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Abstract

In this thesis, we study the crystals of type D from a combinatorial viewpoint. We focus
on especially the crystals B(A\) and B(oco), where B(co) is the crystal of the negative half
of the quantum group and B(\) is the crystal of an integrable highest weight irreducible
module with highest weight .

As a main result, we obtain a simple description of the crystal structure of B(oo) in
terms of Lusztig’s parametrization using the PBW basis associated with a certain reduced
expression of the longest element of the Weyl group. Also, we develop a combinatorial
algorithm on B(\), which is compatible with the crystal structure of B(co). These results
establish an explicit combinatorial description of the crystal embedding from B(\) into
B(o0).

Our study of the crystal structure of B(\) and B(oo) has several interesting applica-
tions such as an affine crystal theoretic interpretation of Robinson-Schensted-Knuth type
correspondence of type D, a new formula for the branching multiplicity from GL,, to O,,
and a new combinatorial model of Kirillov-Reshetikhin crystals of type DS) associated

with the spin node.

Key words: Quantum groups, Crystal bases, Kirillov-Reshetikhin crystals, Robinson-
Schensted-Knuth correspondence, Branching rules, Generalized exponents
Student Number: 2015-20277
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Chapter 1

Introduction

The notion of quantum group was introduced independently by Drinfeld [16] and Jimbo
[40] around 1985 in their study to construct the solution of quantum Yang-Baxter equa-
tion. The quantum group is a ¢g-deformation of the universal enveloping algebra of a sym-
metrizable Kac-Moody algebra. Over the past 35 years, it turns out that the quantum
group is a fundamental algebraic structure to shed light on many branches of mathematics
and mathematical physics.

The crystal base introduced by Kashiwara [43] has been developed intensively by many
authors since it has very nice properties reflecting an internal combinatorial structure of
the representations of the quantum group. Moreover, it has interesting applications and
connections in many branches of mathematics. We refer the reader to [7,30,45,48,49, 56]
for more details.

The crystal base has a colored oriented graph structure, so-called crystal graph (or
crystal for short). This enables us to reduce several problems in representation theory of
the quantum group to combinatorial ones. For example, the crystals provide us an elegant
answer to the problem of decomposing tensor product of modules over the quantum groups
[73,84].

There are various combinatorial descriptions of the crystals (of classical types) [47,50,
73,83], which enable us to understand the structure of the crystals more deeply and reveal
interesting connections with several areas such as the theory of symmetric functions, the

representations of symmetric groups and mathematical physics.



CHAPTER 1. INTRODUCTION

1.1 Main results

The main goal of this thesis is to understand the structure of the crystals over the classical
quantum groups from a combinatorial viewpoint, where the classical quantum groups are
the g-deformation of the universal enveloping algebras of Lie algebras whose corresponding

Dynkin diagrams are given as follows.

ay (e 73 Qp_q ap ay [e 73 Qp_o Q1 ap,

Type Ap : &—e@— — Type By, : &——o— —e—————e——
Q-1

(€51 Qg Qaq Qg Qp—2 Q-1 Qi

Type Dn —— Type Cp, : &——— - —0o——@6——2

In particular, we focus on the following objects:
(1) the crystal B(oco) of the negative half of the quantum group (see Section 2.2.1),

(2) the crystal B(\) of an integrable highest weight irreducible module with highest
weight A (see Section 2.1.2).

The structure of the crystals of types A is already well-understood in several view-
points, and the crystals of types BC may be understood sometimes by using the ones of
type A through Kashiwara’s similarity method [46]. On the other hand, the structure
of the crystals of type D is largely independent of the one of types ABC. In addition,
the well-known combinatorial descriptions of the crystals of type D are often complicated
rather than other types (see [50] or Section 4.1.2). In order to overcome these difficulties,
we consider the crystals of type D based on the recent works [63,64,103].

First, we describe the crystal structure of B(oo) in terms of Lusztig’s parametrization
[76, 77] using PBW basis associated with a certain reduced expression of the longest
element in Weyl group by using the result in [103]. More precisely, the crystal B(co) is
equal to the PBW basis at ¢ = 0 [77,98]. It is independent of the choice of a reduced
expression, and then the actions of the crystal operators on the crystal of PBW basis
can be described by a simple way with respect to reduced expressions satisfying a certain
condition which is called simply braided [103].

We find a simply braided reduced expression iy associated with the maximal Levi

subalgebra of type A,,_; and we show that the actions of the crystal operators associated

3 o i
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CHAPTER 1. INTRODUCTION

with iy are described by a simple rule similar to the one obtained from the tensor product
rule of crystals. This is the first main result in this thesis. We should remark that our
reduced expression is different from the one in [103].

As an application, it enables us to establish a crystal theoretic interpretation of an
analog of the RSK correspondence for type D (see Section 1.2.1), and then we obtain a
new combinatorial model of Kirillov-Reshetikhin crystals of type DS) related to spin node
(see Section 1.2.3).

Second, we study the crystal B(\) using a combinatorial model in [63,64]. In partic-
ular, we develop a combinatorial algorithm on that model, so-called separation (see Sec-
tion 4.3), which is consisting of a non-trivial sequence of Schiitzenberger’s jeu de taquin
slidings. We show that the algorithm is compatible with the crystal structure of PBW
basis associated with iy. This is the second main result in this thesis. The compatibility
allows us to obtain an explicit combinatorial description of the embedding of crystals of
type D (up to a weight shift)

B(A) —— B(0),

following the approach for types BC [66]. Also, as an application, we apply the separation
algorithm to study the branching rule from GL, to O,, (see Section 1.2.2).

1.2 Applications

Let us explain the applications of the main results more precisely.

1.2.1 RSK correspondence of type D

The Robinson-Schensted-Knuth correspondence (RSK correspondence or RSK for short) is
a weight-preserving bijection between the set M,,,«,, of m X n matrices with nonnegative
integers and the set 7,,,, of pairs of semistandard tableaux of same shape with letters in
{1,...,m} and {1,...,n} [55] (see also [7,23] or Section 3.1.2). The RSK correspondence
has nice relationships with the theory of symmetric functions, the representations of
symmetric groups and classical groups, see [23,81,96,102,105] for more details.

The RSK correspondence has also an interpretation in terms of the crystals. More

precisely, the sets M, and 7, , have type A,,_; x A, _;-crystal structures, respectively,

3 y 1 |
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CHAPTER 1. INTRODUCTION

and then the RSK is an isomorphism of the crystals [68]. Furthermore, it is shown in
[62] that there exist affine crystal structures of type Aﬁ,ﬁn,l on both M., and Ty, .,
respectively, and the RSK can be extended to an isomorphism of affine crystals of type
A,(n,llzrn_l [62]. This can be viewed as an affine crystal theoretic interpretation of Cauchy
identity.

Recently, it is shown in [65] that the type A1, _1-crystal structure of M, coincides
with the one of the quantum nilpotent subalgebra [24,51] associated with the maximal Levi
subalgebra of type A,,_1 X A, _1.

Motivated by this result, we consider an analog of the RSK correspondence for type
D,, due to Burge [6], which is a weight-preserving bijection between the set of strictly
upper triangular n X n matrices with nonnegative integers and the set of semistandard
tableaux with columns of even length. Then we introduce affine crystal structures on
both sides of the map. Note that the affine crystal structure of type D,(ll) on the set of the
semistandard tableaux with columns of even length is already known in [62].

To define an affine crystal structure of type DS) on the set of strictly triangular n x n
matrices, we consider the crystal of the PBW basis associated with iy (recall Section
1.1). Then a certain subcrystal of the crystal of the PBW basis associated with iy can
be identified with the set of strictly triangular n x n matrices and it is the crystal of the
quantum nilpotent subalgebra associated with the maximal Levi subalgebra of type A,,_;.
Furthermore, it is extended to an affine crystal of type szl) in a natural way.

Finally, we show that the Burge correspondence is an isomorphism of the affine crys-
tals of type Dg). This is a new affine crystal theoretic interpretation of the Littlewood
identity for type D (see [75,80] for the identity). We remark that an interpretation of the
Littlewood identity for types BC is obtained from the result of type A above by using
Kashiwara’s similarity method and the symmetric property of the RSK correspondence
[66].

1.2.2 Branching rules for (GL,, O,)

Given a pair (A, B) of groups or algebras with B C A, and an irreducible representation
m of A, it is often useful to know the decomposition of 7 into irreducible representations
of B (for example, see [12,56,92] for applications). A branching rule (or branching law)
from A to B is to describe an irreducible representation of B or its multiplicity in the

restriction of 7 to B. In particular, if n is an irreducible representation of B, then the

3 o i
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CHAPTER 1. INTRODUCTION

later one is often called branching multiplicity of n in the restriction of m to B. If the
representations 7 and 7 are obvious, then we call it simply branching multiplicity from A
to B.

Let GL,, Sp,, and O,, be the general linear group, symplectic group and orthogo-
nal group of rank n over C, respectively. These groups are called classical groups. It
is well-known that a finite-dimensional irreducible representation of classical groups is
parametrized by a partition of n.

In [74,75], Littlewood proved that if a finite-dimensional irreducible representation

of GL,, parametrized by a partition \ satisfies the condition that the length of X is less
5
a subtraction-free sum in terms of Littlewood-Richardson coefficients (LR coefficient for

than or equal to Z, then the branching multiplicity from GL,, to Sp,, or O,, is equal to
short). The range of X is often called the stable range [33]. It is natural to ask whether
the Littlewood’s formulas can be generalized to arbitrary finite-dimensional irreducible
representations of GL, outside the stable range.

A subtraction-free formula of branching multiplicity from GL,, to Sp,, generalizing the
Littlewood’s formula for the case of Sp,, is known due to Sundaram [104,105]. Recently,
Lecouvey-Lenart also obtain another combinatorial formula generalizing Littlewood’s one
for the case of Sp,, [71] by extending the approach in [67].

Motivated by the recent works [67,71], we also extend the approach in [67] for the case
of O,, by using the separation algorithm presented here. Then it is enable us to obtain a
new subtraction-free formula of branching multiplicity from GL, to O,, generalizing the
Littlewood’s formula for the case of O,,. More precisely, the separation algorithm induces
an embedding which associates the branching multiplicity from GL, to O,, with LR co-
efficients satisfying a certain condition. In particular, the condition on LR coefficients is
vanished if A is in the stable range. Consequently, we obtain a subtraction-free formula
of branching multiplicity from GL, to O,, outside the stable range, which generalizes the
Littlewood’s formula for the case of O.

We should remark that there are already numerous works to extend the Littlewood’s
formula for O,, (see [18,33] and references therein), but most of which are obtained in
an algebraic way and they do not give a subtraction-free formula in many cases. To the
best of our knowledge, there seems to be no a subtraction-free formula of the branching

multiplicity from GL, to O, in full generality.
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1.2.3 Kirillov-Reshetikhin crystals of type Dg) associated with

spin node

Let g be a simple Lie algebra over C, and let g be the affine Kac-Moody algebra of
untwisted type corresponding to g [41]. Let Ul(g) be the quantum affine algebra of g
[16,40]. The finite-dimensional representations of U,(g) have been studied intensively
since they have important connections to various areas in mathematics and mathematical
physics. For example, see [10,19] and references therein.

By Chari-Pressley’s classification [10,11], each isomorphism class of finite-dimensional
irreducible representations (of type 1) is parametrized by an n-tuple P = (P;(u))1<;<n of
polynomials with constant term 1, where n is the rank of g. The polynomial P is often
called the Drinfeld’s polynomial [17].

The Kirillov-Reshetikhin (KR for short) module Ws(g is the finite-dimensional irre-
ducible U} (g)-module associated with the Drinfeld polynomial P = (Pi(u))1<i<n

P( ) Hj‘:l (1 - aq872j+1u) ifi = T,
\U) =
1 otherwise,

where 1 <7 <n, s € Z; and a € C* [54]. It is now well-known that the family { W) }
plays an important role in the category of the finite-dimensional representations of Uy (9)
(cf. [9,69]).

It was conjectured by Hatayama et al.[28] that for 1 <7 < n and s € Z,, there exists
a,s € C* such that WS(Z)T has a crystal base. The conjecture has been proved for all
nonexceptional types [91] (see also [42] for type AV [89] for type DIV with 1 < r < n—2)
and some exceptional types (with certain r) [86,87]. Let B™* denote the crystal associated
with Ws(fa)ns, which is called KR crystal for short.

It is an important problem to describe the structure of B™®. A description of the
crystal structure of B™® is known for nonexceptional types and some exceptional nodes
on a case-by-case approach [21] (see also references therein).

DS) with

exceptional nodes is introduced in [62] by using the RSK correspondence as an isomor-

Another combinatorial model for B™® of type Ag) and types Df}rl, Cg),
phism of affine crystals of type A%, The advantage of the approach in [62] is that the
description of the action of the Oth crystal operators on B™* is given uniformly for the

cases considered above, and very simple compared to the ones in previous works.

3 y 1 |
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CHAPTER 1. INTRODUCTION

In this thesis, we give a new polytope realization of KR crystals B™* (s € Z,) of
type D,(ll) associated with the spin node, which is isomorphic to the one using tableaux
in [62] through Burge correspondence. To do this, we consider the crystal of PBW basis
associated to iy (recall Section 1.1). In particular, we use the affine crystal structure
for the quantum nilpotent subalgebra associated to the maximal Levi subalgebra of type
A, 1. This approach allows us to use the formula of €} -statistic with respect to *-crystal
structure on B(co) due to Berenstein-Zelevinsky [4]. Then we obtain a new formula of
the e -statistic in terms of non-intersecting double paths defined on the positive roots of

the quantum nilpotent subalgebra, which gives the polytope realization of B™*.

1.3 Organization

This thesis is organized as follows.

e In Chapter 2, we review necessary background on quantum groups, representations

of quantum groups and crystal bases based on [7,10,30,43,45].

e In Chapter 3, we describe explicitly the crystal structure of B(oo) in terms of Lustig’s
parametrization using PBW basis associated with a certain reduced expression of
the longest element of the Weyl group. Then we apply the result to obtain a
crystal theoretic interpretation of Burge correspondence (Theorem 3.3.3), that is,
we show that Burge correspondence is an isomorphism of crystals of type D,,. Also,
we give a combinatorial formula for the shape of a tableau obtained from Burge
correspondence (Theorem 3.3.6), which is indeed a byproduct of the realization of
e -statistic (Theorem 6.2.4).

e In Chapter 4, we briefly review a combinatorial model of B(\) in [63,64] (Section
4.1.3), and then we develop a combinatorial algorithm called separation on this
model. We show that the algorithm is compatible with the structure of the crystal
of the parabolic Verma module associated with the maximal Levi subalgebra of type
A,—1 (Theorem 4.4.3). By combining this result with our description of B(oco), we
give a combinatorial description of the crystal embedding from B(\) into B(oo) in
type D,, (Theorem 4.5.3).

e In Chapter 5, we give a new subtraction-free formula of the branching multiplicity

from GL,, to O,, (Theorem 5.4.14) generalizing the Littlewood’s formula for the case

3 y 1 |
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CHAPTER 1. INTRODUCTION

of O,. As a byproduct, we also obtain a new formula of generalized exponents of
types BD (Theorem 5.5.6) following the idea in [71] for type C.

e In Chapter 6, we obtain a new polytope realization of the KR crystal B™?® of type
D) associated with the spin node (Theorem 6.2.2) by using the crystal of the quan-
tum nilpotent subalgebra (Section 3.2.4) and an explicit formula of the £}-statistic
(Theorem 6.2.4), and we extend the Burge correspondence to an isomorphism of

affine crystals of type DS).

e In Chapter 7, we give the detailed proofs for some results in this thesis.



Chapter 2
Crystal bases

In this chapter, we review necessary background on quantum groups, representations of
quantum groups and crystal bases based on [7,10, 30,43, 45].

This chapter is organized as follows. In Section 2.1, we introduce the definition of
the quantum group over a symmetrizable Kac-Moody algebra and its basic properties.
In Section 2.1.1, we review the well-known results on the integrable representations of
the quantum group. In Section 2.1.2, we introduce the crystal base for the integrable
representations of the quantum group, which is a central notion in this thesis, and review

the fundamental results for the crystal bases in [43].

2.1 Quantum groups

Let Z. denote the set of non-negative integers. Let g be the Kac-Moody algebra associated
with a symmetrizable generalized Cartan matrix A = (a;;); je; indexed by a set I. We
denote by D = diag(s; € Z~o | ¢ € I) a diagonal matrix such that DA is symmetric. If A
is symmetric, we often say g is the symmetric Kac-Moody algebra. Let f be the Cartan
subalgebra of g.

Let PY be the dual weight lattice, P = Homg(P",Z) the weight lattice, [TV = { h; | i €
I'} € PY the set of simple coroots, and I1 = {«; |i € I} C P the set of simple roots of
g such that (h;,a;) = a;; for i,j € I. Let PT be the set of integral dominant weights.
We denote by w; the i-th fundamental weight for ¢« € I. Let @) be the root lattice and
Q+ = Y ;e; Z>oa;. There is a partial ordering on h* defined by A > p if and only if
A—p € Qy for \,u € h*. Let (-, ) be the standard nondegenerate symmetric bilinear

3 y 1 |
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CHAPTER 2. CRYSTAL BASES

form on b in [41]. Then it induces the nondegenerate symmetric bilinear form on h*. We
denote it by the same notation ( -, - ). Note that (h;, a;) =
ijel

Given n € Z and any symbol z, we define the notation

2(a,a
((ai,a:)) and (a;, wj) = 0;; for

" — Q?_l
e =
Put [0],! =1 and [n],! = [n].[n — 1], ... [1], for n € Z~o. For m,n € Zso m >n >0, we

define

mo| [m],!
n| [n].![m — nl,!

m
Then, [n], and [ ] are called g-integers and ¢-binomial coefficients, respectively.
n
q

Definition 2.1.1. [16,40] The quantum group U,(g) associated with a Cartan datum
(A, TI, 11V, P, PY) is the associative algebra over Q(q) with 1 generated by the elements e;,
fi (i € I) and ¢" (¢ € PV) with the following defining relations:

@ =1, ¢ =" for h,h € PV,

eiq" = ¢*MWe,  for h e PV,
¢"fig"=q M, forhe PV,
K; — K;*
eifj — fjei = 51]—_11 fOI‘ Z,j € [,
q — q; (2.1.1)
17aij r T
1—ay; —ai— ) )
SnE] T e ek =0 fori# ),
k=0 k
= L dq
l—aij B 1 T
— Q5 —aii— . .
> (-1 LR =00 fori £,
k=0 - k 44

where ¢; = ¢* and K; = ¢*"i.

Let us review the basic properties of the quantum group U,(g). Set deg f; = —a;,

dege; = o; and deg¢" = 0. The quantum group has the root space decomposition

Uq(g) = @ Uq(8)as

a€e@

10 y | 1 1_]|



CHAPTER 2. CRYSTAL BASES

where U,(g)a = {u € Uy(g) | ¢"uqg™" = ¢®Mu for all h € PV }. For x € Uy(g)a (o € Q),
we denote by wt(z) = a.

It is well known that U,(g) has Hopf algebra structure (see [30, Section 1.5] for defi-
nition) with the comultiplication A, the counit €, and the antipode S defined by

Ald")=q"®q",

Ale) =K' +1®e, A(f)=fiol+K® fi,
(") =1, ele)=e(f))=0,

S(@")=q¢" Se&)=—eK;, S(f))=-K'fi

for h € P¥ and i € I.

Let Uf(g) (resp. U, (g)) be the subalgebra of U,(g) generated by the elements e;
(resp. f;) for alli € I, and let U] (g) be the subalgebra of U,(g) generated by ¢" (h € PV).
Then the quantum group U,(g) has the triangular decomposition given by

Ug(g) ~ U, (9) @ U (g) ® U/ (g).

Here ~ means the isomorphism of vector spaces.

Remark 2.1.2. In this thesis, we consider mainly the Kac-Moody algebras of finite types

associated with the following Dynkin diagrams:

Type A,, : &—o— —e—o Type By, : e - -

Type D,, : &—eo— Type Cp, : &—eo— —————e—=—9

(see Kac’s classification [41, Chapter 4]). To emphasize the types, we often use the
notation U,(X,) instead of U,(g), where X = A ,B,C or D and g is the Kac-Moody
algebra of type X,,.

2.1.1 Representations of quantum groups

In this section, let us briefly review the integrable representations of the quantum group.

73 hy 1 ]
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CHAPTER 2. CRYSTAL BASES

Definition 2.1.3. Let V' be a vector space over Q(q).

(1) A representation of U,(g) on V is an Q(g¢)-algebra homomorphism

¢ : Uy(g) — Endgg)(V).

(2) A vector space V is called a U, (g)-module if there is a bilinear map U,(g) xV — V,
denoted by (z,v) — zv, satisfying

(xy)v = x(yv), lv=w

for x,y € Uy(g) and v € V.

Let ¢ be a representation of U,(g) on V. Then it defines a U,(g)-module structure on
V by
zv = ¢(z)(v) for x € Uy(g), v € V.

Conversely, if V' is a U,(g)-module, then it gives a representation of U,(g) on V' by

¢: Uy(g) Endgy (V) .

T (z, )

where (z, - ) is the endomorphism of V' induced from the bilinear map in Definition

2.1.3(2). Hence, we often say that V' is a representation of U,(g) if V' is a U,(g)-module.
Definition 2.1.4. Let V' be a U,(g)-module be given.

(1) V is called a weight module if it admits a weight space decomposition

V=,

AEP

where V), = {v cV | ¢"v=¢ ™y forall h € PV } A vector v € V) is called a
weight vector of weight .

(2) If e;u =0 for all i € I, then it is called a mazimal weight vector.

(3) If V), # 0, then X is called a weight of V' and V), is the weight space of weight A € P.
The dimension of V) is called the weight multiplicity of \. We denote by wt(V') the
set of weights of V.

12 A2t} &



CHAPTER 2. CRYSTAL BASES

(4) If dim V), < oo for all A € wt(V'), then we define the character of V by

chV =) " dim Vye*,
A

where { e | A\ € P} is formal basis of the group algebra Z[P] with multiplication

given by elet = e M#,

(5) A Q(q)-subspace W C V is called U,(g)-submodule of V if tW C W for allx € U,(g).
The U,(g)-module V is called irreducible (or simple) if it has no submodule other
than 0 and V.

(6) A weight module V' is called a highest weight module of highest weight A € bh* if

there exists a non-zero vector vy € V, called highest weight vector, such that

evn=0 (iel), v = Moy (heh), V =Uig)vx

Example 2.1.5. Let U,(sly) be the quantum group generated by e, f, K* with the defin-

ing relations:

K- K1
KeK'=¢%, KfK'=q¢?f ef—fe= —
q—4q
Let V(n) := @, Q(¢)v; be the (n + 1)-dimensional vector space over Q(q) and we
define the U, (sly)-actions on V(n) by

kv, = q" %y, evy=[n—i+ 1w, foi=[i+ 10, (2.1.2)
where we assume that v_; = v,.; = 0. It is enough to show that the above actions

satisfies the relations (2.1.1). For example, for i # 0, n,

(ef = feyoi = ([i+ gln = ily = [0 =i + 1yl )
B qnf2i _ qfn+2i B K — Kfl
= 1 V; = 1 V;
q—q q—q

We can check the other relations similarly. Therefore, it is a straightforward calculation
to check that V(n) is a representation of U,(slz). Note that V'(n) is an irreducible highest
weight module with highest weight nco.

13 y | 1 1_]|



CHAPTER 2. CRYSTAL BASES

Furthermore, V(n) is irreducible highest wight module and any finite-dimensional
irreducible representation of U,(sly) is of this form [39, Theorem 2.6] (cf. [34, Section
7.2]). O

We say that « € U,(g) is locally nilpotent on V' if for any v € V, there exists a positive
integer N such that Vv = 0. Then a weight module V is integrable if the operators e;
and f; are locally nilpotent on V for all i € I. For A € h*,; set D(A) ={pnebh* | pn <A}

Definition 2.1.6. (cf. §1.2 in [43]) The category Of, consists of U,(g)-module V satis-

int

fying the following conditions:
(1) V has a weight space decomposition V' = @, .p Vi with dim V), < oo for all A € P,

(2) there exists a finite number of elements Aq, ..., A\ € P such that

wt(V) € D(M)U -+ UD(As),

(3) the operators e; and f; are locally nilpotent on V for all i € I.
The morphisms are taken to be the usual U,(g)-module homomorphisms.

Note that the category O, is closed under taking direct sums or tensor product of
finitely many U,(g)-modules.
The following results are well known due to Lusztig. We refer to [30, Chapter 3| for

more details (cf. [34,41])).

Theorem 2.1.7. Let V/(X) be the irreducible highest weight U,(g)-module with highest
weight A € P.

(1) V(X) belongs to the category O, if and only if X € PT.

int

(2) IfV is a highest weight U,(g)-module in the category OL , with highest weight \ € P,
then A € PT and V =~V ()).

(3) Ewvery irreducible U,(g)-module in the category OF,, is isomorphic to V/(\) for some
Aeg Pt

(4) Every U,(g)-module in the category OF,, is isomorphic to a direct sum of irreducible
highest weight modules V (\) with A € PT.

. -
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CHAPTER 2. CRYSTAL BASES

2.1.2 Crystal bases

In this section, we review the notion of crystal base for U,(g)-modules which are objects

q
int*

Let V' be a U,(g)-module in the category Of, and let V = @, , V) be the weight

int

of the category O

space decomposition. For m € Zx, we denote by 2™ the m-th divided power of = given

by

1

[m],!

)

where © = ¢; or f; for i € I. For each i € I, any weight vector v € V, (A € wt(V')) can be
written in the form
UV = Vg + fﬂ]l + s + fi(N)?JN, (213)

where N € Z>o and vy € Vijiga, Nkere; for all k =1,..., N (cf. [30, Lemma 4.1.1]).

Definition 2.1.8. [43, Section 2.2] The Kashiwara operators é; and f; (i € I) on V are
defined by

N N
éﬂ} = Z fi(kil)’l]k, ]Eﬂ} = Z fi(k+1)’l)k .
k=1 k=0
Example 2.1.9. Consider Example 2.1.5. By (2.1.2),
v, = f(i)vl)?
where vy € kere. By definition,

e (f(i)Uo) = U=y, f (f(i)’Uo) = it Dy,
Then we may express the operators ¢ and f by
Vg — fUO —_— s — f(n_l) Vg — f(n) Vo-
Let Ay be the subring of Q(q) consisting of rational functions regular at ¢ = 0, that
is,
f
m={L] rgcau 020}

Definition 2.1.10. Let V be a U,(g)-module in the category OL,. A free Ay-submodule

int*

L of V is called a crystal lattice if

3 o i
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CHAPTER 2. CRYSTAL BASES

(1) L generates V' as a vector space over Q(q),
(2) L =@&,cp Lx, where Ly = LNV, for all A € P,
(3) &L C L and f;L C L for all i € I.

Since the operators &; and f; preserve the lattice L, they also define operators on L /qL

and we use the same symbols. We denote by 0 a formal symbol.

Definition 2.1.11. A crystal base of a U,(g)-module V in the category O, is a pair

1

(L, B) satisfying the following conditions:
(1) L is a crystal lattice of M,
(2) B is a Q-basis of L/qL,
(3) B =|\ep Bxr, wehre By = BN (Ly/qL,),
(4) &B c BU{0}, f;BC BU{0} for all i € I,
(5) for any b, € B and i € I, we have f;b =¥ if and only if b = &}’

Take B as the set of vertices and define the I-colored arrows on B by
b — ¥ ifand only if fib=0b (i€ ).

Then B is often identified with the above I-colored oriented graph called the crystal graph
of V. Fori €I and b € B, (A € PT), we define the maps ¢;,p; : B — Z by

gi(b) =max{k >0 | & c B},

N (2.1.4)
@i(b) =max{k >0 | ffbec B}.
Then the map satisfies the following:
pi(b) = &i(b) + (hi, wt(D)),

ei(Eib (b) — 1
gi(fib) =)+ 1, @i fib) =pi(b) =1, if fib€ B.

We refer to §2.4 [43] for the proof of the first one. The other ones are obtained from
Definition 2.1.11.

3 by
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Example 2.1.12. Let us recall Example 2.1.9. Then we may set
L(n) = Ao (fP%) ,  B(n):={bi:= Do +qLn) | 0<i<n}.
i=0

Then the pair (L(n), B(n)) is a crystal base of V(n) and by definition of € and ¢, we see

e(bs) ©(bi)

where e(b;) (resp. ¢(b;)) is equal to the number of the arrows between b; and by (resp.
by)-

Definition 2.1.13. Let V' be a U,(g)-module in the category Of. with crystal bases
(L;, Bj) for j =1,2. We say that two crystal bases (L1, By) and (L, By) are isomorphic
if there is an Ag-linear isomorphism 1 : L; — Ly such that

(1) ¥ commutes with all & and f; for i € I,

(2) the induced Q-linear isomorphism % : L1/qL1 — Ly/qLy defines a bijection ¢ :
B; U{0} — B, U {0} that commutes with all & and f; for i € I.

Let A € P and let V(X) be the irreducible highest weight U,(g)-module of highest
weight A. Put vy to be the highest weight vector of V' (\). We define L()) to be the free
Ag-submodule V()\) spanned by the vectors of the form f;, - -- f; vy for r > 0 and iy, € I,

and set
BO\) = { fi -+ fion+qL(\) € L) /qL(\) | r > 0,0, € I}\ {0}.

Theorem 2.1.14. [43] Let M be a U,(g)-module in the category O, and let V(X) be the
irreducible highest weight U,(g)-module of highest weight \ € PT.

(1) The pair (L(X), B(\)) is a crystal base of V' (X).

(2) There exists a unique crystal base (L, B) of M. If M is isomorphic to @, p+ V(N)o™,

then
b <€9 L™, | BM)@W) |
AepPt AepP+
where my € Zxo is the multiplicity of V() in M. O

¥ by N
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CHAPTER 2. CRYSTAL BASES

The stability of tensor product on crystal bases is very nice and important feature of
crystal bases, which is called tensor product rule. It also plays crucial role in the proof of
the results in [43].

Theorem 2.1.15 (Tensor product rule). Let V; be a U,(g)-module in the category OF,
with crystal base (Lj, B;) for j =1,2. Set L = Ly ®a, Ly and B = By x By. Then (L, B)
is a crystal base of Vi ®q(q) V2, where the action of Kashiwara operators €; and fz on B

forv € I are given by

€ib1 ® by if pi(by

) - (b1)
€i(b1 @ by) _{ by @ €y if pi(b1)
(b1)
(1)

. (2.1.6)
~ b1 @by if v;(b i(D2),
fi(b1 ® b) = J 1@12 z.fgp ' ’
b1 @ fiby if @i(b1 €i(b2
with
Wt(bl & bg) = Wt(bl) + Wt(bg),
51(61 & bg) = max{éi(bl), Efi(bg) - <Wt(b1), hl>}7
@i(b1 @ by) = max{;(b1) + (wt(ba), ki), pi(b2)},
where we assume that 0 is a formal symbol and 0 ® by = b; ® 0 = 0. [

Corollary 2.1.16.

(1) The vector by ® by € By ® By is a mazximal vector if and only if €;by = 0 and
(hi, wt(by)) > €;(by) for all i € I.

(2) Let V; be a Uy(g)-module in the category OL, with crystal base (L;, Bj) for j =
1,...N. Then the vector by ® --- ® by € By ® - -+ ® By 1s a mazimal vector if and
only if by ® - - - ® by, is a mazximal vector for all k =1,..., N. [

2.2 Crystals

The structure of crystal graph is characterized by the following maps:
(1) wt: B — P defined by b € By — wt(b) = A,

(2) Kashiwara operators é;, f; : B — B U {0} (Definition 2.1.8),

3 by
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(3) the maps ¢;,&; : B — Z given in (2.1.4).

In particular, these maps satisfies the properties (2.1.5). The abstract notion of crystals

is defined by the above maps with the properties as follows:

Definition 2.2.1. A crystal associated with the Cartan datum (A, II, 11V, P, PY) is a set
B together with the maps

wt: B — P, &, fi: B — BU{0},
€i, i B — ZU{—o0},
where ¢ € I, satisfying the following conditions:
(1) ¢i(b) = €;(b) + (h;, wt(b)) for all i € I,
(2) wt(é;b) = wt(b) + o if €;b € B,
(3) wt(fib) = wt(b) — a; if f;b € B,
(4) e;(é;b) = &;(b) — 1, ©i(€b) = pi(b) +1, ifébe B,
(5) ai(fib) =id) +1,  ilfib) =i(0) =1, if fibe B,
(6) fib =1V if and only if b = & for b, € Band i€ I,
(7) if ¢;(b) = —oo for b € B, then &b = f;b =0,
where 0 is a formal symbol.

We often say that B is a U,(g)-crystal (or g-crystal for short), where U,(g) is the
quantum group associated with the Cartan datum (A, II, 11V, P, PV). Forv € B, if ¢;v = 0
for all 2 € I, then v is called g-highest weight vector.

Example 2.2.2.

(1) The crystal graph B of a U,(g)-module in the category O is a g-crystal.

(2) For A € P, let T\ = {t,} and for all i € I, we define
Wt(t)\) = )\, éit,\ = ﬁ't,\ = 0, Ei(t)\) = (pz(t)\> = —OQ.

Then T) is a g-crystal.

- - TS
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We define the tensor product rule of crystals as follows:

Definition 2.2.3. The tensor product rule By ® By of crystals By and B, is defined to
be the set By x By with the crystal structure given by

wt(by @ by) = wt(by) + wt(by),
€i(b1 ® by) = max{e;(b1), &i(b2) — (Wt(b1), hi) },

©i(by ® by) = max{p;(by) + (wt(b2), hi), pi(ba) },

- ) eébi @by if @i(b1) > €i(b), (221)
éi(b1 ® by) = { by @ &by if @i(by) < €i(bo),

7 B ﬁbl X bQ if 90@<b1) > 1(62)7

fi(b1 ® bg) = { by & f~,»b2 if ©;(b1) < €(b),

for i € I. Here, we assume that 0 ® by = b; ® 0 = 0.

Definition 2.2.4. Let B; and B, be crystals associated with Cartan datum (A, IT, IV, P, PV).
A crystal morphism (or morphism of crystals) ¥ : By — Bs is a map

U: BuU{0} — B,U{0}
such that
(1) ¥(0) =0,
(2) if b € By and ¥(b) € By, then
wi(W (b)) = wt(b), &(V(b)) =ei(b), @i(¥(b)) = i(D)
forall 1 € I,
(3) if b,0' € By, V(b),¥(V) € By and fib =1, then
fi(b) = (), W) =&v(),

forall 7 € 1.

The category of crystals is a tensor category, see [45, Section 7].
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Definition 2.2.5.
(1) A crystal morphism is called strict if it commutes with all & and f; for i € 1.

(2) A crystal morphism ¥ : By — By is called an embedding if ¥ induces an injective
map from B; U {0} to By U {0}.

(3) A crystal morphism W : By — Bj is called an isomorphism if it is a bijection from

(4) We say that By is a subcrystal of By if there exists an embedding from B to Bs.

(5) We say that By is isomorphic to By if there exists an isomorphism between B; and

Bs, and write By =y By or simply By = B, if there is no confusion.

(6) For by € By and by € By, we say that by is equivalent to by if there is an isomorphism
of crystals 1 : C'(by) — C(by) such that 1(b;) = by, where C'(b;) is the connected
component of b; in B; for ¢ = 1,2, and write by =g by or simply b; = b, if there is no

confusion.

(7) We say that B is a reqular g-crystal if for each pair i, j € I withi # j, B is isomorphic
as a gy ;3-crystal to an union of integrable highest weight Ug(gy; ;1)-crystals, where
94} 1s the Lie algebra associated with Dynkin diagram containing 7 and j, and all

edges between them.

2.2.1 Crystal base of U, (g)

Let us recall that U, (g) is the Q(g)-subalgebra of U,(g) generated by f; for all i € I. For
A € PT, let V(XA) be an integrable irreducible U,(g)-module with highest weight A and

highest weight vector vy. Then there is a natural U, (g)-linear surjective map

™ U (g) Vi . (2.2.2)

P— Pu,

It is known that the surjective map induces the U, (g)-linear isomorphism as follows:

Uy @)/ (Lier Uy @)

V(A

7 b
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(see [48, Lemma 3.2.7] for more detail).

By taking (h;, A) — 0o, we regard U, (g) as the inverse limit of V/(\) and the operators
K;e; may converge an operator of U;(g), denoted by e;, which plays a similar role as the
action of e; on an integrable U,(g)-module. We regard f; as an operator on U (g) by the
left multiplication. Then the operators €, and f; (i € I) induce modified root operators
on U/ (g) such as the Kashiwara operators (recall Definition (2.1.8)). By using these
operators, we define the crystal base of U, (g) [43, Section 3] (see also [45, Section 8]).

Remark 2.2.6. Let us denote by B(oco) the crystal of U (g). In [48, Chapter 7], Kashi-
wara explains the crystal B(oo) as the (direct) limit of the crystal B(A) when A\ — oc.
On the other hand, in [7, Chapter 12], the authors explain B(o0) as the crystal of Verma
module with highest weight 0.

Let us explain in more detail following [43]. Let %,(g) be the algebra generated by e,
and f; (1 € I) with the relations:

e fi = qz'_<hi7aj>fje/i + 04,

1_(hi70‘j> B T
- hia ] —(hio5)—n
Sy | Pl gt g
n
n=0 L 4 g
1_(hi70‘j> B T
n 1-— hi,Oé' n 1—(h;,aj)—n
n=0 L " 4 g

The algebra %,(g) is called the reduced g-analogue.

Lemma 2.2.7. [43, Lemma 3.4.1] For any P € U (g), there exists unique Q, R € U; (g)

such that K« Ko
lei, P] = M
q—4q

We define the endomorphisms e;, ¢ : U, (g) — U, (g) by

Then these endomorphisms satisfy

eé'fj _ q;hi,aﬁ jegl + 51‘]‘7 e;fj _ q;<h¢,aj>fj6; + 5@,7

- . .
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where f; is understood as an endomorphism of U (g) by the left multiplication. Conse-
quently, we obtain %,(g)-module structure on U, (g) by using the endomorphisms e; and
fj for i,5 € I [43, Lemma 3.4.2].

The %,(g)-module structure on U, (g) induces the following decomposition (cf. (2.1.3))

Uy (9) = P 1" kere
n=0

(see [43, Proposition 3.2.1]). Now we define the modified root operators & and f; on
U, (g) by
é; <fi(”)u> _ fi(n_l)u, ﬁ (fl(n)u) _ fi(”+1)u’

where u € kere] and i € 1.

Definition 2.2.8. A crystal base of a %,(g)-module M is a pair (L, B) satisfying the

following conditions:
(1) L is a crystal lattice of M,
(2) B is a Q-basis of L/qL,
(3) B =|l\ep Bxr, wehre By = BN (Ly/qLy),
(4) &B c BU{0}, f;BC BU{0} for all i € I,
(5) for any b,¥ € B and i € I, we have f;b =¥ if and only if b = &}’

Let L(o0o) be the free Ag-submodule of U, (g) generated by fir -+ fi, -1, and let B(co)
be the subset of L(co) given by

B(oo):{fil---f“-l%—qL(oo)EL(oo)/qL(oo) |r>0,i,€1}\{0}.

Theorem 2.2.9. [43] The pair (L(00), B(00)) is a crystal base of U (g). N

The crystal base (L(c0), B(00)) has a nice compatibility with the crystal base (L()), B()\))

as follows.

Theorem 2.2.10. [43] Let 7wy be the surjective U, (g)-linear homomorphism given in
(2.2.2).

- . .
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(1) mA(L(o0)) = L(A) and it induces the surjective homomorphism
Ty L(00)/qL(00) — L(N)/qL(\).
(2) fiomy=Trofi foralliel.
(3) If b € B(oco) satisfies Tx(b) # 0, then é;m\(b) = TA(€;:D).
(4) B(A) is isomorphic to {b € B(oo) | mA(b) # 0}. O

Note that by Theorem 2.2.10(4) we have an embedding of B(\) into B(oo)
E)x: B(\) & B(o0)®Ty. (2.2.3)

Let us consider the image of the embedding Z,. To do this, we consider the anti-
automorphism * of U,(g) as Q(g)-algebra given by

e;=e fi=fi (@)=q"

Theorem 2.2.11. [43, Proposition 5.2.4, Proposition 6.1.1], [44, Theorem 2.1.1] We have

and we also define € : B(oco) — Z U {—00} by
el (b) :=max{n € Z | (€;)"(b) # 0}.

Proposition 2.2.12. [45, Proposition 8.2] (cf. [56, Lemma 10.2.2]) For any A € P, the

mmage of Zy s given by
{b®t)r € B(oo) @ Ty | €i(b) < (hi,A) foralliel}.

Proof. 1t follows from Theorem 2.2.10(4), [43, Lemma 7.3.2] and [98, Lemma 3.4.1]. [
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2.2.2 PBW basis and crystals

Let us review another formulation of B(oo) [77,98] for finite types using Poincaré-Birkhoff-
Witt type bases that was considered in the study of the canonical bases of U, (g) for types
ADE by Lusztig [76,79].
Let W be Weyl group of g generated by the simple reflections s; (i € I) given by
2 57 Q;

(v, ;)

for 5 € h*. For w € W, R(w) be the set of reduced expressions of w, that is,

R(w)={i= (i1,..-,im) | w=84...8;, and m is minimal .}

m

We denote by ¢(w) the length m, and we call ¢ the length function of W. Let wq be the
longest element of W of length N. Then it is known that for i € R(wy),

O = {Br =, Boi=si (o), By =i siyy (cuy) } (2.2.5)

is equal to the set of positive roots of g (see [93] and reference therein).
For each i € I, there is an Q(g¢)-algebra automorphism 7; of U,(g) due to Lusztig
[78,79]
Th: Uyls) — Uylo) (2.2.6)

given by

Ti(qh) = C]si(h), Ti(e;) = = [il<;, Ti(fi) = —Ki_lei,
Ti(e;) = (=1 g ePe;e™ it i £ g,

T+S:—<hi,a]‘>
Ti(f;) = (1 g £ ffY i,
T+S=*<hi,aj>
Here the automorphism 7} is equal to Til,ll in [79]. Let us take i = (iy,...,in) € R(wo)

and put
fﬁk :j—‘il"‘ﬂk—l(fik> (1 SkSN) (2'2‘7)

% SR



CHAPTER 2. CRYSTAL BASE OF U/ (g)

For ¢ = (cg,,...,cay) € ZY,

bi(c) = fo fir) g, (2.2.8)
where fﬁ(iﬁ o) is the divided power of f3, for 1 <k < N. Then the set

Brim (o) | ce 2}

is a Q(q)-basis of U; (g), which is called a PBW basis associated to i [78,98] (see also
[79]). Furthermore, we have the following.

Theorem 2.2.13. [77,98] Let i be a reduced expression of wy.
(1) L(o0) is generated by B;, which is independent of choice of i € R(wy).

(2) Let w: L(co) — L(00)/qL(0c0) be the canonical projection. Then the image of B;
is equal to B(o0). O

We identify B; := Z with a crystal 7(B;) under the map ¢ — b;(c), and call ¢ € B;
an i-Lusztig data. Then Bj is called the crystal of i-Lusztig datum. We often call it PBW
crystal for short if there is no confusion for i.

2.2.3 Quantum nilpotent subalgebras

In this section, we assume that g is a symmetrizable Kac-Moody algebra. Note that the
automorphism 7; (i € I) (2.2.6) is available in this setting [79, Chapter 37] (see also
[98, Proposition 1.3.1]).

Let w € W and i = (iy,...,i,) € R(w) be given, where m € Z,. In this case, we
also define the root vectors fg, and bi(c) as in (2.2.7) and (2.2.8), respectively, where
1<k<mandceZ}.

The following commutation relation on root vectors is known as Levendorskii—Sotbelman
formula, see [72, Section 5.5.2, Proposition], [1, Proposition 7] and [51, Theorem 4.10] for

more details.

Theorem 2.2.14. For j < k,

fﬁik f(C]) —(czcﬁk,cgﬂj C] fﬁ ZQC, (2.2.9)

i e
¥ p -11 ==
26 A - T H 1
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()

ngmgk B = ¢ Bj + B H

Example 2.2.15. Let us consider the case g = Az with I = {1,2,3}. We choose a
reduced expression i = 213231 € R(wp). Then the ordering is given by

where Qo € Q(q) and ¢’ = (c¢;) € ZT. If Qv # 0, then ¢ < ¢; and ¢, < ¢ with

P < B2 < B3 < Ps<Bs5 < Bs

=y <) t+ay < t+ay3<a;+ar+a3 <asg <ay.

By Theorem 2.2.14, we have

f/34f,31 - f,31fﬁ4 = g(Q)fBzf,Bga

for some g(q) € Q(g). On the other hand, we can check the commutation relation for fg,
and fg, directly using the defining relations (2.1.1), which is given by

fﬂ4f,31 - fﬂlfﬁ4 = (q_l - q)fﬂ2fﬁ3'

In general, it is difficult to describe the coefficient Q¢ in (2.2.9).

Let U, (w) be the Q(g)-subspace of U (g) generated by { bi(c) | ¢ € Z] } [79, Section
40.2]. Tt is known in [79, Proposition 40.2.1] that it does not depend on i € R(w). Note
that when g is of finite type and w = wo, we have U, (wo) = U, (g). By Theorem 2.2.14,
the subspace U, (w) is the Q(q)-subalgebra of U, (g) generated by { fz, | 1 <k <m}.
The Q(g)-subalgebra U, (w) is called the quantum nilpotent subalgebra associated with
w e W [24,51].

o7 SR



Chapter 3

PBW crystal and RSK

correspondence of type D

In this chapter, we give a crystal theoretic interpretation of Burge correspondence which
can be viewed as an analog of Robinson-Schensted-Knuth correspondence of type D,,.
As a byproduct, we give a combinatorial formula for the shape of the semistandard
tableaux obtained from Burge correspondence. This is a non-trivial analog of Greene’s
result in type A,, [25].
The results in this chapter are based on [36].

3.1 Robinson-Schensted-Knuth correspondence

In this section, let us review the crystal theoretic interpretation of Robinson-Schensted-
Knuth (RSK for short) correspondence following [60].

3.1.1 Notations

The notations in this section are used throughout this thesis (cf. [23]). Let N be the
set of positive integers with the usual linear ordering and let N be the set consisting of i
(i € N) with the linear ordering i > j for i < j € N. For n € N, we put [n] = {1,...,n}
and [n] = {1,...,m}. Let Z, denote the set of non-negative integers. Let & be the set
of partitions or Young diagrams. We let &2, = { A € & |{(\) < n} for n > 1, where ((\)
is the length of A\. Let A™ be the skew Young diagram obtained by 180°-rotation of .
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Example 3.1.1. Let A = (2,2, 1) be given. Then we have

A , AT =(1,2,2) <«—

For a skew Young diagram A/u, we denote by SST 4(\/u) the set of semistandard
tableaux of shape A/u with entries in a subset A of N or N. We put SST(\/p) =
SSTn(N/ ) for short. For T' € SST 4(A/1), let w(T) be the word given by reading the
entries of T column by column from right to left and from top to bottom in each column,
and let sh(7') denote the shape of T. Let H) and H~ be the tableaux in SST()\) and
SST(A™), respectively, where the i-th entry from the top in each column is filled with ¢
for i > 1. We denote by W, (resp. W,/) the set of words w = w; ... w, with wy € [7]
(resp. wy € [n]) for all 1 < k <r. Put W = U,>W,, and WY = U= W).

Example 3.1.2. When \ = (2,2, 1), the tableaux Hy and Hy~ are given by

Hy, =

1 ’ H)\Tr -
2

BEE
N | —
OJ[\D»—Al

Then w(H)) = 12123 € W5 and sh(H)) = (2,2,1) € 5.

For a € Aand T € SST4(\) with A € £, and A = [n], [0], N or N, we denote
by T' < a the tableau obtained by applying the Schensted’s column insertion of a into
T in the usual way, see [23]. Then for a word w = w;...w, € WU WV, we define
(T «+— w) = (T <= wy) < wy) < -+ < w,). For a semistandard tableau S, we define
(T < 5) = (T + w(9)).

Example 3.1.3. Suppose that the tableau T" and the word w are given by

T =[1[1]2[3]  w=231
214
5]
Then we have
(T +2) = 1123|~>((T<—2)<—3): 1123|«»(T<—w): 1[1]1]2]3]
2124 21214 4
5] 3]5 AE

We also define the reverse column insertion as follows. For a € A and T' € SST 4(\7)

29 ,?—-! -Cfl- 1_'_“ r
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with A € &, and A = [n], [i], Nor N, let a — T be the tableau obtained by applying
the Schensted’s column insertion of @ into 1" in a reverse way starting from the rightmost
column. For a word w = wy ... w, € WUWY, we define (w — V) = (w, = (-+- = (w; —
T))). For a semistandard tableau S, we define (S — V) = (w(S) — V).

Example 3.1.4. For A = (2,2, 1),

T = ~ 2T =

2
4

2
[2]4

»chol\’l|
»&wwl

For T € SST(\/ 1), let T be the unique semistandard tableau such that sh(T") € 2
and w(T") is Knuth equivalent to w(T). We define T in a similar way such that
sh(T™) € 2™. Note that if sh(T") = v, then sh(T ) = v™. Forw = w; ... w, € WLUWY,
we define P(w)™ = ((w, < wy_1) -+ < wy) and P(w) ™ = (w, — (- -+ — wy — wy)).

Example 3.1.5. Let A = (3,2) and p = (1). Then

e sSTO) ~ TS =[], - [1
[1]2 2 [1]2]2]

—_

T =

3.1.2 Crystals and RSK correspondence

In this section, we review the RSK correspondence and its crystal interpretation following
[60].
For m,n € Z>,, put

Ton:= || SSTim(A) x STy ().

reP
¢(\) <min{m,n}
Let M, be the set of all m x n matrices with nonnegative integers. Then, for each
M = (mij)i<i<mi<j<n € Mmxn, we define a biword (a,b) € Wy x W) by reading the
entries of M from bottom to top and from left to right such that there are m,; biletters
(ag,bx) with ar = i and by = j. Similarly, we define a biword (a,b) € WY x W, by
reading the entries of M from top to bottom and from right to left such that there are
m;; biletters (aj,, b)) with aj, = ¢ and bj, = j. We often write M = M (a,b) = M(a’,b’).

30 1. | ui 1_]|
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Example 3.1.6. For example, when m =n = 3 and M is given by

|
O =
oS NN O
=

we have the biwords (a,b) and (a’,b’) of M given by

a= 212 2 31 a=1122 23
b=112 2 3 3"’ b=312 21 3°

Note that each letter of a and a’ is the row index of M and each letter of b and b’ is the

column index of M.

Let us recall that RSK correspondence « is a weight-preserving bijection given by

k1 Moxn T , (3.1.1)
M+———(P(a)"~, Q(b)")

where P(a)\ is the tableau obtained from the word a by the Schensted’s column insertion
and Q(b)" is the recording tableau associated with the word b.

Example 3.1.7. Consider Example 3.1.6. The pair k(M) = (P(a)™,Q(b)") is obtained

as follows:

\.»—\
-
~
¢
A~

(,)«»(,)«»(;2 ;2|2|,;1|2|)

1]2] 1[2]3]

2[2]

= (P(a)",Q(b)")

1 1 1 1
|2 12 12 12
3 3 13 13
Remark 3.1.8. By Symmetry theorem for RSK correspondence [23, Theorem, p.40], one
can check that

Q(b)" = P(b')".

When we interpret the RSK correspondence in terms of crystals, we use the recording
tableau of x as P(b')" instead of Q(b)".

Now, let us explain the crystal interpretation of x. To do this, we introduce the notion

31 &

| &1

1V
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of the bicrystal over the pair of general linear Lie algebras gl,, and gl, for m,n € Z>;.
Put I, ={1,...,k} for k € Z>,.

Definition 3.1.9. We say that B is a (gl,,, gl,,)-bicrystal if it is a gl,,,-crystal under é;

and f; for i € I, and also a gl,-crystal under ¢, and fj’ for j € I, such that é; and ﬁ

. ~/ NI . .
commute with €} and [} for all 7, j.

We may identify a word w = wy -+ -w, € WY with w; ® -+ ® w,. Then WY has the
crystal structure induced from the crystal [n] by tensor product rule (2.2.1), respectively,

where the crystal [n] is given by
[n] : 122 .23 1 g,

Indeed, the crystal [n] is the crystal graph of the natural representation of U,(gl,) [50]
(see also [30, Example 4.2.7]).

Let us consider a crystal of biwords. We define €2, ,, to be the set of biwords (a,b) €
WY x W) such that

(1) a=ay...a, and b=10b;...b, for some r > 0,
(2) (a1,b1) = -+ < (a,,b,), where the ordering < is given by
(a,b) 2 (¢,d) <= (b<d) or (b=d and a > c)
for (a,b), (¢,d) € [n] x [n].

Then we define crystal operators é;, ﬁ on O, for ¢ € I, as follows. For i € I,, and
(a,b) € Q, ., we define

éia,b) = (Eab),  filab)=(fiab),
where we assume that z;(a,b) = 0 if z;a =0 (z = e, f), and set
Wt<a7 b) = Wt<a)7 82'(3, b) = gi(a>7 (pi(aa b) = @z(a)

Then 2, is a gl,,-crystal with respect to (é;, fi, W, €4, 04 )icl,, -
Next, set
Q;nn ={(c,d) e W, xW, | (d,c) € Q. } -

- . .
32 "':I'H-_E _'k.l_- o i | _..:.I |-



CHAPTER 3. PBW CRYSTAL AND RSK FOR TYPE D

By the similar way as in €, ,, we define a gl,-crystal structure on €2} as follows. For
j € I, and (c,d) € ., we define

é;(c,d) = (c,é;d), fj’-(c,d) = (c,fj’.d) ,

and set
wt(c,d) = wt(d), 5;(c,d) =¢;(d), gog»(c,d) = p;(d).

Then Q. is a gl,-crystal with respect to (€], fowt, b, @ ier, -
By definition, for M € M,,,, the biwords (a,b) and (a’,b’) are contained in €2, ,
and € . respectively. Then, the maps

(a,b)— M = M (a,b) , (a/,b)— M = M(a',b’)

are bijective and induce the gl -crystal structure and the gl,-crystal structure on M,, ,,
respectively. Then one can check that M,,,, becomes a (gl,,, gl,,)-bicrystal. Note that
Tm.n has the natural (gl,,, gl,,)-bicrystal structure.

Theorem 3.1.10. [15] The map x (3.1.1) is an isomorphism of (gl,,, gl,,)-bicrystals. O

3.2 PBW crystals

3.2.1 Description offi

Suppose that g is of finite type. Let i € R(wy) be given. For § € &, we denote by 15
the element in B; where ¢z = 1 and ¢, = 0 for v € ®* \ {8}. The Kashiwara operators

fi or f;‘ on B;j for ¢ € [ is not easy to describe in general except

fic = c1+1l,c,...,cn) =Cc+1,, when £ = ay,
fie=(atlen... o) h (3.2.1)
fie=(c1,...,en—1,en+1) =c+1,,, when Oy = «,

for ¢ € B; [79].

Let us review the results in [103], where it is shown that fi can be described more
explicitly in terms of so-called signature rule under certain conditions on i with respect
to i € I (in [103], the authors call it bracketing rule). For simplicity, let us assume that g

is of types A, D or E from now on.

5 xy " -
T ", -1l =1
33 -"'H._E -k| - 1 4
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Let 0 = (01,09,...,0) be a sequence with o, € {+, —, - }. We replace a pair
(0w, 00) = (+,—), where u < v’ and o,» = - for u < u” < ', with (-, -), and repeat this
process as far as possible until we get a sequence with no — placed to the right of +. We
denote the resulting sequence by 0. For another sequence 7 = (7q,...,7;), we denote
by o - 7 the concatenation of o and 7.

Recall that a total order < on the set ®* of positive roots is called convez if either
v <7 <~"orv" <+ <~ whenever v/ =y 44" for v,7,7" € &*. It is well-known that
there exists a one-to-one correspondence between R(w) and the set of convex orders on

®* where the convex order < associated with i = (iy,...,ix) € R(wp) is given by

B1 <[Py < ... =< BN, (3.2.2)

where [ is as in (2.2.5) [93].

There exists a reduced expression i’ obtained from i by a 3-term braid move (i, ig41, ix+2)

— (ik+1, ik, ik—i—l) with 1 = ik+2 if and Only if

{ Bk; 6/{:—‘,—17 ﬁk—i-? }

forms the positive roots of type As, where the corresponding convex order <’ is given
by replacing 0r < Oki1 < Brr2 with Srio <" Bry1 <’ Br. Also there exists a reduced
expression i’ obtained from i by a 2-term braid move (ig, ix+1) — (igs1, %) if and only if
Br and P, 1 are orthogonal, where the associated convex ordering <’ is given by replacing
Br < Bry1 with Bryr < Br.

Given ¢ € I, suppose that i is simply braided for i € I, that is, if one can obtain
i" = (i,...,7y) € R(wp) with i{ = ¢ by applying a sequence of braid moves consisting
of either a 2-term move or 3-term braid move (v,7,7”) — (7",7/,7v) with v = «;, see
[103, Definition 4.1].

Suppose that

O, = {Vs. 75, 70 (3.2.3)

is the triple of positive roots of type Ay with 7. = v, + 77 and 7” = «; corresponding to
the s-th 3-term braid move for 1 < s <.

34 "-:I; | 'kl-|- 1—-li [= L
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For c € By, let

Ui(c):(—"'——i-"'-i-"'—"'—+"'—|—). (3.2.4)

c Cyq ey Cyy

Then we have the following description of f, on B; .

Theorem 3.2.1. [103, Theorem 4.6] Let i € R(wy) and i € I. Suppose that i is simply
braided fori. Let ¢ € B; be given.

(1) If there exists + in o;(c)™ and the leftmost + appears in c,,, then
fic=c— 1, +1,.

(2) If there exists no + in 0;(c)™d, then fic = c + 1,,. O

3.2.2 Kac-Moody algebra of type D,

From now on, we assume that g is the Kac-Moody algebra associated to the Dynkin

diagram

aO
-1
O—=0O !
aq (&%) On—2

Op,

where a; = ¢, — €41 for 1 < i < n—1, and o, = €,_1 + €,. Also, we assume that
the weight lattice is P = @), Z¢;, where {¢;|1 < i < n} is an orthonormal basis with
respect to the symmetric bilinear form ( , ), that is, (&, €¢;) = §;; for 1 <14, j < n. The
set of positive roots is ®T = {¢; £ ¢;|1 <i < j < n}. Recall that W acts faithfully on
P by s;(€;) = €41, si(ex) =€ for 1 <i<n—1and k#¢,7+ 1, and s,(e,_1) = —¢, and
Sn(ex) = € for k #n — 1,0 (vecall (2.2.4)). The fundamental weights are @; = >t | €
for1<i<n—-2 w,1=(e1+ - +€1—¢€)/2and w, = (e1+ -+ €1+ €,)/2.
Let

P = { At A) | A €220 A= At € Z, Auy > A } (3.2.5)

5 by
35 M =T
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For A € P,, we put

wy =Y A€ (3.2.6)
=1

Then Pt = {wy |\ € P,} is the set of dominant integral weights. We put sp™ = ((3)")
and sp~ = ((3)""',—3)) for simplicity. We also identify A € P, with a (generalized)

Young diagram, which may have a half-width box on the leftmost column, see [50, Section
6.7].

3.2.3 PBW crystal of type D,

In this subsection, we give an explicit description of the signature rule in type D,, associ-

ated with the reduced expression iy € R(wg) whose convex order on @ is given by

€ + € < € — €,
e+e <eteg = (j>Dor(j=1,1>k), (3.2.7)
6—€ <eg— <<= (i<k)or(i=k,j<l),
for 1 <i < j<mnand1l < k <[ < n. An explicit form of iy is as follows. For
1<k<n-—1, put

(

(n,n—2,....,k+1,k), if k is odd,
k=9 (m—-1,n—-2....k+1,k), ifkis even,

(n), if n is even and k =n — 1,

m—1,n—2,....;k+1,k), ifnisevenand 1 <k <n-—1,

=< (n,n—-2... k+1k), ifnisoddand 1 <k <n-—2,
(n), if nis odd and &k =n — 1.
\
Let i/ =1i; -ig----- i, 1 andi; =1} -i,----1,_;. Then
ip =i’ - iy, (3.2.8)
where i-j denotes the concatenation of i € I*" and j € 5. We write ig = (i1,...,in),
where i; = n, and put i/ = (iy,...,iy), and iy = (ip41,...,495) with N = n? —n and

3 o i
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M = N/2.
Example 3.2.2. We have

= (4,2,1,3,2,4), i)=(3,2,1,3,2,3), when n = 4,
=(5,3,2,1,4,3,2,5,3,4), i, =(53,2,1,5,3,2,5,3,5), whenn=5.

The associated convex order when n =4 is

€3+ €4 <€+ €4 <€ +€ <€+ €3 <€ +€3 <€+ €

< €] — €3 <€ —€3 <€ —€4 <€y —€3 <€y — €4 < €3 — €4.

For ¢ = (¢3) € By,, we write

¢, U bBr=€+e¢tforl<i<j<n,
cp=9" o ’ / (3.2.9)

Gt ifﬂkzei_Ejfor1§i<j§n'

Proposition 3.2.3. For i € I\ {n}, there exists a reduced expression i € R(wy), which
18 equal to iy up to 2-term braid moves, such that i is simply braided for i € I and the

signature o;(c) for ¢ € By (recall (3.2.4)) is given by

oi(c) =0i1(c) - gia(c) - 0i3(c),

where
ogia(c)=(—-— 4 — e e — e — )
—_—— —— —— —— —— ——
Cai ErES Cn=1i Cn—1i+1 G127 Cit27
gi’2(c)—(_ — e — e e e — __|_..._|_)7 3910
Cii—1 CG¥ii—1 Gi—2 Cirii—2 G1 Cri1
O‘i73(c):(_..._+..._|__...__|_..._|_ ....... — =),
—_—— —— —— —— —— ————
Cit11 G1 Ci+132 ¢ Cit17-1 Cii—1 Cit17

Here we assume that cu, 1s zero when it s not defined and a 2-term braid move means
that ij = ji fori,j5 € I such that a;; = 0.

Proof. We assume that n is even since the proof for n odd is almost identical (see Example
3.2.5). Let us fix 1 € I \ {n}.

e e
¥ p -11 ==
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Step 1. We first observe that if the first letter n — 1 in i, corresponds to i in iy for

some k, then S = «;.

Step 2. Let i, = n — 1 be as in Step 1. Suppose that ¢ % 1. Then we can apply
2-term move or 3-term braid move (v,7,7") = (7”,7/,7) with 7" = «a; to iy (indeed to
the subword i} -1, - - -1;_; - ix) to get ig?’) = (i1y..-,%0,J,-..) with j =n —i. We can check
that 3-term braid move occurs once in each i, for s = 1,...,7 — 1, and the positive roots

of the corresponding root system of type A, is
HgS) = {63 — €3,€s — €11, Cki} (3211)

for s =1,---,7— 1. We assume that Hf’) is empty when 7 = 1.

Step 3. We consider the reduced word i(()g). Suppose that ¢ # 1 or j # n. First, we
apply 2-moves only to i; -i;;; so that the last i — 2 letters in i; and the first 7 — 2 letters
are shuffled by a permutation of length (i —2)(i — 1) /2 and hence appear in an alternative
way. We denote this subword by ij -ij+1.

Then we apply 2-term move or 3-term braid move (v,v',7") = (v”,v/,v) with " = o
to the subword i; - ij41 - ij12- 1,1 - j to obtain a word starting with j” where j” is n
(resp. n — 1) when j is odd (resp. even). We denote the resulting whole word by i((f).

Here we have i — 1 3-term braid moves only in i; - i;1; and the positive roots of the

corresponding root system of type A, is
Hf) ={e1 +€s,6 + €5,04} (3.2.12)

for 1 < s <i—1, and the order of occurrence of 3-term braid move is when s ranges from

1toi—1. If =1, then we assume that ng) is empty, and i((f) = i(()3).

Step 4. Finally, we apply 2-term move or 3-term braid move (v,7",7") = (v",7,7)
with 7" = o, to the subword i; - - ;-5 of i(()Q) to obtain a word starting with 7, and denote

)

the resulting whole word by iél . In this case, 3-term braid move occurs once in each i

for s=1,...,7 — 1, and the positive roots of the corresponding root system of type As is
I = {€n o1 + €is1s €n_si1 + €, 05} (3.2.13)

fors=1,---,5—1.
By the above steps, we conclude that i(()l) € R(wp) is obtained from iy by applying

3 o i
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2-term move or 3-term braid move (v,7',7") — (v",7/,7) with 7" = «;. We define

. +J .
=1 -iy,
+J . T T . T T . . .. .
where i” =iy -----i;-ij49 -, (recall (3.2.8)) and i; - 1,44 is obtained from i; - i;4; in

Step 3. By Step 1-Step 4, the reduced expression i is simply braided for i. It follows from
Theorem 3.2.1 that the sequence o;(c) in (3.2.4) for ¢ € B; is given by (3.2.10), where

the positive roots of the root systems of type A, associated with o; ;(c) are given by II;

(4)

for j =1,2,3 in (3.2.13), (3.2.12), and (3.2.11). O

Remark 3.2.4.

(1) For i € I\ {n}, the crystal operator f; on B;, may be understood by

R, 2 R}
B;, B; B; B

ig »

where R} (resp. RP) is the transition map from Bj, to B; (resp. from Bj to By,)
(cf. [76]). The map R corresponds to the 2-term braid moves from i;-i;41 to i;-ij41
(see Step 3 in the proof of Proposition 3.2.3), which is simply given by exchanging
the multiplicities related to them, and the map R;O is the inverse of it. Therefore,
the crystal operator f; on B;, can be described in the same way as in Theorem 3.2.1

with o;(c) in Proposition 3.2.3.
In type A, for r € I, we take ig =i’ - iy € R(wp) such that i’ and i; are given by

o . . . . . . .
' =112 -+ Inpyt1, 17 =1p—r42 " In—r43 " =" " lon—p. (3214)

where i, is defined by

(r+s—1,r+s—2,...,s+1s) ifl<s<n—r+1,
is=< (r+1,r, -, r—s+1) ifn—r+1<s<n,
(1,2, ,n—r+s—1) ifn<s<2n-—r.

By a similar argument as in the proof of Proposition 3.2.3, iy is simply braided as
in the sense of Proposition 3.2.3 and we obtain the sequence o;(c) associated with
the reduced expression ig = i” -i; (3.2.14). Then it is straightforward to check that

3 o i
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B, coincides with the crystal By = B; in [65], where €2 is the Dynkin quiver of type
A, and i is adapted to €2 (see also [95,99]). Indeed, the reduced expression iy is also
adapted to the Dynkin quiver A,,.

Example 3.2.5. Let us illustrate o;(c) for ¢ € B;, when n = 5 and ¢ = 3. Consider
7 iy = (i1,...,19) (see Example 3.2.2). Note that i;3 = 5 is the first letter in ij,

and 618 = Q3.

io - 1
For convenience, let ~» (resp. —) mean the 3-term (resp. 2-term) braid move. Then

i;=(53,2153,25,35 — (53,2,1,5,3,5,2,3,5)

-~ (5,3,2,1,3,5,3,2,3,5) --- I
— (57372737 15573727375)
- (5,2,3,2,1,5,3,2,3,5) ... I\

— (2,5,3,2,1,5,3,2,3,5),

where H§3’ = {2 — €3,69 — €4, 3} and Hg?’) = {€1 — €3,€1 — €4,a3}. Here the bold letter

denotes the one corresponding to as in the associated convex order on ®+.
Next, we have iy - i3 = (4,3,2,5,3) — iy -i3 = (4,3,5,2,3), and hence

12-132:(47375;27372)'\"}(4,375’3’273) ]._.[52)
~ (4,5,3,5,2,3) .- 1
— (5,4,3,5,2,3),

where Héz) = {€1 + €4,€1 + €3, 3} and ng) = {€y + €4, €2 + €3, a3}. Finally,

i,-5=(53,215) — (5,3,2,5,1)
— (5,3,5,2,1)
~ (3,5,3,2,1) .- 1%,

where Hf’) = {es+ €5, €3+ €5,a3}. Thus iy is simply braided for i = 3. Hence, for c € B;,

0'3,1(C>I(—---——|—---—|—)7 0'3’2<c):(_...__|_..._|__...__‘_..._‘_)’
53 54 C33 ‘13 €31 a1
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3.2.4 Crystal B’ of quantum nilpotent subalgebra

Put J = I\ {n}. Let [ be the Levi subalgebra of g associated with {«;|i € J} of type
A,_1. Then
ot = &F(J) U D,

where @7 = {e —¢;]1 < i < j < n} is the set of positive roots of [ and ®T(J) =
{€+¢;|1<i<j<n}istheset of roots of the nilradical u of the parabolic subalgebra
of g associated with [.

Set

B’ = {c=(c3) €Bi,|csg =0 unless g € d*(J) },

(3.2.15)
B,={c=(c3) €Bj,|cg=0unless B € P, }.

which we regard them as subcrystals of B;,, where we assume that e,c = ﬁlc = 0 with
en(c) = pu(c) = —oo for ¢ € B;. The subcerystal B7 is the crystal of the quantum

J

nilpotent subalgebra U, (w”), where w’ = s;, - s;,, with i’ = (i1,...,ip), which can be

viewed as a g-deformation of U(u™).
Proposition 3.2.6.
(1) The crystal B, is isomorphic to the crystal of Uy (I) as an l-crystal.

(2) The map

B B’ @ B, (3.2.16)

c————c’/®cy

ip

s an isomorphism of g-crystals.

Proof. (1) It follows directly from comparing the crystal structure of U, (I) given in
[99, Section 4.1] (see also [65, Section 4.2]).

(2) It follows from Theorem 3.2.1, Proposition 3.2.3, and the tensor product rule of
crystals. O

We have the characterization of the crystal B” as follows.
Proposition 3.2.7. We have B/ = {cl|ei(c)=0 (i€ J)}.
Proof. It follows from [76, Section 2.1] and Proposition 3.2.3(2). O

From Proposition 3.2.3, we also obtain the decomposition of B” as a l-crystal.

o . cmih
T J =11 7=
41 A =TH
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Proposition 3.2.8.

(1) e=(c) € B’ is an [-highest weight vector if and only if

Cin1 > Cian3 > -+, ¢ = 0 elsewhere. (3.2.17)

(2) As an l-crystal, we have
B’ =| |B;(\),
By

where the union is over A= Y"1 N € P such that 0 > Xy =Xy > Ag =N\ > -
and Bj(X) is the crystal of an integrable highest weight U,(l)-module for A.

Proof. It is enough to prove (1) because (1) implies (2) by Propositions 2.2.12 and
3.2.7 (see (6.2.3)). It is immediate from Proposition 3.2.3 that if ¢ satisfies (3.2.17), then
eic = 0 for i € I\ {n}. Conversely, suppose that ¢ = (cj;) € B’ is an l-highest weight
vector. If c;; # 0 for some (i,7) € {(n —1,n),(n —3,n —2),...}, then choose c; # 0
whose corresponding root €; + €; is minimal with respect to (3.2.7). If j —4 > 1, then
eic # 0, and if j —i = 1, then e;c # 0. This is a contradiction. Next, if ¢;5 777 < ¢
for some ¢ > 2, then we have ¢;c # 0, which is also a contradiction. Hence c satisfies

(3.2.17). 0

Remark 3.2.9. Recall that there is a one-to-one correspondence between the reduced
expressions of wy and the convex orderings on ®* [93]. Then the subexpression (iy, ..., i)
corresponding to the roots of u always appears as the first M entries (up to 2-term braid
moves) in any reduced expression of wy such that the positive roots of u precede those
of [ with respect to the corresponding convex ordering. Here a 2-term braid move means
ij = ji for i,j € I such that |i — j| > 1.

3.2.5 Notation for B’

Let A, be the arrangements of dots in the plane to represent the (n — 1)-th triangular
number. We often identify A, with ®*(J) in such a way that e,.1 + €41, €x41 + € and
e +¢ for 1 < k,l <n—1 are the vertices of a triangle of minimal shape in A,, as follows:

€pte€r41
°

(3.2.18)

€k41F+€141 €r+€;
[ J [ ]

o . cmih
T J =11 7=
42 A =TH
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We also identify ¢ € B/ with an array of ¢g’s in ¢ with ¢ at the corresponding dot in A,,.

Example 3.2.10. For n = 5 and ¢ € B”, we have

€1tes
° Cs1
A5 _ 52155 51154 c— Ces -
63-:65 62364 514:3 Ce3 c 31
64:65 €3354 €2363 61:62 Cxg Ci3 C3y C31

Example 3.2.11. Under the above convention, for n = 4, the description of fz (1el)is
as follows (recall Theorem 3.2.1 and Proposition 3.2.3(2)):

For example, when i = 2, the signature os(c) is given by Lusztig datum associated with

the arrows labeled 2 as follows:

13
[} [ J

37

2 2
ex5 7 Ny
[ ) [ )
Hence we have
—_—— ——— — —
13 I3 C31 31

Then the reduced signature *4(c) determines an arrow labeled 2 at which we apply fa.

For instance, if ¢;5 =0, ¢;5 =1, c51 = 1 and ¢33 = 1, then

o2(e) = (- + = +) — oF(e) = -+ )

- - -
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and we have

0 1 f2; 0
[ J

3.3 Burge correspondence

3.3.1 RSK of type D,

Let us recall a variation of RSK correspondence for type D due to Burge [6]. Put

T = || 88T\,

AEP,
M :even

(3.3.1)

where we say that )\ is even if each part of ) is even. Let {2 be the set of biwords

(a,b) € W x W such that
(1) a=ay---a, and b =0 ---b, for some r > 0,
(2) a; <bfor1 <i<r,

(3) (a1, b1) <--- < (ar,b,),

where (a,b) < (c,d) if and only if (a < ¢) or (a = ¢ and b > d) for (a,b), (¢,d) € W x W.
We denote by c(a,b) the unique element in B” corresponding to (a,b) such that

cab = [{ k| (ax, br) = (a,0) }.
Example 3.3.1. Suppose that n = 5. Let ¢ € B’ be given by

Then the corresponding biword ¢ = c(a, b) for (a,b) € Q is given by

ay (5555544432
b) \1232422311)°

44
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For (a,b) € Q with a = ay---a, and b = b; - - - b, we define a sequence of tableaux

P.,P,._1,..., P, inductively as follows:
(1) let P; be a vertical domino ,

(2) if Pyyq is given for 1 < k < r — 1, then define Py to be the tableau obtained by first

applying the column insertion to get by — Pk, and then adding at the conner
of by — Py located above the box sh(by — Pry1)/sh(Pryq).

We put P *(a,b) := P,. It is not difficult to see from the definition that P *(a,b) €
SST(A\™) for some A € & such that X is even.

For ¢ € B, let P*(c) = P “(a,b) where ¢ = c(a,b). Since the map (a,b)
P> (a,b) is a bijection from Q to 7 * [6], we have a bijection

k> B7 T . (3.3.2)

c— > P *(c)

Example 3.3.2. Let us consider Example 3.3.1. The following is the sequence of tableaux
P.,P._y,...,P, =: P(a,b) given in the definition of x* (3.3.2):

i om . mo T
R R R
3L B S [EE S [EE S [EEER
1]1 1[1 3|11 3[2]1]1
_ 5l4] - 5l4] - 54
> HEI - N 33
S [AEEE L BPEERE S EEEEER
3)2[1]1 1]3[2]1]1 1]1[3]2[1]1
_ 514 _ 5|4
; 53] 2 33
N 51 Y Y A A ) R Y E EA KA B
1l4[3]2]2[1]1 1l1[3]2]|2[1]1]1

R

Here we use the notation T — T' when T = Pyy1, T = Py, and (ag, b,) = (4,7). Hence,

45 . f,ﬂ k: 1_'.]| [
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we have
54
ke)=_ _ _ [3]3
5155151414212
4l4(3(2|12|1|1|1

Let us recall the g-crystal structure on 7 [62, Section 5.2]. We regard [7] = {7 <
.- < 1} as the crystal of dual natural representation of [ with wt(k) = —e;. Then W
is a regular [-crystal, where w = w; ... w, is identified with w; ® --- ® w,. For A € &,
SST(N) is a regular l-crystal with lowest weight — >~ | A\;e;, where T is identified with
w(T) [50]. In particular 7 is a regular l-crystal.

Let T € T be given. For k > 1, let ¢4 be the entry in the top of the k-th column of

T (enumerated from the right). Consider o = (o4, 09, ...), where

+, ift > n — 1 or the k-th column is empty,
or = § — , if the k-th column has both n — 1 and 7 as its entries,

-, otherwise.

Then €, T is obtained from T by removing in the column corresponding to the right-

red (recall Section 3.2.1 for o™4)

most — in o
e, T = 0, and ﬁLT is obtained from T by adding column corresponding to the left-
most + in 0. Hence T * is a g-crystal with respect to wt, &;, @i, &, f; (1 € I), where
en(T) =max{k|e*T #£ 0} and p,(T) = &,(T) + (wt(T), hy).

Now we are in position to state the crystal theoretic interpretation of Burge corre-

. If there is no such — sign, then we define

spondence.
Theorem 3.3.3. The bijection K in (3.3.2) is an isomorphism of g-crystals.

Proof. The key observation is that Burge correspondence can be described by an inductive
algorithm using RSK correspondence for skew tableaux. Here the skew RSK correspon-
dence is introduced by Sagan-Stanley [97]. Recall that it is known that RSK correspon-
dence is an isomorphism of crystals of type A, see Section 1.2.1 and references therein.
Then we compare the crystal structure of B’ in Proposition 3.2.3 with the one of T

The detailed proof is given in Section 7.1.2. O]

46 y | 1 1_]|
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3.3.2 Shape formula

For ¢ € B”, let

M) = (M) > ... > A(e)) (3.3.3)

be the partition corresponding to the regular [-subcrystal of B including c, that is,
A(c)™ = sh(k *(c)) by Theorem 3.3.3. Note that ¢ = 2[5] and Agi_1(c) = Ag(c) for
1 <qi <[5

We can characterize the whole partition A(c) in terms of double paths on A, as follows.

Definition 3.3.4. A path in A, is a sequence p = (71,...,7s) in ®T(J) for some s > 1
such that

(1) Y1y Vs € (D+(‘])7
(2) if v; = € + €41 for some k < I, then 7,41 = €x1 + €41 Or €4 + € (see (3.2.18)),
(3) vs = €k + €41 for some k.

For 5 € ®*(J), a double path at 5 in A, is a pair of paths p = (p1,p2) in A, of the same
length with p; = (71,...,7s) and py = (d1,...,0s) such that

(1) M= 51 = B?
(2) ~; is located to the strictly left of §; for 2 < i < s,
(3) Vs = €gs1 + €xr2, 05 = €x + €xyq for some k > 1.

Example 3.3.5. For a double path p = (p1,p2) at 3, if we draw an arrow from ~; to
~i+1 in p; and from J; to d;;1 in ps, then p; and py form a pair of non-intersecting paths
starting from [ going downward to the bottom row in A,, with p; on the left, and p, on
the right. The following is the list of double paths p at €; + €5 in As.

e vk
¥ p -11 ==
47 A —— Tl i



CHAPTER 3. PBW CRYSTAL AND RSK FOR TYPE D

For ¢ € B’ and a double path p, let

lellb=" >

B lying on p

CB.

Theorem 3.3.6. For c € B/ and 1 <1 < [%], we have

Ar(e) + Az(c) + -+ Ay (c) = )

where pq, ...
the (2i — 1)-th row of A,, for 1 <1 <.

)

+-- A+ lellp, }

Proof. The proof is given in Section 7.1.3 (see also Remark 6.2.6(2)).

Example 3.3.7. Let n = 6 and let ¢ € B’ be given by

1
2
2 1 1
1 3 1
2 3 2 0 3
Then we have
6|6
5|5
H\(C): 61615144414
51313333
6/6|6|6|5|5|5|5|5[4(3[3]2]2(|2|2|2|2]|2
5|5|5|4|4|4|4|4|3|2|T|1|1|1|1T|T|T1|1]|1
where A(c) = (19,19,6,6,2,2).
48

(3.3.4)

&

,P1 are mutually non-intersecting double paths in A, and each p; starts at

| &1
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On the other hand, the double path p at €; + €5 given by

has maximal value ||c||, = 19, and the pair of double paths p; and py at €; + €5 and

€3 + €6, respectively, given by

has maximal value ||c||p, + ||c||p, = 25. By Theorem 3.3.6, we have
A(c) =19, A(c) 4+ As(c) =25, Ai(c) + As(c) + As(c) = 27,

which implies A3(c) = 6, A5(c) = 2, and hence \(c) = (19,19,6,6,2,2).

Remark 3.3.8. Suppose that g is of type A,, and [is of type A, x A; withr+s=n—1.
The associated crystal B(U,(u™)) can be realized as the set of (r + 1) x (s + 1) non-
negative integral matrices (see [65, Section 4.3]). For M € B(U,(u™)), let A = (A1, Ao, .. .)
be the shape of the tableaux corresponding to M under RSK. It is a well-known result
due to Greene [25] (cf. [23]) that A; + - - -+ A; is a maximal sum of entries in M lying on
mutually non-intersecting [ lattice paths on (r+1) X (s+ 1) array of points from northeast
to southwest. A similar result when g is of types BC is obtained by folding crystals of
type A with » = s. Hence, Theorem 3.3.6 is a non-trivial generalization of [25] to the

case of type D. We can also recover the result in [25] by using the same argument as in
Section 7.1.3.

3 by
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Chapter 4

Crystal embedding from B()\) into
B(o0)

In this chapter, we describe the crystal embedding (2.2.3) for type D,, in a combinatorial

way. More precisely, the embedding is obtained as follows:

KN)\ i) T)\ ﬂ) V)\ ﬂ Bio ®T)\7
where the crystals are given by
KN, : the crystal of Kashiwara-Nakashima tableaux for type D,, of shape A [50],
which is isomorphic to B(A) (Section 4.1.2),

T, : the spinor model of type D,, associated with A, which is isomorphic to KN
[63,64] (cf. [66]) (Section 4.1.3),

V, : the crystal of parabolic Verma module associated with the maximal Levi

subalgebra of type A,,_; (Section 4.4.1),

B
crystal B(oo),

i, © the crystal of ip-Lusztig datum in Section 3.2.3, which is isomorphic to the
and the crystal embedding (a) is obtained from a combinatorial algorithm on T\ compat-
ible with the crystal structure of V), which is developed in Section 4.3, and the crystal
embedding (b) is obtained by using Burge correspondence (recall Section 3.3.1) and a
well-known result for type A.

This chapter is based on [38].

50 M =T
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4.1 Highest weight crystals for type D,

4.1.1 Tableaux with two columns

For a,b,c € Z,, let A(a,b, c) be a skew Young diagram with at most two columns given
by (2°¢,1%)/(1%). Let T be a tableau of shape A(a,b,c). We denote the left and right
columns of T by T" and T®, respectively.

Let T be a tableau. If necessary, we assume that it is placed on the plane with a
horizontal line L, say P, such that any box in 7' is either below or above L, and at least
one edge of a box in T meets L. We denote by T°% and T**!! the subtableaux of T'

above and below L, respectively. For example,

roll col ~>|| Ulll

W ot

rol| ol u>|| cnll

Ttail —

|H|| coll el e
h
=

where the dotted line denotes L.
For a tableau U with the shape of a single column, let ht(U) denote the height of U
and we put U (i) (resp. Uli]) to be i-th entry of U from bottom (resp. top). We also write

where ¢ = ht(U). Suppose that U is a tableau in P,. To emphasize gluing and cutting
tableaux with respect to L, we also write

Ubody =i Utail —_ U, UH Utail — Ubody'
For a sequence of tableaux Uy, Us, ..., U, in Py, whose shapes are single columns, let

us say that (U, Us, ..., Uy,) is semistandard along L if they form a semistandard tableau
T of a skew shape with U; the ¢-th column of T" from the left.

5 by
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4.1.2 Kashiwara-Nakashima tableaux of type D,

Let us recall Section 3.1 and 3.2.2 for the notations. Suppose that A = (Ay,..., \,) € P,
is given. The notion of Kashiwara-Nakashima tableaux (KN tableaux, for short) of type
D [50] is a combinatorial model of B(w,). In this thesis, we need an analogue, which is
obtained from the one in [50] by applying 180° rotation and replacing i and i (resp. i
with 7). For the reader’s convenience, let us give its definition and crystal structure.

In this section, we assume that [n] U [72] has the ordering given by
n _
1<2<---<n—-1< _ <n—-1<---<2<1
n
Definition 4.1.1. For A = (\y,...,\,) € P,, let T be a tableau of shape A™ with entries
in [n| U [n] such that
(1) T(i,j) 2T+ 1,7) and T'(i,5) <T(i,j+ 1) for each ¢ and j,
(2) n and 7 can appear successively in 7" other than half-width boxes,

(3) i and 7 do not appear simultaneously in the half-width boxes,

where T'(i, j) denotes the entry in 7" located in the i-th row from the bottom and the
j-th column from the right. Then T is called a KN tableau of type D, if it satisfies the

following conditions:
(0-1) If T(p, j) = i and T(q, j) = i for some i € [n] with p < ¢, then (¢ —p) +i > N,
(0-2) Suppose \, > 0 and X; =n. If T'(k, j) = n (resp. n), then k is odd (resp. even).

(0-3) Suppose A, < 0 and \; =n. If T(k,j) = n (resp. @), then k is even (resp. odd).

(0-4) If either T(p,j) = @, T(q,j) = b, T(r,5) = b and T(s,j + 1) = a or T(p,j) = @,
T(q,j+1)=b,T(r,j+1)=band T(s,j+1) =awithp<g<r<sanda <b<n,
then (¢ —p)+ (s—7r) <b—a.

(0-5) Suppose T'(p,j) =a, T(s,j + 1) = a with p < s. If there exists p < g < s such that
either T(q, j), T(q +1,7) € {n,n} with T(q,7) # T(¢ +1,j) or T(q,j + 1), T(q +
Lj+1l)e{nn}withT(¢q,j+1)#T(g+1,7+1),thens—p<n-—a.

(0-6) It is not possible that T'(p,j) € {n,mn} and T'(s,j+ 1) € {n, 7 } with p < s.

5 by
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(0-7) Suppose T'(p,j) =a, T(s,j+ 1) =a with p < s. f T'(¢,5 + 1) € {n,n}, T(r,j) €
{n,m} and s — ¢ + 1 is either odd or even with p < ¢ < r < s and a < n, then
s—p<mn-a.

We denote by KIN, the set of KN tableaux of shape \”.

Recall that KNy has the following crystal structure isomorphic to that of B(w).

where [a] — [3] means ﬁ [a]=[b] with ﬁ the Kashiwara operator for i € I, and wt([i]) =
e, wt([i]) = —€. for i = 1,...,n. On the other hand, KNg,; and KN,  have crystal
structures isomorphic to those of B(w,) and B(w,_1) which are the crystals of spin
representations with highest weights w, and w,_, respectively. For ¢ € I, ﬁ on KNg,+

is given by

fn

n n —1]°

s

n—1

~

(4.1.1)

Let A € P, be given. Let us identify T' € KN, with its word w(7T) so that we may
regard
(KN(l))®N , it \, € Z,

KN, C
* { KN, @ (KNu)™, if ), €7,

where N is the number of letters in w(7) except for the one in half-width boxes. Then

KN, is invariant under ¢; and ﬁ for i € I, and
KN, 2 B(wy),

(see [50, Theorem 6.7.1]).
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4.1.3 Spinor model for type D,

The spinor model is originated from the combinatorial description of the crystal of an inte-
grable highest weight module in a parabolic BGG category over quantum ortho-symplectic
superalgebra [63,64], where the category is established via Super duality developed by
Cheng-Lam-Wang (see [14, Chapter 6] and references therein). As a byproduct, this
should induce a combinatorial model of the crystal B(\) for an integrable highest weight
irreducible module V' (\) over the classical Lie algebras of types BC'D. In [63, Section
7.2], the author explains briefly the connection with Kashiwara-Nakashima tableaux.

In this section, we review the spinor model for type D,, and we give an explicit crys-
tal isomorphism between spinor model and Kashiwara-Nakashima tableaux of type D in
Section 4.2. Note that the isomorphism for types BC is given in [66, Section 3.3].

Definition 4.1.2. For T € SSTz(A(a,b,¢)) and 0 < k < min{a, b}, we slide down T*
by k positions to have a tableau 7" of shape A(a — k,b — k,c+ k). We define

vy = max{ k | 7" is semistandard }.

Definition 4.1.3. For T € SSTm(A(a,b,c)) with vy = 0, we define £T and FT as

follows:

(1) €T istableauin SST'F(A(a—1,b+1, ¢)) obtained from 7" by applying Schiitenberger’s
jeu de taquin sliding to the position below the bottom of T®, when a > 0,

2) FT is tableau in SSTm(A(a+1,b—1,¢)) obtained from T by applying jeu de taquin
]
sliding to the position above the top of T, when b > 0.

Here we assume that £7 = 0 and FT = 0 when a = 0 and b = 0, respectively, where 0 is
a formal symbol. In general, if v7 = k, then we define ET = ET" and FT = FT1’, where
T’ is obtained from T by sliding down T® by k positions and hence v = 0.

Definition 4.1.4. We define

T(a) = {T|T € SSTm(Aa,b,c)), b,c € 2Zy, vp < 1} 0<a<n-—1),
T(0)= || SSTmAWObc+1), TP= || SSTH((1Y),

b,c €27y a€Zy

T — [T|T €T vp =0}, T —{T|T Tty —1},

where vt of T' € T*P is defined to be the residue of ht(7") modulo 2.

3 y _17
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For T € T(a), we define (T™*, T*) when vy = 1, and (*T,*T) by

(T, T%) = ((FT)" (FT)"),

: : (4.1.2)
("T,*T) = ((E"T)- (E*T)") (a" =a—rr)

The following admissibility corresponds to the conditions on Kashiwara-Nakashima
tableaux [50].

Definition 4.1.5. Let a,d’ be given with 0 < a’ < a < n — 1. We say a pair (7,95) is

admissible, and write T < S if it is one of the following cases:

(1) (T,S) € T(a) x T(a’) or T(a) x TP with

(i) ht(TH) < ht(SL)

i) TR(i) <tS(i), if vprg =0,

W) 9 720) <180, if eres =1,

AT +a—a') < S%(i), if vrrg =0,
(i) AT(i4+a—ad +¢) <S™(3), if vprg =1,

—a + 2tptg,

for i > 1. Here e = 1 if S € TP~ and 0 otherwise, and we assume that o’ = tg,
S =S=L58 =S when S € T*P.

(2) (T,S) € T(a) x T(0) with "< S* in the sense of (1), regarding S* € T~
(3) (T,S) € T(0) x T(0) or T(0) x T~ with (T®, S*) € T(0).
Remark 4.1.6.

(1) For T € T(a), we assume that 7' € Py, such that the subtableau of single column
with height a is below L and hence equal to T,

€ T(2)

NEEE

[~]eo] e[ e

(2) Let S € T* with ¢ = tg. We may assume that S = U" for some U € T(e), where
UR(i) (i > 1) are sufficiently large so that S = U* ='U. Then we may understand
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the condition Definition 4.1.5(1) for (7',S) € T(a) x TP as induced from the one
for (I,U) € T(a) x T(e).

(3) Let T € T(0) be given. We assume that T T* € TP~ so that 72! is non-empty.
This means that (T%)**** and (T®)**" are non-empty in the sense of (2).

Let B be one of T(a) (0 <a <n—1), T®, and T(0). The g-crystal structure on B
[64] is given as follows. Let T" € B given. For ¢ € I\ {n}, we define ¢, f; by regarding
B as an [-subcrystal of | |\c, SSTm(A) [50], where we consider the set [7] as the dual
crystal of [n] that is the crystal of vector representation of [. For ¢ = n and T' € B, we
define €, T and ﬁLT as follows:

(1) if B = T*P, then ¢,T is the tableau obtained by removing a domino from T if

it is possible, and 0 otherwise, and f;T is given in a similar way by adding ,

(2) if B = T(a) or T(0), then ¢,T = &, (T*® T*) and f,T = f, (T® @ T*) regarding
B C (T*)%

The weight of T' € B is given by

(1) 2w, + Y oy mu€i, if T € T(a) or T(0),
w = = ,
w, + ZZZI mye;, if T € TP,

where m; is the number of occurrences of i in 7. Then B is a regular g-crystal with

respect to ¢; and ﬁ for i € I, and

I

T(a) 2 B(w,e) 2<a<n-1),
T(0) 2 B(2w,), T(0)=B(2w, 1), T(1)=B(w, 1+ @),
T = B(w,_1), TP =B(w,).

([64, Proposition 4.2]). Note that the highest weight element H of B is of the following

form:
@HﬂHla if B=T(a) with2<a<n-1,

B[#] ifB=T(1),
if B=T(0) or B = T,
if B= T,

(4.1.3)

HS
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where ) is the empty tableau and H 1y € SSTp,,((1%)) (2 < a < n—1) such that Ha[k] =
n—k+1(1<k<a), that is,

n

n—1

Hjoy = (4.1.4)

n—a-+1

Note that the empty tableau () is an element of SST'7/((0)).

Let A = (A1,...,A\n) € Py be given. Let us recall wy (3.2.6). Then, wy is written by

Zle Wn—a;, + DOn_1 + q(2w,) + rw,, if A, >0,
WA= ¢ _ _ . (4.1.5)
Zi:l Wn—a; + pww, + Q(zwn71> + rwp—1, if )\n < O,

where a; > -+ > a; > 1, p is the number of 7 such that a; = 1 and (g, ) (resp. (g, 7)) is

given by 2\, = 2¢ +r with r € { 0,1} (resp. =2\, =2¢+ 7 with 7€ {0,1}).
Let

T = T(ag) x -+ x T(a1) x T(0)*7 x (T if A, >0, (4.1.6)
T T(ar) x -+ x Tlay) x T(0)<T x (T-), if \, < 0, o

and regard it as a crystal by identifying

T=(..TT)eET), +— T1ehH®....
We define
Ty={T=(..Tp,T)) €Ty | Tiyy < T, forall i},

where < is given in Definition 4.1.5. Then T C TA is invariant under ¢; and ﬁ forv e I,
and then

T/\ = B(CL))\), (417)

(see [64, Theorem 4.3-4.4]). We call T the spinor model for B(w,). We note that the
highest weight element H) of T is of the form:

H® --@H @H '@ HZ", if \, >0,
H, = e (4.1.8)
H® - @H HS "9 H®T, if A\, <0,

where H; and H. are the highest weight element of T(a;) and TP* given in (4.1.3),
respectively.
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Example 4.1.7. Let n = 8 and A = (4,4,4,4,4,2) € Pg be given. By (4.1.5), we have
Wy = 2@8,3 + 2w8,2 = 2@5 -+ 2@6,

with ¢ = 4 and (a4, as, az,a1) = (3,3,2,2). Let T = (T4, T3, T2, T1) given by

6
5
503
5| [a] _[3] [a]=]
7 G 1 3
2]

T 15 T, Ty

where the dotted line is the common horizontal line L. Then T, < T35 < 15 < T}, and
hence T € T,.

Definition 4.1.8. For \ € P,,, let
HA)={T|TeT), &T=0(i#n)}.

and call T € Hy an [-highest weight vector in T for simplicity.

Note that for T € T), we have T € H()) if and only if T = H, for some p € Z.

We also need the following partial order < in Section 4.3.

Definition 4.1.9. Let B be one of T(b) (0 < b < n), T*?, and T(0). For (T, S) € T(a)xB
with a € Z,, we write T < S if the pair (*T, S*) forms a semistandard tableau of a skew

shape, where we assume that #7" and S are arranged along L as follows:

AP = (.. *T(a + 1)) B (*T(a),...,*T(1)),
SE=(...,S4b+1)) B (S:b),. .., SH1)).

Here we understand S in the sense of Remark 4.1.6 and put b = ht(S***!) when S € T~
or T(0).
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4.2 Isomorphism from KN, to T

Let us give an explicit description of the isomorphisms between KN, and Ty for A € P,
(cf. [66, Section 3.3| for type B,, and C,,).
Let B be one of T(a) (0 < a < n—1), T®* and T(0). For T € B, we define a tableau

T as follows:

(1) Suppose that B = Ts% Let T be the unique tableau in SSTm/((1™)) such that i
appears in T if and only if 7 appears in T for 1 <i<n.

(2) Suppose that B = T(a) (0 <a < n — 1) or T(0).
(i) First, let ®T be the unique tableau in SSTp(1™) with m = n — ht(*T") such
that i appears in ®T" if and only if 7 does not appear in *7T for i € [n].

(ii) We define T to be the tableau of single column obtained by putting the single-
column tableau consisting of H with height b — 2vy between *T" and *T", where
LT is located below *T.

Example 4.2.1. Let n = 8 and let 7" € T(2) be T} in Example 4.1.7 with sh(7) =
A(2,2,2) and vy = 1, where we have

TR.

TL

= ) )
Then *T" is given by
—
= RT.
8]
and hence
6|
5|
53 o
T= 575 > =1T.
3]
2]
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Note that since b = 2 and rr = 1, there is no domino 4 in T. On the other hand, if

T € T*P~ is given as follows, then we have

T =

EEE
[~ =en]oo [ ]ee o]
I
~N

Lemma 4.2.2. The map sending T to T gives an isomorphisms of crystals

KNgps, if B = TP%,
KN(in-ay, if B=T(a) or T(0).

d:B

Proof. Case 1. B = T*. It is straightforward to see that ® is a weight preserving

bijection and by (4.1.1), it is a morphism of crystals. Hence @ is an isomorphism.

Case 2. Suppose that B = T(a) (0 < a <n—1)or T(0). Let T € B given. First
we claim T € KN(in-ay. Suppose that T ¢ KNin-a). Then by the condition (9-1) there
exists ¢ € [n] such that

(g—p)+i<n—a (p<yq). (4.2.1)

Put © =n —a—q and y = p. We note that z is the number of entries in [n] smaller than
1 in T, and y is the number of entries in [7] equal to or larger than 7 in T. Take k such
that “T'(k) = i. Then we have 'T'(k) > *T'(k) by (4.2.1). This contradicts to the fact that
the pair (*T,*T) forms a semistandard tableau when the two columns are placed on the
common bottom line. Hence T € KN(jn-a).

Second we show that T = i where = denotes the crystal equivalence as elements
of l-crystals. By the construction of ﬁj, it is not difficult to check that T = *T" (more
precisely as elements of sl,-crystals). Put Dy to be the single-column tableau consisting
of the domino 4 with height b — 2v. By the tensor product rule of crystals, we see that
{Do} is the crystal of the trivial representation of [. This implies that *1" = *T" ® D, and
thus

T="MQ T = QT = ®Dy T =T

Next we claim that 7" = fni where T' = fnT. Let T € SSTm (M a,b,c)) and
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T" € SSTw (A a, b, ). Let us consider the case when Fo(TRQTY) # 0 and f,(TRRTY) =
T* @ (f,T"). The proof of the other cases is similar. In this case, we have b/ = b — 2,
¢ = ¢+ 2 by definition of f,, and that T%[1] and T®[1] must satisfy that

n—2 <T'1], TH1]<n-1.

Then we have I
fj:'— RT@fTL(Do)@LT, if b> 2,
" LT @1, ifb=2,

where fn(Do) is obtained from Dy by replacing r+ by at the bottom of Dy. Note that
the bottom entry of f,,(*T) is given by

@, i TH1] =m,
o, if TRl =n-1

On the other hand, we can check that *T” is obtained from *T by putting the domino
(resp. @if T*[1] = @, and if TR[1] =n —1) on the top of T when b > 2 (resp. b = 2).
Now it is easy to see that ﬁf is equal to T

Consequently, ® is a morphism of crystals. Since @ is injective and sends the highest
weight elements of T'(a) to that of KN(n-ay , ® is an isomorphism. O

Next let us describe the inverse map of ®. Let T € KNa) UKNg,+ (0 < a < n) be
given. Then we define W,(7T") and Wy,+(T') if T' € KN30y and T" € KNg,+ respectively as

follows:

(1) Let T, (resp. T_) be the subtableau in T with entries in [n] (resp. [n]) except for

dominos

(2) Let T be the single-column tableau with height n — ht(T.) such that i appears in
T, if and only if ¢ does not appear in T,

(3) We define U,(T") and W,y (T') by

Voo (T) =T, Wo(T)=F"(T_,T,), (4.2.2)
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where

0, if ht(T}) — a is even,
€ =
1, if ht(7}) — a is odd.
We note that W, (7) has residue 1 if ht(ﬁ) — a is odd, otherwise 0.

It is not difficult to check that the map W, (resp. Ug,1) is the inverse of ®. Hence by
Lemma 4.2.2, we have the following.

Lemma 4.2.3. The maps ¥, and Wq,1 are isomorphisms of crystals

\Ijsp:i: . KNsp:t

T ¥, : KN

T(n—a) (0<a<n),

Now we consider the isomorphism for any A € P,. Let u/ = (a4 ...,a1), where
ai,...,ap are given in (4.1.5), with £ = py. For T' € KN, let

(T,,....,T1), if\ €7,
(Ty, ..., T, Ty), if \p & Z,

denote the sequence of columns of T', where Tj is the column of T" with half-width boxes,

and Ty, Ty, ... are the other columns enumerated from right to left.

Theorem 4.2.4. For A € P, the map

\I/)\ . KN/\ T>\ (423)
defined by
U\(T) = (W (T), - -, ¥y (T1)), if \y € Z,
' <\Ij“2 (Tg), Tt qjl/l (Tl)a \Ijspi<T0)), Zf )\n € Z7

s an isomorphism of crystals from KINy to Ty, where we take Wy, and Ve, if X, >0

and A\, < 0, respectively.

Proof. By Lemma 4.2.3, the map V), is an embedding of crystals into T,. Also the map
U, sends the highest weight element of KN, to the one of Ty (cf. (4.1.8)). Then by
(5.3.1), the image of W, is isomorphic to T). O

- . .
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Example 4.2.5. Let A = (45,2) € Pg be given. Consider

1]1
113]14|7
T = [2]5]5[8] € KN,.
6[7]|715
8[8]813
716[4]12
Put
T4: le
By definition of((Ti),,(T/i\)?),

N
(@)=, T)) = ( ) :
@,

((T2)77@_):L) = ( )7
ol

woies|en]=]

[raleat] e

H
5
G| [5]3
5 4 3] [4]2
\If)\(T) = 7 5 i 3T c T)\'
2]
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4.3 Separation algorithm

We introduce a combinatorial algorithm on T, so-called separation, which plays a crucial
role in Chapters 4 and 5, and this section is one of main parts in this chapter.

Roughly speaking, the separation is given by sliding horizontally the tails of T (using
the jeu de taquin sliding) to the leftmost one as far as possible so that the resulting tableau
gives a semistandard tableau U of normal shape and the remaining one in the body gives
a semistandard tableau of anti-normal shape. For example, see Example 4.3.2.

We remark that the separation algorithm of types BC is already present in [66]. How-
ever, the separation algorithm of types BC does not work well on the spinor model of
type D due to more involved conditions for admissibility in T (Recall Definition 4.1.5).

To overcome this difficulty, we introduce an operator sliding which is given by a non-
trivial sequence of jeu de taquin slidings, and also moves a tail in T by one position to
the left horizontally.

A key property is that our sliding is compatible with the type A crystal structure on
T, so that we obtain another element T e T and T = T ® U as an element in a crystal
of type A, where U is the leftmost column in T and Nis a partition smaller than \. Hence
this enables us to define the separation algorithm by applying the sliding successively.

Moreover, in Section 4.4, we see that the separation induces an g-crystal embedding
from spinor model into the crystal of parabolic Verma module associated with the maximal

Levi subalgebra of type A. This is the second main part in this chapter.

4.3.1 Sliding

Let us recall that T, is a subcrystal of (T**)*" for some N. We may identify (T5)®"
with
EV:= || SSTm(I"™)x - x SST(1").
(UN s esun )EZT
We use an ([, sly)-bicrystal structure on EV in [66, Lemma 5.1]. The Il-crystal structure
on EV with respect to ¢€; and ﬁ for i € I is naturally induced from that of (TSP)®N. On

the other hand, the sly-crystal structure is defined as follows (recall Definition 4.1.3).

e e
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Let (Un,...,U;) € EN given. For 1 <j < N —1and X = &, F, we define

Uy, .. XU, Uy), .. Uy, it X(Ujy, Uy) 0,

X‘(UN7"’7U1) =
’ 0, if X(Usy1,U;) = 0.

where X (Uj41,U;) is understood to be XU for some U € SSTi7(A(a,b, c)) with vy = 0,
Ul =Uj;q and UR =U;.
Let I be the number of components in T} in (4.1.6) except T*P%. Consider an embed-
ding of sets
T, E2i+1 , (4.3.1)
T=(T,...,T1,Ty) — (T, TF, ..., T T*, Tp)

where T} is regarded as

if \, € Z,
T, € {0}, if A, €
TPE, if \, & Z.

Here {(} is the crystal of trivial module. We identify T = (T;,...,T1,Ty) € T, with its
image U = (Uy,...,U;,Up) under (4.3.1) so that Ty = Uy and (T;44,7;) is given by

(E-i-la E) = (Uj-‘r?a Uj+17 Uj’ Uj—l) = (irilii—lv T‘ipi&-h TZL'L7 T;R>a (432)

with j=2ifor 1 << —1.
Now we define an operator S; on T for j =2i for 1 <7 <[—1 by
]:]('Zi7 if ,-Ti—‘rlq ﬂ)

S; = - (4.3.3)
Ei&jaF T Fi, T AT,

where §; is understood as the identity operator when a; = 0, and < is given in Definition
4.1.9.

The following lemma is crucial in Section 4.3.2.
Lemma 4.3.1. Let T = (...,T;41,T;,...) € Ty be given.
(1) We have §;T = (.. .,Uj+2,(7j+1,(~]j,Uj_1,...) for some ﬁjH and ﬁj, and (Uji,

Ujs1, Uj, Uj_1) is semistandard along L.

(2) Suppose that e, T # 0 for some k € J and put S =€, T = (...,S;41,S5;,...). Then
Tivq <T; if and only of S;vq < S;.

B & . I
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Proof. The proof is given in Section 7.2.1. O]

4.3.2 Separation when A\, >0

Let us assume \ € P,, with \,, > 0. The case when A,, < 0 is considered in Section 4.3.3.
Let T = (T;,...,T1,Ty) € Ty be given. Since T; € Py, for 0 < i <[, we may consider
the (I 4 1)-tuples

(T7°, . TY°, Tp°), (T, T, Ty (4.3.4)

to form tableaux in P;,. But in general, they are not necessarily semistandard along L,
and (T°Y, ..., T?°Y, T5°%) may not be of a partition shape along L. So instead of cutting
T with respect to L directly as in (4.3.4), we introduce an algorithm to separate T into
two semistandard tableaux, which preserves [-crystal equivalence.

More precisely, we introduce an algorithm to get a semistandard tableau T in P, such
that

(S1) T is Knuth equivalent to T, that is, T = T,

ta11

(82) T € SSTm (i) and TV ¢ SSTim (07) for some § € 2| where € 2, is

given by
W= (ag...,a1) (4.3.5)

with a; as in (4.1.5).

We call this algorithm separation (see [66] for types BC). Let us explain this with an
example before we deal it in general.

Example 4.3.2. Let T = (T4, T5, T3, T1) € T(44,4,4.4,2) be given in Example 4.1.7.

77777

FIEIEIE]

co\¢>\~m
|w\|w w1 | o
h

Us Uy Us Us Uy U3 Uy Uy
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where (U, ..., Us) denotes the image of (Ty, T3, T5,77) under (4.3.1).
First we consider < in Definition 4.1.9 on (741, 7;) for 1 <4 < 3. Then we can check
that T4 ﬁ T3, T3 /é] T2 and T2 < Tl. By (433), we have

Se = 5655]:62]:5; Sy = 5453f42f3, Sy = ]—"22

Now, we apply these operators Sg, S4, and then S; to T to have

8 7 6 5 3 2 1
]
5
5| 6ls] [5]3
__________ N T A 5 5 1 P
717 1 3]
1|2 2]
3|1
US ﬁ7 6(, fjr) 64 fj‘; [72 Ul
We observe that (recall Definition 4.1.5)
((77, [76) =< ((75, 174) =< ([73,[72), (436)

So we can apply the above process to (4.3.6), and repeat it until there is no tail to move

to the left horizontally. Consequently we have

5]
5
6|/6[/6|5]3
_____ __[a[ElEEE]
71753
412122
3|1

Hence we obtain two semistandard tableaux of shape d™ and p, where § = (4,4,1,1)
and p = (4,4,2).

Now let T = (T;,...,T1,Ty) € Ty be given and let U = (Uy, ..., U, Up) be its image
under (4.3.1). We use the induction on the number of columns in T to define T. If n < 3,
then let T is given by putting together the columns in U horizontally along L.
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Suppose that n > 4. First, we consider
S Sy 2T =8,...8u2U = (Us,Usr,..., U, U1, Up) € E*H,

and let

U= (Uy-1,...,0,U1,Up) € ™. (4.3.7)

Note that applying Sy t0 Spiya...Sy-2T for 1 < i < [ —1 is well-defined by Lemma
43.1(1).
Let A € P, be such that wy — Wy = Wy_q With a = ht(U5*").

The following lemma is the crucial initial step for the sliding algorithm.

Lemma 4.3.3. Suppose that T € H(A) (recall Definition 4.1.8). Then there exits a
unique T € H(X) such that the image of T under (4.3.1) is equal to U.

Proof. To prove this lemma, we observe how the sliding and separation work on [-highest
weight vectors. We give the description explicitly in Sections 5.3.3 and 5.3.4 and give the
proof of this lemma in Section 7.2.2. O

We generalize the above lemma for arbitrary T € T, as follows.

Lemma 4.3.4. For T € T, there exits a unique Te T such that the image of’i‘ under
(4.3.1) is equal to U.

Proof. There exists an [-highest weight vector H € T such that H = ¢;, ...¢; U for
some iy, ...,i, € I. Put U* = (Uy_4,...,U;) and let H* be obtained from H by removing
its leftmost column, say Us,. By Corollary 2.1.16(2), H is also an [-highest weight vector.
Identifying U = U* ® Uy, we observe that by tensor product rule (2.2.3),

H'oU),=¢ ..U
=&, ...6 (U@ Uy)
= (gjl .. EJSUﬁ) ® (gkl . .gktUgl)

where {i1, ..., i} = {j1,- -, Js} U{k1,..., ki }. Hence H* =¢; ...¢; U* and

U - Sz...SQZ_QUn - SQ...SQl_Q <]§5 ElHﬁ) - ff\;‘s };1 (SZ...SQZ_QHﬁ) y

- . .
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since E* is an (1, sly)-bicrystal. Note that the operator S, ... Sy (4.3.3) is well-defined
on H* by Lemma 4.3.1(2). Then S, .. .Sy _oH € T5 by Lemma 4.3.3, which implies that
UeT; O

Put T = ’T‘, which is given in Lemma 7.3.7. By induction hypothesis, there exists a
tableau T satisfying (S1) and (S2) associated with T. Then we define T to be the tableau
in P;, obtained by putting together the leftmost column of T, that is, Uy, and T along L.

By definition, sh(T) = 7 is of the following form:

57r

= I (4.3.8)

for some § € 2.
Proposition 4.3.5. Under the above hypothesis, T satisfies (S1) and (S2).

Proof. By definition, it is clear that T = T, which implies (S1). By Lemma 4.3.1,
(U;lody,TbOdy) and (U;lail,Ttall) are semistandard along L, which implies (S2). O

4.3.3 Separation when )\, <0

Now, we consider the algorithm for separation when A\, < 0. The algorithm in this case
is almost identical with the case A, > 0 except for the spin columns of odd height (recall
Definition 4.1.4). We deal with these columns in the sense of Remark 4.1.6(2).
Let us assume that A, < 0. Recall that —2\,, =2+ 7 with 7 € {0,1}. For T € T,,
we may write
T=(,....,Tns1, T, ..., 11, Tp),

for some m > 1 such that T; € T(a;) for some a; (m+1<1i <), T; € T(0) (1<i<m)
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and Ty € T~ (resp. Tp = 0) if 7 =1 (resp. 7 = 0). We identify T with
U= (U2l7 R U2m> U2m717 R U17 UO)

under (4.3.1).

Remark 4.3.6. For the spin column Us,,,, we apply the sliding algorithm in Section 4.3.1
as follows. Let U = H(i») in (4.1.4). Consider the pair

(U2m+27 U2m+17 UQm; U)7

where we regard U = UB0) € P, and (U, U) € T(e) as in Remark 4.1.6(2). By Lemma
4.3.1, we have

82777, ~ ~
<U2m+2; Usm+1, Uz, U) S (U2m+2, Usm+1, Uz, U),

for some ﬁgm_t'_l and ﬁgm7 and by our choice of U, we have

(U2m+27 Usm+1, U2m) = <U2m+27 ﬁ2m+1, (72m>

Now, we use the induction on the number of columns in T to define T satisfying (S1)

and (S2) where p € &2, in this is given by

W= (ag,...,a1,1,...,1). (4.3.9)
—2A

If n < 3, then let T be given by putting together the columns in U along L.
Suppose that n > 4. First, we consider Sy 28594 ... S2, T, where S, is understood

as in Remark 4.3.6.. Then we have
821_2821_4 P SQmT — (Ugl, (721_1, ey (72m+17 ﬁgm, U2m—17 ey Ul; UD), (4310)
for some ﬁl for 2m < i <2l —1. Let

U= ([721—17 teey ZijZTrL-i—lv [72m7 U2m—17 R U].7 UO)

The following is an analogue of Lemma 7.3.7 for A\, < 0.
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Lemma 4.3.7. Let \ be such that wy — Wy = Wn—q with a =ht(U3?**). Then there exists

a unique T € T5 such that the image of’f is equal to U under (4.3.1).

Proof. Let U = (Uy,Ugy_1,...,Usmi1,Usm, U). Let v = wt(U’) and let v be given by
V—U = wy_ with a = ht(US*"). By Lemma 7.3.7 and Remark 4.3.6, there exists a unique
S ¢ T; whose image under (4.3.1) is U = (621_1, e ﬁQm, U). By semistandardness of
(U, Ugn—1) (cf. Remark 4.3.6), we have

(ﬁQm-Ha ﬁQm) < (U2m—17 U2m—2)-

Note that we may regard (Us;_1,Us;2) € T(0) (2 < j < m), and (Uy,Up) € T(0) if
Up # 0, (Uy,Upy) € TP~ otherwise. Therefore there exists a unique T € T5 which is equal
to U under (4.3.1). O

Put T=T given in Lemma 4.3.7. By induction hypothesis, there exists a tableau T
satisfying (S1) and (S2) associated with T. Then we define T to be the tableau in Py,
obtained by putting together the leftmost column of T, that is, Uy, and T along L. By

definition, sh(T) = 7 is of the form (4.3.8) with u in (4.3.9).
Proposition 4.3.8. Under the above hypothesis, T satisfies (S1) and (S2).

Proof. It follows from the same argument as in the proof of Proposition 4.3.5 with
Lemma 4.3.7. O

Example 4.3.9. Let n =5 and A = (g, %, %, %, —%) Then we have
wy=w +w3+wy, T)C T(4) X T(2) x TP,

Let us consider T = (Ty,T},Tp) € Ty given by
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We regard Tj as in Remark 4.1.6(1). Then we have T, A T} and T} A Ty. By applying
(4.3.10) (cf. Remark 4.3.6) we obtain

=]

|>~\|1\3\ wl (o

T, Ty To U, Uy Uy, U, U

where U = H(;s) is the single-column tableau consisting of the numbers in gray.

Finally, we apply S; to (Uy, (73, (72, [71, [70) and then we have T given by

1] cel »Nlcn\l

=l
I
=]

=
]

|>~\|w\ wl (o

where T %7 (resp. Ttail) is the semistandard tableau located above L (resp. below L)

whose shape is (2,2,1,1)" (resp. (3,2,1,1)).

4.4 Embedding from T) into V)

4.4.1 Crystal of parabolic Verma module
For A\ € P,, let
V, = < L] ssT (5“)> x S5Tm(n)

sep(tY
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where p € &, is given by (4.3.5) if A, > 0, and by (4.3.9) otherwise. Recall that

V= || 85T,

sep(th

has a g-crystal structure (see [62, Section 5.2] for details). On the other hand, we regard
the [-crystal
S, i= S5 Tjs (1)

as a g-crystal, by defining ¢,7 = f,T7 = 0 with ¢, (T) = e,(T) = —oo for T € SSTm ().
Then we may regard V), as a g-crystal by letting

V,=V®S,, (4.4.1)

which can be viewed as the crystal of a parabolic Verma module induced from a highest
weight [-module with highest weight A (cf. [61, Section 3] and [66, Theorem 4.3] for types
BC).

Remark 4.4.1. In [61], Kwon interpret Littlewood identities for types B, and C,, by
using the crystal base theory. In particular, this induces a new combinatorial model for
the crystal graph of an integrable highest weight irreducible module by characterizing &f
(see [61, Theorem 3.11, Remark 3.12)).

It would be interesting to develop an analog of the above result for type D, by using
the results in this thesis. Indeed, the formula in Theorem 3.3.6 may be viewed as a

characterization of f on Vj,.

Let us recall the actions of ¢,, and f; on T, and V, in more details. We let

3|

vd =

be the vertical domino with entries 7 and n — 1.
Suppose that T = (1},...,T1,Ty) € T, is given, where

T:<UQZ,...,U,L',...,U1,U0)

3 by
73 M =T
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under the identification (4.3.1). We define a sequence o = (0¢, 071, ...,09) by

+ ifU;=0or Ui[l] >n—2,

0; =« — if vd is located in the top of U;, (4.4.2)
otherwise,
where we put oo = - if Uy = 0. Let 0" be the sequence obtained from o by replacing the

pairs of neighboring signs (+, —) (ignoring -) with (-, -) as far as possible. If there exists
a — in 04, then we define €, T to be the one obtained by removing vd in U; corresponding

red “We define €, T = 0, otherwise. Similarly, we

to the rightmost ¢ such that 0, = — in o

define fnT by adding vd in U; corresponding to the leftmost i such that o; = 4 in o*°d.
Next, suppose that T' € V) is given. We define a sequence 7 = (79, 71,...) by (4.4.2).

Note that 7 is an infinite sequence where 7; = + for all sufficiently large 7. Then we define

774 and hence ¢, T and f;T in the same way as in T).

Example 4.4.2. Let us consider T € T, in Example 4.3.9. Then the sequences o is

obtained from T by reading component o; from right to left and the sequence o™¢ is

reduced from o by replacing the pair (+, —) to (-, -). Consequently, we have
0:(_7+7+7_7') — Ured:(_7+7.7'7')'

Therefore, fsT is given by

5
1
g
__________ 1 5
5 2
3 1
2
1
T, 7 T
On the other hand, we consider T' € V) given by
5] 5[2]2]
T = —= 311 — :
HE X H GVA V®SM
|1 1]
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Then the sequences 7 and 7°°¢ are obtained by the similar way as in the sequences o and

o™, so we have

T:<_7'>+7+7"'> — Tred:(_7'>+7+7"')'

Hence f5 T is given by

il
o

~
I

=i [eot | ]
&®

|)—‘\|l\3\ ol [en

=l

red

Note that the subsequence of 77°¢ consisting of first 3 components is equal to the sequence

o™ by ignoring the dot -. This holds in general, see Lemma 4.4.5.

4.4.2 Embedding as g-crystals

The following is the main result in this section.

Theorem 4.4.3. The map

X\t T)\ V)\ X Trwn (443)
——body —tail

T— T YT " ®t,,

is an embedding of g-crystals, where r = (\,wy,).
First, we consider the injectivity of x, (4.4.3) on [-highest weight vectors.

Lemma 4.4.4. Suppose that T and S are contained in H(X). If xA(T) = x(S), then we
have T = S.

Proof. Suppose that xA(T) = xA(S). Since T, S are [-highest weight vectors, by Corollary
2.1.16, we have

~Sbody —body

T :H(Sw, S == H,Yﬂ'

for some 6,7 € 2D Since ) is weight-preserving and T, S are [-highest weight vectors,

we have
—tail

— (H, < S™) = H, (4.4.4)

—tail
)

(Hg%T

——body —body

for some ¢ € &. Thus, we have § =y and T ~ =S . By [23, Proposition 1, p.19]
—tail —tail

and (4.4.4), we have T™ = S, Then one can check that the sliding and separation
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algorithms are reversible on [-highest weight vectors, see Sections 5.3.3-5.3.4 for more

details. We complete the proof. O]
Next, we investigate the signatures (4.4.2) for T and T

Lemma 4.4.5. Let & = (G, ...,0) be the subsequence of T4 consisting of its first 21+ 1

components for . If we ignore the dot - in (4.4.2), then

O_red — —red'
Proof. We first consider a pair (T;441,7;) in T. Let (0j_1, 0, 041, 0j12) be the subse-
quence of ¢ corresponding to (T;41,7T;) with j = 2i. Let

SJT == ( cey Uj+2,fjj+1,l7j, Ujfla .. )

(see Lemma 4.3.1). We denote by (0,_1,0;,0,41,0j4+2) the sequence defined by (4.4.2)

corresponding to (Ujia, Ujt1, Uj, Uj_q).
Case 1. vi;1v; = 0. Note that §; = F* by Lemma 7.2.1(1). Then we have (0;1,0;) =

(0j41,0;) by the similar argument in the proof of [66, Theorem 5.7].

Case 2. v;;;t; = 1. The relation between the two pairs (0,41, 0;) and (7,41, 0;) is given
in Table A.2.

Let U :=85...8y 2T := (Uy, 172!_1, e ﬁg, Ui,Up) and let ¢ be the sequence given
by (4.4.2) corresponding to U. Then we have

0 = (021,021—17 <. ,02,01700)-

It is straightforward to check that o™¢ = ™. Note that oy = Ty by definition. By
Lemma 7.3.7 and 4.3.7, we may use an inductive argument for (U1, ..., [72, Uy, Uy) to

d d

have o™ = g7 = 74 This completes the proof. n

Now we prove Theorem 4.4.3 as follows.

Proof of Theorem 4.4.3. We use the following notations under the identification
(4.3.1) in this proof.

(1) T= (ﬁzl, (72[,1, ...) : the sequence of tableaux with a column shape obtained from
T by shifting the tails one position to the left as in Sections 4.3.2 and 4.3.3.

3 o i
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(2) T = ((721,1, Uso, ... ) : the sequence of tableaux obtained from T by removing the
column (721.

(3) T = (Uy,Ugy_1,...) : the sequence obtained from T by applying fn, that is,

T=f,T.

(4) T : the sequence obtained from T by shifting the tails one position to the left as in

Sections 4.3.2 and 4.3.3 and then removing the left-most column of T.

(5) & = (G0, 1,...,0%) : the sequence of (4.4.2) associated with T.

Recall that T € T5 by Lemmas 7.3.7 and 4.3.7, where \ satisfies Wy — Wy = Wy—q With
a = ht(Ush).

First we show that x is injective. Suppose that x\(T) = x(T’) for some T, T' € T,.
There exists iy,...,4, € J such that €, ...¢ x\(T) = €, ...€, xa(T") is an [-highest
weight vector. Note that x, is a morphism of [-crystals by Proposition 4.3.5. Therefore,

we have
X)x(gh .. gZ,T) = X/\(gh .. gz,T/)

By Lemma 4.4.4, we have

~ ~ ~ ~
€y - GirT =€ .. eirT .
Hence T = T’, and Y, is injective.

Now it remains to show that
faT#0and x,(T) £0for Te Ty = xa(fuT) = fuxa(T). (4.4.5)

If fn acts on Uy or Uy, where k= 0if Uy # ), and k = 1 if Uy = (), then the claim (4.4.5)
follows from Lemmas 4.3.1 and 4.4.5.
Suppose that }; acts on Uy, for k < 2. To prove (4.4.5), it is enough to show that

T=f,T. (4.4.6)

3 by
7 M =T



CHAPTER 4. CRYSTAL EMBEDDING FROM B(A) INTO B(oc0)

Indeed, if (4.4.6) holds, then by induction on the number of columns in T, we have

FT = (U, )
_ (UQZ, f,ﬂf) by (4.4.6)
- (UQZ, f,ﬂl‘)
_ (U% ﬁT) by induction hypothesis

= fu (U, T) by Lemma 4.4.5,

Hence we have f;l_T — /T which implies (4.4.5).
Now we verify (4.4.6). Let us recall Table A.2 and then we have

ot = Gred, (4.4.7)

We prove (4.4.6) for the case Uf2* # () with non-trivial sub-cases. The proof for other
cases or the case Ut = () is almost identical.

Let us recall the action of fn in Section 4.4.1. Then for the case U™ # (), the
signature oy (4.4.2) associated with Uy;; must be - or +. We consider four cases as

follows.
Case 1. If ht(UySY) < ht(U;°Y) < ht(UP°Y) = ht(Uy°¥) + 2, then by definition of
Sy the top entry of Ui,y can not be moved to the right in T. Thus we obtain (Oky Opt1) =

(g, Ok+1), which implies (4.4.6).

Case 2. If ht(UpY) = ht(Up°Y) + 2 = ht(U;°Y), then the signature ojy; (4.4.2)
can not be +. Otherwise (Ugyo,Uxr1) A (Ug,Ux_1) for Definition 4.1.5 (ii), which is a

contradiction. Thus o1 = -. We observe that

(Uk:7ak+1> - (+7 ) — (8k75k+1) = ('7+>7 (4 4 8)
Upna[l] =@or m=1, Ural2] 2n—2. h

It is straightforward to check from the definition of S that when we apply S to T, the

domino vd in Uy is changed as follows:

78 1. | ui 1_]|



CHAPTER 4. CRYSTAL EMBEDDING FROM B(A) INTO B(oc0)

in Uy, is moved to [7] in Ugyq below  if Uy [1] =[5,
in U, is moved to in Uy q above  if Upyy[1] = F=1].

Combining (4.4.7), (4.4.8) and (4.4.9), we conclude that (4.4.6) holds in this case.
Case 3. If ht(US7) < ht(Up°¥) and ht(Up°Y) + 2 < ht(U;°7), then we have

(4.4.9)

(Uky2, Urt1) < (Uk, Up—1) — (Ugy2, Ug1) < (Up, Up—1).

By (4.4.7), this implies that (4.4.6) holds in this case.
Case 4. Suppose ht(U5Y) = ht(U°Y) + 2 and ht(U°Y) + 2 < ht(U°Y). First we

consider the case oy = . If there exists ¢ such that Uy,1(i) > Ug(i + ap — 1), where
ar = ht(Up), then by definition

(Ugs2, Uk1) A (U, Ug—1) — (Ugra, Ukr1) A (Ug, Up_q).

Form this we observe that the domino vd in U is not moved when we apply the sliding
to T. Also we note that

(0k70k+1) = (+v ) — <5k75k+1) = (+’ : )

Combining these observations with (4.4.7), we obtain (4.4.6) in this case. If there is no

such ¢, we have

(Urs2, Ups1) A (Uk, Up—1) — (Upg2, Urg1) < (U, Up—1),

(Ok, Ok11) = (+, ) — (Ok, Orr1) = (-, +).

Note that Uy[1] = Ugi[1] < n— 1 and we observe that (4.4.9) also holds in this case.
Hence we have (4.4.6).

Second we consider the case 0,11 = +. In this case, we obtain

(Ugt2, Uk+1) A (U, Ug—1) — (Ugro,Uks1) A (Uk, Up_1),

since Uy41[1] > n — 1. Also it is clear that (0%, 0x41) = (+, +) by definition of Si. On the
other hand, the domino vd in Uy can not be moved to the left when we apply the sliding
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to T. Consequently, we have (4.4.6). We complete the proof of Theorem 4.4.3. ]

4.5 Lusztig data of Kashiwara-Nakashima tableaux

of type D

Let pn € &, be given and let €, = > | ji;€,—;. Consider the map

SST[H] ()
T

B,®T, , (4.5.1)
CJ(T> (%9} teu

where c;(T') is the one such that the multiplicity c,_; is equal to the number of 7’s

appearing in the (n — j + 1)th row of T for 1 <i < j <n.
Proposition 4.5.1. The map (4.5.1) is an embedding of g-crystals.

Proof. 1t is a well-known fact that the map is an embedding of [-crystals (cf. [65]). By

definition of ¢, and ﬁl on S, and By, it becomes a morphism of g-crystals. n

Let us recall Burge correspondence (3.3.2). We denote by ¢”(+) the inverse of (3.3.2).
For the reader’s convenience, we briefly review the isomorphism ¢”(-) as follows.
Now, let T' € SST(6™) C V be given. Then ¢”/(T) is given by the following steps:

(1) Let Z; be the smallest entry in 7" such that it is located at the leftmost among such

entries and let 7" be the tableau obtained from 7" by removing 7;.

(2) Take 7, which is the entry in 7" below T;. Let 7" be the tableau obtained from 7"
by applying the inverse of the Schensted’s column insertion to 7;. Then we obtain
an entry z; such that (77« z;) =T".

(3) We apply the above steps to T} := T" instead of T. Then we denote by T, and Z,

the entries obtained from 7} and let Ty := T7.

(4) In general, repeat this process for T;11 =T} (i = 1,2,...) until there is no entries

in T;,1, and let T;,, and Z; 1 be the entries from T, by this process.

5 xy " -
T ", -1l =1
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(5) Finally we obtain a biword (a, b) € €2 given by

a _ fl fQ . fg
b)) \z =z ... z /)’
and define ¢/(T) € B’ to be the one corresponding to (a,b) (see Example 4.5.4).

Then we have the following.

Corollary 4.5.2. For \ € P, the map

V)\ ® Trwn

B'®B,;®T,, , (4.5.2)
SRT ® ty, —c’(S) @ c;(T) @ t,,
is an embedding of g-crystals, where r = (X, wy,). O

We are now in a position to state the main result in this chapter.

Theorem 4.5.3. For A € P,,, we have an embedding =, of g-crystals given by

—_
—

KN)\ = BlO ® TLU)\
(4.2.3) (3.2.16)
T, V,®T.,, B’ ®@B;®T,,
(4.4.3)

Proof. Tt follows from Theorems 4.2.4, 4.4.3, Proposition 3.2.6(2) and Corollary 4.5.2. [

Example 4.5.4. Set n =5 and A = (g, %, %, %, —%) Let T' € KN, be given by

[l Gl [SA] wlwl

= ot e

¥ i, -1 =1
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By (4.2.3) and (4.4.3) (see Example 4.3.9), we have

5]
4
5|3
I T ......
5142
3|1
2
|1
.+, -+, ). Also
™ e )
(cf. Lemma 4.4.5).
Put T = U, (7). Then
5]
4
5(3
Fbody 111 —tail _
T N ’ T 412
1

|}—‘\|l\9\ ol | e

Let us recall the convention in Section 3.2.5 for ¢/ (TbOdy) associated with ®*(.J) with

the convex order (3.2.7), that is, we identify (cg,,...,cs,) € B’ with

CBy
CBs Cpr
CB, CBs CBy

Cpy CBs CBs CBio

Here 81 = a5. Similarly, we use the above notation for c;(T*?) with respect to ®; and
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the convex order (3.2.7), that is, we identify (fi1, ..., ) € By with

CBi4
Cpis Cpi7
Cpia CBig CBig

CB1q CBis Cpis CBao

Here (11 = a1, fis = ao, fis = as and Sy = au.
Now we find ¢’ (TbOdy) by the steps (1)—(5), see Proposition 4.5.1 below.

1] cel »J>\|Ul\|

=l o
=l wl
v

=l|o

Thus we have

1
00 eB
00 1
100 0

—i[ear] o]

Il [l

Next by definition (4.5.1), we have c;(T*?!) as follows.

=]

|>~\|1\3\ wl (o
o
o
o

Hence we obtain the Lusztig data for the KN tableau T associated with iy, that is,
=\T)=(1,0,0,1,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,1) ®t,.

Remark 4.5.5. It would be interesting to characterize explicitly the image of the em-

bedding =, (see [66] for types BC) in a combinatorial way.
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Chapter 5

Branching rules for classical groups

Let GL,, Sp,, and O,, be the general linear group, symplectic group and orthogonal group
of rank n over C, respectively. Let Vén be a finite-dimensional irreducible G,-module

parametrized by a partition A\, where G,, = GL,, Sp,, or O,, [26]. Then we define
(Ve V& ] == dimHome, (V& : VAL ), (5.0.1)

where G,, = Sp,, or O,,, which is called branching multiplicity from GL, to G, associated
with A and p. In [74,75], Littlewood proved that if £(\) < F, then

Vo V= 2 @ Vv = (5.0.2)
sez() e

where g is the Littlewood-Richardson coefficient corresponding to partitions «, 3, v, and
2 denotes the set of partition with even parts.

In this chapter, we shall give a new combinatorial formula for [Vé‘Ln, |7 } generalizing
the Littlewood’s formula above for O,, in full generality. Let us explain briefly the proof
idea.

The separation algorithm induces the following embedding;:

LRY(0) &—— |_| LR} = |
A

where LRY(9) is the set of the [-highest weight vectors with weight A’ in the spinor model
of type Do, and LR3 is the set of the companion tableaux of Littlewood-Richardson
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

tableaux associated with «, 3,7. Note that the above embedding is not surjective in
general. We characterize the image of the embedding completely. Then, by using the
dual pair (O, 0,,) on Fock space [107], [Vé\Ln, Vgn} is equal to the branching multiplicity
¢k (9) from D, to associated with g/ and X'. Here 9 and [ are the Kac-Moody algebras of
types Dy and A (see [41, §7.11]). Since ¢§(d) = |LR4(?)], this gives us a combinatorial
formula for [VC’;\LH, 1% } As an application, we obtain a combinatorial formula of the
generalized exponent for types BD following the idea in [71] for type C.
The results in this chapter are based on [37].

5.1 Littlewood-Richardson tableaux

Let us recall the notations in Section 3.1.1. In this subsection, we review some combina-
torics related to the Littlewood-Richardson tableaux (LR tableaux, for short) (see [23]).

Let 23 ={A € Z| A= (\)i>1, i €2Z, (i > 1)}, and let 20D ={ V| ) e 23}
where X is the conjugate of . Put 222 = 2000 22 For & € {(1,1),(2),(2,2)}
and ¢ > 1, we put 91? = P°N P,

For A\, u,v € 22, let LRf;,, be the set of Littlewood-Richardson tableaux S of shape \/pu
with content v. There is a natural bijection from LR;,, to the set of ' € SST(v) such
that (H, < T') = Hy, where each 7 in the jth row of S € LR;,, corresponds to j in the ith
row of T'. We call such T a companion tableau of S € LR),,.

We also need the following anti-version of LR tableaux which is used frequently in this

chapter.

Definition 5.1.1. We define LR}

v

to be the set of S € SST(\/u) with content v™ such
that w(T) = wy ... w, is an anti-lattice word, that is, the number of ¢ in wy, . . . w, is greater
than or equal to that of i — 1 for each k > 1 and 1 < i < /(v).

Let us call S € LR;)V,T a Littlewood-Richardson tableau of shape \/u with content v™.

As in case of Lwa, the map from S € LRf;,ﬂ to its companion tableau gives a natural

bijection from LR}, to the set of '€ SST(v™) such that (H, <- T') = H.

From now on, all the LR tableaux are assumed to be the corresponding companion
tableaux unless otherwise specified.
Finally, let us recall a bijection

¢ : LR}, —LR)

™

5 xy " -
T ", -1l =1
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

which may be viewed as an analogue of Halon-Sundaram’s bijection [27] for an anti-
dominant content (cf. [23, Appendix A.3], [71, Remark 6.3] and references therein).

Let S € LRﬁ;V, be given, that is, (H, « S) = Hy. Let S',...,SP denote the columns
of S enumerated from the right. For 1 < i < p, let H" = (H"' « S') with H° = H,
so that H? = Hy. Define Q(H, < S) € SST(A/i) to be the tableau such that the
horizontal strip sh(H?)’/sh(H*!')" is filled with 1 < < p.

On the other hand, let U € LR, be given, that is, sh(H, < U) = Hy. Let U; denote
the i-th row of U from the top, and let H; = (H;_y + U;) with Hy = H,, for 1 <1i < p.
Define Q(H,, < U) to be tableau such that the horizontal strip sh(H;)/sh(H;_,) is filled
with 1 <17 < p.

Then for each S € LR/);;V,, there exists a unique U € SST(v™) such that (H, < U) =
Hy and Q(H, < U) = Q(H,y < S). We define ¢(S) = U. Since the correspondence

from S to U is reversible, ¢ is a bijection from LR;\L;V, to LR,’)VW.

Example 5.1.2. Let A = (7,6,4,3,2), p = (6,4,2,2), and v = (2,2,2,1,1). Let S €
LR, be given by

_1]3]3]5]7]
5_246

The recording tableau Q(H,, < S) is given by

w
W~

Q(Hu’ A S) =

W~

(515

Then the corresponding U = (S) € LR;)V,T with Q(H, < U) = Q(H, + S) is given by

-
I
el

[ [\3|H|

t

5.2 Howe duality on Fock space

It has been known that a duality result obtained from commuting actions of two algebraic

objects on a space is a powerful tool to study their irreducible representations. For
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

example, Schur-Weyl duality for the pair (GL,, Si) on the tensor space ®¥_,C"* provides us
a characterization of irreducible representations of GL,, or S, their characters, reciprocity
laws, and several useful formulas. We refer to [26, Chapter 9] for more details.

There are numerous dualities in the spirit of Schur-Weyl duality. In particular, Howe
provided a uniform formulation for several dualities involving Lie groups, Lie (sup)algebras
or Weyl-Clifford (super)algebras [32] (see also [14, Chapter 5], [26, Section 5.6] and ref-
erences therein). In particular, Howe duality on Fock space between classical groups and
infinite-dimensional Lie algebras was developed systematically due to Wang [107].

In this section, we review Howe duality for the dual pair (O, 04 ) on Fock space.

5.2.1 Kac-Moody algebra of type D

In this chapter, we assume that g is the Kac-Moody Lie algebra of type D, whose Dynkin
diagram, set of simple roots Il = { ;|7 € I}, and fundamental weight A; (i € I) are
given by

%)

Qg O3 Q-1 CQp k41

a1

H:{OZOI—El—EQ, O = € — €41 (ZZl)},

A Ag + €, if1 =1,
B D VI T S

Here we assume that the index set for simple roots is I = Z,, and the weight lattice is
P=7Ay® (@i>1 Zei). In this chapter, we often use the notations 0., and [, when we
refer to the corre_sponding Kac-Moody algebras for type Dy, and A, respectively or we
denote by 0 and [ simply. Note that [ is the subalgebra of ? associated with IT \ {«y},
which is of type A . whose Dynkin diagram is given by

o Qg Q3 Op—1 O k41

5 xy " -
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

We refer to [41, §7.11] and [14, Section 5.4.1] for more details (see also [82, Section 2]).

Put ¢ = g or [. For a dominant integral weight A for £, let B(¢, A) be the ¢-crystal asso-
ciated with an irreducible highest weight U, (€)-module with highest weight A. We denote
by g (resp. [,,) the subalgebra of g whose Dynkin diagram corresponds to ag, - -+ , a1
(resp. ag, -+, Qp_1).

We denote by 7,,(A) the dominant integral weight of £,, under the canonical projection
Tm. Then, the crystal B(t,,,m,(A)) can be obtained from B(, A) by restricting the
index set [ associated with &,,, which is the crystal associated with a finite-dimensional
irreducible highest weight U, (¥,,)-module with highest weight m,,(A).

Remark 5.2.1. It is parallel with [43] (see also [30, Chapter 5]) to prove the existence and
uniqueness of the crystal base for an irreducible highest weight U, (g)-module in an infinite
rank analog of O, (recall Definition 2.1.6), where g is of types X, for X = A, B,C or
D. Furthermore, following [30, Sections 3.4-3.5], the category is also semisimple tensor
category in which the classical limit of irreducible modules is isomorphic to the canonical

counterpart over U(g). We refer to [30,70] for more details.

5.2.2 Dual pair (O,,0,) on Fock space

Let us review the duality theorem for dual pair (O, 0.,) following [13, Section 2.3.3]. We
refer to [41, Chapter 14], [14, Section 5.4.2, Appendix A.4] and references therein for the
exposition on (fermionic) Fock spaces (see also [107, Sections 3-4]).

The Clifford algebra Clis an algebra generated by UF? where 1 <p < fand r € %—l—Z

with anti-commutation relations are given by
[\Ilff’p, \Ijs—,qu = 8pqOr—sl [\I;:np’ \IjquLr — [\pr—,p7 ‘I’;’qu =0,

for all r,s € % +7Z,1<p,q </ and let F* be the fermionic Fock space of ¢ pairs of
fermions
TE(z) = Y WEPTTE 1<p< L.
TE%—&-Z
Then F' is the simple C' generated by the vacuum vector |0) which satisfies W£|0) = 0
forallr>0and 1 <p </.

3 by
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

Let

pl2) = D ¢ 2

TG%+Z

be a neutral fermionic field whose components satisfy the anti-commutation relations:
1
[¢T7 ¢s]+ = (sr,fsj, r,S € 5 + 7.

We denote by Fz the Fock space of ¢(z) generated by the vacuum vector |0) that is
annihilated by ¢, for r > 0. Then F'3 is the tensor product of F* and F 2,
Let us consider the dual pair (O, 0) for n > 1. We define

POn) ={p= (1, i) | s €L, p1 > ... > py, py+p5 <},

where p/ = (py, i, - - ) is the conjugate partition of u. Recall that P(0O,,) parameterizes
the complex finite-dimensional representations of the orthogonal group O,,, see [13, Section
2.3.3] (see also [26, Section 5.5.5]).
We may also use P(O,,) to parametrize P, for g. More precisely, for u € P(O,,), if we
put
A(p) = nlo + pler + phea + -+, (5.2.1)

where p' = (pf, pib, ... ) is the conjugate partition of u, then we have P, = {A(u)|u €
LI, P(On) } the set of dominant integral weights for g. For . € P(O,,), we denote by V§
the finite-dimensional irreducible O,-module. Let L(0,,A()) be the irreducible highest
weight 0,.-module.

It is known that there exists a commuting action of O,, x 0 on F2, see [14, Lemmas

5.48-5.49] for more details. Thus we have the following duality theorem.

Theorem 5.2.2. [107, Theorems 3.2, 4.1] As an (O, d)-module, we have

Fiz B LwAw) V.
HEP(Oy)

5.3 Separation on [-highest weight vectors

In this section, we revisit the spinor model over U, (9 ) and describe explicitly the behavior

of the separation algorithm developed in Section 4.3 on [-highest weight vectors.

3 y 1 |
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

5.3.1 Revisit of spinor model over U,(D)

We review the spinor model over the infinite rank Lie algebra of type D,. This is almost
identical with the one in Section 4.1.3, but we should not confuse the notations and the
set of letters. Here we use N as the set of letters. For example, see Example 5.3.2.

By abuse of notation, we also use the same notations

T(a) = {T|T € SST(\a,b,¢)), bc € 2Z;, vy <1} (a€Zy),
T(0)= || SST(M0,b,c+1)), TP= || SST((1"),

b,c €271 a€Zy

TP = {T|T€TP vy =0}, TP ={T|Te€T® ty=1}

Let B be one of T(a) (a € Z, ), T*?, and T(0). Let us describe the g-crystal structure
on B. Let T" € B given. Recall that SST'(\) (A € &) has an l-crystal structure [50]. So
we may regard B as a subcrystal of an l-crystal | |,., SST()) and hence define ¢;T" and
JiT for i € I\ {0}. Let wt,(T) = > i>1 Mi€; be the L-weight of T', where m; is the number

of occurrences of 7 in T'. Next, we define eyT and fBT as follows:

(1) When B = T*P, we define €, to be the tableau obtained from 7" by removing a
domino ;1 if T has 5 on its top, and 0 otherwise. We define ]%T in a similar way by
adding .

(2) When B = T(a) or T(0), we define 6,7 = & (T ® T%) regarding B C (T*)®* by
tentor product rule (2.2.1). We define fyT" similarly.

Put

2\ + wt((T), if T € T(a) or T(0),
Wt(T == 9
A(] + Wt[(T>, if T'e TP,

e(T) = max{ k| T £ 0} i(T) = max{ k| F5(T) #0}.

Then B is a g-crystal with respect to e; and f;, ei, and ¢; for i € I. By [64, Proposition

3 y 1 | s
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4.2], we have

T(a) = B(A,) (a>2),
T(0) = B(2Ay), T(0) = B(2A;), T(1) =2 B(Ag+ Ay),
T =~ B(A,), T 2B(A).

For u € P(O,), let g+ and r1 be non-negative integers such that

n—2//1:2q++7‘+, 1fn_2/“L/1207
20 —n=2q_+r_, ifn—2u) <0,

where ;. = 0,1. Let it = (f1;) € & be such that @} = n — p} and @, = p; for ¢ > 2 and
let My = p) and M_ = ). Put

=~ T(pa) x -+ x Tpar) x T(0)*% x (TPT) - if n — 244 > 0,
T(u,n) = _ (5.3.1)
T(fq) x -+ x T(@y ) x T(0)*9 x (TP7)*"~, if n—2u) <O.
Define
T(u,n) ={T=(..,T5,T1) € T(p,n) [Tisa < Ti (i 2 1) }.

When considering T = (...,T,,T) € '/I\‘(,u, n), it is often helpful to imagine that
T1,Ts, ... are arranged from right to left on a plane, where the horizontal line L separates

T,bOdy

oY and T simultaneously.

We regard ’i‘(,u,n) as a g-crystal by identifying T = (..., T3,T}) € ’i‘(,u,n) with
71T, ® ..., and regard T(u,n) as its subcrystal. Then we have the following,.

Theorem 5.3.1. [64, Theorem 4.3-4.4] For u € P(O,), T(u,n) is a connected crystal
with highest weight A(p). Furthermore, we have

T(p,n) = B(A())-

We call T(u,n) the spinor model for B(A(u)) in type Deo.

Example 5.3.2. Let n =8 and p = (4,3,3,2) € P(Og) and let T = (T, T3,T5,T7) given

5 - B
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by

|Cﬂ|<'.0 N | —

[0 S RN B

Then we can check that Ty < T3 < Ty < T7. Thus, T € T(u, 8). where the dotted line
denotes the common horizontal line L.

From now on, we fix y € P(0O,,) throughout this chapter.

Definition 5.3.3. Let
H(t,n) = {T | T € T(u,n), &T =0 (i £0) },

and call T € H(u,n) an [-highest weight vector. Let A € &2, and u € P(O,,) are given.
We define
LRA(d) ={T | Te H(u,n), T=Hy }, (5.3.2)

and write ¢y (0) = [LRy(9)].

Note that ¢4 () is equal to the multiplicity of irreducible highest weight [-module with
highest weight Zi21 )\;ei in the irreducible highest weight g-module with highest weight
A(p) (recall Remark 5.2.1).

Theorem 5.3.4. [67, Theorem 5.3] For A € &, and u € P(O,,), we have
[VaL,, V&, ] =A0).

Sketch of proof. We outline the proof of [67, Theorem 5.3].
In the proof of [67, Theorem 5.3], the author constructs an explicit actions of GL,

on F2 so that its restriction to O,, coincides with the action of O,, in Theorem 5.2.2.

92 A 2-tj] &



CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

Following [20,107], there exists a commuting action of [ x GL, on F?2 so that

Fre@LUN) @V, (5.3.3)
e

By combining Theorem 5.2.2 and (5.3.3), we complete the proof (cf. [107, Section 7.1] for

reciprocity laws). O

Remark 5.3.5. Let a be the Lie algebra of type A, consisting of all matrices (¢;;)i jz
of infinite size with finitely many non-zero entries. In [20,107], the authors consider the
dual pair (GL,,a,) on F™ and obtain the decomposition of F" as (GL,, a)-module
by computing the joint (GL,, a)-highest weight vectors explicitly. Since [ = [, is a
subalgebra of a.,, one can check that the arguments for the pair (GL,, a,,) also hold for
the pair (GLy,, [1) on F2 (see [14, Section 5.4.3] or [107, Section 3]).

5.3.2 I-highest weight vectors

The goal of this subsection is to give some necessary conditions for T € T(u,n) to be in
H(p,n). Note that for T € T(u,n), we have T € H(u,n) if and only if T = H) for some
A € Z. Hence H(p, n) parametrizes the connected I-crystals in T'(p, n).

First, we consider the case n — 2y} > 0. Suppose that n = 2] + r, where [ > 1 and
r=0,1. Let T € T(u,n) be given and write

T=(T,....,Ty,Tp), (5.3.4)

where T; € T(a;) for some a; € Z, (1 <i <), and Ty € TPt (resp. Ty = ) when r =1
(resp. r =0). Let sh(7T;) = A(a;, b;,¢;) and v, = v; for 1 <4 <|.

The lemma below follows directly from the tensor product rule in Definition 2.2.3 (cf.
Corollary 2.1.16).

Lemma 5.3.6. Put Uy = T, Usk—1 = TF and Uy, = TF for 1 < k < 1. Then T is an
[-highest weight element if and only if (U;, ..., Uy) is a [-highest weight element for i > 0,
where we understand (U;,...,Uy) = Uy ® --- @ U; as an element of an [-crystal. O

Definition 5.3.7. Let H°(u,n) be a subset of T(u,n) consisting of T = (7;) satisfying

the following conditions: for each i > 1,

(HO) To[k] =k for k > 1,

5 xy " -
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(H1) T} and T} are of the form

T = (1,2,....b;+ ¢ — 1,T}(1)) B,

()

TF=(1,2,. .., — 1,¢) B (T ay), ..., TH(1))

(H2) the entries T}(1) and T} (a;) satisfy

(i) if t; = 0,then T%(1) = b; + ¢,
TR<1) = bz +¢; or ,I‘ZR(l) > Cci1+ 1+ Ti—1,

ii) if v, = 1, then ‘
( ) { T;L((Zi) :CZ+1

Here we assume that ¢y = oo and vy = 0.
Let us recall that 0 < vy <1 for T' € T(u,n) (see Definition 4.1.2 for definition of vr).

Lemma 5.3.8. For T € H°(u,n), we have either T (1) < T} (a;) or TE (1) > T}(a;)
for each i. Furthermore, T (1) > TF(a;) implies v;v;yy = 1, and vv;qy = 0 implies
T, (1) < T (a:).

Proof. Leti=1,...,1—1 be given. If t;t;;; = 0, then by Definition 4.1.5(1)-(i) and (H1),
we have T3 (1) = bip1 + i1 < ¢ < T (a).

Suppose that t;v;41 = 1. By (H2)(ii), we have T}"(a;) = ¢;+1, and T} (1) = bp1+cipa
or > ¢+ 2. If T3 (1) > ¢; + 2, then it is clear that T}, (1) > T}(a;). So we assume that
TF (1) = bip1 + ciyr. Note that T7 (1) = bip1 + ciy1 < ¢ + 2 by Definition 4.1.5(1)-(i).
If bip1 + cip1 = ¢ + 2, then T3, (1) > T (a;). If bip1 + cip1 < ¢ + 2, then by + i1 < ¢
since both ;41 + ¢;41 and ¢; are even. So T (1) < T} (a;).

Finally, suppose that T}, (1) > T;*(a;). If t;t;y1 = 0, then by Definition 4.1.5(1)-(ii) we
have T3 (1) < TF(a; + 1) < T}(a;) which is a contradiction. This proves the lemma. O

Now we verify that the [-highest weight elements satisfy Definition 5.3.7(H0)—(H2). In
particular, the admissibility in Definition 4.1.5 implies the condition (H2).

Proposition 5.3.9. We have

H(p,n) C H? (i, n).

- . .
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Proof. Suppose that T € H(u,n). By Lemma 5.3.6, it is clear that T satisfies (HO). Let
w(To)w(Ty) ... w(T)) = wyws . .. wy, and

P = (w1 = wa) <= w3) = -+ ) < wy). (5.3.5)

By definition of H(u, n), we have P, = H, for some v € &. Let h; be the height of the
rightmost column of v.
Let us use induction on [ to show that T € H°(u,n). We also claim that

hl = + . (536)

Suppose that [ = 1. Since T is an [-highest weight element and T =, T* ® T by
Lemma 5.3.6, it is straightforward to check that T satisfies (H1) and (H2). It is clear that
cp = hy + 1.

Suppose that [ > 1. Let T;_y = (T;_1,...,T1,To) and let P,_; be the tableau in (5.3.5)
corresponding to T;_;. By induction hypothesis, T, ; satisfies (H1) and (H2). Put

P} = (Py = w(T})).

Then P’ = H,, for some n € & by Lemma 5.3.6, and P, = (P} + w(T})). We consider

two cases as follows.

Case 1. Suppose that vy; = 0. Note that by Definition 4.1.5(1)-(i), we have b + ¢; <
c—1. Also, by Definition 4.1.5(1)-(ii), T}*(z) < *1;_1(4) for 1 < ¢ < b + ¢. By (H1) on

T, 1, we have "T)_[k] = k for 1 <k <7¢_;, where ¢,_1 = ¢;_1 + t;_;. Hence
THi) < ey — i+ 1oy + 1, (5.3.7)

for 1 <i < b+¢. Then (5.3.7) implies that each letter of w(T}') is inserted to create a box
to the right of the leftmost column of P,_; when we consider the insertion (P,_1 +— w(T})).
Since P} = H,, we have TR[k] = k for 1 < k < b, + ¢

By semistandardness of T °Y, we have
(T))"% (i) < T}'(9),

for ¢ > 1. This implies that each letter of w((7}*)*°¥) is inserted to create a box to the

5 by
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right of the leftmost column of P} when we consider the insertion (P} < w((T})*°%)),
and TF[k] = k for 1 < k < ¢;. Hence T satisfies (H1), (H2), and (5.3.6).

Case 2. Suppose that t; = 1. When t;,_; = 0, we see that 7T; satisfies the conditions
(H1) and (H2) by the same argument in the previous case. In particular, (5.3.7) implies
that TR(1) = b, + ¢;. Since TF(a;) < TR(1) and P} = H,, we also have T} (aq;) = ¢; + 1 and
(5.3.6).

Now assume that v;_; = 1. When t;t;_; = 1, we need to consider the x-pair (7}, T}**)
of T} in (4.1.2) (recall Definition 4.1.5). Then, by Definition 4.1.5(1)-(ii) and the condition
(H1) on T;_4, we have

() <M1 (i) =g — 1+ 2.

We claim that TF[k] = k for 1 <k < b +¢;— 1. Let k be such that T}*(i) = T}*(i) for 1 <
i <k—1,and T*(i) = T}(i + 1) for i > k. Since (FT;,T)—1,..., 1) = (T}, T)-1, ..., T1),
which is an [-highest weight element, we see from Lemma 5.3.6 that each letter of w(7T}*)
is inserted to create a box to the right of the leftmost column of P,_; when we consider the
insertion (P « w(TH)), and T/*[i] =i for 1 <i < b+ ¢, — 1. This implies that T} (k)
is between m and m + 1 for some m € Z,, and hence k = b, + ¢; since (P, < w(T}*)) is
an [-highest weight element. This proves the claim, and T} satisfies (H1). Furthermore,
the claim implies that T}(1) satisfies (H2)(ii) because P? is an [-highest weight element.

We consider T}. By the same argument as in Case 1, we have T}[j] = j for 1 < j < ¢,
and k£ = 1 (in the previous argument) implies that T}*(a;) < b, +c¢; — 1. Therefore, we have
TF(a;) = ¢ + 1 since the tableau obtained by ((P? < w(T°¥)) < TF(a;)) is an I-highest
weight element. Finally, we can check easily that (5.3.6) holds. O

Now, we consider the case n — 2u) < 0. Recall that 7 = (@1;) € & be such that
(B = 1 — 1t and () = gl for i > 2.
Let T € T(u,n) be given. Suppose that n = 2l + r, where [ > 1 and r = 0,1. By
(5.3.1), we have
T=(T,....,Trr, Ty ... T, Tp), (5.3.8)

where T; € T(a;) for some a; € Z, (m+1<i<1),T; € T(0) (1 <i<m),and Ty € T~
(resp. Ty = 0) when r = 1 (resp. r = 0). Here m = ¢_ in (5.3.1). Under (4.3.1), we
identify T with

U= (Uss, ... Usmst, Usmns - - ., Un, Up).

We may also assume that U; € TP~ for 0 < ¢ < 2m. The following is an analogue of
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Definition 5.3.7 when n — 2} < 0.
Definition 5.3.10. Let H°(u, n) be the set of T € T(u,n) such that
(1) Uilk] =k (k> 1) for 0 <i < 2m,
(2) T; satisfies (H1) and (H2) in Definition 5.3.7 for m + 1 < i <.
Proposition 5.3.11. We have H(u,n) C H°(u,n).

Proof. Let T € H(u,n) be given. By Lemma 5.3.6 and the admissibility of T;,; < 7T; for
0<i<m-—1, wehave Ujlk] =k (k > 1) for 0 < i < 2m. Hence T satisfies (1). The

condition (2) can be verified by almost the same argument as in Proposition 5.3.9. O

Example 5.3.12. Let T = (75,77) € T(2,2) with vy = to = 1 given by

1
4 2
3]

]
ot

;13 Tv TF

We have w(T1)w(Tz) = (12341235)(1415) and the corresponding tableau (5.3.5) is

1]

=lwlno|—
= lwno|—

ot
ot

Thus T is an [-highest weight vector.

Remark 5.3.13. In [35], when n is odd, the author characterizes completely the [-highest
weight vectors, see [35, Theorem 3.11]. On the other hand, in this thesis, it is enough to
consider the necessary conditions for T € T(u,n) to be in H(u, n) (without a condition

on n).

Let us recall the pairing < in Definition 4.1.9. The description of < is simple on

H°(u,n) as follows.
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Proposition 5.3.14. Let T € H°(u,n) be given and write
T=(....,T1, Ts...).

Then Tipq < T; if and only if TR, (1) < TH(a;). Furthermore, Tiyx A T; if and only if
TR (1) > T (ai).

Proof. 1t follows directly from Lemma 5.3.8 and Proposition 5.3.9 (with Definition 4.1.5).
]

5.3.3 Sliding on [-highest weight vectors

Let us recall Sections 4.1.1 and 4.3.1. Let T € H°(u,n) be given. If we regard the
operator S; on H°(y, n), then by Proposition 5.3.14, we can write S; by

JE’]W if Uj+1(1) < Uj<ai)7

S, =
&€ F T Fi i Upn(1) > Ug(ay).

Here we use the identification as in Section 4.3.1. Then it works simply on H°(u,n) as

follows (see Example 5.3.18).

Lemma 5.3.15. Under the above hypothesis, we have
SU = ( . .,Uj+2,ﬁj+1,z7j,Uj_1,...> ,
where
(i) if Ujz1(1) < Uj(a;), then
U1 = U BUSY, U, = U; BURY,

(11) Zf Uj+1(1) > Uj(ai), then

Ujt1 = (Ujra(bi +¢i), .., Uja(3)) B (U (
U; = (Us(ai + i), -, Uy(a:), Upa (1)) B 0.

5 xy " -
T ", -1l =1
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Proof. (i) : Suppose that U;;1(1) < Uj;(a;). Then we have

SJU == (...,Fai(Uj_i_l,Ui),...)
== (...,UjJrl EHU;ail,Uj EU;ail,...>,

which is given by cutting Uj*** and then putting it below Uj;.
(ii) : Suppose that U;11(1) > Uj(a;). By Lemma 5.3.8, we have v;t;1; = 1. Then we
have §;U = Ejgj_lffi_l}"j_lU. Ignoring the components other than (7;.1,7;), we have

Sjgjfl-/—';‘li_lf.jfl (1341, T7)
=1 F (Ujsa, Ujsr, F(U;, Uj—1))
=& F " (Ujpa, Uy, U, Uy
=Ei&j1 (Ujsa, F* 1 (Ujs, U;), Uy
—£8; 1 Uy, Uy BUSSE U B U U7 )
=& (U2, Uy BUSL E(U7 BUSL U7 )
& (Ujsa, Upn BU;™2,UT BUS™,U; )
= (Ui, E W31 BUS=2, U B U2, U; )

= <Uj+27 ﬁj—i—la (7]', Uj—l) )

where
U;;l = ER* = (Ujfl(bi + Ci)7 ceey Uj,1(2)) H @,
U;.k = T;L* = (Uj(ai + Ci)a ceey Uj(CLZ’), Uj_l(l)) B (Uj(ai - 1)a SRR U]<1))’
Ul = Uj(a; + i), ..., Uj(a) B (Us(a; — 1), ..., Uj(1)).
This proves the lemma. O

Corollary 5.3.16. Under the above hypothesis, we have the following.

(1) For j = 2, there exists unique T,S € T(0) such that (T*,T%) = (Uy,U;) and
(S™, S®) = (U1, Uy) if Uy is non-empty.

(2) For j =2i with1 <i<1—1, there exists a unique T € T(a;) such that (T, T?) =

(Uj41,U;) and the residue of T is 0 if Uj41(1) < Uj(a;) and 1 if Uj41(1) > Uj(a;).

09 SR
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(3) The pair (Usy, (721,1) forms a semistandard tableau when the columns are put together

horizontally along L.

Proof. (1) and (3) follow directly from Definition 4.1.5 and the description of (U1, U;)
in Lemma 5.3.15.

By definition of §j;, it is not difficult to see that (ﬁj+1,(ij) forms a semistandard
tableau, say T of shape \(a;, b, c}) for some b, ¢, € Z, such that (T" T%) = (ﬁjﬂ,fjj).

1)

The residue of T" follows immediately from the description of (U4, [7]) in Lemma 5.3.15.
This proves (2). O

Corollary 5.3.17. We have §;8, = SiS; for j # k, and S84 ... Sy—2U = U.

Proof. Since S; changes only Uj, U;;; by Lemma 5.3.15, it is clear that S§;S, = S;.S; for
j # k. The l-crystal equivalence follows from the fact that E™ is a ([, s[,,)-bicrystal. [

Example 5.3.18.
(1) The following is an illustration of S; when U;41(1) < Uj(a;).

m m
2 o 2
13 HEEE
2| [2]4 . 2| [2]4
..... AR y et
5 NE
Ut U U1 Uj

1] 1]1 1]1 1]1
2 2]2 2[2 2]2
(1] [1]3 3]3 [1] [3]3 33
4| [2]4 4] 4] 4]
1 3 1 1]1
6] 6] " [5l6 = 56
6] 8] 8 68 68
7] 7]
Uiy U fjjJrlﬁj
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5.3.4 Separation on [-highest weight vectors

We apply the separation algorithm developed in Sections 4.3.2-4.3.3 to T € H(u,n). We
should remark that the process in Sections 4.3.2-4.3.3 also holds under the setting in
Section 5.3.1. Then we have the following.

Proposition 5.3.19. There exists T € SST(n), where 1 is given as in (4.3.8), such that

(1) T is Knuth equivalent to T, that is, T = T = Hy for some A € P,

—tail

(2) T € LR(’S\,/M, and TV = H gy~ for some 6 € 2@,
Proof.
(1) : By Propositions 4.3.5 and 4.3.8, we have T = T, and T =, T T ™. Since

~=body ody

sh(T ) = ()" for some § € 22, we should have T = Hsiyr.
mstail <—tai1

(2) : It follows from the fact that T = Hopy T = (T — H((;/)ﬁ) =Hy. O
Let us illustrate the separation on H(yu,n).

Example 5.3.20. Let us consider the case n — 2y} > 0. Let n =8 and p = (4,3,3,2) €
P(Og) Let T = (T4,T37T2,T1) S H(,u, 8) and U = (Ug, ceey Ul) be given by

1]
B
g e
2 2 1| [2]1
R S ER T
3 B
4 6]
5
Ty 15 15 Ty Us U; Us Us Uy Us Uy Uy

Applying 55,8, to U, we get
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The sequence of columns except the leftmost one (in gray) corresponds to S € H(j, 7)

with i = (3,3, 2).

[=[ee] =]
]~
]

Therefore, T is given by

1|1
212
111133
414

|OT>J>OJ>—-
e
(=]

Example 5.3.21. Let us consider the case n—2pu] < 0. Let n =9 and pn = (4, 3,3,2,1)
P(Og). We have n —2p) < 0 and 1 = (4,3,3,2). Let T € T(u,9) be given by

102 ; _H "‘_r rl
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(S0 IS ROV o

It corresponds to

Us U; Ug Us Uy Us Uy Uy U

Putting U = H;s) at the rightmost column and applying the sliding algorithm, we get

[ e R

(2] ] [ee]re] -]

178 (77 ﬁﬁ [75 [74 (73 (72 [71 Uy U
Then U = ((77, Us, Us, Uy, Us, Uy, Uy, (70) corresponds to T e H(u,8), with g = (3,3,2,1).
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Repeating this process to U as in Example 5.3.20 (recall subsection 4.3.2), we get T

(1]
2]
13
214
T = 1]1]3]5
2121416
IFRRE
3[3]5]7
446
5
Hence
(1]
2]
13
214
—tail mpody 1]1)11]3(5
T - T — [2l2(2]4]s
tltf1]1]3
3(3|5]7
4416
5]

5.4 Branching rules from D to A

5.4.1 Branching multiplicity formulas from D, to A,
Let 07¢V = (7%, ..., 05°") be the reverse sequence of § = (41, ...,0,), that is, 67" = 0,,_;11,
for 1 <i<n. Weput p=p}, g=ph, and r = ()] if n —2u; < 0.

Definition 5.4.1. For S € LR(’S\,'M,, let s < --- < s, denote the entries in the first row,
and t; < -.- <, the entries in the second row of S. Let 1 <my < --- < m, < n be the

sequence defined inductively from p to 1 as follows:

m; = max{ k[ 0F* € Xy, 0; < s},

where
v RPN S IS (AP hal N i S A
=
{5{eV’.__,5,€e_vp+i}\{5:;‘;1,...,571”;;’, ifr<i<p,

¥ ", -1 =1
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(we assume that 7 = p when n — 2u} > 0). Let ny < --- < ny be the sequence such that
n; is the j-th smallest integer in {j +1,--- ,n}\ {mjt1,--- ,m,} for 1 <j <g¢. Then we
define ﬁ;‘, .+ 1o be a subset of LR(;’\/' o consisting of S satisfying

;> 0, (5.4.1)

for 1 < j <gq. We put ¢;, = |m:;\,/“,|.

Remark 5.4.2. Let S € LR(’},/M, be given. Let us briefly explain the well-definedness of
the sequence (m;)1<i<p in Definition 5.4.1. We may assume that n — 2u} > 0 since the
arguments for n — 2} < 0 are similar.

It is enough to verify that 7%V < s; for 1 <7 < p. Let H = (51 = (52 = ... (sp —
Hs))). Then sh(H’)/sh(Hg ) is a horizontal strip of length p. If there exists s; such that
drev > s;, then we should have ¢(\) > n, which is a contradiction to A € &2,,. By definition

of m;, we also note that

1<m; <2i—1 for1 <i<r,

1<m; <n—p+i forr<i<p,

where r = p when n — 2u} > 0.

Example 5.4.3. Let n = 8, = (2,2,2,1,1) € P(Og), A = (5,4,4,3,2,2) € L5, and
§=(4,2,2,2,2) € 2P Note that n — 2, = —2 < 0 and r = (1)}, = 3.
Let us consider the Littlewood-Richardson tableau S € LR();‘,' o given by

1[3[3][3]5]

Then the sequences (m;)1<i<s and (n;)1<j<3 are (1,3,5,7,8) and (2,4,6), respectively,
and S satisfies the condition (5.4.1):

t=2>0=0" to=4>2=0" t;=4>2=45"

ny o nz
—\
Hence S € LRy .
Now we are in a position to state the main result in this chapter.

¥ ", -1 =1
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Theorem 5.4.4. For 1 € P(O,) and X\ € &, we have a bijection

—
LRI)\A(O) — |—|56937(L2) LR(;/“/ .

T Ttail
s

Proof. We give the proof in Sections 7.3.2 and 7.3.3. O

Corollary 5.4.5. Under the above hypothesis, we have

A@)= ) @

sep?

Let us give another description of ¢4(d) which is simpler than EQ’ and also plays an

uo
important role in Section 5.5.
Definition 5.4.6. For U € LR();‘M,r (see subsection 3.1.1), let oy > --- > 0, denote the

entries in the rightmost column and 74 > --- > 7, the second rightmost column of U,

respectively. Let m; < --- < 'm, be the sequence defined by

min{n —o; +1,2i — 1}, if1<i<r,
m; =
min{n —o; + L,n—p+i}, ifr<i<p.
and let n; < --- < n, be the sequence such that n; is the j-th smallest number in

{7+1,...,n}\{mj41,...,my }. Then we define LR}, to be the subset of LR} . consisting
of U such that
Tj+nj < n+1, (542>

for 1 <j <gq. We put ¢j, = [LRj,|.

Example 5.4.7. We keep the assumption in Example 5.4.3 and consider the Littlewood-
Richardson tableau U &€ LR(’;\Mr given by

d
I
[\

¥ ", -1 =1
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The sequences (m;)i1<i<5 and (n;)1<;<3 are (1,3,5,7,8) and (2,4, 6), respectively. Then
U satisfies the condition (5.4.2):

T+ =06+2=8<8+1=n+l,
Tg+n2:3+4:7§8+1:n—|—1,
T3+ng=2+6=8<8+1=n+1.

Hence U € @ﬁ&
Now, one can show that Eg\u = ggu by using the bijection ¢ (5.1.1).

Lemma 5.4.8. The sequences (m;)1<i<p and (n;)i1<j<q for S in Definition 5.4.1 are equal
to the ones for U = 1(S) in Definition 5.4.6.

Proof. We assume that n — 2u} > 0. The proof for the case n — 2u} < 0 is similar.
Suppose that S € LR(?,/M, is given. Let s; < --- < s, denote the entries in the first row of
S. Let (m})i<i<p and (n})1<j<, be the sequences for S in Definition 5.4.1. Put U = ¢(S).
Let 0y > --- > 0, be the rightmost column of U and let (m;)1<;<, and (n;)i1<;<, be the
sequences for U as in Definition 5.4.6.

j
for 1 < j < ¢q. Let us enumerate the column of ¢’ by n,n — 1,...,1 from left to right.

Consider the vertical strip V* := sh(H*)/sh(H'™!) filled with 7 for 1 <7 < p (recall (5.1.1)
below). By definition of ¢ (5.1.1), we see that the upper most box in V* is located in the
(n — 0; + 1)-th column in ¢’

Let i € {1,...,p} be given. First, we have m;, < n — o; + 1 by definition of m;. Since

It is enough to show that m; = m; for 1 < i < p, which clearly implies n/; = n;

m; < 2i — 1, we have m] < m; = min{n — o, + 1,2i — 1}. Next, we claim that m; < m,.
If n—o0; +1< 20— 1, then we have 67°%, .| < s;, and hence m; < n —o; +1 < m; by

definition of m}. If n —o; +1 > 2i — 1, then we have m; = 2i — 1 = m]. This proves that

m; = m,. O

Theorem 5.4.9. Forpu € P(O,), A € Z, andd € P2 | the bijection 1 - LR}’);V, — LR}

v

in (5.1.1) induces a bijection from m?fw to LRj,.

Proof. Let S € LR(;)‘,'N, given and put U = 9¥(S). We keep the conventions in the proof
of Lemma 5.4.8. By definition of 1, the second upper most box in V7 is located at the
(n — 7; + 1)-th column in §'. By Lemma 5.4.8, we see that 675" < {; if and only if
n—71;+1>mn;or 7, +n; <n+ 1. Therefore, S € ﬁ?fu, if and only if U € LRj,. O
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Example 5.4.10. Let n = 8, = (2,2,2,1,1) € P(Og), A = (5,4,4,3,2,2) € P, and
d=0(4,2,2,2,2) € c@éz). Let S be the Littlewood-Richardson tableau in Example 5.4.3.

We enumerate the columns of S as follows:

L . -

Then the insertion and recording tableaux are given by

[l 1]
2 2 2 2 2[2 2[3
S—)H(;/: 3333| . ) Q(S%Hé’): 314
4[4]4 4]
B
Then ¢(S) is obtained by
111 1[1] 1]
o2 2[2]2 2[3 5N
-3 3[3]3 314 1
o4 4[4 4 ‘
S e
6l6
I/J(S) — H; Q(’L/)(S) — H,j)

(Here the numbers in gray denote the enumeration of columns of ¢’.) Thus we have

(01702703704705> = (67473727 1)7 (7—177-277—3) = (67372)
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Note that the enumeration of the rows of U := ¢(S) is given by

Ul

2
v [o[0]

Under the above correspondence, we observe that o; (1 < i <5) and 7; (1 < j < 3)
record the positions of s; and ¢; in ¢, respectively, and vice versa. For example, the
entry 7 in U? is located at (n — 7 + 1)-th row in §, which implies that ¢, is located at
(n — 75 4 1)-th column in ¢’. This correspondence implies ¥(S) € LRj, (cf. Example
5.4.7).

Corollary 5.4.11. Under the above hypothesis, we have

A0 =D g,

sc

Proof. This follows from Eg‘u = gg‘u. O

We have another characterization of ng in terms of usual LR tableaux (not companion
tableaux) by considering the bijection between LR tableaux and their companion ones
(recall Section 5.1).

Corollary 5.4.12. Let U be an LR tableau of shape \/6 with content pu™ and let o; be
the row index of the leftmost iy —i+1 in U for 1 <i < pf, and 7; the row index of the
second leftmost jiy —j+1in U for 1 < j < ph. Let my < --- <my, be the sequence given
by m; = min{n — o; + 1,2i — 1}, and let ny < --- < ny be the sequence such that n; is
the j-th smallest number in {j+1,...,n} \ {mj1,...,mu }. Then, gg‘u is equal to the
number of U such that

Ti+n; <n+1,

for 1 <j < puj. O

We recover the Littlewood’s formula (5.0.2) from Corollary 5.4.11.
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Corollary 5.4.13. Under the above hypothesis, if ((\) < &, then
A= )
sepP
Proof. We claim that LR}, = LR3,. Let U € LRj,» be given. Let H' = (03 — (--- —
(0, = Hs))). Note that o; +1 — 1 < {(sh(H')) = {(A) < § for 1 <i < p. So we have

n—o;+1>2 (1<i<p). (5.4.3)

Otherwise, we have n —i < 0; +i—1 < § and hence § <i < p = pj < {(A), which is a

contradiction. By definition m; and n;, we have
mi=2i—1, nj=2j (5.4.4)
for 1 <i<pand1l<j<gq By (54.3)and (5.4.4) we have
<o;<n—-2j+1 (1<j<q),

which implies that U satisfies (5.4.2), that is, U € @gﬂ. This proves the claim. By

Theorem 5.4.9, we have cg\“ = gg\“. []

5.4.2 Branching multiplicity formulas from GL, to O,

We assume that the base field is C. Let V&, denote the finite-dimensional irreducible
GL,-module corresponding to A € &, and V{J the finite-dimensional irreducible module
O,-module corresponding to u € P(O,,).

Then we have the following new combinatorial description of [V, : Vo”n}.
Theorem 5.4.14. For A € &, and pp € P(O,,), we have
Var, Vol = 2. &= 2. an
se Y ser?
Proof. 1t follows from Theorem 5.3.4, Corollaries 5.4.5 and 5.4.11. [

Example 5.4.15. Let us compare the formula in Theorem 5.4.14 with the one by Enright
and Willenbring in [18, Theorem 4].
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Let u,v € P(O,) be given by

where a, b, ¢, d are positive integers with d > 2. Then we have for A € &,
A _ by by
[VGLD . VOMH:| = Z Cé—lul - Z Coruts
te P ve2 P
(see [18, Section 7 (7.11)]). Suppose that n = 8, a = b =d = 2,¢c = 3 and A\ =
(5,4,4,3,2,2,0,0) € H5. Then it is straightforward to check that for &, v € @éz)

1, if&=(4,2,2,22)or (4,4,2,2),

C)\// ;=

s 0, otherwise,

v ifu=(4,2,2,2),
Coryr =

0, otherwise.

Hence we have

PR TE Z by Z N _
[VGLg . V08:| — C&-/M/ - C’U/V/ — 2 - 1 — 1
cer{?) ve (Y

On the other hand, the following tableaux S, and Ss are the unique tableaux in LR}, u’
and LRgiu,, respectively, where a = (4,2,2,2,2) and 8 = (4,4,2,2):

1[1]3]3]5]

Sa: : Sﬁz

We see that S, € L_Ril,u, and ¥(S,) € LR), (see Examples 5.4.3 and 5.4.10). On the other
hand, for Ss, the sequence (m;)i1<;<5 and (n;)1<j<3 are given by (1, 3,5,6,8) and (2,4, 7),
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respectively. Then S ¢ ﬁgi v since t3 = 4 = 67", We can also check that ¢(Ss) ¢ LR},
(cf. Example 5.4.10). By Theorem 5.4.14, we have

Vo V)= > @.= > g,=1

ser? sc?

5.4.3 Comparing other works

Let us compare the results in this chapter with [67,71,104]. Let us briefly recall Sun-
daram’s formula for (5.0.1) when G,, = Sp,, [104]. She constructs a bijection between the
set of oscillating tableaux appearing in Berele’s correspondence for Sp, [2] and the set
of pairs of the standard tableaux and LR tableaux with the symplectically fitting lattice
word. Then it is shown that these LR tableaux count the branching multiplicity (5.0.1).
In fact, Sundaram’s formula also can be described in terms of similar flag condition with
(5.4.2)
[VéLn, VS*;J = ) ‘{T € LR))s |ooi41 < g+ 1}‘
56977(11’”

where o0; is the rightmost entry in the jth row of T from top. Recall that 7" is the
companion tableau of LR tableau. We remark that Lecouvey-Lenart provide a conjectural
bijection between the Sundaram’s LR tableaux and the flagged LR tableaux for type C,
in [71].

On the other hand, Theorem 5.4.4 recovers [67, Theorem 4.8] as follows. For T =
(T, ...,Tp) € LRY(D), let T2t = (T2t .. T5*). We may regard T** as a column-
semistandard tableau of shape u/ by putting together T2**’s horizontally. It is shown in
[67, Theorem 4.8] that if /(\) < n/2, then the map sending T to T**! gives a bijection

LRA(0) — ;e LRY, -

By Lemma 5.4.8 and (5.4.4), we have T
5.4.4 recovers [67, Theorem 4.8].

Also, we may have an analogue of Theorem 5.4.4 for types BC, that is, a multiplicity

= T*! if /(\) < n/2, and hence Theorem

formula with respect to the branching from B, and C, to A, respectively. More
precisely, let T9(u, n) be the spinor model for the integrable highest weight module over
the Kac-Moody algebra of type B, and C, when g = b and ¢, respectively, corresponding
to p € Z(G,,) via Howe duality. Here &(G,,) denotes the set of partitions parametrizing

3 o i
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

the finite-dimensional irreducible representations of an algebraic group G, (see [67, Section
2] for more details).

For A\ € 2, let LR (g) be the set of T € T%(u, n) which is an [-highest weight element
with highest weight ' (cf. (5.3.2)). Let § € £ be given, where & = (1) for g = b and
& = (1,1) for g = ¢ (here we understand 2V = &), Put

EEQHZ:{SEIB§W|51>5;V(1gifgu9},

where s; < --. < Sy, are the entries in the first row of S.
We may apply the same arguments in Section 4.3 to T%(u,n). Then by Propositions
5.3.9 and 5.3.19, we have for T = (T},...,T1) € LR, (g) that

rrail _ (Tvltail7 . 7T(;;ail) c EQMI,
for some § € &2°. Furthermore, the map

—
LRl;(g) E—— I—'(SG:@,,? LRS/NI

T Ttail

is a bijection. The map ¢ in (5.1.1) induces a bijection from L_Rg‘,lﬂ, to LR3,, where
LRy, = {U €LR}- [0 +2i <n+1 (1 <i< )}, (5.4.5)

where 01 > -+ > o,/ are the entries in the rightmost column of U. Therefore,

A =D TG= > G

bePR dePR

where i(g) = [LRY(g)|, &, = \ﬁ§,'u,|, and ¢j, = |LR;,|. This is a generalization of
[67, Theorem 4.8] for types BC, which also recovers [71, Theorem 6.8] for type C.

We remark that the flag condition in (5.4.5) is different from the one in [71, Section
6.3] because we use the bijection (5.1.1) whose image is the set of LR tableaux with anti-
lattice word (cf. [71, Theorem 6.2]).

Remark 5.4.16. Recently, an orthogonal analogue of Sundaram type bijection [105] is

given for SOy, 41 [40], where oscillating tableaux are replaced by vacillating tableaux, and
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

the Sundaram’s LR tableaux are replaced by so-called alternative orthogonal LR tableaux,

which are in (highly non-trivial) bijection with LR (D).

5.5 Generalized exponents

5.5.1 Generalized exponents

Let g be a simple Lie algebra of rank n over C, and G the adjoint group of g. Let S(g) be
the symmetric algebra generated by g, and S(g)“ the space of G-invariants with respect
to the adjoint action. Let H(g) be the space of polynomials annihilated by G-invariant
differential operators with constant coefficients and no constant term. It is shown by
Kostant [59] that S(g) is a free S(g)“-module generated by H(g), that is,

S(g) = S(9)” ® H(g).

Let t be an indeterminate. Let ®* denote the set of positive roots and ® = &+ U —®*
the set of roots of g. We define the graded character of S(g) by

1
ch,S(g) = . (5.5.1)
' (1= t)" [Taco(1 — te*)
Then it is also shown in [59] that the graded character of H(g) is determined by
ch;H(g)
chyS(g) = —p (5.5.2)
t [Lima (1 =1%)
where d; = m; + 1 for i = 1,...,n and m; are the classical exponents of g.

For € Py, let V' be the irreducible representation of g with highest weight x. The
generalized exponent associated with p € Py is a graded multiplicity of V* in H(g), that
is,

E (V) = Z dim Homg (V}*, H"(g))t*,

k>0

where H*(g) is the k-th homogeneous space of degree k. It is shown in [29] that

E(Vg) = Kp(t),
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

where K 50(15) is the Lustig ¢-weight multiplicity for V/} at weight 0. In other words, we
have
chiH(g) = Y K3(t)chV}.
prePy

In [71], a new combinatorial realization of KZ%” (t) is given in terms of the LR tableaux
which give a branching formula for (5.0.2) for G,, = Sp,,. The goal of this section is to
give combinatorial formulas for K¢ (t) following the idea in [71] as a main application of
Theorem 5.4.4.

5.5.2 Combinatorial formula of generalized exponents

Suppose that g = so,, for n > 3, that is, g = §09,,.1, 509, for some m. We assume that the
weight lattice for g is P = €D, Ze; so that T is {¢;+¢j, e, |1 <i<j<m,1 <k <m},
and {¢ +¢;]1<i<j<m} when g =809,+1, and g = §0y,, respectively. Let

1
AY = )
! H1§i<j§n(1 - txz-xj)

By using the Littlewood identity (when ¢ = 1), we have

Af= ) NP (5.5.3)

AepbY

where [A| = >0, A for A = (\i)i>1. Note that (5.5.1) can be obtained from Af by
specializing it with respect to the torus of SO,, (see for example [71, Section 2.2]).
For 1 € P(O,,), put

VoL, :VE T+ VAL, V8], ifu#m,
[Vé\Ln : Véﬂ ; if u=T7.

Proposition 5.5.1. For u € &,,, we have

[[Vé\Ln : Vgn]] =

K502m+1 (t)

__ Ko _ A ) A /2

Hm (1 _ tZZ) - Z |:|:VGL2m+1 : V£2m+1:|] t‘ |/ )
AP

K (t)
©0 _ A . Al/2
T = 2 Ve, Ve, T

=1 Ae LD
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where we regard [ in Kﬁo(t) as a dominant integral weight €1 + - -+ + pm€m € Py

Proof. Suppose that g = 509,,41. For 1 € P(Ogpny1) with () < m, we have chV§, =
chV¥ = chV* By taking restriction of (5.5.3) with respect to Og,11, we have

O2m+1 502m+1"

chS(g) = Y S VR V] | Vi (5.5.4)
MGZ&());%H) )\e,@ébﬁgl

Next, suppose that g = 509,,. For u € P(Oy,) with £(u) < m, we have chVy — =
chV§ = chV¥, . For p € P(Oyy) with £(p) = m, we have chV{ = chV}, -+ chVi

502m 502m 502m 7

where 1% = i€y + -+ + fm—16m_1 — UmEm- Similarly, we have

chiS(g) = Y S VAL, Ve T | chVE,

MEP(OQm) )\E<@£L1)
Lp)<m "

(5.5.5)
+ Z Z tly‘/2 [[VG)\LQM : VSQm]] (Ch‘éﬁ2m + Ch‘/;lg;‘m) :
PEP(O2m) \ pesp(lD
p)=m am
Now, combining (5.5.2) and (5.5.4), (5.5.5), we obtained the identities. O

Suppose that P = @), Ze; is the weight lattice of gl,. For 1 < i < n —1, let
w; = €1 + - -- + ¢ be the 1th fundamental weight.

Let p € £, be given. We identify p with ey + -+« + ppe,. Let SST,(u) (resp.
SST,(1™)) be the subset of SST(u) (resp. SST(u™)) consisting of T' with entries in
{1,...,n}, which is a gl -crystal with highest weight p. For T" € SST, () or SST, (™),
put

p(T) = Z pi(T)w;, e(T) = Z ei(T) ;.

Definition 5.5.2. ! For p € 2, we say that T is p-distinguished if

e(T)=A—=p, e(T)=06-p,

'Tn this thesis, we use the notation p as a partition, not the half sum of positive roots.
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CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

for some (X, 8) € 2 x 2P
We put

D, (p) ={T € SST, (™) | T is p-distinguished for some p € &, },

5.5.6
Pr={pe P,|T is p-distinguished } (T € D, (n)). ( )

Lemma 5.5.3. ForT € D,(u), there exists a unique pyr € & such that Pr = pT—in@ (2 2)

where pr 1s determined by

pr = Z (e:(T) mod 2)w
1<i<n—1
i=0 mod 2

Proof. It follows from the same argument as in [71, Lemma 4.4, Proposition 4.5] with
Definition 5.5.2. ]

Definition 5.5.4. We define D, (i) to be the subset of D, (u) consisting of T' satisfying
the condition (5.4.2).

Proposition 5.5.5. For u € &,,, we have

Z [[VGL VﬂﬂtI/\I/Q H Z tlw(T+pT\/2

re D TeDn (1)
where
D, (p)UD, (), if p#mn,
A e (5.5.7)
D, (n), if =1

Proof. Recall that we have bijections for u € P(O,,)
—\ N
|| wie) — || ] . — [ ] LR
reagh re Y sep?) reaSD sep®

where the first one is given in Theorem 5.4.4 and the second one in Theorem 5.4.9. By

definition of D, (), we have a bijection

UAe@,‘}” Uae(@g@ @?M I_ITGQTL(#){ T}x Pr . (5.5.8)
T (T, A = (1)) = (T,6 — =(T))

117 1. | ui 1_]|



CHAPTER 5. BRANCHING RULES FOR CLASSICAL GROUPS

By Lemma 5.5.3, we have a bijection

UTGQn(u){T} X ‘@T—>UTEQH(#){T} x PP (5.5.9)
(T, p) (T, p— pr)

Therefore, we have from (5.5.8) and (5.5.9)

YooV VI = ST N g air= YT N et

rxezp(Y rezMY se 7P TeD,, (1) pEPr
— Z Hle(@)+prl/2 Z £Irl/2
TeD, (1) e P22
_ Z de@pria__ L
D, L, (1 —%)
which implies the identity. O

We have the following new combinatorial formulas for K" ().

Theorem 5.5.6. For u € &,,, we have

K502m+1 (t) — Z t|<P(T)+PT|/2’

©0
T€Dom+1 (1)
1
$02m, — | (T)+ |/2
K,u02 (t) — T Z t1¥¢ pT ,
TEDom (1)

where D, () is given in (5.5.7).
Proof. It follows from Propositions 5.5.1 and 5.5.5. O]

Remark 5.5.7. Since K ?"(t) is a polynomial in ¢, the polynomial

S ez

TeDo, (N)

is divisible by 1+ ¢™. From the positivity of Kostka-Foulkes polynomial K5 (t), one
may expect a decomposition of Dy, (1) = X7 U X, together with a bijection 7 : X3 — X,
such that

lp(T(T) + prery| = 2m + [@(T) + pr.

¥ ", -1 =1
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Remark 5.5.8. In [71], Lecouvey-Lenart provide a bijection between the distinguished
tableaux for type C,, and the symplectic King tableaux with weight 0 (see [71, Section
6.4] for more details). We do not know yet whether there is an analogue of the above
bijection which maps an orthogonal distinguished tableau (Definition 5.5.4) to an or-
thogonal tableau (with weight 0), which is from already known models (for example,
[52,53,57,88,94,106]) or a new one).
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Chapter 6
Affine crystals

In this chapter, we extend the crystal B’ to an affine crystal' and then we give a new
combinatorial model of KR crystal B™* (s € Zs;) obtained from the crystal B’ by
computing the e -statistic explicitly. Also, we prove that Burge correspondence is an
isomorphism of affine crystals of type DV,

The results in this chapter are based on [36].

6.1 Quantum affine algebras and crystals

In this section, let g be a finite-dimensional complex simple Lie algebra with the index set
I'={1,...,n}. We denote by g the corresponding affine Kac-Moody algebra of untwisted
type with index set 7 = {0,1,...,n} [41]. Let PV be the dual weight lattice given by

PV =Zho®Zh & D Th, & Zd.

Then h = C®z PV is the Cartan subalgebra. Let P = {\ € b* | A(PY) C Z} be the weight
lattice of §. We denote by A; the ith fundamental weight of g. Put II = {a; | i € T } and
v = {hi | i€ T } to be the sets of simple roots and simple coroots, respectively. Let §
be the null root (see [41, Chapter 5]). Note that

P=7A®ZA & - ®ZN, ® Z5.

'In this thesis, an affine crystal means a g-crystal or the crystal graph of the crystal base of a certain

finite-dimensional irreducible U} (g)-module.

3 y
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CHAPTER 6. AFFINE CRYSTALS

We denote by P~ the set of dominant integral weights of g. Let U,(g) be the quantum
group of g over C(q), which is called quantum affine algebra (recall Definition 2.1.1). Then
the subalgebra of U,(g) generated by e;, fi, K;* for i € T, denoted by U (g), is also called
the quantum affine algebra. We remark that all non-trivial irreducible representations
of U,(g) are infinite-dimensional (cf. [8, Section 2.6]). On the other hand, there exist
finite-dimensional irreducible representations of U/ (g).

By Chari-Pressley’s classification [10,11], each isomorphism class of finite-dimensional
irreducible representations (of type 1) is parametrized by an n-tuple P = (P;(u))1<;<n of
polynomials with constant term 1, where n is the rank of g. The polynomial P is called
Drinfeld’s polynomials due to an analog result for Yangian earlier by Drinfeld [17].

The Kirillov-Reshetikhin (KR for short) module W) is the finite-dimensional irre-
ducible U (g)-module with the Drinfeld polynomial P = (P;(u))1<i<n

5' _ s—25+1 s —
i) = { H]:1 (1—aq w) ifi=r,

1 otherwise,

where 1 <r <n, s € Z, and a € C* [54].

It was conjectured by Hatayama et al.[28] that for 1 <7 < n and s € Z,, there exists
a,s € C* such that WS(Z)T has a crystal base. The conjecture has been proved for all
nonexceptional types [91] (see also [42] for type AD. [89] for type DY with1 <r < n—2)
and some exceptional types (with certain r) [86,87]. Let B™ be the crystal of WS(QM,
which is often called KR crystal for short.

The following lemma is useful to describe the KR crystals B™® (recall Definition
2.2.5(7)).

Lemma 6.1.1. [101, Lemma 2.6] Let g be an affine Kac-Moody algebra of non-exceptional
type with index set T = {0,1,...,n}. Forr e I\ {0} and s > 0, any regular §-crystal B

which is isomorphic to B™* as a g-crystal is also isomorphic to B™* as a g-crystal. [

6.2 Kirillov-Reshetikhin crystals B"* of type DV

Let g be an affine Kac-Moody algebra of type szl) with 1 = {0,1,...,n} the index set

for the simple roots.
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Qp Op—1

(%) Op—2
aq (679

For r € {0,n}, let g, be the subalgebra of g corresponding to { a;|i € T\ {r}}. Then
go = g, and go NG, = [, where [ is the subalgebra of type A,_1. We regard P = @, Ze;
as a sublattice of ﬁ/Zé by putting €, = Ay — Ag, €2 = Ay — Ay — A, € = Ay — Ap_; for
k=3,...n—2,¢,.1=MAN,_1+A,— AN, _5and ¢, = A, — A,,_1. In particular, we have
ap = —€1 — €9 in P. If @) are the fundamental weights for g, for i € f\ {n}, then @, = w;
for i € T\ {0,n} and @) = —w,.

Let us recall Sections 3.2.4-3.2.5 for the crystal B7. For ¢ € B”, we define

Cc— 1€1+€27 if Cei+eo > 07

0, otherwise, (6.2.1)

polc) = max{ k| fyc # 0}, eolc) = @olc) = (wt(c), o).

€)C = C + 1€1+627 fOC =

Lemma 6.2.1. The set B’ is a g-crystal with respect to wt, €;, ©;, €, ﬁ fori e 1/'\, where
wt is the restriction of wt : B — P to B”.

Proof. 1t follows directly from (6.2.1). O
Next, we consider the subcrystal B”¢ of B’ given by
B”*:={ceB’|e(c) < s}, (6.2.2)
where s > 1. By Propositions 2.2.12 and 3.2.7 (cf. [44]), we have

B(sw,) B @T.,, |JB"” =B, (6.2.3)

s>1

as g-crystals.
The following theorem is one of main results in this chapter.

Theorem 6.2.2. For s > 1, B** ® Ty, is a reqular g-crystal and
BJ,s ® Tswn ~ Bn,s’

3 y
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where B™* is the Kirillov-Reshetikhin crystal of type DY associated with STy, .

Proof. By (6.2.3), B?* ® T, is a regular go-crystal. By Proposition 3.2.3, we see that
the g,-crystal B/* ® T, is isomorphic to the dual of the go-crystal B** @ Ty, assuming
that g, = go under the correspondence o; <+ —a,,_; for 0 < ¢ < mn — 1. This implies that
B7* ® Ty, is a regular g,-crystal, and hence a regular g-crystal. It is known that B™*
is classically irreducible, that is, B™* = B(sw,) as a go-crystal (see [21]). Therefore, it
follows from Lemma 6.1.1 that B @ T, = B™®. O

Remark 6.2.3. The inclusions B%* < B”! — B” for s < t are embeddings of g-crystals
(recall (6.2.3)), and hence B” is a direct limit of {B”*|s € Z,}.

Let us recall the result in Section 3.3.2. Indeed, we can characterize € in terms of the
double paths on A,,.

Theorem 6.2.4. For c € B,
er(c) = max{ |[c||p | p s a double path in A, }.

Proof. This formula is obtained from an explicit computation of the formula in [4, Theo-

rem 3.7] for the transition matrix between Lusztig’s parametrization and string parametriza-

tion of B(oco). We give the detailed proof in Section 7.1.3 (see also Section 7.1.1). O

Example 6.2.5. We refer the reader to Appendix A.1.5 for the crystal graph for B”2
with n =4 (cf. [62, Figure 3]).

Remark 6.2.6.

(1) Let 6 = €1 + €, be the longest root in . Since 0 is located at the top of A, the

formula in Theorem 6.2.4 is equivalent to

e (c) = max{ |[c||p | p is a double path at # in A,, }.

(2) For ¢ € B, we have \;(c) = € (c). Let us explain it in more detail. We define

.= || ssT(m)

AEP,
X:even, AC(s™)

3 o
123 M =T



CHAPTER 6. AFFINE CRYSTALS

and we regard it as a subcrystal of 7 (recall Section 3.3.1). It is known [62, Lemma
5.1] that 7,* ® T,, is isomorphic to B(sw,). Then the crystal isomorphism s *
(3.3.2) induces an isomorphism of g-crystals between B”# and 7, *. Therefore, £ (c)

is equal to the number of columns of & *(c) (cf. [30, Proposition 4.5.8]).

(3) By Theorem 6.2.4, we have

B’ =({ceB’||c||, < s},
P

where p runs over the double paths in A,,. This gives a polytope realization of the
KR crystal B™*. Moreover, { B’*} is a family of perfect KR crystals by [22, Theorem
1.2].

6.3 Burge correspondence of type D

n

In this section, we extend Burge correspondence to an isomorphism of affine crystals
(recall Section 3.3). We keep the notations in Section 3.1.1. Let us recall that the affine

crystal structure on B is given in (6.2.1). Following [62], we consider the set
T={m | TeT"}.

where [T'] is the Knuth equivalence class of T. We give an affine crystal structure on T
following [62]. Consequently, it is isomorphic to the affine crystal B’ via Burge corre-
spondence.

Let us explain it in more detail. We define

T = || SST(\).
AEPn
N:even
As in the case T (3.3.1), we define the g,-crystal structure as follows.
We define the [-crystal structure on 7™ in the same way as in T> Let T € T be
given. For k > 1, let 5 be the entry in the bottom of the k-th column of 7' (enumerated
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from the left). Consider o = (..., 09,0), where

—, if t; < 2 or the k-th column is empty,
or =< +, if the k-th column has both 1 and 2 as its entries,

-, otherwise.

Then eyT is given by adding = to the bottom of the column corresponding to the right-
most — in 0", and fOT is obtained from 7" by removing {5 in the column corresponding to
the left-most + in o™, If there is no such + sign, then we define ﬁ)T = 0. Hence 7" is a
G,-crystal with respect to wt, &;, @5, &, f; (i € 1\{n}), where ¢o(T) = max{ k | ffr+£0}
and eo(T") = po(T) — (wt(T), hy).

Next, we define an analog of x* from B’ to T™ as follows. Let € be the set of
biwords (a,b) € W x W satisfying the same conditions as in {2 except that < is replaced
by <’, where (a,b) <’ (¢,d) if and only if (b < d) or (b = d and a < ¢) for (a,b) and
(c,d) € W x W. We define c/(a, b) in the same way as in c(a, b). Given (a,b) € €’ with
a=aj---a, and b =b;---b,, define a sequence of tableaux P;, P, ..., P, inductively as
follows:

(1) let P; be a vertical domino ,

(2) if Py_y is given for 2 < k < r, then define P, to be the tableau obtained by first
applying the column insertion to get a — Py_1, and then adding at the conner
of a — Py located below the box sh(ay — Py_1)/sh(Py_1),

and put P™(a,b) := P,. For ¢ € B/, let P™(c) = P"(a,b) where ¢ = ¢/(a, b). Then we
also have a bijection
k> BY T . (6.3.1)

c— > P (c)

Theorem 6.3.1. The bijection k> in (6.3.1) is an isomorphism of g,-crystals.
Proof. The proof is identical with the one of Theorem 3.3.3 (see Section 7.1.2). [

For a semistandard tableau T' of skew shape, let [T] denote the equivalence class of T'
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with respect to Knuth equivalence (see [23] for definition). If we define

[ZT], ifi=0,
L[T) =< [T, ifi=n,

[z;T],  otherwise,
fori € and x = e, f (we assume that [0] = 0), then the set
T={mirer}={mirer" } (6.3.2)

is a g-crystal with respect to €;, ﬁ (1 € I), where wt, g;, and ; are well-defined on [T
[62, Section 5.3]. Therefore,

Corollary 6.3.2. The map

kY B’ T ,

cr———=[P"(c)] = [P (¢)]

is an isomorphism of g-crystals. [

For s > 1, let 7° = {[T]|¢(sh(T")') < s} C T. It is shown in [62, Theorem 5.4] that
T*° ® Ty, = B™®. Therefore, we have the following.

Corollary 6.3.3. The map r° when restricted to B?* gives an isomorphism of g-crystals

kY . B7®

Te.

Remark 6.3.4. It is already known in [62] that the matrix realization of B™* for type
A(l)

n—1

is obtained from RSK correspondence. Furthermore, by the folding technique [46],
the approach is available for types Dq(i)rl and Cg). Although the tableau description of
B™* for type DV is known in [62, Section 5.3], RSK correspondence does not seem to
be extended to an isomorphism of Dfll)—crystals. Therefore, it does not give a matrix
realization of B™* for type D by the approach in [62].

The crystal B7* can be viewed as the matrix realization of B™* mentioned in [62,

Remark 5.5] and Burge correspondence is an analog of RSK for type DS) in this viewpoint.

3 o i
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CHAPTER 6. AFFINE CRYSTALS

Remark 6.3.5. The combinatorics on B"™* for r # 1,n — 1,n is more complicated than
the cases r = 1,m — 1 and n. For example, see [100] for the KR crystal B%® for type
D,(f). Note that the KR crystal B** is not classically irreducible and it is decomposed as

D,.-crystal into a direct sum of classical D,,-crystals as follows:

BQ’S = é B(k”WQ),

k=1

where B(kws) is the D,-crystal of an integral highest weight irreducible module with
highest weight kws. This yields that the description of Oth crystal operators ey and f

are more complicated than (6.2.1).
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Chapter 7

Proofs

7.1 In Chapters 3 and 6

7.1.1 Formula of Berenstein-Zelevinsky

Let us recall a result on Lusztig’s parametrization and string parametrization of B(oo)
due to Berenstein-Zelevinsky [4], which plays a crucial role in proving Theorems 3.3.6 and
6.2.4.

Let g be a symmetrizable Kac-Moody algebra. We keep the notations in Chapter
2. For i € I, let B; = {(x);|x € Z} be the abstract crystal given by wt((z);) = zay,

ei()i) = =, i(2):) = 7, £;((2)s) = —00, p;((2);) = —oofor j # i and &(x); = (z+1);,
fi(x); = (x — 1);, éj(x); = f;(z); = 0 for j # 4. It is well-known that for any i € I, there
is a unique embedding of crystals [44]

sending by, > b ®(0);, where by, is the highest weight element in B(oc). This embedding
satisfies that for b € B(o0), ¥;(b) = b' ® (—a);, where a = g;(b*) and &/ = (2(b*))". Given
b € B(oo) and a sequence of indices i = (i1, -+ ,4;) in I, consider the sequence b, € B(o0)
and ay € Z, for 1 <k <[ —1 defined inductively by

bo="b, W, (by_1)=br ® (—ag)i,.

The sequence t;(b) = (a;,- -+ ,aq) is called the string of b in direction i. By construction,

3 y
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it can be reformulated by
ap = &, (6751 -E;h"), (7.1.1)

ig—1
for 2 < k <, where a; = &;,(b*).
Suppose that g is of finite type. Let V' be a finite-dimensional g-module and V), denote
the weight space of V' for A € wt(V'), where wt(V') is the set of weights of V.

Definition 7.1.1. For \, u € wt(V), an i-trail from X to p in V is a sequence of weights

T =(A=uwy,11,...,v = p) in wt(V) satisfying the following conditions:

(1) for 1 <k <, vy_1 — v} = dg(m)ay;, for some di(7) € Z,

(2) €d1(7r) . dy(m)

i -=e;, s a non-zero linear map from V), to Vj.

Remark 7.1.2. When V is a module with a minuscule! highest weight, then the condition
(1) implies (2). Furthermore, if B is a crystal of V, then we have 'éfll(ﬂ) . -éfll(ﬂ)BM = B,
or fi.. fhMp, = B,

11

Let i = (i1, - ,in) € R(wp) given. Let i* := (i,--- ,iy) and i := (in, -+ ,41),
where 7 +— ¢* is the involution on I given by wg(a;) = —ay+. For ¢ € B;, we have by
[4, Proposition 3.3]

bi(c)® = by=or (cP), (7.1.2)

where ¢P = () is given by ¢;” = en_j for ¢ = ().

Theorem 7.1.3 ([4], Theorem 3.7). For i,i" € R(wg) and ¢ € By, let t = t;(by(c)*).
Then t = (t;) and ¢ = (c¢,) are related as follows : for any k=1,--- | N

te = n;gn {Z dm(m)cm} — ngén {Z dm(ﬂ-Q)Cm} , (7.1.3)

o/ .
where m (resp. ) runs over i'-trails from s;, --- s, _,w;, (resp. from s; ---s; ;) to

wotm;, in the fundamental representation V (w;, ).

Remark 7.1.4. The string parametrization of b € B(co) given by (7.1.1) is the string

parametrization of b* in [5] (see also [85, Remark in Section 2]).

IThis means that Weyl group acts transitively on the weights.

3 o
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7.1.2 Proof of Theorem 3.3.3

We keep the notations in Chapter 3. We assume that A; C A, for 1 < i < n, where both
of A; and A,, share the same southeast corner. For ¢ = (¢;) € B, let ca, € BY (resp.

Cac € B”) whose component in A; (resp. A§ := A, \ A;) is ¢ and 0 elsewhere. Let
B, ={ceB’|ca: =0}

Fix i € I\ {n}. Let ¢ € B}, given with ¢ = c(a,b) for a unique (a,b) =
(ay...am,by...b,) € Q. We divide (a,b) into two biwords (a’,b") = (a;...as, by ...0b)

and (a”,b") = (as41...ar,bsi1...b,) where a, < i and a,,; > 7 so that

(a')_<i+1cm ;
b /) \ 1

Here the superscript means the multiplicity of each biletter.

Let ¢/ = c(a’,b’) and ¢” = c(a”,b") € BA__| be the corresponding Lusztig data. Put
T = k*(¢"). Then sh(T) = p™ for some p € P;_; such that p/ is even. We define
(P(c),Q(c)) by

(1) P(c) = ((T <= bs) « -+ < by),

G = %1

) (7.1.4)

1 i+17

i
1 1—1

<1 +

(2) Q(c) € SST((A/p)™), where sh(Py)/sh(Pg_1) is filled with a; for 1 < k < s.

Here A = sh(P(c))™, Pr, = ((T" <= bg) < --- < by), and Py = T". The pair (P(c),Q(c)) can
be viewed as a skew-analogue of RSK correspondence applying insertion of (a’, b") into T'
(cf. [23, Proposition 1 in Section 5.1] and [97]).

Lemma 7.1.5. Under the above hypothesis, we have
Q(f;e) = f:(c).

Proof. Considering the action of ﬁ on the subcrystal Biiﬂ of B” described in Proposi-
tion 3.2.3, we may apply [60, Proposition 4.6 and Remark 4.8(1)] to have Q(f;c) = fiQ(c)
(because we can naturally identify each element of Bikﬂ with an element of the crystal
M in [60, Section 3]). O

Let ¢(A\) = 2m for some m > 1. For 1 <[ < m, let V; be the subtableau of Q(c)
lying in the (21 — 1)-th and 2I-th rows from the bottom, and let U; be the subtableau of
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P(c) corresponding to V;. Note that U; and V] are of anti-normal shapes, and V}\ is the
tableau of normal shape obtained from V; by jeu de taquin to the northwest corner. We
also let P(c); be the subtableau of P(c) lying above the (2l — 2)-th row from the bottom,
where P(c); = P(c).

Now we glue each V> to P(c) to define a tableau T(c) by the following inductive

algorithm;

(g-1) Let T(c),, be the tableau obtained from P(c),, by gluing V> to U, (so that V> and

U, form a two-rowed rectangle W,,,).

(g-2) Consider a tableau obtained from P(c),,_1 by gluing V,:_l to U,,—1 and replacing
P(¢c);m by T(c)m. If the number of columns in W, is greater than fio,,_3 — fom—1
for m > 2, then we move dominos down to the next two rows as many as the

difference, and denote the resulting tableau by T(c),,_1.
(g-3) Repeat (g-2) to have T(¢),—2,...,T(c)1, and let T(c) = T(c);.

Example 7.1.6. Suppose that n =6 and ¢ = 4. Let c € Bi5 be given by

where ¢’ is given by the entries in bold letters. Then

—_ 3 — — — — — —
roee - (2)-(FEEII
[IENRNRNA b’ 12 3 41 2 3
By definition, the pair (P(c),Q(c)) is given by
i1 5|5
303(3(3 . 50544
P(c) = TGEEEEE W9 AHE
’3|§|TTTTTTTT |5|5|SZZZ
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where Uy and V; (resp. U, and V3) are given in blue (resp. in red). Since

N 5|5|5|5|5]|5 AN 5(5(5]|5
v J[IEEEER), 4 _FEFE

we have by algorithm (g-1)—(g-3),
5544
T(C) = — e e e e e e
s15(5[5]5]55]5[2]3]2]2]2]2]2
444|443 |2|1|T|T|T|T|T|T|T

Lemma 7.1.7. Under the above hypothesis, we have
(1) T(c) = x " (c),
(2) K (fic) = fir " (c).

Proof.

(1) : Let Ciyq = Z1gj§i ¢y We use induction on Cjy ;. Note that when Cyy = 0,
we clearly have T(c) = « *(c) by definition of T(c).

First, assume that Cjy; = 1. Then ¢35 = 1 for some j. Suppose that the box in P(c),
which appears after insertion of the corresponding 7, belongs to U; for some 1 < [ < m.
Recall that ™ = sh(7T). Let d = po—3 — pg—1 and let u be the length of the bottom row
of U;.

Case 1. Suppose that ¢(sh(U;)) = 2 and d > u. Then we have

e e e B

where the gray box denotes the one created after the insertion of j. In this case, the

domino in the leftmost column of W, does not move to lower rows. Hence it is clear that

T(c) coincides with  *(c).

Case 2. Suppose that ¢(sh(U;)) = 2 and d = u. Then we have
e ey e
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In this case, the leftmost domino in W, moves down to a lower row by (g-2), and it is

easy to see that T(c) = & *(c).
Case 3. Finally suppose that ¢(sh(U;)) = 1. Then

U, = oW = e
a HEEER ZH

As in Case 1, the domino in the leftmost column of W, does not move to lower rows, and

hence T(c) = & *(c).

=
.
~

Next, we assume that C;,; > 1. Let (a’,b’) be the biword removing (a, ;) in (a’,b’)
in (7.1.4), and let ¢ = c(a’,b’). Note that (a;,b;) = (i + 1, ) for some j.

By induction hypothesis, we have T(c) = K (c). On the other hand, when we apply
the insertion of (i + 1,7) into T(c), the possible cases are given similarly as above. Then
it is straightforward to check that the tableau obtained by insertion of (i + 1, j) into T(c)
(see the step (2) in the definition of P *(c) = P *(a,b) (3.3.2)) is equal to T(c). Therefore,

we have T(c) =  *(c). This completes the induction.
(2) : By definition of T(c) and Lemma 7.1.5, we have T(f;c) = f;T(c). Then we have
k> (fie) = fik *(c) by (1). o

Proof of Theorem 3.3.3. 1t suffices prove that for i € I and ¢ € B’
K(fie) = fir(e)  (0="u~)

We prove only the case when ¢ = since the proof for the other case is identical.
Suppose first that ¢ € I\ {n}. By Proposition 3.2.3 (o 3(c) is trivial in this case), we
have

C = CA§+1 & cAi-H?

as elements of gl,-crystals with respect to e;, ﬁ
Let us denote by 2 the insertion of a biword into a tableau following the algorithm
given in (3.3.2). If we ignore the entries smaller than 7 + 1, then cac, N /{\(CAHJ is

equal to a usual Schensted’s column insertion. Hence

B
(CAfﬂ — /f\(CAm)) =cac, @k (ca,,), (7.1.5)
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as elements of gl; ,-crystals with respect to €}, f] for 1 < 5 <. Moreover, the subtableau
of k*(c) consisting of entries 7, ..., 7 + 2 is invariant under the action of f; on  *(c) for
1 < j < i since it depends only on the Knuth equivalence class of the subtableau with

entries 7 + 1,...,1 by definition of K

Case 1. Suppose that fic = Cag,, ® ECAM. Then we have
N B N7
R (fie) = (eag,, =5 1 (fiear))
(cAf+1 N fi/f\(cAiH)> by Lemma 7.1.7(2)

= fi (cag,, 5 w7 (eany)) by (7.15)

(7.1.6)

Case 2. Suppose that fic = ]};CAEH ® ca,,,- By the same argument as in (7.1.6), we

have & *(fic) = fir *(c).

Next, suppose that i = n. We may identify ¢ with the pair (cac_ ,ca,_,). Regarding
c as an element of BY , the crystal of type Dy, we have by Lemma 7.1.7(1) the

following commuting diagram;

C—— (CA%—N CAn—l) — (CA%—N K/\ (CAn_l))

I [o

(i)

Now, we can apply the same argument for the proof of [60, Theorem 3.6] to see that the

composition of (i) and (i) commutes with f,. Therefore, we have & *(f,c) = fur ~(c). O

7.1.3 Proofs of Theorems 3.3.6 and 6.2.4

From now on we assume that g is of type D,, (n > 4) and let iy = (i1,...,ix) € R(wo)
given in (3.2.8) with i’ = (i1,...,45) and iy = (ipr41,. .., 0n)-
We first prove Theorem 6.2.4 using Berenstein-Zelevinsky formula (7.1.3). Note that

we generalize the argument in the proof of Theorem 6.2.4 to verify Theorem 3.3.6. In

3 o
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order to describe (7.1.3) explicitly, we characterize the certain trails related to iy in the
fundamental representation V(w,) (recall Definition 7.1.1).

We have n* =n — 1 (resp. (n — 1)* =n) when n is odd, and i* = i otherwise. Put
Jo= 01, in) =17 = (iy, .-, 47)- (7.1.7)
Recall that the crystal B(w,) of V(w,) can be realized as

B(w,) ={r=(r,....7) =% (1<k<n

~—r
——

where wt(7) = 3 3"/, 7wex, and

) =) (71

<3T

Tn—1,Tn TisTi+1

(1 < i < n—1) with the highest weight element (+,...,4) [50]. Since the spin rep-
resentation V(w,) is minuscule (recall Remark 7.1.2), any ip-trail 7 = (1,...,vn) in

V(w,) can be identified with a sequence by, ...,by in B(w,) such that wt(b;) = v} and
Fi O, ) = by, with dj(r) = 0,1 for 1 <k < N.

Lemma 7.1.8. There exists a unique (T, ...,i3) = (1, ., Jm)-trail from w, — o, =
wt(+, ..., +,—, —) to w, + g = wt(—, —, +...,+). We denote this trail by (v, ..., Vn).

Proof. Considering the crystal structure on B(w,) (7.1.8), we see that up to 2-term
braid move (71, 7%, -+, jon_s) = (n—2,n—1,n—3,n—2,...,1,2) is the unique sequence

of indices in I such that

f]énf4fjéf]i(+77+7_)_) - (_,_7+...,+).

On the other hand, there exists a subsequence (ji, j5, - -, Jon_4) Of (J1,...,7n). Since no
other subsequence gives (n—2,n—1,n—3,n—2,...,1,2) up to 2-braid move by definition
of iy, (41,45, -, Jbn_4) determines a unique such trail. O

Let 7 be the set of j,-trails 7 from s,w@, to wyw, in V(w,). For ¢ = (¢;) € B and
TeT,let

llells = (1 —dy(m)er + -+ 4+ (1 — dpr (7 => (L—dypua(m)er.  (7.19)
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Recall that ¢x = cg, for B, € ®(J) (1 < k < M) with respect to the order (3.2.2) and
hence (3.2.7). Let us simply write ¢ = (¢q,...,cp). The following lemma plays a crucial

role in the proof of Theorem 6.2.4.
Lemma 7.1.9. For ¢ € B’, we have €/(c) = max {||c||, |7 € T }.

Proof. Let ¢ = (¢;) € BY given. Since ¢%(c) = & (b;,(c)), we have &% (c) = t;, where

(k) = tig (bs (€)) = g (big(€)™) = i, (byzor (c°P)") by (7.1.2).
One can check that applying f;, -+ fj,.. to (+,...,+) gives a unique jy-trail from

w, and wyw,. Hence by (7.1.3), we have

t = Z ck—Ir;in{ Z de+1(7T>Ck}7

1<k<M 1<k<M
where 7 is a jj-trail from s,w, to wyw,. Hence t; = max {||c||. |7 € T }. O
For m = (vg,...,vy) €T, let 7y = (vo,...,vnm), ™ = (Vars1, .-, Un), and

TI:{W‘WJ:(I;UM'WDIM)} CT,
where (g, ...,Vy) as in Lemma 7.1.8.

Lemma 7.1.10. For c € B’, we have €% (c) = max {||c||, |7 € T"}.

Proof. For simplicity, we assume that n is even so that wyw, = —w,. The proof for odd
n is almost identical. Let m = (v, ...,vy) € T given. It suffices to show that there exists
7' € T’ such that ||c||, < ||c]||x-

If 7 € 77, then vy = wt(—,—,+...,+) by Lemma 7.1.8. Suppose that = ¢ T”. Since

gk # n for 1 <k < M, we have vy = wt(r) where 7 = (7y,...,7,) with 7, = 7, = — for
some (p,q) # (1,2) and 7; = + otherwise.
Since m € T, there exists a subsequence (j1,...,7%/) of (jar+1,-..,jn) such that
fj;v, f]éf]iT: (_7"'a_)7

the lowest weight element. Ignoring j; such that —’s in 7 is moved to the left by E’L

(7.1.8), we obtain a subsequence (57, ..., j%~) of (ji,..., 7%/ ) such that

fir, oo i fr (s ) = (4, =, =),

N/

3 y
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This implies that there exists a unique 7’ € 7' such that for M +1 < k< N

. 1, if k=j/ for some 1 <[ < N”,
dy(7') =
0, otherwise.

Hence we have ||c||r < ||c||+ by construction of 7. O

Recall that ¢ = (c;) € B is by convention identified with the array, where ¢, is placed
at the position of i in A, for 1 < k < M (see Example 3.2.10).

We note that if we consider the array (ji) for M +1 < k < N, where jj is placed at the
position of Sy_gy1 in A, then the r-th row from the top is filled with r for 1 <r <n—2
and the bottom row is filled with ..., n — 1,n,n — 1,n from right to left.

Let D be the set of arrays, where either 0 or 1 is placed in each r-th row of A, from

the top (1 < r <n — 1) satisfying the following conditions;
(1) the three entries in the first two rows are 0,
(2) the number of 1’s in each r-th row is r — 2 for 3 <r <n — 1,

(3) if r > 3 (resp. 7 < n—1) and there are two 1’s in the r-th row such that the entries
in the same row between them are zero, then there is exactly one 1 in the (r — 1)-th

row (resp. (r 4 1)-th row) between them,

(4) the ji’s corresponding to 1’s in the (n — 1)-th row are n,n — 1,n,... from right to
left.

We write d = (d;) € D, where dj denotes the entry at the position of Sy_jy1 in A, for
M+1<kEZN.

Example 7.1.11. When n = 6, we have

Cs d26
s Cy do7  dao
c= c3 Cg Ci2 d= dos  doz  dig
Co €7 €11 Cig dog dos dyo di7
c1 C Cio Ci13 Cis dsg  dos doy  dig  dig
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J26 1
Jor Jo2 2 2
J2s8  J23 J19 - 3 3 3
J2o  Jea  J20 a7 4 4 4 4
Jso Jes J21 Jis Jie 6 ) 6 ) 6

[]

For m € T7, let d(7) denote the array (dy(m)), where di(7) is placed in the position of
6N—k+1 in An for M+1 S ]CSN

Lemma 7.1.12. The map sending w to d(7) is a bijection from T’ to D.

Proof. Let us assume that n is even since the proof for odd n is the same. We first
show that the map is well-defined. Let 7 = (1p,...,vn) € T’ given, where vy =
wt(—, =, +...,+). Let (ji, ..., i) be the subsequence of (jar41, ..., jn) such that dj (7) =
1. Then
fiy Iyl =+ ) = (=== ),
equivalently,
i Py fi (oot o) = (hF =y, ) (7.1.10)
From (7.1.8), (7.1.10) and the array (jx) on A, one can check that (i) L = (n—3)(n—2)/2,
(ii) 3 < j;. < n, (iii) the array d(7) satisfies the conditions (1) and (2) for D. To verify the
condition (3), let us enumerate —’s appearing in (7.1.10) from left to right by —1, —o, .. ..
For 3 <r <n—1,let 1,_2,),..., 1), L1, denote the entries 1 of d(7) in the r-th
row, which are enumerated from the right.
For 1 < k < L, suppose that j; corresponds to 1(s,y in d(7) for some s with r = jj.
It is not difficult to see that E}; in (7.1.10) corresponds to

(1) moving —; at the (r 4 1)-th coordinate of a vector in B(w,) to the r-th one unless

r=mn and s is odd,

(2) placing (—s, —s+1) at the last two coordinates if = n and s is odd.

Then by looking at the arrangement of dj(7)’s in A,,, it follows that 1y, is located to
the northeast of 1(411,41) and to the northwest of 1,41 for r <n —1,

Loy

1(s+1,7"+1) 1(577’—&-1)
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and the j;’s corresponding to ..., 1(3,-1), Lin-1), La,n—1) are ..., n,n —1,n. Hence d(m)
satisfies the condition (3) and (4) for D, and the map 7w — d(m) is well-defined.

Since the map is clearly injective, it remains to show that it is surjective. Let mg € T’
be a unique trail such that dy(m)r = 1 for M +1 < k < M + L and 0 otherwise.

We claim that for any d € D there exists a sequence d = dg,dy, ...,d,, = d(m) in D
such that d;;; is obtained from d; by moving an entry 1 to the right. If d # d(m), then
choose a minimal &k such that d, = 0 # di(m) for M +1 < k < M + L. If 1(,,) denotes
an entry corresponding to d(m) in d(m), then there exists 1(y,y in d such that s < s'.
Here we assume that s’ is minimal. Then by the condition (3) for D and the minimality
of s', we can move 1(y,) to the right by one position if » < n — 1 and by two positions
if r =n — 1 to get another d’ € D by definition of D. Repeating this step, we obtain a
required sequence. This proves our claim.

Now, let d = (di) € D be given and let (ji,...,j7) be the subsequence such that
dj = 1. By the above claim and definition of D, we obtain the following two reduced
expressions;

Sj0 0555550 = Simar T Sima2Sivmars

where we obtain the right-hand side from the left only by applying 2-term braid move.
Since f;MH X EMHE-MH(%-, +,+...,+) = (+,+,—,...,—), we obtain (7.1.10), which
implies that there exists m € T’ such that d(m) = d. The proof completes. ]

Let P be the set of double paths at 6. Consider two operations on P which change a
part of p € P in the following way;

° ° (7.1.11)
o% ° — ) \o
%

) )

(7.1.12)
) ° — ) [
¥ ¥ N N\
° ° ° ° ) °

where in (7.1.12) the rows denote the two rows from the bottom in A,,.

Lemma 7.1.13. For p € P, let d(p) = (dx) € D be given by di, = 0 if p passes the
position of dy, and d = 1 otherwise. Then the map sending p to d(p) is a bijection from
P toD.

Proof. Let pg € P be a unique double path at 6 such that py ends at the first two dots
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from the left in the bottom row of A, that is, 8; and 3, (see the first double path in
Example 3.3.5). It is clear that d(py) = d(m) € D, where my € T is given in the proof
of Lemma 7.1.12.

Let p € P given. Suppose that p’ is obtained from p by applying either (7.1.11) or
(7.1.12). If d(p) € D, then it is clear that d(p’) € D. Since one can obtain p from pg
by applying (7.1.11) and (7.1.12) a finite number of times, we have d(p) € D. Hence
the map p — d(p) is well-defined and injective. The surjectivity follows from the fact
that any d € D can be obtained from d(my) by moving an entry to the left by one or
two depending on the row which it belongs to (see the proof of Lemma 7.1.12), which
corresponds to (7.1.11) or (7.1.12). O

Proof of Theorem 6.2.4. By Lemmas 7.1.12 and 7.1.13, there exists a bijection from
T’ to P. If m € T’ corresponds to p € P, then we have ||c||, = ||c||, for ¢ € B’. Hence
by Lemma 7.1.10, we have £*(c) = max { ||c||p |p € P }. O

For 1 <1< [2], let k; be the index such that jj, belongs to the subword (iy_;)*® of
jo and jx, = n. For ¢ € I and an element b of a crystal, let e"**b = 'éfi(b)b. The following

is crucial when proving Theorem 3.3.6.

Proposition 7.1.14. Forc = (¢;) € B/ and 1 <1 <[],

Nai-1(€) = &, (éﬁf_"l . éma"éma"c) , (7.1.13)

J2 Th
and it 1s equal to
M M
min {Z dk(m)ck} — min {Z dk(m)ck} : (7.1.14)
1 1 2

where m; and o are ig-trails from

Wt<_7"',_7+7"',+) and Wt(_,"‘,_,+,"',+)
21—2 n—21+2 2l n—21

to the lowest weight element in B(w,), respectively.

Proof. Let ¢ € B” given. Since (ji,...,jun) is a reduced expression of the longest

element for [, €7 ... /¢ is an -highest weight element, which is of the form (3.2.17).

Then it is straightforward to verify (7.1.13) using Proposition 3.2.3.
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On the other hand, the righthand side of (7.1.13) can be obtained by (7.1.3) letting

i - jo, i/ — io, (7115)
where in this case
Sj1 7t Sy (wjkl) = Si Sjkl—l(wn> - Wt(_a R REE 7+)7
20—2 n—2042 (7]_]_6)
Sj1 "'Sjkl(wjkl) :Wt(_v"' EREIE 7+)'
21 —21
Hence the formula (7.1.3) gives (7.1.14). O

Let 1 <1 < [3] given. Let 7; be the set of ip-trails from s, -~ s, (@,) (7.1.16) to
wow,. Let D; be the set of arrays where either 0 or 1 is placed in each r-th row of A,

from the top (1 <r < n — 1) satisfying the following conditions;
(1) the entries in the first 2/ rows are 0,
(2) the number of 1’s in each r-th row is r — 2 for 21 + 1 <r <n —1,

(3) if r > 21+ 1 (resp. r < n — 1) and there are two 1’s in the r-th row such that the
entries in the same row between them are zero, then there is exactly one 1 in the
(r — 1)-th row (resp. (r + 1)-th row) between them,

(4) the ji’s corresponding to 1’s in the (n — 1)-th row are n,n — 1,n,... from left to
right.

Note that D; = D.

Lemma 7.1.15. For m € 7T;, the map sending m to d(w) is a bijection from T, to D,

where d(m) is defined in the same way as in T".

Proof. It can be shown by almost the same arguments as in Lemma 7.1.12 that the map
is well-defined, and clearly injective.

It suffices to show that it is surjective. Let A/ ,, be the set A, _9, which we regard
as a subset of A, sharing the same southwest corner with A,. Let my be a unique
trail in 7; such that di(m) = 1 if and only if di(mp) is located in A/ _,,. Then as in

the proof of Lemma 7.1.12 we can check that for any d € D, there exists a sequence
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d =d,dy,...,d,, = d(m) in D, such that d;; is obtained from d; by moving an entry
1 to the left, and hence that there exists m € 7; such that d(7) = d. O

Let P, be the set of I-tuple p = (p1, - -+ , p;) of mutually non-intersecting double paths
in A,, such that each p; is a double path at some point in the (2i — 1)-th row.

Lemma 7.1.16. The map sending p to d(p) is a surjective map from P, to D, where
d(p) is defined in the same way as in P.

Proof. Suppose that p = (p1,- - ,pi) € Py is given. By definition of P, one can check
that all the points in the first 2/ rows in A,, are occupied by p.

Let p® = (p}, ..., p}) be given such that p; starts at ex;_1 + €, and ends at ez + €
and €g; + ;41 for 1 < ¢ < r. We have d(EO) = d(m), where my is given in the proof
of Lemma 7.1.15. Applying the operations (7.1.11) and (7.1.12) on P, one can obtain a
sequence in P, from p to 207 whose image under d lies in D;. Then similar arguments as

in Lemma 7.1.13 implies the surjectivity. 0

Proof of Theorem 3.3.6. Let c € B’ given. For 7 € T, there exists p = (p1,--- ,p1) €
P, such that d(p) = d(7) by Lemmas 7.1.15, and 7.1.16, and

S dmer= Y~ (lellp + -+ llellp) (7.1.17)

1<k<M 1<k<M

Indeed, (7.1.17) holds for any p € P; such that d(p) = d(r). Therefore, we have by
(7.1.14) and (7.1.17)

Ag-1(c) = Jin { > di(m)en } - i?é%{ > di(ma)en }

1<k<M 1<k<M

_ ( > e max {llellp +--+ el })

1<k<M
—( > i maellellp, + -+ + [lely })

1<k<M

= max{[lellp + - +[lellp } — max {lellp, +--+ llellr, 3

This gives the formula in Theorem 3.3.6. [
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7.2 In Chapter 4

7.2.1 Proof of Lemma 4.3.1

Let B be one of T(a) (0 < a < n—1) and T* in Definition 4.1.4. When B = T*P, we
regard an element of B as in the sense of Remark 4.1.6 (2). For 7' € B, we define

PR L . o R
St = 1<§r<ll%tXTR {s | T*(s —tp —1+a) > T }U{l} (7.2.1)
where T [k] := —oo for k < 0. Note that a = t7 when B = T*P.

Let (T, S) € T(az) x B be an admissible pair such that
T € SSﬂﬁ]()\(&Q,bQ,CQ)), S € SSTW()\(al,bl,cl))

for a; € Z, and b;,¢; € 2Z, (i = 1,2) with a; < ao. If the pair (T, S) satisfies ht(T?) >
ht(S*¥) — a; , then put
SH0] == —o0.

Note that above inequality occurs only for the case vr - tg = 1.
Lemma 7.2.1.
(1) Ifvp -t =0 (resp. tp-vg=1), then T< S (resp. T < (S™, S*)).

(2) Ifvp-vs =1, then T < S is equivalent to the following condition:

TR(k) < S*(k —1+ay) for sy <k <ht(T%). (7.2.2)

Proof.

(1) : fvp-vg = 0 (resp. tp-tg = 1), then T < S (resp. T < (S™*, S*)) follows
immediately from Definition 4.1.5 (iii).

(2) : Assume that vy - tg = 1. The relation 7' < .S implies
TMk)="T(k—1+ay) <S"(k—1+ay) for sp <k <ht(Th).
Conversely, we assume that (7.2.2) holds. Note that by definition of S™*,

S™ (k) = S*(k), (7.2.3)
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if there exists k such that 1 < k < sg — 2+ a;. Now we consider two cases.

Case 1. sp > sg. If sg <k < sp, then by Definition 4.1.5 (ii),
THk) =T (k) <"S(k) = S*(k — 1+ ay). (7.2.4)
Combining (7.2.2), (7.2.3), (7.2.4) and Definition 4.1.5 (iii), we have
ATk + ay —ay) < S®(k) for 1 < k < ht(S").

Case 2. sy < sg. In this case, the relation 7'« S follows directly from (7.2.2), (7.2.3)
and Definition 4.1.5 (iii). O

Lemma 7.2.2. Assume that vp-tg = 1. For 1 < k < ht(T#),
(1) T*(k) < S™(k).
(2) If T« S, then T*(k) < S™(k).

Proof. By (7.2.4) and Definition 4.1.5 (iii), in any case, we have
TH(ss) < S*(ss — 1+ ay) < S*(sg) = S (ss — 1 + ay). (7.2.5)

Then (1) follows from Definition 4.1.5 (ii)—(iii) and (7.2.5). By the same argument in the
proof of Lemma 7.2.1(2), we obtain (2). O
Under the map (4.3.2), put

(Ta S) = (U47 U37 U27 Ul)a

TR (7.2.6)
SQ(Ta S) - (U4a U3a U2a Ul)

Here S, is the operator given as in (4.3.3). For 1 < i < 4, we regard a tableau U; as

follows:
Uibody — Ul E Q), U2body — U2 El Sta11’
U = Us B, UV =U,8T,
where T* = (T%(ay), ..., T*(1)) and S*** = (S*(a;), ..., S¥(1)). Then we consider
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(7.2.6) in P;. For simplicity, put
h=ht(T*), g=ht(S?).

We consider some sequences given inductively as follows:

(i) Define a sequence vy < --- < vy, by

— 3 L < R
w= g {F[TR =T} (7.2.7)
_ : L < TR o
Vs v571+11n§11?§s+a2 {k ‘ (k) <T (s)}
(ii) Define a sequence wy < --- < wy, by
_ R L
w= o (k] T0) < S, .
_ R(4) < QL o
W= max {k | T*t) < S"(k)}.
(iii) Define a sequence z; < --- < x, by
Ty = 1<1(nki<1r1 {k | S"(k) < S*1)},
== (7.2.9)
Ty = min {k | S*(k) < S*(u)}.

Ty—1+1<k<u+tay

Proof of Lemma 4.3.1 (1). By Lemma 7.2.1 (1), the proof for the case t7 - tg =0
is identical with the argument in [66, Lemma 5.2]. So we prove the case tr - tg = 1 here.

We consider two cases along < (recall Definition 4.1.9).
Case 1. T'< S. In this case, So = F5'. This implies that ﬁl =U; and (74 = U;. By
Lemma 7.2.2(2),
(T®, S*) € SSTim(A0,b,¢)),
where b = a1+c1—by—co and ¢ = by+cy. Since T’ < S with TS, ¢;—by—cy > 0. Therefore

F(T, S) is well-defined. Now we show that (Uy, Us) and (Us, Uy) are semistandard along
L.

(1) (Uy, [75) is semistandard along L. For 1 < k < ht(T?) satisfying vy, > ag —a; + 1,
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the relation T'< S implies
U — Qg + a1 < wy. (7.2.10)

(i) Assume that Us(k) = T*(K') for some k. By definition of wy, we have
k= wy. (7.2.11)
If vy > ay — ay + 1, then

Us(k +ay — ay) = TH(wp + az — ay) by (7.2.6) and (7.2.11)
< T"(vw) by (7.2.10) (7.2.12)
< THE') = Us(k) by (7.2.7)

If vy < ag — ay + 1, then

Us(k +as —a1) = T"(k + ay — a1) < T (o) < THE') = Us(k). (7.2.13)

(i) Assume that Us(k) # T*(k') for any k. In this case, we have
Us(k) = S™(k).
Then

U4(l€ + a9 — al) == TL(I{? + a9 — al)
<*'(k+as—a;) by definition of *T (7.2.14)
< SY(k) =Us(k) byT<aS

By (7.2.12), (7.2.13) and (7.2.14), (Uy, Us) is semistandard along L.

(2) (Uy,Uy) is semistandard along L. By (7.2.8), (7.2.9) and Definition 4.1.5 (ii), we
have
o, <wg for 1<k<sp—1. (7.2.15)

Also the relation T'< S implies

k—1+a <w, for k> sp. (7.2.16)
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(i) For 1 <k <sp—1,

(ii) For k > s, (7.2.16) implies
Uy(k) = S*(wy) < S"(k — 14 ay) < S*(k) = Uy (k).
Note that S*(k — 14 a1) < S®(k) holds since tg = 1.

By (i)-(ii), (Us, Uy) is semistandard along L.

Case 2. T A S. In this case, S = 8251]:2“1_1.7:1. Note that by definition
Fu(S5, %) = (8™, 5™).

By Lemma 7.2.2(1),
(T%, S**) € SST (M(0,b,¢)),

where b = a; +¢; — by — o + 1 and ¢ = by + ¢o. Note that by Definition 4.1.5 (i),
b=a—1+{c1 —(ba+c2—2)} >a; — 1.
Therefore, ' Fi(T, S) is well-defined. Put
«anl_lfl(Ta S) = (U47 U37 UQ, Ul)

Note that Uy = Uy by definition of F;" "' F;. We use sequences (wy,) and (z) in (7.2.8)
and (7.2.9) replacing S*, S* and a; with S™, S* and a; — 1, respectively.

(1) (Uy, Us) is semistandard along L. By Lemma 7.2.1 (1), we use the similar argument
in the proof of Case 1(1).

(2) (Us, Uy) is semistandard along L. We observe

gn (SL*, SR*) m— L .F(SL, SR) — ga1—1(SL7sR> — (LS,RS>.
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Therefore we use the similar argument in the proof of Case 1 (2).
Note that (7.2.5) implies that S*(sg) is contained in Us. Then the operator & on
(Uy, Us, Us, Ul) moves S®(sg) by one position to the right. Therefore we have

U, =U. (7.2.17)

On the other hand, (7.2.4) and Definition 4.1.5 (iii) implies that the operator & on
51<U4, Ug, Ug, Ul) moves

Us(wy,) = T*(k) for some k > s

by one position to the right. By the choice of sy and sg (7.2.1) with (7.2.17), (Us, Us)
and (U,, U) are semistandard along L.
We complete the proof of Lemma 4.3.1 (1). O

Proof of Lemma 4.3.1(2). Put e (T, S) = (T",5"). Then it is not difficult to
check that
tp = tp, tg = tg. (7.2.18)

(=) Assume that

Otherwise it is clear that 7" < S".
If t7 - tg = 0, then Lemma 7.2.1 (1) and (7.2.18) implies that 7" < S” holds.
If v7 - vg = 1, then suppose 77 4 S’. By Lemma 7.2.1(2), there exists s > s such
that
T"(s) =k

which contradicts to (7.2.19) by the tensor product rule. Hence we have 7" < 5".

(<) It follows from the similar argument of the previous proof. ]

7.2.2 Proof of Lemma 4.3.3

We remark that the results in Section 5.3 are also available in proving Lemma 4.3.3, see
[67, Remark 3.8].
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Let us define

. Tiv,....Tv,Ty), ifn =2,
g )T ) (7.2.20)
(ﬂ,...,Tl,To), 1fn:2l+1,

as follows:

(1) if n = 21, then let Ty = U, and let T; € T(a;) for 1 < i < [ — 1 such that
(TE, T®) = (Usiy1, Us;), given in Corollary 5.3.16(ii),

)

(2) if n = 20 + 1, then let Ty = 0, Ty € T(0) and Tjy € T(a;) for 1 <i <1 —1 such
that (T%,T%) = (Uy,Up), (TE, T®) = (Usir, Us), given in Corollary 5.3.16(i) and
(ii), respectively.

We have T € TX' Let us show that T € T5. For simplicity, let us assume that n = 2/
since the proof for n = 2] + 1 is almost identical.

By Corollary 5.3.16(1), we have T, < TO. So it suffices to show that T; < T}, for
2 < i <1—1. This can be checked in a straightforward way using the fact that T € H(\)

and Lemma 5.3.15 as follows.

Consider a triple (Tj41,7;,T;—1) in T. Recall that each T; satisfies (H1) and (H2).
Without loss of generality, let us consider (73, 7%,7}), which can be identified with

(Us, Us, Uy, Us, Uy, Uy)
under the map (4.3.1). Put
8284(T37 T27 Tl) = ([767 (75” (747 (737 (72a [71)

Note that U, = U; and Us = Us. Let A(a;, b;, ¢;) be the shape of T} for j = 1,2,3. Let T
be the tableau corresponding to (ﬁHQ, [7j+1) for j =1,2,3 in (7.2.20).
We consider the following four cases. The other cases can be checked in a similar

manner.

Case 1. (r3,t9,t1) = (0,0,0). In this case, the operators Sy and S, are just sliding
Tx2it and T2 to the left horizontally. Note that T, € SST (N ay,c1 — by — ca,by + ¢32))
and fg € SST(A(ag,ca — bg — c3,b3 + ¢3)). It is straightforward to check that Tg < ﬁ.

Case 2. (t3,to,v1) = (1,1,0). If Us(1) < Uy(az), then the proof is the same as in
Case 1. So we assume that Us(1) > Uy(as).
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Note that 7} € SST (A a1, c1 — by — 9,0y + ¢2)) and T, € SST (A ag, cg — by — c3 +
4,bs + ¢35 — 2)). By Corollary 5.3.16(2), Ty and T} have residue 1 and 0 respectively. We
see that Definition 4.1.5(1)-(i) holds on (75, T}).

By [67, Lemma 3.4], we have Us(1) = Uy(1) < Us(a;+1) = Us(1), which together with
(H1) on T, implies Definition 4.1.5(1)-(ii) on (T3, T}). Definition 4.1.5(1)-(iii) on (T, T})
follows from the one on (Ty,T), (H1) and (H2) on Ty. Thus Ty < T3.

Case 3. (t3,ty,t1) = (0,1,1). If Us(1) < Us(ay), then the proof is the same as in
Case 1. So we assume that Us(1) > Us(ay).

Note that Ty € SST(May,¢c1 — by — ¢ + 4,by + ¢ — 2)) and Ty € SST(May, o —
by — c3,b3 + ¢3)). By Corollary 5.3.16(2), Ty and T} have residue 0 and 1 respectively.
We see that Definition 4.1.5(1)-(i) holds on (T, T3). Definition 4.1.5(1)-(ii) on (Tb,T})
follows from (H1) on T. Also, Definition 4.1.5(1)-(iii) on (T3, T1) follows from the one on
(Ty, T1). Thus Ty < Ty.

Case 4. (v, va,vy) = (1,1,1). If Us(1) < Us(ay) or Us(l) < Ug(az), then the
proof is the same as the one of Case 1-Case 3. So we assume that Us(1) > Us(a;) and
Us(1) > Uy(az).

Note that Th € SST (A a1, c1—by—co+4,ba+ca—2)) and T, € SST (A ag, co—bg—c3+
4, b3+ c3 —2)) and both have residue 1. Since to = 1, we have by > 2 and ¢y +2 < by + ¢o,
which implies Definition 4.1.5(1)-(i) on (7%, T}).

Definition 4.1.5(1)-(ii) and (iii) on (T3, 7}) follow from the same argument as in Case
2. Thus Tvg =< Tl‘

Finally, since T corresponds to U (4.3.7), we have T € H()). O

7.3 In Chapter 5

7.3.1 Outline

The proof of Theorem 5.4.4 is rather lengthy and technical, so we outline the proof. The
proof of Theorem 5.4.4 is organized as follows.
In subsection 7.3.2, we consider the case of n — 2u} > 0, which is easier to deal with

than the case of n —2u} < 0.
(1) (Well-definedness) First, we show that T ¢ ﬁ(}\,’#, (Corollary 7.3.4). To do this,

we study some properties of the sequences (m;)1<i<, and (n;)1<j<, associated with
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T with respect to sliding (Lemmas 7.3.2 and 7.3.3), which implies that T
satisfies (5.4.1).

(2) (Injectivity) Second, we show that the map

—\
LRY () —— ;e LRy -

T Ttail

is injective by using Proposition 5.3.19 (Lemma 7.3.5).

(3) (Surjectivity) Finally, we prove the above map is surjective, that is, for W € m;\,/ e
there exists T € LRy (9) such that T™ = W. We use induction on n. The initial
step when n = 4 is proved in Lemma 7.3.6. Then based on this step, we construct

T € LR{(?) in general in Lemma 7.3.8

In subsection 7.3.3, we consider the case of n —2u7 < 0. The proof is almost identical
to the case of n —2u) > 0, but the major difficulty occurs when we consider the columns
with odd height in T(0) and TP~ (cf. Remark 4.1.6(2)—(3)). To overcome this, we reduce
the problems to the ones in the case of n — 2p) > 0 so that we may apply the results (or

the arguments in the proof) in subsection 7.3.2.

7.3.2 Proof of Theorem 5.4.4 when when n —2u} >0

Let u € P(O,,) and A € &, be given. We assume that n—2u; > 0. We keep the notations
in Sections 3.1.1 and 4.1.1 and Chapter 5.

Suppose that n = 2] 4+ r, where [ > 1 and r = 0,1. Let T € LR{(d) be given with
T = (T},...,171,Tp) as in (5.3.4). Let us assume that r = 0 since the argument for r =1

is almost identical. Write T = (T)_4, ... ,ﬁ,ﬁ)). Let TV = H sy~ for some 0 € 2@,
Let s; < --- < s, denote the entries in the first row, and ¢; < --- < ¢, the entries in the
—tail

second row of T .

Lemma 7.3.1. Suppose that T = (Uy,...,U;) € E" under (4.3.1). If T (1) < T*(a;),
then
U27,' — f]viL E j}tail.

In this case, T is the (I — i+ 1)-th column of T from the left.
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Proof. If T% (1) < T%(a;), then by definition we have T has residue 0. By Lemma 4.3.3,
TR(1) < T, (a;_1). Inductively, we have Uy = T B TF*1. By applying this argument

together with Lemma 4.3.3, we obtain the second statement. O]

For simplicity, let us put T = T. Let i = (o, p3y .. ) and ¢ = (81, ...,0,1) € (@7@1
By Lemmas 5.3.6, 4.3.3 and Proposition 5.3.19, we have T = H ¢y~ and T ¢ LRgﬁ/
where ¢ is given by (He Ttail) = Hg. Let 53 < --- <5, be the entries in the first
row of T and let (mi)1<i<p—1 (resp. (m;)i<i<p) be the sequence associated with T

(resp. Ttail) in Definition 5.4.1. Note that s; = s;_1 for 2 < i < p. Put T, = T;_;,; for
1§i§land:fj:fl,j for 1 <j <1—1. Assume that T; € T(a;) for 1 <i <.

Lemma 7.3.2. Under the above hypothesis, the sequences (m;)i1<i<p and (M;)1<i<p—1 Sat-
1sfy the relation
mi=mi1+7+1 (2<i<p), (7.3.1)
where T; 15 given by
1, T, (1) < Tr(a),
0, if TF (1) > Tr(ai).

T; =

Proof. Fixi > 2. If T* (1) < Tr(a;), then by Lemma 5.3.15(i) and 7.3.1

If T} (1) > Tr(ai), then we have by Lemma 5.3.15(ii) m; < 2i — 1. This implies m; =
mi—1 + 1. Hence we have (7.3.1). O

Lemma 7.3.3. For 1 <1 < g, we have
t, = T?(&Z — 1) > T?(l) = 5::".

Proof. By Lemma 5.3.15, it is easy to see that t; = Tr(a; — 1). Next we claim that
TH(1) = 077, which implies the inequality since vy, < 1. We use induction on n. For each
i, we define 0; to be the number of j’s with ¢ +1 < j < p such that m; < 2i + 1. Then
we have

n; = 2i + 0;. (7.3.2)
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If 6; = 0, then n; = 2¢ and m;,, = 2¢ 4+ 1, which implies that
TH(1) < Ty (@i

By applying Lemma 7.3.1 on T, we have o5 = TH(1).
If 6; > 0, then we have by definition of 6;,

T (1) > Tr(ay). (7.3.3)
Let (m;)1<i<p—1 and (n;)1<i<q—1 be the sequences in Definition 5.4.1 associated with T.
Let g’l be defined in the same way with respect to (m;)1<;<p—1. By definition of 5, and
Lemma 7.3.2, we have for j > i+ 2,
mj<21+1 — fij_l <2Z—Tj§2’l—1

Thus we have §; = 6; — 1. By induction hypothesis, (7.3.2), and (7.3.3), we have

(1) = TH(1) = 357 = Gy = O5eYy, = 05

2i+6;

[

Corollary 7.3.4. Under the above hypothesis, we have T ¢ mﬁjy.
Proof. It follows from Remark 5.4.2 and Lemma 7.3.3. O

Lemma 7.3.5. The map T — T s injective on LRY (D).

Proof Let T,S € LR{(9) be given. Suppose that T = 8" We first claim that
= S. By Proposition 5.3.19(1), we have T = Hy and S°% = H,, for some
5,x € 2@, Since T = 8™ and (Tta - Hy) = (S e H,/) = Hy, we have
= x. Hence T pody SbOdy, which implies T = S. Since the map T — T is reversible,
we have T = S. O

Now, we verify that the map in Theorem 5.4.4 is surjective. Let W &€ ﬁg’#, be given
for some § € 2. Let V = H s/~ and X be the tableaux of a skew shape 7 as in (4.3.8)
with n columns such that

body _ v, Xtail _ W
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The semistandardness of X follows from Definition 5.4.1 and Remark 5.4.2. Let V; and
W; denote the i-th column of V and W from right, respectively.

Let us first consider the following, which is used in the proof of Lemma 7.3.8.

Lemma 7.3.6. Assume that n =4 and y) = 2. Then there exists T = (T»,T) € LRY(?)

——body —tail

such that T = X, that is, =V and T =W. In fact, T = (Ty,T1) is given as

follows:

(1) If mg = 3, then

(Ty,T5) = (Vi BW,, V), (1, T7T) = (Vo BW:, Wy).

(2) If mg = 2, then
(T3, 73) = (ViB WL, V), (T7,17) = (V; B, V),
where V5*, Vi’ and W7 are given by
Ve =(...,V5(2),V3(1), Wi(ay), V2(1)) B 0,

Ve = (..., Va(4),V2(3)), W7 = (Wy(2),Wi(a; —1),...Wi(1)).

Proof. By Remark 5.4.2 and definition of them, 77 and T, are semistandard. Also, the
residue t; of T; is by Definition 5.4.1 at most 1 for ¢ = 1,2. It suffices to verify that

—tail

T5 < T3 since this implies TY =V and T = W by construction of T.
Let a; be the height of W; for i = 1,2. We have V; = (1,2,...,07%) for 1 < i < 4,
with 078V < 05%V < 05%V < 7%V, Let w(X) = wywsg - - - wy,. Put

P = (w1 4= wa) < w3) < -+ ) < wy,)

for kK < m. Suppose that

w(Vi)w(Va)w(Vs) = wiws - - - ws,
w(V)w(Va)w(Va)w(Wi)w(Vy) = wiws - - - w,

for some s <t < m.

Case 1. my = 3. We first assume that vyt = 0.
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(i) vy =0, vo =0 : It is obvious that T < T7.

(ii) vy = 0, vy = 1 : Definition 4.1.5(1)-(i) follows from 65°" < §3°”. Also, Definition
4.1.5(1)-(ii) follows from sy > 95°¥ > 65°V. The semistandardness of W implies
Definition 4.1.5(1)-(iii). Thus we have Ty < T}.

(iii) vy =1, o = 0 : We may use the same argument as in (ii) to have T, < T7.

Next, we assume that vyry = 1. Definition 4.1.5(1)-(i) holds by definition of T. Since

t; =1 and vy = 1, we have
5 < Wiar) < 07%,  07% < Wa(ag) < 65°. (7.3.4)
By Lemma 5.3.6,
(Ps < Wi(ay)) and (P, < Wh(ag)) are I-highest weight elements. (7.3.5)
By (7.3.4) and (7.3.5), we have
Wi(ay) =655+ 1, Wa(a) =67 + 1. (7.3.6)

This implies Definition 4.1.5(1)-(ii). Definition 4.1.5(1)-(iii) follows from the semistan-
dardness of W and (7.3.6). Thus we have Ty < T}.

Case 2. my = 2. Since my = 2, we have
05%" < 05 (7.3.7)

Otherwise, we have Wj(ay) > 05°", which contradicts to my = 2. By definition of my, we

have
5% < Wi(ay) < 05°". (7.3.8)

Note that if Wi(a;) = 57, then by (7.3.7) the tableau (Ps; <— Wj(a;)) cannot be an
[-highest weight element. Since (P; «— Wi(a;)) is an [-highest weight element,

W1 (Cll) = 5;6‘, + 1. (739)
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In particular, we have
05" +2 < 65" (7.3.10)

Since Wa(as) < Wi(ay) < 05V and Wi(a;) = 5%V + 1, we have to = 1. Also, since
0587 < 03°%Y, it is clear that v; = 1. Note that

(sfev < WQ(CLQ) < Wl(al) = 5§ev +1< 5§ev'

This implies that
Wa(ag) = 07%" + 1, (7.3.11)

since (P, <— Wa(ag)) is an [-highest weight element.

Now, Definition 4.1.5(1)-(i) follows from (7.3.10), and Definition 4.1.5(1)-(ii) and (1)-
(iii) follow from (7.3.9), (7.3.10), (7.3.11) and the semistandardness of W. Hence we have
15 < Th. O

Let X be the tableau obtained from X by removing its leftmost column. Let g =
(p2, pis,-..) and ¢ = (81,...,0,-1) € 2. Since X is an Ihighest weight element by
Lemma 5.3.6, we have X*% = H)- and X*!* € LRgﬁ,, where ¢ is given by (Hey <
Xtail) — H&/.

Lemma 7.3.7. We have X** € IR, .

Proof. Let (m;)1<i<p and (n;)1<;<4 be the sequences associated with X* =W € m:;\,lu,.
Let 57 < --- <35,_; and t; < --- < t,_4 be the entries in the first and second rows of
Xt respectively.

We define a sequence 1 < m; < --- < m,_; <n — 1 inductively as in Definition 5.4.1
with respect to (5;)1<i<p—1. Note that the sequence (m;)1<i<p—1 is well-defined by Remark
5.4.2. By Lemma 5.3.15, we observe that

1, ifi=1,
mi = m’i+1 — 1, le > 1 and mi+1 < 2@ + 1, (7312)

Mit1 — 2, if4>1and miy1 = 21+ 1.
Let (1;)1<i<q—1 be the sequence with respect to (m;)1<i<p—1, that is,

n; = the i-th smallest integer in {i +1,...,n — 1} \ {Miq1,...,mp_1}.
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By (7.3.12), we obtain

Py < Mgt — 1, (7.3.13)
and hence
fi=tig > 05 = 0%y > or.
Therefore, we have X! ¢ ﬁgjﬁ,. O

Lemma 7.3.8. There exists T € LRY(0) such that T = X, that is,

A5body ~tail

Tv=v, T =W.

Proof. We use induction on n > 2. We may assume that ) # 0.
Let us first consider n = 3. Note that V = (V3,V5,V]), and W is a tableau of single-
columned shape. Define (T5,T}) by

Clearly T7 and T, are semistandard. By Definition 5.4.1, the residue of 75 is at most 1.
It is easy to check that Ty < Ty. Therefore, T = (Ty,7}) € LR,(0) and T = X. Next,
consider n = 4. When p) = 1, apply the same argument as in the case of n = 3. When
1) = 2, we apply Lemma 7.3.6.

Suppose that n > 4. Let us assume that n = 2/ is even since the argument for n odd
is almost the same. By Lemma 7.3.7 and induction hypothesis, there exists T € LR? (0)
such that

+=body

T

=tail

_ Xbody’ T _ Xtall’

where 11 and £ are as in Lemma 7.3.7.

Now, let us construct T = (Tj,...,T}) € LR,(0) from T, which satisfies T = X, by
applying Lemma 7.3.6 repeatedly.

Let T = (Tl_l, . ,ﬁ,fo) and let a; be the height of ﬁtan for 1 <i<[—1. Put

U= ((72[—17 ceey 1727 ijl)?
where

U =To, (Usin1,Uy)=(TF,TF) (1<i<i-—1).
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Let us define
U: (UQZ,...,UQ,U1>.

First, let U; = [71 and let Uy be the leftmost column of X. For 1 < ¢ <[ —1, let
(Usit1,Usy;) be defined in the following way. Suppose that a; = 0. Then we put

U21'+1 = U2i+17 U2i = U2'i-

Suppose that a; # 0. By Proposition 5.3.9, we have T(a;) # TR*(1) for 1 < i < . If
T(a;) > TH(1), then

Upp1 = TEB TR, Uy = TREB T (7.3.14)
If TE(a;) < TR(1), then

Vst = (TEU{TH(1), THa) } ) B0,

U= (B (B, B ) B (7 (T o {me)),

where we identify a semistandard tableau of single-columned shape with the set of its
entries.
Set

T = (7—1[77}717 C 7T1)7 where (TL,ﬂR) = (U2i7 Ugifl) for 1 S 1 S l. (7316)

(2

We can check without difficulty that 7; is semistandard, and the residue t; of T; is at most
1 by Lemma 7.3.3 and (7.3.13).

Next we show that Ty < T; and (Ti1,15) € HO((py_y, pt)_441),4) for 1 <@ <1 -1,
which implies that T € H°(u,n). The proof is similar to the case of n = 4 in Lemma
7.3.6.

Let us prove T;,1 < T; inductively on i. For ¢ = 1, it follows from Lemma 7.3.6.
Suppose that T; < T;_1 < --- < T} holds for given ¢ > 2. Consider

X; = (Uziga, (72«z+1, (722‘, Usi—1).

The admissibility on T implies that X is semistandard. It follows from (7.3.14),
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(7.3.15), Definition 5.3.7(H1) on T and the induction hypothesis that X>°¥ is equal to
H =, for some p = (2a,2b,2¢c,2d) with a > b > ¢ > d > 0, except the entries in the
southeast corner and the next one to the left.

We remark that the map
X’i = (U2i+27 (721'4-1; ﬁ?ia UQi—l) — (U2i+27 U2i+17 UQZ" UQi—l) - (E-{-la E)

is the same as the map X — T in Lemma 7.3.6.
Case 1. (722'_,_1((11') < 621(1) and ﬁ2i+3((li+1) < ﬁgi_‘_g(l). FiI‘St, we show that v; =
t;41 = 1. By (7.3.15) and [67, Lemma 3.4], we have

Usiso(ir1) = Usisa(2) < Usiro(1) < Usi(1) = Unipr(1). (7.3.17)

By (7.3.15), (7.3.17) and Proposition 5.3.9, we have t;;; = 1. Also, we have v; = 1 by
similar way.

Next, we verify Definition 4.1.5 (1)-(i), (ii) and (iii) for (7}41,7;). The condition (1)-(i)
follows from (7.3.15). In this case, T}7, and “T; are given by

T = (ﬁ;;f{ U { Uit (a:) }) o, T = (fj% \ { Uni(1) }) B 0.
By Proposition 5.3.9 and the admissibility on T, we have T} (k) < MT;(k). So the
condition (1)-(ii) holds.
Now, we consider the condition (1)-(iii). In this case, *T;;; and T** are given by
i = (ﬁ;ﬁ}{ U { Usii1(a:) }) H ((@ﬁ% {172i+3(ai+1) }) U { Uai(1) })
1 = (O \ { Oa) }) B (T2 \ { Oaimal@) }) U{TFD) }).

where _ _ _
Uzi—1(ai—1 + 1), if Ugi—1(ai- Usi—2(1),
(1) = Uz (a1 +1) 1 Uz 1(ai—1) > Uz 2(1) (7.3.18)
Usi—o(1), if Usi—1(ai—1) < Uzi—a(1).
Note that we have by [67, Lemma 3.4] and the admissibility of T
"Tii(ain) = Uni(1) < TH1) = T (a2). (7.3.19)
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Then the condition (1)-(iii) for (7j+1,7;) follows from (7.3.19), Proposition 5.3.9 and the
admissibility of T.

Finally, we have (T;11,T;) € H°((1_;, 14,_;41),4) by (7.3.15), induction hypothesis and
Proposition 5.3.9.

Case 2. (721'4_1(@1‘) > [721(1) and ﬁ2i+3(ai+1) < (721'4_2(1). Since ﬁ2i+1<ai) > 5.22(1)7 we
have by the admissibility of T

Usizo(aip1) = (722‘+2(2) < ﬁ2i+2(1) < (72i+1(ai + 1) = Usisa(1).

Thus the residue v,y is equal to 1. If the residue v; = 0, then the admissibility of (T;.1, T;)
follows immediately from the one of T, and we have (Tjy1,T;) € H°((p;_;, 11j_;41),4) by
(7.3.14), (7.3.15), induction hypothesis and Proposition 5.3.9.

We assume t; = 1. Then "T;, T}, T}* and *T;;; are given by

T = (@fﬁ {ﬁzm(az‘ +1) }) B0, 'T = ((7% U { Usiy1(a;) }) B0,
i = (@zﬁ { Usisr(a; + 1) }) H ((ﬁztﬁ% \ { Usiv3(airn) }) U { Usisr(a; + 1) }) :
T = ((721» U { Usiy(a) }) B ((ﬁztiaﬁ {ﬁzm(@z‘) }) U{ T }> ,
(7.3.20)
where T1(1) is given as in (7.3.18). By applying [67, Lemma 3.4] on T, we have
"1 (ai1) = Uz (a; + 1) < T(1) = T (). (7.3.21)
Now we apply a similar argument with Case 1 to (7.3.20) with (7.3.21) to obtain the
admissibility of (T;11,T3) and (T;11,Ti) € H((1_;: #)_s41), 4) in this case.

Case 3. Usipi(a;) < Usi(1) and Usiys(aipr) > Usipa(1). The proof of this case is
almost identical with Case 2. We leave it to the reader.

Case 4. Usip1(a;) > Us(1) and Usiig(aisy) > Usiio(1). In this case, the claim follows
immediately from (7.3.14), and the admissibility of T.
Therefore, we have T € H°(u,n). By Lemma 5.3.15, we have T = T@Uyand T =T
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since T € H°(p, n). This implies
T = T & U2l = X & Uzl = X, (7322)

and hence T € LR,(d). Since T = X, it follows from the inductive definition of T that
T =X. O

Proof of Theorem 5.4.4 when n — 2y} > 0. The map

LRY(d) —— || IRy, (7.3.23)

(2)
66@11::111

T——T

is well-defined by Corollary 7.3.4. Finally it is bijective by Lemmas 7.3.5 and 7.3.8. [

7.3.3 Proof of Theorem 5.4.4 when when n — 2} <0

Let p € P(O,) and X\ € &, be given. We assume that n — 2] < 0. We also use the
convention for T in subsection 7.3.2.

Let T € LRY() be given with T = (T}, ..., Tyi1, T, - - ., 11, Tp) as in (5.3.8). Then we
have T € LRﬁl,é, by Proposition 5.3.19(2). Let L = 2y} — n. Choose k = (Ky,...,k.) €
P such that k; is sufficiently large.

Let n, x € & be given by

nN=kUX=(Ki,...,E, A, a...),

(7.3.24)
fZKJU(S:(Kl,...,KL,(Sl,(SQ...).

Lemma 7.3.9. We have T € ﬁzia,.

Proof. Put T = (Usy,...,Usms1,Usm, - .., Up) under (4.3.1). Let

B = (U3

2m -

L US Hawy, ooy Hoey),

where UF = (..., Ui(3),Ui(2)) B (U;(1)) for 0 < i < 2m. By the choice of k, B is an
[-highest weight element, and we note that

pp=1l+m+1, (L+2m+1)—2(2m+1) =0,
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where L + 2m + 1 is the number of columns of B and 2m + 1 is the length of the first
row of B**!. Hence by Lemma 7.3.8, there exists B = (Xy,,,..., X0, Y1,...,Y]) € LRg(D)
such that B =B, where ' = (2m + 1) and 7 is determined by B =; H;,.

Put A := (U, ..., Usps1, Xomy - -+, Xo, Y1, - .-, Y1). By construction of B and Corol-
lary 5.3.17 (cf. Remark 4.1.6), it is straightforward that

—tail —tail

A €lR\D), AT (7.3.25)

Let (mi)1<i<p be the sequence associated with A" which is given as in Definition
5.4.1. Since by the construction m; < L for all 1 < i < p, the sequence (m;)i<;<, can
be viewed as the sequence associated with T in Definition 5.4.1. Put (n;)1<i<q to be
the sequence defined in Definition 5.4.1 with respect to (m;)i<i<,. By Lemma 7.3.3 with

(7.3.25), the sequence (n;)1<i<, satisfies (5.4.1) with respect to T, Hence we have

—tail

=\
T € LRM/(;/ . ]

Hence the map (7.3.23) is well-defined by Proposition 5.3.19(2) and Lemma 7.3.9. It
is also injective since Lemma 7.3.5 still holds in this case. So it remains to verify that the
map is surjective.

Let W € Eﬁﬁg, be given for some § € 2. Let V = H;n= and X be the tableau of
a skew shape 7 as in (4.3.8) with n columns such that X% =V and X**! = W. As in
the case of n — 2u} > 0, X is semistandard.

Put
Y = (Yi,....Y)),
e 1 (7.3.26)
Z - (Xnu"'7X17)/T_.7"'7Y1)7
where Y; = Hx) for 1 <@ < L.
Lemma 7.3.10. We have Z**! € EZ/’E"
Proof. By construction of Z, we have Z = H,y. Let (m;)i<i<, and (n;)1<i<, be the

sequences associated with W € mﬁ,y. Since k; is sufficiently large, we have Z**! ¢ mz,gl

with respect to the same sequences (m;)1<;<, and (n;)1<i<q- O

Note that Z € EM where M = n+L = 2. By Lemma 7.3.10, we may apply Theorem
5.4.4 for M — 2} = 0 to conclude that there exists a unique R € T'(u, M) such that

R=7Z (7.3.27)
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Suppose that R = (Ryy, ..., R;) € EM under (4.3.1). Put S = (Ry, ..., R1). Note that
2L < M with M — 2L =n, and S € T((1%),2L). If S = (Sy. ..., S;) € E?, then we have
by Corollary 5.3.17 and (7.3.27)

Now, we put
T - (RM, e 7R2L+17§2L7 . e ,§L+1) S En,

under (4.3.1). Then it is straightforward to check that T € T(u,n). Since Z € LRY(D),
we have T € LRY(?) by construction of T and Lemma 5.3.6. Finally, by (7.3.27) and
Corollary 5.3.17, we have

~=pbody ~tail

T — Xbody’ T — Xtail .

Hence, the map (7.3.23) is surjective. O]
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Appendix A

Index of notation, Table and Figure

A.1 Index of notation

A.1.1 Chapter 2
2.1 : Z-‘r) PV’ Pu HV’ P+7 H7 Wi, Q7 Q-‘m Aa g, S7 Uék(g)u U[?(g)

2.1.2 : x(m) (.T =€, f)7 éi? f’i? AO; L7 BJ €iy Vi

1

2.2.1 : €, €, &, fi, L(c0), B(x), Ey, %, &, f*, &

1) 1) 19 <1

222 : W, s, R(w), l(w), T;, fs,, Bi, T

A.1.2 Chapter 3

3.1.1 : NN, 7, [n], 0], &2, P, L(\), \™, M, A, SSTa(M ), w(T), sh(T), Hy Hyx, W,
WY W WY Ta,a—T, T, T, Plw), Plw)"

3.2.2 : Py, wy

3.2.3 : i, 17, §j

3.24 : ®*(J), ¥, B’ B;
3.3.1 :T %, c(a,b), Q, )

3.3.2 : Ae), |lcllp
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A.1.3 Chapter 4
4.1.1 : Ma,b,c), T*, T*, Py, TP T W(U), U(i), Uli], B, B

413 ¢ vp, &, F, T(a), T(0), T®, T+, T T4 TR L7 RT < T, T\, Hy, H(\), <
(For type Do, see Section 5.3.1)

431 : EN, 5]‘, .F.j, Sj

.U

body Hstail
, T

432 : T, T

A.1.4 Chapter 5
5.1 2O, Pl P2 PP D p22 1R IR . 0, S U

v
5.2.2 : P(On), A(p)
5.3.1 : H(p,n), LRY(2), 4 (D)

—\ _
. Sre A A A
5.4.1 : 6", LRy, C,, LR}, ¢},

A.1.5 Chapter 6
63:7T,T Kk, T K

3 o i
].66 "':I'H-_E _'k.l_.. 3 i |



APPENDIX A. INDEX OF NOTATION, TABLE AND FIGURE

A.2 Crystal graph

Table A.1: Crystal graph for B”?2
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A.3 Table

(0),0j+1) (04, 05+1)
(+,+) (+,+)
(+-) (+,—)or (-, ")
(+ ) (+, )or (+,+)
(=+) (= +)
(_7_) <_7_)
(=) (= )or(-,—)
(.4 (-, 4)or(+, )
(-,-) (-,—)or (=)
() (,°)

Table A.2: The relation between (0;,0;11) and (7;,0,41) when t;4qv; =1

b o 1 1
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