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Abstract

Integrability and differentiability results for non-

linear equations with measure data
Namkyeong Cho

Department of Mathematical Sciences
The Gradute School
Seoul National University

This thesis discusses the regularity of a distribution solution to nonlinear
elliptic equations when the right-hand side is a measure.

First, we establish Calderén-Zygmund type estimates for the borderline
double phase problems by proving that the gradient of a solution has equiva-
lent integrability to the 1-fractional maximal function of the given measure.
Second, we obtain the maximal differentiability of the gradient of a solution
to non-linear elliptic measure data problems with general growth.

Key words: regularity, measure data, Calderén-Zygmund estimate, non-
standard growth, differentiability
Student Number: 2015-20279
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Chapter 1

Introduction

We shall discuss the measure data problems of the type

1
u=0>0 on 0f). (1)

{—diV.A(l‘, Du)=p in Q,
Here, the domain €2 is bounded, and p is a finite (Radon) measure on €, i.e.,
|11|(2) < oo. By considering the zero extension to R"”, we may assume that
(+) is a measure defined on R™. The nonlinearity A(x,§) : 2 x R" — R™ will
be specified later for each problem.

The main purpose of this thesis is two-fold: on the one hand, we shall
investigate the global integrability for the gradient of a solution to (1) when
nonlinearity A has so-called the borderline double phase growth. In addition,
our results are obtained under the optimal regularity assumptions on the
coefficient and the boundary of the domain; see Chapter 2 for the details. On
the other hand, we shall provide the fractional differentiability results for the
gradient of a solution to (1) when the nonlinearity .4 has the so-called Orlicz
growth. In particular, we focus on the limiting case of Calderén-Zygmund
theory; see Chapter 3 for the details.

To explain our results in further detail, let us consider the problem

—div(|DuP™2Du) = 6y in By, ©)
u=20 on 0By,

where Jg is the Dirac delta function at the origin. Then the fundamental
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solution of (2) is

Z|7 1 —1 if1<p#n,

3
log |x| if p=n. ®)

u(z) = c(n, p) {

Here, a positive constant c¢(n, p) is determined only by n and p. From (3) and
a direct computation, it is straight forward to check that v € W4(By) for
all ¢ < min{p, "flp:ll)} and u € W' (By) if and only if p > 2 — i

Now, let us consider the elliptic measure data problems under more gen-
eral conditions. Suppose that the nonlinearity A(z,&) : Q x R* — R™ is
measurable in the first variable and differentiable in the second variable sat-

isfying the following growth and ellipticity conditions:

[A(z, )] + 10cA(2, E[1€] < L(s* + [€2)P~,
v(s* + 1E[°)P2IC < (OeA(w, )¢, Q).

(4)

for any z,n,£ € R™ and for some 0 < v < L. Here, (-, ) is the standard inner
product in R” x R® and p > 2 — %
We now introduce the notion of a very weak solution as in below.

Definition 1. A function u € Wy (Q) is called a very weak solution to the
equation (2) under the assumptions (4) if |A(x, Du)| € L'(Q) and

/ (A(z, Du), D) = / pdp Vo € CR(Q). (5)
Q Q

It is worth mentioning that very weak solutions may not belong to an
energy solution, even for the simple homogeneous linear problems of the
form —div (A(z)Du) = 0, see [77] for details. To further investigate regularity
results for a solution to the measure data problems, it is often required to
consider a special kind of very weak solution, so-called a SOLA (Solution
Obtained via Limits of Approximations). We remark that a SOLA is not the
only notion of a solution when p is (barely) a measure or a L' function. For
instance, we refer to [38] for the definition of an entropy solution and [12] for
the definition of a renormalized solution.

Definition 2. We say that u € Wy (Q) is a SOLA to the problem (1) under
the assumptions (4) if u is a very weak solution to (2) and there exists a
sequence of functions {frtren C L®(Q) and a sequence of weak solutions

2



CHAPTER 1. INTRODUCTION

{ug }ren to the following reqularized problems

—divA(z, Dug) = fr,  in Q,
ur =0 on 0f,

such that ug — u in WH™a{Le=1H(Q) and f,, — p in measure.

In the seminal papers [14, 15], the authors proved the existence of a SOLA
with an optimal convergence results, namely

n(p—1)>‘

up —u in W qu[l,
n—1

The regularity theory for the p-Laplace measure data problems has been
extensively studied since then. For instance we refer [2, 11, 70] for fractional
differentiability results, [46, 61, 62, 63, 69] for potential estimate results and
[71, 73] for Calderén-Zygmund type estimates.

In particular, the author of [73] proved the following global estimates

/|Du|qda:§c/M1(,u)qudx forall 0< ¢ < oo,
Q Q

where ¢ > 0 is an universal constant independent on v and p. Here, M;(+) is
a l-fractional maximal operator defined by

M (p)(x) ;== sup M

for x € R™
Br(z)ckn | BR

and 2 is a (0, R)-Reifenberg flat domain whose precise definition will be stated
in Definition 1.1 in Chapter 2. Our interest is to provide similar integrability
results with an elliptic equation with nonstandard growth.

Partial differential equations (PDEs) with nonstandard growth conditions
have been extensively studied for the last few decades. These problems have
various applications such as non-Newtonian fluids [72], electrorheological flu-
ids [74, 75], and image restorations [3, 28]. Regularity results with a different
kind of nonstandard growth conditions have been extensively investigated
when given p is not a measure. For instance, see [6, 22, 23| for an elliptic
equation with a variable exponent growth, [8, 20, 34, 35] for an elliptic equa-
tion with double phase growth, and [42, 44, 45] an elliptic equation with an
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Orlicz growth.

On the other hand, measure data problems with nonstandard growth
are only studied quite recently. In a very interesting paper [18], the authors
considered the following p(x)-Laplace equation

—div (|Du|p($)_2Du) =p in Q,
u=0 on 00

and proved that

/ |Dul? dx < c/ (Ml(,u)mgfl + 1) dr forall 0< g < oo,
Q Q
for a constant ¢ > 0 independent on u under the assumptions that

1
2— — <y <p(r) <y <oo and p()is a log-Holder continuous.
n

Measure data problems with general growth is another interesting topic.
In [7], the author considered a quasilinear measure data problem whose model
equation is given by

—div (g(‘DuDDu) =u in

| Dul (7)

u=0 on OS2

where g € C*(0, 00) and

The author proved the following point-wise estimate

suto) s [ LD, (f . Do)

1
0 p"

for almost all xy € Q and for every ball Bog(zg) C Q. In [78, Chapter 4],
the author considered a solution to (7) under the weaker assumption on g(-),
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which is

1

n
and prove that there exists a positive constant ¢ > 0, independent of u,
satisfying

/ |Du|?dx < c/ (97 (Mi(p)))" dz forall 1<gq<oo.
Q Q

Motivated by previously mentioned results, we study Calderén-Zygmund
type estimates for the measure data problems with a borderline double phase
growth in Chapter 2.

Next topic in this thesis is a limiting case of Calderén-Zygmund theory. To
explain this result in details, let us begin with the classical Poisson problem

Ay = div (Du) = p.
The classical Calderén-Zygmund theory implies that

pell = DueW:? whenever 1< ¢ < oo. (10)

loc loc

This means that in the L? sense, we can replace divergence operator with
a gradient. When ¢ = 1, the implication (10) fails to hold, but instead, we
have

pe€L' = DueW? forall0<o<1, (11)

where the precise definition of fractional Sobolev spaces W7! will be de-
scribed in Chapter 3, Section 2.3. Surprisingly, the authors of [2] proved that
if u is a SOLA to

—div (|Du[P~*Du) = p

then, we have
|Du[P~2Du € W' forall 0 < o < 1.

loc

Our interest is to generalize these results to a solution of an elliptic equation
with a general growth. In Chapter 3, we have proved that if u € Wil is a
SOLA to (7) under the assumption (8), then we have

D
9(| _uDDu e W foral0<o<1. (12)

|DU| loc
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Our method depends on a linearizion technique developed in [7], see Lemma
3.1 in Chapter 3. For this reason, we need the stronger assumption on the
growth condition of g(-). However, it would be interesting to show that the
implication (12) holds when g(-) satisfies the weaker assumption (9).

Chapter 2 is based on joint work with Sun-Sig Byun and Yeonghun Youn,
and Chapter 3 is parts of the submitted paper co-worked with Sun-Sig Byun
and Ho-Sik Lee.

&
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Chapter 2

Global gradient estimates for a
borderline case of double phase
problems with measure data

1 Introduction and Main Result

This chapter aims to present a sharp Calderén-Zygmund estimate for the
borderline case of double phase problems with measure data on the right-
hand side. The model equation is given by

— div (|Du|P~(1 + a(z)log(e + | Dul)) Du) = p, (1.1)

where p is a Radon measure with finite mass.

The energy functional corresponding to (1.1) features one of two different
energy densities according to the values of a(x). In other words the growth
in (1.1) varies depending on the z-variable, and so it is one of the non-
standard growth problems which have attracted a lot of interest recently.
In the context of mathematical modeling of strongly anisotropic materials,
non-standard growth problems were first introduced in [79, 80, 81]. These
problems have various applications such as non-Newtonian fluids [72], elec-
trorheological fluids [74, 75], and image restorations [3, 28].

Two well-known examples of non-standard growth problems are the so-
called variable exponent problems and double phase problems. For the vari-
able exponent problems, many regularity results have been obtained. See,
for instance, [5, 6, 37, 47| for Holder continuity results, [4, 22, 23, 24] for
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BORDERLINE CASE OF DOUBLE PHASE PROBLEMS WITH

MEASURE DATA _ S
Calderén-Zygmund type estimates, [10, 16, 26, 67] for potential estimates

and so on. Comparing to the variable exponent case, double phase problems
drastically change their growth with respect to the z-variable, which makes
them hard to analyze. We refer to [8, 20, 34, 35, 36, 39| for the regularity
results for double phase problems. More recently there have been several at-
tempts to obtain such regularity results for non-standard growth problems
in a comprehensive way. See [51, 52, 53].

Let us consider a general elliptic equation of the form

1.2
u=0 on 9N (1.2)

{—div A(z,Du) =p in €,
where the mapping A : Q x R* — R" is assumed to be C'-regular in the
second variable &, with 0:A(-) being Carathéodory regular. In addition, we
assume that A satisfies the following non-standard growth, ellipticity, and
continuity assumptions:

A, )] + 10 A, )II€] < L(1 + a(x) log(e + [¢]))I€"~,
vIEP(1 + a(x) log(e + [&]))[n]* < (OeA(x, E)n,m), (1.3)
(A2, §) — Ay, §)] < Lw(|z — y|) log(e + [g])¢["

foreverya:,yeQandf,neR”,whereO<z/gLandp>2—%are

fixed constants, and w(-) : R* — R" is the modulus of continuity of the
modulating coefficient a(-) : © — RT. The range of p is assumed to guarantee
the existence of SOLA, a notion of distributional solutions, to (1.2). See
Lemma 1.4 for the details.

Throughout this chapter, a(-) is assumed to be log-Holder continuous,
which means that there exists R > 0 such that

sup w(r)log (%) <1 (1.4)

0<r<R
Then a(-) is bounded, and

rfw(r) _ efw(r) log(r) e (15)

holds for every 0 < r < R. Note that this log-Holder continuity assumption
has been used in studying variable exponent problems. Furthermore, any
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regularity assumptions on the exponent functions in the variable exponent
problems are parallel to the ones on a(-) in (1.2), see for instance [9].
To state our main assumptions on (a(-), A(+),2), we define

g(x,t) == (1 +a(z)log(e + t))**"* and G(z,t) ::/0 g(xz,s)ds (1.6)

for every x € Q and t € R. Recalling that g(x,t) is a monotone increasing
function with respect to ¢t € R, we define g;'(¢) : RT — RT by the inverse
function of g(x,t) for each x € 2. We will see some basic properties of g, G,
and related function spaces later in Section 2.

Definition 1.1. We say that (a(-), A(-), Q) is (J, R)-vanishing, if the follow-

ings hold for some 6 € (0,3) and R > 0.

1. The modulating coefficient a(-) is log-Hélder continuous with the esti-
mate

sup w(r)log (1) < 0.
r

0<r<R

2. For any measurable set U C ) and x € €2, we set

A(z,§) _][ A= dz'. (1.7)

0@ = s e Ty o e

geR™\{0}

Then we have

sup sup ][ 0(B,(y))(x)dr < 6. (1.8)
Br(y)

0<r<RyeRn

3. Q is a (0, R)-Reifenberg flat domain. More precisely, for each y € OS2
and r € (0, R], there exists a coordinate system {g1,--- ,Yn} with the
origin at y such that

B,(0) N {j. > 6r} C B(0)NQ C By(0) N {Gn > —or},

where B,.(0) is the ball with center the origin and radius 7.

Some properties of (9, R)-vanishing conditions play an important role in
the proof of the main result. In the next remark, we summarize the properties
which we will use in the rest of this paper.

9
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Remark 1.2. Note that (1.8) covers nonlinear elliptic equations with coeffi-
cients having small BMO-norm. From (1.7) and (1.2), we see
O(U)(x) < 2L

for any measurable set U C Q and x € . It then follows from (1.8) that

][B BB @)@ < 0 (1.9)

whenever | > 1.

We now turn our attention to Reifenberg flatness. It is readily check that
any Lipschitz domain with small Lipschitz constant is a Reifenberg flat do-
main. It is worth mentioning that if Q is (8, R)-Reifenberq flat, then it satisfies
the following measure density conditions:

sup su < <|— 1.10
0<r£Rye£ QN B.(y)] ~ \1-46) —\7 ( )
and B Qe 1-6\" 7\"
inf g P OQT S (10N (T (1.11)
0<r<ryedQ | B,(y)| 2 16

In Subsection 3.1, we will frequently use (1.10) and (1.11) to obtain compari-
son estimates near the boundary of Q2. For the further properties of Reifenberg
flat domains, we refer to [27, 66, 74] and references therein.

We now take a constant Ry € (0, R] satisfying

1
Ry = Ro(w, L [p(©)) < ——— (1.12)
|l (2) + v
Recalling (1.5), we see
(r) < — (1.13)
T '
From (1.5) and (1.12), we have
1 w(Ro)
(lpl(€) +1)°0) < (E) < e loBRo)ulRo) < ¢ (1.14)
0

whenever 0 < r < Ry. We will use (1.12)-(1.14) frequently throughout

10
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Subsection 3.1 for some technical reasons to handle the modulating coeffi-
cient af(+).
We now introduce a class of distributional solutions, the so-called SOLAs

(Solutions Obtained by Limits of Approximations), to the elliptic measure
data problems.

Definition 1.3. We say that u € WH1(Q) is a SOLA to (1.2) if the following
statement holds. There ezists a sequence of weak solutions {u;} ey C WOI’G(Q)
to

—divA(z, Duy) =y in €,
where { i }1en s a sequence of bounded functions. Moreover, u; converges to

w in WhmadLe=1}(Q) while py converges to p weakly in measure.

The notion of SOLAs to p-Laplacian type equations was first introduced
in the seminar papers [14, 15]. By following the similar ideas in the papers,
the existence of SOLAs to (1.2) is obtained in [25, Lemma 2.5, which we
state as follows:

Lemma 1.4. Let p € (2 — £, 00). Under the assumptions (1.2) and (1.2),
there exists u € Wy (Q) such that

/Q (A(z, Du), D¢) d = /Q o du (1.15)

fO?” every (b S C[()X)<Q) MOT€0/U€7”, u e Wol’q(Q) for every q € |:1 n(P_l)) )

7 n—1

As previously mentioned, our main result is a global Calderén-Zygmund
type estimate for (1.2) in terms of the 1-fractional maximal function of

My (1) (&) = sup B @)

B )] (1.16)

Theorem 1.5. Under the assumptions (1.2), let u € Wy (Q) be a SOLA to
the problem (1.2). Suppose that g;'(Mi(u)(x)) € LI(Q) for some 1 < q <
0o. Then there exists a small constant 6 = 6(n,p,q,v,L) > 0 such that if
(a(-), A(+),Q) is (0, R)-vanishing, then Du € L(QQ) with the estimate

/Q|Du|‘1dx < c(/Q\Du|da:)q+c/Q(g;l(./\/ll(,u)))q de. (117)

11
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where ¢ depends only on n,p,q,v, L,diam(Q2), and Ry.

2 Preliminaries

2.1 Notations and auxiliary results

Throughout this chapter, ¢ > 1 denotes a positive constant, which may vary
from line to line, depending only on n,p,v, and L. The notation f < h is
a shortcut meaning that there exists a universal constant ¢ = ¢(n,p,v, L)
satisfying f < ch. Moreover, we write f ~ h when both h < f and f < h
hold. B,(xy) denotes the ball centered at xy € Q with radius » > 0 and
Q. (z9) == QN B.(xp). When the center z is clear from the context, we
simply write B, = B,(z¢) and Q, = Q,.(x).
We define an auxiliary vector field V' :  x R® — R” by

V(z,€) = (|€[7~2 + alx) log(e + |€])[€[P~2)2¢

for every x € Q and £ € R™. Then according to [42, Lemma 3|, we have the
following property of V(-), which we use later in the proof: for each z € )

<A(l',€1) - A(x>€2)>§1 - 52> ~ |V($751) - V(x>€2)’2
G SIRR ] I

It is worth pointing out that V() considered in [42, Lemma 3] does not
depend on the z-variable. Indeed, it also holds in our case for each fixed
x € .

For the sake of convenience, we employ the following notations:

mu(t) = min g(z,1), gau(t) = maxg(z,1),

¢
Gog(t) = 1 log(e +t), Gmu(t) = / Gmu (T)dr,
0 (2.19)

GM’U(t) = /0 gM,U(T) dT, Glog(t) = /0 QIOg(T) dr

Am,Uu = Ixnelél a(z), apu = fal}eagi a(z),

for any measurable set U C (2. If there is no confusion, we omit writing U,

12
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for instance, ¢,,(-) = gm,u(-)-

In the rest of this subsection, we investigate some properties of the loga-
rithm function. A direct calculation yields

%(#pﬂs)) - % (1+a(x)fog(e+t))

(M +a(z)log(e +1)) — e
(1 +a(z)log(e + 1))

) >0 (2.20)

and

5_;(51<it>> - 57 (1 +a(x) fog(em)

_ a(a) <2a(m)t — (2e +t)(1 + a(z) log(e + t))
(e +t)2(1 + a(x)log(e +t))3

) <0 (2.21)

for every x € R". To obtain the last inequality, we have considered two cases,
t >e*—eand 0 <t < 2e Then (2.20) and (2.21) imply that ¢t — t7/g(z, 1)
is an increasing and concave function for each x € R".

Recalling

! (e+1)* (2.22)

| t) < —
og(e—l—)_a

for every a € (0,00) and ¢t > 0, we discover

91,8, (t) < G5, (t) + wa(r) log(e + ¢)tP
< G, (1) + (e 4 1)L < g (1) 4 P71 (2.93)

whenever 0 < r < R. The following inequalities have been often used in the
regularity theory of variable exponent problems:

log(e + t1ta) < log(e + t1) + log(e + t2) (2.24)

and
log(e +t1) < c(a)log(e + tY) (2.25)

for every t1,t € [0,00) and o > 1. We further recall an estimate of Llog L-
function from [4, 55, 56].

13
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Lemma 2.1. Let f € LY(Q) for ¢ > 1. Then for any 8 > 1, we have

(pfe)oseanre)
£ 17110 G+Hﬂmm)dx§d%@ fureas)’ e

2.2 Generalized N-function and Musielak-Orlicz spaces

We say that G : Q x RT — R" is a generalized N-function if ®(z,-) is a
convex function satisfying
D(x,t O(z,t
O(z,t) =0 < t=0, limM =0, and lim ot =00
t—0 t t—o00 t
for almost every x € . It is readily checked that G, G,,, and G}, given in
(1.6) and (2.19), are generalized N-functions. We define ®* :  x Rt — R*
by
O*(x,s) := sup{st — ®(x, 1)},
>0
which we call the complementary function of ®.
From [25, (2.14)], for every p > 1 we have

< t0,G(x,t)  tg(z,t)

— < 1
P=Can Gy - PT

or equivalently,

t0;G(z,t)  tdg(w,t) <

0 —-1< = 2.27
PSRG0T e 220

It then follows from [65, Lemma 1.1] that
min{a?, o’ }G(z,t) < G(x,at) < max{a?, a? " }G(z,1) (2.28)

for every t,a > 0 and almost every = € €. Recalling [76, Proposition 2.1.1]
and using (2.7), we have the following well-known equivalent relation

G*(z,g(x,t)) = G(z,t) (2.29)

14
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and inequalities
st < eG*(z,t) + c(e)G(x,t) and st <eG(z,t) +c(e)G*(x,t).  (2.30)

It is worth mentioning that inequalities (2.27)-(2.30) hold not only for G(z, -)
but also for G,,(-) and G,(+).

We end this section with introducing Musielak-Orlicz spaces. For a given
generalized N-function G, we define Musielak-Orlicz space L% () by

LE(Q) = {u c L'(Q): /QG(x, lu|) dx < oo}

and the corresponding (Luxemberg) norm || - || z¢(q) by

]l gy = inf{A >0 /QG (x )%D dr < 1}.

Similarly, we define
WhC(Q) := {u € W (Q) : u,|Du| € LY(Q)}

with the norm |[ully1.cq) = [[ullze@) + ||Dul|Lc ). In addition, we denote
W3¢ (Q) by the closure of C5°(2) with respect to the norm || - lw1.c(q). For
G in (1.6) under the assumption (1.4), the Musielak-Orlicz space is separable
Banach space and the Lavrentiev phenomenon does not occur. We refer to
40, 49] for a further discussion on Musielak-Orlicz spaces.

3 Comparison estimates

This section concerns comparison estimates for the weak solution u to (1.2)
under the assumption € L®(Q). Recalling L>(Q) ¢ W= (Q) c (W, “(Q))*,
we may assume that u € W, G(Q) Later, by using an approximating pro-
cedure, we prove our main result in light of the lemmas presented in this
section.

15
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3.1 Boundary comparison estimates

For any g € Q and 0 < r < %, we denote Q. = Q,(x¢) = QN B.(x). In

this subsection, we assume that
B;); C Qgr C Bgr N {.Tn > —6(57“}

Throughout this subsection, we write g,, = gm0, and a,, = am s, -
Let us consider the following homogeneous equation:

(3.31)

—divA(x, Dw) =0 in
w=u on 0fs,.

Lemma 3.1. Let u € Wy (Q) be the weak solution to (1.2) and w €
W% (Qs,) be the weak solution to (3.31). Then there exist ¢ = c(n, p,v, L) >
1 such that

Q
Q3’I‘ Tn_

\uI(er)}

+ CX[p<2] |: 7’”71

(4, o)
(i)

Proof. We start with scaling and normalization arguments. Take a constant

(][ ]Du\dz)

QS’V‘

gm<][ |Du]d;1:> ’
Q3r

If |p|(€23,) = 0, then v = w and there is nothing to prove. Thus, we assume
that |u|(€s,) > 0, which directly implies M # 0 and for the similar reason,

3=

(3.32)

-

3 =

m 1 1 = 0.
rnf T-’rL*

M =g, (M> + Xfp<2) [M(%)}

we assume gy, ][ |Duldz | > 0.
Qs

16
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We define
e (xo + 3r7) s w(zo + 3r7)
A7) = S () = e
3M 3M
o ru(xg —:37‘:2’) < A(x:; + 3rz, M¢E)
o glxo + 3rz, Mt) o gn(MY)
0=y 0=

where 7 € Q := {Z € R" : g+ 3rZ € Q3,} C By(0). It is readily checked
that

(2o + 3rd, M|E])
gm(M)IE]

9z, [€])

(0cA(F,€)n,m) > 12 il = vl

and
(14() <1 for p > 2

(o) _

A A 1
|Al(821) + | () <c¢ for2- A 2.

Jm (ﬁ | Dl di")
\ Q1

Therefore, under this normalization, it is enough to show that

| |Di— Di|di < c (3.33)
1951

for some constant ¢ > 1. In the rest of this proof, we omit over each characters
for the simplicity of notations.

Let us define some truncation functions 7} (t) = max{—k, min{k,¢}} and
() = Ti(t — Ti(t)) for every k € R, and the corresponding sets

Cr={reM:|jlu—w|<kland Dy={z €N k<|u—w| <k+1}.

We test Ti(u — w) and ®p(u — w) to (1.2) and (3.31), respectively, and

17
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then use (2.18) to obtain

g(x, |Du| + | Dw) 5
Du — Dw|*dx < ck|u|(Cy) < ck
/Ck e | H(C)

and

gl |Dul + |Du) :
Du — Dw|*dz < D) <
S o pul D~ Dultde < clul(Dy) < ¢

For eachq>2—%and ko € N, we see

1
g(z. | Dul + | Du) 2\
Du—D d
/( Do+ D] DU Pul) de

1

1 Du| + |D :

< |C |7 / 9@ \Dul T 1Dul) - pyj2 gy
Cry | Du| + | Dw|

- _1 g(x, |Du| + |Dw]) ) g
+ |Dy.|* q(/ |Du — Dw|* dx
2 b |Du[+|Dw
l l
< c(@)lpl ()« kg
1 > 1 /
q)| ] ()4 (7/ lu —w|" dx)
< clq)lpl () Pk
il 1 7 , -7
@) (3 it ) ([ 1wt o)
k=ko 1

’I'L,

Sc<q>|u|<m>ikg+c*|u|<91>3< |Du—Dw|dx)7 (3.34)
1971

where the constant
00 1 1
c. = c(n,p,q,v, L)< Z W) (3.35)
k=ko

decreases to 0 as ky — 00.

___;rx_-l! E CI.'II

1_'_] |
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BORDERLINE CASE OF DOUBLE PHASE PROBLEMS WITH
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To prove (3.33), we shall distinguish two cases p > 2 and 2 — % <p<2.
The following inequality which is obtained from (1.10), will be used without

mentioning:
TNl
16 | B

The case p > 2. Using the monotonicity of ¢t — ¢(t)/t, (3.34) with ¢ = 2
gives

%
< |Du—Dw|dx) < |Du — Dwl|? dx
Q1 Q1

1

D D 2

SC][ (g(x,| ul +| w|>) Du - Dulds
T

i

1 El
< ck§ + c. [ | Du — Dw|dx} :

1951

Note that "5/ < Zsincen >2and p > 2. If n = 2 and p = 2, then we can take
ko large enough so that ¢, < % Otherwise, we again choose ky large enough
to satisfy ¢, < % and apply Young’s inequality to show (3.33).
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The case 2 — % < p < 2. By a direct calculation, we found

|Du — Duw|
1 1
m(|Du| + | D 21 [ (|Du| 4 |Dw|)P \ 71
(g (| Du| + | w|>,Du_Dw‘2> ((\ ul + [Duw))
|Dul + | Du| ([ Dul + [Duw))
@21) /g, (|Du| +|Dw|) )
< ¢ Du — Dw
< ( Du < |Da] | |
( |Du — Duwl? | Dul? )
gm([Du—Duwl) " gn(IDul)
Gm(|Du| + |Dw]) 2\ 7 L
Du—D Du — Dw|»+1
—c( Dul £ [Dw] P4~ DYl |Du = Dl
1 1
gm(|Du| + | Dw)) )( | Duf? )
+c Du — Dw _
( [Du £ [Du] | | gD

B =

1 gm(|Du| + |Dw)) )
< —|Du—D Du—D
< 5lDu w‘“( Dul + [Dw] P4~ Pl
| Dul?

G (|Du| + | Dw]) ) 7 ( )
+c Du — Dw _ .
( Du £ | Da] | | gD

Using (3.34) with ¢ = p, we further have

|Du — Dw| dx
971
|Du — Duw)| d:v)

p/

1
<ckj + c*(
Q1

wm(|Du| + | D ST Dy \ 7
ro [ (202D, gy (D0 Y,
o, \  [Du[ + |[Duwl gm(|Dul)

N
-

=:1

20
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Again, we apply Holder’s inequality and (3.34) to estimate I as

1

i m (D D v P DulP Pl
I< / (g (1Dul + [ Dw)) | Du — Dw|2) dx {/ idw}
o\ [Dul+|Dw| o, gm(|Dul)

— D
n' p+1

o | Dul? ril
Du — Dw|dx ] (2 / ————dx .
| || (i |, 5 o

1
< |cki + e {
1951

For t € R*, the mapping ¢ — /g, (t) is concave by (2.21), and so
Jensen’s inequality yields

p
Dul? ( ]Du|da:)
u
) § LB < gy g2
fh Im gm< |Du\dw>
Q1

Combining (3.37)-(3.38), we have

<ec (3.38)

/
n_
7

P

1
|Du — Dw|dx < ck{ + c. { |Du—Dw|da:]

Q1 Q1

P
n' | p+1
Pl

+c |k +c. [ |Du — Dw|dx]

951

Noting % < 1 for the case 2 — % < p < 2<n, we use Young’s inequality to
complete the proof. O

Remark 3.2. For the p-Laplacian type equations with p < 2, the monotonic-
ity and concavity of the map t — t>7P play an important role in obtaining a
similar result to Lemma 3.1. In (3.36), instead of using t — t*7P, we have
used t — t* /g, (t), which is increasing and concave regardless of the range
of p. Note that t — t/g,,(t) seems to be the natural modification of t — t>P
to fit our setting. However, the map t — t/gn(t) generally does not have
monotonicity and concavity, which we need in the proof.

21



CHAPTER 2. GLOBAL GRADIENT ESTIMATES FOR A
BORDERLINE CASE OF DOUBLE PHASE PROBLEMS WITH
MEASURE DATA

Remark 3.3. A suitable modification of the proof of Lemma 3.1 gives

[ 1pulds < dult@y, (3.39)
Q

where ¢ depends only on n,p,v, and L. We provide a sketch of the proof of
(3.39).

Let us first assume |p|(2) < 1. As previously mentioned, if p > n, then
pe W (Q), and there exists u € Wy©(Q) satisfying (1.15). Testing u to
(1.2), we find

IDullZo) S lull e lpl(€2)

S lullwre)
S [[Dull e,

where we have used Sobolev-Morrey embedding in the second inequality and
Poincaré inequality in the last one. Note that (1.11) is required to apply
Poincaré inequality in the above calculations. This directly implies

/ |Du|dx < c. (3.40)
Q

In the case of 2— L < p < n, we test Ty(u), ®p(u) € Wy%(Q) to (1.2). By
following the calculations in the proof of Lemma 3.1 with ¢ = p, we discover

/ Dl dz < / (9(z, |Dul)| Dul)¥ de
[9] Q

~

n_
p/

< el 3 + el [ pulas )

n_

<ckg —i—c*</ |Du]d:v> " (3.41)
Q

Recall that ¢, = c.(n,p,v, L, ko) > 0 is the constant given in (3.35) and it
decreases to 0 as kg — 0.

When p < n (& Z—: < 1), Young’s inequality with ko = 1 yields (3.40). If
p =mn, (3.40) follows from taking ko = ko(n,p) > 0 sufficiently large so that
e, < %
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For the general case that |u|(2) < oo, we consider the following normal-
wzation:
@) op@) o Al M)
we) == o) =0 Al = —e
and  §(z,t) = '~ 4 a(2)t?" log(e + Mt))

where M = |M|(Q)ﬁ One can check that
(OeA(x, E)n,m) = vl [N and  |A(Q) < 1.
Then (3.39) follows from (3.40) and the normalization.

Remark 3.4. Recall g,,(t) > t*~1, which directly implies g,,' (t) < t71. Then
we use(3.32), (3.39), and Young’s inequality to discover

][ |Dw| dx < ][ | Dw — Dul| daH—][ | Du| dx
Q3’l‘ QST Q3T

()" (42 (o)

O)\ 71
< (M( )) —1-][ | Du| dz
7"” QS’V‘

_1

5 (M)p ' + M 5 L7 (3_42)

/erL /’aTL r n

where we also have used (1.12) and the assumption 0 < 8r < Ry.
Remark 3.5. From now on, we simply denote
Go(+) = G(zo, ) and 90(-) = g(@o, -).

Proceeding as in [25, (3.1)], we use (1.5), (1.14) and (2.23) to obtain the
following localized estimate:

I <|“7|,EL—§_2§”)) < cgﬁ(%—%’”) (3.43)
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for all x € Q3,. By (3.39), (1.5) and (1.14), we also discover

w(67) 1 w(67)
(][ | Dul| dx) §( / | Dl d:v)
Q3 |Qg7=| Q

p% w(6r)
()

/raTL

It then follows from (2.23) that

p—14w(6r)
go<][ | D d$) < gm(][ | Dul dx) + (][ | Dl d:r)
Q3 Qs Qs
S gm(][ | Du| d:c).
Qar

As a consequence, we refine (3.32) as

][ |Du — Dw|dz < cgy* ({%—er)])
Q37‘

1 | Dul| dz
Qs.) |7 ][
+ ¢ Xp<r) {M( : )} sy S (3.44)

rnfl

Similarly, (1.14) and (1.5) yield

w(6r) T w(6r
i ([ [l e

0 rnfl

and
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Hence, we conclude that

w(6r) w(6r)
(][ |Dw|da:) < <][ |Dw—Du|d:c)
Qgr Q3r

w(6r)
+ (][ | Dul| dx) <e. (3.45)
937‘

We next discuss higher integrability results for solutions to (3.31). Such
results have been shown by the earlier papers including [9, 21, 25]. Therefore
we state the desired results as follows without their proof.

Lemma 3.6. Let w € WHY%(Qs,) be the weak solution to (3.31). Then
for any q € (0,1], there exist constants o1 = o1(n,p,v,L) > 0 and ¢ =
c(n,p,q,v, L) > 1 such that

1

oy :
<][ G(z,|Dw|)'* dx) <c <][ G(x, \Dw\)qda:) ., (3.46)
QQp(y) Q3p(y)

whenever Q3,(y) C Qa,.

Remark 3.7. We claim that for sufficiently small Ry > 0 satisfying w(6r) <
T Jor every 0 <r < %, there holds

<][ Go(|Dwl|)** dx) e < cGy <][ | Dw| dx) , (3.47)
Qo Q3

. With the help of (2.27), one can verify that

a

=

where o =

|

"Gz s)ﬁ ~
t|—>/ ————ds =: G(x,1)
0 s
is concave for each x € Q). Moreover, there exists c(p) > 1 such that

K G(m,s)% ~

Gla,t/2)% < / ds = G(x. 1) < c(p)Clz, 1) (3.48)

0 s
If ag > 2w(6r), then for each x € Qa,

GM(t) S G()(t) + W(GT)Glog(t) S QGO(t),
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2a9 < 2a(x) 4 2w(6r) < 2a(z) + ao,

and
Golt) < 2G(x.t).

It then follows from (3.46) with q = ZLp and (3.48) that

(£ cutoup=a)™ s (f cwipup=ar)”
QQT Q2r
(3.46) L 2p
< (][ G(m,|Dw|)2Pd:C>
Q.?)’l‘
1 p
<(f cutpup ar)
Q3r
(3.48) 5 L 2p
< (][ GM(|Dw|)21’dLU)
QST‘
SéM(][ |Dw]dx)
QBT

< G (][ | Du| dx) | (3.49)
Q37‘

where we have also used Jensen’s inequality with t — Gy (t) for the second
last inequality.
If ag < 2w(6r), then it follows from the assumptions o = %t and w(6r) <
T that
(p+w6r)(l+o) <p(l+oy).
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Using Lemma 3.6 and Jensen’s inequalily, we find

w(6r) ( ][ Glog (| D)+ dx) o
Q2’V‘

(2.22)
( ’Dw’p (140) + |Dw|(p+w(6r))(1+a) dl’)
Q2r

1
140

2/\

p+w(6T)

ﬁ p(l+o7)
(][ G(z, |Dwl|)* " dx) + (][ G(z, |Dwl|)* " dx)

QQT QQ‘!‘
(3.46) 2p L 2(p+w(6r))
< (][ G(z,|Dwl) 2P dx) + (][ G(z, |Dwl)?» dx)

Q3 Q3

2p ) 2(ptw(6r))
(][ G (| Dwl) 2P da:) + (][ Gu(|Dw|)2 da:)
Qar Q3

1+W(§T)
S Gy <][ |Dw|dx>+GM<][ |Dw|dx> :
QSr QBr

where we have used (3.48) and Jensen’s inequality with t — G’M(t)ﬁ for the
last inequality.
It then follows from (2.23) that

(][ G0(|Dw|)1+"dx) .
921"
T+ T
< (][ G(x,|Dw|)1+”dx) + w(6r) <][ Glog(]DwDH”dx)
927‘ 927"

w(67)

1+ >
<Gy (][ Du| d:c) + Gy (][ | Du| d:c) | (3.50)
Qgr Q3’I‘

Recalling (3.45) and Gpr(t) < 7 + 3w(61)Glog(t) S P + P76 we discover

P
Gy <][ | Dw| dw) < (][ | Dw| dx) < Gy (][ | Dw| dx) . (3.51)
Q3'r Q37‘ Q3T

We combine (3.50) and (3.51) to conclude (3.47).

A
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As a direct consequence of (3.47), we have

(]{2 |Duf? dx); <Gg! (]{2 G0(|Dw|)dx)

(342) 1
Q37‘ r "

1 o :
Here, we have used Jensen’s inequality with t — Go(t?), which is an increas-
ing convex function.

To proceed further, we now consider two vector fields

oo gl .
Ar,) = L8 4w and an(e) = f A @5

for every x € (), and £ € R™. By a direct calculation, we see

_ [T+ a(wzo)log(e + [£])
Az, §) = { 1+ a(z)log(e + |£]) } OA(¢)

{ a(xo) — a(x)
[€l(e + [€])(1 + a(x) log(e + [¢]))?

Moreover, (1.2) and (1.13) imply

’ [ a(wy) — a(z)
€l (e +1€D (1 + a(z) log(e + [£]))

Therefore, we see that A satisfies the following ellipticity and growth condi-
tions:

A, )| + |¢l|0eA(, €)] < 2L~ (1 + alwo) log(e + [¢]))],
(0 A(x, En.m) > S11El7* (1 + alao) log(e + ¢]))]InP

]5®Am@>

[P,

€0 4.9 < Lutonier 2 <

o

(3.54)

for every x,&,mn € R", where L and v are the constants given in (1.2). B
By the definition of Ay, (3.54) also holds when we put Ay instead of A.
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Moreover, (9, R)-vanishing condition (1.7) gives us

A - A Ao
p = sup
ccrmigo} (o, [€]) ecrm\ {0} | 9(Zo, \€| B 9(x0, |§|
= sup Alw,§ —][ (2,€ dz (3.55)
£eR™\{0} g(z, |€]) B 9(2, 1€])

= 0(B,)(x).

for every z € R".
Let us proceed for the desired comparison estimate between the homoge-
neous equation (3.31) and the following frozen equation on the flat boundary:

{—diVAO(DU) =0 in Bj, (3.56)

v=nw on OB;j.

Here, n = n(z,) € C*(R) is a cut-off function satisfying
4
0<n<1, n=1 onlor,2r], n=0 on (—00,0] and |Dn| < 5
r

In the next lemma, we use the notation Vy(§) = V(xo,§) for & € R™.

Lemma 3.8. Under the assumptions in Lemma 3.1, let v € WHG(BS) be
the weak solution to (3.56). For any € > 0 and A > 0, there exists a small
positive constant 6 = §(n,p,v, L,e) such that if

Q
][ |Duldz < X and gy* (Wli—f'ﬂ)) <O, (3.57)
Q3

then we have
[Vo(Dw) — Vo(Dv) |2 dx < e Go(N),

Qo

where v is extended by zero from By to Q.
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Proof. By virtue of (3.44) and (3.57), we see

9

=

][ |Du — Dw|dx < 5/\—|—][ | Du| dx 90(0N)
Qs

937"
9o ( ][ | D d:v)
QST

<267 A (3.58)

In the last inequality, we also have used the fact that ¢t — (14 aglog(e+1))/t
is a decreasing function. Then we have

][ |Dw|dx < ][ | Du| dz +][ |Du — Dw|dz < 3\.
Q3 Q3 Q3

Thus, it suffices to show that

]{z% [Vo(Dw) — Vo(Dv)|* dz < &Gy <]{2 | Dw| dx) . (3.59)

3r
Taking v — nw as a test function to (3.56), we have
/ (Ao(Dv), Dv)dx = / (Ao(Dv),nDw + wDn) dx.
B; B;rr
It then follows from (3.54), (2.29), and (2.30) that
/ Go(|Dv|) dx < / Go(|Dwl) da +/ Go(|Dnl|w|) dz. (3.60)
B3, B3, Bj,

2r 2r 2r

Using the facts that Dn = 0 when z, > dr and n = 0 in Bj, x {z, < —4dr},
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we discover

/ Go(| Dipllw]) de < / Go(| Dilfw]) de

B, QorN{z, <67}

[ ([ g
QorN{zn<ér} or 457‘

1 or
/ Go( / | Dw(a’, y)] dy) dx
QorN{zn<ér} or 467

1 or
< | Go(puta' ) dy s
or QorN{zn<or} J —4ér

< / Go(|Dw|) dzx. (3.61)
QorN{zn<ér}

AN

AN

In the second last inequality, we also have used Jensen’s inequality. Combin-
ing (3.60) and (3.61), we obtain

/QGO(’DU’)dZUS/ Go(|Dw|) de. (3.62)

Qo

Now we use v — nw as a test function to (3.31) and (3.56), respectively,
to find

1
! ][ Vo(Dw) — Vo(Do)[? da
¢ Q27'

< ][ (Ao(Dw) — Ao(Dv), Dw — Dv) dz
Qo
- ]{l l<A0(Dw) — Ao(Dv), D(nw — v)) dx
+ 4 (Ao(Dw) - 40(Do), D((1 = nuw)) do
Qo
- ][ (Ao(Dw) — A(x, Dw), Dw — Dv) dx
Qo
— ]{2 (Ao(Dw) — A(x, Dw), D((1 — n)w)) dz

-l—][ (Ag(Dw) — Ag(Dv), D((1 — n)w)ydx = T+ 1T+ 11I. (3.63)
Qo
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We first estimate I as follows:
I= ]{2 (Ag(Dw) — A(z, Dw), Dw — Dv) dx
+]{2 (A(z, Dw) — A(z, Dw), Dw — Dv)dx =: I + Is.
For an arbitrary constant € € (0, 1), we use (3.55), (2.30), and (2.29) to see
nl<ef 8B )an(IDul (Dl + Dol da

< (@) ][ 0<B;>Go<|Dw|>dx+e-][ 0(B1,)Go(|Du]) di
927‘ QQT
= 1171 + [172. (364)

In light of using (1.9) and (3.47), I ; can be estimated as

3 i 140 lia lio 1io‘
I <c(8) 0(B;.) = dx Go(|Dw|) ™ dx (3.65)
QQT QZT

< ¢(8)6T G (][ |Dw|da:) :
Q37‘

where we also have used the following estimates:

/ 0(Bf) " dw + / 0(B})" " d:zc]
B;—, Q2T\B;—,.

1to QQT\B+’
gc][ HBt)lfv d:1:+c|—2”
o P |5,

O(BS) "+ do < —=
f,, o B
L) < 6.

Note that o = o(n, p, v, L) is the exponent obtained from higher integrability
estimate (3.47). Moreover, (3.62) and (3.47) directly give us

QQT» Q37'
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Combining (3.64)-(3.66), we obtain

L] < (c(é)éﬁ% +c§> Go <]{2

From the definition of A(-), we find

| Dw| da:) : (3.67)

3r

|15 < W(47‘)][ Giog(|Dw|)|Dw — Dv| dx

Qo

< w<4r>][ g (| Dwl)(|Dw| + | Do) da
Q2'r
< 5][ |Dv|P dx + c(e)w(4r)p,][ glog(|Dw|)p/ dx
Qz,,» Q2r

+ w(4r)]{2 Gog(|Dw|)| Dw| d. (3.68)

We now use (2.24), (2.25) (3.45), Lemma 2.1, and Remark 3.7 to discover

][ g (| Dw])? d
QQT

:][ | Dw|? log? (e + | Dw|) dx:
QZT

<][ |Dw|? | log? e—l—M + log” (e + || Dwlf} )| dz
~Jou Dl b

LP(QQT)

B (1
< {(][ | Daw|PU+9) dx) + log? (—) ][ | Dw|P dx}
Qo 4r Qo
(1
< log” (—)GO (][ | Dw| d:L‘) : (3.69)
4T Q3

Similarly, we have

][ Gog(|Dw|)| Dw| dx = ][ |Dw? log(e + |Dw|) dx
Q27'

Qo

< log (%) Go (]{) Du| d:c) | (3.70)
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Moreover, Young’s inequality with the convex map ¢ — Gg(t%) gives

(]{2 Dol dl‘); <Gy (]{2 Go(|Dv]) dg;)

(3.62) (3.47)
< G01<][ Go(\Dw\)dx) < ][ |Dw|dx. (3.71)
QZT Q37‘

Combining (3.68)-(3.71) and using Definition 1.1, we obtain

1| < (c€+c(5)5)Go(]{]

By (3.53), (3.55), (1.7), (2.30) with G(-) and Holder’s inequality, we have

| Dw| dm). (3.72)
11) < ][ |Ao(Dw) — A(z, Dw)||D((1 — n)w)]| dz
+ ][ |/_1(x, Dw) — A(z, Dw)||D((1 — n)w)|dx
Qo
< ][ 6(B5.)0(| D)) D((1 — n)w)| da
Qo
*“W)]{z og(|Dw)| D((1 — n)w)| de
<e ][ Gof|Du)d + ) ][ GolID((1 )
+ cu)(47")p/]{2 Giog (| Dw|)?" da.
It then follows from (3.47) and (3.69) that

| Dw| d:c) +¢(&) Go(|D((1 —n)w)|) dz. (3.73)

Qo

11| < c(e+ 6p')G0(][
Q

3r
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We now use (2.30) with Go(+) ,(2.29), (3.51) and (3.62) to discover.

111 < c<e>][ Go(|D((1 — nyw))) dz

Q2'r

+ g][ Gol(lDwl) dz + 54 Go(|Dv]) da
Q2r

Qo

s][ Go<|Dw|>dx+c<e>£ Go(|D((1 — n)uw)]) dz

2r
(3.47)

< CC:GO(]{Z |Dw\dx>—|—c(8_) , Go(|D((1 —n)w)|)dz.  (3.74)

Summing up (3.63), (3.67), (3.72), (3.73), and (3.74), we have
][ [Vo(Dw) — Vo(Dv)|? da < (c& + c(g)(slif)G(J(][ | Dw| dx)
Qar Q

T c<e>]{2 Go(|D((1 — n)w))) d.

3r

To complete the proof, we now estimate the last term in the above in-
equality. A straightforward calculation gives

1
][ Go(ID((1 — gyw))) d < Gol|Duwl) dx
Qar |B2r‘ ng.ﬂ{xng(ﬂ‘}
- Go(|Dn|wl) d. (3.75)
927‘

We use Holder’s inequality and (3.47) to see
1

Go(|Dw|) dz
|BQT| QorN{zn<dr}

1 fod

1 57 (0, N {z, < 7} \ T

5 ( GO(lD'lUl)lJradl') <| 2 m{x — T}|)
|B27'| QorN{z,<dr} |B2r‘

. T
S ot (][ G0(|Dw|)1+”dx)
QQr

< 51"000(][ | Dw| da:>. (3.76)
Q37‘
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This and (3.61) complete the proof. O

Note that Go(t) belongs to the class of functionals with general growth
conditions. Regularity results regarding general growth conditions are now
well known, see [31, 32, 65]. Especially, we refer to [33, Theorem 4.1] and
[35, Theorem 2.2] for the boundary Lipschitz regularity for general growth
problems, which holds for (3.56) under (1.2). The next lemma is a modified
version for our case.

Lemma 3.9. Under the same assumptions as in Lemma 3.8, we have

sup | Dv| < ¢,
B}

for some constant ¢; > 1 depending only on n and p.

3.2 Interior Comparison Estimates

The interior comparison estimates are analogous to the ones for boundary
cases, except for the flattening argument applied to the proof of Lemma 3.8.
Hence we state interior estimate without their proofs in this subsection.

We first take a ball Bz, C (). Likewise to Section 3.1, we first consider
the homogeneous equation:

—divA(z, Dw) =0  in Bs,, (3.77)
w=u on aBgr,
and then consider the limiting equation:
—divAy(Dv) =0 in Bs,, (3.78)
v =w on 0By,

where the vector field Ay : R” — R"™ is defined by

o)
w06) = f, et A de

In the following lemmas, we let w € u+ W% (Bs,) and v € w + W) “°(By,)
be the weak solutions to (3.77) and (3.78), respectively.
The following is the interior analog of Lemma 3.1.
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Lemma 3.10. For any ¢ € (0, 1], there exists 6 = §(data,e) > 0 such that

of
B
][ |Du|dx < A and g (’/ﬂi—l&q)) < OA
B3r

for some A > 0, then
][ |Du — Dw|dx < e.
B3r

The next lemma is the interior version of Lemma 3.8 and Lemma 3.9.

Lemma 3.11. Under the assumptions of Lemma 3.10, we have

Ggl(]{gw |V (Dw) — V(Dv)? dm) <el

and
sup | Dv| < ¢,

T

where ¢, = ¢(n,p) > 1.

Note that for the sake of simplicity, we have denoted ¢; by the constant
obtained from Lipschitz regularity of limiting equations for both boundary
and interior cases. Note that ¢; obtained from Lemma 3.9 and Lemma 3.11
have the same dependence and role in the later proof.

We end this section with a remark on the sharp maximal functions of .

Remark 3.12. For some o € Q2 and 0 < r < %, take any point x €

Qs,.-(z9) = Bs,(x9) N Q. We see By, (xy) C Bgr(z) and

where the constant ¢ > 1 depends only on n.
Writing gar,0,,.()(t) = sup  g(z,t), we use (2.23) and (1.14) to find

2€Q3, ()
w(6T)
11 (20) Y o 1el(Qsr(0)) | [ 11l(Qr(w0)) ]
gMngr(x)ngol( ) ST | e
1l (@)
~ pn—1 ’
37
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and so

o yn—1 ~ gM,Qgr(CL‘) pn—1

<y(wmwm». 3.80)

~ JT rnfl

! (\u!(ﬂar(xo))) < 1 <\u|(93r(fco)))

Combining (3.79) and (3.80), we have

g (M) < ) o).

We integrate this inequality over Qs,.(xo) with respect to x, and then take the
average to conclude

9r, (W) S ]{hr(m) 9o (My(p)(z)) da

Therefore, one can replace the assumptions on p given in Lemma 3.8 and
Lemma 3.10 by
gy (Mi(p) () do < 5\
Q3 (z0)

in the rest of this chapter.

4 Proof of main theorem

We devote this section to the proof of Theorem 1.1. Recall that Theorem 1.1
states a global Calderén-Zygmund estimate for a SOLA u € Wol’l(Q) to
(1.2) having a bounded Radon measure p under appropriate structural as-
sumptions. From the definition of SOLA, there exists a sequence of solu-
tions {u;}eny € WHY(Q) and a sequence of data {u;}eny C L°(Q), such
that u; solves (1.2) with u = p. Moreover, u; — u in WH(Q) for every
q€[l,n'(p—1)), and py — p weakly in measure. To prove Theorem 1.1, we
are going to apply the lemmas in Section 3 to w; for each [ € N, since the
lemmas only work for weak solutions.
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Define )
N im ][ Dl dz + —f o= (My(p) da
Q 5 Q

1000 - diamQ\"
H=—1—7——
( Ry )

(4.81)

and super level sets
E(\) :={x € Q:|Du|(zx) > A} Y\ > H,

where ¢ is determined in Lemma 3.8 for some . Without loss of generality,
we assume Ay > 0. Indeed, if A\g = 0, then there is nothing to prove, as u is
a constant function.

We now state the following Vitali type covering lemma without its proof,
as it can be shown by a simple modification of [24, Lemma 4.1].

Lemma 4.1. For any A > HXy > 0, there is a set of disjoint balls { B, (z") }i>1

with &' € E(X) and r; € (0, 185) such that

EOV\N € | B, (o),

i>1

where N 1s a measure zero set. Furthermore, we have

1
][ |Dul dx + = gr (Mi(p)) dz = A (4.82)
O, (a?) 0 Ja,, (@

and
1
][ |Du|dx+—][ M) de <A Ype (ruRo).  (483)
Q(x) 0 Ja, ()

We have taken a set of disjoint balls in Lemma 4.1 for any A > H\y. From
the definition of SOLA, for each i > 1 and any € > 0, there exists [; > 1 such
that

][ \Du — Duy,| dz < e, (4.84)
Q1000r; (2°)

We are now ready to prove our main result.

Proof of Theorem 1.1. For arbitrary constant A\ > H\g, Lemma 4.1 allows
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us to take a set of disjoint balls {B,,(z")};>1 such that

E(EM\N C | Bs, («), (4.85)

i>1

where N is a measure zero set and K = 8¢;. Recall that ¢; is the constant
obtained from Lipschitz regularity of the limiting equations, see Lemma 3.9
and Lemma 3.11. To employ the lemmas obtained in the previous section,
we need to distinguish the boundary case Bys,, (z') ¢ © and the interior case
Bl5ri(l‘i) C Q.

First, we assume By, () ¢ Q. Taking a point z* € 9Q N Bys,. (z°), we
can find y* € Q and a new coordinate system (¢i,--- ,4") with the origin at
y' such that |2¢ — y*| < 15007; < 20r; and

Bi,.(0) C Qus0r,(0) C Bisor, (0) N {77, > —30067}.

Note that . '

D, (27) C Qsor, ()
as |z" — y'| < |7° — 2'| +|7° — y'| < 35r;. With the help of (4.83) and (4.84),
we have

][ D < (107 + 1A 22 (4.86)
Q1s0r,; (

for any constant ¢ € (0, 15 ), which we will choose sufficiently small later.
Moreover, Remark 3.12 and (4.83) give us

(©Q
”“" 15““ )5(». (4.87)

Let us denote G;(-) = G(z4,-) and V;(-) = V(x;,-). For each i > 1, there
exist the weak solution w; € uy, + W5 (Qis50,, (1)) to (3.31) with u;, = u and
Qusor, (y') = Q3p, and the weak solution v; € nw; + Wi (B, (")) to (3.56)
with w; = w and By, (y') = Bs,. Here, i is a cut-off function determined
in (3.56) with respect to our new coordinate system (¢, - ,4").

By a direct calculation, we find

| < |Duy, — Dwy| + 2 G H(|Vi(Dw;) — Vi(Dvy) ) + 2 | Dy
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It is worth mentioning that (4.86) and (4.87) imply the assumptions on
Lemma 3.8 with v, in place of u. Then (3.58), Lemma 3.8, and (4.86) yield

][ T de < ][ Bl dz < (657 + )N S 2N, (4.89)
Q5Ti (z;) 9507‘7; (yl)

where the constant § > 0 from Lemma 3.8 is selected small enough to satisfy
§ < e?. From Lemma 3.9, we have Lipschitz estimate of v:

||DUi|’Loc(Q5Ti(xi)) S ||D/UZ'||LOO(Q5O”(yi)) S 2Cl)\. (490)
For each i > 1 and every € E(K\) N Bs,,(x;), we use (4.90) to discover

|Du| < |Du — Du,

K 1
S |Du — Duli| + JZ + E)\ S |Du — Duli| + JZ + §|Du|,
and so
|Du| < 2|Du — Duy,| + 2J; in E(KX) N Bs,,(z;).
It then follows from (4.84) and (4.89) that

/ |Du|dx < \Q5r(xl)|][ |Du — Duwy,| dz
E(KX)NBs,, (1) Qs (%)

+ [Qsr, (2)] il dw

Q5ri (LIJZ)

< eNQ,, (). (4.91)

We now turn our attention to the interior case, that is, Bis,,(z%) C .
Let w; € uj, + WH%(Bys,. (z')) be the weak solution to (3.77) and v; € w; +
WL ( By, (z%)) the weak solution to (3.78). Correspondingly, in the interior
case, one can similarly show (4.91) by using Lemma 3.10 and Lemma 3.11.

Taking (4.85) and (4.91) into account, we obtain

Duldz < / Dulde S AN (499
/E(K,\) ; E(KA)NBsr, (%) Z ( )

1>1
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To estimate |, (z")|, we take (4.82) into account to see that either

PO A
‘f |&mmz—or-f o (M () da > 2 (4.93)

holds. If the first inequality of (4.93) holds, then we have

MNQ,, (2] < 2/ | Du| dz

Q, (2%)

1 .
32/] Dul dz + N0, (),
., (a)N{| Dul> 3} 2

and so
4

1Q,..(z")] < —/ |Du| dz.
A Ja,, (@)n{|Dul>2}

Similarly, for the second inequality of (4.93), we have
, 4

2.6 < 5 [
O Ja,, )nfes" (M ()25

4

Remembering that {B,,};>1 is the set of mutually disjoint balls, we have

/ |Du| dz < 5/ | Dul| dz
B(K))

Qn{|Dul> 3}

- 0 (M) de. (4.94)

+ —
0 Jan{g: ! (M ()=}

For any large k > K H\q > 0, recalling the truncation operation 7} given
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in Lemma 3.1, we estimate
/ Ti(|Du|)*~ 1 Du| dx
Q

k/K
= (¢ — 1)Kq1/ Aﬂ/ |Dul dx dA
0 E(K\)

HX\o
= (q— 1)Kq_1/ )\‘1_2/ |Du| dz dX
0 B(K))

k/K
+(¢g— 1)Kt /

HM\g

>\‘12/ |Du|dx dX\ =: I + L. (4.95)
E(K))
A straightforward calculation yields
I < (KHMX) / | Du| dz. (4.96)
Q

In light of (4.94), I, can be estimated as

k/K
I Selg— I)Kq_l/ )\q_Q/ | Du| dx dX
H)o Qn{|Dul>%}

q—1 k/K
reg-p— [ e | 671 (M (1)) da dA
0 On{gz (M ()>

2

By Fubini’s theorem, we estimate I3 and I, as follows:

ak
I3y Se(qg— 1)/ )\q2/ | Du| dx dA
0 Qn{|Dul>2}

k
5g(q—1)/ AH/ | Dul dzr d)
0 QN{|Dul>A}

§8/Tk(\Dul)qllDu\dac (4.98)
Q
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and

]4<5q_1/ Xm/ 9o (Ma(w) 0y
Qﬂ{gT d

1)) >0}

,@g/ﬁ(%) dz. (4.99)

Combining (4.95)-(4.99), we have

/ To(|Dul)™ | Du| du
Q

(g;m;l(m))q o

< cs/Tk(|Du|)q_1|Du|dx+ce/
Q

Q

+c(KH/\0)q‘1/ | Du| da.
Q

At this stage, we take e = e(n, p, q, v, L) > 0 small enough to satisfy ce = %
As a consequence, 0 = d(n, p,q,v, L) > 0 is also determined. Letting k — oo,
we obtain

/|Du|qu
Q

< (k)™ [ Dulde e [ (5 (M) do
< c|Q|(K H)o)? /|Du!qu+c/ (97 " (My(p)))* dz. (4.100)

This and (4.81) finally completes the proof. ]

Remark 4.2. With an additional calculation, we have L1 estimate of Du
only in terms of g; ' (M (1)) and |p|(2). We present the calculation below.
Using (4.81) and recalling Remark 3.3, we have

15 Haw)? < L@ 4 e [ (6 (M)

Q
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It then follows from (4.100) in the proof of Theorem 1.1 that

. I MOEAE
/Q|DU\ dx < C/Q (gx (M) + W) dx.
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Chapter 3

Maximal differentiability for a
general class of quasilinear
elliptic equations with
right-hand side measures

1 Introduction and main result

In this chapter, we consider the following elliptic equation with a finite Radon
measure 4 on the right-hand side:

{—div A(Du) =p in 2 (11)

u=20 on 0,

where () is a bounded open subset of R™, n > 2. The vector field 4 : R" — R"
is assumed to be C'-regular and satisfies the following ellipticity and growth
assumptions:

{y,zu )|+ 10A©)¢] < Lg(I€]) (1.2)

2 ¢ < (DA(9)C,€)

for all £, € R", with constants 0 < v < L. Here, g : RT — R" is a
C?((0,00)) N C ([0, 00)) function satisfying
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with constants 1,72 € R. We point out that (1.1) reduces to p-Laplace type
equation when v; = 75 = p. For this reason, our equation under the assump-
tions (1.2) and (1.3) is regarded to be a generalized p-Laplace equation. Some
typical examples of g(t) satisfying (1.3) are

g(t) = " (log(e +1))" (p>2,8>1)
gt) =" +apt™"  (p,g>2,a0>0).

Our problem features a nonstandard growth condition, the so-called Or-
licz growth condition. One can notice that v; and 75 in (1.3) control the
speed of the decay and growth, respectively. Thus, the rate of growth and
decay of A(Du) varies depending on |Dul. It does not increase too fast nor
too slow. The regularity theory of elliptic equations with Orlicz growth has
been widely studied in many literatures, we refer to [33, 42, 45, 50] for an
overview and a further discussion regarding the Orlicz growth condition.

When p on the right-hand side of (1.1) is merely a bounded Radon mea-
sure, the notion of the solution so-called SOLA (Solution Obtained by Lim-
its of Approximations) is usually employed. Its precise definition will be de-
scribed in Section 2.4. A SOLA is originated from the seminal papers [14, 15],
and existence and regularity results are proved there. Since then, several
regularity results regarding SOLA are obtained, for instance fractional dif-
ferentiability results [2, 70], Calder6n-Zygmund estimates [18, 19, 73] and
potential estimates [17, 26, 25, 57, 60].

In the type of the equation (1.1), much attention has been paid to the
regularity of the nonlinearity A(Du) recently, instead of Du or V/(Du), where

V(-) is defined by
V(€)= ,/%5 for £ € R™. (1.4)

It is proved in [29] that, when A(&) := %ﬁ”{, u € L? implies that A(Du) €
W2 for 1 < vy < 75 < co. When g¢(t) = tP~1 and the forcing term is given
by divergence type, i.e. u = div F, it is proved in [44] that ' € BMO implies
that A(Du) € BMO. In [13], the authors measure differentiability of A(Du)
in the scale of Besov and Triebel-Lizorkin spaces when F' belongs to the same
function spaces.
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In the very interesting paper [2], it is proved that the following implication
pe L' = A(Du) € Wt (1.5)

for all o € (0,1), when g(t) = ! and p > 2 — 1/n. This result is notewor-
thy because in the Poisson equation —Au = —div (Du) = p, the classical
Calderén-Zygmund theory states that

pell — DueWh
for all ¢ € (1,00), but if ¢ = 1, one can show that
pell =% DueWh but peclLl' = Duec W

for all o € (0,1). Therefore the implication (1.5) generalizes a limiting case of
the classical Calderon-Zygmund theory to the nonlinear equation. Then it is
natural to ask whether (1.5) still holds under more general growth conditions
as in (1.1). The main purpose of this chapter is to prove (1.5) under super-
quadratic Orlicz growth condition.

For the simplicity of notation, we write

data = {n,v, L,y1,72}.
We now state the main result.

Theorem 1.1. Let u € Wy?(Q) be a SOLA to (1.1) under the assumptions
(1.2) and (1.3). Then there holds

A(Du) € W2HQR™) Vo € (0,1).

loc

Moreover, there exists ¢ = c(data,o) > 0 satisfying

f [ AR HDu
B B |z —
R/2 R/2

y|n+0

A(D / ¢ ‘M’(BR)
<
- RU BR| ( U)| v RU ( R’I’L—l )

for all Br CC Q.

Let us briefly summarize the contents of this chapter. In Section 2, we
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provide some notations and preliminary results. Regularity results of the ho-
mogeneous equation are studied, and a variant of Caccioppoli-type inequality
(3.39) is proved in Section 3. We prove comparison estimates in Section 4
using a linearization approach based on [2] and [7, Lemma 6.1]. Finally in
Section 5, we complete the proof of Theorem 1.1 using the iteration and
scaling argument.

2 Preliminaries
2.1 General notation

Throughout this chapter, ¢ > 1 denotes a positive constant depending
only on data which may vary from line to line. The notation X <Y implies
that there exists some constant ¢ > 1 satisfying X < ¢Y and the notation
X =~ Y implies that X <Y and Y < X. We denote the open ball with radius
R > 0 and center xg € R" by

Bpr(zo) == {z € R" : |z — x| < R}.

When the center is clear from the context, we will omit it. Also if B is a ball
with radius » > 0 and ¢ > 0 is a positive number, ¢ B denotes the concentric
ball with radius or. For any measurable set O C R" and a measurable
function f : O — R, we denote the integral average by

(o :I]{Dfda: IZﬁ/Ofda:.

For an open set Q2 C R", we will identify L!'(Q) functions with (signed)
measures by denoting

1(0) =/Om|dx (ne (@), 0cq)

2.2 Basic properties of a function ¢(-) and vector fields

V() and A(-)
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As a direct consequence of (1.3), we have
min{s" ! s} g(t) < g(st) < max{s" ! s 1}g(t) Vs,t>0. (2.7)

Since g is strictly increasing, the inverse function ¢! : Rt — R™ exists.
Replacing ¢ with g71(¢), s with 7! and s727! in (2.7), we have

1 1

min {Sﬂl*l , §7 T } g 1(t) < g7 (st) < max {SF, §727T } gty  (28)

for all s, > 0. Also, using the fact that v, > 2, we have

d <g(t)> _ ) —g®) o (n = 2)g®)

dt \ t 12 #2

>0 Vt>D0,

which implies that the mapping

g(t)

t— T is an increasing function. (2.9)

Moreover, we assume that g(t) is a convex C?((0, 00)) function and g(1) =
1 throughout this chapter. Otherwise, we consider a convex function g €

C?((0,00)) defined as

(1) = (/OI@ds)l/ot@dszg@

instead of ¢(t). One can notice that g satisfies the assumption (1.3).
We define a function G € C%((0, 00)) by

G(t) = /Otg(s) ds. (2.10)

By (2.7), convexity of g(t) and the fact that G(t) ~ tg(t), we have the
following subadditive property for both G(t) and g(t):

G(s+1t) SG(s)+G(t) and g(s+1t) Sg(s)+g(t) Vs, t>0. (2.11)
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Now it is straightforward to show that

gls +1) @2V g(s) +9(t) _ g(s) | 9(t)

/ t <
SRS s+t s+t 5

We define a conjugate of G' by

G*(t) == sup{st — G(s)}

s>0

and define g*(¢) similarly. From the definition above, one can observe that
st < G(t)+G*(s) and st < g(t) + g*(s).
The inequality above and (2.7) give

st < eg(t) + (1, 72.€)g%(s).

It is well-known, see for instance [76, Section 2.3], that when v; > 2, ¢g*(¢)
satisfies the following inequalities:

—1 t(g*) (t -1
1<”Y2 <(9)()<’Yl < 00

T2—27 gft) T m-—2 ’
yo—1 y2—1 y1-1

-1
min {372—2,3%} g*(t) < g*(st) < max {swz—Q,Sﬂ—Q } g (t). (2.13)

for all s, > 0. On the other hand when 2 = ~; < 74, the following estimates
hold: N
=1 _ tg)()
T2—27 g () (2.14)
y2—1
g (st) <sm2g*(t) Vt>0, 0<Vs<IL.

1<

Moreover, using the definition of the conjugate and (1.3), one can show that

G*(g(t)) = G(t) and g"(4'(t)) = g(t). (2.15)

We refer to [76] for a further discussion of properties of g.
Next we provide some important properties of V'(-) and A(-). Using (1.2),
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we observe that for all z1, zo € R",

g\zl + 1z /
V) = VP m DD s (] 4 s - 2, 210
(A(21) = A(22), 21 = 22) = g (|a] + [22]) 21 — 22, (2.17)
A1) — A < (2] +[zaDlen — 2l 215)

For the proof of the above inequalities, we refer to [42, Lemma 3] and [7,
Section 2]. Using (2.18) and (2.17), we find

9([zD2] < e(A(2), 2) < | A(2)||z].

Dividing both side by |z|, it follows that

9(|z]) <c|A(z)| VzeR"\{0}. (2.19)
Moreover, we have
(218)
|A(21) = A(22)| < cd'(Jar] + |22]) |21 — 22
29
< cg'(|zr — 2] + |21]) |21 — 22|
(2.12)

< cg'(|zr — 2al)|21 = 22| + cd'(Ja1])| 21 — 2o

)

(
cg(|z1 — z2|) + cd'(|z1]) |21 — 2. (2.20)

INE |

2.3 Function spaces

In this subsection, we will introduce related function spaces in this chap-
ter.

Definition 2.1. (Orlicz space) For a function G given in (2.10), we de-
fine the Orlicz space L¢(Q) = {f € LYQ) : [, G(|f])dz < oo}, with the
following (Luzxemburg) norm:

We define an Orlicz-Sobolev space WHC(Q) == {f € WIL(Q) : |Df], f €
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LE(Q)} with the norm || - |lwi.cq) defined by

[fllwre@) = Ifllce@ + 1D flllLe@) < oo

As in [76, Chapter I1I], LE(Q) and W1€(Q) are Banach spaces. We sim-
ilarly define Banach spaces LI(€) and W19(Q).
Next, we introduce a fractional function space to measure differentiability.

Definition 2.2. (Fractional Sobolev space) Let o € (0,1), ¢ € [1,00), k € N
and let @ C R™ be a bounded domain with n > 2. We say f belongs to the
fractional Sobolev space, W*(Q), if and only if f is a measurable function
and the following Gagliardo-type norm of f is finite:

1/q _ q 1/q
| fllwea) == (/Q |f(a:)|qu) - (/Q Q%dxdy)

= fllza) + [flwea) < oo.

From the definition of fractional Sobolev spaces, it is straightforward to
show that

Wh(Q) C WH(Q) C WI(Q) C LI(Q), 0<s<t<l.

Fractional Sobolev spaces have their own Poincaré inequality: for all f &
W*4(Bg), we have

/B 1f= (g, dasgcRo‘q/ /B - ‘mql dx dy (2.21)

for some constant ¢ = ¢(n, g, «). The proof of (2.21) can be found in [54] and
(68, Section 4]. For a further discussion about fractional Sobolev spaces, we
refer to [41].

For a vector h € R", z € Q and f € L*(Q), we denote Q) := {z € Q:
dist(z,0Q) > |h|} and define a different quotient 7, f(z) := f(z + h) — f(x)
in 3. The following proposition measures fractional Sobolev norm in terms
of the integral of the difference quotient, whose proof can be found in [1,
Chapter 7].

Proposition 2.3. Let f € LY(2),q > 1, and assume that for & € (0,1],
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S >0 and an open and bounded set Qcc ), we have
17 f 1l Loy < SIRI%,

for every h € R™ with 0 < |h| < d, where d = L1 dist(Q,09). Then f €

W*4(Q) for all a € (0,&). Moreover, the following estimate holds true:

si-as 12000
~ < :
oo < (5 =3 * i 1)

If f € Wh(Q), then for any concentric balls B, CC Br CC (, and a
vector h € R™ satisfying |h| < R — r, we have

/B \Thf|qugc(n,q)|h|q/3 \Df|" dz. (2.22)

2.4 Solution Obtained as Limit of Approximations (SOLA)

Definition 2.4. We say that w € W9(Q) is a SOLA to (1.1) under the
assumptions (1.2) and (1.3), if there exists a sequence of weak solutions

{uptren C WHE(Q) to

—div A(Duy) = py,  in (2.23)
ug =0 on 012,
such that w, — w in WY9(Q). Here, {jux}tren C L¥(Q) C (WH9(Q))" is a
sequence of functions which converges to p weakly™ in the sense of measures
and it satisfies

im sup | (B) < |l (B)
for every measurable set B C ().

The existence of a SOLA in Definition 2.4 can be found in [7, Section 7].
It is also worth mentioning that the uniqueness of a SOLA still remains as
an open problem, even with the standard growth condition except p = 2, n.
We will use the following lemma later in Section 5.
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Lemma 2.5. Let u € WH9(Q) be a SOLA to (1.1) under the assumptions
(1.2) and (1.3). Let {ug}ren be a sequence of approximating solutions of
(2.23). Then we have

A(Duy) — A(Du)  strongly in L'(Q) up to a subsequence. (2.24)

Proof. Since Duj, — Du strongly in L'(Q), there exists a subsequence of
{Duy}ren that converges to Du almost everywhere. Also, as a result of [29,
Lemma 4.5], there exists a decreasing function 7 : [0, |2|] — [0, c0), depend-
ing only on data, ||, G and |u|(Q2) so that

lim n(s) =0 (2.25)

s—0t

and

/ |A(Duy)|dz < n(|O|) for every measurable set O C €. (2.26)
@

By (2.25) and (2.26), it is straightforward to show that {A(Dug)}ren is
uniformly integrable in 2. Therefore we use Vitali convergence theorem to
complete our proof. O

With Br CC €2, we will end this subsection with comparison estimates
between a solution of (1.1) and the solution of the following homogeneous
equation:

{—div A(Dv) =0  in By (227

v=u on 0Bg.

Lemma 2.6. [7, Lemma 5.1] Let w and v be solutions of (1.1) and (2.27),
respectively. Then, the following comparison estimates hold true:

Br)
Du — Dvldr < -1 |IU’|( R
]{BRI u vldr < cg (Rn_l ,

]iRgﬂDu — Du|)dz < ¢ (%_é?) |

where ¢ = c¢(data).

To ensure the existence and the uniqueness of the solution of (2.27), we
need to assume that u belongs to the energy space. Therefore, until the end
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of Section 4, we will assume that u € W%(Q) and we will provide a limiting
procedure in Subsection 5.1.

3 Regularity of homogeneous equation
In this section, we study a homogeneous equation
—divA(Dw) =0 (3.28)

in a bounded open subset U C R", where A(-) satisfies the structure as-
sumptions (1.2) and (1.3). Many regularity results of a solution of (3.28) are
well-known, including De Giorgi type estimates and O regularity results,
see for instance [64, 65]. We present regularity results for (3.28) from [7,
Lemma 4.1].

Lemma 3.1. Let w € WhC(U) be a solution of (3.28) under the assumptions
(1.2) and (1.3). Then for every ball B CC U the following estimate holds:

sup |Dw| < c][ | Dw| dz. (3.29)
Bry2 Br
In addition, w € CH*(U) for some a € (0,1) with the following excess decay

estimates

|Dw — (Dw)g, | da < ¢ (}%)a]l \Dw — (Dw)p, | d,

B, Br

where B, and Bg are concentric balls with radius 0 < r < R < 1, respectively.
Finally, we have

\Dw(z) — Dw(zs)| < ¢ (}%)a][ Dul|de Vevas € Byo.  (3.30)

Br

Next, we present the reverse Holder-type result of V (Dw), where V(+) is
a vector field defined in (1.4). Before that, we need the following auxiliary
lemma, see for instance [48].

Lemma 3.2. Let f : U — R* be a measurable map, and xo > 1,¢ > 0
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satisfying

1

(JZBR/Q 7o dx)xo < C][BR £l da

for all Bg C U. Then, for every t € (0,1], there exists some constant ¢; =
ct(t, data) > 0 such that

1

(]{BR/Q ’f|x0d:c)xo < ¢ (]{BR|f]tdx>i.

Lemma 3.3. Let w € WVYY(U) be a solution of (3.28). Then there exists a
positive constant ¢; = ¢,(t, data) > 0 satisfying

]{31%/2 [V (Dw) =V (z0)|* dz < ¢ (]{BR IV (Dw) — V(z)|* dm) C 331

for allt >0 and B CC U.

Proof. As a result of [45, Lemma 3.4], there exists some 3 € (0, 1) depending
only on data such that

]{BR/Q [V (Dw) =V (z0)]?dx < ¢ (]iR IV (Dw) — V(z0)[2? dw) T (332)

When 0 < ¢t < (3, the inequality (3.31) directly follows from (3.32) and
Lemma 3.2. When ¢ > 3, we use Holder’s inequality to complete this lemma.

[]

We also provide some higher differentiability results. In general Dw is not
differentiable, even with the standard growth condition, see [68] for related
results. However, the nonlinear vector field V (Dw) have a higher differentia-
bility. Similar results can be found in [2, Lemma 4.1] for the p-Laplace type
equations.

Lemma 3.4. Let w € WhY(U) be a weak solution of (1.1) under the struc-
ture assumptions (1.2) and (1.3). Then we have

V(Dw) € W2(U).

loc
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Moreover, for any Byr CC U and t > 0, there exist positive constants c¢; =
ci(t, data) and c = c(data) satisfying

2
][ \DV (D) da < C_;(][ V(Dw)[! dx)t (3.33)
Bgr R Bar
and
][ IDV (Dw)|* dx < %Supg'(]Dw])][ |Dw — 2|* de, (3.34)
BR B2R BZR

where zy is an arbitrary vector in R™. Furthermore, we have

D
sup ][ —|ThA( w)| dx
Bry2

0<|h|<R/16 |h|
. (3.35)

< csupg/(|Dwl)? (][ | DV (Dw)|* d»’lf)
Br Br

for some positive constant ¢ = c¢(data).

Proof. As a result of [42, Lemma 11|, we have

(ﬂR DV (Dw)|? dx)é < }% (]{SR V(Dw)|* dm)%. (3.36)

By (3.31) and (3.36), we have (3.33). Next, let us show (3.34). Let n €
C§°(Bar) be a cut-off function satisfying 0 <7 < 1, n:=1 on Bsge, 7 :=0
on Byp \ By, and |Vn| < 8/R and P := 2 -« be a linear function where 2
is an arbitrary vector in R™. For a given vector h € R™\ {0} with |h| < R/16,
we test 7_5 (0?1 (w — P)) with (3.28) in order to find

0= ]{3 (thA(Dw), D (n°1h(w — P))) dz
= ]{3 (T A(Dw), n*m, Dw) dx + 2]{3 (T A(Dw),nDntp(w — P)) dx.

Note that we have used the fact that D7, P = 0. The equality above implies
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that

][ (B A(Dw), n*m,Dw) dx
Ban (3.37)
= —2]{9 (th A(Dw),nDnr,(w — P)) dx.

Using Young’s inequality with 6 > 0, Jensen’s inequality and Fubini’s theo-
rem, we have the followings:

][ 7]2|ThV(Dw)|2 dx
Bor

(2.16)
(2.17)
< c][ (T A(Dw), n*7, Dw) dz
Bsyr
(337) ¢
< 5 1. MmADw)lln(w -~ P)|de
Bar
(2.18) ¢ /
< 7 1. n9([Dw@)| +|Dw(z + h)|)|Dw(z + h) — Dw(z)||m(w — P)|dz
Bsyr
(2.12) ), )
<9 n°g' (|Dw(x)| + |Dw(x + h)|)|Dw(z + h) — Dw(x)|” dx
Bsr
2
+ C‘S}’;' séligg’(lle)X

2
dz

][ ][h|Dw (x+ﬂ)—DP(a:+ﬂ) ds
B3prs2 140 |h‘ |h|

< 5]{3 n°g (|Dw(z)| + |Dw(x + h)|)|Dw(x + k) — Dw(x)|* dz

05’h|2 /
D
+ Sup g ([Dwl)x
h h\|”
][ ][|h| Dw(x—i—s—)—DP(x—l—S—) dsdx
Bsgry2 /0 |h’ |h|
(2.16) 2 2 cs|hf? / 2
< ¢ 07|V (Dw)|* dz + ——sup ¢'(| Dw|) |Dw — DP|* dx
Bar R Bar Bar
< 1 2 2 clh|? / _ 2
< = 0|V (Dw)|” dx + —- sup ¢'(| Dwl) |Dw — DP|*dx
2 Bagr R Bar Bagr
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by taking § > 0 small enough. We divide both side by |h|? to have

V(Dw)?
][ M dr < %supg’(|Dw|)][ |Dw — DP|*dz.
BR |h| R BQR BQR

Since DP = z, the inequality (3.34) follows from the classical difference
quotient characterization of Sobolev functions. Finally, we discover

][ |7 A(Dw)| dx
Bry2

< c][ ¢ (|Dw(z)| + |Dw(z + h)|)|Du(z + k) — Du(z)|dz
Br2

< csupg/(|Dwl)Ex

Bgr

][ ¢ (IDw(@)| + |Dw(z + W)))* |Dulx + h) — Du(z)| dx
Br/2

(2.16

= psup (D)t f VPl D) = V(D)

]

< clMsgpg’(lDwDi(][ !V(Dw(erh')})L'Q— V(Dw(z))] dx)
R Br/2

(2.22) , A ) 3
< c|h|sup ¢'(|Dw|)z ][ |DV (Dw)|” dx | .
Br Br

dx

R/2

o=

Dividing both side by |h| and taking supremum for all ~ € R™ \ {0} with
|h| < R/16, we finally obtain (3.35). O

Corollary 3.5. Under the same assumption of Lemma 3.4, we have the
following inequalities:

D |
sup ][ |ThA(Dw)| dz < ﬁsupg’(|pw|)2][ |V (Dw)| dz, (3.38)
0<|h|<R/16 J B/s |h| R Bar Bar
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D
sup ][ I ADw)|
Brj2

0<|h|<R/16 ‘h’
1 (3.39)
2
< Esupg'(|Dw|)(][ |Dw — 2z dx) .
R BZR, BQR

Proof. Using (3.31), (3.33) and (3.35), we have

D 1
sup ][ [ ADw)] dr < csup ¢'(|Dwl)? (][ |DV (Dw)|? dx)
Br/2 Br

0<|h|<R/16 ‘h‘ Br

N |=

|V (Dw)|? dz :
(£, wwr )

][ |V (Dw)| dx
Bar
which implies (3.38). Similarly, by (3.34) and (3.35), we find

(]{BR |DV (Dw)|? d:c>

%
< £supg'(|Dw])(][ |Dw — z|? d$) :
R Bar

Bar

NI

c
< —sup g (|Dw
_RBSQO )

N|—=

C
< —supd'(|Dw
_RBEQ(I )

N
L=

D
sup ][ wdw < csup¢'(|Dwl)
0<|h|<R/16 J Bg s ‘h| Br

Therefore, the inequality (3.39) holds true. O

4 Comparison estimates

Throughout this section, we assume that p € L*®(Q) and u € WHE(Q).

After discovering desired estimates, we use a limiting argument to complete

the proof of Theorem 1.1. Our proof follows the main idea of [2, Section 5].
Let us consider

B4MR = B4MR(.CEO) cC Q with M 2 8 and R é 1. (440)

Here, M is a free parameter which will be determined by data later. We
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consider the following Dirichlet problems with different domains:

V=1 on 8BMR '
and

—div A(Dv) =0 in Byg (4.42)

v=1u on 0By5. '

As a direct consequence of Lemma 2.6, we are able to discover the followings:

£, sipu—pias < o(lalPum), i)
]iMR|Du—D6|dx§cg_1 (M%Rz) : (4.44)
][]gmgﬂDu—Dv!)dxgc(%» (4.45)
][Bm D= Duldes e (‘(/;gzj)gm)) ' (4.46)

We also need the following result whose proof can be found in [7, Lemma
6.1].

Lemma 4.1. Suppose that u € W,(Q) is a solution of (1.1) under the
assumptions (1.2), (1.3) and

() () e

holds for some X\ > 0. Also, let v and ¥ be the solutions defined in (4.41) and
(4.42) together with the bounds

A A

Then there ezists some constant co yr = com(Q, M, data) such that

A |M|(BMR))
Du — Dv|dzx < cq, .
f] e < can gy ( G
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The following lemma is the main result of this section.

Lemma 4.2. Let u be a weak solution of (1.1) under the assumptions (1.2)
and (1.3). Then it is possible to choose M satisfying (4.40) in terms of data
so that if v € u+ Wy % (Byg) is the solution of (4.42), then the inequalities

][ |A(Du) — A(Dv)| dx
Bor/m

|1l(B2air) (445)
5
<cR ]{B |A(Du) — (A(Du))BQMR| dr + ¢ (Rn—1+5(’72—2)>
2MR
and
D
sup ][ —’ThA}(L V)l dx
0<|h|<R/(8M) Br/m | ’ ’ |(B ) (449)
c Ui\ D2MmR
< = . |A(Du) — (A(Du))BZMR| dx + ¢ (—Rn+5(“/2—2))
hold true.
Let A be a positive number defined as
g(\) ::][ g(|Du|) dx (4.50)
Bor/m

and let oy € (0,1/2") and 6 € (0,1) be another free parameters depending
on an appropriate choice of M. Then our proceeding argument depends on
either

]{3 |A(Du) — (A(Du))BWR| dr >0 ‘ (A(Du))

Bar/m
4.51
11| (Banr) oy
or W > 019 (>‘) >
or else
]Z; |A(DU) - (A(Du))BQN[R| d..'E S 9 ’<A(DU)>BZR/M
2MR 4.52
|| (Banr) 2
and W <019 (N)
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The parameters ¢ and o; will be determined by data and M later. Indeed,
we are going to select M depending only on data, as a consequence, # and
0, depend only on data. For details, see Remark 4.6.

Lemma 4.3. Suppose that (4.51) holds. Then for every § € (0,1), we have

][ |A(Du) — A(Dv)| dx
Bor/m

< cM*™R° (1 + %) ]{BQMR |A(Du) — (A(Du))BQMR| dr  (4.53)

+6M2”( |1l (Bar) )

o1 (4R)n—1+5(’yz—2)

and

D
sup ][ —| A(Dv)] dx
Br/m

0<|h|<R/(8M) |h|

cM®™ 1

< — — 4.54

< (”e)]{m'w“) (A(Du),, |dv  (454)
M( 1 (Bin) )

o1 (4R)n+5(’72*2)

+

for some constant ¢ = c¢(data) > 0.

Proof. Let 6 > 0 be arbitrary given. We observe that
][ |A(Du) — A(Dv)| dz
Baor/m

(2.20)
< c][ g’(\Du])|Du—Dv|dx+cM”][ g(|Du — Dvl|) dz
Baor/m

Bar
(4.45) B
< c][ d'(|Du])|Du — Dv|dx + cM™ (M) : (4.55)

For the first term, we use Young’s inequality on g and g*, (2.7), (2.13), (2.15)
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and (4.45) to find

][ ¢ (|Dul|)|Du — Dv| dx
Bor/m

Du — Dv|
— 5(v2—2)/(v2—1) o/ —‘
7BQR/M R 9(1Du)) Rz 9

« _ _ |Du — Do
S][ g (RzS(’Yz 2)/ (72 1)g/(|Du\)) dx —|-][ q (m dz
Bor/m Bor/m

n

M
§CR5][ g(]Du\)dac%—%][ g(|Du — Dv|) dz
Bar/m Rt Bar

5 cM™ (|l (Bzr)
<cR ]{32R/M g(|Du|) dz + T30 ( (4.56)

(2R)" T

when vo > v > 2. If 7 = 2, we use (2.14), instead of (2.13) to find (4.56).
When 71 = v, = 2, (1.3) implies that g(¢) = t. Therefore, we have

(2.18)
][ |A(Du) — A(Dv)|dz < c][ |Du — Dv| dx
Baor/m Baor/m

() <5 ()

Therefore, for each case, the inequality (4.56) holds.
When (4.51), is in force, we have

][ g(|Dul) dz
Baor/m

(12),

< c][ LA(Du)| da
Bor/m

< ¢ ][ A(Du) ~ (A(DW)y, 1 dr+ | (A(Du)
Baor/m

Baor/m
< ¢ ]{3 |A(Du) — (A(Du)) | d + | (A(Dw) |
2R/M
(450), 1
<o (1 + 5) ][ A(Du) — (.A(Du))BZMR‘ dr. (4.57)
Bamr '
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This estimate (4.57), (4.55) and (4.56) assert (4.53). On the other hand, when
(4.51), is in force, we observe that

o= gDul)ds fl '(BQ;”R) (4.58)
Bor/m

Then (4.53) follows from (4.55), (4.56) and (4.58).
As we have explained in the beginning of Section 2.2, we may assume
that ¢ is a convex function. Therefore using Jensen’s inequality with g, we

find

D

sup ][ —’ThA( U)‘dm
0<|h|<R/(8M) J Bg,u |h|

( sup g/(le|)>
Bsr/aom

( sup g'(lDUD)
B3gr/am
cM

< S sw gDl f Dolds
R Bsrjom Bor/m

(29) eM

< C—g' sup |Dv| ][ |Dv| dx
R Bsr/om Bar/m

(329) M

< C—g’ ][ |Dv| dx ][ | Dol dx
R Baor/m Baor/m

—q ][ | Dv| da:)
R ( Bar/m

cM
R

M M
< o 9(|DUDd$+C— g(|Du — Dv|) dz. (4.59)
R R Bar/m

[NIE

(3.38)
<

][ |V (Dv)| dz
B3r/am

f il (Do)t i
B3rjam

D=

(1.4)
<

SR

NG
o
<

IN

9(|Dvl) dzx

Bor/m
Bar/m

When (4.51), is in force, we use (4.57). On the other hand when (4.51), is
in force, we use (4.58). In either case, combining (4.45), (4.57), (4.58) and
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(4.59), we conclude that (4.54) holds. O

We next choose 6 in terms of data and M so that if (4.52), holds, then
we have a change of scale.

Lemma 4.4. There exists a positive number 0 := 0(data, M) such that if
(4.52), holds, then we have

]{9 g(|Dul) dz < cg(\) Yk € [L/M, M] (4.60)

for some constant ¢ > 0 depending only on data.

Proof. Note that

f spupds
Bakr

(2.19)

< c][ |A(Du)| dx
Bakr

< e ]i (D) — (A(Du)) | d
+ cl(A(Du>>32MR - (A(Du))BzR/M| + C|(A(Du))B2R/M|
< e ][B LA(DU) — (A(Du)) | de

ny ][ JA(DU) = (A(Du)) gy do + ¢l (A(D)) 3y |
Bor/m

IN

c K%) + M?ﬂ] ]{3 TA(D) ~ (ADW) ]

+ ¢|(A(Du))

(4.52),
S C* (1 +M2n9>

Bor/m |

(A(Du)) (4.61)

B2R/M‘ )

for some constant ¢* = c¢*(data), as k € [1/M, M]. We choose ¢ > 0 small
enough depending only on data and M so that ¢*M?"0 < 1. Then, we finally
observe that

(1.2

(4.61) ) (4.50)
£ aDuhds S AAD ] < o g(Dud S
Bakr Bor/m

cg(N).
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This completes the proof. O]

In the following lemma and Remark 4.6, we show that it is possible to
choose parameters o; and M in terms of data simultaneously so that as-
sumptions of Lemma 4.1 are satisfied when (4.52) is in force.

Lemma 4.5. Let § = 0O(data, M) be a parameter determined in Lemma
4.4. Then it is possible to choose oy = o1(data, M) € (0,1/2") and M =
M (data) > 8 so that if (4.52) is in force, we have

A
C
and
A , :
— < |Dv| in Bsgyy and |Dv| < c, A in Bp, (4.63)

G
for some constants ¢, ¢,, c; and ¢, depending on data.

Proof. We first note that ¢g7'(-) and g(-) are increasing, to discover

(3.29)
sup D3] 2 eg? (][ gumndx)
Bur

Burrry2
(2.11)
< cgt (c][ g(|Du|)dx+c][ g(|D2~J—Du|)dm)
Bur Bur

< cg? (c]im g(|Dul) dx) +g7! (c]{gm g(|D% — Dul) d:z:)
g (]{BMR 9(|Dul) dﬂf) +egt (]éMR 9(|D — Dul) dw)

(4.60)
< cA+cg! (][ g(\D@—Du])d:c)
Bmr

(4.43) - 1 |p|(Banmr)
< )\ 1 2n 1
< eneg ! (2 G

(4.52),
< e tegT (g(V) <@,

for some constant ¢; = ¢y(data). Taking ¢, := ¢;, we have the upper bound
of (4.62).
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Now, let us prove the lower bound of (4.62). By (1.2),, (2.19) and (4.50),
we have

I < (| ADW) )5,y < 29N (4.64)

C2

for some constant ¢y := co(data) > 0. Also, observe that

(IA(DO)) Bopynr =

—~

|A(DW)]) Bypjns = [(ADV)) By s — (ADU)) By |
- ]{9 |A(D?) — A(Du)| da. (4.65)
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But then,

][ |A(D?) — A(Du)| dz
Bor/m

(2.20)

IN

c][ g’(|D6|)|D6—Du|dm+c][ o(|Dé — Dul) dz
Bor/m Bor/m
< cMQ”][ 4/(IDO))|D¥ — Dul da

Bunrry2

+ CM%][ o(|D¥ — Dul) dz
Buyr
(4.62)
2 Mg\ ][ Db — Dul dz + cM2”][ o(|Dé — Dul) dz
Bur B

MR

(4.44) . ez . 3
< Mg’ (\)g ™t (%) + eM? ]{3 g(|D? — Dul) da
MR

(4?) Mg (N)g ! (2n—1!H|(BQMR)> 4 M (|u\(B2MR)>

(2MR)"1 (2MR)"!
@8 . (|ul(Barr) on ( 1#](Banr)
< eM*g'(\)g (W)HM (W)

(4.52),
<M ’(A)g’1 (a19(N)) + cM*a19(N)

(2.8) ) 1
< cM”( A (>\)+019(/\))

(1.3)
< 621M2n ( RER —f—O'l) g(A) (466)

for some ¢g; = ¢y1(data) > 0. We choose 01 = 01(data, M) small enough to
satisfy

021M2n ( 2t —f-O’l) < —. (467)

Combining (4.65), (4.66) and (4.67), we have

(AD?),,, =2
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This implies that there exists a point Zg € Byg/y so that

g(N) < |A(D3(%0))] (%2) Lg(|Dv(Z0)|),

262

equivalently, there exists ¢3 := c3(data) > 0 satisfying

S [0 -
< g ') < ) )
A < g <2L02) < |Du(Zo)] (4.68)

By (3.30), we observe that for any &, %y € Bag,

c (4.62) &\

Ditan) = Dila)| < 57z . gDiNdr < 55

for some positive constant ¢, := E*(data), where « is given in Lemma 3.1.
Choosing M > 8 large enough to satisfy
07 1
Mz(@), (4.69)
C3
we find that for any Z € Bspg,
o o o o (469) G\ (469) ¢\
|Dv(z)| > |Dv(Zo)| — |DO(Z) — DO(Zo)| > c3A — e > -

Indeed, since «, ¢, and c3 only depend on data, it is possible to choose large
M > 8 only in terms of data so that (4.69) is true. Setting 1/¢, := c3/2, we
have the lower bound of (4.62).
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Now, we prove (4.63). To this end, observe that
(3.29)
sup Dl S e (f g(0ua)
Br Bar
(2.11)
< cg? (c][ g(|Du|) dx + c][ g(|Dv — Dul) dx)
Bogr Baor

(2.8)
< cg! (][ g(\Du|)d:c) +cg ! (][ g(|Dv — Du\)dm)
Baor Bagr

(4.60)
< cA+cgt (][ g(|Dv — Dul) dx)
Bar

(4é5) X+ cg! (Mn—l |M|(B2MR)>

(2MR)™1
(4.52), U

< eA+cg (M og(N))
(2.8) - 1

n-1 Lo
< ed+cMn-to2Tt A

n—1 1
< (1 + Mﬂ—101721> A
for some constant ¢y = ¢4(data). If we choose oy := oy(data, M) > 0 small
enough so that

n—1 _1
@M)n o2 <1, (4.70)
and set ¢, := 2c¢4, then the upper bound of (4.63) follows.
To prove the lower bound of (4.63), we proceed as in (4.64)-(4.65) using
v instead of v to have

g(N)

Cs

(IADV)) Biys 2

— ][ |A(Dv) — A(Du)| dx, (4.71)
Byr/m
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for some constant c¢; := cs(data) > 0. Then one can find

][ |A(Dv) — A(Du)| dx
Byr/m

(2.20)
z c][ 4/(IDv))|Dv — Dul dz + c][ o(|Dv — Dul) dz
Byr/m Byr/m
(4.63)
< cM”g'()\)][ |Dv—Du|dw+cM"][ g(|Dv — Dul) dz
Bop Bagr
(4.45) - 1 |pl(Bawr) 1 (11l(Bawr)
< M™ I)\ 1 M™ 1 M2n 1
< eMg(Ng < @MRy—) "¢ (2MR)"™!
(4:52)2 / -1 -1 2n—1
< eMMgd(Ng Tt (M oig(N) + M  ag(N)
(2.8)

o1
< M2 g (NA 4 e M o))

(1.3) -
< M o2 g(N)

for some constant cg := cg(data) > 0. Note that we have used the fact that
M >> 1 and o7 < 1 in the last line. If we choose 0, := oy(data, M) > 0
small enough such that

1
L 1
M7 lgrt < — 4.72
Cg 01 =~ 2057 ( )

then it follows from (4.71) and (4.72) that

(AD) )5y = LY

Byr/m = 25 :

This implies that there exists xo € Bygr/um so that

g(N)
205

< [A(Dv(x0))| < Lyg(|Dv(xo)])-

In other words, we have

(28)  _ Q(A)
< 222 ) < | D
oA < g (2 05) _\ v(:r;o)|
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for some constant ¢; := cz(data) > 0. From (3.30), we observe that for all
x1, %2 € Byrur,

) Ce
Mo’

(4.63
Do(a1) — Do(as)] < %][ Dol dz <

Bar

By choosing M > 8 large enough to satisfy

M > (20*) : , (4.73)

Cr

we find that for all x € Byg/n,

A e
|Du(z)| > | Du(z0)| — | Du(x) — Do(zo)| = erh — fm > %
By taking 1/¢; := ¢7/2, we obtain a lower bound of (4.63). O

Remark 4.6. (Choice of M,0 and o1) It is worth reminding how each con-
stant is chosen. By Lemma 4.4, we are able to choose 0 in terms of data and
M. We then choose o1 := o1(data, M) € (0,1/2") that satisfies inequalities
(4.67), (4.70) and (4.72). Next, we choose M := M (data) > 8 to satisfy
both (4.69) and (4.73). Since M is determined only in terms of data, both 0
and o1 are also determined only in terms of data. Moreover, inequalities in
Lemma 4.4 and Lemma 4.5 hold with the constants depending only on data
as well.

Once the parameters 0,07 and M are chosen by data as in Remark 4.6,
Lemma 4.3 implies that under the assumption (4.51), Lemma 4.2 holds.
Therefore, we are left to prove Lemma 4.2 under the assumption (4.52).

74



CHAPTER 3. MAXIMAL DIFFERENTIABILITY FOR A GENERAL
CLASS OF QUASILINEAR ELLIPTIC EQUATIONS WITH
RIGHT-HAND SIDE MEASURES

Indeed, we have

() o (i)

2.8 n— n—
“2 (Qrfl +Mrfl> ! <| |(B2§\4R)1)

(4.52), n-l
< (2M)ntgm (o19(N)
(2.8) n—1 1 (4.70)

< (QM)FO'fQ_l)\ < A\,

which implies (4.47). By Lemma 4.5, we apply Lemma 4.1 to find

]{BM/M \Du — Dol dz < cg():\) (|“|(BMR)) | (4.74)

(MR)"
From this inequality, we find

][ |A(Du) — A(Dv)| dz
Baor/m

Bor/m

(2.20)
Z c][ g’(|Dv|)\Du—Dv|d:€+c][ o(|Du — Do|) dz
Baor/m

(4.63)
< ¢g ()\)][ |Du—Dv|dx+cM"][ g(|Du — Dv|) dx
Baor/m

(4.74)
@45) X [ |pl(Bur) n (|1](B2r)
|1l (Baaer)
< (G "

where we have used the fact that the constant M is determined only by data.
This inequality (4.75) implies that (4.48) holds under the assumption (4.52).
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Finally, we have

D
sup ][ —|ThA( V)l dx
Br/um

0<|h|<R/(8M) |h|
1
(3.39) 2
< £ sup g’(|Dv|)(][ |Dv — 2| d:c)
R 2R/M Bor/m

(463) cg' ()2

LI Do+ b Do )
Bor/m

(2.16) cg/(\)3 3

S A <][ |V(Dv)—V(z0)|2dx>
R Bor/m

(331) ¢/ (\)2

2 g ][ V(Do) - V(z)| da
R Byr/m

(2.16) ¢q'(\)2

< >2][ §/(|Dv] + | 2]) | Dv — 2| da
R Byr/m

(4.63) ¢ )

< % g (IDv| + |z0]) | Dv — 20| da
Byr/m

(2.17) M2

< S D) - A e (4.76)
R Baomr

for any zp € R™. Since (2.16)-(2.18) imply that A(-) is a locally bi-Lipschitz
and monotone vector field, for any vector y, € R™, there exists a unique z sat-
isfying A(20) = yo. Therefore, setting 2y € R" so that A(z) = (A(Du))p,,
in (4.76), inequality (4.49) follows.

5 Proof of the main theorem

In this section, we finally prove Theorem 1.1. For the simplicity of the nota-
tion, we set K = 2M? > 128 and consider the following equation

{—div A(Dv) =0 in By gp

v=1u on 0By zr
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for a ball satisfying Bxgr CC (2. Then by Lemma 4.2, we obtain the following
inequalities:

]{3 |A(Du) — A(Dv)| dx <cR° ]{9 |A(Du) — (A(Du)) , | dx
and
sup ][ AL G & | ADu) - (A(Dw), |de
o<ini<r/s B, M R JByyn Bakr
vo (B

Once these inequalities are obtained, we are able to complete the proof of
Theorem 1.1 with the same spirit as in [2, Section 6].

5.1 Scaling and limiting process

To prove Theorem 1.1, it is enough to show that the inequality (1.6) holds
under the assumptions that g € L>°(Q) and u € WH%(Q). To be precise, let
{uptren C WHE(Q) be a sequence of approximations satisfying Definition
2.4 and {p}ren C L®(Q) C (WHE(Q))" be a sequence of functions that
converges to pu weakly® in the sense of measures. For a fixed ball B CC
and a fixed number o € (0,1), we have

§ o[ D) AU,
Brys J Brya |z — y|nteo

2 24
< lim 1nf][ / [A(Du(r)) = AlDur(y))] dx dy
Bry2 ¥ Bry2 |(L‘

k—o0 — |n+0

(1.6) B
< limsupﬁ |A(Duk)|dx+hmsupR (‘Mk’( R)>

k—oo Br k—o0 Rn 1

< & f, MOl +R0<|“]|%i3f)).
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Therefore (1.6) holds for a SOLA u to (1.1) under the assumptions (1.2) and

(1.3).
We now introduce a scaling and normalization argument. Take
1 B
H:=g"! (][ |A(Du)| dx + |Bgl|™ Ll R))
Br | Br|
and define
ﬂ(i’) — U(JJ() + RJ?) ’ ﬂ(i’) — R/L(l’o + RJJ)’
HR g(H) (5.77)
Ale) = AU gy o 0D |
g(H) " g(H)

for z € By,z € R",t > 0. From a direct calculation, we observe that /l()
satisfies the structure assumptions (1.2) and (1.3) with g replaced by g, see
[7, Lemma 5.1] for details. Moreover,

. (B
g |A(D@)| dx + | B, n% =1, (5.78)

and @ € WH9(B) is a solution of
—div A(Di) = fi.
We recall the Definition 2.2 and use (5.77) to find

~ N (R/Q)U_n [A<Du)]W”’1(BR 2)
[A(Du)] Wel(By /5) - 9(H) -

Therefore, we are left to prove that for all o € (0, 1),

ADW]yos 5, ) = ]i ) /B ) IA(DU(é))_— AU 3 40 <

y|mte

for some constant ¢ = ¢(data, o) > 0 under the assumption (5.78).

5.2 Iteration and conclusion
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Let €,€Q” be two open subsets of B; satisfying ' cc Q" C B; with
d := dist(€), 992") > 0. We then define a real-valued function

wo=(-55) =)

for t € [0,1]. From a direct calculation, we have

0<t<l < t<w(t)<l, wl)=1 and '(t)>0. (5.79)

Now we show a fractional differentiability from a bootstrap result.

Lemma 5.1. Suppose that A(Du) € WHH(Q") for some t € [0,1) with the
estimate [A(Du)]wm(g,,) < ¢; for some positive constant c;. Then it follows

that A(Du) € WHH(QY) for all T € [0,w(t)). Moreover, there exists another
constant ¢y := cy(data, d,t,c;) > 0 satisfying

[A(DU)]WE,l(Q/) < . (580)

Proof. We first take h € R™ small enough to satisfy

d \? 1
< mi =: .
0 <|hl < min { (1024[() ’ 1024[(} b <d

Here, 5 € (0,1) is a small number which will be determined later. Then we
choose an open ball B := By, s(r9) CC Q" with 29 € . Then by (5.77)
and (5.77), we have

/B mhA(Du)| dz

< C/B | A(Dv)| dx + C/2B |A(Du) — A(Dv)|dx

(5.77) T A(Dv

+ c|h|ﬁ(1_5(72‘2))\u(KB)|

dx + c|h|*? /KB |A(Du) — (A(Du)) i g | da

(= + 1) /K ADu) = (A(Dw) | da

+e (|h|1—65(72—2) + |h|5(1—5("/2—2))) \1(K B)|.
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We set 6 =1 — [ to see that
|h|1—6 < |h|(1—6),3 and |h|1—6(1—6)(72—2) < |h|5(1—(1—ﬂ)(72—2))_
Then we find
/B | A(Du)| dx §c|h|(1_5)ﬂ /KB |A(Du) — (A(Du)) x5 | d
+ c]h|ﬁ(1_(1‘ﬁ)(72‘2))|u(KB)|.

To proceed, we define
po(B) =Iu|(B /|ADu|dx
A(D
pe(B) =|po| (B //| \x— ‘nft ())|d:cdy (t > 0).

Note that o is a measure but pu,; is not. However, p; is still a countably
super-additive set function, i.e.,

CEA (VLY

whenever {B;};c; is a countable family of mutually disjoint Borel subsets.
By the fractional Poincaré inequality (2.21), we get

(5.81)

/K (D) = (A(DW) | do
e A(Du(x)) — ADu(w)|
< el /KB/KB |x_ ey (5.52)

Combining (5.81), (5.81) and (5.82), we have

5.81

(5.81)

(5.82) A(D D
/|ThA(Du)|dx < c|h|(1_5)ﬂ+5t/ / u(z)) = Al u(y))|dxdy
B KB

’nth

e 2)|M(KB)|

(5:8)
< e (|p A g || D0 |y (K B)).
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At this stage, we choose > 0so that S(1-08)+pt =0(1 — (1 —5)(12—2)).
From a direct calculation, we have

s — 241

By = 2= and w(t) = BE)(1 = (L) + SO

which implies
/ I A(Du)| da < c|h|*D (K B). (5.83)
B

Now, we use a covering argument. For each vector h € R™\ {0}, we cover
Y by a family of cubes {Q;}:c; that have sides parallel to coordinate axes
and the side length equal to %. For each ();, we choose the smallest open
ball satisfying Q; C B;. Then, {B;};c; covers 2. Moreover, K B; intersects
only finite numbers of K B; with j # ¢. The maximum number of intersection,
say H, is determined by K and n. Since K depends on data, so is H. Using

(5.78), (5.81) and (5.83), we have

/ |7 A(Du)| dx < Z/ |Th A(Du)| dx < Zc|h|w(t),ut(KBi)
i il 7 Bi icl
< M| (Q) < b
for 0 < |h| < d;. Finally, (5.80) follows from Proposition 2.3. O

We are now in position to show Theorem 1.1. Define two sequences
{8k tren and {tj }ren inductively by

s1i=w(0)/4,  sp1=w(sk),
t1:=w(0)/2, trp1 = (w(te) +w(sy)) /2.

Using (5.79), it is straightforward to show that
S < tp < 1, 1 < w(tk) and Sk, Uk /‘ 1 as k — oco.

We now apply Lemma 5.1 with #, iteratively. For any ¢ € (0,1) and for some
e € (0,1/2), we choose k € N large enough so that ¢tz > ¢ and consider a
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sequence of shrinking open balls satisfying

Bi..cc B*cc B*'...cc B®:= B, with dist(B*", 0B") ~¢/k.

Then by the assumption (5.78), we have p(B°) < ¢ for some positive con-
stant ¢y depending on data. Then according to Lemma 5.1, p1(B") < ¢g for
some cg = cg(data, e, k). By the iteration, we have

pe (Bi—2) < i (B¥) < g

for some ¢y = co(data, e, k, o). We first take e = 1/4 and use the fact that k
is determined by o. Then Proposition 2.3 and (5.81) yield

[A(Du)]wvvl(Bl/Q) < cio

for some ¢;p = cjp(data, o). Using a scaling and normalization argument
explained in Subsection 5.1, we complete the proof of Theorem 1.1.
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