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Abstract

In this thesis, we study the crystals of type D from a combinatorial viewpoint. We focus

on especially the crystals B(λ) and B(∞), where B(∞) is the crystal of the negative half

of the quantum group and B(λ) is the crystal of an integrable highest weight irreducible

module with highest weight λ.

As a main result, we obtain a simple description of the crystal structure of B(∞) in

terms of Lusztig’s parametrization using the PBW basis associated with a certain reduced

expression of the longest element of the Weyl group. Also, we develop a combinatorial

algorithm on B(λ), which is compatible with the crystal structure of B(∞). These results

establish an explicit combinatorial description of the crystal embedding from B(λ) into

B(∞).

Our study of the crystal structure of B(λ) and B(∞) has several interesting applica-

tions such as an affine crystal theoretic interpretation of Robinson-Schensted-Knuth type

correspondence of type D, a new formula for the branching multiplicity from GLn to On,

and a new combinatorial model of Kirillov-Reshetikhin crystals of type D(1)
n associated

with the spin node.

Key words: Quantum groups, Crystal bases, Kirillov-Reshetikhin crystals, Robinson-

Schensted-Knuth correspondence, Branching rules, Generalized exponents

Student Number: 2015-20277
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Chapter 1

Introduction

The notion of quantum group was introduced independently by Drinfeld [16] and Jimbo

[40] around 1985 in their study to construct the solution of quantum Yang-Baxter equa-

tion. The quantum group is a q-deformation of the universal enveloping algebra of a sym-

metrizable Kac-Moody algebra. Over the past 35 years, it turns out that the quantum

group is a fundamental algebraic structure to shed light on many branches of mathematics

and mathematical physics.

The crystal base introduced by Kashiwara [43] has been developed intensively by many

authors since it has very nice properties reflecting an internal combinatorial structure of

the representations of the quantum group. Moreover, it has interesting applications and

connections in many branches of mathematics. We refer the reader to [7,30,45,48,49,56]

for more details.

The crystal base has a colored oriented graph structure, so-called crystal graph (or

crystal for short). This enables us to reduce several problems in representation theory of

the quantum group to combinatorial ones. For example, the crystals provide us an elegant

answer to the problem of decomposing tensor product of modules over the quantum groups

[73,84].

There are various combinatorial descriptions of the crystals (of classical types) [47,50,

73,83], which enable us to understand the structure of the crystals more deeply and reveal

interesting connections with several areas such as the theory of symmetric functions, the

representations of symmetric groups and mathematical physics.

1



CHAPTER 1. INTRODUCTION

1.1 Main results

The main goal of this thesis is to understand the structure of the crystals over the classical

quantum groups from a combinatorial viewpoint, where the classical quantum groups are

the q-deformation of the universal enveloping algebras of Lie algebras whose corresponding

Dynkin diagrams are given as follows.

Type An :
α1 α2 αn−1 αn

Type Bn :
α1 α2 αn−2 αn−1 αn

Type Dn :
αn−2

αn−1

αn

α1 α2 αn−3

Type Cn :
α1 α2 αn−2 αn−1 αn

In particular, we focus on the following objects:

(1) the crystal B(∞) of the negative half of the quantum group (see Section 2.2.1),

(2) the crystal B(λ) of an integrable highest weight irreducible module with highest

weight λ (see Section 2.1.2).

The structure of the crystals of types A is already well-understood in several view-

points, and the crystals of types BC may be understood sometimes by using the ones of

type A through Kashiwara’s similarity method [46]. On the other hand, the structure

of the crystals of type D is largely independent of the one of types ABC. In addition,

the well-known combinatorial descriptions of the crystals of type D are often complicated

rather than other types (see [50] or Section 4.1.2). In order to overcome these difficulties,

we consider the crystals of type D based on the recent works [63,64,103].

First, we describe the crystal structure of B(∞) in terms of Lusztig’s parametrization

[76, 77] using PBW basis associated with a certain reduced expression of the longest

element in Weyl group by using the result in [103]. More precisely, the crystal B(∞) is

equal to the PBW basis at q = 0 [77, 98]. It is independent of the choice of a reduced

expression, and then the actions of the crystal operators on the crystal of PBW basis

can be described by a simple way with respect to reduced expressions satisfying a certain

condition which is called simply braided [103].

We find a simply braided reduced expression i0 associated with the maximal Levi

subalgebra of type An−1 and we show that the actions of the crystal operators associated

2



CHAPTER 1. INTRODUCTION

with i0 are described by a simple rule similar to the one obtained from the tensor product

rule of crystals. This is the first main result in this thesis. We should remark that our

reduced expression is different from the one in [103].

As an application, it enables us to establish a crystal theoretic interpretation of an

analog of the RSK correspondence for type D (see Section 1.2.1), and then we obtain a

new combinatorial model of Kirillov-Reshetikhin crystals of type D(1)
n related to spin node

(see Section 1.2.3).

Second, we study the crystal B(λ) using a combinatorial model in [63, 64]. In partic-

ular, we develop a combinatorial algorithm on that model, so-called separation (see Sec-

tion 4.3), which is consisting of a non-trivial sequence of Schützenberger’s jeu de taquin

slidings. We show that the algorithm is compatible with the crystal structure of PBW

basis associated with i0. This is the second main result in this thesis. The compatibility

allows us to obtain an explicit combinatorial description of the embedding of crystals of

type D (up to a weight shift)

B(λ) �
� // B(∞) ,

following the approach for types BC [66]. Also, as an application, we apply the separation

algorithm to study the branching rule from GLn to On (see Section 1.2.2).

1.2 Applications

Let us explain the applications of the main results more precisely.

1.2.1 RSK correspondence of type D

The Robinson-Schensted-Knuth correspondence (RSK correspondence or RSK for short) is

a weight-preserving bijection between the setMm×n of m× n matrices with nonnegative

integers and the set Tm,n of pairs of semistandard tableaux of same shape with letters in

{1, . . . ,m} and {1, . . . , n} [55] (see also [7,23] or Section 3.1.2). The RSK correspondence

has nice relationships with the theory of symmetric functions, the representations of

symmetric groups and classical groups, see [23,81,96,102,105] for more details.

The RSK correspondence has also an interpretation in terms of the crystals. More

precisely, the setsMm×n and Tm,n have type Am−1×An−1-crystal structures, respectively,

3



CHAPTER 1. INTRODUCTION

and then the RSK is an isomorphism of the crystals [68]. Furthermore, it is shown in

[62] that there exist affine crystal structures of type A
(1)
m+n−1 on both Mm×n and Tm,n,

respectively, and the RSK can be extended to an isomorphism of affine crystals of type

A
(1)
m+n−1 [62]. This can be viewed as an affine crystal theoretic interpretation of Cauchy

identity.

Recently, it is shown in [65] that the type Am+n−1-crystal structure ofMm×n coincides

with the one of the quantum nilpotent subalgebra [24,51] associated with the maximal Levi

subalgebra of type Am−1 × An−1.

Motivated by this result, we consider an analog of the RSK correspondence for type

Dn due to Burge [6], which is a weight-preserving bijection between the set of strictly

upper triangular n × n matrices with nonnegative integers and the set of semistandard

tableaux with columns of even length. Then we introduce affine crystal structures on

both sides of the map. Note that the affine crystal structure of type D(1)
n on the set of the

semistandard tableaux with columns of even length is already known in [62].

To define an affine crystal structure of type D(1)
n on the set of strictly triangular n×n

matrices, we consider the crystal of the PBW basis associated with i0 (recall Section

1.1). Then a certain subcrystal of the crystal of the PBW basis associated with i0 can

be identified with the set of strictly triangular n× n matrices and it is the crystal of the

quantum nilpotent subalgebra associated with the maximal Levi subalgebra of type An−1.

Furthermore, it is extended to an affine crystal of type D(1)
n in a natural way.

Finally, we show that the Burge correspondence is an isomorphism of the affine crys-

tals of type D(1)
n . This is a new affine crystal theoretic interpretation of the Littlewood

identity for type D (see [75,80] for the identity). We remark that an interpretation of the

Littlewood identity for types BC is obtained from the result of type A above by using

Kashiwara’s similarity method and the symmetric property of the RSK correspondence

[66].

1.2.2 Branching rules for (GLn, On)

Given a pair (A,B) of groups or algebras with B ⊂ A, and an irreducible representation

π of A, it is often useful to know the decomposition of π into irreducible representations

of B (for example, see [12, 56, 92] for applications). A branching rule (or branching law)

from A to B is to describe an irreducible representation of B or its multiplicity in the

restriction of π to B. In particular, if η is an irreducible representation of B, then the

4



CHAPTER 1. INTRODUCTION

later one is often called branching multiplicity of η in the restriction of π to B. If the

representations π and η are obvious, then we call it simply branching multiplicity from A

to B.

Let GLn, Spn and On be the general linear group, symplectic group and orthogo-

nal group of rank n over C, respectively. These groups are called classical groups. It

is well-known that a finite-dimensional irreducible representation of classical groups is

parametrized by a partition of n.

In [74, 75], Littlewood proved that if a finite-dimensional irreducible representation

of GLn parametrized by a partition λ satisfies the condition that the length of λ is less

than or equal to n
2
, then the branching multiplicity from GLn to Spn or On is equal to

a subtraction-free sum in terms of Littlewood-Richardson coefficients (LR coefficient for

short). The range of λ is often called the stable range [33]. It is natural to ask whether

the Littlewood’s formulas can be generalized to arbitrary finite-dimensional irreducible

representations of GLn outside the stable range.

A subtraction-free formula of branching multiplicity from GLn to Spn generalizing the

Littlewood’s formula for the case of Spn is known due to Sundaram [104, 105]. Recently,

Lecouvey-Lenart also obtain another combinatorial formula generalizing Littlewood’s one

for the case of Spn [71] by extending the approach in [67].

Motivated by the recent works [67,71], we also extend the approach in [67] for the case

of On by using the separation algorithm presented here. Then it is enable us to obtain a

new subtraction-free formula of branching multiplicity from GLn to On generalizing the

Littlewood’s formula for the case of On. More precisely, the separation algorithm induces

an embedding which associates the branching multiplicity from GLn to On with LR co-

efficients satisfying a certain condition. In particular, the condition on LR coefficients is

vanished if λ is in the stable range. Consequently, we obtain a subtraction-free formula

of branching multiplicity from GLn to On outside the stable range, which generalizes the

Littlewood’s formula for the case of O.

We should remark that there are already numerous works to extend the Littlewood’s

formula for On (see [18, 33] and references therein), but most of which are obtained in

an algebraic way and they do not give a subtraction-free formula in many cases. To the

best of our knowledge, there seems to be no a subtraction-free formula of the branching

multiplicity from GLn to On in full generality.

5



CHAPTER 1. INTRODUCTION

1.2.3 Kirillov-Reshetikhin crystals of type D(1)
n associated with

spin node

Let g be a simple Lie algebra over C, and let ĝ be the affine Kac-Moody algebra of

untwisted type corresponding to g [41]. Let U ′q(ĝ) be the quantum affine algebra of ĝ

[16, 40]. The finite-dimensional representations of U ′q(ĝ) have been studied intensively

since they have important connections to various areas in mathematics and mathematical

physics. For example, see [10,19] and references therein.

By Chari-Pressley’s classification [10,11], each isomorphism class of finite-dimensional

irreducible representations (of type 1) is parametrized by an n-tuple P = (Pi(u))1≤i≤n of

polynomials with constant term 1, where n is the rank of g. The polynomial P is often

called the Drinfeld’s polynomial [17].

The Kirillov-Reshetikhin (KR for short) module W
(r)
s,a is the finite-dimensional irre-

ducible U ′q(ĝ)-module associated with the Drinfeld polynomial P = (Pi(u))1≤i≤n

Pi(u) :=

{ ∏s
j=1 (1− aqs−2j+1u) if i = r,

1 otherwise,

where 1 ≤ r ≤ n, s ∈ Z+ and a ∈ C× [54]. It is now well-known that the family
{
W

(r)
s,a

}
plays an important role in the category of the finite-dimensional representations of U ′q(ĝ)

(cf. [9, 69]).

It was conjectured by Hatayama et al.[28] that for 1 ≤ r ≤ n and s ∈ Z+, there exists

ar,s ∈ C× such that W
(r)
s,ar,s has a crystal base. The conjecture has been proved for all

nonexceptional types [91] (see also [42] for type A(1)
n , [89] for type D(1)

n with 1 ≤ r ≤ n−2)

and some exceptional types (with certain r) [86,87]. Let Br,s denote the crystal associated

with W
(r)
s,ar,s , which is called KR crystal for short.

It is an important problem to describe the structure of Br,s. A description of the

crystal structure of Br,s is known for nonexceptional types and some exceptional nodes

on a case-by-case approach [21] (see also references therein).

Another combinatorial model for Br,s of type A(1)
n and types D

(2)
n+1, C(1)

n , D(1)
n with

exceptional nodes is introduced in [62] by using the RSK correspondence as an isomor-

phism of affine crystals of type A(1)
n . The advantage of the approach in [62] is that the

description of the action of the 0th crystal operators on Br,s is given uniformly for the

cases considered above, and very simple compared to the ones in previous works.

6



CHAPTER 1. INTRODUCTION

In this thesis, we give a new polytope realization of KR crystals Bn,s (s ∈ Z+) of

type D(1)
n associated with the spin node, which is isomorphic to the one using tableaux

in [62] through Burge correspondence. To do this, we consider the crystal of PBW basis

associated to i0 (recall Section 1.1). In particular, we use the affine crystal structure

for the quantum nilpotent subalgebra associated to the maximal Levi subalgebra of type

An−1. This approach allows us to use the formula of ε∗n-statistic with respect to ∗-crystal

structure on B(∞) due to Berenstein-Zelevinsky [4]. Then we obtain a new formula of

the ε∗n-statistic in terms of non-intersecting double paths defined on the positive roots of

the quantum nilpotent subalgebra, which gives the polytope realization of Bn,s.

1.3 Organization

This thesis is organized as follows.

• In Chapter 2, we review necessary background on quantum groups, representations

of quantum groups and crystal bases based on [7, 10,30,43,45].

• In Chapter 3, we describe explicitly the crystal structure ofB(∞) in terms of Lustig’s

parametrization using PBW basis associated with a certain reduced expression of

the longest element of the Weyl group. Then we apply the result to obtain a

crystal theoretic interpretation of Burge correspondence (Theorem 3.3.3), that is,

we show that Burge correspondence is an isomorphism of crystals of type Dn. Also,

we give a combinatorial formula for the shape of a tableau obtained from Burge

correspondence (Theorem 3.3.6), which is indeed a byproduct of the realization of

ε∗n-statistic (Theorem 6.2.4).

• In Chapter 4, we briefly review a combinatorial model of B(λ) in [63, 64] (Section

4.1.3), and then we develop a combinatorial algorithm called separation on this

model. We show that the algorithm is compatible with the structure of the crystal

of the parabolic Verma module associated with the maximal Levi subalgebra of type

An−1 (Theorem 4.4.3). By combining this result with our description of B(∞), we

give a combinatorial description of the crystal embedding from B(λ) into B(∞) in

type Dn (Theorem 4.5.3).

• In Chapter 5, we give a new subtraction-free formula of the branching multiplicity

from GLn to On (Theorem 5.4.14) generalizing the Littlewood’s formula for the case

7



CHAPTER 1. INTRODUCTION

of On. As a byproduct, we also obtain a new formula of generalized exponents of

types BD (Theorem 5.5.6) following the idea in [71] for type C.

• In Chapter 6, we obtain a new polytope realization of the KR crystal Bn,s of type

D(1)
n associated with the spin node (Theorem 6.2.2) by using the crystal of the quan-

tum nilpotent subalgebra (Section 3.2.4) and an explicit formula of the ε∗n-statistic

(Theorem 6.2.4), and we extend the Burge correspondence to an isomorphism of

affine crystals of type D(1)
n .

• In Chapter 7, we give the detailed proofs for some results in this thesis.

8



Chapter 2

Crystal bases

In this chapter, we review necessary background on quantum groups, representations of

quantum groups and crystal bases based on [7, 10,30,43,45].

This chapter is organized as follows. In Section 2.1, we introduce the definition of

the quantum group over a symmetrizable Kac-Moody algebra and its basic properties.

In Section 2.1.1, we review the well-known results on the integrable representations of

the quantum group. In Section 2.1.2, we introduce the crystal base for the integrable

representations of the quantum group, which is a central notion in this thesis, and review

the fundamental results for the crystal bases in [43].

2.1 Quantum groups

Let Z+ denote the set of non-negative integers. Let g be the Kac-Moody algebra associated

with a symmetrizable generalized Cartan matrix A = (aij)i,j∈I indexed by a set I. We

denote by D = diag(si ∈ Z>0 | i ∈ I) a diagonal matrix such that DA is symmetric. If A

is symmetric, we often say g is the symmetric Kac-Moody algebra. Let h be the Cartan

subalgebra of g.

Let P∨ be the dual weight lattice, P = HomZ(P∨,Z) the weight lattice, Π∨ = {hi | i ∈
I } ⊂ P∨ the set of simple coroots, and Π = {αi | i ∈ I } ⊂ P the set of simple roots of

g such that 〈hi, αj〉 = aij for i, j ∈ I. Let P+ be the set of integral dominant weights.

We denote by $i the i-th fundamental weight for i ∈ I. Let Q be the root lattice and

Q+ =
∑

i∈I Z≥0αi. There is a partial ordering on h∗ defined by λ ≥ µ if and only if

λ− µ ∈ Q+ for λ, µ ∈ h∗. Let ( · , · ) be the standard nondegenerate symmetric bilinear

9



CHAPTER 2. CRYSTAL BASES

form on h in [41]. Then it induces the nondegenerate symmetric bilinear form on h∗. We

denote it by the same notation ( · , · ). Note that 〈hi, αj〉 =
2(αi,αj)

(αi,αi)
and (αi, $j) = δij for

i, j ∈ I.

Given n ∈ Z and any symbol x, we define the notation

[n]x =
xn − x−1

x− x−1
.

Put [0]x! = 1 and [n]x! = [n]x[n− 1]x . . . [1]x for n ∈ Z>0. For m,n ∈ Z≥0 m ≥ n ≥ 0, we

define [
m

n

]
x

=
[m]x!

[n]x![m− n]x!

Then, [n]q and

[
m

n

]
q

are called q-integers and q-binomial coefficients, respectively.

Definition 2.1.1. [16, 40] The quantum group Uq(g) associated with a Cartan datum

(A,Π,Π∨, P, P∨) is the associative algebra over Q(q) with 1 generated by the elements ei,

fi (i ∈ I) and qh (q ∈ P∨) with the following defining relations:

q0 = 1, qhqh
′
= qh+h′ for h, h′ ∈ P∨ ,

qheiq
−h = qαi(h)ei for h ∈ P∨ ,

qhfiq
−h = q−αi(h)fi for h ∈ P∨ ,

eifj − fjei = δij
Ki −K−1

i

qi − q−1
i

for i, j ∈ I,

1−aij∑
k=0

(−1)k

[
1− aij
k

]
qi

e
1−aij−k
i eje

k
i = 0 for i 6= j,

1−aij∑
k=0

(−1)k

[
1− aij
k

]
qi

f
1−aij−k
i fjf

k
i = 0 for i 6= j,

(2.1.1)

where qi = qsi and Ki = qsihi .

Let us review the basic properties of the quantum group Uq(g). Set deg fi = −αi ,
deg ei = αi and deg qh = 0. The quantum group has the root space decomposition

Uq(g) =
⊕
α∈Q

Uq(g)α,

10



CHAPTER 2. CRYSTAL BASES

where Uq(g)α = {u ∈ Uq(g) | qhuq−h = qα(h)u for all h ∈ P∨ }. For x ∈ Uq(g)α (α ∈ Q),

we denote by wt(x) = α.

It is well known that Uq(g) has Hopf algebra structure (see [30, Section 1.5] for defi-

nition) with the comultiplication ∆, the counit ε, and the antipode S defined by

∆(qh) = qh ⊗ qh,
∆(ei) = ei ⊗K−1

i + 1⊗ ei, ∆(fi) = fi ⊗ 1 +Ki ⊗ fi ,
ε(qh) = 1, ε(ei) = ε(fi) = 0 ,

S(qh) = q−h, S(ei) = −eiKi, S(fi) = −K−1
i fi

for h ∈ P∨ and i ∈ I.

Let U+
q (g) (resp. U−q (g)) be the subalgebra of Uq(g) generated by the elements ei

(resp. fi) for all i ∈ I, and let U0
q (g) be the subalgebra of Uq(g) generated by qh (h ∈ P∨).

Then the quantum group Uq(g) has the triangular decomposition given by

Uq(g) ' U−q (g)⊗ U0
q (g)⊗ U+

q (g).

Here ' means the isomorphism of vector spaces.

Remark 2.1.2. In this thesis, we consider mainly the Kac-Moody algebras of finite types

associated with the following Dynkin diagrams:

Type An :
α1 α2 αn−1 αn

Type Bn :
α1 α2 αn−2 αn−1 αn

Type Dn :
αn−2

αn−1

αn

α1 α2 αn−3

Type Cn :
α1 α2 αn−2 αn−1 αn

(see Kac’s classification [41, Chapter 4]). To emphasize the types, we often use the

notation Uq(Xn) instead of Uq(g), where X = A,B,C or D and g is the Kac-Moody

algebra of type Xn.

2.1.1 Representations of quantum groups

In this section, let us briefly review the integrable representations of the quantum group.

11
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Definition 2.1.3. Let V be a vector space over Q(q).

(1) A representation of Uq(g) on V is an Q(q)-algebra homomorphism

φ : Uq(g) −→ EndQ(q)(V ).

(2) A vector space V is called a Uq(g)-module if there is a bilinear map Uq(g)×V −→ V ,

denoted by (x, v) 7→ xv, satisfying

(xy)v = x(yv), 1v = v

for x, y ∈ Uq(g) and v ∈ V .

Let φ be a representation of Uq(g) on V . Then it defines a Uq(g)-module structure on

V by

xv := φ(x)(v) for x ∈ Uq(g), v ∈ V.

Conversely, if V is a Uq(g)-module, then it gives a representation of Uq(g) on V by

φ : Uq(g) // EndQ(q)(V )

x � // (x, · )

,

where (x, · ) is the endomorphism of V induced from the bilinear map in Definition

2.1.3(2). Hence, we often say that V is a representation of Uq(g) if V is a Uq(g)-module.

Definition 2.1.4. Let V be a Uq(g)-module be given.

(1) V is called a weight module if it admits a weight space decomposition

V =
⊕
λ∈P

Vλ,

where Vλ =
{
v ∈ V | qhv = qλ(h)v for all h ∈ P∨

}
. A vector v ∈ Vλ is called a

weight vector of weight λ.

(2) If eiv = 0 for all i ∈ I, then it is called a maximal weight vector.

(3) If Vλ 6= 0, then λ is called a weight of V and Vλ is the weight space of weight λ ∈ P .

The dimension of Vλ is called the weight multiplicity of λ. We denote by wt(V ) the

set of weights of V .

12
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(4) If dimVλ <∞ for all λ ∈ wt(V ), then we define the character of V by

chV =
∑
λ

dimVλe
λ,

where
{
eλ | λ ∈ P

}
is formal basis of the group algebra Z[P ] with multiplication

given by eλeµ = eλ+µ.

(5) A Q(q)-subspaceW ⊂ V is called Uq(g)-submodule of V if xW ⊂ W for all x ∈ Uq(g).

The Uq(g)-module V is called irreducible (or simple) if it has no submodule other

than 0 and V .

(6) A weight module V is called a highest weight module of highest weight λ ∈ h∗ if

there exists a non-zero vector vλ ∈ V , called highest weight vector, such that

eivλ = 0 (i ∈ I), qhvλ = qλ(h)vλ (h ∈ h), V = Uq(g)vλ.

Example 2.1.5. Let Uq(sl2) be the quantum group generated by e, f,K± with the defin-

ing relations:

KeK−1 = q2e, KfK−1 = q−2f, ef − fe =
K −K−1

q − q−1
.

Let V (n) :=
⊕n

i=1 Q(q)vi be the (n + 1)-dimensional vector space over Q(q) and we

define the Uq(sl2)-actions on V (n) by

kvi = qn−2ivi, evi = [n− i+ 1]qvi−1, fvi = [i+ 1]qvi+1, (2.1.2)

where we assume that v−1 = vn+1 = 0. It is enough to show that the above actions

satisfies the relations (2.1.1). For example, for i 6= 0, n,

(ef − fe)vi =
(

[i+ 1]q[n− i]q − [n− i+ 1]q[i]q

)
vi

=
qn−2i − q−n+2i

q − q−1
vi =

K −K−1

q − q−1
vi

We can check the other relations similarly. Therefore, it is a straightforward calculation

to check that V (n) is a representation of Uq(sl2). Note that V (n) is an irreducible highest

weight module with highest weight n$1.

13
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Furthermore, V (n) is irreducible highest wight module and any finite-dimensional

irreducible representation of Uq(sl2) is of this form [39, Theorem 2.6] (cf. [34, Section

7.2]).

We say that x ∈ Uq(g) is locally nilpotent on V if for any v ∈ V , there exists a positive

integer N such that xNv = 0. Then a weight module V is integrable if the operators ei

and fi are locally nilpotent on V for all i ∈ I. For λ ∈ h∗, set D(λ) = {µ ∈ h∗ | µ ≤ λ }.

Definition 2.1.6. (cf. §1.2 in [43]) The category Oqint consists of Uq(g)-module V satis-

fying the following conditions:

(1) V has a weight space decomposition V =
⊕

λ∈P Vλ with dimVλ <∞ for all λ ∈ P ,

(2) there exists a finite number of elements λ1, . . . , λs ∈ P such that

wt(V ) ⊂ D(λ1)
⋃ · · · ⋃D(λs),

(3) the operators ei and fi are locally nilpotent on V for all i ∈ I.

The morphisms are taken to be the usual Uq(g)-module homomorphisms.

Note that the category Oqint is closed under taking direct sums or tensor product of

finitely many Uq(g)-modules.

The following results are well known due to Lusztig. We refer to [30, Chapter 3] for

more details (cf. [34, 41]).

Theorem 2.1.7. Let V (λ) be the irreducible highest weight Uq(g)-module with highest

weight λ ∈ P .

(1) V (λ) belongs to the category Oqint if and only if λ ∈ P+.

(2) If V is a highest weight Uq(g)-module in the category Oqint with highest weight λ ∈ P ,

then λ ∈ P+ and V ' V (λ).

(3) Every irreducible Uq(g)-module in the category Oqint is isomorphic to V (λ) for some

λ ∈ P+.

(4) Every Uq(g)-module in the category Oqint is isomorphic to a direct sum of irreducible

highest weight modules V (λ) with λ ∈ P+.

14
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2.1.2 Crystal bases

In this section, we review the notion of crystal base for Uq(g)-modules which are objects

of the category Oqint.

Let V be a Uq(g)-module in the category Oqint and let V =
⊕

λ∈P Vλ be the weight

space decomposition. For m ∈ Z≥0, we denote by x(m) the m-th divided power of x given

by

x(m) =
1

[m]q!
xm ,

where x = ei or fi for i ∈ I. For each i ∈ I, any weight vector v ∈ Vλ (λ ∈ wt(V )) can be

written in the form

v = v0 + fiv1 + · · ·+ f
(N)
i vN , (2.1.3)

where N ∈ Z≥0 and vk ∈ Vλ+kαi ∩ ker ei for all k = 1, . . . , N (cf. [30, Lemma 4.1.1]).

Definition 2.1.8. [43, Section 2.2] The Kashiwara operators ẽi and f̃i (i ∈ I) on V are

defined by

ẽiv =
N∑
k=1

f
(k−1)
i vk, f̃iv =

N∑
k=0

f
(k+1)
i vk .

Example 2.1.9. Consider Example 2.1.5. By (2.1.2),

vi = f (i)v0,

where v0 ∈ ker e. By definition,

ẽ
(
f (i)v0

)
= f (i−1)v0, f̃

(
f (i)v0

)
= f (i+1)v0 .

Then we may express the operators ẽ and f̃ by

v0 −→ f v0 −→ · · · −→ f (n−1) v0 −→ f (n) v0.

Let A0 be the subring of Q(q) consisting of rational functions regular at q = 0, that

is,

A0 =

{
f

g

∣∣∣ f, g ∈ Q[q], g(0) 6= 0

}
.

Definition 2.1.10. Let V be a Uq(g)-module in the category Oqint. A free A0-submodule

L of V is called a crystal lattice if

15
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(1) L generates V as a vector space over Q(q),

(2) L =
⊕

λ∈P Lλ, where Lλ = L ∩ Vλ for all λ ∈ P ,

(3) ẽiL ⊂ L and f̃iL ⊂ L for all i ∈ I.

Since the operators ẽi and f̃i preserve the lattice L, they also define operators on L/qL

and we use the same symbols. We denote by 0 a formal symbol.

Definition 2.1.11. A crystal base of a Uq(g)-module V in the category Oqint is a pair

(L,B) satisfying the following conditions:

(1) L is a crystal lattice of M ,

(2) B is a Q-basis of L/qL,

(3) B =
⊔
λ∈P Bλ, wehre Bλ = B ∩ (Lλ/qLλ),

(4) ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for all i ∈ I,

(5) for any b, b′ ∈ B and i ∈ I, we have f̃ib = b′ if and only if b = ẽib
′.

Take B as the set of vertices and define the I-colored arrows on B by

b
i−→ b′ if and only if f̃ib = b′ (i ∈ I).

Then B is often identified with the above I-colored oriented graph called the crystal graph

of V . For i ∈ I and b ∈ Bλ (λ ∈ P+), we define the maps εi, ϕi : B −→ Z by

εi(b) = max{ k ≥ 0 | ẽki b ∈ B },
ϕi(b) = max{ k ≥ 0 | f̃ki b ∈ B }.

(2.1.4)

Then the map satisfies the following:

ϕi(b) = εi(b) + 〈hi,wt(b)〉,
εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1, if ẽib ∈ B,
εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1, if f̃ib ∈ B.

(2.1.5)

We refer to §2.4 [43] for the proof of the first one. The other ones are obtained from

Definition 2.1.11.
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Example 2.1.12. Let us recall Example 2.1.9. Then we may set

L(n) :=
n⊕
i=0

A0

(
f (i)v0

)
, B(n) :=

{
bi := f (i)v0 + qL(n) | 0 ≤ i ≤ n

}
.

Then the pair (L(n), B(n)) is a crystal base of V (n) and by definition of ε and ϕ, we see

b0 −→ · · · −→︸ ︷︷ ︸
ε(bi)

bi −→ · · · −→︸ ︷︷ ︸
ϕ(bi)

bn ,

where ε(bi) (resp. ϕ(bi)) is equal to the number of the arrows between bi and b0 (resp.

bn).

Definition 2.1.13. Let V be a Uq(g)-module in the category Oqint with crystal bases

(Lj, Bj) for j = 1, 2. We say that two crystal bases (L1, B1) and (L2, B2) are isomorphic

if there is an A0-linear isomorphism ψ : L1 −→ L2 such that

(1) ψ commutes with all ẽi and f̃i for i ∈ I,

(2) the induced Q-linear isomorphism ψ : L1/qL1 −→ L2/qL2 defines a bijection ψ :

B1 ∪ {0} −→ B2 ∪ {0} that commutes with all ẽi and f̃i for i ∈ I.

Let λ ∈ P+ and let V (λ) be the irreducible highest weight Uq(g)-module of highest

weight λ. Put vλ to be the highest weight vector of V (λ). We define L(λ) to be the free

A0-submodule V (λ) spanned by the vectors of the form f̃i1 · · · f̃irvλ for r ≥ 0 and ik ∈ I,

and set

B(λ) =
{
f̃i1 · · · f̃irvλ + qL(λ) ∈ L(λ)

/
qL(λ)

∣∣ r ≥ 0, ik ∈ I
}
\
{

0
}
.

Theorem 2.1.14. [43] Let M be a Uq(g)-module in the category Oqint and let V (λ) be the

irreducible highest weight Uq(g)-module of highest weight λ ∈ P+.

(1) The pair (L(λ), B(λ)) is a crystal base of V (λ).

(2) There exists a unique crystal base (L,B) of M . If M is isomorphic to
⊕

λ∈P+ V (λ)⊕mλ,

then

(L,B)
'−→

( ⊕
λ∈P+

L(λ)⊕mλ ,
⊔
λ∈P+

B(λ)⊕mλ

)
,

where mλ ∈ Z≥0 is the multiplicity of V (λ) in M .
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The stability of tensor product on crystal bases is very nice and important feature of

crystal bases, which is called tensor product rule. It also plays crucial role in the proof of

the results in [43].

Theorem 2.1.15 (Tensor product rule). Let Vj be a Uq(g)-module in the category Oqint
with crystal base (Lj, Bj) for j = 1, 2. Set L = L1⊗A0 L2 and B = B1×B2. Then (L,B)

is a crystal base of V1 ⊗Q(q) V2, where the action of Kashiwara operators ẽi and f̃i on B

for i ∈ I are given by

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2).

(2.1.6)

with

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− 〈wt(b1), hi〉},
ϕi(b1 ⊗ b2) = max{ϕi(b1) + 〈wt(b2), hi〉, ϕi(b2)},

where we assume that 0 is a formal symbol and 0⊗ b2 = b1 ⊗ 0 = 0.

Corollary 2.1.16.

(1) The vector b1 ⊗ b2 ∈ B1 ⊗ B2 is a maximal vector if and only if ẽib1 = 0 and

〈hi,wt(b1)〉 ≥ εi(b2) for all i ∈ I.

(2) Let Vj be a Uq(g)-module in the category Oqint with crystal base (Lj, Bj) for j =

1, . . . N . Then the vector b1 ⊗ · · · ⊗ bN ∈ B1 ⊗ · · · ⊗ BN is a maximal vector if and

only if b1 ⊗ · · · ⊗ bk is a maximal vector for all k = 1, . . . , N .

2.2 Crystals

The structure of crystal graph is characterized by the following maps:

(1) wt : B −→ P defined by b ∈ Bλ 7→ wt(b) = λ,

(2) Kashiwara operators ẽi, f̃i : B −→ B ∪ {0} (Definition 2.1.8),

18



CHAPTER 2. CRYSTAL BASES

(3) the maps ϕi, εi : B −→ Z given in (2.1.4).

In particular, these maps satisfies the properties (2.1.5). The abstract notion of crystals

is defined by the above maps with the properties as follows:

Definition 2.2.1. A crystal associated with the Cartan datum (A,Π,Π∨, P, P∨) is a set

B together with the maps

wt : B −→ P, ẽi, f̃i : B −→ B ∪ {0},
εi, ϕi : B −→ Z ∪ {−∞},

where i ∈ I, satisfying the following conditions:

(1) ϕi(b) = εi(b) + 〈hi,wt(b)〉 for all i ∈ I,

(2) wt(ẽib) = wt(b) + αi if ẽib ∈ B,

(3) wt(f̃ib) = wt(b)− αi if f̃ib ∈ B,

(4) εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1, if ẽib ∈ B,

(5) εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1, if f̃ib ∈ B,

(6) f̃ib = b′ if and only if b = ẽib
′ for b, b′ ∈ B and i ∈ I,

(7) if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0,

where 0 is a formal symbol.

We often say that B is a Uq(g)-crystal (or g-crystal for short), where Uq(g) is the

quantum group associated with the Cartan datum (A,Π,Π∨, P, P∨). For v ∈ B, if ẽiv = 0

for all i ∈ I, then v is called g-highest weight vector.

Example 2.2.2.

(1) The crystal graph B of a Uq(g)-module in the category Oqint is a g-crystal.

(2) For λ ∈ P , let Tλ = {tλ} and for all i ∈ I, we define

wt(tλ) = λ, ẽitλ = f̃itλ = 0, εi(tλ) = ϕi(tλ) = −∞.

Then Tλ is a g-crystal.
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We define the tensor product rule of crystals as follows:

Definition 2.2.3. The tensor product rule B1 ⊗ B2 of crystals B1 and B2 is defined to

be the set B1 ×B2 with the crystal structure given by

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− 〈wt(b1), hi〉},
ϕi(b1 ⊗ b2) = max{ϕi(b1) + 〈wt(b2), hi〉, ϕi(b2)},

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2),

(2.2.1)

for i ∈ I. Here, we assume that 0⊗ b2 = b1 ⊗ 0 = 0.

Definition 2.2.4. LetB1 andB2 be crystals associated with Cartan datum (A,Π,Π∨, P, P∨).

A crystal morphism (or morphism of crystals) Ψ : B1 −→ B2 is a map

Ψ : B1 ∪ {0} −→ B2 ∪ {0}

such that

(1) Ψ(0) = 0,

(2) if b ∈ B1 and Ψ(b) ∈ B2, then

wt(Ψ(b)) = wt(b), εi(Ψ(b)) = εi(b), ϕi(Ψ(b)) = ϕi(b)

for all i ∈ I,

(3) if b, b′ ∈ B1, Ψ(b),Ψ(b′) ∈ B2 and f̃ib = b′, then

f̃iΨ(b) = Ψ(b′), Ψ(b) = ẽiΨ(b′),

for all i ∈ I.

The category of crystals is a tensor category, see [45, Section 7].
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Definition 2.2.5.

(1) A crystal morphism is called strict if it commutes with all ẽi and f̃i for i ∈ I.

(2) A crystal morphism Ψ : B1 −→ B2 is called an embedding if Ψ induces an injective

map from B1 ∪ {0} to B2 ∪ {0}.

(3) A crystal morphism Ψ : B1 −→ B2 is called an isomorphism if it is a bijection from

B1 ∪ {0} to B2 ∪ {0}.

(4) We say that B1 is a subcrystal of B2 if there exists an embedding from B1 to B2.

(5) We say that B1 is isomorphic to B2 if there exists an isomorphism between B1 and

B2, and write B1 ≡g B2 or simply B1 ≡ B2 if there is no confusion.

(6) For b1 ∈ B1 and b2 ∈ B2, we say that b1 is equivalent to b2 if there is an isomorphism

of crystals ψ : C(b1) −→ C(b2) such that ψ(b1) = b2, where C(bi) is the connected

component of bi in Bi for i = 1, 2, and write b1 ≡g b2 or simply b1 ≡ b2 if there is no

confusion.

(7) We say thatB is a regular g-crystal if for each pair i, j ∈ I with i 6= j, B is isomorphic

as a g{i,j}-crystal to an union of integrable highest weight Uq(g{i,j})-crystals, where

g{i,j} is the Lie algebra associated with Dynkin diagram containing i and j, and all

edges between them.

2.2.1 Crystal base of U−q (g)

Let us recall that U−q (g) is the Q(q)-subalgebra of Uq(g) generated by fi for all i ∈ I. For

λ ∈ P+, let V (λ) be an integrable irreducible Uq(g)-module with highest weight λ and

highest weight vector vλ. Then there is a natural U−q (g)-linear surjective map

πλ : U−q (g) // V (λ)

P � // Pvλ

. (2.2.2)

It is known that the surjective map induces the U−q (g)-linear isomorphism as follows:

U−q (g)
/ (∑

i∈I U
−
q (g)f

〈hi,λ〉+1
i

)
// V (λ)
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(see [48, Lemma 3.2.7] for more detail).

By taking 〈hi, λ〉 → ∞, we regard U−q (g) as the inverse limit of V (λ) and the operators

Kiei may converge an operator of U−q (g), denoted by e′i, which plays a similar role as the

action of ei on an integrable Uq(g)-module. We regard fi as an operator on U−q (g) by the

left multiplication. Then the operators e′i and fi (i ∈ I) induce modified root operators

on U−q (g) such as the Kashiwara operators (recall Definition (2.1.8)). By using these

operators, we define the crystal base of U−q (g) [43, Section 3] (see also [45, Section 8]).

Remark 2.2.6. Let us denote by B(∞) the crystal of U−q (g). In [48, Chapter 7], Kashi-

wara explains the crystal B(∞) as the (direct) limit of the crystal B(λ) when λ → ∞.

On the other hand, in [7, Chapter 12], the authors explain B(∞) as the crystal of Verma

module with highest weight 0.

Let us explain in more detail following [43]. Let Bq(g) be the algebra generated by e′i
and fi (i ∈ I) with the relations:

e′ifj = q
−〈hi,αj〉
i fje

′
i + δij,

1−〈hi,αj〉∑
n=0

(−1)n

[
1− 〈hi, αj〉

n

]
qi

e′ni e
′
je
′1−〈hi,αj〉−n
i = 0,

1−〈hi,αj〉∑
n=0

(−1)n

[
1− 〈hi, αj〉

n

]
qi

f ′ni f
′
jf
′1−〈hi,αj〉−n
i = 0.

The algebra Bq(g) is called the reduced q-analogue.

Lemma 2.2.7. [43, Lemma 3.4.1] For any P ∈ U−q (g), there exists unique Q,R ∈ U−q (g)

such that

[ei, P ] =
KiQ−K−1

i R

q − q−1

We define the endomorphisms e′i, e
′′
i : U−q (g) −→ U−q (g) by

e′i(P ) = R, e′′i (P ) = Q.

Then these endomorphisms satisfy

e′′i fj = q
〈hi,αj〉
i fje

′′
i + δij, e′ifj = q

−〈hi,αj〉
i fje

′
i + δij,
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where fj is understood as an endomorphism of U−q (g) by the left multiplication. Conse-

quently, we obtain Bq(g)-module structure on U−q (g) by using the endomorphisms e′i and

fj for i, j ∈ I [43, Lemma 3.4.2].

The Bq(g)-module structure on U−q (g) induces the following decomposition (cf. (2.1.3))

U−q (g) =
⊕
n=0

f
(n)
i ker e′i

(see [43, Proposition 3.2.1]). Now we define the modified root operators ẽi and f̃i on

U−q (g) by

ẽi

(
f

(n)
i u

)
= f

(n−1)
i u, f̃i

(
f

(n)
i u

)
= f

(n+1)
i u,

where u ∈ ker e′i and i ∈ I.

Definition 2.2.8. A crystal base of a Bq(g)-module M is a pair (L,B) satisfying the

following conditions:

(1) L is a crystal lattice of M ,

(2) B is a Q-basis of L/qL,

(3) B =
⊔
λ∈P Bλ, wehre Bλ = B ∩ (Lλ/qLλ),

(4) ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for all i ∈ I,

(5) for any b, b′ ∈ B and i ∈ I, we have f̃ib = b′ if and only if b = ẽib
′.

Let L(∞) be the free A0-submodule of U−q (g) generated by f̃i1 · · · f̃ir · 1, and let B(∞)

be the subset of L(∞) given by

B(∞) =
{
f̃i1 · · · f̃ir · 1 + qL(∞) ∈ L(∞)

/
qL(∞)

∣∣ r ≥ 0, ik ∈ I
}
\
{

0
}
.

Theorem 2.2.9. [43] The pair (L(∞), B(∞)) is a crystal base of U−q (g).

The crystal base (L(∞), B(∞)) has a nice compatibility with the crystal base (L(λ), B(λ))

as follows.

Theorem 2.2.10. [43] Let πλ be the surjective U−q (g)-linear homomorphism given in

(2.2.2).
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(1) πλ(L(∞)) = L(λ) and it induces the surjective homomorphism

πλ : L(∞)/qL(∞) −→ L(λ)/qL(λ).

(2) f̃i ◦ πλ = πλ ◦ f̃i for all i ∈ I.

(3) If b ∈ B(∞) satisfies πλ(b) 6= 0, then ẽiπλ(b) = πλ(ẽib).

(4) B(λ) is isomorphic to { b ∈ B(∞) | πλ(b) 6= 0 }.

Note that by Theorem 2.2.10(4) we have an embedding of B(λ) into B(∞)

Ξλ : B(λ) �
� // B(∞)⊗ Tλ . (2.2.3)

Let us consider the image of the embedding Ξλ. To do this, we consider the anti-

automorphism ∗ of Uq(g) as Q(q)-algebra given by

e∗i = ei, f ∗i = fi, (qh)∗ = q−h .

Theorem 2.2.11. [43, Proposition 5.2.4, Proposition 6.1.1], [44, Theorem 2.1.1] We have

L(∞)∗ = L(∞), B(∞)∗ = B(∞).

Then we define ∗-crystal operators ẽ∗i and f̃ ∗i by

ẽ∗i = ∗ẽi∗, f̃ ∗i = ∗f̃i∗,

and we also define ε∗i : B(∞) −→ Z ∪ {−∞} by

ε∗i (b) := max{n ∈ Z | (ẽ∗i )
n(b) 6= 0}.

Proposition 2.2.12. [45, Proposition 8.2] (cf. [56, Lemma 10.2.2]) For any λ ∈ P+, the

image of Ξλ is given by

{ b⊗ tλ ∈ B(∞)⊗ Tλ | ε∗i (b) ≤ 〈hi, λ〉 for all i ∈ I} .

Proof. It follows from Theorem 2.2.10(4), [43, Lemma 7.3.2] and [98, Lemma 3.4.1].
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2.2.2 PBW basis and crystals

Let us review another formulation of B(∞) [77,98] for finite types using Poincaré-Birkhoff-

Witt type bases that was considered in the study of the canonical bases of U−q (g) for types

ADE by Lusztig [76, 79].

Let W be Weyl group of g generated by the simple reflections si (i ∈ I) given by

si(β) = β − 2(β, αi)

(αi, αi)
αi (2.2.4)

for β ∈ h∗. For w ∈ W , R(w) be the set of reduced expressions of w, that is,

R(w) = { i = (i1, . . . , im) | w = si1 . . . sim and m is minimal .}

We denote by `(w) the length m, and we call ` the length function of W . Let w0 be the

longest element of W of length N . Then it is known that for i ∈ R(w0),

Φ+ =
{
β1 := αi1 , β2 := si1(αi2) , · · · , βN := si1 . . . siN−1

(αiN )
}

(2.2.5)

is equal to the set of positive roots of g (see [93] and reference therein).

For each i ∈ I, there is an Q(q)-algebra automorphism Ti of Uq(g) due to Lusztig

[78,79]

Ti : Uq(g) −→ Uq(g) (2.2.6)

given by

Ti(q
h) = qsi(h), Ti(ei) = −fiKi, Ti(fi) = −K−1

i ei ,

Ti(ej) =
∑

r+s=−〈hi,αj〉

(−1)rq−ri e
(s)
i eje

(r)
i if i 6= j,

Ti(fj) =
∑

r+s=−〈hi,αj〉

(−1)rqri f
(r)
i fjf

(s)
i if i 6= j.

Here the automorphism Ti is equal to T
′′
i,1 in [79]. Let us take i = (i1, . . . , iN) ∈ R(w0)

and put

fβk = Ti1 . . . Tik−1
(fik) (1 ≤ k ≤ N). (2.2.7)
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For c = (cβ1 , . . . , cβN ) ∈ ZN+ ,

bi(c) = f
(cβ1 )

β1
f

(cβ2 )

β2
· · · f (cβN )

βN
, (2.2.8)

where f
(cβk )

βk
is the divided power of fβk for 1 ≤ k ≤ N . Then the set

Bi :=
{
bi(c) | c ∈ ZN+

}
is a Q(q)-basis of U−q (g), which is called a PBW basis associated to i [78, 98] (see also

[79]). Furthermore, we have the following.

Theorem 2.2.13. [77, 98] Let i be a reduced expression of w0.

(1) L(∞) is generated by Bi , which is independent of choice of i ∈ R(w0).

(2) Let π : L(∞) −→ L(∞)/qL(∞) be the canonical projection. Then the image of Bi

is equal to B(∞).

We identify Bi := ZN+ with a crystal π(Bi) under the map c 7→ bi(c), and call c ∈ Bi

an i-Lusztig data. Then Bi is called the crystal of i-Lusztig datum. We often call it PBW

crystal for short if there is no confusion for i.

2.2.3 Quantum nilpotent subalgebras

In this section, we assume that g is a symmetrizable Kac-Moody algebra. Note that the

automorphism Ti (i ∈ I) (2.2.6) is available in this setting [79, Chapter 37] (see also

[98, Proposition 1.3.1]).

Let w ∈ W and i = (i1, . . . , im) ∈ R(w) be given, where m ∈ Z+. In this case, we

also define the root vectors fβk and bi(c) as in (2.2.7) and (2.2.8), respectively, where

1 ≤ k ≤ m and c ∈ Zm+ .

The following commutation relation on root vectors is known as Levendorskii–Soibelman

formula, see [72, Section 5.5.2, Proposition], [1, Proposition 7] and [51, Theorem 4.10] for

more details.

Theorem 2.2.14. For j < k,

f
(ck)
βk

f
(cj)
βj
− q−(ckβk,cjβj)f

(cj)
βj

f
(ck)
βk

=
∑
c′

Qc′bi(c
′), (2.2.9)
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where Qc′ ∈ Q(q) and c′ = (c′i) ∈ Zm+ . If Qc′ 6= 0, then c′j < cj and c′k < ck with∑
j≤m≤k c

′
mβm = cjβj + ckβk.

Example 2.2.15. Let us consider the case g = A3 with I = {1, 2, 3}. We choose a

reduced expression i = 213231 ∈ R(w0). Then the ordering is given by

β1 ≺ β2 ≺ β3 ≺ β4 ≺ β5 ≺ β6

= α2 ≺ α1 + α2 ≺ α2 + α3 ≺ α1 + α2 + α3 ≺ α3 ≺ α1.

By Theorem 2.2.14, we have

fβ4fβ1 − fβ1fβ4 = g(q)fβ2fβ3 ,

for some g(q) ∈ Q(q). On the other hand, we can check the commutation relation for fβ1
and fβ4 directly using the defining relations (2.1.1), which is given by

fβ4fβ1 − fβ1fβ4 = (q−1 − q)fβ2fβ3 .

In general, it is difficult to describe the coefficient Qc′ in (2.2.9).

Let U−q (w) be the Q(q)-subspace of U−q (g) generated by { bi(c) | c ∈ Zm+ } [79, Section

40.2]. It is known in [79, Proposition 40.2.1] that it does not depend on i ∈ R(w). Note

that when g is of finite type and w = w0, we have U−q (w0) = U−q (g). By Theorem 2.2.14,

the subspace U−q (w) is the Q(q)-subalgebra of U−q (g) generated by { fβk | 1 ≤ k ≤ m }.
The Q(q)-subalgebra U−q (w) is called the quantum nilpotent subalgebra associated with

w ∈ W [24, 51].
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Chapter 3

PBW crystal and RSK

correspondence of type D

In this chapter, we give a crystal theoretic interpretation of Burge correspondence which

can be viewed as an analog of Robinson-Schensted-Knuth correspondence of type Dn.

As a byproduct, we give a combinatorial formula for the shape of the semistandard

tableaux obtained from Burge correspondence. This is a non-trivial analog of Greene’s

result in type An [25].

The results in this chapter are based on [36].

3.1 Robinson-Schensted-Knuth correspondence

In this section, let us review the crystal theoretic interpretation of Robinson-Schensted-

Knuth (RSK for short) correspondence following [60].

3.1.1 Notations

The notations in this section are used throughout this thesis (cf. [23]). Let N be the

set of positive integers with the usual linear ordering and let N be the set consisting of i

(i ∈ N) with the linear ordering i > j for i < j ∈ N. For n ∈ N, we put [n] = { 1, . . . , n }
and [n] = { 1, . . . , n }. Let Z+ denote the set of non-negative integers. Let P be the set

of partitions or Young diagrams. We let Pn = {λ ∈P | `(λ) ≤ n } for n ≥ 1, where `(λ)

is the length of λ. Let λπ be the skew Young diagram obtained by 180◦-rotation of λ.
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Example 3.1.1. Let λ = (2, 2, 1) be given. Then we have

λ ←→ , λπ = (1, 2, 2) ←→

For a skew Young diagram λ/µ, we denote by SSTA(λ/µ) the set of semistandard

tableaux of shape λ/µ with entries in a subset A of N or N. We put SST (λ/µ) =

SSTN(λ/µ) for short. For T ∈ SSTA(λ/µ), let w(T ) be the word given by reading the

entries of T column by column from right to left and from top to bottom in each column,

and let sh(T ) denote the shape of T . Let Hλ and Hλπ be the tableaux in SST (λ) and

SST (λπ), respectively, where the i-th entry from the top in each column is filled with i

for i ≥ 1. We denote by Wn (resp. W∨n ) the set of words w = w1 . . . wr with wk ∈ [n]

(resp. wk ∈ [n]) for all 1 ≤ k ≤ r. Put W = tn≥1Wn and W∨ = tn≥1W∨n .

Example 3.1.2. When λ = (2, 2, 1), the tableaux Hλ and Hλπ are given by

Hλ = 1 1

2 2

3

, Hλπ = 1

1 2

2 3

Then w(Hλ) = 12123 ∈ W3 and sh(Hλ) = (2, 2, 1) ∈P3.

For a ∈ A and T ∈ SSTA(λ) with λ ∈ Pn and A = [n], [n], N or N, we denote

by T ← a the tableau obtained by applying the Schensted’s column insertion of a into

T in the usual way, see [23]. Then for a word w = w1 . . . wr ∈ W t W∨, we define

(T ← w) = (((T ← w1) ← w2) ← · · · ← wr). For a semistandard tableau S, we define

(T ← S) = (T ← w(S)).

Example 3.1.3. Suppose that the tableau T and the word w are given by

T = 1 1 2 3

2 4

5

, w = 231.

Then we have

(T ← 2) = 1 1 2 3

2 2 4

5

; ((T ← 2)← 3) = 1 1 2 3

2 2 4

3 5

; (T ← w) = 1 1 1 2 3

2 2 4

3 5

We also define the reverse column insertion as follows. For a ∈ A and T ∈ SSTA(λπ)
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with λ ∈ Pn and A = [n], [n], N or N, let a → T be the tableau obtained by applying

the Schensted’s column insertion of a into T in a reverse way starting from the rightmost

column. For a word w = w1 . . . wr ∈ WtW∨, we define (w → V ) = (wr → (· · · → (w1 →
T ))). For a semistandard tableau S, we define (S → V ) = (w(S)→ V ).

Example 3.1.4. For λ = (2, 2, 1),

T = 2

2 3

4 4

; 2→ T = 2

2 3

2 4 4

.

For T ∈ SST (λ/µ), let T
↖

be the unique semistandard tableau such that sh(T
↖

) ∈P

and w(T
↖

) is Knuth equivalent to w(T ). We define T
↘

in a similar way such that

sh(T
↘

) ∈Pπ. Note that if sh(T
↖

) = ν, then sh(T
↘

) = νπ. For w = w1 . . . wr ∈ WtW∨,
we define P (w)

↖
= ((wr ← wr−1)← · · · ← w1) and P (w)

↘
= (wr → (· · · → w2 → w1)).

Example 3.1.5. Let λ = (3, 2) and µ = (1). Then

T = 1 2

1 2
∈ SST (λ/µ) ; T

↖
= 1 1 2

2
, T

↘
= 1

1 2 2
.

3.1.2 Crystals and RSK correspondence

In this section, we review the RSK correspondence and its crystal interpretation following

[60].

For m,n ∈ Z≥1, put

Tm,n :=
⊔
λ∈P

`(λ)≤min{m,n}

SST[m](λ)× SST[n](λ) .

Let Mm,n be the set of all m × n matrices with nonnegative integers. Then, for each

M = (mij)1≤i≤m,1≤j≤n ∈ Mm×n, we define a biword (a,b) ∈ W∨m ×W∨n by reading the

entries of M from bottom to top and from left to right such that there are mij biletters

(ak, bk) with ak = i and bk = j. Similarly, we define a biword (a,b) ∈ W∨m × W∨n by

reading the entries of M from top to bottom and from right to left such that there are

mij biletters (a′k, b
′
k) with a′k = i and b′k = j. We often write M = M(a,b) = M(a′,b′).
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Example 3.1.6. For example, when m = n = 3 and M is given by

M =

 1 0 1

1 2 0

0 0 1

 ,

we have the biwords (a,b) and (a′,b′) of M given by

a = 2 1 2 2 3 1

b = 1 1 2 2 3 3
,

a′ = 1 1 2 2 2 3

b′ = 3 1 2 2 1 3
.

Note that each letter of a and a′ is the row index of M and each letter of b and b′ is the

column index of M .

Let us recall that RSK correspondence κ is a weight-preserving bijection given by

κ : Mm×n // Tm,n
M � // (P (a)

↖
, Q(b)

↖
)

, (3.1.1)

where P (a)
↖

is the tableau obtained from the word a by the Schensted’s column insertion

and Q(b)
↖

is the recording tableau associated with the word b.

Example 3.1.7. Consider Example 3.1.6. The pair κ(M) = (P (a)
↖
, Q(b)

↖
) is obtained

as follows:(
2 , 1

)
;

(
1 2 , 1 1

)
;

(
1 2

2
, 1 1

2

)
;

(
1 2 2

2
, 1 1 2

2

)

;

 1 2 2

2

3

, 1 1 2

2

3

;

 1 1 2 2

2

3

, 1 1 2 3

2

3

 = (P (a)
↖
, Q(b)

↖
)

Remark 3.1.8. By Symmetry theorem for RSK correspondence [23, Theorem, p.40], one

can check that

Q(b)
↖

= P (b′)
↖
.

When we interpret the RSK correspondence in terms of crystals, we use the recording

tableau of κ as P (b′)
↖

instead of Q(b)
↖

.

Now, let us explain the crystal interpretation of κ. To do this, we introduce the notion
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of the bicrystal over the pair of general linear Lie algebras glm and gln for m,n ∈ Z≥1.

Put Ik = { 1, . . . , k } for k ∈ Z≥1.

Definition 3.1.9. We say that B is a (glm, gln)-bicrystal if it is a glm-crystal under ẽi

and f̃i for i ∈ Im and also a gln-crystal under ẽ′j and f̃ ′j for j ∈ In such that ẽi and f̃i

commute with ẽ′j and f̃ ′j for all i, j.

We may identify a word w = w1 · · ·wr ∈ W∨ with w1 ⊗ · · · ⊗ wr. Then W∨ has the

crystal structure induced from the crystal [n] by tensor product rule (2.2.1), respectively,

where the crystal [n] is given by

[n] : 1
1−→ 2

2−→ · · · n−2−→ n− 1
n−1−→ n .

Indeed, the crystal [n] is the crystal graph of the natural representation of Uq(gln) [50]

(see also [30, Example 4.2.7]).

Let us consider a crystal of biwords. We define Ωm,n to be the set of biwords (a,b) ∈
W∨m ×W∨n such that

(1) a = a1 . . . ar and b = b1 . . . br for some r ≥ 0,

(2) (a1, b1) � · · · � (ar, br), where the ordering � is given by

(a, b) � (c, d) ⇐⇒ (b < d) or (b = d and a > c)

for (a, b), (c, d) ∈ [n]× [n].

Then we define crystal operators ẽi, f̃i on Ωm,n for i ∈ Im as follows. For i ∈ Im and

(a,b) ∈ Ωm,n, we define

ẽi(a,b) = (ẽia,b), f̃i(a,b) = (f̃ia,b) ,

where we assume that xi(a,b) = 0 if xia = 0 (x = e, f), and set

wt(a,b) = wt(a), εi(a,b) = εi(a), ϕi(a,b) = ϕi(a).

Then Ωm,n is a glm-crystal with respect to (ẽi, f̃i,wt, εi, ϕi)i∈Im .

Next, set

Ω′m,n = { (c,d) ∈ Wm ×Wn | (d, c) ∈ Ωn,m } .
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By the similar way as in Ωm,n, we define a gln-crystal structure on Ω′m,n as follows. For

j ∈ In and (c,d) ∈ Ω′m,n, we define

ẽ′j(c,d) = (c, ẽ′jd), f̃ ′j(c,d) = (c, f̃ ′jd) ,

and set

wt(c,d) = wt(d), ε′j(c,d) = εj(d), ϕ′j(c,d) = ϕj(d) .

Then Ω′m,n is a gln-crystal with respect to (ẽ′i, f̃
′
i ,wt, ε′i, ϕ

′
i)i∈Im .

By definition, for M ∈ Mm,n, the biwords (a,b) and (a′,b′) are contained in Ωm,n

and Ω′m,n, respectively. Then, the maps

(a,b) � //M = M(a,b) , (a′,b′) � //M = M(a′,b′)

are bijective and induce the glm-crystal structure and the gln-crystal structure onMm,n,

respectively. Then one can check that Mm,n becomes a (glm, gln)-bicrystal. Note that

Tm,n has the natural (glm, gln)-bicrystal structure.

Theorem 3.1.10. [15] The map κ (3.1.1) is an isomorphism of (glm, gln)-bicrystals.

3.2 PBW crystals

3.2.1 Description of f̃i

Suppose that g is of finite type. Let i ∈ R(w0) be given. For β ∈ Φ+, we denote by 1β

the element in Bi where cβ = 1 and cγ = 0 for γ ∈ Φ+ \ {β}. The Kashiwara operators

f̃i or f̃ ∗i on Bi for i ∈ I is not easy to describe in general except

f̃ic = (c1 + 1, c2, . . . , cN) = c + 1αi , when β1 = αi,

f̃ ∗i c = (c1, . . . , cN−1, cN + 1) = c + 1αi , when βN = αi,
(3.2.1)

for c ∈ Bi [79].

Let us review the results in [103], where it is shown that f̃i can be described more

explicitly in terms of so-called signature rule under certain conditions on i with respect

to i ∈ I (in [103], the authors call it bracketing rule). For simplicity, let us assume that g

is of types A, D or E from now on.
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Let σ = (σ1, σ2, . . . , σs) be a sequence with σu ∈ {+ , − , · }. We replace a pair

(σu, σu′) = (+,−), where u < u′ and σu′′ = · for u < u′′ < u′, with ( · , · ), and repeat this

process as far as possible until we get a sequence with no − placed to the right of +. We

denote the resulting sequence by σred. For another sequence τ = (τ1, . . . , τt), we denote

by σ · τ the concatenation of σ and τ .

Recall that a total order ≺ on the set Φ+ of positive roots is called convex if either

γ ≺ γ′ ≺ γ′′ or γ′′ ≺ γ′ ≺ γ whenever γ′ = γ + γ′′ for γ, γ′, γ′′ ∈ Φ+. It is well-known that

there exists a one-to-one correspondence between R(w0) and the set of convex orders on

Φ+, where the convex order ≺ associated with i = (i1, . . . , iN) ∈ R(w0) is given by

β1 ≺ β2 ≺ . . . ≺ βN , (3.2.2)

where βk is as in (2.2.5) [93].

There exists a reduced expression i′ obtained from i by a 3-term braid move (ik, ik+1, ik+2)

→ (ik+1, ik, ik+1) with ik = ik+2 if and only if

{ βk, βk+1, βk+2 }

forms the positive roots of type A2, where the corresponding convex order ≺′ is given

by replacing βk ≺ βk+1 ≺ βk+2 with βk+2 ≺′ βk+1 ≺′ βk. Also there exists a reduced

expression i′ obtained from i by a 2-term braid move (ik, ik+1) → (ik+1, ik) if and only if

βk and βk+1 are orthogonal, where the associated convex ordering ≺′ is given by replacing

βk ≺ βk+1 with βk+1 ≺′ βk.
Given i ∈ I, suppose that i is simply braided for i ∈ I, that is, if one can obtain

i′ = (i′1, . . . , i
′
N) ∈ R(w0) with i′1 = i by applying a sequence of braid moves consisting

of either a 2-term move or 3-term braid move (γ, γ′, γ′′) → (γ′′, γ′, γ) with γ′′ = αi, see

[103, Definition 4.1].

Suppose that

Πs = {γs, γ′s, γ′′s } (3.2.3)

is the triple of positive roots of type A2 with γ′s = γs + γ′′s and γ′′s = αi corresponding to

the s-th 3-term braid move for 1 ≤ s ≤ t.
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For c ∈ Bi, let

σi(c) = (− · · ·−︸ ︷︷ ︸
cγ′1

+ · · ·+︸ ︷︷ ︸
cγ1

· · · − · · · −︸ ︷︷ ︸
cγ′t

+ · · ·+︸ ︷︷ ︸
cγt

). (3.2.4)

Then we have the following description of f̃i on Bi .

Theorem 3.2.1. [103, Theorem 4.6] Let i ∈ R(w0) and i ∈ I. Suppose that i is simply

braided for i. Let c ∈ Bi be given.

(1) If there exists + in σi(c)red and the leftmost + appears in cγs, then

f̃ic = c− 1γs + 1γ′s .

(2) If there exists no + in σi(c)red, then f̃ic = c + 1αi .

3.2.2 Kac-Moody algebra of type Dn

From now on, we assume that g is the Kac-Moody algebra associated to the Dynkin

diagram

© © ©
©

©

��
�

HHH

· · ·
α1 α2 αn−2

αn−1

αn

where αi = εi − εi+1 for 1 ≤ i ≤ n − 1, and αn = εn−1 + εn. Also, we assume that

the weight lattice is P =
⊕n

i=1 Zεi, where { εi | 1 ≤ i ≤ n } is an orthonormal basis with

respect to the symmetric bilinear form ( , ), that is, (εi, εj) = δij for 1 ≤ i, j ≤ n. The

set of positive roots is Φ+ = { εi ± εj | 1 ≤ i < j ≤ n }. Recall that W acts faithfully on

P by si(εi) = εi+1, si(εk) = εk for 1 ≤ i ≤ n− 1 and k 6= i, i+ 1, and sn(εn−1) = −εn and

sn(εk) = εk for k 6= n − 1, n (recall (2.2.4)). The fundamental weights are $i =
∑i

k=1 εk

for 1 ≤ i ≤ n− 2, $n−1 = (ε1 + · · ·+ εn−1 − εn)/2 and $n = (ε1 + · · ·+ εn−1 + εn)/2.

Let

Pn =
{

(λ1, . . . , λn)
∣∣∣λi ∈ 1

2
Z, λi − λi+1 ∈ Z+, λn−1 ≥ |λn|

}
. (3.2.5)
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For λ ∈ Pn, we put

ωλ =
n∑
i=1

λiεi . (3.2.6)

Then P+ = {ωλ |λ ∈ Pn} is the set of dominant integral weights. We put sp+ =
((

1
2

)n)
and sp− = ((1

2
)n−1,−1

2
)) for simplicity. We also identify λ ∈ Pn with a (generalized)

Young diagram, which may have a half-width box on the leftmost column, see [50, Section

6.7].

3.2.3 PBW crystal of type Dn

In this subsection, we give an explicit description of the signature rule in type Dn associ-

ated with the reduced expression i0 ∈ R(w0) whose convex order on Φ+ is given by

εi + εj ≺ εk − εl,
εi + εj ≺ εk+εl ⇐⇒ (j > l) or (j = l, i > k),

εi − εj ≺ εk−εl ⇐⇒ (i < k) or (i = k, j < l),

(3.2.7)

for 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n. An explicit form of i0 is as follows. For

1 ≤ k ≤ n− 1, put

ik =


(n, n− 2, . . . , k + 1, k), if k is odd,

(n− 1, n− 2, . . . , k + 1, k), if k is even,

(n), if n is even and k = n− 1,

i′k =


(n− 1, n− 2, . . . , k + 1, k), if n is even and 1 ≤ k ≤ n− 1,

(n, n− 2, . . . , k + 1, k), if n is odd and 1 ≤ k ≤ n− 2,

(n), if n is odd and k = n− 1.

Let iJ = i1 · i2 · · · · · in−1 and iJ = i′1 · i′2 · · · · i′n−1. Then

i0 = iJ · iJ , (3.2.8)

where i · j denotes the concatenation of i ∈ I×r and j ∈ I×s. We write i0 = (i1, . . . , iN),

where i1 = n, and put iJ = (i1, . . . , iM), and iJ = (iM+1, . . . , iN) with N = n2 − n and
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M = N/2.

Example 3.2.2. We have

iJ = (4, 2, 1, 3, 2, 4), iJ = (3, 2, 1, 3, 2, 3), when n = 4,

iJ = (5, 3, 2, 1, 4, 3, 2, 5, 3, 4), iJ = (5, 3, 2, 1, 5, 3, 2, 5, 3, 5), when n = 5.

The associated convex order when n = 4 is

ε3 + ε4 ≺ ε2 + ε4 ≺ ε1 + ε4 ≺ ε2 + ε3 ≺ ε1 + ε3 ≺ ε1 + ε2

≺ ε1 − ε2 ≺ ε1 − ε3 ≺ ε1 − ε4 ≺ ε2 − ε3 ≺ ε2 − ε4 ≺ ε3 − ε4.

For c = (cβ) ∈ Bi0 , we write

cβk =

cji, if βk = εi + εj for 1 ≤ i < j ≤ n,

cji, if βk = εi − εj for 1 ≤ i < j ≤ n.
(3.2.9)

Proposition 3.2.3. For i ∈ I \ {n}, there exists a reduced expression i ∈ R(w0), which

is equal to i0 up to 2-term braid moves, such that i is simply braided for i ∈ I and the

signature σi(c) for c ∈ Bi (recall (3.2.4)) is given by

σi(c) =σi,1(c) · σi,2(c) · σi,3(c),

where

σi,1(c) =(− · · ·−︸ ︷︷ ︸
cn i

+ · · ·+︸ ︷︷ ︸
cn i+1

− · · ·−︸ ︷︷ ︸
cn−1 i

+ · · ·+︸ ︷︷ ︸
cn−1 i+1

· · · − · · · −︸ ︷︷ ︸
ci+2 i

+ · · ·+︸ ︷︷ ︸
ci+2 i

),

σi,2(c) =(− · · ·−︸ ︷︷ ︸
ci i−1

+ · · ·+︸ ︷︷ ︸
ci+1 i−1

− · · ·−︸ ︷︷ ︸
ci i−2

+ · · ·+︸ ︷︷ ︸
ci+1 i−2

· · · − · · · −︸ ︷︷ ︸
ci 1

+ · · ·+︸ ︷︷ ︸
ci+1 1

),

σi,3(c) =(− · · ·−︸ ︷︷ ︸
ci+1 1

+ · · ·+︸ ︷︷ ︸
ci 1

− · · ·−︸ ︷︷ ︸
ci+1 2

+ · · ·+︸ ︷︷ ︸
ci 2

· · · − · · · −︸ ︷︷ ︸
ci+1 i−1

+ · · ·+︸ ︷︷ ︸
ci i−1

− · · ·−︸ ︷︷ ︸
ci+1 i

).

(3.2.10)

Here we assume that cab is zero when it is not defined and a 2-term braid move means

that ij = ji for i, j ∈ I such that aij = 0.

Proof. We assume that n is even since the proof for n odd is almost identical (see Example

3.2.5). Let us fix i ∈ I \ {n}.
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Step 1. We first observe that if the first letter n − 1 in i′i corresponds to ik in i0 for

some k, then βk = αi.

Step 2. Let ik = n − 1 be as in Step 1. Suppose that i 6= 1. Then we can apply

2-term move or 3-term braid move (γ, γ′, γ′′) → (γ′′, γ′, γ) with γ′′ = αi to i0 (indeed to

the subword i′1 · i′2 · · · i′i−1 · ik) to get i
(3)
0 = (i1, . . . , iM , j, . . .) with j = n− i. We can check

that 3-term braid move occurs once in each i′s for s = 1, . . . , i− 1, and the positive roots

of the corresponding root system of type A2 is

Π(3)
s = {εs − εi, εs − εi+1, αi} (3.2.11)

for s = 1, · · · , i− 1. We assume that Π
(3)
s is empty when i = 1.

Step 3. We consider the reduced word i
(3)
0 . Suppose that i 6= 1 or j 6= n. First, we

apply 2-moves only to ij · ij+1 so that the last i− 2 letters in ij and the first i− 2 letters

are shuffled by a permutation of length (i−2)(i−1)/2 and hence appear in an alternative

way. We denote this subword by ij · ij+1.

Then we apply 2-term move or 3-term braid move (γ, γ′, γ′′)→ (γ′′, γ′, γ) with γ′′ = αi

to the subword ij · ij+1 · ij+2 · · · in−1 · j to obtain a word starting with j′′ where j′′ is n

(resp. n− 1) when j is odd (resp. even). We denote the resulting whole word by i
(2)
0 .

Here we have i − 1 3-term braid moves only in ij · ij+1 and the positive roots of the

corresponding root system of type A2 is

Π(2)
s = {εi+1 + εs, εi + εs, αi} (3.2.12)

for 1 ≤ s ≤ i− 1, and the order of occurrence of 3-term braid move is when s ranges from

1 to i− 1. If i = 1, then we assume that Π
(2)
s is empty, and i

(2)
0 = i

(3)
0 .

Step 4. Finally, we apply 2-term move or 3-term braid move (γ, γ′, γ′′) → (γ′′, γ′, γ)

with γ′′ = αi to the subword i1 · · · ij ·j′′ of i
(2)
0 to obtain a word starting with i, and denote

the resulting whole word by i
(1)
0 . In this case, 3-term braid move occurs once in each is

for s = 1, . . . , j − 1, and the positive roots of the corresponding root system of type A2 is

Π(1)
s = {εn−s+1 + εi+1, εn−s+1 + εi, αi} (3.2.13)

for s = 1, · · · , j − 1.

By the above steps, we conclude that i
(1)
0 ∈ R(w0) is obtained from i0 by applying

38



CHAPTER 3. PBW CRYSTAL AND RSK FOR TYPE D

2-term move or 3-term braid move (γ, γ′, γ′′)→ (γ′′, γ′, γ) with γ′′ = αi. We define

i := i
J · iJ ,

where i
J

= i1 · · · · · ij · ij+1 · · · · in−1 (recall (3.2.8)) and ij · ij+1 is obtained from ij · ij+1 in

Step 3. By Step 1–Step 4, the reduced expression i is simply braided for i. It follows from

Theorem 3.2.1 that the sequence σi(c) in (3.2.4) for c ∈ Bi is given by (3.2.10), where

the positive roots of the root systems of type A2 associated with σi,j(c) are given by Π
(j)
s

for j = 1, 2, 3 in (3.2.13), (3.2.12), and (3.2.11).

Remark 3.2.4.

(1) For i ∈ I \ {n}, the crystal operator f̃i on Bi0 may be understood by

Bi0

Ri
i0 // Bi

f̃i // Bi

R
i0
i // Bi0 ,

where Ri
i0

(resp. Ri0
i ) is the transition map from Bi0 to Bi (resp. from Bi to Bi0)

(cf. [76]). The map Ri
i0

corresponds to the 2-term braid moves from ij ·ij+1 to ij ·ij+1

(see Step 3 in the proof of Proposition 3.2.3), which is simply given by exchanging

the multiplicities related to them, and the map Ri0
i is the inverse of it. Therefore,

the crystal operator f̃i on Bi0 can be described in the same way as in Theorem 3.2.1

with σi(c) in Proposition 3.2.3.

(2) In type An, for r ∈ I, we take i0 = iJ · iJ ∈ R(w0) such that iJ and iJ are given by

iJ = i1 · i2 · · · · · in−r+1, iJ = in−r+2 · in−r+3 · · · · · i2n−r . (3.2.14)

where is is defined by

is =


(r + s− 1, r + s− 2, . . . , s+ 1, s) if 1 ≤ s ≤ n− r + 1,

(r + 1, r, · · · , r − s+ 1) if n− r + 1 < s ≤ n,

(1, 2, · · · , n− r + s− 1) if n < s ≤ 2n− r .

By a similar argument as in the proof of Proposition 3.2.3, i0 is simply braided as

in the sense of Proposition 3.2.3 and we obtain the sequence σi(c) associated with

the reduced expression i0 = iJ · iJ (3.2.14). Then it is straightforward to check that
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Bi0 coincides with the crystal BΩ = Bi in [65], where Ω is the Dynkin quiver of type

An and i is adapted to Ω (see also [95,99]). Indeed, the reduced expression i0 is also

adapted to the Dynkin quiver An.

Example 3.2.5. Let us illustrate σi(c) for c ∈ Bi0 when n = 5 and i = 3. Consider

i0 = iJ · iJ = (i1, . . . , i20) (see Example 3.2.2). Note that i18 = 5 is the first letter in i′3,

and β18 = α3.

For convenience, let (resp. −→) mean the 3-term (resp. 2-term) braid move. Then

iJ = (5, 3, 2, 1, 5, 3, 2,5, 3, 5) −→ (5, 3, 2, 1, 5, 3,5, 2, 3, 5)

 (5, 3, 2, 1,3, 5, 3, 2, 3, 5) · · · Π
(3)
2

−→ (5, 3, 2,3, 1, 5, 3, 2, 3, 5)

 (5,2, 3, 2, 1, 5, 3, 2, 3, 5) · · · Π
(3)
1

−→ (2, 5, 3, 2, 1, 5, 3, 2, 3, 5),

where Π
(3)
2 = {ε2 − ε3, ε2 − ε4, α3} and Π

(3)
1 = {ε1 − ε3, ε1 − ε4, α3}. Here the bold letter

denotes the one corresponding to α3 in the associated convex order on Φ+.

Next, we have i2 · i3 = (4, 3,2,5, 3) −→ i2 · i3 = (4, 3,5,2, 3), and hence

i2 · i3 · 2 = (4, 3, 5, 2, 3,2)  (4, 3, 5,3, 2, 3) · · · Π
(2)
2

 (4,5, 3, 5, 2, 3) · · · Π
(2)
1

−→ (5, 4, 3, 5, 2, 3),

where Π
(2)
2 = {ε1 + ε4, ε1 + ε3, α3} and Π

(2)
1 = {ε2 + ε4, ε2 + ε3, α3}. Finally,

i1 · 5 = (5, 3, 2, 1,5) −→ (5, 3, 2,5, 1)

−→ (5, 3,5, 2, 1)

 (3, 5, 3, 2, 1) · · · Π
(1)
1 ,

where Π
(3)
1 = {ε4 + ε5, ε3 + ε5, α3}. Thus i0 is simply braided for i = 3. Hence, for c ∈ Bi0 ,

σ3,1(c) = (− · · ·−︸ ︷︷ ︸
c53

+ · · ·+︸ ︷︷ ︸
c54

), σ3,2(c) = (− · · ·−︸ ︷︷ ︸
c32

+ · · ·+︸ ︷︷ ︸
c42

− · · ·−︸ ︷︷ ︸
c31

+ · · ·+︸ ︷︷ ︸
c41

),

σ3,3(c) = (− · · ·−︸ ︷︷ ︸
c41

+ · · ·+︸ ︷︷ ︸
c31

− · · ·−︸ ︷︷ ︸
c42

+ · · ·+︸ ︷︷ ︸
c32

− · · ·−︸ ︷︷ ︸
c43

).
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3.2.4 Crystal BJ of quantum nilpotent subalgebra

Put J = I \ {n}. Let l be the Levi subalgebra of g associated with {αi | i ∈ J } of type

An−1. Then

Φ+ = Φ+(J) ∪ Φ+
J ,

where Φ+
J = { εi − εj | 1 ≤ i < j ≤ n } is the set of positive roots of l and Φ+(J) =

{ εi + εj | 1 ≤ i < j ≤ n } is the set of roots of the nilradical u of the parabolic subalgebra

of g associated with l.

Set

BJ =
{

c = (cβ) ∈ Bi0

∣∣ cβ = 0 unless β ∈ Φ+(J)
}
,

BJ =
{

c = (cβ) ∈ Bi0

∣∣ cβ = 0 unless β ∈ ΦJ

}
.

(3.2.15)

which we regard them as subcrystals of Bi0 , where we assume that ẽnc = f̃nc = 0 with

εn(c) = ϕn(c) = −∞ for c ∈ BJ . The subcrystal BJ is the crystal of the quantum

nilpotent subalgebra U−q (wJ), where wJ = si1 · · · siM with iJ = (i1, . . . , iM), which can be

viewed as a q-deformation of U(u−).

Proposition 3.2.6.

(1) The crystal BJ is isomorphic to the crystal of U−q (l) as an l-crystal.

(2) The map

Bi0
// BJ ⊗BJ

c � // cJ ⊗ cJ

(3.2.16)

is an isomorphism of g-crystals.

Proof. (1) It follows directly from comparing the crystal structure of U−q (l) given in

[99, Section 4.1] (see also [65, Section 4.2]).

(2) It follows from Theorem 3.2.1, Proposition 3.2.3, and the tensor product rule of

crystals.

We have the characterization of the crystal BJ as follows.

Proposition 3.2.7. We have BJ = { c | ε∗i (c) = 0 (i ∈ J) }.

Proof. It follows from [76, Section 2.1] and Proposition 3.2.3(2).

From Proposition 3.2.3, we also obtain the decomposition of BJ as a l-crystal.
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Proposition 3.2.8.

(1) c = (cji) ∈ BJ is an l-highest weight vector if and only if

cnn−1 ≥ cn−2n−3 ≥ · · · , cji = 0 elsewhere. (3.2.17)

(2) As an l-crystal, we have

BJ ∼=
⊔
λ

BJ(λ),

where the union is over λ =
∑n

i=1 λiεi ∈ P such that 0 ≥ λ1 = λ2 ≥ λ3 = λ4 ≥ · · · ,
and BJ(λ) is the crystal of an integrable highest weight Uq(l)-module for λ.

Proof. It is enough to prove (1) because (1) implies (2) by Propositions 2.2.12 and

3.2.7 (see (6.2.3)). It is immediate from Proposition 3.2.3 that if c satisfies (3.2.17), then

ẽic = 0 for i ∈ I \ {n}. Conversely, suppose that c = (cji) ∈ BJ is an l-highest weight

vector. If cji 6= 0 for some (i, j) 6∈ { (n − 1, n), (n − 3, n − 2), . . . }, then choose cji 6= 0

whose corresponding root εi + εj is minimal with respect to (3.2.7). If j − i > 1, then

ẽic 6= 0, and if j − i = 1, then ẽjc 6= 0. This is a contradiction. Next, if ci+2 i+1 < cii−1

for some i ≥ 2, then we have ẽic 6= 0, which is also a contradiction. Hence c satisfies

(3.2.17).

Remark 3.2.9. Recall that there is a one-to-one correspondence between the reduced

expressions of w0 and the convex orderings on Φ+ [93]. Then the subexpression (i1, . . . , iM)

corresponding to the roots of u always appears as the first M entries (up to 2-term braid

moves) in any reduced expression of w0 such that the positive roots of u precede those

of l with respect to the corresponding convex ordering. Here a 2-term braid move means

ij = ji for i, j ∈ I such that |i− j| > 1.

3.2.5 Notation for BJ

Let ∆n be the arrangements of dots in the plane to represent the (n − 1)-th triangular

number. We often identify ∆n with Φ+(J) in such a way that εk+1 + εl+1, εk+1 + εl and

εk + εl for 1 ≤ k, l ≤ n− 1 are the vertices of a triangle of minimal shape in ∆n as follows:

εk+εl+1•
εk+1+εl+1• εk+εl•

(3.2.18)
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We also identify c ∈ BJ with an array of cβ’s in c with cβ at the corresponding dot in ∆n.

Example 3.2.10. For n = 5 and c ∈ BJ , we have

ε1+ε5•
∆5 =

ε2+ε5•
ε1+ε4•

ε3+ε5•
ε2+ε4•

ε1+ε3•
ε4+ε5•

ε3+ε4•
ε2+ε3•

ε1+ε2•

c51

c = c52 c41

c53 c42 c31

c54 c43 c32 c21

Example 3.2.11. Under the above convention, for n = 4, the description of f̃i (i ∈ I) is

as follows (recall Theorem 3.2.1 and Proposition 3.2.3(2)):

c
4 1•;;1 3$$c

4 2•;;2 3
##

c
3 1•::1 2

$$c
4 3•4 77

c
3 2•

c
2 1•

For example, when i = 2, the signature σ2(c) is given by Lusztig datum associated with

the arrows labeled 2 as follows:

c
4 1•;;1 3$$c

4 2•;;2 3
##

c
3 1•::1 2

$$c
4 3•4 77

c
3 2•

c
2 1•

Hence we have

σ2(c) =
(
− · · ·−︸ ︷︷ ︸

c42

+ · · ·+︸ ︷︷ ︸
c43

− · · ·−︸ ︷︷ ︸
c21

+ · · ·+︸ ︷︷ ︸
c31

)
.

Then the reduced signature σred
2 (c) determines an arrow labeled 2 at which we apply f̃2.

For instance, if c42 = 0, c43 = 1, c21 = 1 and c31 = 1, then

σ2(c) = (· + −+) −→ σred
2 (c) = (· · ·+)
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and we have

c
4 1•<<1 3

##0•??2 3""

1•<<1 2
  1•4 99

c
3 2• 1•

f̃2−→

c
4 1•<<1 3

##0•??2 3""

0•<<1 2
  1•4 99

c
3 2• 2•

3.3 Burge correspondence

3.3.1 RSK of type Dn

Let us recall a variation of RSK correspondence for type D due to Burge [6]. Put

T ↘ :=
⊔
λ∈Pn
λ′:even

SST[n](λ
π),

(3.3.1)

where we say that λ′ is even if each part of λ′ is even. Let Ω be the set of biwords

(a,b) ∈ W ×W such that

(1) a = a1 · · · ar and b = b1 · · · br for some r ≥ 0,

(2) ai < bi for 1 ≤ i ≤ r,

(3) (a1, b1) ≤ · · · ≤ (ar, br),

where (a, b) < (c, d) if and only if (a < c) or (a = c and b > d) for (a, b), (c, d) ∈ W ×W .

We denote by c(a,b) the unique element in BJ corresponding to (a,b) such that

cab = |{ k | (ak, bk) = (a, b) }|.

Example 3.3.1. Suppose that n = 5. Let c ∈ BJ be given by

1
1 0

1 2 1
2 1 0 1

Then the corresponding biword c = c(a,b) for (a,b) ∈ Ω is given by

(
a

b

)
=

(
5 5 5 5 5 4 4 4 3 2

1 2 3 4 4 2 2 3 1 1

)
.
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For (a,b) ∈ Ω with a = a1 · · · ar and b = b1 · · · br, we define a sequence of tableaux

Pr, Pr−1, . . . , P1 inductively as follows:

(1) let P1 be a vertical domino ar
br

,

(2) if Pk+1 is given for 1 ≤ k ≤ r− 1, then define Pk to be the tableau obtained by first

applying the column insertion to get bk → Pk+1, and then adding ak at the conner

of bk → Pk+1 located above the box sh(bk → Pk+1)/sh(Pk+1).

We put P
↘

(a,b) := P1. It is not difficult to see from the definition that P
↘

(a,b) ∈
SST (λπ) for some λ ∈P such that λ′ is even.

For c ∈ BJ , let P
↘

(c) = P
↘

(a,b) where c = c(a,b). Since the map (a,b) 7→
P
↘

(a,b) is a bijection from Ω to T ↘ [6], we have a bijection

κ
↘

: BJ // T ↘

c � // P
↘

(c)

. (3.3.2)

Example 3.3.2. Let us consider Example 3.3.1. The following is the sequence of tableaux

Pr, Pr−1, . . . , P1 =: P
↘

(a,b) given in the definition of κ
↘

(3.3.2):

2

1

3

1
−→ 3 2

1 1

4

3
−→

4

3

3 2

1 1

4

2
−→

4

3

4 2 2

3 1 1

4

2
−→

4

3

4 4 2 2

3 2 1 1

5

4
−→

5 4

4 3

4 4 2 2

3 2 1 1

5

4
−→

5 4

4 3

5 4 4 2 2

4 3 2 1 1

5

3
−→

5 4

3 3

5 5 4 4 2 2

4 4 3 2 1 1

5

2
−→

5 4

3 3

5 5 5 4 4 2 2

4 4 3 2 2 1 1

5

1
−→

5 4

3 3

5 5 5 5 4 4 2 2

4 4 3 2 2 1 1 1

Here we use the notation T

j

i
−→ T ′ when T = Pk+1, T ′ = Pk and (ak, bk) = (j, i). Hence,
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we have

κ
↘

(c) =
5 4

3 3

5 5 5 5 4 4 2 2

4 4 3 2 2 1 1 1

Let us recall the g-crystal structure on T ↘ [62, Section 5.2]. We regard [n] = {n <
· · · < 1 } as the crystal of dual natural representation of l with wt(k) = −εk. Then W
is a regular l-crystal, where w = w1 . . . wr is identified with w1 ⊗ · · · ⊗ wr. For λ ∈ Pn,

SST (λ) is a regular l-crystal with lowest weight −
∑n

i=1 λiεi, where T is identified with

w(T ) [50]. In particular T ↘ is a regular l-crystal.

Let T ∈ T ↘ be given. For k ≥ 1, let tk be the entry in the top of the k-th column of

T (enumerated from the right). Consider σ = (σ1, σ2, . . .), where

σk =


+ , if tk > n− 1 or the k-th column is empty,

− , if the k-th column has both n− 1 and n as its entries,

· , otherwise.

Then ẽnT is obtained from T by removing n

n−1 in the column corresponding to the right-

most − in σred (recall Section 3.2.1 for σred). If there is no such − sign, then we define

ẽnT = 0, and f̃nT is obtained from T by adding n

n−1 column corresponding to the left-

most + in σred. Hence T ↘ is a g-crystal with respect to wt, εi, ϕi, ẽi, f̃i (i ∈ I), where

εn(T ) = max{ k | ẽknT 6= 0 } and ϕn(T ) = εn(T ) + 〈wt(T ), hn〉.
Now we are in position to state the crystal theoretic interpretation of Burge corre-

spondence.

Theorem 3.3.3. The bijection κ
↘

in (3.3.2) is an isomorphism of g-crystals.

Proof. The key observation is that Burge correspondence can be described by an inductive

algorithm using RSK correspondence for skew tableaux. Here the skew RSK correspon-

dence is introduced by Sagan-Stanley [97]. Recall that it is known that RSK correspon-

dence is an isomorphism of crystals of type A, see Section 1.2.1 and references therein.

Then we compare the crystal structure of BJ in Proposition 3.2.3 with the one of T ↘ .

The detailed proof is given in Section 7.1.2.
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3.3.2 Shape formula

For c ∈ BJ , let

λ(c) = (λ1(c) ≥ . . . ≥ λ`(c)) (3.3.3)

be the partition corresponding to the regular l-subcrystal of BJ including c, that is,

λ(c)π = sh(κ
↘

(c)) by Theorem 3.3.3. Note that ` = 2[n
2
] and λ2i−1(c) = λ2i(c) for

1 ≤ i ≤ [n
2
].

We can characterize the whole partition λ(c) in terms of double paths on ∆n as follows.

Definition 3.3.4. A path in ∆n is a sequence p = (γ1, . . . , γs) in Φ+(J) for some s ≥ 1

such that

(1) γ1, . . . , γs ∈ Φ+(J),

(2) if γi = εk + εl+1 for some k < l, then γi+1 = εk+1 + εl+1 or εk + εl (see (3.2.18)),

(3) γs = εk + εk+1 for some k.

For β ∈ Φ+(J), a double path at β in ∆n is a pair of paths p = (p1, p2) in ∆n of the same

length with p1 = (γ1, . . . , γs) and p2 = (δ1, . . . , δs) such that

(1) γ1 = δ1 = β,

(2) γi is located to the strictly left of δi for 2 ≤ i ≤ s,

(3) γs = εk+1 + εk+2, δs = εk + εk+1 for some k ≥ 1.

Example 3.3.5. For a double path p = (p1, p2) at β, if we draw an arrow from γi to

γi+1 in p1 and from δi to δi+1 in p2, then p1 and p2 form a pair of non-intersecting paths

starting from β going downward to the bottom row in ∆n with p1 on the left, and p2 on

the right. The following is the list of double paths p at ε1 + ε5 in ∆5.

•
�� ��
•
��

•
��

•
��

•
��

•
• • • •

•
�� ��
•
��

•
��

•
��
•
��
•

• • • •

•
�� ��
•
��

•
��

•
��
• •

��
• • • •
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•
�� ��
•
��
•
��

• •
��

•
��

• • • •

•
�� ��
•
��
•
��

• •
��
•
��

• • • •

For c ∈ BJ and a double path p, let

||c||p =
∑

β lying on p

cβ. (3.3.4)

Theorem 3.3.6. For c ∈ BJ and 1 ≤ l ≤ [n
2
], we have

λ1(c) + λ3(c) + · · ·+ λ2l−1(c) = max
p1,...,pl

{ ||c||p1 + · · ·+ ||c||pl },

where p1, . . . ,pl are mutually non-intersecting double paths in ∆n and each pi starts at

the (2i− 1)-th row of ∆n for 1 ≤ i ≤ l.

Proof. The proof is given in Section 7.1.3 (see also Remark 6.2.6(2)).

Example 3.3.7. Let n = 6 and let c ∈ BJ be given by

1

2 3

2 1 1

1 3 2 1

2 3 2 0 3

Then we have

κ
↘

(c) =

6 6

5 5

6 6 5 4 4 4

5 3 3 3 3 3

6 6 6 6 5 5 5 5 5 4 3 3 2 2 2 2 2 2 2

5 5 5 4 4 4 4 4 3 2 1 1 1 1 1 1 1 1 1

where λ(c) = (19, 19, 6, 6, 2, 2).
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On the other hand, the double path p at ε1 + ε6 given by

1
�� ��

2
��

3
��

2
��

1 1
��

1 3
��

2
��

1

2 3 2 0 3

has maximal value ||c||p = 19, and the pair of double paths p1 and p2 at ε1 + ε6 and

ε3 + ε6, respectively, given by

1
�� ��

2
��

3
��

2
�� ��

1
��

1
��

1
��

3
��

2
��

1
��

2 3 2 0 3

has maximal value ||c||p1 + ||c||p2 = 25. By Theorem 3.3.6, we have

λ1(c) = 19, λ1(c) + λ3(c) = 25, λ1(c) + λ3(c) + λ5(c) = 27,

which implies λ3(c) = 6, λ5(c) = 2, and hence λ(c) = (19, 19, 6, 6, 2, 2).

Remark 3.3.8. Suppose that g is of type An and l is of type Ar×As with r+ s = n− 1.

The associated crystal B(Uq(u
−)) can be realized as the set of (r + 1) × (s + 1) non-

negative integral matrices (see [65, Section 4.3]). For M ∈ B(Uq(u
−)), let λ = (λ1, λ2, . . .)

be the shape of the tableaux corresponding to M under RSK. It is a well-known result

due to Greene [25] (cf. [23]) that λ1 + · · ·+ λl is a maximal sum of entries in M lying on

mutually non-intersecting l lattice paths on (r+1)×(s+1) array of points from northeast

to southwest. A similar result when g is of types BC is obtained by folding crystals of

type A with r = s. Hence, Theorem 3.3.6 is a non-trivial generalization of [25] to the

case of type D. We can also recover the result in [25] by using the same argument as in

Section 7.1.3.
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Chapter 4

Crystal embedding from B(λ) into

B(∞)

In this chapter, we describe the crystal embedding (2.2.3) for type Dn in a combinatorial

way. More precisely, the embedding is obtained as follows:

KNλ

∼=−→ Tλ
(a)−→ Vλ

(b)−→ Bi0 ⊗ Tλ,

where the crystals are given by

KNλ : the crystal of Kashiwara-Nakashima tableaux for type Dn of shape λ [50],

which is isomorphic to B(λ) (Section 4.1.2),

Tλ : the spinor model of type Dn associated with λ, which is isomorphic to KNλ

[63, 64] (cf. [66]) (Section 4.1.3),

Vλ : the crystal of parabolic Verma module associated with the maximal Levi

subalgebra of type An−1 (Section 4.4.1),

Bi0 : the crystal of i0-Lusztig datum in Section 3.2.3, which is isomorphic to the

crystal B(∞),

and the crystal embedding (a) is obtained from a combinatorial algorithm on Tλ compat-

ible with the crystal structure of Vλ, which is developed in Section 4.3, and the crystal

embedding (b) is obtained by using Burge correspondence (recall Section 3.3.1) and a

well-known result for type A.

This chapter is based on [38].
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4.1 Highest weight crystals for type Dn

4.1.1 Tableaux with two columns

For a, b, c ∈ Z+, let λ(a, b, c) be a skew Young diagram with at most two columns given

by (2b+c, 1a)/(1b). Let T be a tableau of shape λ(a, b, c). We denote the left and right

columns of T by T L and T R, respectively.

Let T be a tableau. If necessary, we assume that it is placed on the plane with a

horizontal line L, say PL, such that any box in T is either below or above L, and at least

one edge of a box in T meets L. We denote by T body and T tail the subtableaux of T

above and below L, respectively. For example,

T =

5

4

5 3

. . . . . . . . . . . . 4 2 . . . . . . . . . . . . L
3

1

T body =

5

4

5 3

4 2 T tail = 3

1

where the dotted line denotes L.

For a tableau U with the shape of a single column, let ht(U) denote the height of U

and we put U(i) (resp. U [i]) to be i-th entry of U from bottom (resp. top). We also write

U = (U(`), . . . , U(1)) = (U [1], . . . , U [`]) ,

where ` = ht(U). Suppose that U is a tableau in PL. To emphasize gluing and cutting

tableaux with respect to L, we also write

Ubody � Utail = U, U � Utail = Ubody.

For a sequence of tableaux U1, U2, . . . , Um in PL, whose shapes are single columns, let

us say that (U1, U2, . . . , Um) is semistandard along L if they form a semistandard tableau

T of a skew shape with Ui the i-th column of T from the left.
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4.1.2 Kashiwara-Nakashima tableaux of type Dn

Let us recall Section 3.1 and 3.2.2 for the notations. Suppose that λ = (λ1, . . . , λn) ∈ Pn
is given. The notion of Kashiwara-Nakashima tableaux (KN tableaux, for short) of type

D [50] is a combinatorial model of B(ωλ). In this thesis, we need an analogue, which is

obtained from the one in [50] by applying 180◦ rotation and replacing i and i (resp. i

with i). For the reader’s convenience, let us give its definition and crystal structure.

In this section, we assume that [n] ∪ [n] has the ordering given by

1 < 2 < · · · < n− 1 <
n

n
< n− 1 < · · · < 2 < 1.

Definition 4.1.1. For λ = (λ1, . . . , λn) ∈ Pn, let T be a tableau of shape λπ with entries

in [n] ∪ [n] such that

(1) T (i, j) 6≥ T (i+ 1, j) and T (i, j) ≤ T (i, j + 1) for each i and j,

(2) n and n can appear successively in T other than half-width boxes,

(3) i and i do not appear simultaneously in the half-width boxes,

where T (i, j) denotes the entry in T located in the i-th row from the bottom and the

j-th column from the right. Then T is called a KN tableau of type Dn if it satisfies the

following conditions:

(d-1) If T (p, j) = i and T (q, j) = i for some i ∈ [n] with p < q, then (q − p) + i > λ′j.

(d-2) Suppose λn ≥ 0 and λ′j = n. If T (k, j) = n (resp. n), then k is odd (resp. even).

(d-3) Suppose λn < 0 and λ′j = n. If T (k, j) = n (resp. n), then k is even (resp. odd).

(d-4) If either T (p, j) = a, T (q, j) = b, T (r, j) = b and T (s, j + 1) = a or T (p, j) = a,

T (q, j+1) = b, T (r, j+1) = b and T (s, j+1) = a with p ≤ q < r ≤ s and a ≤ b < n,

then (q − p) + (s− r) < b− a.

(d-5) Suppose T (p, j) = a, T (s, j + 1) = a with p < s. If there exists p ≤ q < s such that

either T (q, j), T (q + 1, j) ∈ {n, n } with T (q, j) 6= T (q + 1, j) or T (q, j + 1), T (q +

1, j + 1) ∈ {n, n } with T (q, j + 1) 6= T (q + 1, j + 1), then s− p ≤ n− a.

(d-6) It is not possible that T (p, j) ∈ {n, n } and T (s, j + 1) ∈ {n, n } with p < s.
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(d-7) Suppose T (p, j) = a, T (s, j + 1) = a with p < s. If T (q, j + 1) ∈ {n, n}, T (r, j) ∈
{n, n} and s − q + 1 is either odd or even with p ≤ q < r ≤ s and a < n, then

s− p < n− a.

We denote by KNλ the set of KN tableaux of shape λπ.

Recall that KN(1) has the following crystal structure isomorphic to that of B($1).

1 2 · · · n− 1

n

n

n− 1 · · · 2 1
1 2 n− 2

n− 1

n

n

n− 1

n− 2 2 1

where a
i−→ b means f̃i a = b with f̃i the Kashiwara operator for i ∈ I, and wt( i ) =

εi, wt( i ) = −εi. for i = 1, . . . , n. On the other hand, KNsp+ and KNsp− have crystal

structures isomorphic to those of B($n) and B($n−1) which are the crystals of spin

representations with highest weights $n and $n−1, respectively. For i ∈ I, f̃i on KNsp±

is given by

.

.

.

i
.
.
.

i + 1
.
.
.

f̃i (i 6=n)

−−−−−→

.

.

.

i + 1
.
.
.

i
.
.
.

.

.

.

n− 1

n
.
.
.

f̃n
−−−−→

.

.

.

n

n− 1
.
.
.

. (4.1.1)

Let λ ∈ Pn be given. Let us identify T ∈ KNλ with its word w(T ) so that we may

regard

KNλ ⊂

{ (
KN(1)

)⊗N
, if λn ∈ Z,

KNsp± ⊗
(
KN(1)

)⊗N
, if λn 6∈ Z,

where N is the number of letters in w(T ) except for the one in half-width boxes. Then

KNλ is invariant under ẽi and f̃i for i ∈ I, and

KNλ
∼= B(ωλ),

(see [50, Theorem 6.7.1]).
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4.1.3 Spinor model for type Dn

The spinor model is originated from the combinatorial description of the crystal of an inte-

grable highest weight module in a parabolic BGG category over quantum ortho-symplectic

superalgebra [63, 64], where the category is established via Super duality developed by

Cheng-Lam-Wang (see [14, Chapter 6] and references therein). As a byproduct, this

should induce a combinatorial model of the crystal B(λ) for an integrable highest weight

irreducible module V (λ) over the classical Lie algebras of types BCD. In [63, Section

7.2], the author explains briefly the connection with Kashiwara-Nakashima tableaux.

In this section, we review the spinor model for type Dn and we give an explicit crys-

tal isomorphism between spinor model and Kashiwara-Nakashima tableaux of type D in

Section 4.2. Note that the isomorphism for types BC is given in [66, Section 3.3].

Definition 4.1.2. For T ∈ SST [n](λ(a, b, c)) and 0 ≤ k ≤ min{a, b}, we slide down T R

by k positions to have a tableau T ′ of shape λ(a− k, b− k, c+ k). We define

rT = max{ k | T ′ is semistandard }.

Definition 4.1.3. For T ∈ SST [n](λ(a, b, c)) with rT = 0, we define ET and FT as

follows:

(1) ET is tableau in SST [n](λ(a−1, b+1, c)) obtained from T by applying Schütenberger’s

jeu de taquin sliding to the position below the bottom of T R, when a > 0,

(2) FT is tableau in SST [n](λ(a+1, b−1, c)) obtained from T by applying jeu de taquin

sliding to the position above the top of T L, when b > 0.

Here we assume that ET = 0 and FT = 0 when a = 0 and b = 0, respectively, where 0 is

a formal symbol. In general, if rT = k, then we define ET = ET ′ and FT = FT ′, where

T ′ is obtained from T by sliding down T R by k positions and hence rT ′ = 0.

Definition 4.1.4. We define

T(a) =
{
T |T ∈ SST [n](λ(a, b, c)), b, c ∈ 2Z+, rT ≤ 1

}
(0 ≤ a ≤ n− 1),

T(0) =
⊔

b,c∈2Z+

SST [n](λ(0, b, c+ 1)), Tsp =
⊔
a∈Z+

SST [n]((1
a)),

Tsp+ = {T |T ∈ Tsp, rT = 0 }, Tsp− = {T |T ∈ Tsp, rT = 1 },

where rT of T ∈ Tsp is defined to be the residue of ht(T ) modulo 2.
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For T ∈ T(a), we define (T L∗, T R∗) when rT = 1, and (LT, RT ) by

(T L∗, T R∗) = ((FT )L, (FT )R),

(LT, RT ) = ((Ea∗T )L, (Ea∗T )R) (a∗ = a− rT )
(4.1.2)

The following admissibility corresponds to the conditions on Kashiwara-Nakashima

tableaux [50].

Definition 4.1.5. Let a, a′ be given with 0 ≤ a′ ≤ a ≤ n − 1. We say a pair (T, S) is

admissible, and write T ≺ S if it is one of the following cases:

(1) (T, S) ∈ T(a)×T(a′) or T(a)×Tsp with

(i) ht(T R) ≤ ht(SL)− a′ + 2rT rS,

(ii)

{
T R(i) ≤ LS(i), if rT rS = 0,

T R∗(i) ≤ LS(i), if rT rS = 1,

(iii)

{
RT (i+ a− a′) ≤ SL(i), if rT rS = 0,
RT (i+ a− a′ + ε) ≤ SL∗(i), if rT rS = 1,

for i ≥ 1. Here ε = 1 if S ∈ Tsp− and 0 otherwise, and we assume that a′ = rS,

S = SL = LS = SL∗ when S ∈ Tsp.

(2) (T, S) ∈ T(a)×T(0) with T ≺ SL in the sense of (1), regarding SL ∈ Tsp−.

(3) (T, S) ∈ T(0)×T(0) or T(0)×Tsp− with (T R, SL) ∈ T(0).

Remark 4.1.6.

(1) For T ∈ T(a), we assume that T ∈ PL such that the subtableau of single column

with height a is below L and hence equal to T tail.

T =

5
4

5 3

. . . . . . . . . . . .4 2 . . . . . . . . . . . . L
3
1

∈ T(2)

(2) Let S ∈ Tsp with ε = rS. We may assume that S = UL for some U ∈ T(ε), where

UR(i) (i ≥ 1) are sufficiently large so that S = UL = LU . Then we may understand

55



CHAPTER 4. CRYSTAL EMBEDDING FROM B(λ) INTO B(∞)

the condition Definition 4.1.5(1) for (T, S) ∈ T(a) × Tsp as induced from the one

for (T, U) ∈ T(a)×T(ε).

(3) Let T ∈ T(0) be given. We assume that T L, T R ∈ Tsp− so that T tail is non-empty.

This means that (T L)
tail

and (T R)
tail

are non-empty in the sense of (2).

Let B be one of T(a) (0 ≤ a ≤ n − 1), Tsp, and T(0). The g-crystal structure on B

[64] is given as follows. Let T ∈ B given. For i ∈ I \ {n }, we define ẽi, f̃i by regarding

B as an l-subcrystal of
⊔
λ∈Pn

SST [n](λ) [50], where we consider the set [n] as the dual

crystal of [n] that is the crystal of vector representation of l. For i = n and T ∈ B, we

define ẽnT and f̃nT as follows:

(1) if B = Tsp, then ẽnT is the tableau obtained by removing a domino n

n− 1 from T if

it is possible, and 0 otherwise, and f̃nT is given in a similar way by adding n

n− 1,

(2) if B = T(a) or T(0), then ẽnT = ẽn (T R ⊗ T L) and f̃nT = f̃n (T R ⊗ T L) regarding

B ⊂ (Tsp)⊗2.

The weight of T ∈ B is given by

wt(T ) =

2$n +
∑

i≥1miεi, if T ∈ T(a) or T(0),

$n +
∑

i≥1miεi, if T ∈ Tsp.
,

where mi is the number of occurrences of i in T . Then B is a regular g-crystal with

respect to ẽi and f̃i for i ∈ I, and

T(a) ∼= B($n−a) (2 ≤ a ≤ n− 1),

T(0) ∼= B(2$n), T(0) ∼= B(2$n−1), T(1) ∼= B($n−1 +$n),

Tsp− ∼= B($n−1), Tsp+ ∼= B($n).

([64, Proposition 4.2]). Note that the highest weight element H of B is of the following

form:

H =


∅ � H(1a) if B = T(a) with 2 ≤ a ≤ n− 1,

∅ � n if B = T(1),

∅ if B = T(0) or B = Tsp+,

n if B = Tsp−,

(4.1.3)

56



CHAPTER 4. CRYSTAL EMBEDDING FROM B(λ) INTO B(∞)

where ∅ is the empty tableau and H(1) ∈ SST[n]((1
a)) (2 ≤ a ≤ n−1) such that H(1a)[k] =

n− k + 1 (1 ≤ k ≤ a), that is,

H(1a) =

n

n− 1

.

.

.

n− a + 1

. (4.1.4)

Note that the empty tableau ∅ is an element of SST [n]((0)).

Let λ = (λ1, . . . , λn) ∈ Pn be given. Let us recall ωλ (3.2.6). Then, ωλ is written by

ωλ =

{ ∑`
i=1$n−ai + p$n−1 + q(2$n) + r$n, if λn ≥ 0,∑`
i=1$n−ai + p$n + q(2$n−1) + r$n−1, if λn < 0,

(4.1.5)

where a` ≥ · · · ≥ a1 ≥ 1, p is the number of i such that ai = 1 and (q, r) (resp. (q, r)) is

given by 2λn = 2q + r with r ∈ { 0, 1 } (resp. −2λn = 2q + r with r ∈ { 0, 1 }).
Let

T̂λ =

{
T(a`)× · · · ×T(a1)×T(0)×q × (Tsp+)r, if λn ≥ 0,

T(a`)× · · · ×T(a1)×T(0)×q × (Tsp−)r, if λn < 0,
(4.1.6)

and regard it as a crystal by identifying

T = (. . . , T2, T1) ∈ T̂λ ←→ T1 ⊗ T2 ⊗ . . . .

We define

Tλ = {T = (. . . , T2, T1) ∈ T̂λ | Ti+1 ≺ Ti for all i },

where ≺ is given in Definition 4.1.5. Then Tλ ⊂ T̂λ is invariant under ẽi and f̃i for i ∈ I,

and then

Tλ
∼= B(ωλ), (4.1.7)

(see [64, Theorem 4.3–4.4]). We call Tλ the spinor model for B(ωλ). We note that the

highest weight element Hλ of Tλ is of the form:

Hλ =

{
H` ⊗ · · · ⊗H1 ⊗H ⊗ q0 ⊗H ⊗ r+ , if λn ≥ 0,

H` ⊗ · · · ⊗H1 ⊗H ⊗ q0 ⊗H ⊗ r− , if λn < 0,
(4.1.8)

where Hi and H± are the highest weight element of T(ai) and Tsp± given in (4.1.3),

respectively.
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Example 4.1.7. Let n = 8 and λ = (4, 4, 4, 4, 4, 2) ∈ P8 be given. By (4.1.5), we have

ωλ = 2$8−3 + 2$8−2 = 2$5 + 2$6,

with ` = 4 and (a4, a3, a2, a1) = (3, 3, 2, 2). Let T = (T4, T3, T2, T1) given by

6

5

7 6 6 5 3

. . . . . . . . . . . .
5

. . . . . .
4

. . . . . .
3

. . . . . .
4 2

. . . . . . . . . . . . L
7 6 4 3

4 2 2 2

3 1

T4 T3 T2 T1

where the dotted line is the common horizontal line L. Then T4 ≺ T3 ≺ T2 ≺ T1, and

hence T ∈ Tλ.

Definition 4.1.8. For λ ∈ Pn, let

H(λ) = {T |T ∈ Tλ, ẽiT = 0 (i 6= n) }.

and call T ∈ Hλ an l-highest weight vector in Tλ for simplicity.

Note that for T ∈ Tλ, we have T ∈ H(λ) if and only if T ≡l Hµ for some µ ∈P.

We also need the following partial order / in Section 4.3.

Definition 4.1.9. Let B be one of T(b) (0 ≤ b < n), Tsp, and T(0). For (T, S) ∈ T(a)×B

with a ∈ Z+, we write T / S if the pair (RT, SL) forms a semistandard tableau of a skew

shape, where we assume that RT and SL are arranged along L as follows:

RT = (. . . , RT (a+ 1))� (RT (a), . . . , RT (1)),

SL = (. . . , SL(b+ 1))� (SL(b), . . . , SL(1)).

Here we understand S in the sense of Remark 4.1.6 and put b = ht(Stail) when S ∈ Tsp−

or T(0).
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4.2 Isomorphism from KNλ to Tλ

Let us give an explicit description of the isomorphisms between KNλ and Tλ for λ ∈ Pn
(cf. [66, Section 3.3] for type Bn and Cn).

Let B be one of T(a) (0 ≤ a ≤ n−1), Tsp±, and T(0). For T ∈ B, we define a tableau

T̃ as follows:

(1) Suppose that B = Tsp±. Let T̃ be the unique tableau in SST[n]((1
n)) such that i

appears in T if and only if i appears in T̃ for 1 ≤ i ≤ n.

(2) Suppose that B = T(a) (0 ≤ a < n− 1) or T(0).

(i) First, let R̃T be the unique tableau in SST [n](1
m) with m = n − ht(RT ) such

that i appears in R̃T if and only if i does not appear in RT for i ∈ [n].

(ii) We define T̃ to be the tableau of single column obtained by putting the single-

column tableau consisting of n

n with height b− 2rT between LT and R̃T , where
LT is located below R̃T .

Example 4.2.1. Let n = 8 and let T ∈ T(2) be T1 in Example 4.1.7 with sh(T ) =

λ(2, 2, 2) and rT = 1, where we have

T L =
5

4

3

2

, T R =

6

5

3

2
, LT =

5

3

2

, RT =

6

5

4

3

2

.

Then R̃T is given by

RT =

6

5

4

3

2

−−−−−→
1

7

8

= R̃T .

and hence

T =

6

5

5 3

4 2

3

2

−−−−−→

1

7

8

5

3

2

= T̃ .
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Note that since b = 2 and rT = 1, there is no domino n

n in T̃ . On the other hand, if

T ∈ Tsp− is given as follows, then we have

T =
5

4

1

−−−−−→

2

3

6

7

8

5

4

1

= T̃ .

Lemma 4.2.2. The map sending T to T̃ gives an isomorphisms of crystals

Φ : B //

KNsp±, if B = Tsp±,

KN(1n−a), if B = T(a) or T(0).

Proof. Case 1. B = Tsp±. It is straightforward to see that Φ is a weight preserving

bijection and by (4.1.1), it is a morphism of crystals. Hence Φ is an isomorphism.

Case 2. Suppose that B = T(a) (0 ≤ a < n − 1) or T(0). Let T ∈ B given. First

we claim T̃ ∈ KN(1n−a). Suppose that T̃ /∈ KN(1n−a). Then by the condition (d-1) there

exists i ∈ [n] such that

(q − p) + i ≤ n− a (p < q). (4.2.1)

Put x = n− a− q and y = p. We note that x is the number of entries in [n] smaller than

i in T̃ , and y is the number of entries in [n] equal to or larger than i in T̃ . Take k such

that LT (k) = i. Then we have LT (k) > RT (k) by (4.2.1). This contradicts to the fact that

the pair (LT, RT ) forms a semistandard tableau when the two columns are placed on the

common bottom line. Hence T̃ ∈ KN(1n−a).

Second we show that T ≡l T̃ , where ≡l denotes the crystal equivalence as elements

of l-crystals. By the construction of R̃T , it is not difficult to check that R̃T ≡l
RT (more

precisely as elements of sln-crystals). Put D0 to be the single-column tableau consisting

of the domino n

n with height b− 2rT . By the tensor product rule of crystals, we see that

{D0} is the crystal of the trivial representation of l. This implies that R̃T ≡l
R̃T ⊗ D0 and

thus

T ≡l
RT ⊗ LT ≡l

R̃T ⊗ LT ≡l
R̃T ⊗ D0 ⊗ LT ≡l T̃

Next we claim that T̃ ′ = f̃nT̃ , where T ′ = f̃nT . Let T ∈ SST [n](λ(a, b, c)) and
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T ′ ∈ SST [n](λ(a, b′, c′)). Let us consider the case when f̃n(T R⊗T L) 6= 0 and f̃n(T R⊗T L) =

T R ⊗ (f̃nT
L). The proof of the other cases is similar. In this case, we have b′ = b − 2,

c′ = c+ 2 by definition of f̃n, and that T L[1] and T R[1] must satisfy that

n− 2 ≤ T L[1], T R[1] ≤ n− 1.

Then we have

f̃nT̃ =

{
R̃T ⊗ f̃n(D0)⊗ LT, if b > 2,

f̃n(R̃T )⊗ LT, if b = 2,

where f̃n(D0) is obtained from D0 by replacing n

n by n

n− 1 at the bottom of D0. Note that

the bottom entry of f̃n(R̃T ) is given by{
n , if T R[1] = n,

n− 1 , if T R[1] = n− 1.

On the other hand, we can check that LT ′ is obtained from LT by putting the domino n

n− 1

(resp. n if T R[1] = n, and n− 1 if T R[1] = n− 1 ) on the top of LT when b > 2 (resp. b = 2).

Now it is easy to see that f̃nT̃ is equal to T̃ ′.

Consequently, Φ is a morphism of crystals. Since Φ is injective and sends the highest

weight elements of T(a) to that of KN(1n−a) , Φ is an isomorphism.

Next let us describe the inverse map of Φ. Let T ∈ KN(1a) ∪KNsp± (0 < a ≤ n) be

given. Then we define Ψa(T ) and Ψsp±(T ) if T ∈ KN(1a) and T ∈ KNsp± respectively as

follows:

(1) Let T+ (resp. T−) be the subtableau in T with entries in [n] (resp. [n]) except for

dominos n

n

(2) Let T̃+ be the single-column tableau with height n− ht(T+) such that i appears in

T+ if and only if i does not appear in T̃+.

(3) We define Ψa(T ) and Ψsp±(T ) by

Ψsp±(T ) = T−, Ψa(T ) = Fn−a−ε(T−, T̃+), (4.2.2)
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where

ε =

{
0, if ht(T̃+)− a is even,

1, if ht(T̃+)− a is odd.

We note that Ψa(T ) has residue 1 if ht(T̃+)− a is odd, otherwise 0.

It is not difficult to check that the map Ψa (resp. Ψsp±) is the inverse of Φ. Hence by

Lemma 4.2.2, we have the following.

Lemma 4.2.3. The maps Ψa and Ψsp± are isomorphisms of crystals

Ψsp± : KNsp± // Tsp± , Ψa : KN(1a)
// T(n− a) (0 < a ≤ n),

Now we consider the isomorphism for any λ ∈ Pn. Let µ′ = (a`, . . . , a1), where

a1, . . . , a` are given in (4.1.5), with ` = µ1. For T ∈ KNλ, let{
(T`, . . . , T1), if λn ∈ Z,
(T`, . . . , T1, T0), if λn 6∈ Z,

denote the sequence of columns of T , where T0 is the column of T with half-width boxes,

and T1, T2, . . . are the other columns enumerated from right to left.

Theorem 4.2.4. For λ ∈ Pn, the map

Ψλ : KNλ
// Tλ (4.2.3)

defined by

Ψλ(T ) =

{
(Ψµ′`

(T`), . . . ,Ψµ′1
(T1)), if λn ∈ Z,

(Ψµ′`
(T`), . . . ,Ψµ′1

(T1),Ψsp±(T0)), if λn 6∈ Z,

is an isomorphism of crystals from KNλ to Tλ, where we take Ψsp+ and Ψsp− if λn ≥ 0

and λn < 0, respectively.

Proof. By Lemma 4.2.3, the map Ψλ is an embedding of crystals into T̂λ. Also the map

Ψλ sends the highest weight element of KNλ to the one of Tλ (cf. (4.1.8)). Then by

(5.3.1), the image of Ψλ is isomorphic to Tλ.
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Example 4.2.5. Let λ = (45, 2) ∈ P8 be given. Consider

T =

1 1
1 3 4 7
2 5 5 8
6 7 7 5
8 8 8 3
7 6 4 2

∈ KNλ .

Put

T4 =

1
2
6
8
7

, T3 =

3
5
7
8
6

, T2 =

1
4
5
7
8
4

, T1 =

1
7
8
5
3
2

.

By definition of ((Ti)− , (̃Ti)+),

((T4)− , (̃T4)+) =

(
7 ,

7

5

4

3

)
, ((T3)−, (̃T3)+) =

(
6 ,

6

4

2

1

)
,

((T2)− , (̃T2)+) =

(
4 ,

6

3

2

)
, ((T1)− , (̃T1)+) =

(
5

3

2 ,

6

5

4

3

2

)
.

Since ht((̃Ti)+)− ht(Ti) is odd for i = 1, 2, 3, 4, we have by (4.2.2)

Ψ5(T4) =
7

5

7

4

3

, Ψ5(T3) =
6

4

6

2

1

, Ψ6(T2) =
6

3

4

2

, Ψ6(T1) =

6

5

5 3

4 2

3

2

.

Hence, we obtain

Ψλ(T ) =

6
5

7 6 6 5 3

. . . . . . . . . 5 . . . . . . 4 . . . . . . 3 . . . . . . 4 2 . . . . . . . . . . . .

7 6 4 3
4 2 2 2
3 1

∈ Tλ.
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4.3 Separation algorithm

We introduce a combinatorial algorithm on Tλ, so-called separation, which plays a crucial

role in Chapters 4 and 5, and this section is one of main parts in this chapter.

Roughly speaking, the separation is given by sliding horizontally the tails of T (using

the jeu de taquin sliding) to the leftmost one as far as possible so that the resulting tableau

gives a semistandard tableau U of normal shape and the remaining one in the body gives

a semistandard tableau of anti-normal shape. For example, see Example 4.3.2.

We remark that the separation algorithm of types BC is already present in [66]. How-

ever, the separation algorithm of types BC does not work well on the spinor model of

type D due to more involved conditions for admissibility in Tλ (Recall Definition 4.1.5).

To overcome this difficulty, we introduce an operator sliding which is given by a non-

trivial sequence of jeu de taquin slidings, and also moves a tail in T by one position to

the left horizontally.

A key property is that our sliding is compatible with the type A crystal structure on

Tλ so that we obtain another element T̃ ∈ Tλ̃ and T = T̃⊗U as an element in a crystal

of type A, where U is the leftmost column in T and λ̃ is a partition smaller than λ. Hence

this enables us to define the separation algorithm by applying the sliding successively.

Moreover, in Section 4.4, we see that the separation induces an g-crystal embedding

from spinor model into the crystal of parabolic Verma module associated with the maximal

Levi subalgebra of type A. This is the second main part in this chapter.

4.3.1 Sliding

Let us recall that Tλ is a subcrystal of (Tsp)⊗N for some N . We may identify (Tsp)⊗N

with

EN :=
⊔

(uN ,...,u1)∈Zn+

SST [n](1
uN )× · · · × SST [n](1

u1).

We use an (l, slN)-bicrystal structure on EN in [66, Lemma 5.1]. The l-crystal structure

on EN with respect to ẽi and f̃i for i ∈ I is naturally induced from that of (Tsp)⊗N . On

the other hand, the slN -crystal structure is defined as follows (recall Definition 4.1.3).
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Let (UN , . . . , U1) ∈ EN given. For 1 ≤ j ≤ N − 1 and X = E ,F , we define

Xj(UN , . . . , U1) =

(Ur, . . . ,X (Uj+1, Uj), . . . , U1), if X (Uj+1, Uj) 6= 0,

0, if X (Uj+1, Uj) = 0.

where X (Uj+1, Uj) is understood to be XU for some U ∈ SST[n](λ(a, b, c)) with rU = 0,

UL = Uj+1 and UR = Uj.

Let l be the number of components in T̂λ in (4.1.6) except Tsp±. Consider an embed-

ding of sets

Tλ
// E2l+1

T = (Tl, . . . , T1, T0) � // (T L
l , T

R
l , . . . , T

L
1 , T

R
1 , T0)

, (4.3.1)

where T0 is regarded as

T0 ∈

{
{ ∅ }, if λn ∈ Z,
Tsp±, if λn 6∈ Z.

Here {∅} is the crystal of trivial module. We identify T = (Tl, . . . , T1, T0) ∈ Tλ with its

image U = (U2l, . . . , U1, U0) under (4.3.1) so that T0 = U0 and (Ti+1, Ti) is given by

(Ti+1, Ti) = (Uj+2, Uj+1, Uj, Uj−1) = (T L
i+1, T

R
i+1, T

L
i , T

R
i ), (4.3.2)

with j = 2i for 1 ≤ i ≤ l − 1.

Now we define an operator Sj on T for j = 2i for 1 ≤ i ≤ l − 1 by

Sj =

 Faij , if Ti+1 / Ti,

EjEj−1Fai−1
j Fj−1, if Ti+1 6 / Ti,

(4.3.3)

where Sj is understood as the identity operator when ai = 0, and / is given in Definition

4.1.9.

The following lemma is crucial in Section 4.3.2.

Lemma 4.3.1. Let T = (. . . , Ti+1, Ti, . . . ) ∈ Tλ be given.

(1) We have SjT = (. . . , Uj+2, Ũj+1, Ũj, Uj−1, . . . ) for some Ũj+1 and Ũj, and (Uj+2,

Ũj+1, Ũj, Uj−1) is semistandard along L.

(2) Suppose that ẽkT 6= 0 for some k ∈ J and put S = ẽkT = (. . . , Si+1, Si, . . . ). Then

Ti+1 / Ti if and only if Si+1 / Si.

65



CHAPTER 4. CRYSTAL EMBEDDING FROM B(λ) INTO B(∞)

Proof. The proof is given in Section 7.2.1.

4.3.2 Separation when λn ≥ 0

Let us assume λ ∈ Pn with λn ≥ 0. The case when λn < 0 is considered in Section 4.3.3.

Let T = (Tl, . . . , T1, T0) ∈ Tλ be given. Since Ti ∈ PL for 0 ≤ i ≤ l, we may consider

the (l + 1)-tuples

(T body
` , . . . , T body

1 , T body
0 ), (T tail

` , . . . , T tail
1 , T tail

0 ) (4.3.4)

to form tableaux in PL. But in general, they are not necessarily semistandard along L,

and (T body
l , . . . , T body

1 , T body
0 ) may not be of a partition shape along L. So instead of cutting

T with respect to L directly as in (4.3.4), we introduce an algorithm to separate T into

two semistandard tableaux, which preserves l-crystal equivalence.

More precisely, we introduce an algorithm to get a semistandard tableau T in PL such

that

(S1) T is Knuth equivalent to T, that is, T ≡l T,

(S2) T
tail ∈ SST[n](µ) and T

body ∈ SST[n](δ
π) for some δ ∈ P(1,1)

n , where µ ∈ Pn is

given by

µ′ = (a`, . . . , a1) (4.3.5)

with ai as in (4.1.5).

We call this algorithm separation (see [66] for types BC). Let us explain this with an

example before we deal it in general.

Example 4.3.2. Let T = (T4, T3, T2, T1) ∈ T(4,4,4,4,4,2) be given in Example 4.1.7.

8 7 6 5 4 3 2 1

6

5

7 6 6 5 3

. . . . . . . . . . . .
5

. . . . . .
4

. . . . . .
3

. . . . . .
4 2

. . . . . . . . . . . . L
7 6 4 3

4 2 2 2

3 1

U8 U7 U6 U5 U4 U3 U2 U1
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where (U1, . . . , U8) denotes the image of (T4, T3, T2, T1) under (4.3.1).

First we consider / in Definition 4.1.9 on (Ti+1, Ti) for 1 ≤ i ≤ 3. Then we can check

that T4 6 / T3, T3 6 / T2 and T2 / T1. By (4.3.3), we have

S6 = E6E5F2
6F5, S4 = E4E3F2

4F3, S2 = F2
2 .

Now, we apply these operators S6, S4, and then S2 to T to have

8 7 6 5 4 3 2 1

6

5

6 6 6 5 3

. . . . . . . . . . . . . . . . . .
5

. . . . . .
4 4

. . . . . .
3 2

. . . . . . . . . . . . L
7 7 4 3

4 2 2 2

3 1

U8 Ũ7 Ũ6 Ũ5 Ũ4 Ũ3 Ũ2 U1

We observe that (recall Definition 4.1.5)

(Ũ7, Ũ6) ≺ (Ũ5, Ũ4) ≺ (Ũ3, Ũ2), (4.3.6)

So we can apply the above process to (4.3.6), and repeat it until there is no tail to move

to the left horizontally. Consequently we have

6

5

6 6 6 5 3

. . . . . . . . . . . .
4 4 4 3 2

. . . . . . . . . . . . L
7 7 5 3

4 2 2 2

3 1

Hence we obtain two semistandard tableaux of shape δπ and µ, where δ = (4, 4, 1, 1)

and µ = (4, 4, 2).

Now let T = (Tl, . . . , T1, T0) ∈ Tλ be given and let U = (U2l, . . . , U1, U0) be its image

under (4.3.1). We use the induction on the number of columns in T to define T. If n ≤ 3,

then let T is given by putting together the columns in U horizontally along L.
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Suppose that n ≥ 4. First, we consider

S2 . . .S2l−2T = S2 . . .S2l−2U = (U2l, Ũ2l−1, . . . , Ũ2, U1, U0) ∈ E2l+1,

and let

Ũ = (Ũ2l−1, . . . , Ũ2, U1, U0) ∈ E2l. (4.3.7)

Note that applying S2i to S2i+2 . . .S2l−2T for 1 ≤ i ≤ l − 1 is well-defined by Lemma

4.3.1(1).

Let λ̃ ∈ Pn be such that ωλ − ωλ̃ = ωn−a with a = ht(Utail
2l ).

The following lemma is the crucial initial step for the sliding algorithm.

Lemma 4.3.3. Suppose that T ∈ H(λ) (recall Definition 4.1.8). Then there exits a

unique T̃ ∈ H(λ̃) such that the image of T̃ under (4.3.1) is equal to Ũ.

Proof. To prove this lemma, we observe how the sliding and separation work on l-highest

weight vectors. We give the description explicitly in Sections 5.3.3 and 5.3.4 and give the

proof of this lemma in Section 7.2.2.

We generalize the above lemma for arbitrary T ∈ Tλ as follows.

Lemma 4.3.4. For T ∈ Tλ, there exits a unique T̃ ∈ Tλ̃ such that the image of T̃ under

(4.3.1) is equal to Ũ.

Proof. There exists an l-highest weight vector H ∈ Tλ such that H = ẽi1 . . . ẽirU for

some i1, . . . , ir ∈ I. Put U] = (U2l−1, . . . , U1) and let H] be obtained from H by removing

its leftmost column, say U ′2l. By Corollary 2.1.16(2), H] is also an l-highest weight vector.

Identifying U = U] ⊗ U2l, we observe that by tensor product rule (2.2.3),

H] ⊗ U ′2l = ẽi1 . . . ẽirU

= ẽi1 . . . ẽir
(
U] ⊗ U2l

)
=
(
ẽj1 . . . ẽjsU

]
)
⊗ (ẽk1 . . . ẽktU2l)

where {i1, . . . , ir} = {j1, . . . , js} ∪ {k1, . . . , kl}. Hence H] = ẽj1 . . . ẽjsU
], and

Ũ = S2 . . .S2l−2U
] = S2 . . .S2l−2

(
f̃js . . . f̃j1H

]
)

= f̃js . . . f̃j1
(
S2 . . .S2l−2H

]
)
,
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since E2l is an (l, sl2l)-bicrystal. Note that the operator S2 . . .S2l−2 (4.3.3) is well-defined

on H] by Lemma 4.3.1(2). Then S2 . . .S2l−2H
] ∈ Tλ̃ by Lemma 4.3.3, which implies that

Ũ ∈ Tλ̃.

Put T = T̃, which is given in Lemma 7.3.7. By induction hypothesis, there exists a

tableau T satisfying (S1) and (S2) associated with T. Then we define T to be the tableau

in PL obtained by putting together the leftmost column of T, that is, U2l, and T along L.

By definition, sh(T) = η is of the following form:

η =

δπ

µ

L (4.3.8)

for some δ ∈P(1,1)
n .

Proposition 4.3.5. Under the above hypothesis, T satisfies (S1) and (S2).

Proof. By definition, it is clear that T ≡l T , which implies (S1). By Lemma 4.3.1,

(Ubody
2l ,Tbody

) and (Utail
2l ,Ttail

) are semistandard along L, which implies (S2).

4.3.3 Separation when λn < 0

Now, we consider the algorithm for separation when λn < 0. The algorithm in this case

is almost identical with the case λn ≥ 0 except for the spin columns of odd height (recall

Definition 4.1.4). We deal with these columns in the sense of Remark 4.1.6(2).

Let us assume that λn < 0. Recall that −2λn = 2q + r with r ∈ { 0, 1 }. For T ∈ Tλ,

we may write

T = (Tl, . . . , Tm+1, Tm, . . . , T1, T0),

for some m ≥ 1 such that Ti ∈ T(ai) for some ai (m+ 1 ≤ i ≤ l), Ti ∈ T(0) (1 ≤ i ≤ m)
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and T0 ∈ Tsp− (resp. T0 = ∅) if r = 1 (resp. r = 0). We identify T with

U = (U2l, . . . , U2m, U2m−1, . . . , U1, U0)

under (4.3.1).

Remark 4.3.6. For the spin column U2m, we apply the sliding algorithm in Section 4.3.1

as follows. Let U = H(1n) in (4.1.4). Consider the pair

(U2m+2, U2m+1, U2m, U),

where we regard U = U � ∅ ∈ PL and (U2m, U) ∈ T(ε) as in Remark 4.1.6(2). By Lemma

4.3.1, we have

(U2m+2, U2m+1, U2m, U)
S2m

−−−−−→ (U2m+2, Ũ2m+1, Ũ2m, U),

for some Ũ2m+1 and Ũ2m, and by our choice of U , we have

(U2m+2, U2m+1, U2m) ≡l (U2m+2, Ũ2m+1, Ũ2m).

Now, we use the induction on the number of columns in T to define T satisfying (S1)

and (S2) where µ ∈Pn in this is given by

µ′ = (a`, . . . , a1, 1, . . . , 1︸ ︷︷ ︸
−2λn

). (4.3.9)

If n ≤ 3, then let T be given by putting together the columns in U along L.

Suppose that n ≥ 4. First, we consider S2l−2S2l−4 . . .S2mT, where S2m is understood

as in Remark 4.3.6.. Then we have

S2l−2S2l−4 . . .S2mT = (U2l, Ũ2l−1, . . . , Ũ2m+1, Ũ2m, U2m−1, . . . , U1, U0), (4.3.10)

for some Ũi for 2m ≤ i ≤ 2l − 1. Let

Ũ = (Ũ2l−1, . . . , Ũ2m+1, Ũ2m, U2m−1, . . . , U1, U0).

The following is an analogue of Lemma 7.3.7 for λn < 0.
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Lemma 4.3.7. Let λ̃ be such that ωλ − ωλ̃ = ωn−a with a = ht(Utail
2l ). Then there exists

a unique T̃ ∈ Tλ̃ such that the image of T̃ is equal to Ũ under (4.3.1).

Proof. Let U′ = (U2l, U2l−1, . . . , U2m+1, U2m, U). Let ν = wt(U′) and let ν̃ be given by

ν−ν̃ = ωn−a with a = ht(Utail
2l ). By Lemma 7.3.7 and Remark 4.3.6, there exists a unique

S̃ ∈ Tν̃ whose image under (4.3.1) is Ũ′ = (Ũ2l−1, . . . , Ũ2m, U). By semistandardness of

(U2m, U2m−1) (cf. Remark 4.3.6), we have

(Ũ2m+1, Ũ2m) ≺ (U2m−1, U2m−2).

Note that we may regard (U2j−1, U2j−2) ∈ T(0) (2 ≤ j ≤ m), and (U1, U0) ∈ T(0) if

U0 6= ∅, (U1, U0) ∈ Tsp− otherwise. Therefore there exists a unique T̃ ∈ Tλ̃ which is equal

to Ũ under (4.3.1).

Put T = T̃ given in Lemma 4.3.7. By induction hypothesis, there exists a tableau T
satisfying (S1) and (S2) associated with T. Then we define T to be the tableau in PL
obtained by putting together the leftmost column of T, that is, U2l, and T along L. By

definition, sh(T) = η is of the form (4.3.8) with µ in (4.3.9).

Proposition 4.3.8. Under the above hypothesis, T satisfies (S1) and (S2).

Proof. It follows from the same argument as in the proof of Proposition 4.3.5 with

Lemma 4.3.7.

Example 4.3.9. Let n = 5 and λ =
(

5
2
, 3

2
, 3

2
, 1

2
,−1

2

)
. Then we have

ωλ = $1 +$3 +$4, Tλ ⊂ T(4)×T(2)×Tsp−.

Let us consider T = (T2, T1, T0) ∈ Tλ given by

5

5 3 4

. . . . . . . . . . . .
4

. . . . . .
1

. . . . . .
1

. . . . . . . . . . . . L
5 2

3 1

2

1

T2 T1 T0
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We regard T0 as in Remark 4.1.6(1). Then we have T2 6 / T1 and T1 6 / T0. By applying

(4.3.10) (cf. Remark 4.3.6) we obtain

5

4

3

5 3 5 2

. . . . . . . . . . . .
4

. . . . . .
1

. . . . . .
4 1

. . . . . . . . . . . . . . .. . . . . . . . . . . .

5 2 1

3 1

2

1

T2 T1 T0

S2S0
−−−−−→

5

5 4

4 3

5 3 2

. . . . . . . . . . . .. . . . . . . . . . . .. . . . . .
2

. . . . . .. . . . . .
1 1

. . . . . . . . . . . . . . .. . . . . . . . . . . .

5 4 1

3 1

2

1

U4 Ũ3 Ũ2 Ũ1 Ũ0

where U = H(15) is the single-column tableau consisting of the numbers in gray.

Finally, we apply S1 to (U4, Ũ3, Ũ2, Ũ1, Ũ0) and then we have T given by

T =

5

4

5 3

. . . . . . . . . . . .
1 1

. . . . . . . . . . . . L
5 4 2

3 1

2

1

where T
body

(resp. T
tail

) is the semistandard tableau located above L (resp. below L)

whose shape is (2, 2, 1, 1)π (resp. (3, 2, 1, 1)).

4.4 Embedding from Tλ into Vλ

4.4.1 Crystal of parabolic Verma module

For λ ∈ Pn, let

Vλ :=

( ⊔
δ∈P

(1,1)
n

SST [n]

(
δπ
))
×SST [n](µ) ,
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where µ ∈Pn is given by (4.3.5) if λn ≥ 0, and by (4.3.9) otherwise. Recall that

V :=
⊔

δ∈P
(1,1)
n

SST [n](δ
π),

has a g-crystal structure (see [62, Section 5.2] for details). On the other hand, we regard

the l-crystal

Sµ := SST [n](µ),

as a g-crystal, by defining ẽnT = f̃nT = 0 with ϕn(T ) = εn(T ) = −∞ for T ∈ SST [n](µ).

Then we may regard Vλ as a g-crystal by letting

Vλ = V ⊗ Sµ, (4.4.1)

which can be viewed as the crystal of a parabolic Verma module induced from a highest

weight l-module with highest weight λ (cf. [61, Section 3] and [66, Theorem 4.3] for types

BC).

Remark 4.4.1. In [61], Kwon interpret Littlewood identities for types B∞ and C∞ by

using the crystal base theory. In particular, this induces a new combinatorial model for

the crystal graph of an integrable highest weight irreducible module by characterizing ε∗0
(see [61, Theorem 3.11, Remark 3.12]).

It would be interesting to develop an analog of the above result for type D∞ by using

the results in this thesis. Indeed, the formula in Theorem 3.3.6 may be viewed as a

characterization of ε∗0 on V0.

Let us recall the actions of ẽn and f̃n on Tλ and Vλ in more details. We let

vd =
n

n−1

be the vertical domino with entries n and n− 1.

Suppose that T = (Tl, . . . , T1, T0) ∈ Tλ is given, where

T = (U2`, . . . , Ui, . . . , U1, U0)
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under the identification (4.3.1). We define a sequence σ = (σ0, σ1, . . . , σ2l) by

σi =


+ if Ui = ∅ or Ui[1] ≥ n− 2,

− if vd is located in the top of Ui,

· otherwise,

(4.4.2)

where we put σ0 = · if U0 = ∅. Let σred be the sequence obtained from σ by replacing the

pairs of neighboring signs (+,−) (ignoring ·) with ( · , · ) as far as possible. If there exists

a − in σred, then we define ẽnT to be the one obtained by removing vd in Ui corresponding

to the rightmost i such that σi = − in σred. We define ẽnT = 0, otherwise. Similarly, we

define f̃nT by adding vd in Ui corresponding to the leftmost i such that σi = + in σred.

Next, suppose that T ∈ Vλ is given. We define a sequence τ = (τ0, τ1, . . . ) by (4.4.2).

Note that τ is an infinite sequence where τi = + for all sufficiently large i. Then we define

τ red and hence ẽnT and f̃nT in the same way as in Tλ.

Example 4.4.2. Let us consider T ∈ Tλ in Example 4.3.9. Then the sequences σ is

obtained from T by reading component σi from right to left and the sequence σred is

reduced from σ by replacing the pair ( + , − ) to ( · , · ). Consequently, we have

σ = (− , + , + , − , · ) −→ σred = (− , + , · , · , · ) .

Therefore, f̃5T is given by

5

4 5

5 3 4

. . . . . . . . . . . .
4

. . . . . .
1

. . . . . .
1

. . . . . . . . . . . . L
5 2

3 1

2

1

T2 T1 T0

On the other hand, we consider T ∈ Vλ given by

T =

5

4

5 3

1 1

⊗
5 4 2

3 1

2

1

∈ Vλ = V ⊗ Sµ .
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Then the sequences τ and τ red are obtained by the similar way as in the sequences σ and

σred, so we have

τ = (− , · ,+ , + , · · · ) −→ τ red = (− , · ,+ , + , · · · ) .

Hence f̃5 T is given by

T =

5

4

5 5 3

4 1 1

⊗
5 4 2

3 1

2

1

.

Note that the subsequence of τ red consisting of first 3 components is equal to the sequence

σred by ignoring the dot · . This holds in general, see Lemma 4.4.5.

4.4.2 Embedding as g-crystals

The following is the main result in this section.

Theorem 4.4.3. The map

χλ : Tλ
//Vλ ⊗ Trωn

T � // T
body ⊗T

tail ⊗ trωn

(4.4.3)

is an embedding of g-crystals, where r = (λ, ωn).

First, we consider the injectivity of χλ (4.4.3) on l-highest weight vectors.

Lemma 4.4.4. Suppose that T and S are contained in H(λ). If χλ(T) = χλ(S), then we

have T = S.

Proof. Suppose that χλ(T) = χλ(S). Since T, S are l-highest weight vectors, by Corollary

2.1.16, we have

T
body

= Hδπ , S
body

= Hγπ

for some δ, γ ∈P(1,1). Since χλ is weight-preserving and T, S are l-highest weight vectors,

we have

(Hδ ← T
tail

) = (Hγ ← S
tail

) = Hζ (4.4.4)

for some ζ ∈ P. Thus, we have δ = γ and T
body

= S
body

. By [23, Proposition 1, p.19]

and (4.4.4), we have T
tail

= S
tail

. Then one can check that the sliding and separation
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algorithms are reversible on l-highest weight vectors, see Sections 5.3.3–5.3.4 for more

details. We complete the proof.

Next, we investigate the signatures (4.4.2) for T and T
body

.

Lemma 4.4.5. Let σ = (σ0, . . . , σ2l) be the subsequence of τ red consisting of its first 2l+1

components for T
body

. If we ignore the dot · in (4.4.2), then

σred = σred.

Proof. We first consider a pair (Ti+1, Ti) in T. Let (σj−1, σj, σj+1, σj+2) be the subse-

quence of σ corresponding to (Ti+1, Ti) with j = 2i. Let

SjT = (. . . , Uj+2, Ũj+1, Ũj, Uj−1, . . . )

(see Lemma 4.3.1). We denote by (σj−1, σ̃j, σ̃j+1, σj+2) the sequence defined by (4.4.2)

corresponding to (Uj+2, Ũj+1, Ũj, Uj−1).

Case 1. ri+1 ri = 0. Note that Sj = F ai
j by Lemma 7.2.1 (1). Then we have (σj+1, σj) =

(σ̃j+1, σ̃j) by the similar argument in the proof of [66, Theorem 5.7].

Case 2. ri+1 ri = 1. The relation between the two pairs (σj+1, σj) and (σ̃j+1, σ̃j) is given

in Table A.2.

Let U := S2 . . .S2l−2T := (U2l, Ũ2l−1, . . . , Ũ2, U1, U0) and let σ̇ be the sequence given

by (4.4.2) corresponding to U. Then we have

σ̇ = (σ2l, σ̃2l−1, . . . , σ̃2, σ1, σ0).

It is straightforward to check that σred = σ̇red. Note that σ2l = σ2l by definition. By

Lemma 7.3.7 and 4.3.7, we may use an inductive argument for (Ũ2`−1, . . . , Ũ2, U1, U0) to

have σred = σ̇red = σred. This completes the proof.

Now we prove Theorem 4.4.3 as follows.

Proof of Theorem 4.4.3. We use the following notations under the identification

(4.3.1) in this proof.

(1) T̃ = (Ũ2l, Ũ2l−1, . . . ) : the sequence of tableaux with a column shape obtained from

T by shifting the tails one position to the left as in Sections 4.3.2 and 4.3.3.
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(2) T = (Ũ2l−1, Ũ2l−2, . . . ) : the sequence of tableaux obtained from T̃ by removing the

column Ũ2l.

(3) T = (U2l, U2l−1, . . . ) : the sequence obtained from T by applying f̃n, that is,

T = f̃n T.

(4) T̃ : the sequence obtained from T by shifting the tails one position to the left as in

Sections 4.3.2 and 4.3.3 and then removing the left-most column of T.

(5) σ̃ = (σ̃0, σ̃1, . . . , σ̃2l) : the sequence of (4.4.2) associated with T̃.

Recall that T ∈ Tλ̃ by Lemmas 7.3.7 and 4.3.7, where λ̃ satisfies ωλ − ωλ̃ = ωn−a with

a = ht(Utail
2l ).

First we show that χλ is injective. Suppose that χλ(T) = χλ(T
′) for some T,T′ ∈ Tλ.

There exists i1, . . . , ir ∈ J such that ẽi1 . . . ẽirχλ(T) = ẽi1 . . . ẽirχλ(T
′) is an l-highest

weight vector. Note that χλ is a morphism of l-crystals by Proposition 4.3.5. Therefore,

we have

χλ(ẽi1 . . . ẽirT) = χλ(ẽi1 . . . ẽirT
′).

By Lemma 4.4.4, we have

ẽi1 . . . ẽirT = ẽi1 . . . ẽirT
′.

Hence T = T′, and χλ is injective.

Now it remains to show that

f̃nT 6= 0 and χλ(T) 6= 0 for T ∈ Tλ =⇒ χλ(f̃nT) = f̃nχλ(T). (4.4.5)

If f̃n acts on U2l or Uk , where k = 0 if U0 6= ∅, and k = 1 if U0 = ∅, then the claim (4.4.5)

follows from Lemmas 4.3.1 and 4.4.5.

Suppose that f̃n acts on Uk for k < 2l. To prove (4.4.5), it is enough to show that

T̃ = f̃nT. (4.4.6)
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Indeed, if (4.4.6) holds, then by induction on the number of columns in T, we have

f̃nT =
(
U2l, T̃

)
=
(
U2l, f̃nT

)
by (4.4.6)

=
(
U2l, f̃nT

)
=
(
U2l, f̃nT

)
by induction hypothesis

= f̃n
(
U2l, T

)
by Lemma 4.4.5,

Hence we have f̃nT = f̃nT which implies (4.4.5).

Now we verify (4.4.6). Let us recall Table A.2 and then we have

σred = σ̃red. (4.4.7)

We prove (4.4.6) for the case Utail
k 6= ∅ with non-trivial sub-cases. The proof for other

cases or the case Utail
k = ∅ is almost identical.

Let us recall the action of f̃n in Section 4.4.1. Then for the case Utail
k 6= ∅, the

signature σk+1 (4.4.2) associated with Uk+1 must be · or + . We consider four cases as

follows.

Case 1. If ht(Ubody
k+1 ) ≤ ht(Ubody

k ) < ht(Ubody
k−1 ) = ht(Ubody

k ) + 2, then by definition of

Sk the top entry of Uk+1 can not be moved to the right in T̃. Thus we obtain (σk, σk+1) =

(σ̃k, σ̃k+1), which implies (4.4.6).

Case 2. If ht(Ubody
k+1 ) = ht(Ubody

k ) + 2 = ht(Ubody
k−1 ), then the signature σk+1 (4.4.2)

can not be +. Otherwise (Uk+2, Uk+1) 6≺ (Uk, Uk−1) for Definition 4.1.5 (ii), which is a

contradiction. Thus σk+1 = · . We observe that

(σk, σk+1) = (+, · ) −→ (σ̃k, σ̃k+1) = ( · ,+),

Uk+1[1] = n or n− 1 , Uk+1[2] ≥ n− 2.
(4.4.8)

It is straightforward to check from the definition of Sk that when we apply Sk to T, the

domino vd in Uk is changed as follows:
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 n− 1 in Uk is moved to n in Uk+1 below if Uk+1[1] = n ,

n in Uk is moved to n− 1 in Uk+1 above if Uk+1[1] = n− 1 .
(4.4.9)

Combining (4.4.7), (4.4.8) and (4.4.9), we conclude that (4.4.6) holds in this case.

Case 3. If ht(Ubody
k+1 ) ≤ ht(Ubody

k ) and ht(Ubody
k ) + 2 < ht(Ubody

k−1 ), then we have

(Uk+2, Uk+1) / (Uk, Uk−1) −→ (Uk+2, Uk+1) / (Uk, Uk−1).

By (4.4.7), this implies that (4.4.6) holds in this case.

Case 4. Suppose ht(Ubody
k+1 ) = ht(Ubody

k ) + 2 and ht(Ubody
k ) + 2 < ht(Ubody

k−1 ). First we

consider the case σk+1 = · . If there exists i such that Uk+1(i) > Uk(i + ak − 1), where

ak = ht(Uail
k ), then by definition

(Uk+2, Uk+1) 6 / (Uk, Uk−1) −→ (Uk+2, Uk+1) 6 / (Uk, Uk−1).

Form this we observe that the domino vd in Uk is not moved when we apply the sliding

to T. Also we note that

(σk, σk+1) = (+, · ) −→ (σ̃k, σ̃k+1) = (+, · ).

Combining these observations with (4.4.7), we obtain (4.4.6) in this case. If there is no

such i, we have

(Uk+2, Uk+1) 6 / (Uk, Uk−1) −→ (Uk+2, Uk+1) / (Uk, Uk−1),

(σk, σk+1) = (+, · ) −→ (σ̃k, σ̃k+1) = ( · ,+).

Note that Ũk[1] = Uk+1[1] ≤ n− 1 and we observe that (4.4.9) also holds in this case.

Hence we have (4.4.6).

Second we consider the case σk+1 = +. In this case, we obtain

(Uk+2, Uk+1) 6 / (Uk, Uk−1) −→ (Uk+2, Uk+1) 6 / (Uk, Uk−1),

since Uk+1[1] > n− 1. Also it is clear that (σ̃k, σ̃k+1) = (+,+) by definition of Sk. On the

other hand, the domino vd in Uk can not be moved to the left when we apply the sliding
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to T. Consequently, we have (4.4.6). We complete the proof of Theorem 4.4.3.

4.5 Lusztig data of Kashiwara-Nakashima tableaux

of type D

Let µ ∈Pn be given and let εµ =
∑n

i=1 µiεn−i. Consider the map

SST [n](µ) // BJ ⊗ Tεµ
T � // cJ(T )⊗ tεµ

, (4.5.1)

where cJ(T ) is the one such that the multiplicity cεi−εj is equal to the number of i’s

appearing in the (n− j + 1)th row of T for 1 ≤ i < j ≤ n.

Proposition 4.5.1. The map (4.5.1) is an embedding of g-crystals.

Proof. It is a well-known fact that the map is an embedding of l-crystals (cf. [65]). By

definition of ẽn and f̃n on Sµ and BJ , it becomes a morphism of g-crystals.

Let us recall Burge correspondence (3.3.2). We denote by cJ( · ) the inverse of (3.3.2).

For the reader’s convenience, we briefly review the isomorphism cJ( · ) as follows.

Now, let T ∈ SST (δπ) ⊂ V be given. Then cJ(T ) is given by the following steps:

(1) Let x1 be the smallest entry in T such that it is located at the leftmost among such

entries and let T ′ be the tableau obtained from T by removing x1.

(2) Take y1 which is the entry in T below x1. Let T ′′ be the tableau obtained from T ′

by applying the inverse of the Schensted’s column insertion to y1. Then we obtain

an entry z1 such that (T ′′ ← z1) = T ′.

(3) We apply the above steps to T1 := T ′′ instead of T . Then we denote by x2 and z2

the entries obtained from T1 and let T2 := T ′′1 .

(4) In general, repeat this process for Ti+1 := T ′′i (i = 1, 2, . . . ) until there is no entries

in Ti+1, and let xi+1 and zi+1 be the entries from Ti+1 by this process.
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(5) Finally we obtain a biword (a,b) ∈ Ω given by(
a

b

)
=

(
x1 x2 . . . x`

z1 z2 . . . z`

)
,

and define cJ(T ) ∈ BJ to be the one corresponding to (a,b) (see Example 4.5.4).

Then we have the following.

Corollary 4.5.2. For λ ∈ Pn, the map

Vλ ⊗ Trωn // BJ ⊗BJ ⊗ Tωλ
S ⊗ T ⊗ trωn

� // cJ(S)⊗ cJ(T )⊗ tωλ

, (4.5.2)

is an embedding of g-crystals, where r = (λ, ωn).

We are now in a position to state the main result in this chapter.

Theorem 4.5.3. For λ ∈ Pn, we have an embedding Ξλ of g-crystals given by

KNλ Bi0 ⊗ Tωλ

Tλ Vλ ⊗ Trωn BJ ⊗BJ ⊗ Tωλ

(4.2.3)

Ξλ

(4.4.3) (4.5.2)

(3.2.16)

Proof. It follows from Theorems 4.2.4, 4.4.3, Proposition 3.2.6(2) and Corollary 4.5.2.

Example 4.5.4. Set n = 5 and λ =
(

5
2
, 3

2
, 3

2
, 1

2
,−1

2

)
. Let T ∈ KNλ be given by

T =

2
3

4 5
5 4

5 1 1

.
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By (4.2.3) and (4.4.3) (see Example 4.3.9), we have

Ψλ(T ) =

5

5 3 4

4
. . . . . .

1
. . . . . .

1

5 2

3 1

2

1

(4.4.3)

−−−−−→

5

4

5 3

. . . . . . . . . . . .
1 1

. . . . . . . . . . . .

5 4 2

3 1

2

1

Note that σ = (−, +, +, −, · ) and σ = (−, · , +, · , · ). Also

σred = (−, +, · , · , · ), σred = (−, · , +, · , · )

(cf. Lemma 4.4.5).

Put T = Ψλ(T ). Then

T
body

=

5

4

5 3

1 1 , T
tail

=
5 4 2

3 1

2

1

.

Let us recall the convention in Section 3.2.5 for cJ(T
body

) associated with Φ+(J) with

the convex order (3.2.7), that is, we identify (cβ1 , . . . , cβ10) ∈ BJ with

cβ4

cβ3 cβ7

cβ2 cβ6 cβ9

cβ1 cβ5 cβ8 cβ10

.

Here β1 = α5. Similarly, we use the above notation for cJ(Ttail) with respect to ΦJ and
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the convex order (3.2.7), that is, we identify (β11, . . . , β20) ∈ BJ with

cβ14

cβ13 cβ17

cβ12 cβ16 cβ19

cβ11 cβ15 cβ18 cβ20

.

Here β11 = α1, β15 = α2, β18 = α3 and β20 = α4.

Now we find cJ (T
body

) by the steps (1)–(5), see Proposition 4.5.1 below.

5

4

5 3

1 1

−−→

5

4

3

1

,

(
5

1

)
−−→ 3

1

,

(
5 5

4 1

)
−−→ ∅ ,

(
5 5 3

4 1 1

)
.

Thus we have

5

4

5 3

1 1

−−−−−→
1

0 0 ∈ BJ

0 0 1

1 0 0 0

.

Next by definition (4.5.1), we have cJ(Ttail) as follows.

5 4 2

3 1

2

1

−−−−−→
0

1 1 ∈ BJ

0 0 0

1 1 1 1

.

Hence we obtain the Lusztig data for the KN tableau T associated with i0, that is,

Ξλ(T ) = (1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1)⊗ tωλ .

Remark 4.5.5. It would be interesting to characterize explicitly the image of the em-

bedding Ξλ (see [66] for types BC) in a combinatorial way.

83



Chapter 5

Branching rules for classical groups

Let GLn, Spn and On be the general linear group, symplectic group and orthogonal group

of rank n over C, respectively. Let V λ
Gn

be a finite-dimensional irreducible Gn-module

parametrized by a partition λ, where Gn = GLn, Spn or On [26]. Then we define[
V λ

GLn , V
µ

Gn

]
:= dim HomGn

(
V µ

Gn
: V λ

GLn

)
, (5.0.1)

where Gn = Spn or On, which is called branching multiplicity from GLn to Gn associated

with λ and µ. In [74,75], Littlewood proved that if `(λ) ≤ n
2
, then[

V λ
GLn : V µ

Spn

]
=
∑
δ∈P(2)

cλδ′µ,
[
V λ

GLn : V µ
On

]
=
∑
δ∈P(2)

cλδµ, (5.0.2)

where cαβγ is the Littlewood-Richardson coefficient corresponding to partitions α, β, γ, and

P(2) denotes the set of partition with even parts.

In this chapter, we shall give a new combinatorial formula for
[
V λ

GLn
, V µ

On

]
generalizing

the Littlewood’s formula above for On in full generality. Let us explain briefly the proof

idea.

The separation algorithm induces the following embedding:

LR
µ
λ(d) �

� //
⊔

δ∈Pn
δ : even

LRλδµπ ,

where LR
µ
λ(d) is the set of the l-highest weight vectors with weight λ′ in the spinor model

of type D∞, and LRαβγ is the set of the companion tableaux of Littlewood-Richardson
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tableaux associated with α, β, γ. Note that the above embedding is not surjective in

general. We characterize the image of the embedding completely. Then, by using the

dual pair (On, d∞) on Fock space [107],
[
V λ

GLn
, V µ

On

]
is equal to the branching multiplicity

cµλ(d) from d∞ to l associated with µ′ and λ′. Here d∞ and l are the Kac-Moody algebras of

types D∞ and A+∞ (see [41, §7.11]). Since cµλ(d) = |LRµλ(d)|, this gives us a combinatorial

formula for
[
V λ

GLn
, V µ

On

]
. As an application, we obtain a combinatorial formula of the

generalized exponent for types BD following the idea in [71] for type C.

The results in this chapter are based on [37].

5.1 Littlewood-Richardson tableaux

Let us recall the notations in Section 3.1.1. In this subsection, we review some combina-

torics related to the Littlewood-Richardson tableaux (LR tableaux, for short) (see [23]).

Let P(2) = {λ ∈P |λ = (λi)i≥1, λi ∈ 2Z+ (i ≥ 1) }, and let P(1,1) = {λ′ |λ ∈P(2) },
where λ′ is the conjugate of λ. Put P(2,2) = P(1,1) ∩P(2). For 3 ∈ {(1, 1), (2), (2, 2)}
and ` ≥ 1, we put P3

` = P3 ∩P`.

For λ, µ, ν ∈P, let LRλµν be the set of Littlewood-Richardson tableaux S of shape λ/µ

with content ν. There is a natural bijection from LRλµν to the set of T ∈ SST (ν) such

that (Hµ ← T ) = Hλ, where each i in the jth row of S ∈ LRλµν corresponds to j in the ith

row of T . We call such T a companion tableau of S ∈ LRλµν .

We also need the following anti-version of LR tableaux which is used frequently in this

chapter.

Definition 5.1.1. We define LRλµνπ to be the set of S ∈ SST (λ/µ) with content νπ such

that w(T ) = w1 . . . wr is an anti-lattice word, that is, the number of i in wk . . . wr is greater

than or equal to that of i− 1 for each k ≥ 1 and 1 < i ≤ `(ν).

Let us call S ∈ LRλµνπ a Littlewood-Richardson tableau of shape λ/µ with content νπ.

As in case of LRλµν , the map from S ∈ LRλµνπ to its companion tableau gives a natural

bijection from LRλµνπ to the set of T ∈ SST (νπ) such that (Hµ ← T ) = Hλ.

From now on, all the LR tableaux are assumed to be the corresponding companion

tableaux unless otherwise specified.

Finally, let us recall a bijection

ψ : LRλ
′

µ′ν′
// LRλµνπ , (5.1.1)
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which may be viewed as an analogue of Halon-Sundaram’s bijection [27] for an anti-

dominant content (cf. [23, Appendix A.3], [71, Remark 6.3] and references therein).

Let S ∈ LRλ
′

µ′ν′ be given, that is, (Hµ′ ← S) = Hλ′ . Let S1, . . . , Sp denote the columns

of S enumerated from the right. For 1 ≤ i ≤ p, let H i = (H i−1 ← Si) with H0 = Hµ′

so that Hp = Hλ′ . Define Q(Hµ′ ← S) ∈ SST (λ/µ) to be the tableau such that the

horizontal strip sh(H i)′/sh(H i−1)′ is filled with 1 ≤ i ≤ p.

On the other hand, let U ∈ LRλµνπ be given, that is, sh(Hµ ← U) = Hλ. Let Ui denote

the i-th row of U from the top, and let Hi = (Hi−1 ← Ui) with H0 = Hµ for 1 ≤ i ≤ p.

Define Q(Hµ ← U) to be tableau such that the horizontal strip sh(Hi)/sh(Hi−1) is filled

with 1 ≤ i ≤ p.

Then for each S ∈ LRλ
′

µ′ν′ , there exists a unique U ∈ SST (νπ) such that (Hµ ← U) =

Hλ and Q(Hµ ← U) = Q(Hµ′ ← S). We define ψ(S) = U . Since the correspondence

from S to U is reversible, ψ is a bijection from LRλ
′

µ′ν′ to LRλµνπ .

Example 5.1.2. Let λ = (7, 6, 4, 3, 2), µ = (6, 4, 2, 2), and ν = (2, 2, 2, 1, 1). Let S ∈
LRλ

′

µ′ν′ be given by

S =
1 3 3 5 7

2 4 6
.

The recording tableau Q(Hµ′ ← S) is given by

Q(Hµ′ ← S) =

1

2 3

3 4

4

5 5

.

Then the corresponding U = ψ(S) ∈ LRλµνπ with Q(Hµ ← U) = Q(Hµ′ ← S) is given by

U =

1

2

2 3

3 4

5 5

5.2 Howe duality on Fock space

It has been known that a duality result obtained from commuting actions of two algebraic

objects on a space is a powerful tool to study their irreducible representations. For
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example, Schur-Weyl duality for the pair (GLn, Sk) on the tensor space ⊗ki=1Cn provides us

a characterization of irreducible representations of GLn or Sk, their characters, reciprocity

laws, and several useful formulas. We refer to [26, Chapter 9] for more details.

There are numerous dualities in the spirit of Schur-Weyl duality. In particular, Howe

provided a uniform formulation for several dualities involving Lie groups, Lie (sup)algebras

or Weyl-Clifford (super)algebras [32] (see also [14, Chapter 5], [26, Section 5.6] and ref-

erences therein). In particular, Howe duality on Fock space between classical groups and

infinite-dimensional Lie algebras was developed systematically due to Wang [107].

In this section, we review Howe duality for the dual pair (On, d∞) on Fock space.

5.2.1 Kac-Moody algebra of type D∞

In this chapter, we assume that g is the Kac-Moody Lie algebra of type D∞ whose Dynkin

diagram, set of simple roots Π = {αi | i ∈ I }, and fundamental weight Λi (i ∈ I) are

given by

©

©

© © © © ©
�
�

@
@ · · · · · ·

α0

α1

α2 α3 αk−1 αk αk+1

Π = {α0 = −ε1 − ε2, αi = εi − εi+1 (i ≥ 1) },

Λi =

Λ0 + ε1, if i = 1,

2Λ0 + ε1 + · · ·+ εi, if i > 1.

Here we assume that the index set for simple roots is I = Z+, and the weight lattice is

P = ZΛ0 ⊕
(⊕

i≥1 Zεi
)
. In this chapter, we often use the notations d∞ and l+∞ when we

refer to the corresponding Kac-Moody algebras for type D∞ and A+∞, respectively or we

denote by d and l simply. Note that l is the subalgebra of d associated with Π \ {α0},
which is of type A+∞ whose Dynkin diagram is given by

© © © © © ©· · · · · ·
α1 α2 α3 αk−1 αk αk+1
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We refer to [41, §7.11] and [14, Section 5.4.1] for more details (see also [82, Section 2]).

Put k = g or l. For a dominant integral weight Λ for k, let B(k,Λ) be the k-crystal asso-

ciated with an irreducible highest weight Uq(k)-module with highest weight Λ. We denote

by gm (resp. lm) the subalgebra of g whose Dynkin diagram corresponds to α0, · · · , αm−1

(resp. α1, · · · , αm−1).

We denote by πm(Λ) the dominant integral weight of km under the canonical projection

πm. Then, the crystal B(km, πm(Λ)) can be obtained from B(k,Λ) by restricting the

index set I associated with km, which is the crystal associated with a finite-dimensional

irreducible highest weight Uq(km)-module with highest weight πm(Λ).

Remark 5.2.1. It is parallel with [43] (see also [30, Chapter 5]) to prove the existence and

uniqueness of the crystal base for an irreducible highest weight Uq(g)-module in an infinite

rank analog of Oqint (recall Definition 2.1.6), where g is of types X∞ for X = A,B,C or

D. Furthermore, following [30, Sections 3.4–3.5], the category is also semisimple tensor

category in which the classical limit of irreducible modules is isomorphic to the canonical

counterpart over U(g). We refer to [30,70] for more details.

5.2.2 Dual pair (On, d∞) on Fock space

Let us review the duality theorem for dual pair (On, d∞) following [13, Section 2.3.3]. We

refer to [41, Chapter 14], [14, Section 5.4.2, Appendix A.4] and references therein for the

exposition on (fermionic) Fock spaces (see also [107, Sections 3–4]).

The Clifford algebra Ĉ` is an algebra generated by Ψ±,pr , where 1 ≤ p ≤ ` and r ∈ 1
2
+Z

with anti-commutation relations are given by[
Ψ+,p
r , Ψ−,qs

]
+

= δp,qδr,−sI ,
[
Ψ+,p
r , Ψ+,q

s

]
+

=
[
Ψ−,pr , Ψ−,qs

]
+

= 0 ,

for all r, s ∈ 1
2

+ Z, 1 ≤ p, q ≤ `, and let F ` be the fermionic Fock space of ` pairs of

fermions

Ψ±,p(z) =
∑
r∈ 1

2
+Z

Ψ±,pr z−r−
1
2 , 1 ≤ p ≤ ` .

Then F ` is the simple Ĉ` generated by the vacuum vector |0〉 which satisfies Ψ±,pr |0〉 = 0

for all r > 0 and 1 ≤ p ≤ `.
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Let

φ(z) =
∑
r∈ 1

2
+Z

φrz
−r− 1

2

be a neutral fermionic field whose components satisfy the anti-commutation relations:

[φr, φs]+ = δr,−sI, r, s ∈ 1

2
+ Z .

We denote by F 1
2 the Fock space of φ(z) generated by the vacuum vector |0〉 that is

annihilated by φr for r > 0. Then F `+ 1
2 is the tensor product of F ` and F 1

2 .

Let us consider the dual pair (On, d∞) for n ≥ 1. We define

P(On) = {µ = (µ1, · · · , µn) |µi ∈ Z+, µ1 ≥ . . . ≥ µn, µ
′
1 + µ′2 ≤ n },

where µ′ = (µ′1, µ
′
2, · · · ) is the conjugate partition of µ. Recall that P(On) parameterizes

the complex finite-dimensional representations of the orthogonal group On, see [13, Section

2.3.3] (see also [26, Section 5.5.5]).

We may also use P(On) to parametrize P+ for g. More precisely, for µ ∈ P(On), if we

put

Λ(µ) = nΛ0 + µ′1ε1 + µ′2ε2 + · · · , (5.2.1)

where µ′ = (µ′1, µ
′
2, . . . ) is the conjugate partition of µ, then we have P+ = {Λ(µ) |µ ∈⊔

nP(On) } the set of dominant integral weights for g. For µ ∈ P(On), we denote by V µ
On

the finite-dimensional irreducible On-module. Let L(d∞,Λ(µ)) be the irreducible highest

weight d∞-module.

It is known that there exists a commuting action of On× d∞ on F n
2 , see [14, Lemmas

5.48–5.49] for more details. Thus we have the following duality theorem.

Theorem 5.2.2. [107, Theorems 3.2, 4.1] As an (On, d∞)-module, we have

F
n
2 ∼=

⊕
µ∈P(On)

L(d∞,Λ(µ))⊗ V µ
On
.

5.3 Separation on l-highest weight vectors

In this section, we revisit the spinor model over Uq(d∞) and describe explicitly the behavior

of the separation algorithm developed in Section 4.3 on l-highest weight vectors.
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5.3.1 Revisit of spinor model over Uq(D∞)

We review the spinor model over the infinite rank Lie algebra of type D∞. This is almost

identical with the one in Section 4.1.3, but we should not confuse the notations and the

set of letters. Here we use N as the set of letters. For example, see Example 5.3.2.

By abuse of notation, we also use the same notations

T(a) = {T |T ∈ SST (λ(a, b, c)), b, c ∈ 2Z+, rT ≤ 1 } (a ∈ Z+),

T(0) =
⊔

b,c∈2Z+

SST (λ(0, b, c+ 1)), Tsp =
⊔
a∈Z+

SST ((1a)),

Tsp+ = {T |T ∈ Tsp, rT = 0 }, Tsp− = {T |T ∈ Tsp, rT = 1 }.

Let B be one of T(a) (a ∈ Z+), Tsp, and T(0). Let us describe the g-crystal structure

on B. Let T ∈ B given. Recall that SST (λ) (λ ∈P) has an l-crystal structure [50]. So

we may regard B as a subcrystal of an l-crystal
⊔
λ∈P SST (λ) and hence define ẽiT and

f̃iT for i ∈ I \ {0}. Let wtl(T ) =
∑

i≥1miεi be the l-weight of T , where mi is the number

of occurrences of i in T . Next, we define ẽ0T and f̃0T as follows:

(1) When B = Tsp, we define ẽ0 to be the tableau obtained from T by removing a

domino 1

2 if T has 1

2 on its top, and 0 otherwise. We define f̃0T in a similar way by

adding 1

2 .

(2) When B = T(a) or T(0), we define ẽ0T = ẽ0 (T R ⊗ T L) regarding B ⊂ (Tsp)⊗2 by

tentor product rule (2.2.1). We define f̃0T similarly.

Put

wt(T ) =

2Λ0 + wtl(T ), if T ∈ T(a) or T(0),

Λ0 + wtl(T ), if T ∈ Tsp.
,

εi(T ) = max{ k | ẽki T 6= 0 } ϕi(T ) = max{ k | f̃ki (T ) 6= 0 }.

Then B is a g-crystal with respect to ẽi and f̃i, εi, and ϕi for i ∈ I. By [64, Proposition
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4.2], we have

T(a) ∼= B(Λa) (a ≥ 2),

T(0) ∼= B(2Λ0), T(0) ∼= B(2Λ1), T(1) ∼= B(Λ0 + Λ1),

Tsp− ∼= B(Λ1), Tsp+ ∼= B(Λ0).

For µ ∈ P(On), let q± and r± be non-negative integers such thatn− 2µ′1 = 2q+ + r+, if n− 2µ′1 ≥ 0,

2µ′1 − n = 2q− + r−, if n− 2µ′1 < 0,

where r± = 0, 1. Let µ = (µi) ∈ P be such that µ′1 = n − µ′1 and µ′i = µ′i for i ≥ 2 and

let M+ = µ′1 and M− = µ′1. Put

T̂(µ, n) =

T(µ1)× · · · ×T(µM+)×T(0)×q+ × (Tsp+)×r+ , if n− 2µ′1 ≥ 0,

T(µ1)× · · · ×T(µM−)×T(0)×q− × (Tsp−)×r− , if n− 2µ′1 < 0.
(5.3.1)

Define

T(µ, n) = {T = (. . . , T2, T1) ∈ T̂(µ, n) |Ti+1 ≺ Ti (i ≥ 1) }.

When considering T = (. . . , T2, T1) ∈ T̂(µ, n), it is often helpful to imagine that

T1, T2, . . . are arranged from right to left on a plane, where the horizontal line L separates

T body
i and T tail

i simultaneously.

We regard T̂(µ, n) as a g-crystal by identifying T = (. . . , T2, T1) ∈ T̂(µ, n) with

T1 ⊗ T2 ⊗ . . . , and regard T(µ, n) as its subcrystal. Then we have the following.

Theorem 5.3.1. [64, Theorem 4.3–4.4] For µ ∈ P(On), T(µ, n) is a connected crystal

with highest weight Λ(µ). Furthermore, we have

T(µ, n) ∼= B(Λ(µ)).

We call T(µ, n) the spinor model for B(Λ(µ)) in type D∞.

Example 5.3.2. Let n = 8 and µ = (4, 3, 3, 2) ∈ P(O8) and let T = (T4, T3, T2, T1) given
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by

1

2

1 1 1 1 3

. . . . . . . . . . . .
2

. . . . . .
2

. . . . . .
4

. . . . . .
2 4

. . . . . . . . . . . . L
1 1 1 3

3 3 5 5

4 4 6

5

T4 T3 T2 T1

Then we can check that T4 ≺ T3 ≺ T2 ≺ T1. Thus, T ∈ T(µ, 8). where the dotted line

denotes the common horizontal line L.

From now on, we fix µ ∈ P(On) throughout this chapter.

Definition 5.3.3. Let

H(µ, n) = {T | T ∈ T(µ, n), ẽiT = 0 (i 6= 0) },

and call T ∈ H(µ, n) an l-highest weight vector. Let λ ∈ Pn and µ ∈ P(On) are given.

We define

LR
µ
λ(d) = {T | T ∈ H(µ, n), T ≡l Hλ′ } , (5.3.2)

and write cµλ(d) = |LRµλ(d)|.

Note that cµλ(d) is equal to the multiplicity of irreducible highest weight l-module with

highest weight
∑

i≥1 λ
′
iεi in the irreducible highest weight g-module with highest weight

Λ(µ) (recall Remark 5.2.1).

Theorem 5.3.4. [67, Theorem 5.3] For λ ∈Pn and µ ∈ P(On), we have[
V λ

GLn , V
µ

Gn

]
= cµλ(d) .

Sketch of proof. We outline the proof of [67, Theorem 5.3].

In the proof of [67, Theorem 5.3], the author constructs an explicit actions of GLn

on F n
2 so that its restriction to On coincides with the action of On in Theorem 5.2.2.
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Following [20,107], there exists a commuting action of l×GLn on F n
2 so that

F
n
2 ∼=

⊕
λ∈P

L(l, λ′)⊗ V λ
GLn . (5.3.3)

By combining Theorem 5.2.2 and (5.3.3), we complete the proof (cf. [107, Section 7.1] for

reciprocity laws).

Remark 5.3.5. Let a∞ be the Lie algebra of type A∞ consisting of all matrices (cij)i,jZ

of infinite size with finitely many non-zero entries. In [20, 107], the authors consider the

dual pair (GLn, a∞) on Fn and obtain the decomposition of Fn as (GLn, a∞)-module

by computing the joint (GLn, a∞)-highest weight vectors explicitly. Since l = l+∞ is a

subalgebra of a∞, one can check that the arguments for the pair (GLn, a∞) also hold for

the pair (GLn, l+∞) on F n
2 (see [14, Section 5.4.3] or [107, Section 3]).

5.3.2 l-highest weight vectors

The goal of this subsection is to give some necessary conditions for T ∈ T(µ, n) to be in

H(µ, n). Note that for T ∈ T(µ, n), we have T ∈ H(µ, n) if and only if T ≡l Hλ for some

λ ∈P. Hence H(µ, n) parametrizes the connected l-crystals in T(µ, n).

First, we consider the case n − 2µ′1 ≥ 0. Suppose that n = 2l + r, where l ≥ 1 and

r = 0, 1. Let T ∈ T(µ, n) be given and write

T = (Tl, . . . , T1, T0), (5.3.4)

where Ti ∈ T(ai) for some ai ∈ Z+ (1 ≤ i ≤ l), and T0 ∈ Tsp+ (resp. T0 = ∅) when r = 1

(resp. r = 0). Let sh(Ti) = λ(ai, bi, ci) and rTi = ri for 1 ≤ i ≤ l.

The lemma below follows directly from the tensor product rule in Definition 2.2.3 (cf.

Corollary 2.1.16).

Lemma 5.3.6. Put U0 = T0, U2k−1 = T R
k and U2k = T L

k for 1 ≤ k ≤ l. Then T is an

l-highest weight element if and only if (Ui, . . . , U0) is a l-highest weight element for i ≥ 0,

where we understand (Ui, . . . , U0) = U0 ⊗ · · · ⊗ Ui as an element of an l-crystal.

Definition 5.3.7. Let H◦(µ, n) be a subset of T(µ, n) consisting of T = (Ti) satisfying

the following conditions: for each i ≥ 1,

(H0) T0[k] = k for k ≥ 1,
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(H1) T L
i and T R

i are of the form

T R
i =

(
1, 2, . . . , bi + ci − 1, T R

i (1)
)
� ∅,

T L
i = (1, 2, . . . , ci − 1, ci)�

(
T L
i (ai), . . . , T

L
i (1)

)
,

(H2) the entries T R
i (1) and T L

i (ai) satisfy

(i) if ri = 0, then TRi (1) = bi + ci,

(ii) if ri = 1, then

{
T R
i (1) = bi + ci or T R

i (1) ≥ ci−1 + 1 + ri−1,

T L
i (ai) = ci + 1.

Here we assume that c0 =∞ and r0 = 0.

Let us recall that 0 ≤ rT ≤ 1 for T ∈ T(µ, n) (see Definition 4.1.2 for definition of rT ).

Lemma 5.3.8. For T ∈ H◦(µ, n), we have either T R
i+1(1) < T L

i (ai) or T R
i+1(1) > T L

i (ai)

for each i. Furthermore, T R
i+1(1) > T L

i (ai) implies riri+1 = 1, and riri+1 = 0 implies

T R
i+1(1) < T L

i (ai).

Proof. Let i = 1, . . . , l−1 be given. If riri+1 = 0, then by Definition 4.1.5(1)-(i) and (H1),

we have T R
i+1(1) = bi+1 + ci+1 ≤ ci < T L

i (ai).

Suppose that riri+1 = 1. By (H2)(ii), we have T L
i (ai) = ci+1, and T R

i+1(1) = bi+1 +ci+1

or ≥ ci + 2. If T R
i+1(1) ≥ ci + 2, then it is clear that T R

i+1(1) > T L
i (ai). So we assume that

T R
i+1(1) = bi+1 + ci+1. Note that T R

i+1(1) = bi+1 + ci+1 ≤ ci + 2 by Definition 4.1.5(1)-(i).

If bi+1 + ci+1 = ci + 2, then T R
i+1(1) > T L

i (ai). If bi+1 + ci+1 < ci + 2, then bi+1 + ci+1 ≤ ci

since both bi+1 + ci+1 and ci are even. So T R
i+1(1) < T L

i (ai).

Finally, suppose that T R
i+1(1) > T L

i (ai). If riri+1 = 0, then by Definition 4.1.5(1)-(ii) we

have T R
i+1(1) ≤ T L

i (ai + 1) < T L
i (ai) which is a contradiction. This proves the lemma.

Now we verify that the l-highest weight elements satisfy Definition 5.3.7(H0)–(H2). In

particular, the admissibility in Definition 4.1.5 implies the condition (H2).

Proposition 5.3.9. We have

H(µ, n) ⊂ H◦(µ, n).

94



CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

Proof. Suppose that T ∈ H(µ, n). By Lemma 5.3.6, it is clear that T0 satisfies (H0). Let

w(T0)w(T1) . . . w(Tl) = w1w2 . . . w`, and

Pl = ((((w1 ← w2)← w3)← · · · )← w`). (5.3.5)

By definition of H(µ, n), we have Pl = Hν for some ν ∈ P. Let hl be the height of the

rightmost column of ν.

Let us use induction on l to show that T ∈ H◦(µ, n). We also claim that

hl = cl + rl. (5.3.6)

Suppose that l = 1. Since T is an l-highest weight element and T ≡l TR ⊗ TL by

Lemma 5.3.6, it is straightforward to check that T satisfies (H1) and (H2). It is clear that

c1 = h1 + r1.

Suppose that l > 1. Let Tl−1 = (Tl−1, . . . , T1, T0) and let Pl−1 be the tableau in (5.3.5)

corresponding to Tl−1. By induction hypothesis, Tl−1 satisfies (H1) and (H2). Put

P [
l = (Pl−1 ← w(T R

l )).

Then P [
l = Hη for some η ∈ P by Lemma 5.3.6, and Pl = (P [

l ← w(T L
l )). We consider

two cases as follows.

Case 1. Suppose that rl = 0. Note that by Definition 4.1.5(1)-(i), we have bl + cl ≤
cl−1. Also, by Definition 4.1.5(1)-(ii), T R

l (i) ≤ LTl−1(i) for 1 ≤ i ≤ bl + cl. By (H1) on

Tl−1, we have LTl−1[k] = k for 1 ≤ k ≤ cl−1, where cl−1 = cl−1 + rl−1. Hence

T R
l (i) ≤ cl−1 − i+ rl−1 + 1, (5.3.7)

for 1 ≤ i ≤ bl+cl. Then (5.3.7) implies that each letter of w(T R
l ) is inserted to create a box

to the right of the leftmost column of Pl−1 when we consider the insertion (Pl−1 ← w(T R
l )).

Since P [
l = Hη, we have T R

l [k] = k for 1 ≤ k ≤ bl + cl.

By semistandardness of T body
l , we have

(T L
l )body(i) ≤ T R

l (i),

for i ≥ 1. This implies that each letter of w((T L
l )body) is inserted to create a box to the
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right of the leftmost column of P [
l when we consider the insertion (P [

l ← w((T L
l )body)),

and TLl [k] = k for 1 ≤ k ≤ cl. Hence T satisfies (H1), (H2), and (5.3.6).

Case 2. Suppose that rl = 1. When rl−1 = 0, we see that Tl satisfies the conditions

(H1) and (H2) by the same argument in the previous case. In particular, (5.3.7) implies

that T R
l (1) = bl + cl. Since T L

l (al) ≤ T R
l (1) and P [

l = Hη, we also have T L
l (al) = cl + 1 and

(5.3.6).

Now assume that rl−1 = 1. When rlrl−1 = 1, we need to consider the ∗-pair (T L∗
l , T

R∗
l )

of Tl in (4.1.2) (recall Definition 4.1.5). Then, by Definition 4.1.5(1)-(ii) and the condition

(H1) on Tl−1, we have

T R∗
l (i) ≤ LTl−1(i) = cl−1 − i+ 2.

We claim that T R
l [k] = k for 1 ≤ k ≤ bl + cl−1. Let k be such that T R∗

l (i) = T R
l (i) for 1 ≤

i ≤ k − 1, and T R∗
l (i) = T R

l (i+ 1) for i ≥ k. Since (FTl, Tl−1, . . . , T1) ≡l (Tl, Tl−1, . . . , T1),

which is an l-highest weight element, we see from Lemma 5.3.6 that each letter of w(T R∗
l )

is inserted to create a box to the right of the leftmost column of Pl−1 when we consider the

insertion (Pl−1 ← w(T R∗
l )), and TR∗l [i] = i for 1 ≤ i ≤ bl + cl− 1. This implies that TRl (k)

is between m and m+ 1 for some m ∈ Z+, and hence k = bl + cl since (Pl−1 ← w(T R∗
l )) is

an l-highest weight element. This proves the claim, and T R
l satisfies (H1). Furthermore,

the claim implies that T R
l (1) satisfies (H2)(ii) because P [

l is an l-highest weight element.

We consider T L
l . By the same argument as in Case 1, we have T L

l [j] = j for 1 ≤ j ≤ cl,

and k = 1 (in the previous argument) implies that T L
l (al) ≤ bl+cl−1. Therefore, we have

T L
l (al) = cl + 1 since the tableau obtained by ((P [

l ← w(T body
l ))← T L

l (al)) is an l-highest

weight element. Finally, we can check easily that (5.3.6) holds.

Now, we consider the case n − 2µ′1 < 0. Recall that µ = (µi) ∈ P be such that

(µ′)1 = n− µ′1 and (µ′)i = µ′i for i ≥ 2.

Let T ∈ T(µ, n) be given. Suppose that n = 2l + r, where l ≥ 1 and r = 0, 1. By

(5.3.1), we have

T = (Tl, . . . , Tm+1, Tm, . . . , T1, T0), (5.3.8)

where Ti ∈ T(ai) for some ai ∈ Z+ (m+1 ≤ i ≤ l), Ti ∈ T(0) (1 ≤ i ≤ m), and T0 ∈ Tsp−

(resp. T0 = ∅) when r = 1 (resp. r = 0). Here m = q− in (5.3.1). Under (4.3.1), we

identify T with

U = (U2l, . . . , U2m+1, U2m, . . . , U1, U0).

We may also assume that Ui ∈ Tsp− for 0 ≤ i ≤ 2m. The following is an analogue of

96



CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

Definition 5.3.7 when n− 2µ′1 < 0.

Definition 5.3.10. Let H◦(µ, n) be the set of T ∈ T(µ, n) such that

(1) Ui[k] = k (k ≥ 1) for 0 ≤ i ≤ 2m,

(2) Ti satisfies (H1) and (H2) in Definition 5.3.7 for m+ 1 ≤ i ≤ l.

Proposition 5.3.11. We have H(µ, n) ⊂ H◦(µ, n).

Proof. Let T ∈ H(µ, n) be given. By Lemma 5.3.6 and the admissibility of Ti+1 ≺ Ti for

0 ≤ i ≤ m − 1, we have Ui[k] = k (k ≥ 1) for 0 ≤ i ≤ 2m. Hence T satisfies (1). The

condition (2) can be verified by almost the same argument as in Proposition 5.3.9.

Example 5.3.12. Let T = (T2, T1) ∈ T(2, 2) with r1 = r2 = 1 given by

1
2

1 1 3
4 2 4

1 3
5 5

T L
2 T R

2 T L
1 T R

1

We have w(T1)w(T2) = (12341235)(1415) and the corresponding tableau (5.3.5) is

1 1 1 1
2 2
3 3
4 4
5 5

Thus T is an l-highest weight vector.

Remark 5.3.13. In [35], when n is odd, the author characterizes completely the l-highest

weight vectors, see [35, Theorem 3.11]. On the other hand, in this thesis, it is enough to

consider the necessary conditions for T ∈ T(µ, n) to be in H(µ, n) (without a condition

on n).

Let us recall the pairing / in Definition 4.1.9. The description of / is simple on

H◦(µ, n) as follows.
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Proposition 5.3.14. Let T ∈ H◦(µ, n) be given and write

T = ( . . . , Ti+1, Ti, . . . ).

Then Ti+1 / Ti if and only if T R
i+1(1) < T L

i (ai). Furthermore, Ti+1 6 / Ti if and only if

T R
i+1(1) > T L

i (ai).

Proof. It follows directly from Lemma 5.3.8 and Proposition 5.3.9 (with Definition 4.1.5).

5.3.3 Sliding on l-highest weight vectors

Let us recall Sections 4.1.1 and 4.3.1. Let T ∈ H◦(µ, n) be given. If we regard the

operator Sj on H◦(µ, n), then by Proposition 5.3.14, we can write Sj by

Sj =

F
ai
j if Uj+1(1) < Uj(ai),

EjEj−1Fai−1
j Fj−1 if Uj+1(1) > Uj(ai).

Here we use the identification as in Section 4.3.1. Then it works simply on H◦(µ, n) as

follows (see Example 5.3.18).

Lemma 5.3.15. Under the above hypothesis, we have

SjU =
(
. . . , Uj+2, Ũj+1, Ũj, Uj−1, . . .

)
,

where

(i) if Uj+1(1) < Uj(ai), then

Ũj+1 = Uj+1 � U
tail
j , Ũj = Uj � U

tail
j ,

(ii) if Uj+1(1) > Uj(ai), then

Ũj+1 = (Uj+1(bi + ci), . . . , Uj+1(3))� (Uj+1(2), Uj(ai − 1), . . . , Uj(1)) ,

Ũj = (Uj(ai + ci), . . . , Uj(ai), Uj+1(1))� ∅.
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Proof. (i) : Suppose that Uj+1(1) < Uj(ai). Then we have

SjU = (. . . ,Fai(Uj+1, Ui), . . . )

= (. . . , Uj+1 � U
tail
j , Uj � U

tail
j , . . . ),

which is given by cutting Utail
j and then putting it below Uj+1.

(ii) : Suppose that Uj+1(1) > Uj(ai). By Lemma 5.3.8, we have riri+1 = 1. Then we

have SjU = EjEj−1Fai−1
j Fj−1U. Ignoring the components other than (Ti+1, Ti), we have

EjEj−1Fai−1
j Fj−1 (Ti+1, Ti)

=EjEj−1Fai−1
j (Uj+2, Uj+1,F(Uj, Uj−1))

=EjEj−1Fai−1
j

(
Uj+2, Uj+1, U

∗
j , U

∗
j−1

)
=EjEj−1

(
Uj+2,Fai−1(Uj+1, U

∗
j ), U∗j−1

)
=EjEj−1

(
Uj+2, Uj+1 � U

∗tail
j , U∗j � U

∗tail
j , U∗j−1

)
=Ej

(
Uj+2, Uj+1 � U

∗tail
j , E(U∗j � U

∗tail
j , U∗j−1)

)
=Ej

(
Uj+2, Uj+1 � U

∗tail
j , U↑j � U

∗tail
j , Uj−1

)
=
(
Uj+2, E(Uj+1 � U

∗tail
j , U↑j � U

∗tail
j ), Uj−1

)
=
(
Uj+2, Ũj+1, Ũj, Uj−1

)
,

where

U∗j−1 = T R∗
i = (Uj−1(bi + ci), . . . , Uj−1(2))� ∅,

U∗j = T L∗
i = (Uj(ai + ci), . . . , Uj(ai), Uj−1(1))� (Uj(ai − 1), . . . , Uj(1)),

U↑j = (Uj(ai + ci), . . . , Uj(ai))� (Uj(ai − 1), . . . , Uj(1)).

This proves the lemma.

Corollary 5.3.16. Under the above hypothesis, we have the following.

(1) For j = 2, there exists unique T, S ∈ T(0) such that (T L, T R) = (Ũ2, U1) and

(SL, SR) = (U1, U0) if U0 is non-empty.

(2) For j = 2i with 1 ≤ i ≤ l − 1, there exists a unique T ∈ T(ai) such that (T L, T R) =

(Ũj+1, Ũj) and the residue of T is 0 if Uj+1(1) < Uj(ai) and 1 if Uj+1(1) > Uj(ai).
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(3) The pair (U2l, Ũ2l−1) forms a semistandard tableau when the columns are put together

horizontally along L.

Proof. (1) and (3) follow directly from Definition 4.1.5 and the description of (Ũj+1, Ũj)

in Lemma 5.3.15.

By definition of Sj, it is not difficult to see that (Ũj+1, Ũj) forms a semistandard

tableau, say T of shape λ(ai, b
′
i, c
′
i) for some b′i, c

′
i ∈ Z+ such that (T L, T R) = (Ũj+1, Ũj).

The residue of T follows immediately from the description of (Ũj+1, Ũj) in Lemma 5.3.15.

This proves (2).

Corollary 5.3.17. We have SjSk = SkSj for j 6= k, and S2S4 . . .S2l−2U ≡l U.

Proof. Since Sj changes only Uj, Uj+1 by Lemma 5.3.15, it is clear that SjSk = SkSj for

j 6= k. The l-crystal equivalence follows from the fact that En is a (l, sln)-bicrystal.

Example 5.3.18.

(1) The following is an illustration of Sj when Uj+1(1) < Uj(ai).

1
2

1 1 3

. . . . . .
2

. . . . . .
2 4

. . . . . .

1 3
4 5

Uj+1 Uj

7−−−−−−→

1
2

1 1 3

. . . . . .
2

. . . . . .
2 4

. . . . . .

1 3
4 5

Ũj+1 Ũj

(2) The following is an illustration of Sj when Uj+1(1) > Uj(ai).

1
2

1 1 3
4

. . . . . .
2 4

1 3
5 6
6 8
7

Uj+1 Uj

7−→

1 1
2 2

1 3 3
4

. . . . . .. . . . . .
4

1
5 6
6 8
7

7−→

1 1
2 2

1 3 3

. . . . . .. . . . . .
4 4

1
5 6
6 8
7

7−→

1 1
2 2
3 3

. . . . . .
4 4

1 1
5 6
6 8
7

Ũj+1 Ũj
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5.3.4 Separation on l-highest weight vectors

We apply the separation algorithm developed in Sections 4.3.2–4.3.3 to T ∈ H(µ, n). We

should remark that the process in Sections 4.3.2–4.3.3 also holds under the setting in

Section 5.3.1. Then we have the following.

Proposition 5.3.19. There exists T ∈ SST (η), where η is given as in (4.3.8), such that

(1) T is Knuth equivalent to T, that is, T ≡l T ≡l Hλ for some λ ∈P,

(2) T
tail ∈ LRλ

′

δ′µ′ and T
body

= H(δ′)π for some δ ∈P(2).

Proof.

(1) : By Propositions 4.3.5 and 4.3.8, we have T ≡l T, and T ≡l T
body ⊗T

tail
. Since

sh(T
body

) = (δ′)π for some δ ∈P(2), we should have T
body

= H(δ′)π .

(2) : It follows from the fact that T ≡l H(δ′)π ⊗T
tail ≡l

(
T

tail → H(δ′)π

)
= Hλ′ .

Let us illustrate the separation on H(µ, n).

Example 5.3.20. Let us consider the case n− 2µ′1 ≥ 0. Let n = 8 and µ = (4, 3, 3, 2) ∈
P(O8). Let T = (T4, T3, T2, T1) ∈ H(µ, 8) and U = (U8, . . . , U1) be given by

1

2

1 1 1 1 3

2
. . . . . .

2
. . . . . .

4
. . . . . .

2 4

1 1 1 3

3 3 5 5

4 4 6

5

1

2

1 1 1 1 3

. . . . . .
2

. . . . . . . . . . . .
2

. . . . . . . . . . . .
4

. . . . . .
2

. . . . . .
4

1 1 1 3

3 3 5 5

4 4 6

5

T4 T3 T2 T1 U8 U7 U6 U5 U4 U3 U2 U1

Applying S6S4S2 to U, we get

1 1

2 2

1 1 3 3

. . . . . . . . . . . .
2

. . . . . . . . . . . .
2

. . . . . . . . . . . .
4

. . . . . .
4

1 1 1 1

3 3 5 5

4 4 6

5
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The sequence of columns except the leftmost one (in gray) corresponds to S ∈ H(µ̃, 7)

with µ̃ = (3, 3, 2).

1 1

2 2

1 1 3 3

. . . . . . . . . . . . . . . . . .
2

. . . . . . . . . . . .
2

. . . . . .
4

. . . . . .
4

1 1 1 1

3 3 5 5

4 4 6

5

Applying this process again to S, we get

1 1

2 2

1 1 3 3

. . . . . . . . . . . . . . . . . . . . . . . .
2

. . . . . .
2

. . . . . .
4

. . . . . .
4

1 1 1 1

3 3 5 5

4 4 6

5

Therefore, T is given by
1 1

2 2

1 1 3 3

2 2 4 4

1 1 1 1

3 3 5 5

4 4 6

5

Example 5.3.21. Let us consider the case n−2µ′1 < 0. Let n = 9 and µ = (4, 3, 3, 2, 1) ∈
P(O9). We have n− 2µ′1 < 0 and µ = (4, 3, 3, 2). Let T ∈ T(µ, 9) be given by
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T =

1 1

2 2

1 1 1 1 3 3

. . . . . .
2

. . . . . .
2

. . . . . .
4

. . . . . .
2 6

. . . . . .
4

. . . . . .

1 1 1 3 5

3 3 5 7

4 4 6

5

T4 T3 T2 T1 T0

It corresponds to

U =

1 1

2 2

1 1 1 1 3 3

. . . . . .
2

. . . . . . . . . . . .
2

. . . . . . . . . . . .
4

. . . . . .
2

. . . . . .
6

. . . . . .
4

1 1 1 3 5

3 3 5 7

4 4 6

5

U8 U7 U6 U5 U4 U3 U2 U1 U0

Putting U = H(18) at the rightmost column and applying the sliding algorithm, we get

1

2

1 3

2 4

1 3 5

2 4 6

1 1 3 1 5 7

. . . . . . . . . . . .
2

. . . . . . . . . . . .
2

. . . . . . . . . . . .
4

. . . . . .
2

. . . . . .
6 8

1 1 1 1 3

3 3 5 7

4 4 6

5

Ũ8 Ũ7 Ũ6 Ũ5 Ũ4 Ũ3 Ũ2 Ũ1 Ũ0 U

Then Ũ = (Ũ7, Ũ6, Ũ5, Ũ4, Ũ3, Ũ2, Ũ1, Ũ0) corresponds to T̃ ∈ H(µ̃, 8), with µ̃ = (3, 3, 2, 1).
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Repeating this process to Ũ as in Example 5.3.20 (recall subsection 4.3.2), we get T

T =

1

2

1 3

2 4

1 1 1 3 5

2 2 2 4 6

1 1 1 1 3

3 3 5 7

4 4 6

5

Hence

T
tail

=

1 1 1 1 3

3 3 5 7

4 4 6

5

T
body

=

1

2

1 3

2 4

1 1 1 3 5

2 2 2 4 6

5.4 Branching rules from D∞ to A+∞

5.4.1 Branching multiplicity formulas from D∞ to A+∞

Let δrev = (δrev1 , . . . , δrevn ) be the reverse sequence of δ = (δ1, . . . , δn), that is, δrevi = δn−i+1,

for 1 ≤ i ≤ n. We put p = µ′1, q = µ′2, and r = (µ)′1 if n− 2µ′1 < 0.

Definition 5.4.1. For S ∈ LRλ
′

δ′µ′ , let s1 ≤ · · · ≤ sp denote the entries in the first row,

and t1 ≤ · · · ≤ tq the entries in the second row of S. Let 1 ≤ m1 < · · · < mp < n be the

sequence defined inductively from p to 1 as follows:

mi = max{ k | δrevk ∈ Xi, δ
rev
k < si },

where

Xi =

{ δrevi , . . . , δrev2i−1 } \ {δrevmi+1
, . . . , δrevmp }, if 1 ≤ i ≤ r,

{ δrevi , . . . , δrevn−p+i } \ {δrevmi+1
, . . . , δrevmp }, if r < i ≤ p,
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(we assume that r = p when n− 2µ′1 ≥ 0). Let n1 < · · · < nq be the sequence such that

nj is the j-th smallest integer in {j + 1, · · · , n} \ {mj+1, · · · ,mp} for 1 ≤ j ≤ q. Then we

define LR
λ′

δ′µ′ to be a subset of LRλ
′

δ′µ′ consisting of S satisfying

tj > δrevnj
, (5.4.1)

for 1 ≤ j ≤ q. We put cλδµ = |LRλ
′

δ′µ′ |.

Remark 5.4.2. Let S ∈ LRλ
′

δ′µ′ be given. Let us briefly explain the well-definedness of

the sequence (mi)1≤i≤p in Definition 5.4.1. We may assume that n − 2µ′1 ≥ 0 since the

arguments for n− 2µ′1 < 0 are similar.

It is enough to verify that δrevi < si for 1 ≤ i ≤ p. Let H ′ = (s1 → (s2 → . . . (sp →
Hδ′))). Then sh(H ′)/sh(Hδ′) is a horizontal strip of length p. If there exists si such that

δrevi ≥ si, then we should have `(λ) > n, which is a contradiction to λ ∈Pn. By definition

of mi, we also note that i ≤ mi ≤ 2i− 1 for 1 ≤ i ≤ r,

i ≤ mi ≤ n− p+ i for r < i ≤ p,

where r = p when n− 2µ′1 ≥ 0.

Example 5.4.3. Let n = 8, µ = (2, 2, 2, 1, 1) ∈ P(O8), λ = (5, 4, 4, 3, 2, 2) ∈ P8 , and

δ = (4, 2, 2, 2, 2) ∈P(2)
8 . Note that n− 2µ′1 = −2 < 0 and r = (µ)′1 = 3.

Let us consider the Littlewood-Richardson tableau S ∈ LRλ
′

δ′µ′ given by

S =
1 3 3 3 5

2 4 4
.

Then the sequences (mi)1≤i≤5 and (nj)1≤j≤3 are (1, 3, 5, 7, 8) and (2, 4, 6), respectively,

and S satisfies the condition (5.4.1):

t1 = 2 > 0 = δrevn1
, t2 = 4 > 2 = δrevn2

, t3 = 4 > 2 = δrevn3
.

Hence S ∈ LR
λ′

δ′µ′ .

Now we are in a position to state the main result in this chapter.
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Theorem 5.4.4. For µ ∈ P(On) and λ ∈Pn, we have a bijection

LR
µ
λ(d) //

⊔
δ∈P

(2)
n

LR
λ′

δ′µ′

T � // T
tail

.

Proof. We give the proof in Sections 7.3.2 and 7.3.3.

Corollary 5.4.5. Under the above hypothesis, we have

cµλ(d) =
∑
δ∈P

(2)
n

cλδµ.

Let us give another description of cµλ(d) which is simpler than LR
λ′

δ′µ′ , and also plays an

important role in Section 5.5.

Definition 5.4.6. For U ∈ LRλδµπ (see subsection 3.1.1), let σ1 > · · · > σp denote the

entries in the rightmost column and τ1 > · · · > τq the second rightmost column of U ,

respectively. Let m1 < · · · < mp be the sequence defined by

mi =

min{n− σi + 1, 2i− 1}, if 1 ≤ i ≤ r,

min{n− σi + 1, n− p+ i}, if r < i ≤ p.

and let n1 < · · · < nq be the sequence such that nj is the j-th smallest number in

{ j+1, . . . , n }\{mj+1, . . . ,mp }. Then we define LRλδµ to be the subset of LRλδµπ consisting

of U such that

τj + nj ≤ n+ 1, (5.4.2)

for 1 ≤ j ≤ q. We put cλδµ = |LRλδµ|.

Example 5.4.7. We keep the assumption in Example 5.4.3 and consider the Littlewood-

Richardson tableau U ∈ LRλδµπ given by

U =

1

2

2 3

3 4

6 6
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The sequences (mi)1≤i≤5 and (nj)1≤j≤3 are (1, 3, 5, 7, 8) and (2, 4, 6), respectively. Then

U satisfies the condition (5.4.2):

τ1 + n1 = 6 + 2 = 8 ≤ 8 + 1 = n+ 1,

τ2 + n2 = 3 + 4 = 7 ≤ 8 + 1 = n+ 1,

τ3 + n3 = 2 + 6 = 8 ≤ 8 + 1 = n+ 1.

Hence U ∈ LRλµδ.

Now, one can show that cλδµ = cλδµ by using the bijection ψ (5.1.1).

Lemma 5.4.8. The sequences (mi)1≤i≤p and (nj)1≤j≤q for S in Definition 5.4.1 are equal

to the ones for U = ψ(S) in Definition 5.4.6.

Proof. We assume that n − 2µ′1 ≥ 0. The proof for the case n − 2µ′1 < 0 is similar.

Suppose that S ∈ LRλ
′

δ′µ′ is given. Let s1 ≤ · · · ≤ sp denote the entries in the first row of

S. Let (m′i)1≤i≤p and (n′j)1≤j≤q be the sequences for S in Definition 5.4.1. Put U = ψ(S).

Let σ1 > · · · > σp be the rightmost column of U and let (mi)1≤i≤p and (nj)1≤j≤q be the

sequences for U as in Definition 5.4.6.

It is enough to show that m′i = mi for 1 ≤ i ≤ p, which clearly implies n′j = nj

for 1 ≤ j ≤ q. Let us enumerate the column of δ′ by n, n − 1, . . . , 1 from left to right.

Consider the vertical strip V i := sh(H i)/sh(H i−1) filled with i for 1 ≤ i ≤ p (recall (5.1.1)

below). By definition of ψ (5.1.1), we see that the upper most box in V i is located in the

(n− σi + 1)-th column in δ′.

Let i ∈ {1, . . . , p} be given. First, we have m′i ≤ n− σi + 1 by definition of m′i. Since

m′i ≤ 2i− 1, we have m′i ≤ mi = min{n− σi + 1, 2i− 1}. Next, we claim that mi ≤ m′i.

If n − σi + 1 ≤ 2i − 1, then we have δrevn−σi+1 < si, and hence mi ≤ n − σi + 1 ≤ m′i by

definition of m′i. If n− σi + 1 > 2i− 1, then we have mi = 2i− 1 = m′i. This proves that

mi = m′i.

Theorem 5.4.9. For µ ∈ P(On), λ ∈Pn and δ ∈P(2)
n , the bijection ψ : LRλ

′

µ′ν′ −→ LRλµνπ

in (5.1.1) induces a bijection from LR
λ′

δ′µ′ to LRλδµ.

Proof. Let S ∈ LRλ
′

δ′µ′ given and put U = ψ(S). We keep the conventions in the proof

of Lemma 5.4.8. By definition of ψ, the second upper most box in V j is located at the

(n − τj + 1)-th column in δ′. By Lemma 5.4.8, we see that δrevnj
< tj if and only if

n− τj + 1 ≥ nj or τj + nj ≤ n+ 1. Therefore, S ∈ LR
λ′

δ′µ′ if and only if U ∈ LRλδµ.
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Example 5.4.10. Let n = 8, µ = (2, 2, 2, 1, 1) ∈ P(O8), λ = (5, 4, 4, 3, 2, 2) ∈ P8, and

δ = (4, 2, 2, 2, 2) ∈ P(2)
8 . Let S be the Littlewood-Richardson tableau in Example 5.4.3.

We enumerate the columns of S as follows:

1 3 3 3 5

2 4 4

S5 S4 S3 S2 S1

Then the insertion and recording tableaux are given by

S → Hδ′ =

8 7 6 5 4 3 2 1
...

...
...

...
...

...
...

...

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3

4 4 4

5

, Q(S → Hδ′) =

1

2 3

3 4

4

5 5

.

Then ψ(S) is obtained by

8 · · · 1 1 1 1 1

7 · · · 2 2 2 2

6 · · · 3 3 3 3

5 · · · 4 4 4

4 · · · 5 5

3 · · · 6 6

2 · · ·
1 · · ·

ψ(S)→ Hδ

,

1

2 3

3 4

4

5 5

Q(ψ(S)→ Hδ)


//

1

2

2 3

3 4

6 6

= ψ(S).

(Here the numbers in gray denote the enumeration of columns of δ′.) Thus we have

(σ1, σ2, σ3, σ4, σ5) = (6, 4, 3, 2, 1), (τ1, τ2, τ3) = (6, 3, 2).
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Note that the enumeration of the rows of U := ψ(S) is given by

U1 1

U2 2

U3 2 3

U4 3 4

U5 6 6

.

Under the above correspondence, we observe that σi (1 ≤ i ≤ 5) and τj (1 ≤ j ≤ 3)

record the positions of si and tj in δ′, respectively, and vice versa. For example, the

entry τ2 in U4 is located at (n − τ2 + 1)-th row in δ, which implies that t2 is located at

(n − τ2 + 1)-th column in δ′. This correspondence implies ψ(S) ∈ LRλδµ (cf. Example

5.4.7).

Corollary 5.4.11. Under the above hypothesis, we have

cµλ(d) =
∑
δ∈P

(2)
n

cλδµ.

Proof. This follows from cλδµ = cλδµ.

We have another characterization of cλδµ in terms of usual LR tableaux (not companion

tableaux) by considering the bijection between LR tableaux and their companion ones

(recall Section 5.1).

Corollary 5.4.12. Let U be an LR tableau of shape λ/δ with content µπ and let σi be

the row index of the leftmost µ′1 − i + 1 in U for 1 ≤ i ≤ µ′1, and τj the row index of the

second leftmost µ′2− j+ 1 in U for 1 ≤ j ≤ µ′2. Let m1 < · · · < mµ′1
be the sequence given

by mi = min{n − σi + 1, 2i − 1}, and let n1 ≤ · · · ≤ nµ′2 be the sequence such that nj is

the j-th smallest number in { j + 1, . . . , n } \ {mj+1, . . . ,mµ′1
}. Then, cλδµ is equal to the

number of U such that

τj + nj ≤ n+ 1,

for 1 ≤ j ≤ µ′2.

We recover the Littlewood’s formula (5.0.2) from Corollary 5.4.11.
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Corollary 5.4.13. Under the above hypothesis, if `(λ) ≤ n
2
, then

cµλ(d) =
∑
δ∈P

(2)
n

cλδµ.

Proof. We claim that LRλδµπ = LRλδµ. Let U ∈ LRλδµπ be given. Let H ′ = (σ1 → (· · · →
(σp → Hδ))). Note that σi + i− 1 ≤ `(sh(H ′)) = `(λ) ≤ n

2
for 1 ≤ i ≤ p. So we have

n− σi + 1 ≥ 2i (1 ≤ i ≤ p). (5.4.3)

Otherwise, we have n− i < σi + i− 1 ≤ n
2

and hence n
2
< i ≤ p = µ′1 ≤ `(λ), which is a

contradiction. By definition mi and nj, we have

mi = 2i− 1, nj = 2j, (5.4.4)

for 1 ≤ i ≤ p and 1 ≤ j ≤ q. By (5.4.3) and (5.4.4) we have

τj ≤ σj ≤ n− 2j + 1 (1 ≤ j ≤ q),

which implies that U satisfies (5.4.2), that is, U ∈ LRλδµ. This proves the claim. By

Theorem 5.4.9, we have cλδµ = cλδµ.

5.4.2 Branching multiplicity formulas from GLn to On

We assume that the base field is C. Let V λ
GLn

denote the finite-dimensional irreducible

GLn-module corresponding to λ ∈Pn, and V µ
On

the finite-dimensional irreducible module

On-module corresponding to µ ∈ P(On).

Then we have the following new combinatorial description of
[
V λ

GLn
: V µ

On

]
.

Theorem 5.4.14. For λ ∈Pn and µ ∈ P(On), we have[
V λ

GLn
: V µ

On

]
=
∑
δ∈P

(2)
n

cλδµ =
∑
δ∈P

(2)
n

cλδµ.

Proof. It follows from Theorem 5.3.4, Corollaries 5.4.5 and 5.4.11.

Example 5.4.15. Let us compare the formula in Theorem 5.4.14 with the one by Enright

and Willenbring in [18, Theorem 4].
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Let µ, ν ∈ P(On) be given by

µ = (d,

a︷ ︸︸ ︷
2, . . . , 2,

b︷ ︸︸ ︷
1, . . . , 1,

c︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

n

),

ν = (d,

c︷ ︸︸ ︷
2, . . . , 2,

b︷ ︸︸ ︷
1, . . . , 1,

a︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

n

).

where a, b, c, d are positive integers with d ≥ 2. Then we have for λ ∈Pn[
V λ

GLn
: V µ

On

]
=
∑
ξ∈P

(2)
n

cλ
′

ξ′µ′ −
∑

υ∈P
(2)
n

cλ
′

υ′ν′ ,

(see [18, Section 7 (7.11)]). Suppose that n = 8, a = b = d = 2, c = 3 and λ =

(5, 4, 4, 3, 2, 2, 0, 0) ∈P8. Then it is straightforward to check that for ξ, υ ∈P(2)
8

cλ
′

ξ′µ′ =

1, if ξ = (4, 2, 2, 2, 2) or (4, 4, 2, 2),

0, otherwise,

cλ
′

υ′ν′ =

1, if υ = (4, 2, 2, 2),

0, otherwise.

Hence we have [
V λ

GL8
: V µ

O8

]
=
∑
ξ∈P

(2)
8

cλ
′

ξ′µ′ −
∑

υ∈P
(2)
8

cλ
′

υ′ν′ = 2− 1 = 1.

On the other hand, the following tableaux Sα and Sβ are the unique tableaux in LRλ
′

α′µ′

and LRλ
′

β′µ′ , respectively, where α = (4, 2, 2, 2, 2) and β = (4, 4, 2, 2):

Sα =
1 3 3 3 5

2 4 4
Sβ =

1 1 3 3 5

2 2 4

We see that Sα ∈ LR
λ′

α′µ′ and ψ(Sα) ∈ LRλαµ (see Examples 5.4.3 and 5.4.10). On the other

hand, for Sβ, the sequence (mi)1≤i≤5 and (nj)1≤j≤3 are given by (1, 3, 5, 6, 8) and (2, 4, 7),
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respectively. Then Sβ /∈ LR
λ′

β′µ′ since t3 = 4 = δrevn3
. We can also check that ψ(Sβ) /∈ LRλβµ

(cf. Example 5.4.10). By Theorem 5.4.14, we have[
V λ

GL8
: V µ

O8

]
=
∑
δ∈P

(2)
8

cλδµ =
∑
δ∈P

(2)
n

cλδµ = 1.

5.4.3 Comparing other works

Let us compare the results in this chapter with [67, 71, 104]. Let us briefly recall Sun-

daram’s formula for (5.0.1) when Gn = Spn [104]. She constructs a bijection between the

set of oscillating tableaux appearing in Berele’s correspondence for Spn [2] and the set

of pairs of the standard tableaux and LR tableaux with the symplectically fitting lattice

word. Then it is shown that these LR tableaux count the branching multiplicity (5.0.1).

In fact, Sundaram’s formula also can be described in terms of similar flag condition with

(5.4.2) [
V λ

GLn , V
µ

Spn

]
=

∑
δ∈P

(1,1)
n

∣∣∣{T ∈ LRλµδ
∣∣σ2i+1 ≤

n

2
+ 1
}∣∣∣ ,

where σj is the rightmost entry in the jth row of T from top. Recall that T is the

companion tableau of LR tableau. We remark that Lecouvey-Lenart provide a conjectural

bijection between the Sundaram’s LR tableaux and the flagged LR tableaux for type Cn

in [71].

On the other hand, Theorem 5.4.4 recovers [67, Theorem 4.8] as follows. For T =

(Tl, . . . , T0) ∈ LR
µ
λ(d), let Ttail = (T tail

l , . . . , T tail
0 ). We may regard Ttail as a column-

semistandard tableau of shape µ′ by putting together T tail
i ’s horizontally. It is shown in

[67, Theorem 4.8] that if `(λ) ≤ n/2, then the map sending T to Ttail gives a bijection

LR
µ
λ(d) //

⊔
δ∈P

(2)
n

LRλ
′

δ′µ′ .

By Lemma 5.4.8 and (5.4.4), we have T
tail

= Ttail if `(λ) ≤ n/2, and hence Theorem

5.4.4 recovers [67, Theorem 4.8].

Also, we may have an analogue of Theorem 5.4.4 for types BC, that is, a multiplicity

formula with respect to the branching from B∞ and C∞ to A+∞, respectively. More

precisely, let Tg(µ, n) be the spinor model for the integrable highest weight module over

the Kac-Moody algebra of type B∞ and C∞ when g = b and c, respectively, corresponding

to µ ∈P(Gn) via Howe duality. Here P(Gn) denotes the set of partitions parametrizing
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the finite-dimensional irreducible representations of an algebraic group Gn (see [67, Section

2] for more details).

For λ ∈Pn, let LRµλ(g) be the set of T ∈ Tg(µ, n) which is an l-highest weight element

with highest weight λ′ (cf. (5.3.2)). Let δ ∈ P3
n be given, where 3 = (1) for g = b and

3 = (1, 1) for g = c (here we understand P(1) = P). Put

LR
λ′

δ′µ′ =
{
S ∈ LRλ

′

δ′µ′ | si > δrev2i (1 ≤ i ≤ µ′1)
}
,

where s1 ≤ · · · ≤ sµ′1 are the entries in the first row of S.

We may apply the same arguments in Section 4.3 to Tg(µ, n). Then by Propositions

5.3.9 and 5.3.19, we have for T = (Tl, . . . , T1) ∈ LR
µ
λ(g) that

Ttail = (T tail
l , . . . , T tail

0 ) ∈ LR
λ′

δ′µ′ ,

for some δ ∈P3
n . Furthermore, the map

LR
µ
λ(g) //

⊔
δ∈P3

n
LR

λ′

δ′µ′

T � // Ttail

is a bijection. The map ψ in (5.1.1) induces a bijection from LR
λ′

δ′µ′ to LRλδµ, where

LRλδµ =
{
U ∈ LRλδµπ |σi + 2i ≤ n+ 1 (1 ≤ i ≤ µ′1)

}
, (5.4.5)

where σ1 > · · · > σµ′1 are the entries in the rightmost column of U . Therefore,

cµλ(g) =
∑
δ∈P3

n

cλδµ =
∑
δ∈P3

n

cλδµ,

where cµλ(g) = |LRµλ(g)|, cλδµ = |LRλ
′

δ′µ′|, and cλδµ = |LRλδµ|. This is a generalization of

[67, Theorem 4.8] for types BC, which also recovers [71, Theorem 6.8] for type C.

We remark that the flag condition in (5.4.5) is different from the one in [71, Section

6.3] because we use the bijection (5.1.1) whose image is the set of LR tableaux with anti-

lattice word (cf. [71, Theorem 6.2]).

Remark 5.4.16. Recently, an orthogonal analogue of Sundaram type bijection [105] is

given for SO2n+1 [40], where oscillating tableaux are replaced by vacillating tableaux, and
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the Sundaram’s LR tableaux are replaced by so-called alternative orthogonal LR tableaux,

which are in (highly non-trivial) bijection with LR
µ
λ(d).

5.5 Generalized exponents

5.5.1 Generalized exponents

Let g be a simple Lie algebra of rank n over C, and G the adjoint group of g. Let S(g) be

the symmetric algebra generated by g, and S(g)G the space of G-invariants with respect

to the adjoint action. Let H(g) be the space of polynomials annihilated by G-invariant

differential operators with constant coefficients and no constant term. It is shown by

Kostant [59] that S(g) is a free S(g)G-module generated by H(g), that is,

S(g) = S(g)G ⊗H(g).

Let t be an indeterminate. Let Φ+ denote the set of positive roots and Φ = Φ+∪−Φ+

the set of roots of g. We define the graded character of S(g) by

chtS(g) =
1

(1− t)n
∏

α∈Φ(1− teα)
. (5.5.1)

Then it is also shown in [59] that the graded character of H(g) is determined by

chtS(g) =
chtH(g)∏n
i=1(1− tdi)

, (5.5.2)

where di = mi + 1 for i = 1, . . . , n and mi are the classical exponents of g.

For µ ∈ P+, let V µ
g be the irreducible representation of g with highest weight µ. The

generalized exponent associated with µ ∈ P+ is a graded multiplicity of V µ
g in H(g), that

is,

Et(V
µ
g ) =

∑
k≥0

dim Homg(V
µ
g ,Hk(g))tk,

where Hk(g) is the k-th homogeneous space of degree k. It is shown in [29] that

Et(V
µ
g ) = Kg

µ0(t),
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where Kg
µ0(t) is the Lustig t-weight multiplicity for V µ

g at weight 0. In other words, we

have

chtH(g) =
∑
µ∈P+

Kg
µ0(t)chV µ

g .

In [71], a new combinatorial realization of K
spn
µ0 (t) is given in terms of the LR tableaux

which give a branching formula for (5.0.2) for Gn = Spn. The goal of this section is to

give combinatorial formulas for Kson
µ0 (t) following the idea in [71] as a main application of

Theorem 5.4.4.

5.5.2 Combinatorial formula of generalized exponents

Suppose that g = son for n ≥ 3, that is, g = so2m+1, so2m for some m. We assume that the

weight lattice for g is P =
⊕m

i=1 Zεi so that Φ+ is { εi±εj, εk | 1 ≤ i < j ≤ m, 1 ≤ k ≤ m },
and { εi ± εj | 1 ≤ i < j ≤ m } when g = so2m+1, and g = so2m, respectively. Let

∆g
t =

1∏
1≤i<j≤n(1− txixj)

.

By using the Littlewood identity (when t = 1), we have

∆g
t =

∑
λ∈P

(1,1)
n

t|λ|/2chV λ
GLn , (5.5.3)

where |λ| =
∑

i≥1 λi for λ = (λi)i≥1. Note that (5.5.1) can be obtained from ∆g
t by

specializing it with respect to the torus of SOn (see for example [71, Section 2.2]).

For µ ∈ P(On), put

q
V λ

GLn : V µ
On

y
=


[
V λ

GLn
: V µ

On

]
+
[
V λ

GLn
: V µ

On

]
, if µ 6= µ,[

V λ
GLn

: V µ
On

]
, if µ = µ.

Proposition 5.5.1. For µ ∈Pm, we have

K
so2m+1

µ0 (t)∏m
i=1(1− t2i)

=
∑

λ∈P
(1,1)
2m+1

r
V λ

GL2m+1
: V µ

O2m+1

z
t|λ|/2,

Kso2m
µ0 (t)

(1− tm)
∏m−1

i=1 (1− t2i)
=

∑
λ∈P

(1,1)
2m

q
V λ

GL2m
: V µ

O2m

y
t|λ|/2,
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where we regard µ in Kg
µ0(t) as a dominant integral weight µ1ε1 + · · ·+ µmεm ∈ P+.

Proof. Suppose that g = so2m+1. For µ ∈ P(O2m+1) with `(µ) ≤ m, we have chV µ
O2m+1

=

chV µ
O2m+1

= chV µ
so2m+1

. By taking restriction of (5.5.3) with respect to O2m+1, we have

chtS(g) =
∑

µ∈P(O2m+1)
`(λ)≤m

 ∑
λ∈P

(1,1)
2m+1

t|λ|/2
r
V λ

GL2m+1
: V µ

O2m+1

z
 chV µ

so2m+1
. (5.5.4)

Next, suppose that g = so2m. For µ ∈ P(O2m) with `(µ) < m, we have chV µ
O2m

=

chV µ
O2m

= chV µ
so2m

. For µ ∈ P(O2m) with `(µ) = m, we have chV µ
O2m

= chV µ
so2m

+ chV µσ

so2m
,

where µσ = µ1ε1 + · · ·+ µm−1εm−1 − µmεm. Similarly, we have

chtS(g) =
∑

µ∈P(O2m)
`(µ)<m

 ∑
λ∈P

(1,1)
2m

t|λ|/2
q
V λ

GL2m
: V µ

O2m

y
 chV µ

so2m

+
∑

µ∈P(O2m)
`(µ)=m

 ∑
ν∈P

(1,1)
2m

t|ν|/2
q
V λ

GL2m
: V µ

O2m

y
(chV µ

so2m
+ chV µσ

so2m

)
.

(5.5.5)

Now, combining (5.5.2) and (5.5.4), (5.5.5), we obtained the identities.

Suppose that P =
⊕n

i=1 Zεi is the weight lattice of gln. For 1 ≤ i ≤ n − 1, let

$i = ε1 + · · ·+ εi be the ith fundamental weight.

Let µ ∈ Pn be given. We identify µ with µ1ε1 + · · · + µnεn. Let SSTn(µ) (resp.

SSTn(µπ)) be the subset of SST (µ) (resp. SST (µπ)) consisting of T with entries in

{1, . . . , n}, which is a gln-crystal with highest weight µ. For T ∈ SSTn(µ) or SSTn(µπ),

put

ϕ(T ) =
n−1∑
i=1

ϕi(T )$i, ε(T ) =
n−1∑
i=1

εi(T )$i.

Definition 5.5.2. 1 For ρ ∈Pn, we say that T is ρ-distinguished if

ϕ(T ) = λ− ρ, ε(T ) = δ − ρ,
1In this thesis, we use the notation ρ as a partition, not the half sum of positive roots.
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for some (λ, δ) ∈P(1,1)
n ×P(2)

n .

We put

Dn(µ) = {T ∈ SSTn(µπ) |T is ρ-distinguished for some ρ ∈Pn },
PT = { ρ ∈Pn |T is ρ-distinguished } (T ∈ Dn(µ)).

(5.5.6)

Lemma 5.5.3. For T ∈ Dn(µ), there exists a unique ρT ∈P such that PT = ρT+P(2,2)
n ,

where ρT is determined by

ρT =
∑

1≤i≤n−1
i≡0 mod 2

(εi(T ) mod 2)$i.

Proof. It follows from the same argument as in [71, Lemma 4.4, Proposition 4.5] with

Definition 5.5.2.

Definition 5.5.4. We define Dn(µ) to be the subset of Dn(µ) consisting of T satisfying

the condition (5.4.2).

Proposition 5.5.5. For µ ∈Pm, we have∑
λ∈P

(1,1)
n

q
V λ

GLn : V µ
On

y
t|λ|/2 =

1∏m
i=1(1− t2i)

∑
T∈Dn(µ)

t|ϕ(T )+ρT |/2,

where

Dn(µ) =

Dn(µ) tDn(µ), if µ 6= µ,

Dn(µ), if µ = µ.
(5.5.7)

Proof. Recall that we have bijections for µ ∈ P(On)⊔
λ∈P

(1,1)
n

LR
µ
λ(d) −→

⊔
λ∈P

(1,1)
n

⊔
δ∈P

(2)
n

LR
λ′

δ′µ′ −→
⊔

λ∈P
(1,1)
n

⊔
δ∈P

(2)
n

LRλδµ,

where the first one is given in Theorem 5.4.4 and the second one in Theorem 5.4.9. By

definition of Dn(µ), we have a bijection

⊔
λ∈P

(1,1)
n

⊔
δ∈P

(2)
n

LRλδµ
//
⊔
T∈Dn(µ){T } ×PT

T � // (T, λ− ϕ(T )) = (T, δ − ε(T ))

. (5.5.8)
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By Lemma 5.5.3, we have a bijection

⊔
T∈Dn(µ){T } ×PT

//
⊔
T∈Dn(µ){T } ×P(2,2)

n

(T, ρ) � // (T, ρ− ρT )

. (5.5.9)

Therefore, we have from (5.5.8) and (5.5.9)

∑
λ∈P

(1,1)
n

[
V λ

GLn : V µ
On

]
t|λ|/2 =

∑
λ∈P

(1,1)
n

∑
δ∈P

(2)
n

cλδµt
|λ|/2 =

∑
T∈Dn(µ)

∑
ρ∈PT

t|ϕ(T )+ρ|/2

=
∑

T∈Dn(µ)

t|ϕ(T )+ρT |/2
∑

κ∈P
(2,2)
n

t|κ|/2

=
∑

T∈Dn(µ)

t|ϕ(T )+ρT |/2 1∏m
i=1(1− t2i)

,

which implies the identity.

We have the following new combinatorial formulas for Kson
µ0 (t).

Theorem 5.5.6. For µ ∈Pm, we have

K
so2m+1

µ0 (t) =
∑

T∈D2m+1(µ)

t|ϕ(T )+ρT |/2,

Kso2m
µ0 (t) =

1

1 + tm

∑
T∈D2m(µ)

t|ϕ(T )+ρT |/2,

where Dn(µ) is given in (5.5.7).

Proof. It follows from Propositions 5.5.1 and 5.5.5.

Remark 5.5.7. Since Kso2m
µ0 (t) is a polynomial in t, the polynomial∑

T∈D2m(µ)

t|ϕ(T )+ρT |/2

is divisible by 1 + tm. From the positivity of Kostka-Foulkes polynomial Kso2m
µ0 (t), one

may expect a decomposition of D2m(µ) = X1tX2 together with a bijection τ : X1 −→ X2

such that

|ϕ(τ(T )) + ρτ(T )| = 2m+ |ϕ(T ) + ρT |.
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Remark 5.5.8. In [71], Lecouvey-Lenart provide a bijection between the distinguished

tableaux for type Cn and the symplectic King tableaux with weight 0 (see [71, Section

6.4] for more details). We do not know yet whether there is an analogue of the above

bijection which maps an orthogonal distinguished tableau (Definition 5.5.4) to an or-

thogonal tableau (with weight 0), which is from already known models (for example,

[52,53,57,88,94,106]) or a new one).
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Chapter 6

Affine crystals

In this chapter, we extend the crystal BJ to an affine crystal1 and then we give a new

combinatorial model of KR crystal Bn,s (s ∈ Z≥1) obtained from the crystal BJ by

computing the ε∗n-statistic explicitly. Also, we prove that Burge correspondence is an

isomorphism of affine crystals of type D
(1)
n .

The results in this chapter are based on [36].

6.1 Quantum affine algebras and crystals

In this section, let g be a finite-dimensional complex simple Lie algebra with the index set

I = {1, . . . , n}. We denote by ĝ the corresponding affine Kac-Moody algebra of untwisted

type with index set Î = {0, 1, . . . , n} [41]. Let P̂∨ be the dual weight lattice given by

P̂∨ = Zh0 ⊕ Zh1 ⊕ · · · ⊕ Zhn ⊕ Zd.

Then h = C⊗ZP̂
∨ is the Cartan subalgebra. Let P̂ = {λ ∈ h∗ | λ(P̂∨) ⊂ Z} be the weight

lattice of ĝ. We denote by Λi the ith fundamental weight of ĝ. Put Π̂ = {αi | i ∈ Î} and

Π̂∨ = {hi | i ∈ Î} to be the sets of simple roots and simple coroots, respectively. Let δ

be the null root (see [41, Chapter 5]). Note that

P̂ = ZΛ0 ⊕ ZΛ1 ⊕ · · · ⊕ ZΛn ⊕ Zδ.
1In this thesis, an affine crystal means a ĝ-crystal or the crystal graph of the crystal base of a certain

finite-dimensional irreducible U ′
q(ĝ)-module.
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We denote by P̂+ the set of dominant integral weights of ĝ. Let Uq(ĝ) be the quantum

group of ĝ over C(q), which is called quantum affine algebra (recall Definition 2.1.1). Then

the subalgebra of Uq(ĝ) generated by ei, fi, K
±
i for i ∈ Î, denoted by U ′q(ĝ), is also called

the quantum affine algebra. We remark that all non-trivial irreducible representations

of Uq(ĝ) are infinite-dimensional (cf. [8, Section 2.6]). On the other hand, there exist

finite-dimensional irreducible representations of U ′q(ĝ).

By Chari-Pressley’s classification [10,11], each isomorphism class of finite-dimensional

irreducible representations (of type 1) is parametrized by an n-tuple P = (Pi(u))1≤i≤n of

polynomials with constant term 1, where n is the rank of g. The polynomial P is called

Drinfeld’s polynomials due to an analog result for Yangian earlier by Drinfeld [17].

The Kirillov-Reshetikhin (KR for short) module W
(r)
s,a is the finite-dimensional irre-

ducible U ′q(ĝ)-module with the Drinfeld polynomial P = (Pi(u))1≤i≤n

Pi(u) :=

{ ∏s
j=1 (1− aqs−2j+1u) if i = r,

1 otherwise,

where 1 ≤ r ≤ n, s ∈ Z+ and a ∈ C× [54].

It was conjectured by Hatayama et al.[28] that for 1 ≤ r ≤ n and s ∈ Z+, there exists

ar,s ∈ C× such that W
(r)
s,ar,s has a crystal base. The conjecture has been proved for all

nonexceptional types [91] (see also [42] for type A
(1)
n , [89] for type D

(1)
n with 1 ≤ r ≤ n−2)

and some exceptional types (with certain r) [86, 87]. Let Br,s be the crystal of W
(r)
s,ar,s ,

which is often called KR crystal for short.

The following lemma is useful to describe the KR crystals Br,s (recall Definition

2.2.5(7)).

Lemma 6.1.1. [101, Lemma 2.6] Let ĝ be an affine Kac-Moody algebra of non-exceptional

type with index set Î = {0, 1, . . . , n}. For r ∈ Î \ {0} and s > 0, any regular ĝ-crystal B

which is isomorphic to Br,s as a g-crystal is also isomorphic to Br,s as a ĝ-crystal.

6.2 Kirillov-Reshetikhin crystals Bn,s of type D(1)
n

Let ĝ be an affine Kac-Moody algebra of type D(1)
n with Î = { 0, 1, . . . , n } the index set

for the simple roots.
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©
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αn

For r ∈ {0, n}, let ĝr be the subalgebra of ĝ corresponding to {αi | i ∈ Î \ {r} }. Then

ĝ0 = g, and ĝ0 ∩ ĝn = l, where l is the subalgebra of type An−1. We regard P =
⊕n

i=1 Zεi
as a sublattice of P̂ /Zδ by putting ε1 = Λ1 − Λ0, ε2 = Λ2 − Λ1 − Λ0, εk = Λk − Λk−1 for

k = 3, . . . , n − 2, εn−1 = Λn−1 + Λn − Λn−2 and εn = Λn − Λn−1. In particular, we have

α0 = −ε1− ε2 in P . If $′i are the fundamental weights for ĝn for i ∈ Î \{n}, then $′i = $i

for i ∈ Î \ {0, n} and $′0 = −$n.

Let us recall Sections 3.2.4–3.2.5 for the crystal BJ . For c ∈ BJ , we define

ẽ0c = c + 1ε1+ε2 , f̃0c =

c− 1ε1+ε2 , if cε1+ε2 > 0,

0, otherwise,

ϕ0(c) = max{ k | f̃k0 c 6= 0 }, ε0(c) = ϕ0(c)− 〈wt(c), h0〉.

(6.2.1)

Lemma 6.2.1. The set BJ is a ĝ-crystal with respect to wt, εi, ϕi, ẽi, f̃i for i ∈ Î, where

wt is the restriction of wt : B −→ P to BJ .

Proof. It follows directly from (6.2.1).

Next, we consider the subcrystal BJ,s of BJ given by

BJ,s := { c ∈ BJ | ε∗n(c) ≤ s }, (6.2.2)

where s ≥ 1. By Propositions 2.2.12 and 3.2.7 (cf. [44]), we have

B(s$n) ∼= BJ,s ⊗ Ts$n ,
⋃
s≥1

BJ,s = BJ , (6.2.3)

as g-crystals.

The following theorem is one of main results in this chapter.

Theorem 6.2.2. For s ≥ 1, BJ,s ⊗ Ts$n is a regular ĝ-crystal and

BJ,s ⊗ Ts$n ∼= Bn,s,
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where Bn,s is the Kirillov-Reshetikhin crystal of type D
(1)
n associated with s$n.

Proof. By (6.2.3), BJ,s ⊗ Ts$n is a regular ĝ0-crystal. By Proposition 3.2.3, we see that

the ĝn-crystal BJ,s⊗Ts$n is isomorphic to the dual of the ĝ0-crystal BJ,s⊗Ts$n assuming

that ĝn ∼= ĝ0 under the correspondence αi ↔ −αn−i for 0 ≤ i ≤ n− 1. This implies that

BJ,s ⊗ Ts$n is a regular ĝn-crystal, and hence a regular ĝ-crystal. It is known that Bn,s

is classically irreducible, that is, Bn,s ∼= B(s$n) as a ĝ0-crystal (see [21]). Therefore, it

follows from Lemma 6.1.1 that BJ,s ⊗ Ts$n ∼= Bn,s.

Remark 6.2.3. The inclusions BJ,s ↪→ BJ,t ↪→ BJ for s ≤ t are embeddings of ĝ-crystals

(recall (6.2.3)), and hence BJ is a direct limit of
{
BJ,s | s ∈ Z+

}
.

Let us recall the result in Section 3.3.2. Indeed, we can characterize ε∗n in terms of the

double paths on ∆n.

Theorem 6.2.4. For c ∈ BJ ,

ε∗n(c) = max{ ||c||p |p is a double path in ∆n }.

Proof. This formula is obtained from an explicit computation of the formula in [4, Theo-

rem 3.7] for the transition matrix between Lusztig’s parametrization and string parametriza-

tion of B(∞). We give the detailed proof in Section 7.1.3 (see also Section 7.1.1).

Example 6.2.5. We refer the reader to Appendix A.1.5 for the crystal graph for BJ, 2

with n = 4 (cf. [62, Figure 3]).

Remark 6.2.6.

(1) Let θ = ε1 + εn be the longest root in Φ+. Since θ is located at the top of ∆n, the

formula in Theorem 6.2.4 is equivalent to

ε∗n(c) = max{ ||c||p |p is a double path at θ in ∆n }.

(2) For c ∈ BJ , we have λ1(c) = ε∗n(c). Let us explain it in more detail. We define

T ↘s :=
⊔
λ∈Pn

λ′:even, λ⊂(sn)

SST (λπ)
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and we regard it as a subcrystal of T ↘ (recall Section 3.3.1). It is known [62, Lemma

5.1] that T ↘s ⊗ Ts$n is isomorphic to B(s$n). Then the crystal isomorphism κ
↘

(3.3.2) induces an isomorphism of g-crystals between BJ,s and T ↘s . Therefore, ε∗n(c)

is equal to the number of columns of κ
↘

(c) (cf. [30, Proposition 4.5.8]).

(3) By Theorem 6.2.4, we have

BJ,s =
⋂
p

{
c ∈ BJ | ||c||p ≤ s

}
,

where p runs over the double paths in ∆n. This gives a polytope realization of the

KR crystal Bn,s. Moreover, {BJ,s} is a family of perfect KR crystals by [22, Theorem

1.2].

6.3 Burge correspondence of type D(1)
n

In this section, we extend Burge correspondence to an isomorphism of affine crystals

(recall Section 3.3). We keep the notations in Section 3.1.1. Let us recall that the affine

crystal structure on BJ is given in (6.2.1). Following [62], we consider the set

T =
{

[T ] | T ∈ T ↘
}
,

where [T ] is the Knuth equivalence class of T . We give an affine crystal structure on T
following [62]. Consequently, it is isomorphic to the affine crystal BJ via Burge corre-

spondence.

Let us explain it in more detail. We define

T ↖ :=
⊔
λ∈Pn
λ′:even

SST[n](λ).

As in the case T ↘ (3.3.1), we define the ĝn-crystal structure as follows.

We define the l-crystal structure on T ↖ in the same way as in T ↘ . Let T ∈ T ↖ be

given. For k ≥ 1, let tk be the entry in the bottom of the k-th column of T (enumerated
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from the left). Consider σ = (. . . , σ2, σ1), where

σk =


− , if tk < 2 or the k-th column is empty,

+ , if the k-th column has both 1 and 2 as its entries,

· , otherwise.

Then ẽ0T is given by adding 2

1 to the bottom of the column corresponding to the right-

most − in σred, and f̃0T is obtained from T by removing 2

1 in the column corresponding to

the left-most + in σred. If there is no such + sign, then we define f̃0T = 0. Hence T ↖ is a

ĝn-crystal with respect to wt, εi, ϕi, ẽi, f̃i (i ∈ Î\{n}), where ϕ0(T ) = max{ k | f̃k0 T 6= 0 }
and ε0(T ) = ϕ0(T )− 〈wt(T ), h0〉.

Next, we define an analog of κ
↘

from BJ to T ↖ as follows. Let Ω′ be the set of

biwords (a,b) ∈ W ×W satisfying the same conditions as in Ω except that < is replaced

by <′, where (a, b) <′ (c, d) if and only if (b < d) or (b = d and a < c) for (a, b) and

(c, d) ∈ W ×W . We define c′(a,b) in the same way as in c(a,b). Given (a,b) ∈ Ω′ with

a = a1 · · · ar and b = b1 · · · br, define a sequence of tableaux P1, P2, . . . , Pr inductively as

follows:

(1) let P1 be a vertical domino a1
b1

,

(2) if Pk−1 is given for 2 ≤ k ≤ r, then define Pk to be the tableau obtained by first

applying the column insertion to get ak → Pk−1, and then adding bk at the conner

of ak → Pk−1 located below the box sh(ak → Pk−1)/sh(Pk−1),

and put P
↖

(a,b) := Pr. For c ∈ BJ , let P
↖

(c) = P
↖

(a,b) where c = c′(a,b). Then we

also have a bijection

κ
↖

: BJ // T ↖

c � // P
↖

(c)

. (6.3.1)

Theorem 6.3.1. The bijection κ
↖

in (6.3.1) is an isomorphism of ĝn-crystals.

Proof. The proof is identical with the one of Theorem 3.3.3 (see Section 7.1.2).

For a semistandard tableau T of skew shape, let [T ] denote the equivalence class of T
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with respect to Knuth equivalence (see [23] for definition). If we define

x̃i[T ] =


[x̃0T

↖
], if i = 0,

[x̃nT
↘

], if i = n,

[x̃iT ], otherwise,

for i ∈ Î and x = e, f (we assume that [0] = 0), then the set

T =
{

[T ] |T ∈ T ↘
}

=
{

[T ] |T ∈ T ↖
}

(6.3.2)

is a ĝ-crystal with respect to ẽi, f̃i (i ∈ I), where wt, εi, and ϕi are well-defined on [T ]

[62, Section 5.3]. Therefore,

Corollary 6.3.2. The map

κd : BJ // T
c � // [P

↖
(c)] = [P

↘
(c)]

,

is an isomorphism of ĝ-crystals.

For s ≥ 1, let T s = { [T ] | `(sh(T )′) ≤ s } ⊂ T . It is shown in [62, Theorem 5.4] that

T s ⊗ Ts$n ∼= Bn,s. Therefore, we have the following.

Corollary 6.3.3. The map κd when restricted to BJ,s gives an isomorphism of ĝ-crystals

κd : BJ,s // T s .

Remark 6.3.4. It is already known in [62] that the matrix realization of Br,s for type

A
(1)
n−1 is obtained from RSK correspondence. Furthermore, by the folding technique [46],

the approach is available for types D
(2)
n+1 and C(1)

n . Although the tableau description of

Bn,s for type D(1)
n is known in [62, Section 5.3], RSK correspondence does not seem to

be extended to an isomorphism of D(1)
n -crystals. Therefore, it does not give a matrix

realization of Bn,s for type D(1)
n by the approach in [62].

The crystal BJ,s can be viewed as the matrix realization of Bn,s mentioned in [62,

Remark 5.5] and Burge correspondence is an analog of RSK for type D(1)
n in this viewpoint.
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Remark 6.3.5. The combinatorics on Br,s for r 6= 1, n − 1, n is more complicated than

the cases r = 1, n − 1 and n. For example, see [100] for the KR crystal B2,s for type

D(1)
n . Note that the KR crystal B2,s is not classically irreducible and it is decomposed as

Dn-crystal into a direct sum of classical Dn-crystals as follows:

B2,s ∼=
n⊕
k=1

B(k$2),

where B(k$2) is the Dn-crystal of an integral highest weight irreducible module with

highest weight k$2. This yields that the description of 0th crystal operators ẽ0 and f̃0

are more complicated than (6.2.1).
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Proofs

7.1 In Chapters 3 and 6

7.1.1 Formula of Berenstein-Zelevinsky

Let us recall a result on Lusztig’s parametrization and string parametrization of B(∞)

due to Berenstein-Zelevinsky [4], which plays a crucial role in proving Theorems 3.3.6 and

6.2.4.

Let g be a symmetrizable Kac-Moody algebra. We keep the notations in Chapter

2. For i ∈ I, let Bi = { (x)i |x ∈ Z } be the abstract crystal given by wt((x)i) = xαi,

εi((x)i) = −x, ϕi((x)i) = x, εj((x)i) = −∞, ϕj((x)i) = −∞ for j 6= i and ẽi(x)i = (x+1)i,

f̃i(x)i = (x− 1)i, ẽj(x)i = f̃j(x)i = 0 for j 6= i. It is well-known that for any i ∈ I, there

is a unique embedding of crystals [44]

Ψi : B(∞) �
� // B(∞)⊗Bi

sending b∞ 7→ b∞⊗(0)i, where b∞ is the highest weight element in B(∞). This embedding

satisfies that for b ∈ B(∞), Ψi(b) = b′⊗ (−a)i, where a = εi(b
∗) and b′ = (ẽai (b

∗))∗. Given

b ∈ B(∞) and a sequence of indices i = (i1, · · · , il) in I, consider the sequence bk ∈ B(∞)

and ak ∈ Z+ for 1 ≤ k ≤ l − 1 defined inductively by

b0 = b, Ψik(bk−1) = bk ⊗ (−ak)ik .

The sequence ti(b) = (al, · · · , a1) is called the string of b in direction i. By construction,
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it can be reformulated by

ak = εik(ẽ
ak−1

ik−1
· · · ẽa1i1 b

∗), (7.1.1)

for 2 ≤ k ≤ l, where a1 = εi1(b
∗).

Suppose that g is of finite type. Let V be a finite-dimensional g-module and Vλ denote

the weight space of V for λ ∈ wt(V ), where wt(V ) is the set of weights of V .

Definition 7.1.1. For λ, µ ∈ wt(V ), an i-trail from λ to µ in V is a sequence of weights

π = (λ = ν0, ν1, . . . , νl = µ) in wt(V ) satisfying the following conditions:

(1) for 1 ≤ k ≤ l, νk−1 − νk = dk(π)αik for some dk(π) ∈ Z+,

(2) e
d1(π)
i1
· · · edl(π)

il
is a non-zero linear map from Vµ to Vλ.

Remark 7.1.2. When V is a module with a minuscule1 highest weight, then the condition

(1) implies (2). Furthermore, if B is a crystal of V , then we have ẽ
d1(π)
i1
· · · ẽdl(π)

il
Bµ = Bλ

or f̃
dl(π)
il
· · · f̃d1(π)

i1
Bλ = Bµ.

Let i = (i1, · · · , iN) ∈ R(w0) given. Let i∗ := (i∗1, · · · , i∗N) and iop := (iN , · · · , i1),

where i 7→ i∗ is the involution on I given by w0(αi) = −αi∗ . For c ∈ Bi, we have by

[4, Proposition 3.3]

bi(c)∗ = bi∗op(cop), (7.1.2)

where cop = (cop
k ) is given by cop

k = cN−k for c = (ck).

Theorem 7.1.3 ([4], Theorem 3.7). For i, i′ ∈ R(w0) and c ∈ Bi, let t = ti(bi′(c)∗).

Then t = (tk) and c = (cm) are related as follows : for any k = 1, · · · , N

tk = min
π1

{
N∑
m=1

dm(π1)cm

}
−min

π2

{
N∑
m=1

dm(π2)cm

}
, (7.1.3)

where π1 (resp. π2) runs over i′-trails from si1 · · · sik−1
$ik (resp. from si1 · · · sik$ik) to

w0$ik in the fundamental representation V ($ik).

Remark 7.1.4. The string parametrization of b ∈ B(∞) given by (7.1.1) is the string

parametrization of b∗ in [5] (see also [85, Remark in Section 2]).

1This means that Weyl group acts transitively on the weights.
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7.1.2 Proof of Theorem 3.3.3

We keep the notations in Chapter 3. We assume that ∆i ⊂ ∆n for 1 ≤ i ≤ n, where both

of ∆i and ∆n share the same southeast corner. For c = (ck) ∈ BJ , let c∆i
∈ BJ (resp.

c∆c
i
∈ BJ) whose component in ∆i (resp. ∆c

i := ∆n \∆i) is ck and 0 elsewhere. Let

BJ
∆i

= { c ∈ BJ | c∆c
i

= 0 }.

Fix i ∈ I \ {n}. Let c ∈ BJ
∆i+1

given with c = c(a,b) for a unique (a,b) =

(a1 . . . ar, b1 . . . br) ∈ Ω. We divide (a,b) into two biwords (a′,b′) = (a1 . . . as, b1 . . . bs)

and (a′′,b′′) = (as+1 . . . ar, bs+1 . . . br) where as ≤ i and as+1 > i so that(
a′

b′

)
=

(
i+ 1

1

ci+11

· · ·
i+ 1

i

ci+1i
i

1

ci1

· · ·
i

i− 1

cii−1)
. (7.1.4)

Here the superscript means the multiplicity of each biletter.

Let c′ = c(a′,b′) and c′′ = c(a′′,b′′) ∈ BJ
∆i−1

be the corresponding Lusztig data. Put

T = κ
↘

(c′′). Then sh(T ) = µπ for some µ ∈ Pi−1 such that µ′ is even. We define

(P(c), Q(c)) by

(1) P(c) = ((T ← bs)← · · · ← b1),

(2) Q(c) ∈ SST ((λ/µ)π), where sh(Pk)/sh(Pk−1) is filled with ak for 1 ≤ k ≤ s.

Here λ = sh(P(c))π, Pk = ((T ← bk) ← · · · ← b1), and P0 = T . The pair (P(c), Q(c)) can

be viewed as a skew-analogue of RSK correspondence applying insertion of (a′,b′) into T

(cf. [23, Proposition 1 in Section 5.1] and [97]).

Lemma 7.1.5. Under the above hypothesis, we have

Q(f̃ic) = f̃iQ(c).

Proof. Considering the action of f̃i on the subcrystal BJ
∆i+1

of BJ described in Proposi-

tion 3.2.3, we may apply [60, Proposition 4.6 and Remark 4.8(1)] to have Q(f̃ic) = f̃iQ(c)

(because we can naturally identify each element of BJ
∆k+1

with an element of the crystal

M in [60, Section 3]).

Let `(λ) = 2m for some m ≥ 1. For 1 ≤ l ≤ m, let Vl be the subtableau of Q(c)

lying in the (2l − 1)-th and 2l-th rows from the bottom, and let Ul be the subtableau of
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P(c) corresponding to Vl. Note that Ul and Vl are of anti-normal shapes, and V
↖

l is the

tableau of normal shape obtained from Vl by jeu de taquin to the northwest corner. We

also let P(c)l be the subtableau of P(c) lying above the (2l − 2)-th row from the bottom,

where P(c)1 = P(c).

Now we glue each V
↖

l to P(c) to define a tableau T(c) by the following inductive

algorithm;

(g-1) Let T(c)m be the tableau obtained from P(c)m by gluing V
↖
m to Um (so that V

↖
m and

Um form a two-rowed rectangle Wm).

(g-2) Consider a tableau obtained from P(c)m−1 by gluing V
↖
m−1 to Um−1 and replacing

P(c)m by T(c)m. If the number of columns in Wm is greater than µ2m−3 − µ2m−1

for m ≥ 2, then we move dominos i+1

i down to the next two rows as many as the

difference, and denote the resulting tableau by T(c)m−1.

(g-3) Repeat (g-2) to have T(c)m−2, . . . , T(c)1, and let T(c) = T(c)1.

Example 7.1.6. Suppose that n = 6 and i = 4. Let c ∈ BJ
∆5

be given by

0

0 3

0 1 1

0 3 2 1

0 3 2 0 3

where c′ is given by the entries in bold letters. Then

T = κ
↘

(c′′) =
3 2 2 2

1 1 1 1
,

(
a′

b′

)
=

(
5

1

3
5

2

1
5

3

3
5

4

3
4

1

1
4

2

2
4

3

2 )
.

By definition, the pair (P(c), Q(c)) is given by

P(c) =

4 4

3 3 3 3

4 3 2 2 2 2 2

3 2 1 1 1 1 1 1 1 1

, Q(c) =

5 5

5 5 4 4

5 5 5

5 5 5 4 4 4
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where U1 and V1 (resp. U2 and V2) are given in blue (resp. in red). Since

V
↖

1 =
5 5 5 5 5 5

4 4 4
, V

↖

2 =
5 5 5 5

4 4

we have by algorithm (g-1)–(g-3),

T(c) =

5 5 4 4

3 3 3 3

5 5 5 5 5 5 5 5 4 3 2 2 2 2 2

4 4 4 4 4 3 2 1 1 1 1 1 1 1 1

Lemma 7.1.7. Under the above hypothesis, we have

(1) T(c) = κ
↘

(c),

(2) κ
↘

(f̃ic) = f̃iκ
↘

(c).

Proof.

(1) : Let Ci+1 =
∑

1≤j≤i ci+1j. We use induction on Ci+1. Note that when Ci+1 = 0,

we clearly have T(c) = κ
↘

(c) by definition of T(c).

First, assume that Ci+1 = 1. Then ci+1j = 1 for some j. Suppose that the box in P(c),

which appears after insertion of the corresponding j, belongs to Ul for some 1 ≤ l ≤ m.

Recall that µπ = sh(T ). Let d = µ2l−3 − µ2l−1 and let u be the length of the bottom row

of Ul.

Case 1. Suppose that `(sh(Ul)) = 2 and d > u. Then we have

Ul =
···

, Wl =
i+1 i i ··· i

i ···
.

where the gray box denotes the one created after the insertion of j. In this case, the

domino in the leftmost column of Wl does not move to lower rows. Hence it is clear that

T(c) coincides with κ
↘

(c).

Case 2. Suppose that `(sh(Ul)) = 2 and d = u. Then we have

Ul =
···

, Wl =
i+1 i i ··· i

i ···
.
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In this case, the leftmost domino in Wl moves down to a lower row by (g-2), and it is

easy to see that T(c) = κ
↘

(c).

Case 3. Finally suppose that `(sh(Ul)) = 1. Then

Ul =
···

, Wl =
i+1 i i ··· i i

i ···
.

As in Case 1, the domino in the leftmost column of Wl does not move to lower rows, and

hence T(c) = κ
↘

(c).

Next, we assume that Ci+1 > 1. Let (a′,b′) be the biword removing (a1, b1) in (a′,b′)

in (7.1.4), and let c = c(a′,b′). Note that (a1, b1) = (i+ 1, j) for some j.

By induction hypothesis, we have T(c) = κ
↘

(c). On the other hand, when we apply

the insertion of (i+ 1, j) into T(c), the possible cases are given similarly as above. Then

it is straightforward to check that the tableau obtained by insertion of (i+ 1, j) into T(c)

(see the step (2) in the definition of P
↘

(c) = P
↘

(a,b) (3.3.2)) is equal to T(c). Therefore,

we have T(c) = κ
↘

(c). This completes the induction.

(2) : By definition of T(c) and Lemma 7.1.5, we have T(f̃ic) = f̃iT(c). Then we have

κ
↘

(f̃ic) = f̃iκ
↘

(c) by (1).

Proof of Theorem 3.3.3. It suffices prove that for i ∈ I and c ∈ BJ

κ�(f̃ic) = f̃iκ
�(c) (� = ↘,↖)

We prove only the case when � = ↘ since the proof for the other case is identical.

Suppose first that i ∈ I \ {n}. By Proposition 3.2.3 (σk,3(c) is trivial in this case), we

have

c = c∆c
i+1
⊗ c∆i+1

,

as elements of gl2-crystals with respect to ẽi, f̃i.

Let us denote by
B−→ the insertion of a biword into a tableau following the algorithm

given in (3.3.2). If we ignore the entries smaller than i+ 1, then c∆c
i+1

B−→ κ
↘

(c∆i+1
) is

equal to a usual Schensted’s column insertion. Hence(
c∆c

i+1

B−→ κ
↘

(c∆i+1
)
)

= c∆c
i+1
⊗ κ↘(c∆i+1

), (7.1.5)
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as elements of gli+1-crystals with respect to ẽj, f̃j for 1 ≤ j ≤ i. Moreover, the subtableau

of κ
↘

(c) consisting of entries n, . . . , i+ 2 is invariant under the action of f̃j on κ
↘

(c) for

1 ≤ j ≤ i since it depends only on the Knuth equivalence class of the subtableau with

entries i+ 1, . . . , 1 by definition of κ
↘

.

Case 1. Suppose that f̃ic = c∆c
i+1
⊗ f̃ic∆i+1

. Then we have

κ
↘

(f̃ic) =
(
c∆c

i+1

B−→ κ
↘

(f̃ic∆i+1
)
)

=
(
c∆c

i+1

B−→ f̃iκ
↘

(c∆i+1
)
)

by Lemma 7.1.7(2)

= f̃i

(
c∆c

i+1

B−→ κ
↘

(c∆i+1
)
)

by (7.1.5)

= f̃iκ
↘

(c).

(7.1.6)

Case 2. Suppose that f̃ic = f̃ic∆c
i+1
⊗ c∆i+1

. By the same argument as in (7.1.6), we

have κ
↘

(f̃ic) = f̃iκ
↘

(c).

Next, suppose that i = n. We may identify c with the pair (c∆c
n−1
, c∆n−1). Regarding

c as an element of BJ
∆n+1

, the crystal of type Dn+1, we have by Lemma 7.1.7(1) the

following commuting diagram;

c (c∆c
n−1
, c∆n−1) (c∆c

n−1
, κ
↘

(c∆n−1))

κ
↘

(c) = T(c) (P(c), Q(c))

(i)

(ii)

Now, we can apply the same argument for the proof of [60, Theorem 3.6] to see that the

composition of (i) and (ii) commutes with f̃n. Therefore, we have κ
↘

(f̃nc) = f̃nκ
↘

(c).

7.1.3 Proofs of Theorems 3.3.6 and 6.2.4

From now on we assume that g is of type Dn (n ≥ 4) and let i0 = (i1, . . . , iN) ∈ R(w0)

given in (3.2.8) with iJ = (i1, . . . , iM) and iJ = (iM+1, . . . , iN).

We first prove Theorem 6.2.4 using Berenstein-Zelevinsky formula (7.1.3). Note that

we generalize the argument in the proof of Theorem 6.2.4 to verify Theorem 3.3.6. In

134



CHAPTER 7. PROOFS

order to describe (7.1.3) explicitly, we characterize the certain trails related to i0 in the

fundamental representation V ($n) (recall Definition 7.1.1).

We have n∗ = n− 1 (resp. (n− 1)∗ = n) when n is odd, and i∗ = i otherwise. Put

j0 = (j1, . . . , jN) := i∗op
0 = (i∗N , . . . , i

∗
1). (7.1.7)

Recall that the crystal B($n) of V ($n) can be realized as

B($n) = { τ = (τ1, . . . , τn) | τk = ± (1 ≤ k ≤ n) },

where wt(τ) = 1
2

∑n
k=1 τkεk and

(. . . . . . , +,+︸︷︷︸
τn−1,τn

)
f̃n−→ (. . . . . . ,−,−), (. . . , +,−︸︷︷︸

τi,τi+1

, . . .)
f̃i−→ (. . . ,−,+, . . .), (7.1.8)

(1 ≤ i ≤ n − 1) with the highest weight element (+, . . . ,+) [50]. Since the spin rep-

resentation V ($n) is minuscule (recall Remark 7.1.2), any i0-trail π = (ν0, . . . , νN) in

V ($n) can be identified with a sequence b0, . . . , bN in B($n) such that wt(bk) = νk and

f̃
dk(π)
ik

bk−1 = bk with dk(π) = 0, 1 for 1 ≤ k ≤ N .

Lemma 7.1.8. There exists a unique (i∗N , . . . , i
∗
M+1) = (j1, . . . , jM)-trail from $n−αn =

wt(+, . . . ,+,−,−) to $n+α0 = wt(−,−,+ . . . ,+). We denote this trail by (ν̃0, . . . , ν̃M).

Proof. Considering the crystal structure on B($n) (7.1.8), we see that up to 2-term

braid move (j′1, j
′
2, . . . , j

′
2n−4) = (n− 2, n− 1, n− 3, n− 2, . . . , 1, 2) is the unique sequence

of indices in I such that

f̃j′2n−4
· · · f̃j′2 f̃j′1(+, . . . ,+,−,−) = (−,−,+ . . . ,+).

On the other hand, there exists a subsequence (j′1, j
′
2, . . . , j

′
2n−4) of (j1, . . . , jN). Since no

other subsequence gives (n−2, n−1, n−3, n−2, . . . , 1, 2) up to 2-braid move by definition

of iJ , (j′1, j
′
2, . . . , j

′
2n−4) determines a unique such trail.

Let T be the set of j0-trails π from sn$n to w0$n in V ($n). For c = (ck) ∈ BJ and

π ∈ T , let

||c||π = (1− dN(π))c1 + · · ·+ (1− dM+1(π))cM =
M∑
k=1

(1− dN−k+1(π)) ck. (7.1.9)
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Recall that ck = cβk for βk ∈ Φ+(J) (1 ≤ k ≤ M) with respect to the order (3.2.2) and

hence (3.2.7). Let us simply write c = (c1, . . . , cM). The following lemma plays a crucial

role in the proof of Theorem 6.2.4.

Lemma 7.1.9. For c ∈ BJ , we have ε∗n(c) = max { ||c||π |π ∈ T }.

Proof. Let c = (ck) ∈ BJ given. Since ε∗n(c) = ε∗n(bi0(c)), we have ε∗n(c) = t1, where

(tk) = ti0(bi0(c)) = ti0(bi0(c)∗∗) = ti0(bi∗op0
(cop)∗) by (7.1.2).

One can check that applying f̃jN · · · f̃jM+1
to (+, . . . ,+) gives a unique j0-trail from

$n and w0$n. Hence by (7.1.3), we have

t1 =
∑

1≤k≤M

ck −min
π

{ ∑
1≤k≤M

dN−k+1(π)ck

}
,

where π is a j0-trail from sn$n to w0$n. Hence t1 = max { ||c||π |π ∈ T }.
For π = (ν0, . . . , νN) ∈ T , let πJ = (ν0, . . . , νM), πJ = (νM+1, . . . , νN), and

T ′ = { π |πJ = (ν̃0, . . . , ν̃M) } ⊂ T ,

where (ν̃0, . . . , ν̃M) as in Lemma 7.1.8.

Lemma 7.1.10. For c ∈ BJ , we have ε∗n(c) = max { ||c||π |π ∈ T ′ }.

Proof. For simplicity, we assume that n is even so that w0$n = −$n. The proof for odd

n is almost identical. Let π = (ν0, . . . , νN) ∈ T given. It suffices to show that there exists

π′ ∈ T ′ such that ||c||π ≤ ||c||π′ .
If π ∈ T ′, then νM = wt(−,−,+ . . . ,+) by Lemma 7.1.8. Suppose that π 6∈ T ′. Since

jk 6= n for 1 ≤ k ≤ M , we have νM = wt(τ) where τ = (τ1, . . . , τn) with τp = τq = − for

some (p, q) 6= (1, 2) and τi = + otherwise.

Since π ∈ T , there exists a subsequence (j′1, . . . , j
′
N ′) of (jM+1, . . . , jN) such that

f̃j′
N′
· · · f̃j′2 f̃j′1τ = (−, . . . ,−),

the lowest weight element. Ignoring j′k such that −’s in τ is moved to the left by f̃j′k
(7.1.8), we obtain a subsequence (j′′1 , . . . , j

′′
N ′′) of (j′1, . . . , j

′
N ′) such that

f̃j′′
N′′
· · · f̃j′′2 f̃j′′1 (+, . . . ,+) = (+,+,−, . . . ,−).
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This implies that there exists a unique π′ ∈ T ′ such that for M + 1 ≤ k ≤ N

dk(π
′) =

1, if k = j′′l for some 1 ≤ l ≤ N ′′,

0, otherwise.

Hence we have ||c||π ≤ ||c||π′ by construction of π′.

Recall that c = (ck) ∈ BJ is by convention identified with the array, where ck is placed

at the position of βk in ∆n for 1 ≤ k ≤M (see Example 3.2.10).

We note that if we consider the array (jk) for M+1 ≤ k ≤ N , where jk is placed at the

position of βN−k+1 in ∆n, then the r-th row from the top is filled with r for 1 ≤ r ≤ n− 2

and the bottom row is filled with . . . , n− 1, n, n− 1, n from right to left.

Let D be the set of arrays, where either 0 or 1 is placed in each r-th row of ∆n from

the top (1 ≤ r ≤ n− 1) satisfying the following conditions;

(1) the three entries in the first two rows are 0,

(2) the number of 1’s in each r-th row is r − 2 for 3 ≤ r ≤ n− 1,

(3) if r > 3 (resp. r < n− 1) and there are two 1’s in the r-th row such that the entries

in the same row between them are zero, then there is exactly one 1 in the (r− 1)-th

row (resp. (r + 1)-th row) between them,

(4) the jk’s corresponding to 1’s in the (n− 1)-th row are n, n− 1, n, . . . from right to

left.

We write d = (dk) ∈ D, where dk denotes the entry at the position of βN−k+1 in ∆n for

M + 1 ≤ k ≤ N .

Example 7.1.11. When n = 6, we have

c5

c4 c9

c = c3 c8 c12

c2 c7 c11 c14

c1 c6 c10 c13 c15

d26

d27 d22

d = d28 d23 d19

d29 d24 d20 d17

d30 d25 d21 d18 d16
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j26

j27 j22

j28 j23 j19

j29 j24 j20 j17

j30 j25 j21 j18 j16

=

1

2 2

3 3 3

4 4 4 4

6 5 6 5 6

For π ∈ T ′, let d(π) denote the array (dk(π)), where dk(π) is placed in the position of

βN−k+1 in ∆n for M + 1 ≤ k ≤ N .

Lemma 7.1.12. The map sending π to d(π) is a bijection from T ′ to D.

Proof. Let us assume that n is even since the proof for odd n is the same. We first

show that the map is well-defined. Let π = (ν0, . . . , νN) ∈ T ′ given, where νM =

wt(−,−,+ . . . ,+). Let (j′1, . . . , j
′
L) be the subsequence of (jM+1, . . . , jN) such that dj′k(π) =

1. Then

f̃j′L · · · f̃j′2 f̃j′1(−,−,+ . . . ,+) = (−,−,−, . . . ,−),

equivalently,

f̃j′L · · · f̃j′2 f̃j′1(+,+,+ . . . ,+) = (+,+,−, . . . ,−). (7.1.10)

From (7.1.8), (7.1.10) and the array (jk) on ∆n, one can check that (i) L = (n−3)(n−2)/2,

(ii) 3 ≤ j′k ≤ n, (iii) the array d(π) satisfies the conditions (1) and (2) for D. To verify the

condition (3), let us enumerate −’s appearing in (7.1.10) from left to right by −1,−2, . . ..

For 3 ≤ r ≤ n− 1, let 1(r−2,r), . . . , 1(2,r), 1(1,r) denote the entries 1 of d(π) in the r-th

row, which are enumerated from the right.

For 1 ≤ k ≤ L, suppose that j′k corresponds to 1(s,r) in d(π) for some s with r = j′k.

It is not difficult to see that f̃j′k in (7.1.10) corresponds to

(1) moving −s at the (r + 1)-th coordinate of a vector in B($n) to the r-th one unless

r = n and s is odd,

(2) placing (−s,−s+1) at the last two coordinates if r = n and s is odd.

Then by looking at the arrangement of dk(π)’s in ∆n, it follows that 1(s,r) is located to

the northeast of 1(s+1,r+1) and to the northwest of 1(s,r+1) for r < n− 1,

· · · 1(s,r) · · ·

1(s+1,r+1) 1(s,r+1)
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and the j′k’s corresponding to . . . , 1(3,n−1), 1(2,n−1), 1(1,n−1) are . . . , n, n− 1, n. Hence d(π)

satisfies the condition (3) and (4) for D, and the map π 7→ d(π) is well-defined.

Since the map is clearly injective, it remains to show that it is surjective. Let π0 ∈ T ′

be a unique trail such that dk(π0)k = 1 for M + 1 ≤ k ≤M + L and 0 otherwise.

We claim that for any d ∈ D there exists a sequence d = d0,d1, . . . ,dm = d(π0) in D
such that dl+1 is obtained from dl by moving an entry 1 to the right. If d 6= d(π0), then

choose a minimal k such that dk = 0 6= dk(π0) for M + 1 ≤ k ≤ M + L. If 1(s,r) denotes

an entry corresponding to dk(π0) in d(π), then there exists 1(s′,r) in d such that s < s′.

Here we assume that s′ is minimal. Then by the condition (3) for D and the minimality

of s′, we can move 1(s′,r) to the right by one position if r < n − 1 and by two positions

if r = n − 1 to get another d′ ∈ D by definition of D. Repeating this step, we obtain a

required sequence. This proves our claim.

Now, let d = (dk) ∈ D be given and let (j′1, . . . , j
′
L) be the subsequence such that

dj′k = 1. By the above claim and definition of D, we obtain the following two reduced

expressions;

sj′L · · · sj′2sj′1 = sjM+L
· · · sjM+2

sjM+1
,

where we obtain the right-hand side from the left only by applying 2-term braid move.

Since f̃jM+L
· · · f̃jM+2

f̃jM+1
(+,+,+ . . . ,+) = (+,+,−, . . . ,−), we obtain (7.1.10), which

implies that there exists π ∈ T ′ such that d(π) = d. The proof completes.

Let P be the set of double paths at θ. Consider two operations on P which change a

part of p ∈ P in the following way;

•
��
•
��
•

•
−→

•
��

• •
��
•

(7.1.11)

•
��

•
��

• • •
−→ •

��
•
��

• • •

(7.1.12)

where in (7.1.12) the rows denote the two rows from the bottom in ∆n.

Lemma 7.1.13. For p ∈ P, let d(p) = (dk) ∈ D be given by dk = 0 if p passes the

position of dk, and dk = 1 otherwise. Then the map sending p to d(p) is a bijection from

P to D.

Proof. Let p0 ∈ P be a unique double path at θ such that p0 ends at the first two dots
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from the left in the bottom row of ∆n, that is, β1 and βn (see the first double path in

Example 3.3.5). It is clear that d(p0) = d(π0) ∈ D, where π0 ∈ T ′ is given in the proof

of Lemma 7.1.12.

Let p ∈ P given. Suppose that p′ is obtained from p by applying either (7.1.11) or

(7.1.12). If d(p) ∈ D, then it is clear that d(p′) ∈ D. Since one can obtain p from p0

by applying (7.1.11) and (7.1.12) a finite number of times, we have d(p) ∈ D. Hence

the map p 7→ d(p) is well-defined and injective. The surjectivity follows from the fact

that any d ∈ D can be obtained from d(π0) by moving an entry to the left by one or

two depending on the row which it belongs to (see the proof of Lemma 7.1.12), which

corresponds to (7.1.11) or (7.1.12).

Proof of Theorem 6.2.4. By Lemmas 7.1.12 and 7.1.13, there exists a bijection from

T ′ to P . If π ∈ T ′ corresponds to p ∈ P , then we have ||c||π = ||c||p for c ∈ BJ . Hence

by Lemma 7.1.10, we have ε∗n(c) = max { ||c||p |p ∈ P }.

For 1 ≤ l ≤ [n
2
], let kl be the index such that jkl belongs to the subword (iJ2l−1)∗op of

j0 and jkl = n. For i ∈ I and an element b of a crystal, let ẽmax
i b = ẽ

εi(b)
i b. The following

is crucial when proving Theorem 3.3.6.

Proposition 7.1.14. For c = (ck) ∈ BJ and 1 ≤ l ≤ [n
2
],

λ2l−1(c) = εjkl

(
ẽmax
jkl−1
· · · ẽmax

j2
ẽmax
j1

c
)
, (7.1.13)

and it is equal to

min
π1

{
M∑
k=1

dk(π1)ck

}
−min

π2

{
M∑
k=1

dk(π2)ck

}
, (7.1.14)

where π1 and π2 are i0-trails from

wt(−, · · · ,−︸ ︷︷ ︸
2l−2

,+, · · · ,+︸ ︷︷ ︸
n−2l+2

) and wt(−, · · · ,−︸ ︷︷ ︸
2l

,+, · · · ,+︸ ︷︷ ︸
n−2l

)

to the lowest weight element in B($n), respectively.

Proof. Let c ∈ BJ given. Since (j1, . . . , jM) is a reduced expression of the longest

element for l, ẽmax
jM
· · · ẽmax

j1
c is an l-highest weight element, which is of the form (3.2.17).

Then it is straightforward to verify (7.1.13) using Proposition 3.2.3.
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On the other hand, the righthand side of (7.1.13) can be obtained by (7.1.3) letting

i = j0, i′ = i0, (7.1.15)

where in this case

sj1 · · · sjkl−1
($jkl

) = sj1 · · · sjkl−1
($n) = wt(−, · · · ,−︸ ︷︷ ︸

2l−2

,+, · · · ,+︸ ︷︷ ︸
n−2l+2

),

sj1 · · · sjkl ($jkl
) = wt(−, · · · ,−︸ ︷︷ ︸

2l

,+, · · · ,+︸ ︷︷ ︸
n−2l

).
(7.1.16)

Hence the formula (7.1.3) gives (7.1.14).

Let 1 ≤ l ≤ [n
2
] given. Let Tl be the set of i0-trails from sj1 · · · sjkl ($n) (7.1.16) to

w0$n. Let Dl be the set of arrays where either 0 or 1 is placed in each r-th row of ∆n

from the top (1 ≤ r ≤ n− 1) satisfying the following conditions;

(1) the entries in the first 2l rows are 0,

(2) the number of 1’s in each r-th row is r − 2l for 2l + 1 ≤ r ≤ n− 1,

(3) if r > 2l + 1 (resp. r < n − 1) and there are two 1’s in the r-th row such that the

entries in the same row between them are zero, then there is exactly one 1 in the

(r − 1)-th row (resp. (r + 1)-th row) between them,

(4) the jk’s corresponding to 1’s in the (n − 1)-th row are n, n − 1, n, . . . from left to

right.

Note that D1 = D.

Lemma 7.1.15. For π ∈ Tl, the map sending π to d(π) is a bijection from Tl to Dl,
where d(π) is defined in the same way as in T ′.

Proof. It can be shown by almost the same arguments as in Lemma 7.1.12 that the map

is well-defined, and clearly injective.

It suffices to show that it is surjective. Let ∆′n−2l be the set ∆n−2l, which we regard

as a subset of ∆n sharing the same southwest corner with ∆n. Let π0 be a unique

trail in Tl such that dk(π0) = 1 if and only if dk(π0) is located in ∆′n−2l. Then as in

the proof of Lemma 7.1.12 we can check that for any d ∈ Dl there exists a sequence
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d = d0,d1, . . . ,dm = d(π0) in Dl such that dl+1 is obtained from dl by moving an entry

1 to the left, and hence that there exists π ∈ Tl such that d(π) = d.

Let Pl be the set of l-tuple p = (p1, · · · ,pl) of mutually non-intersecting double paths

in ∆n such that each pi is a double path at some point in the (2i− 1)-th row.

Lemma 7.1.16. The map sending p to d(p) is a surjective map from Pl to Dl, where

d(p) is defined in the same way as in P.

Proof. Suppose that p = (p1, · · · ,pl) ∈ Pl is given. By definition of Pl, one can check

that all the points in the first 2l rows in ∆n are occupied by p.

Let p0 = (p0
1, . . . ,p

0
l ) be given such that p0

i starts at ε2i−1 + εn and ends at ε2i−1 + ε2i

and ε2i + ε2i+1 for 1 ≤ i ≤ r. We have d(p0) = d(π0), where π0 is given in the proof

of Lemma 7.1.15. Applying the operations (7.1.11) and (7.1.12) on Pl, one can obtain a

sequence in Pl from p to p0, whose image under d lies in Dl. Then similar arguments as

in Lemma 7.1.13 implies the surjectivity.

Proof of Theorem 3.3.6. Let c ∈ BJ given. For π ∈ Tl, there exists p = (p1, · · · ,pl) ∈
Pl such that d(p) = d(π) by Lemmas 7.1.15, and 7.1.16, and∑

1≤k≤M

dk(π)ck =
∑

1≤k≤M

ck − (||c||p1 + · · ·+ ||c||pl) . (7.1.17)

Indeed, (7.1.17) holds for any p ∈ Pl such that d(p) = d(π). Therefore, we have by

(7.1.14) and (7.1.17)

λ2l−1(c) = min
π1∈Tl−1

{ ∑
1≤k≤M

dk(π1)ck

}
− min

π2∈Tl

{ ∑
1≤k≤M

dk(π2)ck

}

=

( ∑
1≤k≤M

ck − max
p∈Pl−1

{ ||c||p1 + · · ·+ ||c||pl−1
}

)

−

( ∑
1≤k≤M

ck −max
p∈Pl
{ ||c||p1 + · · ·+ ||c||pl }

)
= max

p∈Pl
{ ||c||p1 + · · ·+ ||c||pl } − max

p∈Pl−1

{ ||c||p1 + · · ·+ ||c||pl−1
}.

This gives the formula in Theorem 3.3.6.
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7.2 In Chapter 4

7.2.1 Proof of Lemma 4.3.1

Let B be one of T(a) (0 ≤ a ≤ n − 1) and Tsp in Definition 4.1.4. When B = Tsp, we

regard an element of B as in the sense of Remark 4.1.6 (2). For T ∈ B, we define

sT := max
1≤s≤ht(T R)

{
s | T L(s− rT − 1 + a) > T R(s)

}
∪ { 1 }, (7.2.1)

where T L[k] := −∞ for k ≤ 0. Note that a = rT when B = Tsp.

Let (T, S) ∈ T(a2)×B be an admissible pair such that

T ∈ SST[n](λ(a2, b2, c2)), S ∈ SST[n](λ(a1, b1, c1))

for ai ∈ Z+ and bi, ci ∈ 2Z+ (i = 1, 2) with a1 ≤ a2. If the pair (T, S) satisfies ht(T R) >

ht(SL)− a1 , then put

SL[0] := −∞.

Note that above inequality occurs only for the case rT · rS = 1.

Lemma 7.2.1.

(1) If rT · rS = 0 (resp. rT · rS = 1), then T / S (resp. T / (SL∗, SR∗)).

(2) If rT · rS = 1, then T / S is equivalent to the following condition:

T R(k) ≤ SL(k − 1 + a1) for sT ≤ k ≤ ht(T R). (7.2.2)

Proof.

(1) : If rT · rS = 0 (resp. rT · rS = 1), then T / S (resp. T / (SL∗, SR∗)) follows

immediately from Definition 4.1.5 (iii).

(2) : Assume that rT · rS = 1. The relation T / S implies

T R(k) = RT (k − 1 + a2) ≤ SL(k − 1 + a1) for sT ≤ k ≤ ht(T R).

Conversely, we assume that (7.2.2) holds. Note that by definition of SL∗,

SL∗(k) = SL(k), (7.2.3)
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if there exists k such that 1 ≤ k ≤ sS − 2 + a1. Now we consider two cases.

Case 1. sT > sS. If sS ≤ k < sT , then by Definition 4.1.5 (ii),

T R(k) = T R∗(k) ≤ LS(k) = SL(k − 1 + a1). (7.2.4)

Combining (7.2.2), (7.2.3), (7.2.4) and Definition 4.1.5 (iii), we have

RT (k + a2 − a1) ≤ SL(k) for 1 ≤ k ≤ ht(SL).

Case 2. sT ≤ sS. In this case, the relation T / S follows directly from (7.2.2), (7.2.3)

and Definition 4.1.5 (iii).

Lemma 7.2.2. Assume that rT · rS = 1. For 1 ≤ k ≤ ht(T R),

(1) T R(k) ≤ SL∗(k).

(2) If T / S, then T R(k) ≤ SL(k).

Proof. By (7.2.4) and Definition 4.1.5 (iii), in any case, we have

T R(sS) ≤ SL(sS − 1 + a1) ≤ SR(sS) = SL∗(sS − 1 + a1). (7.2.5)

Then (1) follows from Definition 4.1.5 (ii)–(iii) and (7.2.5). By the same argument in the

proof of Lemma 7.2.1 (2), we obtain (2).

Under the map (4.3.2), put

(T, S) = (U4, U3, U2, U1),

S2(T, S) = (Ũ4, Ũ3, Ũ2, Ũ1).
(7.2.6)

Here S2 is the operator given as in (4.3.3). For 1 ≤ i ≤ 4, we regard a tableau Ui as

follows:

Ubody
1 = U1 � ∅, Ubody

2 = U2 � S
tail,

Ubody
3 = U3 � ∅, Ubody

4 = U4 � T
tail,

where T tail = (T L(a2) , . . . , T L(1)) and Stail = (SL(a1) , . . . , SL(1)). Then we consider
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(7.2.6) in PL. For simplicity, put

h = ht(T R), g = ht(SR).

We consider some sequences given inductively as follows:

(i) Define a sequence v1 < · · · < vh by

v1 = min
1≤k≤a2

{
k
∣∣ T L(k) ≤ T R(1)

}
,

vs = min
vs−1+1≤k≤s+a2

{
k
∣∣ T L(k) ≤ T R(s)

}
.

(7.2.7)

(ii) Define a sequence w1 < · · · < wh by

wh = max
h≤k≤h+a1

{
k
∣∣ T R(h) ≤ SL(k)

}
,

wt = max
t≤k≤wt+1−1

{
k
∣∣ T R(t) ≤ SL(k)

}
.

(7.2.8)

(iii) Define a sequence x1 < · · · < xg by

x1 = min
1≤k≤a1

{
k
∣∣ SL(k) ≤ SR(1)

}
,

xu = min
xu−1+1≤k≤u+a1

{
k
∣∣ SL(k) ≤ SR(u)

}
.

(7.2.9)

Proof of Lemma 4.3.1 (1). By Lemma 7.2.1 (1), the proof for the case rT · rS = 0

is identical with the argument in [66, Lemma 5.2]. So we prove the case rT · rS = 1 here.

We consider two cases along / (recall Definition 4.1.9).

Case 1. T / S. In this case, S2 = Fa12 . This implies that Ũ1 = U1 and Ũ4 = U4. By

Lemma 7.2.2 (2),

(T R, SL) ∈ SST[n](λ(0, b, c)),

where b = a1+c1−b2−c2 and c = b2+c2. Since T ≺ S with T/S, c1−b2−c2 ≥ 0. Therefore

Fa12 (T, S) is well-defined. Now we show that (U4, Ũ3) and (Ũ2, U1) are semistandard along

L.

(1) (U4, Ũ3) is semistandard along L. For 1 ≤ k ≤ ht(T R) satisfying vk ≥ a2 − a1 + 1,
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the relation T / S implies

vk − a2 + a1 ≤ wk. (7.2.10)

(i) Assume that Ũ3(k) = T R(k′) for some k′. By definition of wk′ , we have

k = wk′ . (7.2.11)

If vk′ ≥ a2 − a1 + 1, then

U4(k + a2 − a1) = T L(wk′ + a2 − a1) by (7.2.6) and (7.2.11)

≤ T L(vk′) by (7.2.10)

≤ T R(k′) = Ũ3(k) by (7.2.7)

(7.2.12)

If vk′ < a2 − a1 + 1, then

U4(k + a2 − a1) = T L(k + a2 − a1) < T L(vk′) ≤ T R(k′) = Ũ3(k). (7.2.13)

(ii) Assume that Ũ3(k) 6= T R(k′) for any k′. In this case, we have

Ũ3(k) = SL(k).

Then

U4(k + a2 − a1) = T L(k + a2 − a1)

≤ RT (k + a2 − a1) by definition of RT

≤ SL(k) = Ũ3(k) by T / S

(7.2.14)

By (7.2.12), (7.2.13) and (7.2.14), (U4, Ũ3) is semistandard along L.

(2) (Ũ2, U1) is semistandard along L. By (7.2.8), (7.2.9) and Definition 4.1.5 (ii), we

have

xk ≤ wk for 1 ≤ k ≤ sT − 1. (7.2.15)

Also the relation T / S implies

k − 1 + a1 ≤ wk for k ≥ sT . (7.2.16)
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(i) For 1 ≤ k ≤ sT − 1,

Ũ2(k) = SL(wk) by (7.2.8)

≤ SL(xk) by (7.2.15)

≤ SR(k) = U1(k) by (7.2.9)

(ii) For k ≥ sT , (7.2.16) implies

Ũ2(k) = SL(wk) ≤ SL(k − 1 + a1) ≤ SR(k) = U1(k).

Note that SL(k − 1 + a1) ≤ SR(k) holds since rS = 1.

By (i)–(ii), (Ũ2, U1) is semistandard along L.

Case 2. T 6 / S. In this case, S2 = E2E1F a1−1
2 F1. Note that by definition

F1(SL, SR) = (SL∗, SR∗).

By Lemma 7.2.2 (1),

(T R, SL∗) ∈ SST[n](λ(0, b, c)),

where b = a1 + c1 − b2 − c2 + 1 and c = b2 + c2. Note that by Definition 4.1.5 (i),

b = a1 − 1 + {c1 − (b2 + c2 − 2)} ≥ a1 − 1.

Therefore, F a1−1
2 F1(T, S) is well-defined. Put

F a1−1
2 F1(T, S) = (U̇4, U̇3, U̇2, U̇1).

Note that U̇4 = U4 by definition of F a1−1
2 F1. We use sequences (wk) and (xk) in (7.2.8)

and (7.2.9) replacing SL, SR and a1 with SL∗, SR∗ and a1 − 1, respectively.

(1) (U4, U̇3) is semistandard along L. By Lemma 7.2.1 (1), we use the similar argument

in the proof of Case 1 (1).

(2) (U̇2, U̇1) is semistandard along L. We observe

Ea1(SL∗, SR∗) = Ea1 F(SL, SR) = Ea1−1(SL, SR) = (LS, RS).
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Therefore we use the similar argument in the proof of Case 1 (2).

Note that (7.2.5) implies that SR(sS) is contained in U̇2. Then the operator E1 on

(U4, U̇3, U̇2, U̇1) moves SR(sS) by one position to the right. Therefore we have

Ũ1 = U1. (7.2.17)

On the other hand, (7.2.4) and Definition 4.1.5 (iii) implies that the operator E2 on

E1(U4, U̇3, U̇2, U̇1) moves

U̇3(wk) = T R(k) for some k ≥ sT .

by one position to the right. By the choice of sT and sS (7.2.1) with (7.2.17), (U4, Ũ3)

and (Ũ2, U1) are semistandard along L.

We complete the proof of Lemma 4.3.1 (1).

Proof of Lemma 4.3.1 (2). Put ẽk(T, S) = (T ′, S ′). Then it is not difficult to

check that

rT = rT ′ , rS = rS′ . (7.2.18)

(⇒) Assume that

ẽk(T, S) = (T, ẽk S) and ẽk S = (ẽk S
L, SR) (k ∈ J). (7.2.19)

Otherwise it is clear that T ′ / S ′.

If rT · rS = 0, then Lemma 7.2.1 (1) and (7.2.18) implies that T ′ / S ′ holds.

If rT · rS = 1, then suppose T ′ 6 / S ′. By Lemma 7.2.1 (2), there exists s ≥ sT such

that

T R(s) = k

which contradicts to (7.2.19) by the tensor product rule. Hence we have T ′ / S ′.

(⇐) It follows from the similar argument of the previous proof.

7.2.2 Proof of Lemma 4.3.3

We remark that the results in Section 5.3 are also available in proving Lemma 4.3.3, see

[67, Remark 3.8].
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Let us define

T̃ =

(T̃l−1, . . . , T̃1, T̃0), if n = 2l,

(T̃l, . . . , T̃1, T̃0), if n = 2l + 1,
(7.2.20)

as follows:

(1) if n = 2l, then let T̃0 = U1 and let T̃i ∈ T(ai) for 1 ≤ i ≤ l − 1 such that

(T̃ L
i , T̃

R
i ) = (Ũ2i+1, Ũ2i), given in Corollary 5.3.16(ii),

(2) if n = 2l + 1, then let T̃0 = ∅, T̃1 ∈ T(0) and T̃i+1 ∈ T(ai) for 1 ≤ i ≤ l − 1 such

that (T̃ L
1 , T̃

R
1 ) = (U1, U0), (T̃ L

i , T̃
R
i ) = (Ũ2i+1, Ũ2i), given in Corollary 5.3.16(i) and

(ii), respectively.

We have T̃ ∈ T̂λ̃. Let us show that T̃ ∈ Tλ̃. For simplicity, let us assume that n = 2l

since the proof for n = 2l + 1 is almost identical.

By Corollary 5.3.16(1), we have T̃1 ≺ T̃0. So it suffices to show that T̃i ≺ T̃i−1 for

2 ≤ i ≤ l− 1. This can be checked in a straightforward way using the fact that T ∈ H(λ)

and Lemma 5.3.15 as follows.

Consider a triple (Ti+1, Ti, Ti−1) in T. Recall that each Ti satisfies (H1) and (H2).

Without loss of generality, let us consider (T3, T2, T1), which can be identified with

(U6, U5, U4, U3, U2, U1)

under the map (4.3.1). Put

S2S4(T3, T2, T1) = (Ũ6, Ũ5, Ũ4, Ũ3, Ũ2, Ũ1).

Note that Ũ1 = U1 and Ũ6 = U6. Let λ(aj, bj, cj) be the shape of Tj for j = 1, 2, 3. Let T̃j

be the tableau corresponding to (Ũj+2, Ũj+1) for j = 1, 2, 3 in (7.2.20).

We consider the following four cases. The other cases can be checked in a similar

manner.

Case 1. (r3, r2, r1) = (0, 0, 0). In this case, the operators S2 and S4 are just sliding

T tail
2 and T tail

1 to the left horizontally. Note that T̃1 ∈ SST (λ(a1, c1 − b2 − c2, b2 + c2))

and T̃2 ∈ SST (λ(a2, c2 − b3 − c3, b3 + c3)). It is straightforward to check that T̃2 ≺ T̃1.

Case 2. (r3, r2, r1) = (1, 1, 0). If U5(1) < U4(a2), then the proof is the same as in

Case 1. So we assume that U5(1) > U4(a2).
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Note that T̃1 ∈ SST (λ(a1, c1 − b2 − c2, b2 + c2)) and T̃2 ∈ SST (λ(a2, c2 − b3 − c3 +

4, b3 + c3 − 2)). By Corollary 5.3.16(2), T̃2 and T̃1 have residue 1 and 0 respectively. We

see that Definition 4.1.5(1)-(i) holds on (T̃2, T̃1).

By [67, Lemma 3.4], we have U5(1) = Ũ4(1) ≤ Ũ3(a1 +1) = U3(1), which together with

(H1) on T2 implies Definition 4.1.5(1)-(ii) on (T̃2, T̃1). Definition 4.1.5(1)-(iii) on (T̃2, T̃1)

follows from the one on (T2, T1), (H1) and (H2) on T2. Thus T̃2 ≺ T̃1.

Case 3. (r3, r2, r1) = (0, 1, 1). If U3(1) < U2(a1), then the proof is the same as in

Case 1. So we assume that U3(1) > U2(a1).

Note that T̃2 ∈ SST (λ(a1, c1 − b2 − c2 + 4, b2 + c2 − 2)) and T̃1 ∈ SST (λ(a2, c2 −
b3 − c3, b3 + c3)). By Corollary 5.3.16(2), T̃2 and T̃1 have residue 0 and 1 respectively.

We see that Definition 4.1.5(1)-(i) holds on (T̃2, T̃1). Definition 4.1.5(1)-(ii) on (T̃2, T̃1)

follows from (H1) on T2. Also, Definition 4.1.5(1)-(iii) on (T̃2, T̃1) follows from the one on

(T2, T1). Thus T̃2 ≺ T̃1.

Case 4. (r3, r2, r1) = (1, 1, 1). If U3(1) < U2(a1) or U5(1) < U4(a2), then the

proof is the same as the one of Case 1-Case 3. So we assume that U3(1) > U2(a1) and

U5(1) > U4(a2).

Note that T̃2 ∈ SST (λ(a1, c1−b2−c2 +4, b2 +c2−2)) and T̃1 ∈ SST (λ(a2, c2−b3−c3 +

4, b3 + c3− 2)) and both have residue 1. Since r2 = 1, we have b2 ≥ 2 and c2 + 2 ≤ b2 + c2,

which implies Definition 4.1.5(1)-(i) on (T̃2, T̃1).

Definition 4.1.5(1)-(ii) and (iii) on (T̃2, T̃1) follow from the same argument as in Case

2. Thus T̃2 ≺ T̃1.

Finally, since T̃ corresponds to Ũ (4.3.7), we have T̃ ∈ H(λ̃).

7.3 In Chapter 5

7.3.1 Outline

The proof of Theorem 5.4.4 is rather lengthy and technical, so we outline the proof. The

proof of Theorem 5.4.4 is organized as follows.

In subsection 7.3.2, we consider the case of n − 2µ′1 ≥ 0, which is easier to deal with

than the case of n− 2µ′1 < 0.

(1) (Well-definedness) First, we show that T
tail ∈ LR

λ′

δ′µ′ (Corollary 7.3.4). To do this,

we study some properties of the sequences (mi)1≤i≤p and (nj)1≤j≤q associated with
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T
tail

with respect to sliding (Lemmas 7.3.2 and 7.3.3), which implies that T
tail

satisfies (5.4.1).

(2) (Injectivity) Second, we show that the map

LR
µ
λ(d) //

⊔
δ∈P

(2)
n

LR
λ′

δ′µ′

T � // T
tail

.

is injective by using Proposition 5.3.19 (Lemma 7.3.5).

(3) (Surjectivity) Finally, we prove the above map is surjective, that is, for W ∈ LR
λ′

δ′µ′ ,

there exists T ∈ LR
µ
λ(d) such that T

tail
= W. We use induction on n. The initial

step when n = 4 is proved in Lemma 7.3.6. Then based on this step, we construct

T ∈ LR
µ
λ(d) in general in Lemma 7.3.8

In subsection 7.3.3, we consider the case of n− 2µ′1 < 0. The proof is almost identical

to the case of n− 2µ′1 ≥ 0, but the major difficulty occurs when we consider the columns

with odd height in T(0) and Tsp− (cf. Remark 4.1.6(2)–(3)). To overcome this, we reduce

the problems to the ones in the case of n− 2µ′1 ≥ 0 so that we may apply the results (or

the arguments in the proof) in subsection 7.3.2.

7.3.2 Proof of Theorem 5.4.4 when when n− 2µ′1 ≥ 0

Let µ ∈ P(On) and λ ∈Pn be given. We assume that n−2µ′1 ≥ 0. We keep the notations

in Sections 3.1.1 and 4.1.1 and Chapter 5.

Suppose that n = 2l + r, where l ≥ 1 and r = 0, 1. Let T ∈ LR
µ
λ(d) be given with

T = (Tl, . . . , T1, T0) as in (5.3.4). Let us assume that r = 0 since the argument for r = 1

is almost identical. Write T̃ = (T̃l−1, . . . , T̃1, T̃0). Let T
body

= H(δ′)π for some δ ∈ P(2).

Let s1 ≤ · · · ≤ sp denote the entries in the first row, and t1 ≤ · · · ≤ tq the entries in the

second row of T
tail

.

Lemma 7.3.1. Suppose that T = (U2l, . . . , U1) ∈ En under (4.3.1). If T R
i+1(1) < T L

i (ai),

then

U2i = T L
i � T

tail
i .

In this case, T tail
i is the (l − i+ 1)-th column of T

tail
from the left.
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Proof. If T R
i+1(1) < T L

i (ai), then by definition we have T̃i has residue 0. By Lemma 4.3.3,

T̃ R
i (1) < T̃ L

i−1(ai−1). Inductively, we have U2i = T L
i � T

tail
i . By applying this argument

together with Lemma 4.3.3, we obtain the second statement.

For simplicity, let us put T = T̃. Let µ̃ = (µ2, µ3, . . . ) and ζ = (δ1, . . . , δn−1) ∈P(2)
n−1.

By Lemmas 5.3.6, 4.3.3 and Proposition 5.3.19, we have Tbody
= H(ζ′)π and Ttail ∈ LR

ξ′

ζ′µ̃′

where ξ is given by (Hζ′ ← Ttail
) = Hξ′ . Let s̃1 ≤ · · · ≤ s̃p−1 be the entries in the first

row of Ttail
and let (m̃i)1≤i≤p−1 (resp. (mi)1≤i≤p) be the sequence associated with Ttail

(resp. T
tail

) in Definition 5.4.1. Note that si = s̃i−1 for 2 ≤ i ≤ p. Put Ti = Tl−i+1 for

1 ≤ i ≤ l and T̃j = T̃l−j for 1 ≤ j ≤ l − 1. Assume that Ti ∈ T(ai) for 1 ≤ i ≤ l.

Lemma 7.3.2. Under the above hypothesis, the sequences (mi)1≤i≤p and (m̃i)1≤i≤p−1 sat-

isfy the relation

mi = m̃i−1 + τi + 1 (2 ≤ i ≤ p), (7.3.1)

where τi is given by

τi =

1, if TRi−1(1) < TLi (ai),

0, if TRi−1(1) > TLi (ai).

Proof. Fix i ≥ 2. If TRi−1(1) < TLi (ai), then by Lemma 5.3.15(i) and 7.3.1

mi = 2i− 1, m̃i−1 = 2i− 3.

If TRi−1(1) > TLi (ai), then we have by Lemma 5.3.15(ii) mi < 2i − 1. This implies mi =

m̃i−1 + 1. Hence we have (7.3.1).

Lemma 7.3.3. For 1 ≤ i ≤ q, we have

ti = TLi (ai − 1) > TRi (1) = δrevni
.

Proof. By Lemma 5.3.15, it is easy to see that ti = TLi (ai − 1). Next we claim that

TRi (1) = δrevni
, which implies the inequality since rTi ≤ 1. We use induction on n. For each

i, we define θi to be the number of j’s with i + 1 ≤ j ≤ p such that mj < 2i + 1. Then

we have

ni = 2i+ θi. (7.3.2)
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If θi = 0, then ni = 2i and mi+1 = 2i+ 1, which implies that

TRi (1) < TLi+1(ai+1).

By applying Lemma 7.3.1 on T̃, we have δrev2i = TRi (1).

If θi > 0, then we have by definition of θi,

TRi−1(1) > TLi (ai). (7.3.3)

Let (m̃i)1≤i≤p−1 and (ñi)1≤i≤q−1 be the sequences in Definition 5.4.1 associated with T̃.

Let θ̃i be defined in the same way with respect to (m̃i)1≤i≤p−1. By definition of θ̃i and

Lemma 7.3.2, we have for j ≥ i+ 2,

mj < 2i+ 1 =⇒ m̃j−1 < 2i− τj ≤ 2i− 1.

Thus we have θ̃i = θi − 1. By induction hypothesis, (7.3.2), and (7.3.3), we have

TRi (1) = T̃
R

i (1) = δ̃revñi
= δ̃rev

2i+θ̃i
= δrev2i+θi

= δrevni
.

Corollary 7.3.4. Under the above hypothesis, we have T
tail ∈ LR

λ′

µ′δ′.

Proof. It follows from Remark 5.4.2 and Lemma 7.3.3.

Lemma 7.3.5. The map T 7−→ T
tail

is injective on LR
µ
λ(d).

Proof. Let T,S ∈ LR
µ
λ(d) be given. Suppose that T

tail
= S

tail
. We first claim that

T = S. By Proposition 5.3.19(1), we have T
body

= Hδ′ and S
body

= Hχ′ for some

δ, χ ∈ P(2). Since T
tail

= S
tail

and (T
tail → Hδ′) = (S

tail → Hχ′) = Hλ′ , we have

δ = χ. Hence T
body

= S
body

, which implies T = S. Since the map T 7→ T is reversible,

we have T = S.

Now, we verify that the map in Theorem 5.4.4 is surjective. Let W ∈ LR
λ′

δ′µ′ be given

for some δ ∈P(2)
n . Let V = H(δ′)π and X be the tableaux of a skew shape η as in (4.3.8)

with n columns such that

Xbody = V, Xtail = W.
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The semistandardness of X follows from Definition 5.4.1 and Remark 5.4.2. Let Vi and

Wi denote the i-th column of V and W from right, respectively.

Let us first consider the following, which is used in the proof of Lemma 7.3.8.

Lemma 7.3.6. Assume that n = 4 and µ′1 = 2. Then there exists T = (T2, T1) ∈ LR
µ
λ(d)

such that T = X, that is, T
body

= V and T
tail

= W. In fact, T = (T2, T1) is given as

follows:

(1) If m2 = 3, then

(T L
2 , T

R
2 ) = (V4 �W2, V3), (T L

1 , T
R
1 ) = (V2 �W1, V1).

(2) If m2 = 2, then

(T L
2 , T

R
2 ) = (V4 �W2, V

�
3 ), (T L

1 , T
R
1 ) = (V �2 �W

�
1 , V1),

where V �3 , V �2 and W �
1 are given by

V �3 = (. . . , V3(2), V3(1),W1(a1), V2(1))� ∅,
V �2 = (. . . , V2(4), V2(3)) , W �

1 = (W2(2),W1(a1 − 1), . . .W1(1)).

Proof. By Remark 5.4.2 and definition of them, T1 and T2 are semistandard. Also, the

residue ri of Ti is by Definition 5.4.1 at most 1 for i = 1, 2. It suffices to verify that

T2 ≺ T1 since this implies T
body

= V and T
tail

= W by construction of T.

Let ai be the height of Wi for i = 1, 2. We have Vi = (1, 2, . . . , δrevi ) for 1 ≤ i ≤ 4,

with δrev1 ≤ δrev2 ≤ δrev3 ≤ δrev4 . Let w(X) = w1w2 · · ·wm. Put

Pk = ((((w1 ← w2)← w3)← · · · )← wk)

for k ≤ m. Suppose that

w(V1)w(V2)w(V3) = w1w2 · · ·ws,
w(V1)w(V2)w(V3)w(W1)w(V4) = w1w2 · · ·wt,

for some s ≤ t ≤ m.

Case 1. m2 = 3. We first assume that r1r2 = 0.
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(i) r1 = 0, r2 = 0 : It is obvious that T2 ≺ T1.

(ii) r1 = 0, r2 = 1 : Definition 4.1.5(1)-(i) follows from δrev2 ≤ δrev3 . Also, Definition

4.1.5(1)-(ii) follows from s2 ≥ δrev3 ≥ δrev2 . The semistandardness of W implies

Definition 4.1.5(1)-(iii). Thus we have T2 ≺ T1.

(iii) r1 = 1, r2 = 0 : We may use the same argument as in (ii) to have T2 ≺ T1.

Next, we assume that r1r2 = 1. Definition 4.1.5(1)-(i) holds by definition of T. Since

r1 = 1 and r2 = 1, we have

δrev3 < W1(a1) ≤ δrev4 , δrev1 < W2(a2) ≤ δrev2 . (7.3.4)

By Lemma 5.3.6,

(Ps ← W1(a1)) and (Pt ← W2(a2)) are l-highest weight elements. (7.3.5)

By (7.3.4) and (7.3.5), we have

W1(a1) = δrev3 + 1, W2(a2) = δrev1 + 1. (7.3.6)

This implies Definition 4.1.5(1)-(ii). Definition 4.1.5(1)-(iii) follows from the semistan-

dardness of W and (7.3.6). Thus we have T2 ≺ T1.

Case 2. m2 = 2. Since m2 = 2, we have

δrev2 < δrev3 . (7.3.7)

Otherwise, we have W1(a1) > δrev3 , which contradicts to m2 = 2. By definition of m2, we

have

δrev2 < W1(a1) < δrev3 . (7.3.8)

Note that if W1(a1) = δrev3 , then by (7.3.7) the tableau (Ps ← W1(a1)) cannot be an

l-highest weight element. Since (Ps ← W1(a1)) is an l-highest weight element,

W1(a1) = δrev2 + 1. (7.3.9)
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In particular, we have

δrev2 + 2 ≤ δrev3 . (7.3.10)

Since W2(a2) ≤ W1(a1) < δrev3 and W1(a1) = δrev2 + 1, we have r2 = 1. Also, since

δrev3 ≤ δrev4 , it is clear that r1 = 1. Note that

δrev1 < W2(a2) ≤ W1(a1) = δrev2 + 1 < δrev3 .

This implies that

W2(a2) = δrev1 + 1, (7.3.11)

since (Pt ← W2(a2)) is an l-highest weight element.

Now, Definition 4.1.5(1)-(i) follows from (7.3.10), and Definition 4.1.5(1)-(ii) and (1)-

(iii) follow from (7.3.9), (7.3.10), (7.3.11) and the semistandardness of W. Hence we have

T2 ≺ T1.

Let X be the tableau obtained from X by removing its leftmost column. Let µ̃ =

(µ2, µ3, . . . ) and ζ = (δ1, . . . , δn−1) ∈ P(2)
n−1. Since X is an l-highest weight element by

Lemma 5.3.6, we have Xbody = H(ζ′)π and Xtail ∈ LR
ξ′

ζ′µ̃′ , where ξ is given by (Hζ′ ←
Xtail) = Hξ′ .

Lemma 7.3.7. We have Xtail ∈ LR
ξ′

ζ′µ̃′ .

Proof. Let (mi)1≤i≤p and (ni)1≤i≤q be the sequences associated with Xtail = W ∈ LR
λ′

δ′µ′ .

Let s̃1 ≤ · · · ≤ s̃p−1 and t̃1 ≤ · · · ≤ t̃q−1 be the entries in the first and second rows of

Xtail, respectively.

We define a sequence 1 ≤ m̃1 < · · · < m̃p−1 ≤ n− 1 inductively as in Definition 5.4.1

with respect to (s̃i)1≤i≤p−1. Note that the sequence (m̃i)1≤i≤p−1 is well-defined by Remark

5.4.2. By Lemma 5.3.15, we observe that

m̃i =


1, if i = 1,

mi+1 − 1, if i > 1 and mi+1 < 2i+ 1,

mi+1 − 2, if i > 1 and mi+1 = 2i+ 1.

(7.3.12)

Let (ñi)1≤i≤q−1 be the sequence with respect to (m̃i)1≤i≤p−1, that is,

ñi = the i-th smallest integer in {i+ 1, . . . , n− 1} \ {m̃i+1, . . . , m̃p−1}.
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By (7.3.12), we obtain

ñi ≤ ni+1 − 1, (7.3.13)

and hence

t̃i = ti+1 > δrevni+1
= δ̃revni+1−1 ≥ δ̃revñi

.

Therefore, we have Xtail ∈ LR
ξ′

ζ′µ̃′ .

Lemma 7.3.8. There exists T ∈ LR
µ
λ(d) such that T = X, that is,

T
body

= V, T
tail

= W.

Proof. We use induction on n ≥ 2. We may assume that µ′1 6= 0.

Let us first consider n = 3. Note that V = (V3, V2, V1), and W is a tableau of single-

columned shape. Define (T2, T1) by

(T L
2 , T

R
2 ) = (V3 �W, V2), T1 = V1.

Clearly T1 and T2 are semistandard. By Definition 5.4.1, the residue of T2 is at most 1.

It is easy to check that T2 ≺ T1. Therefore, T = (T2, T1) ∈ LR
µ
λ(d) and T = X. Next,

consider n = 4. When µ′1 = 1, apply the same argument as in the case of n = 3. When

µ′1 = 2, we apply Lemma 7.3.6.

Suppose that n > 4. Let us assume that n = 2l is even since the argument for n odd

is almost the same. By Lemma 7.3.7 and induction hypothesis, there exists T ∈ LR
µ̃
ξ (d)

such that

Tbody
= Xbody, Ttail

= Xtail,

where µ̃ and ξ are as in Lemma 7.3.7.

Now, let us construct T = (Tl, . . . , T1) ∈ LR
µ
λ(d) from T, which satisfies T = X, by

applying Lemma 7.3.6 repeatedly.

Let T = (T̃l−1, . . . , T̃1, T̃0) and let ai be the height of T̃ tail
i for 1 ≤ i ≤ l − 1. Put

U = (Ũ2l−1, . . . , Ũ2, Ũ1),

where

Ũ1 = T̃0, (Ũ2i+1, Ũ2i) = (T̃ L
i , T̃

R
i ) (1 ≤ i ≤ l − 1).
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Let us define

U = (U2l, . . . , U2, U1).

First, let U1 = Ũ1 and let U2l be the leftmost column of X. For 1 ≤ i ≤ l − 1, let

(U2i+1, U2i) be defined in the following way. Suppose that ai = 0. Then we put

U2i+1 = Ũ2i+1, U2i = Ũ2i.

Suppose that ai 6= 0. By Proposition 5.3.9, we have T̃ L
i (ai) 6= T̃ R

i (1) for 1 ≤ i ≤ l. If

T̃ L
i (ai) > T̃ R

i (1), then

U2i+1 = T̃ L
i � T̃

tail
i , U2i = T̃ R

i � T̃
tail
i . (7.3.14)

If T̃ L
i (ai) < T̃ R

i (1), then

U2i+1 =
(
T̃ L
i ∪

{
T̃ R
i (1), T̃ L

i (ai)
})
� ∅,

U2i =
(
T̃ R
i \

{
T̃ R
i (1), T̃ R

i (2)
})
�
((
T̃ tail
i \

{
T̃ L
i (ai)

})
∪
{
T̃ R
i (2)

})
,

(7.3.15)

where we identify a semistandard tableau of single-columned shape with the set of its

entries.

Set

T = (Tl, Tl−1, . . . , T1), where (T L
i , T

R
i ) = (U2i, U2i−1) for 1 ≤ i ≤ l. (7.3.16)

We can check without difficulty that Ti is semistandard, and the residue ri of Ti is at most

1 by Lemma 7.3.3 and (7.3.13).

Next we show that Ti+1 ≺ Ti and (Ti+1, Ti) ∈ H◦((µ′l−i, µ
′
l−i+1), 4) for 1 ≤ i ≤ l − 1,

which implies that T ∈ H◦(µ, n). The proof is similar to the case of n = 4 in Lemma

7.3.6.

Let us prove Ti+1 ≺ Ti inductively on i. For i = 1, it follows from Lemma 7.3.6.

Suppose that Ti ≺ Ti−1 ≺ · · · ≺ T1 holds for given i ≥ 2. Consider

Xi = (U2i+2, Ũ2i+1, Ũ2i, U2i−1).

The admissibility on T implies that Xtail
i is semistandard. It follows from (7.3.14),
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(7.3.15), Definition 5.3.7(H1) on T and the induction hypothesis that Xbody
i is equal to

Hρ′π , for some ρ = (2a, 2b, 2c, 2d) with a ≥ b ≥ c ≥ d ≥ 0, except the entries in the

southeast corner and the next one to the left.

We remark that the map

Xi = (U2i+2, Ũ2i+1, Ũ2i, U2i−1) 7−→ (U2i+2, U2i+1, U2i, U2i−1) = (Ti+1, Ti)

is the same as the map X 7→ T in Lemma 7.3.6.

Case 1. Ũ2i+1(ai) < Ũ2i(1) and Ũ2i+3(ai+1) < Ũ2i+2(1). First, we show that ri =

ri+1 = 1. By (7.3.15) and [67, Lemma 3.4], we have

U2i+2(ai+1) = Ũ2i+2(2) < Ũ2i+2(1) ≤ Ũ2i(1) = U2i+1(1). (7.3.17)

By (7.3.15), (7.3.17) and Proposition 5.3.9, we have ri+1 = 1. Also, we have ri = 1 by

similar way.

Next, we verify Definition 4.1.5 (1)-(i), (ii) and (iii) for (Ti+1, Ti). The condition (1)-(i)

follows from (7.3.15). In this case, T R*
i+1 and LTi are given by

T R*
i+1 =

(
Ũbody

2i+1 ∪
{
Ũ2i+1(ai)

})
� ∅, LTi =

(
Ũ2i \

{
Ũ2i(1)

})
� ∅.

By Proposition 5.3.9 and the admissibility on T, we have T R*
i+1(k) ≤ LTi(k). So the

condition (1)-(ii) holds.

Now, we consider the condition (1)-(iii). In this case, RTi+1 and T L*
i are given by

RTi+1 =
(
Ũbody

2i+1 ∪
{
Ũ2i+1(ai)

})
�
((
Ũtail

2i+3 \
{
Ũ2i+3(ai+1)

})
∪
{
Ũ2i(1)

})
T L*
i =

(
Ũ2i \

{
Ũ2i(1)

})
�
((
Ũtail

2i+1 \
{
Ũ2i+1(ai)

})
∪
{
T R
i (1)

})
,

where

T R
i (1) =

{
Ũ2i−1(ai−1 + 1), if Ũ2i−1(ai−1) > Ũ2i−2(1),

Ũ2i−2(1), if Ũ2i−1(ai−1) < Ũ2i−2(1).
(7.3.18)

Note that we have by [67, Lemma 3.4] and the admissibility of T

RTi+1(ai+1) = Ũ2i(1) ≤ T R
i (1) = T L*

i (ai). (7.3.19)
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Then the condition (1)-(iii) for (Ti+1, Ti) follows from (7.3.19), Proposition 5.3.9 and the

admissibility of T.

Finally, we have (Ti+1, Ti) ∈ H◦((µ′l−i, µ
′
l−i+1), 4) by (7.3.15), induction hypothesis and

Proposition 5.3.9.

Case 2. Ũ2i+1(ai) > Ũ2i(1) and Ũ2i+3(ai+1) < Ũ2i+2(1). Since Ũ2i+1(ai) > Ũ2i(1), we

have by the admissibility of T

U2i+2(ai+1) = Ũ2i+2(2) < Ũ2i+2(1) ≤ Ũ2i+1(ai + 1) = U2i+1(1).

Thus the residue ri+1 is equal to 1. If the residue ri = 0, then the admissibility of (Ti+1, Ti)

follows immediately from the one of T, and we have (Ti+1, Ti) ∈ H◦((µ′l−i, µ
′
l−i+1), 4) by

(7.3.14), (7.3.15), induction hypothesis and Proposition 5.3.9.

We assume ri = 1. Then LTi, T
R*
i+1, T L*

i and RTi+1 are given by

T R*
i+1 =

(
Ũbody

2i+1 \
{
Ũ2i+1(ai + 1)

})
� ∅ , LTi =

(
Ũ2i ∪

{
Ũ2i+1(ai)

})
� ∅ ,

RTi+1 =
(
Ũbody

2i+1 \
{
Ũ2i+1(ai + 1)

})
�
((
Ũtail

2i+3 \
{
Ũ2i+3(ai+1)

})
∪
{
Ũ2i+1(ai + 1)

})
,

T L*
i =

(
Ũ2i ∪

{
Ũ2i+1(ai)

})
�
((
Ũtail

2i+1 \
{
Ũ2i+1(ai)

})
∪
{
T R
i (1)

})
,

(7.3.20)

where T R
i (1) is given as in (7.3.18). By applying [67, Lemma 3.4] on T, we have

RTi+1(ai+1) = Ũ2i+1(ai + 1) ≤ TRi (1) = T L*(ai). (7.3.21)

Now we apply a similar argument with Case 1 to (7.3.20) with (7.3.21) to obtain the

admissibility of (Ti+1, Ti) and (Ti+1, Ti) ∈ H◦((µ′l−i, µ
′
l−i+1), 4) in this case.

Case 3. Ũ2i+1(ai) < Ũ2i(1) and Ũ2i+3(ai+1) > Ũ2i+2(1). The proof of this case is

almost identical with Case 2. We leave it to the reader.

Case 4. Ũ2i+1(ai) > Ũ2i(1) and Ũ2i+3(ai+1) > Ũ2i+2(1). In this case, the claim follows

immediately from (7.3.14), and the admissibility of T.

Therefore, we have T ∈ H◦(µ, n). By Lemma 5.3.15, we have T ≡l T̃⊗U2l and T̃ = T
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since T ∈ H◦(µ, n). This implies

T ≡l T⊗ U2l ≡l X⊗ U2l ≡l X, (7.3.22)

and hence T ∈ LR
µ
λ(d). Since T = X, it follows from the inductive definition of T that

T = X.

Proof of Theorem 5.4.4 when n− 2µ′1 ≥ 0. The map

LR
µ
λ(d) //

⊔
δ∈P

(2)
n

LR
λ′

δ′µ′

T � // T
tail

(7.3.23)

is well-defined by Corollary 7.3.4. Finally it is bijective by Lemmas 7.3.5 and 7.3.8.

7.3.3 Proof of Theorem 5.4.4 when when n− 2µ′1 < 0

Let µ ∈ P(On) and λ ∈ Pn be given. We assume that n − 2µ′1 < 0. We also use the

convention for T in subsection 7.3.2.

Let T ∈ LR
µ
λ(d) be given with T = (Tl, . . . , Tm+1, Tm, . . . , T1, T0) as in (5.3.8). Then we

have T
tail ∈ LRλ

′

µ′δ′ by Proposition 5.3.19(2). Let L = 2µ′1 − n. Choose κ = (κ1, . . . , κL) ∈
P(2) such that κi is sufficiently large.

Let η, χ ∈P be given by

η = κ ∪ λ = (κ1, . . . , κL, λ1, λ2 . . . ),

ξ = κ ∪ δ = (κ1, . . . , κL, δ1, δ2 . . . ).
(7.3.24)

Lemma 7.3.9. We have T
tail ∈ LR

λ′

µ′δ′.

Proof. Put T = (U2l, . . . , U2m+1, U2m, . . . , U0) under (4.3.1). Let

B = (U↓2m, . . . , U
↓
0 , H(1κL ), . . . , H(1κ1 )),

where U↓i = (. . . , Ui(3), Ui(2)) � (Ui(1)) for 0 ≤ i ≤ 2m. By the choice of κ, B is an

l-highest weight element, and we note that

µ′1 = l +m+ 1, (L + 2m+ 1)− 2(2m+ 1) = 0,

161



CHAPTER 7. PROOFS

where L + 2m + 1 is the number of columns of B and 2m + 1 is the length of the first

row of Btail. Hence by Lemma 7.3.8, there exists B = (X2m, . . . , X0, YL, . . . , Y1) ∈ LR
µ̇
η̇(d)

such that B = B, where µ̇′ = (2m+ 1) and η̇ is determined by B ≡l Hη̇′ .

Put A := (U2l, . . . , U2m+1, X2m, . . . , X0, YL, . . . , Y1). By construction of B and Corol-

lary 5.3.17 (cf. Remark 4.1.6), it is straightforward that

A ∈ LRµη(d), A
tail

= T
tail

. (7.3.25)

Let (mi)1≤i≤p be the sequence associated with A
tail

, which is given as in Definition

5.4.1. Since by the construction mi ≤ L for all 1 ≤ i ≤ p, the sequence (mi)1≤i≤p can

be viewed as the sequence associated with T
tail

in Definition 5.4.1. Put (ni)1≤i≤q to be

the sequence defined in Definition 5.4.1 with respect to (mi)1≤i≤p. By Lemma 7.3.3 with

(7.3.25), the sequence (ni)1≤i≤q satisfies (5.4.1) with respect to T
tail

. Hence we have

T
tail ∈ LR

λ′

µ′δ′ .

Hence the map (7.3.23) is well-defined by Proposition 5.3.19(2) and Lemma 7.3.9. It

is also injective since Lemma 7.3.5 still holds in this case. So it remains to verify that the

map is surjective.

Let W ∈ LR
λ′

µ′δ′ be given for some δ ∈ P(2)
n . Let V = H(δ′)π and X be the tableau of

a skew shape η as in (4.3.8) with n columns such that Xbody = V and Xtail = W. As in

the case of n− 2µ′1 ≥ 0, X is semistandard.

Put

Y = (YL, . . . , Y1),

Z = (Xn, . . . , X1, YL, . . . , Y1),
(7.3.26)

where Yi = H(1κi ) for 1 ≤ i ≤ L.

Lemma 7.3.10. We have Ztail ∈ LR
η′

µ′ξ′.

Proof. By construction of Z, we have Z ≡l Hη′ . Let (mi)1≤i≤p and (ni)1≤i≤q be the

sequences associated with W ∈ LR
λ′

µ′δ′ . Since κi is sufficiently large, we have Ztail ∈ LR
η′

µ′ξ′

with respect to the same sequences (mi)1≤i≤p and (ni)1≤i≤q.

Note that Z ∈ EM where M = n+L = 2µ′1. By Lemma 7.3.10, we may apply Theorem

5.4.4 for M − 2µ′1 = 0 to conclude that there exists a unique R ∈ T(µ,M) such that

R = Z. (7.3.27)
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Suppose that R = (RM , . . . , R1) ∈ EM under (4.3.1). Put S = (R2L, . . . , R1). Note that

2L < M with M − 2L = n, and S ∈ T((1L), 2L). If S = (S2L . . . , S1) ∈ E2L, then we have

by Corollary 5.3.17 and (7.3.27)

(SL . . . , S1) = Y.

Now, we put

T = (RM , . . . , R2L+1, S2L, . . . , SL+1) ∈ En,

under (4.3.1). Then it is straightforward to check that T ∈ T(µ, n). Since Z ∈ LRµη(d),

we have T ∈ LR
µ
λ(d) by construction of T and Lemma 5.3.6. Finally, by (7.3.27) and

Corollary 5.3.17, we have

T
body

= Xbody, T
tail

= Xtail.

Hence, the map (7.3.23) is surjective.
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Index of notation, Table and Figure

A.1 Index of notation

A.1.1 Chapter 2

2.1 : Z+, P∨, P , Π∨, P+, Π, $i, Q, Q+, ∆, ε, S, U±q (g), U0
q (g)

2.1.2 : x
(m)
i (x = e, f), ẽi, f̃i, A0, L, B, εi, ϕi

2.2.1 : e′i, e
′′
i , ẽi, f̃i, L(∞), B(∞), Ξλ, ∗, ẽ∗i , f̃ ∗i , ε∗i

2.2.2 : W , si, R(w), `(w), Ti, fβk , Bi, Φ+

A.1.2 Chapter 3

3.1.1 : N, N, i, [n], [n], P, Pn, `(λ), λπ, λ/µ, A, SSTA(λ/µ), w(T ), sh(T ), Hλ Hλπ ,Wn,

W∨n , W , W∨, T ← a, a→ T , T
↖

, T
↘

, P (w)
↖

, P (w)
↘

3.2.2 : Pn, ωλ

3.2.3 : i0, iJ , ij

3.2.4 : Φ+(J), Φ+
J , BJ , BJ

3.3.1 :T ↘ , c(a,b), Ω, κ
↘

3.3.2 : λ(c), ||c||p
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A.1.3 Chapter 4

4.1.1 : λ(a, b, c), T L, T R, PL, T body, T tail, ht(U), U(i), U [i], �, �

4.1.3 : rT , E , F , T(a), T(0), Tsp, Tsp+, Tsp−, T L∗, T R∗, LT , RT , ≺, T̂λ, Tλ, Hλ, H(λ), �

(For type D∞, see Section 5.3.1)

4.3.1 : EN , Ej, Fj, Sj

4.3.2 : T, T
body

, T
tail

, Ũ

A.1.4 Chapter 5

5.1 : P(2), P(1,1), P(2,2), P(2)
` , P(1,1)

` , P(2,2)
` , LRλµν , LR

λ
µνπ , ψ, Si, Ui

5.2.2 : P(On), Λ(µ)

5.3.1 : H(µ, n), LRµλ(d), cµλ(d)

5.4.1 : δrev, LR
λ′

δ′µ′ , c
λ
δµ, LRλδµ, cλδµ

A.1.5 Chapter 6

6.3 : T , T ↖ , κ
↖

, T s, κd
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A.2 Crystal graph

Table A.1: Crystal graph for BJ,2
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A.3 Table

(σj, σj+1) (σ̃j, σ̃j+1)

(+,+) (+,+)

(+,−) (+,−) or ( · , · )
(+, · ) (+, · ) or ( · ,+)

(−,+) (−,+)

(−,−) (−,−)

(−, · ) (−, · ) or ( · ,−)

( · ,+) ( · ,+) or (+, · )
( · ,−) ( · ,−) or (−, · )
( · , · ) ( · , · )

Table A.2: The relation between (σj, σj+1) and (σ̃j, σ̃j+1) when ri+1ri = 1
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국문초록

본 학위논문에서는 조합론적인 관점에서 D형 결정을 연구한다. 특히, 양자 군의 음의

부분의결정 B(∞)과최고무게가 λ인가적최고무게기약모듈의결정 B(λ)을중점적으로

연구한다.

본 학위논문의 주요 결과로써, PBW기저에 의한 루스티그의 매개화를 이용하여 B(∞)

의 결정 구조를 명확하게 제시하고, B(λ)에서 PBW기저의 결정 구조와 양립하는 조합론

적 알고리즘을 개발한다. 그리고 이러한 결과로부터 B(λ)에서 B(∞)으로의 결정 매입의

조합론적 모형을 얻는다.

위 B(λ)와 B(∞)의결정구조연구의응용으로 D형로빈슨-셴스티드-커누스대응의아

핀결정이론적해석, GLn에서 On으로의분지중복도에대한새로운조합론적공식그리고

스핀점과 연관된 D형 키릴로프-레셰티킨 결정의 조합론적 모형을 얻는다.

주요어휘:양자군, 결정기저, 키릴로프-레셰티킨결정, 로빈슨-셴스테드-커누스대응, 분지

규칙, 일반화된 지수

학번: 2015-20277
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