypersphere described above contains semantic meaning. [6] suggests

a small data set P ⇢ SD, which has a major feature of image and |P| = C. Each

feature vector have to be corresponded to one semantic meaning, i.e., element of P .

The main object of training is to learn a semantic meaning of feature vector x which

can be defined as

p(x) = argmax
p2P

s(x,p). (2.5)

It can be seen that the D-dimensional vector proxy is proposed for both concepts.

A proxy-based loss is a loss computed by proxies. In deep metric learning, the equation

(2.4) is referred as softmax-loss, the process of forward-passing fully connected layer

with zero biases and applying cross-entropy loss.

2.2 Examples of Proxy-based Loss

This section will observe some proxy-based losses and their advantages studied so far.

We already introduced softmax loss in (2.4).
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2.2.1 Angular Softmax Loss

To improve an intra-class and inter-class variation, [2] suggested angular margin be-

tween each classes. Angular softmax loss(A-softmax) uses angles between proxy and

feature vector x,

✓j = arccos(w>
j x).

Note that the class of feature vector can be determined as argminj ✓j . In other words,

the class of feature vector x is c when

✓c < ✓j , 8j 6= c.

A-softmax gives more strict decision boundary than (2.4), the normal softmax loss. In

A-softmax, the class of feature vector x is c when

m✓c < ✓j , 8j 6= c. (2.6)

Here, m is an integer hyperparameter. The condition above means that the angle ✓c at

which the class of vector x becomes c must be smaller.

In terms of angles, the equation (2.4) equals to

L(x) = � log
exp(cos(✓c))PC
j=1 exp(cos(✓j))

.

To adapt the condition (2.6) in the softmax loss, the loss would have a form such as

L(x) = � log
exp(cos(m✓c))

exp(cos(m✓c)) +
P

j 6=c exp(cos(✓j))
.

However the term cos(m✓c) cannot be generalized well, since cos(m✓c) can be max-

imized for not only ✓c = 0, but also ✓c = 2⇡k
m for any integer k. To overcome this

problem, [] suggested a monotonically decreasing function

 (x) = (�1)b
mx
⇡ c cos(mx)� 2

jmx

⇡

k
,

and defined A-softmax loss as

LA(x) = � log
exp( (m✓c))

exp( (m✓c)) +
P

j 6=c exp(cos(✓j))
. (2.7)
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Also, since m is an integer,  (m✓c) can be represented as a differentiable function of

cos(✓c) = w>
c x with Chebyshev polynomials of the first kind as follows:

cos(m✓c) =

bm/2cX

k=0

✓
m

2k

◆
(cos2 ✓c � 1)k cosm�2k ✓c

=

bm/2cX

k=0

✓
m

2k

◆
((w>

c x)
2
� 1)k(w>

c x)
m�2k.

Hence the gradient @LA
@wj

and @LA
@s can be computed well, and backpropagation of the

loss is possible. With this margin m, the feature vectors become more distinguishable.

2.2.2 Proxy-NCA Loss

Neighbourhood Components Analysis(NCA) [15] proposes NCA loss

LNCA(x,x
0,Y) = � log

exp(�d(x,x0))P
y2Y exp(�d(x,y))

, (2.8)

where x0 denotes the feature vector which is from the same class of x, Y denotes the

set of feature vectors of class different from x, and d is a proper metric. Note that if we

use a cosine-distance as

d(x,y) = 1� s(x,y),

where s is from (2.1), the equation (2.8) becomes

LNCA(x,x
0,Y) = � log

exp(s(x,x0))P
y2Y exp(s(x,y))

. (2.9)

The equation (2.9) is pair-based loss, and it is natural to change to proxy-based loss as

follows:

LProxy-NCA(x,P) = � log
exp(p>

xx)P
p02P, p0 6=px

exp(p0>x)
. (2.10)

[6] defined the loss (2.10) as Proxy-NCA loss. Note that it has a similar form with

softmax-loss.
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2.2.3 Proxy-Anchor Loss

The motivation of Proxy-Anchor loss [9] is similar to Proxy-NCA loss, and [9] improved

the gradient of the loss to make train more efficient. The loss is given as

LProxy-Anchor(X ,P) =
1

|P+|

X

p2P+

log

0

@1 +
X

x2X+
p

exp(�↵s(x,p)� �))

1

A

+
1

|P|

X

p2P
log

0

@1 +
X

x2X�
p

exp(↵s(x,p) + �)

1

A ,

where X is a minibatch, P+ = {p 2 P|9x 2 X s.t.p = px}, X+
p = {x 2 X|px = p},

X
�
p = X\X

+
p and ↵, � are hyperparameters. [9] focused on the gradient of the loss

with respect to cosine-similarity between the feature vector and its corresponding proxy,

s(x,px) + �. Comparison of the gradient of Proxy-NCA and Proxy-Anchor as follows:

2.3 The Relation Between Proxy-based Loss and Pair-based

Loss

Although the concept contained in two kinds of losses, proxy-based loss and pair-based

loss are different, they are closely related to each other. If this fact can be discovered,

we prefer the proxy-based loss since it has a good advantage of training time. In this

section, we describe the relation between two kinds of losses.

The neural network is trained in the direction to reduce the value of the loss function.

Therefore if the pair-based loss can be dominated by proxy-based loss, the reduction of

pair-based loss can be guaranteed when proxy-based loss decreases. The idea of the

propositions and explanations in this chpater below comes from [6].

Let’s consider a simplest form of proxy-based loss

Lp(x,P,y) = g(kx� pxk2)� g(kx� pyk2),
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where g is a same function in the equation (2.2). This loss trains feature vector x to get

closer to px 2 P and get further to another proxy py 2 P .

Proposition 1. Suppose that there exists a real number ✏ > 0 such that kx�pxk2 < ✏

for all feature vector x. Let M = supt2[0, 2] g
0(t). Then

Lt(x,x
0,y)  Lp(x,P,y) + 2✏M.

Proof. Since g is a non-decreasing function, and px = px0 ,

Lt(x,x
0,y) = g(kx� x0

k2)� g(kx� yk2)

 g(kx� pxk2 + kpx � x0
k2)� g(kx� pyk2 � kpy � yk2)

= g(kx� pxk2 + kpx0 � x0
k2)� g(kx� pyk2 � kpy � yk2)

 g(kx� pxk2 + ✏)� g(max{kx� pyk2 � ✏, 0})

= g(kx� pxk2)� g(kx� pyk2) + ✏(g0(a) + g0(b))

 g(kx� pxk2)� g(kx� pyk2) + 2✏M

= Lp(x,P,y) + 2✏M

where a 2 [kx�pxk2, kx�pxk2 + ✏] and b 2 [max{kx�pyk2 � ✏, 0}, kx�pyk2].

Also, dominating proxy-based loss can be applied in NCA loss.

Proposition 2. Suppose that there exists a real number ✏ > 0 such that kx�pxk2 < ✏

for all feature vector x. Then,

LNCA(x,x
0,Y)  LProxy-NCA(x,P) + 2✏.

Proof. Note that

x>(y � py)  ky � pyk2 < ✏

gives x>y < x>py + ✏, and

x>(x0
� px) � �kx� px0k2 > �✏

10



gives x>x0 > x>px � ✏. Therefore,

LNCA(x,x
0,Y) = � log

exp(x>x0)P
y2Y exp(x>y)

= �x>x0 + log

0

@
X

y2Y
exp(x>y)

1

A

< �x>px + ✏+ log

0

@
X

p2P�{px}

exp(x>py + ✏)

1

A

= LProxy-NCA(x,P) + 2✏.
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Chapter 3

Analysis of Softmax-Loss

One of the main point in deep learning is loss function and its gradient. As we have

seen in Chapter 2, there are many variations of softmax-loss, and training has been

improved by these losses in intra-class and inter class variation, computation time, and

gradient. Even with these advantages, proxy-based losses are not guaranteed by strict

mathematical contributions. The main gap in proxy-based losses are following:

Assumption: Feature vectors and proxies will be sufficiently close to each other

[6, 8, 10], i.e.,

kfc,i �wck2 ! 0.

This assumptions highly depends on the explaination of the intra-class and inter-

class variation since these are closely related to behavior of feature vectors. In this

chapter, we will try to discover this assumption by analyzing softmax-loss.

3.1 Relative Location Between Feature Vectors and Proxies

First we have to check is the global minimum point of training loss in unit hypersphere

S. Recall the softmax loss

L(f) = � log
exp(w>

yf f)PC
j=1 exp(w

>
j f)

. (3.1)

12



where yf denotes the class of the feature vector f . The importance of determining

relative location comes from the criterion of softmax-loss. In classification, the class of

the feature vector can be determined as

yf = c if and only if s(wc, f) � s(wj , f) for every j. (3.2)

However, the softmax loss doesn’t always train feature vectors toward to (3.2) actually.

For example, consider the case w1 = [1, 0]>, w2 = [cos(✏), sin(✏)]>, and w3 =

[0,�1]> with the dimension of embedding space D = 2. Then, the loss would be

L(cos ✓, sin ✓) = � log
exp(cos ✓)

exp(cos ✓) + exp(cos ✓ cos ✏+ sin ✓ cos ✏) + exp(� sin ✓)

= � log
1

1 + exp(cos(✓ � ✏)� cos ✓) + exp(� cos ✓ � sin ✓)

where the feature vector f is located at (cos ✓, sin ✓), and its class is 1. Here, the mini-

mum point is closer to w2 than w1, even though its class is 1. (Numerical computation

shows this result.) In this view, it is necessary to analyze the relative location between

feature vectors and proxy more clearly.

The points we are interested in is the minimum point of the loss L. Let xc be such

point, i.e.,

xyf = argmin
f2S

L(f).

Since the final state of feature vector in class c would be xc, it is enough to analyze the

point xc. The statement below gives a relation between xc and wc.

Proposition 3. The point xc satisfies the equation below:

xc = �c
X

j

(wc �wj) exp(w
>
j xc) (3.3)

where

�c =

2

4
CX

j=1

(w>
c xc �w>

j xc) exp(w
>
j xc)

3

5
�1

.
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Figure 3.1: The embedding space with dimension 2. The blue point refers to w1,

and red points refer to w2 and w3. The yellow point is the global minimum point of

softmax-loss. In this figure, ✏ was set to 0.1.

Proof. We have to minimize the function L(f) with constraint f 2 S, which is equiva-

lent to kfk2 = 1. Let �(·) = k · k2. By Lagrange multiplier method, there exists a real

scalar �0 such that

rf�(f)
���
f=xc

= �0rfL(f)
���
f=xc

To get a differentiation, we write f = [f1, f2, · · · , fD]>. Also we use the notation @i

which refers to @
@fi

for convenience. First, from kfk2 = 1,

@i�(f) = @i

sX

k

f2
k =

fiqP
k f

2
k

= fi,

14



therefore rf�(f) = f . Next,

@iL(f) = �@i log
exp(w>

yf f)PC
j=1 exp(w

>
j f)

= �

PC
j=1 exp(w

>
j f)

exp(w>
yf f)

@i

 
exp(w>

yf f)PC
j=1 exp(w

>
j f)

!

= �

PC
j=1 exp(w

>
j f)

exp(w>
yf f)

·
1

hPC
j=1 exp(w

>
j f)
i2

·

0

@@i(exp(w>
yf f))

CX

j=1

exp(w>
j f)� exp(w>

yf f)@i

2

4
CX

j=1

exp(w>
j f)

3

5

1

A

= �
wyf i exp(w

>
yf f)

PC
j=1 exp(w

>
j f)� exp(w>

yf f)
PC

j=1wji exp(w>
j f)

exp(w>
yf f)

PC
j=1 exp(w

>
j f)

= �

PC
j=1(wyf i � wji) exp(w>

j f)PC
j=1 exp(w

>
j f)

where wj = [wj1, wj2, · · · , wjD]>. Therefore,

rfL(f) = �

PC
j=1(wyf �wj) exp(w>

j f)PC
j=1 exp(w

>
j f)

. (3.4)

As a result,

xc = ��0

PC
j=1(wc �wj) exp(w>

j xc)
PC

j=1 exp(w
>
j xc)

= �c

CX

j=1

(wc �wj) exp(w
>
j xc)

where �c = ��0
1PC

j=1 exp(w
>
j xc)

. If we dot product xc on both sides,

1 = x>
c xc = �c

CX

j=1

(w>
c xc �w>

j xc) exp(w
>
j xc),

�c =

2

4
CX

j=1

(w>
c xc �w>

j xc) exp(w
>
j xc)

3

5
�1

.

Of course, the relation (3.3) does not give an explicit solution of xc, therefore we

must indirectly look for relative positions of feature vectors and proxies. The main
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point in this subsection is to determine a gap between feature vectors and proxies, i.e.,

kxc �wck2.

Theorem 1. The sum of gaps between feature vectors and proxies has a lower bound

as
CX

c=1

kxc �wck
2
2 � k

1

C2

X

j,j0

sj,j0k
2
2. (3.5)

where sj,j0 =
wj+wj0

8 (1�w>
j wj0) exp(w>

j wj0 � 1).

Proof. Suppose that

kxc �wck2 < k
1

C2

X

j,j0

sj,j0k2 =: ✏

for every class index c. We introduce new vectors w̃c, as

w̃c =
CX

j=1

(wc �wj) exp(w
>
j wc)

for 1  c  C. Note that

CX

c=1

w̃c =
CX

c=1

CX

j=1

(wc �wj) exp(w
>
j wc) = 0.
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Therefore,
������

X

j,j0

(wj +wj0)(1�w>
j wj0) exp(w

>
j wj0)

������
2

=

������

X

c

X

j

wc(1�w>
j wc) exp(w

>
j wc)

������
2



������

X

c

X

j

(wc � xc)(1�w>
j wc) exp(w

>
j wc)

������
2

+

������

X

c

xc

2

4
X

j

(1�w>
j wc) exp(w

>
j wc)�

1

�c

3

5

������
2

+

�����
X

c

xc

�c

�����
2



X

c

k(wc � xc)k2
X

j

���(1�w>
j wc) exp(w

>
j wc)

���
2

+

������

X

c

xc

2

4
X

j

(1�w>
j wc) exp(w

>
j wc)�

X

j

(w>
c xc �w>

j xc) exp(w
>
j xc)

3

5

������
2

+

������

X

c

X

j

(wc �wj) exp(w
>
j xc)

������
2

2eC(C � 1)✏+ 4eC2✏+

������

X

c

X

j

(wc �wj) exp(w
>
j wc)

������
2

+

������

X

c

X

j

(wc �wj)[exp(w
>
j wc)� exp(w>

j xc)]

������
2

2eC(C � 1)✏+ 4eC2✏+

�����
X

c

w̃c

�����
2

+ 2eC(C � 1)✏ = 4e(2C2
� C)✏.

Therefore, 8eC2✏  4e(2C2
�C)✏, which leads contradiction. Hence there exist a class

index c such that kxc �wck2 � k
1
C2

P
j,j0 sj,j0k2, and the conclusion follows.

The theorem above implies there is a lower bound gap, k 1
C2

P
j,j0 sj,j0k2, between

feature vectors and proxies.

Now we provide upper bound of gap. Previously, we need a lemma here.

Lemma 1. If w̄ = 1
C

P
j wj , then w>

c xc � w̄>xc where w̄ = 1
C

P
j wj .
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Proof. By definition of xc, L(xc)  L(wc). This inequality gives

exp(w>
c xc)P

j exp(w
>
j xc)

�
exp(w>

c wc)P
j exp(w

>
j wc)

�
1

C
.

And by Jensen’s inequality,

exp(w>
c xc) �

1

C

X

j

exp(w>
j xc) � exp(w̄>xc).

which leads the conclusion.

Theorem 2. If w̄>xc > 0, then

kxc �wck
2
2  2�

r
2

e
(1� w̄>wc) (3.6)

Proof. First, by the lemma, w>
c xc � w̄>xc > 0.

Consider a function '(x) = (w>
c xc � x)ex. The function ' is concave in [�1, 1].

This gives

1

�c
=

CX

j=1

(w>
c xc �w>

j xc) exp(w
>
j xc)

=
CX

j=1

'(w>
j xc)  C'

0

@ 1

C

CX

j=1

w>
j xc

1

A = C(w>
c xc � w̄>xc) exp(w̄

>xc)

by Jensen’s inequality, where w̄ = 1
C

P
j wj . On the other hand, the dot product of wc

in both side of (3.3) gives

w>
c xc = �c

CX

j=1

(1�w>
c wj) exp(w

>
j xc)

By Jensen’s inequality again, since 1�w>
c wj � 0 for all j,

CX

j=1

(1�w>
c wj) exp(w

>
j xc) �

2

4
CX

j=1

1�w>
c wj

3

5 exp
⇣
w0>xc

⌘

where

w0 =
CX

j=1

1�w>
c wjPC

k=1 1�w>
c wk

wj .
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Two inequalities give the relation

1

w>
c xc

2

4
CX

j=1

1�w>
c wj

3

5 exp
⇣
w0>xc

⌘


1

�c
 C(wc � w̄)>xc exp(w̄

>xc)

(1� w̄>wc) exp((w
0
� w̄)>xc)  (w>

c xc)(wc � w̄)>xc

(1� w̄>wc) exp(�kw0
� w̄k2)  (w>

c xc)
2

Therefore,

w>
c xc �

p
1� w̄>wc exp(�

1

2
kw0

� w̄)k2) �
p
1� w̄>wc exp(�

1

2
)

and this gives the result.

3.2 Improving Softmax Loss

Our main target of this paper is improving softmax loss with using the theorems that

we observed in the previous section. The theorems can be concluded as

L(W) 
1

C

CX

c=1

kxc �wck
2
2  U(W). (3.7)

where

L(W) =
1

C3
k

X

j,j0

sj,j0k
2
2 (3.8)

and

U(W) = 2�
1

C

r
2

e

CX

j=1

q
1� w̄>wj (3.9)

when w̄>xc > 0 for every c. The proper additional loss term we will going to suggest

minimizes U(W). If U(W) goes to zero, the gap kxc �wck2 will be reduced, and the

accuracy of training loss will become better.

For reducing the term U(W), we have to make 1
C

PC
c=1

p
1� w̄>wc large. We

can expect that if
P

c w̄
>wc become small, then U(W) become small also. The term

P
c w̄

>wc is exactly same as Ckw̄k
2
2.
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As a result, if we reduce the norm of the mean vector of proxies kw̄k2, then U(W)

will become small. In this sense, we suggest a new loss

Limproved(x,W) = Lsoftmax(x,W) + ↵kw̄k2 (3.10)

where ↵ is a hyperparameter.
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Chapter 4

Experiments and Results

In this section, we train the specific model to check the improvement of our suggested

loss, (3.10).

4.1 Datasets

In deep metric learning, CUB-200-2011 [16] and Cars-196 [17] are commonly used

benchmark datasets. For CUB-200-2011, there are 5864 images with 100 classes for

training, and 5924 images with other 100 classes for testing. For Cars-196, there are

8054 images with 98 classes for training, and 8131 images with other 98 classes for

testing.

4.2 Implementation Details

Initialization of Parameters: We use ResNet-50 backbone network with pre-trained

weight by ImageNet [1]. We did not change the size of its last layer of ResNet-50

network, so the dimension of the embedding space is 2048. Also, proxies are initialized

randomly with Kaiming initialization [18].

Learning Schedule: In every experiment, we used stochastic gradient descent(SGD)
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method with nesterov to do backpropagation during training. In SGD, we applied the

momentum 0.9, and weight decay 5⇥ 10�4. Every parameter used in the experiment

trained with initial learning rate 10�3, and learning rates were dropped every 10 epoch

with multiplicative factor of learning rate decay 0.1. Every results are maintained after

20-epochs.

Image setting: We followed the standard pre-processing method in deep metric

learning test [9]. We centercroped images with size 224⇥ 224.

Evaluation Metric: The Recall@K method [19] has been employed in this experi-

ments.

Hyperparameter: We set the hyperparameter ↵ to 1.0 in CUB-200-2011, and 0.01

in Cars-196.

4.3 Results

In our experiments, our loss shows good generalization in both two datasets as Table

4.1. The Recall@1 was improved about 0.5% in CUB-200-2011, and about 1.0% in

Cars-196.

Table 4.1: The results of Recall@K in datasets CUB-200-2011 and Cars-196

CUB-200-2011 Cars-196

Recall@K 1 2 4 8 1 2 4 8

Softmax-loss 59.69 70.75 80.47 87.64 79.49 86.79 91.39 94.83

Ours 60.16 71.22 80.38 87.86 80.41 87.59 92.12 95.52

Also, we computed Recall@1 for every epoch and plotted as a graph. Figure 4.1

and 4.2 shows that our improved loss works stable and gives better performance in both

two datasets.
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Figure 4.1: Recall@1 graph in the dataset CUB-200-2011.

Figure 4.2: Recall@1 graph in the dataset Cars-196.
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Chapter 5

Conclusion

Proxy-based loss is widely used due to its benefits of time complexity and convenience

of loss control. Although these advantages, there are not much studies about analysis

of behavior of feature vectors. It is important to check the behavior of feature vector

since the movement of vectors determine the intra-class and inter-class distance, which

is highly related to better performance and generalization. In this paper, this study

introduced the inequality that shows the variation of the gap between feature vector

and corresponding proxy. Moreover, we showed that the variation of the gap can be

controlled by the norm of the mean vector of proxies, w̄. In this view, this study

suggests a new loss with additional term which role is to reduce the norm of w̄. Several

experiments show that our suggested loss improved the test accuracy in two datasets

from softmax loss baseline.

It is difficult to measure the behavior of feature vectors because of the complexity

of the proxy-based loss function. In further works, other proxy-based losses, such as

A-softmax and Proxy-Anchor may be analyzed with similar approach.
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