creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Regularity results for fully
nonlinear equations with oblique
boundary conditions and
time-dependent tug-of-war games

(A9 AAZAL ZH= ol HlAg B34 2
AzHIE Zrhel7] A7) AHA)

20214 2¢



Regularity results for fully
nonlinear equations with oblique
boundary conditions and
time-dependent tug-of-war games

(AR BAZAE Z= Sd v Aag P34 9
AZHOE E027] 3719 FAA)
AER5 & 4
o] LEE ofstutAl SAS|EBoR AST
20204 10
A5t st
e ELA
Ll ol
AR o]y 9B Az
202049 129

a9 a8 Ol 2% e

magaxg O 1 4 @ »M/,:L—A]
A A /1/( i LCD V Vi (o) ’1/’:73% /;X\/ s
‘?‘] '?E]. 7/4 Egl_: 7/ 76'/\/

a a 7 ;

o % 1\, 4 %\v

] S-rf] 83



Regularity results for fully
nonlinear equations with oblique
boundary conditions and
time-dependent tug-of-war games

A dissertation
submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

to the faculty of the Graduate School of

Seoul National University
by

Jeongmin Han

Dissertation Director : Professor Sun-Sig Byun

Department of Mathematical Sciences

Seoul National University

February 2021



(© 2021 Jeongmin Han

All rights reserved.



Abstract

Regularity results for fully
nonlinear equations with oblique
boundary conditions and
time-dependent tug-of-war games

Jeongmin Han

Department of Mathematical Sciences
The Graduate School
Seoul National University

In this thesis, we deal with two different types of problems related to nonlinear
partial differential equations. One is the oblique derivative problem and the
other is the tug-of-war game.

We study fully nonlinear elliptic and parabolic equations in nondivergnece
form with oblique boundary conditions in the first part. Our boundary condi-
tion is a generalization of the Neumann condition. We derive global Calderén-
Zygmund type estimates under a minimal boundary regularity assumption.

In the second part, we study a stochastic two-player zero-sum game which
is called tug-of-war. In particular, we consider time-dependent games. We
show global Lipschitz type estimates for value functions of such stochas-
tic games. Furthermore, we also investigate their long-time asymptotics and
PDE connections as applications.

Key words: Regularity, viscosity solution, fully nonlinear equation, oblique
derivative problem, tug-of-war, dynamic programming principle
Student Number: 2014-21193
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Chapter 1

Introduction

This thesis is based on the papers [8, 9, 28, 29]. The aim of this thesis
is to study regularity properties for oblique derivative problems and tug-
of-war games. More precisely, we first obtain global Calderén-Zygmund type
estimates for fully nonlinear elliptic and parabolic equations in nondivergence
form with oblique boundary conditions. We also derive regularity results and
other properties for value functions of time-dependent tug-of-war games with
noise.

Oblique derivative problems for fully nonlinear equations

The Neumann boundary condition is one of the most common types of bound-
ary conditions for partial differential equations along with Dirichlet boundary
condition. In the Neumann problems, boundary conditions are given by the
normal derivative of solutions. Then one can have the following question:
What happens if other directional derivatives are given as boundary data?
Oblique derivative problems are considered to deal with such cases.

The word ‘oblique’” means ‘having a sloping direction’. Literally, we con-
sider the case when the boundary condition is given by oblique directional
derivatives of solutions. In general, an oblique boundary condition is taking
the form of

B Du+~yu =g, (1.0.1)

where v and ¢ are real-valued functions defined on the boundary of a given
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domain, and [ is a vector-valued function defined on the boundary with

for some ¢y > 0 and the inward normal vector n. We note that (1.0.2) repre-
sents that the slope vector 8 makes an angle more than some level with the
boundary of the domain. We can see that Neumann condition is the case of
f=mnand vy =0.

Since the oblique boundary condition is a generalization of the Neumann
condition, approaches to oblique derivative problems are essentially no differ-
ent from those of the Neumann case. In these problems, the explicit boundary
values of our solution are still unknown. We only know the condition (1.0.1)
which our solution satisfies. Thus, as Milakis and Silvestre mentioned in [59],
it is wise to think that the oblique boundary condition is a part of the equa-
tion.

The theory for oblique derivative boundary value problems has been de-
veloping over the past decades. Winzell |79, 80|, Lieberman [43, 44, 45, 46,
47, 48] and Ural’tseva |73] presented noteworthy results for oblique derivative
problems. We also refer the reader to |26, 49, 60, 68, 21, 20, 57, 58, 61, 69|
for further discussion on this topic. Several applications of oblique derivative
problems can be found in [19, 4, 25].

The notion of viscosity solutions suggested a new paradigm to study par-
tial differential equations. In particular, it promoted the development of re-
searches on PDEs in nondivergence form. Fundamental properties of viscosity
solutions to fully nonlinear elliptic equations were presented in [12, 11, 10, 33|
and Wang extended these results to the parabolic case in [75, 76, 77|. For
oblique derivative problems, Ishii [32] studied the existence and uniqueness
for the elliptic case. In the parabolic case, such issues were covered in [34].
Meanwhile, much progress has also been made on the regularity theory.
Milakis and Silvestre [59] established C*®- and C**-regularity for elliptic
Neumann problems. We can find such regularity results for general oblique
derivative problems in [42] by Li and Zhang. Chatzigeorgiou and Milakis [16]
presented similar estimates for the parabolic case.

Tug-of-war games with noise

Probabilistic approaches for PDEs were first considered by Doob, Kac and
Kakutani in [38, 39, 36, 37, 22]. They studied the connection between Brow-



CHAPTER 1. INTRODUCTION

nian motion and Laplacian. Such interpretation opened up a new direction
in comprehending PDEs. Since then, various probabilistic views for more
general equations have been discussed. Tug-of-war game, which will be con-
sidered in this thesis, is also one of these schemes. This game interpretation
is closely linked to p-Laplace type equations.

In the study of tug-of-war games, we are interested in the expectation
of game outcome, which is called the game value function. A dynamic pro-
gramming principle (DPP) is a key tool to investigate game values. In many
cases, the game value satisfies a DPP which arises from the game settings.
Thus, we can examine value functions by dealing with the corresponding
DPP. Various issues for game values, such as existence, uniqueness and reg-
ularity, can be investigated through studying related DPPs. On the other
hand, such approaches using DPP also play an important role to look into
the relation between tug-of-war game values and p-Laplace type equations.
We can regard the DPP linked to tug-of-war games as a discretization of the
p-Laplacian.

For 1 < p < oo, the p-Laplace operator is defined by

2
Ayu = div(|Du|'"2Du) = | Du[P~2 (Au +(p— 2)%)—“|’2M). (1.0.3)
u

Here we focus on the term

(D*uDu, Du)

Au+ (p—2) Duf?

—. AN
=: A u,

not including the scaling factor |Du[P~2. The nonlinear term

2
(D*uDu, Du) _ ANy,
| Dul? >
is called the (normalized) oo-Laplace operator. We observe that Aév is rep-
resented by a linear combination of A and AY. In [64], Peres, Schramm,
Sheffield and Wilson dealt with a game interpretation for co-Laplacian by
using tug-of-war. For a general p-Laplacian, Peres and Sheffield [65] studied
the connection with tug-of-war including noise.
A lot of progress has been made on the studies of tug-of-war games and
their related problems in the last decade. In [40, 53, 54, 55|, several types
of mean value characterization for solutions to p-Laplace type equations. We
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can also find the existence and uniqueness results for functions satisfying
DPP related to elliptic p-Laplace equations in [52, 30|. For regularity is-
sues, we refer to [51, 67, 62| which considered Harnack inequality for game
values. Arroyo, Heino and Parviainen established Holder type estimates for
space-varying time-independent games in [2]. Lipschitz type regularity for
such games was discussed in [3|. For time-dependence games, which is cor-
responding to parabolic equations, regularity estimates were presented in
[53, 62]. We also refer the reader to [15, 6, 1, 24, 56, 41] for further discus-
sions on tug-of-war games.

The reminder of this thesis is divided into two parts. The first part,
Chapter 3, deals with W?2P-regularity theory of oblique derivative problems
for nondivergence elliptic and parabolic equations. Precisely, we will obtain
global Calderén-Zygmund estimates for fully nonlinear elliptic and parabolic
equations in nondivergence form with oblique boundary conditions. In both
cases, we first establish boundary Hessian estimates for oblique derivative
problems when the equation does not contain lower order terms. After that,
we consider boundary W!P-regularity for general equations in order to reach
the desired regularity. To this end, we get an estimate for boundary data and
apply this result to the Dirichlet case. Finally, we obtain the global regularity
results by using a standard flattening argument. We note that the preced-
ing results [42, 16] for the model problems are essential to deduce our main
results. We also refer to [78] which investigated elliptic Dirichlet problems.

In the second part, Chapter 4, we are devoted to the study of the value
function for time-dependent tug-of-war games. First, we prove the existence
and uniqueness of value functions. We also show that the value function sat-
isfies a DPP, (4.0.1). We next investigate regularity theory for game values.
For the interior regularity, we present Holder and Lipschitz type estimates for
our value function. To do this, we first derive an estimate in the time direc-
tion. The method used to show this estimate is motivated from the study on
parabolic PDEs (see [35]). On the other hand, in order to establish regularity
estimates in the spatial directions, we utilize the cancellation argument intro-
duced in [62, 2, 50, 3|. It is remarkable that we need Hélder type regularity
result to derive Lipschitz type estimates. In the boundary case, we estab-
lish several estimates when the given boundary data is Lipschitz continuous.
For this purpose, we derive proper estimates for the exit time of our games
by considering an auxiliary stochastic process. In addition, we provide some
applications of our results. We investigate long-time behavior of our value
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functions and observe the connection with time-independent games. And we
also present uniform convergence results for value functions to solutions of a
parabolic p-Laplace type equation when the step size goes to zero.



Chapter 2

Preliminaries

2.1 Oblique derivative problems

2.1.1 Notations

We start this section with some notations, which will be used throughout
this dissertation.

1.

For x = (z1, %2, ...,2,) € R", we write ' = (21, x2,...,2,-1). We also
write z = (2, z,,).

S(n) is the set of n x n symmetric matrices and ||M|| = sup,<; |Mz|
for every M € S(n).

. RY i ={z eR": 2, >0}

For g € R" and r > 0, B, (%) := {z € R" : |x — x¢| < r}. We write
B, = B,(0) and B} = B, NR".

We write B,., = B,(—(R— h)e,), where R satisfies (R —h)?+1? = R
We also write B}, = B, "R

We write T, = {(2/,0) € R*™' : |2/| < r} and T,(z}) := T}, + x}, where
zy € R

Qr(z0,t0) := Br(x0) X (to—1%,10) and Q;f (w0, to) := B, (x0) x (to—1?, 10)
for (zg,tp) € R" x R and r > 0. @, = Q,(0,0) and Q;F = Q(0,0).
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10.
11.
12.

13.

14.
15.
16.
17.
18.

19.

20.

21.

Q' 5(wo, to) := B s(x0) X (to — 1% + 6%, ), Q)5 = Q;5(0,0) (only used
in Chapter 3).

Vh (0, t0) := B, (o) X (to — 1%, 10), V.3, = V,5.(0,0).

V:;L?(;(;Eo,to) = B:fts,hf&h/r(x(]) X (to —r* 4+ 9%, 10), V;J,?L,& = Vrj?L,a(O’ 0).
Qr (w0, to) = Tr(wo) x (to — 12, %0), @r := Q5(0,0).

K¢ = (-r/2,r/2)% for r >0 and d =n —1 or n, K¢(xg) = K¢ + x.

For |v| < r, we write QY = Q,(0,0) N ({x, > —v} x R). We also write
Q7 (0, 10) = Q + (o, to).

Qs = Qrs(0,,0) N (R} X R), Q7 5(z0,t0) = Q75 + (0, to)-

Q) is a bounded domain of R™, n > 2, and 0f2 is the boundary of €.
Qr =Qx(0,7) and Sy = 9Q x (0,T) for T > 0.

For U C R" x R, 9,U is the parabolic boundary of U.

For U C R x R, we write rU := {(rz,7*t) e R" x R : (x,t) € U} and
rU(z,t) :=rU + (x,t).

We denote the time derivative, gradient and Hessian of v by w;, Du =

(Dyu, - -+, Dyu), and D?u = (D;ju), respectively, where D;u = g—z and
2 ..
Djju = 825& for 1 <4,j5 <n.

For each set U C R"™ (U C R"™ x R, respectively), |U| is the n-
dimensional ((n + 1)-dimensional, respectively) Lebesgue measure of
U.

Let U be a set in R™ (R™ x R, respectively) with |U| # 0, and f be a
measurable function on U. Then we write

]{]f(x)dx:ﬁ/ljf(m)dm <]{]f(x,t)dxdt:|—[1]|/Uf(x,t)dxdt).
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22.

23.

24.

25.

Let Q C R™. If a function w is continuous in 2, we write u € C'(€2). The
C-norm of u is given by

||ulle) = sup [u(z)].
€N

If Du (D?u) is continuous in €, we write C*(Q) (C*(), respectively)
and
luller@) = llullow) +[[Dullo),

ul| 2y = ||ullcr@) + [|1D*ul|c@)-
If a function v satisfies
lu(z) —u(y)| < Clo —y|*®

for any z,y € Q and some 0 < a < 1 and C > 0, we write u € C%*(Q).
The C%“norm of u is given by

[u(z) — u(y)|
u 0, = ||u + sup
[lullco.a@) = lullew) S = — g
TFY

= ||ullc@) + [u]coa ()

If a function u satisfies that Du is a-Hdélder continuous in x, we write

u e Ch(Q).

- |Dyu(z) — Dyu(y)|
[ullcreq) = [|ullcr) + E sup
() () & ey z — y|o
TFY

= ||u||cl(Q) + [u]c1,a(9).

If a function wu satisfies that D?u is a-Hélder continuous in z, we write
u € C?%(Q). The C**norm of u is given by

n
|[uflc2e ) == ||u||C2(Q) + E sup -
ij—1 TYEL |z =yl
’ TFy

= ||ullc2(q) + [u]c2aq).
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26.

27.

28.

Let 1 < p < co. If a function u satisfies that

/ |u(z)Pdz < oo,
Q

we write v € LP(2). The LP-norm of u is given by

1/p
lall ooy = ( / |u<as>|pdx) |

In addition, if a function u satisfies that

esssup |u(z)| < oo,
e

we write v € L*>°(Q2) with its norm

|[u]| Lo () = esssup [u(z)].
€S

If a function u satisfies that u, Du € LP(f2), we write u € W1P(Q). The
WP_norm of u is given by

1/
[ullwreq) = (HuHZZ,P(Q) + ||DuHiP(Q)) g

Moreover, if a function w satisfies that u, Du, D*>u € LP(Q), we write
u € W?P(Q). The W?P-norm of u is given by

1/
lullwee() = ([ullfaq) + 1 Dullfog) + 1Dl )

Let Q C R™ x R. If a function w is continuous in €2, we write u € C(€).
The C-norm of w is given by

lulle) == sup [u(z,t)].
(z,t)eQ

If Du (D?u and u;) is continuous in €2, we write C*(Q) (C?(f2), respec-
tively).

uller) = l[ullew) + [|Dullow,
ullc2@) = lJuller@) + |Juellow) + [1D*ullew)-
9

.-';r'\-\.-'! -k::l - 1_] ."‘.l'l
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29. If a function u satisfies
u(z,t) —uly, s)| < C(lz —y|* + |t — 5|*7?)

for any (z,t), (y,s) € Q and some 0 < < 1 and C' > 0, we write u €
C%*(Q). (i.e, uis (a/2)-Holder continuous in ¢ and a-Hélder continuous
in ) The C%*-norm of u is given by

|U(I’, t) _ u(ya 8)|
lulloveior = llulloy +_ sup
@ @ (z,1),(y,5)€Q |z —yl*+ |t — <9|O‘/2
(z.1)#(y,s)

= ||ulle@) + [u]coa@).-

30. If a function w is ((1+«)/2)-Holder continuous in ¢ and Du is a-Holder
continuous in x, we write u € C1*(Q).

|U(l’7t) _ U(J}, 8)'
[t — s|0Fa)/2

lullcre) = [lullcr@) +  sup
(x7t)7(x7s)eg
t#s
_ Diu(z,t) — Du(y, s
+ Z sup | ( a) (ya/z)’
=1 (xvt)r(yvs)EQ Il‘ - yl + |t - S|
(z.t)#(y,s)

=: HUHCl(ﬂ) + [u]cl+a(ﬂ).

31. If a function u satisfies that u, is («/2)-Holder continuous in ¢ and D*u
is a-Holder continuous in z, we write u € C%%(). The C**-norm of u
is given by

Jui(,t) = wi(z, s)|

U||o2.a(Q) = ||U||c2() + sup
[|ullc2o) [lulle>(@) (20) (@e)ea | T — Yo + [t — s|o/?
t#s

n i sup | Diju(z,t) — Diju(y, s)|

Lo en@aen [T =yt A+ |t — |0
I e ) s)

=: HuHca(Q) + [u]cz-o-a(g).

10
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32.

33.

34.

Let 1 < p < co. If a function u satisfies that

/ lu(z, t)|Pdzdt < oo,
0

we write u € LP(2). The LP-norm of u is given by

1/p
|[ullLe @) = (/ |U(x,t)|pdxdt> .
0

In addition, if a function u satisfies that

esssup |u(z,t)| < oo,
(z,t)EQ

we write u € L>(2) with its norm

|[ul[po(@) == esssup |u(z, 1)].
(z,t)EQ

If a function u satisfies that u, Du, € L?(Q), we write u € WP(2). The
WP_norm of u is given by

v
lullwro@) = (Il + 1 Dullfaq)

If a function u satisfies that u,u;, Du, D*u € LP()), we write u €
W?2P(Q). The W%P-norm of u is given by

1/
lullweriy = ([ullfaq) + el + 1Dull} o) + [1D?ullq) ™

2.1.2 Elliptic equations

Second order differentiability
Let V.C Q, M >0 and u € C(Q2). We define

G (u, V)={zo € V|there is a concave paraboloid P with opening M such

that P(z0) = u(zg) and P(z) < u(x) for any z € V'}

11
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and

Using convex paraboloids, we can define G s (u, V') and Ay, (u, V') analogously.
And we also define

Gu(u, V) =Gy (u, V)N G(u, V)

and
Apr(u, V) = Ay (u, V) N App(u, V).
Now we set
O(u, V)(z) =inf{M > 0: 2 € G,,(V)},
O(u, V)(x) =inf{M > 0:2 € Gy(V)}
and

O(u, V) (z) = sup{OQ(u, V)(z),O(u, V)(z)}.
We can see that the above notions are closely related to the second deriva-
tives of functions. To obtain second order regularity results, we need to look
at the properties of these sets.

Viscosity solutions

We begin this subsection with introducing the notion of viscosity solution.
First, we introduce Pucci extremal operators.

Definition 2.1.1 (Pucci extremal operator). For any M € S(n), the Pucci
extremal operator M™ and M~ are defined as following:

MT(N, A, M) AZez—i—/\Zezand/\/{ (A, A, M) —/\Ezez—l—Az:eZ

e; >0 e;<0 e; >0 e; <0
where e; are eigenvalues of M.

Consider
LEN A by u) = ME(\, A, D*u) & b| Dyl

for b > 0, respectively.
The following notions are also essential in defining viscosity solutions.

12
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Definition 2.1.2. Letb > 0 and0 < A < A. We define the classes S(\, A, b, f)
(S(A, A b, f), respectively) to be the set of all continuous functions u that sat-
isfy Liu > f(L,u < f) in the viscosity sense in Q. We also define

SANADL f) =S AL f)NSA AL, f)

and

S*()\,A,b, f) = S()"A> b, |f’) ﬂﬁ()\,/\,b, _‘f‘)
When b= 0, we abbreviate S, S, S, S*(\, A, 0, f) to S,S,S,S*(\ A, f).

Now we can introduce the notion of viscosity solution. First, we consider
the case when f is a continuous function.

Definition 2.1.3 (C*-viscosity solution). Let F' = F(X,q,r,z) be continu-
ous in all variables and f € C(QUT). A continuous function uw € C(QUT)
is called a C*-viscosity solution of (3.1.1) if the following conditions hold:

(a) for all p € C*(QUT) touching u by above at o € QUT,
F(D%p(x0), Dp(x0), u(xo), o) > f (o)

when xo € Q and ((xg) - Dp(xg) > 0 when xo € T.

(b) for all p € C*(QUT) touching u by below at xg € QUT,

F(D*¢(0), Dg(o), u(x0), %) < f(w0)
when xy € Q and B(xy) - Dp(z) < 0 when xo € T

We can also define viscosity solutions without continuity assumption for

f

Definition 2.1.4 (W?P-viscosity solution). Let ' = F(X,q,r,z) be con-
tinuous in X, q,r and measurable in x. Suppose p > n and f € LP(Q). A
continuous function u is called a W*P-viscosity solution for (3.1.1) if the
following conditions hold:

(a) For all o € W*P(Q) whenever € > 0, O is open in Q and
F(D*p(z), Do(z), o(z),x) > f(z) +€ ae inO

13
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and  B-Dp(x) >€e ae on ONIQ,

u — @ cannot attain a local minimum in O.

(b) For all o € W?P(Q) whenever € > 0, O is open in Q and
F(D*¢(z), Do(x), p(z),2) < f(x) —¢ a.e. in O

and B-Dp(x) < —e ae on ONI,

u — @ cannot attain a local maximum in O.

2.1.3 Parabolic equations
Parabolic second order differentiability

Similarly to the elliptic case, we first need to characterize paraboloids to
observe second order differentiability.

Definition 2.1.5. Let M > 0. A convex paraboloid P with opening M is
defined by

M
Px,t)=a+1-x+ 7(!$|2 —t),

where a € R and | € R™. We also define a concave paraboloid by replacing
M with —M in the above definition.

Let Q be a bounded domain in R” x R, U C €2 be an open subset of
Q, M >0, and u € C(Q). For s € R, we use the following notation Uy, =
{(z,t) € U : t < s} temporarily. Next we define ‘good set” and ‘bad set’. Let
G (u, U) be the set of points (g, ty) € U which satisfy that there is a concave
paraboloid P with opening M such that P(zo,ty) = u(zo,tp) and P(x,t) <
u(z,t) for any (x,t) € Uy, and Ay, (u,U) = U\G,;(u, U). Analogously, we
can define Gy (u, U) and Ay (u, U) by using a convex paraboloid as a barrier.
In addition, we denote by

Gu(u,U) =G (u, U) N Gu(u,U),

Ap(u, U) = Ay (u, U) U Ay (u, U).

Roughly speaking, A;; can be understood to be a set of points with
‘bad Hessian’. Thus, we need to obtain uniform estimates for its measure to

14
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establish W2P-theory, which will be our main purpose investigated in Section
3.3.
Viscosity solutions

Let Q C R" be a bounded domain, I' C 92 and T" > 0. Consider the following
problem

{ F(D?*u, Du,u,z,t) —us = f in Q,

B-Du=0 on Ty =T x (0, 7). (2.1.1)

As in the previous subsection, we can define a viscosity solution for (2.1.1)
as follows.

Definition 2.1.6 (C?-viscosity solution). Let F' be continuous in all variables
and f € C(Qr UT7). A continuous function uw € C(Qp UT'r) is called a
viscosity solution of (2.1.1) if the following conditions hold:

(a) for all p € C*(Qr UT'7) touching u by above at (zo,ty) € N UT,
F(D*p(x0,to), Dep(x0, o), u(zo, to), 2o, to) — @e(wo, to) > f(zo, to)

when (xg,tg) € Qr and B(xg, to) - Dp(xo,t0) > 0 when (zg,ty) € T'r.

(b) for all o € C?*(Qr UTy) touching u by below at (zo,,to) € Qp U,
F(D*p(x0,to), Dep(x0, o), u(zo, to), Zo, to) — @i(o, to) < f(xo, to)

when (xg,tg) € Qr and (xg, to) - Dp(xo,t0) < 0 when (zg,1) € T'r.

Definition 2.1.7 (W??-viscosity solution). Let F be continuous in X and
measurable in x. Suppose p > n+1 and f € LP(Qr). A continuous function u
is called a W*P-viscosity solution for (3.1.1) if the following conditions hold:

(a) For all p € W?P(Qgr) whenever € > 0, O is open in Qr Ul and
F(D*p(w,t), Dp(x,1), p(x, 1), 2,1) = pu(w, £) 2 f(2,1) + € ae inO

and  B-De(z,t) >€ ae on ONTyp,

u — @ cannot attain a local minimum in O.

15
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(b) For all ¢ € W?9(Qr) whenever ¢ >0, O is open in Qr UTr and
F(D*¢(,t), Dy(w,t), p(x,1),2,t) — pi(,t) < f(z,t) —¢ ae inO

and B Dp(x,t) < —€e a.e. on ONTy,

u — ¢ cannot attain a local maximum in O.

Note that if a function w satisfies the condition (a) ((b), respectively)
in the above definition, we say that F(D?u, Du,u,z,t) —u; > (<)f in the
viscosity sense.

Next we introduce Pucci’s operator and the class S for the parabolic case.

Definition 2.1.8. For any M € S(n), the Pucci extremal operator M™ and
M are defined as follows:

MT(N, A, M) AZ@Z—I—/\Ze,and/\/{ (N A, M) —AZ@Z—I—AZQ
e; >0 e; <0 e; >0 e; <0

where e; are eigenvalues of M. For b > 0 and u be a continuous function in
the viscosity sense, we also write

LEN A, by u) = ME(N A, D*u) & b| Du| — u,.
Next, we present an important concept to understand viscosity solutions.

Definition 2.1.9. Let Q CR" xR , b >0 and 0 < A < A. We define the
classes S(A\, A, b, f) (S(\, A, b, f), respectively) to be the set of all continuous
functions w that satisfy Ltu > f(L~u < f) in the viscosity sense in Q. We
also define

S\ AL f) =S\ AL NS AL, f)

and

S* VAL £) = SO0 A, by 1) NSO AL b, — |,
When b = 0, we abbreviate S(A\, A, 0, f) to S\, A, f).

2.2 Time-dependent tug-of-war games

We start with several notations, which will be used throughout Chapter 4.

16
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2.2
1

10.

11.

.1 Notations

. Let k > 1. For each x = (21, -+ ,2%),y = (Y1, -+ ,yr) € RF,

k
=1

Sl = {z € R": |z| = 1} is the n-dimensional unit sphere.
For v € S"', B” = {zx € B/(0) : (x,v) = 0}.

For each set U C R, dist(x,U) = inf{|z — y| : y € U} is the distance
from x to U.

For each ¢ > 0, we write O, = {z € R™\Q : dist(x,09) < €} and
I, = {z € Q : dist(z,090) < €}. We also write I = O, U I, U 99 and
Q. =QUO..

For e > 0, Iy = {(x,1) € Q x [<,T] : dist(z, Q) < e} U (2x(0,%)),

27 )
Ocr = {(z,t) € (R"\Q) x (0,77 : dist(z,09) < e} U (Q x (—=%,0))
and I'cp = 1.7 U O U 0,Qp. We write Q.7 = Qr U Oer.

For {A;}ier C R, we write
. 1 .
midrange A; = — (sup A; +inf Ai).
icl 2\ el iel

For each (n — 1)-dimensional set U C R™, £" Y(U) is the (n — 1)-
dimensional Lebesgue measure of U.

Let U be an (n — 1)-dimensional set in R” with £*~1(U) # 0, and f be

a measurable function on U. Then we write
1
d n—1 — d n—1 ]
f e @) = g [ rwie@)

Let r, e > 0 be given numbers. We write Q. = B, .(0) x (—r? — é, 0)
(only used in Chapter 4).

Yo ={(x,2,t,8) : x,2 € By, (0), —ar? <t <0, ]t — 5| < %}

17
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12. Ape = By (0) x (t — S, 1]

13. R, ={M € O(n) : Me; = v}, where O(n) is the orthogonal group in
dimension n and e; = (1,0,---,0).

14. We abbreviate
sup

Vg, v,€8™1
(PVx7PVz)€RVac XRVZ

to
sup

Vg,Vz esgn—1

2.2.2 Background knowledge
The time-dependent tug-of-war game

We introduce here the stochastic two-player zero-sum game which will be
considered in Chapter 4.

Let @ C R™ be a bounded domain, 7" > 0 and a,f € (0,1) be fixed
numbers with o + f = 1. We also consider a function F' € C(I'cr). From
now on, we will use the symbol u, to denote a function satisfying the DPP
(4.0.1) in Qr for given F.

Our game setting is as follows. There is a token located at a point
(xo,t0) € Qp. Players will move it at each turn according to the outcome of
the following processes. We write locations of the token as (x1,t1), (22, t2), - - -
and denote by Z; = (z;,t;) for our convenience.

When Z; € Q\I,, Player I and II choose some vectors l/]I-, I/jH € 0B,. First,
players compete to move token with a fair coin toss. Next, they have one
more stochastic process to determine how to move the token. The winner of
first coin toss, Player i € {I,1I} can move the token to direction of the chosen
vector 1/} with probability a. Otherwise, the token is moved uniformly random
in the (n — 1)-ball perpendicular to 1/]Z After these processes are finished, ¢;
is changed by t;,1 = t; — €2/2.

If Z; € I',, the game progresses in the same way as above with probability
1 —96.(Z;). On the other hand, with probability §.(Z;), the game is over and
Player II pays Player I payoft F'(Z;).

We denote by 7 the number of total turns until end of the game. One can
observe that 7 must be finite in our setting since the game ends when ¢ < 0.

18



CHAPTER 2. PRELIMINARIES

Now we give mathematical construction for this game. Let &y, &, -+ be
iid random variables to have a uniform distribution U(0,1). This process
{€i}32 is independent of {Z;}32,

Define C' := {0, 1}. We set random variables cg, ¢, - - - € C' as follows:

o O When gj—l S 1-— 66(Zj_1),
o 1 when 53;1 >1-— 6€(Zj,1)

for j > 1 and ¢y = 0. Then we can write the stopping time 7 by
=inf{j > 0:¢j1; =1}

In our game, each player chooses their strategies by using past data (his-
tory). We can write a history as the following vector

((cor Z0) (1, 21), -+, (c5, ;).

Then, the strategy of Player i can be defined by a Borel measurable function
as S; = {S] ©, with

S? {(co, Zo)} X U(é x Qc7) — 0B(0)

k=1

for any j € N.

Next we define a probability measure ]ngsn natural product o-algebra
of the space of all game trajectories for any starting point Z, € Q.. By
Kolmogorov’s extension theorem, we can construct the measure to the family
of transition densities

TSy, SII<<CO7 ZO) (Cla Zl)? ) (Cj7 Zj); C? Aj-i-l)
:( 0(Z)) 55, ((Zo, Z1, -+, Z); Ajr) Lo (O)L; ({0})
0c(Z)1z; (A (O)Le; ({0}) + Iz, (A5)Le, ({1})
for A, = A x {t,} (A is any Borel set in R* and n > 0) and C' C C, where

local .
SI SII(Z(]? Zl’ T Z]’ A]+1)

1
= 5 [0ty (A1) + Tyt g0 (Aj1))

19



CHAPTER 2. PRELIMINARIES

y Vit
+ % (LY B (Z)) N Aj) + LB (Z) N Ajia) |-

Here, w,_; = L 1(B} ') where B! is the (n — 1)-dimensional unit ball
and

[ 0 when =z ¢ B,
]IZ(B)_{ 1 when z € B.

Finally, for any starting point Zy = (zg,ty) € Qr, we define value func-
tions u; and uy; of this game for Player I and II by

w(Zy) = supinf EZ 5 lF(Z7)]
S; Su '

and
urr(Zy) = inf sup Eggsn (F(Z.)),
S g

respectively.

20



Chapter 3

Regularity results for oblique
derivative problems

In this chapter we are concerned with regularity theory for fully nonlinear
equations with oblique boundary conditions. We deal with the elliptic case
in Section 3.1 and the parabolic case in Section 3.2. In each case, we provide
a global Carlderéon-Zygmund type estimate.

3.1 W?P-regularity for elliptic problems

3.1.1 Hypotheses and main results

In this section, we establish global W%P —regularity theory for elliptic oblique
derivative problems. We consider the following problem

(3.1.1)

F(D?*u, Du,u,z) = f in Q,
B-Du=0 on 0f).

Here, 2 C R™ is a bounded domain with its boundary 02, 8 is a given
vector-valued function on 0Q with ||f||L=@q) < 1 and F' = F(X,q,r, ) is a
function on S(n) x R™ x R x Q.

We assume that F'is convex in X, continuous in X, ¢, and x, and satisfies
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the following structure condition

M7<)‘7A7X1 - Xz) - b|Q1 - (J2‘ - C|7”1 - 7“2|
< F(leqlvrbx) - F(X27Q2>T2ax) (312)
< M A, X1 — Xo) + blgs — o] + ¢|r1 — 72

for fixed 0 < A < A and b,c > 0, and Xy, Xs € S(n), ¢1,¢2 € R", r1,79 € R
and z € Q.

Next we introduce the following definition in order to measure the oscil-
lation of F' in the variable x.

Definition 3.1.1. Let F': S(n) X R" x R x Q@ — R and zg € Q. For x € (2,
We define

F(X,0,0,2) — F(X,0,0,z
Vo) = sup  L000) TX0.0.50)
XeS(m)\{0} |1 X1

We will assume that F' has small oscillation in the L™-sense to obtain
W?2P_regularity.
We now state the main result in this subsection.

Theorem 3.1.2. Let Q be a bounded C3-domain and n be the inward unit
normal vector of Q. Assume that u is a W*P-viscosity solution of (3.1.1)
where F(X,q,r,x) is convex in X, continuous in x and satisfies structure
condition (3.1.2) with F(0,0,0,z) =0, 8 € C*(9Q) with B-n > & for some
do >0 and f € LP(Q)NC(Q) forn < p < co. Then there exist two constants

€0 = 60(n7p7 )‘7A7 607 HBHCQ(QQ))

and

C= C(n,p, Aa A7 507 ||/8| |CQ(8Q)7 bu ¢, To, dla’m(Q))

1/n
(f W%JWM) <
Br(xo)ﬂﬂ

for any xo € Q and 0 < r < ry, then uw € WP(Q) with the estimate

|[ullw2r) < C(||ul|pe@) + |1 f]]r@)-
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3.1.2 Auxiliary results

We introduce some useful lemmas in order to proceed with our discussion.
We first mention a well-known lemma from [13, Lemma 4.2] to be used
for our work.

Lemma 3.1.3 (Calderén-Zygmund decomposition). Assume that A and B
are measurable sets and A C B C Q1. Suppose that there exists an € € (0, 1)
such that |A| < € and for any dyadic cube Q) and its predecessor Q, |[ANQ| >
€lQ] = Q C B. Then, |A| < ¢|B.

Strong (p, p)-estimate is also necessary to derive our desired result. We
can find the proof in |71, Theorem 1].

Proposition 3.1.4 (Strong (p,p)-estimate). The maximal operator M is
defined as follows:

M(f) () = sup ][ @l

p>0

Then, for any f € LP(R™) where 1 < p < oo,

M ()ller@ny < C(n, p)[f]]oo@rn)-

The following measure theoretic property can be found in several refer-
ences, for example, [13].

Proposition 3.1.5. Let g be a nonnegative and measurable function in €}
and pig be its distribution function, that is,

pe(t) = {xr € Q:g(x) >t} fort>D0.

Letn >0 and M > 1 be constants. Then, for 0 < p < oo,

g€ LP(Q) — ZM”kug(an) =5 <0

k>1

and

C71S < lgllfaq) < CIQ] +5).

In [13], there are shown several properties of Ay and G in the interior
case. We can also find corresponding results for boundary estimates in [78|.
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Lemma 3.1.6. [78] Assume that u € S(\, A, f) in B;rz\/ﬁh;l,n\/ﬁ CQoue
C(Q) and ||u||z@) < 1. Then there exist universal constants M > 1 and
0 <o <1 such that || f||pnp+ ) < 1 implies

1

2ymhy ti2ym
|Gar(u, ) N(QT % (0,1) +2)| 21—
for any xy € B;\/ﬁhfl,Q\/ﬁ U Ty mnt-

Lemma 3.1.7. [78] Let u € S(\, A, f) in B;;\/ﬁh;l’lzﬁ

be continuous in ). Assume that ||u||p~) < 1. Then there exist universal
constants C, p such that || f|[pn 5+ ) < 1 implies
12

J12v/n

C Q C R} and u

vanyt

A, (1, ) N (QY % (0,1) + a0)| < G+

for any xy € B;r\/ﬁhfl,g\/ﬁ U Ty ot and t > 1.

3.1.3 Boundary W??-estimates

The purpose of this subsection is to obtain boundary W?2P-regularity for
elliptic oblique derivative problems.
Consider the following problem

{F(Dzu,x):f in By, (3.1.3)

B-Du=0 on 7T;.

We note that structure condition (3.1.2) can be replaced by the following
uniform ellipticity condition with constants A and A for this problem, that
is,

/\||X2|| S F(Xl + X27Q7T7 {L’) - F(Xla q,T, l’) S A||X2||

for any X1, X5 € S(n), Xo >0, g€ R", r € Rand z € Q.

Let us state the main theorem in this subsection.

Theorem 3.1.8. Let u be a C*-viscosity solution of (3.1.3) where F(X,x)
is uniformly elliptic with X and A, convexr in X, continuous in X and z,
F(0,z) = 0, B € C*Ty) with 8 -n > 6§ for some & > 0, and f €
LP(B) N C(Bf) for n < p < oo. Then there exist two constants ¢g =
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GO(napa A, A, do, ||BHC2(T1)) and C' = C<n7p7 A, A, do, ||5||C’2(T1)) such that

1/n
(£ wwora) <a
By (z0)NB;

for any o € Bf" and r > 0 implies u € W*?(BY ) and we have the estimate
||u||w2’p(31+/2) < O(||U||Loo(31+) + ||f||Lp(Bl+))-

We first introduce the following lemmas in [42]. These results play an im-
portant role in establishing regularity results for oblique derivative problems.

Lemma 3.1.9 (ABP maximum principle). [42/ Let Q@ C By and u satisfy

B-Du=g on I'.
Suppose that there exists £ € 0By such that B -& > dg. Then

ullze @) < [lulle@awry + C(llgllzoe @) + [1fllir@),
where C' only depends on n, \, A\, b and dg.

Lemma 3.1.10. [42] Let u satisfy (3.1.4). Then for any ' CcC QUT,
ue Co(Q) and

lull ooy < CUlullze@) + [[fllzn@) + gl ),

where 0 < a < 1 only depends on n, A\, A\, b and &y, and C' depends also on €V
and €.

In [42], the case b = 0 was only considered. We can extend Lemma 3.1.9
and 3.1.10 to the case of S(\, A, b, f) with b # 0, since key ideas of the proof
of these theorems are ABP maximum principle and Harnack inequality. In
this case, the universal constant C' also depends on b.

Meanwhile, interior and boundary C*!-estimates for model problems are
necessary to establish TW2P-estimates. For the interior case, once can find
Chl-estimate in [13]. We refer to the following results in [42] for oblique
derivative problems.
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Lemma 3.1.11. [42] Let F be convex, u be a viscosity solution of

{ F(D?*u) = f inQ,

B-Du=g onl C0S, (3.1.5)

and 0 < o < &, where 0 < & <1 is a constant depending only on n, A, A and
0. Suppose that T € CY*, 8,9 € C**(T') and f € C**(Q). Then for any
Q' ccQUT, ue C>*(Q) and

lullgza@y < ClullL=@ + |1 fllcoa@) + llgllcram + [FO)),

where C' only depends on n, A, A, 0o, @, [|B]| crary, @ and Q.

Now we fix small enough hg > 0 such that

B(x) -n(y) <0 (3.1.6)

for any x € T} and y € 8Bff ho \77 throughout this subsection. Then we can
obtatin the following approximation lemma for solutions of (3.1.3).

Lemma 3.1.12. Let 0 < € < 1, hg be a constant satisfying (3.1.6) and
u be a C*-viscosity solution of (3.1.3). Assume that ull ooy, ) < 1 and
210
10 ( 0)|[pn s, | < € Then, there exists a function h € C’Z(Fér,%ho) such that
>0
u—nhe 5(90)7 ||h||02(§§%h0) < C and

||U — h’||L°°(BJ%r’%hO) ‘l’ ||§0||Ln(BJ%F’%hO) S C((E’y + ||f||L"(B;L,h0))

for some 0 <y =~y(n,\,A,dp) <1 and C = C(n, X\, A, b, ||B||c2(ry)). Here,
p=[f—F(Dh,).

Proof. We consider a function h which is a solution of
F(D?h,0) =0 in B'é%ho,
h=u on 8B§,%hO\T§, (3.1.7)
B-Dh=0 on Tg.

Then by Lemma 3.1.10, for some o = aq(n, A, A, ) and C' = C(n, A\, A, dp),

ullgoerpr .y < C(1+ ||f||Ln(Bih0)) (3.1.8)

1
7
5:8h0
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and by Lemma 3.1.11 with a proper scaling,

Hh||L°°(B%'76’(%76 W) + 6||Dh||L°°(B'§76’(g ) + 52’|D2h||Loo(B;f

g 9ho I-6.(5—-0)ho

)

0

<C

for some constant C' depending on n, A, A, o and ||5||c2(z,)-
Let w = u — h. Observe that w satisfies

w € S(A\/n,A,¢) in Bf

§:5ho’
w =0 on OB; -, \Tr, (3.1.9)
6 Dw =0 on Tg.
By the ABP estimate (Lemma 3.1.9), we can see
||w|, (B 5t o) = (el (B 5 2 sng) + [|wll (33275,@75)%\%76))

2
< C(||f||L"(BJg715,(§75>hO) + ||F(D h, ‘)||LH(BJ7r )

L -om

+ |‘wl‘Loo(aB;;_&(%_&)ho\T%_é))

for some C' = C(n, A, A, dy). Since h € C*(B7_,), we also derive that
8

)
5.(%— -

1E (DR, M|t ) S G0 e s
8~ Yho 8~

< C6 2%

)hO)IID2h| |L°°(BJ7F

5(T—s Z-s.(F—-dho

where C' = C'(n, A\, A, b, |Bl|c2(1y))-
On the other hand, we already know that w = 0 on dB7, \Tz and
87

u € Co’al(Egho). We can also obtain a global Holder regularity for A by

using |42, Corollary 3.1] and (3.1.8). Combining these results, we can derive
that

W] oo 05+ vy < COP 1+ 1S llgnay, )

I-5,(5-9ng
for some oy € (0,1) and C' = C(n, A\, A, §y). Thus, if we put v = (52%2,

HwHLOO(aB%‘ o) S CUlflznst, ) +0 e+ 0% (1+ 1 nsy, )

—6,(£—8)hg
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<@+ fllgnor, )

for some constant C' depending only on n, A\, A, 0y and ||3||c2(r,). Then the
proof is completed by choosing 6 = 1/8. O

Next we show following lemmas which give us information about power
decay of |Aps(u, Q).

Lemma 3.1.13. Let 0 < ¢ < 1, BT

n
LyAh 14y C Q2 CRY and u be a

C?-viscosity solution of

MV (3.1.10)

F(D*u,z) = f in B
B-Du=0 on T14\/ﬁh1—17

where hy = hy(dy) is a small constant satisfying (3.1.6) for any x € T14\/5h1_1
andy € 0B _ | vy aymnst - Assume that

14/nhy
s GO ey Se<1
14ynh] *,14v/m 14ynh] *14v/m
for some € depending on n, €y, A, A, &g and ||ﬁ||c2(T14fh71). Then,
nhy

Gi(u, Q) N(Q5~" % (0,2) + 3p) # @

+

To € B
for some Ty € OVhTl 9y

U Ty mpyt implies

|Gar(u, ) N(QF™ % (0,1) +20)| > 1 — o,
where xy € B;r\/ﬁhl‘l,g\/ﬁ

n,\, A\, 0 and ||ﬁ||CQ(T14ﬁh_l).
1

Proof. Let z; € G1(u, Q) N (Q5* x (0,2) + Zo). Then, for every z € Q and
some affine function L,

U Tg\/ﬁh;l and M 1is a constant depending only on

[(u—L)(@)] < |z — a1 ]/2.

Define a(z) = (u — L)(x)/C(n,d) so that |[a[pe g+ ) < 1 and

aymh]t1ayn
li(z)] < |z]? in Q\B;ZL\/ﬁhl_l,M\/ﬁ' Observe that ||L||01(B;r4ﬁ) is uniformly

bounded and depending only on n, dy in this case.
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Set F(D%i,z) = F(CD*,z)/C(n,d) and f(z) = f(x)/C(n,dy). Then
we can observe that the elliptic constants of ' and F' are the same and
satisfies

~ 2~ o ~ . +
F(D*u,x) = f n By et 1y (3.1.11)
B-Du=—p-DL/C(n,d) on T14ﬁh;1'

Now consider a function h € C' (EI; Jaht1sym) such that

(D27 — ; +
F’(D h,0) =0 in Bl3ﬁh;1,13ﬁ’
h=14 on aB:;\/ﬁhl,l71:')\/5\713;\/%;17 (3.1.12)

B-Dh=—p-DL/C(n,8) on Ty s,

Observe that - DL € C*(T}y 1) since 3 € C*(Tyy m,-1) and DL is a

constant vector. Hence, we can obtain C%-estimate for h. By using again
Lemma 3.1.10 and Lemma 3.1.11, we deduce that

||| 0.0, (ngﬁhfljwﬁ)
< CA+ [ fllpnep+
14/n

nh1 s

+ ||DL||;
7114ﬁ) || ||L (Blﬁhfl,lzl\/ﬁ))

for some a; = ay(n, A\, A, &) and

2]l cop+ . ) 0l Dh| o p+ . )
(13vA—8)hy 1, 13v/m—6 (13vA—8)hy L, 13v/A—6

+ 52||D2h||0(3+ . )
13va-8)n L 18vm—6

< 7 .
< Oy, vt I8 Dllle o

)

for some C' depending on n, A\, A, o and ||B||c2(r

14y/mhy

) Observe that

18- DLlle2(z,, 1)

< C(”a(;O)HﬁHC?(Tl
< C(n, 6o, [|Bllc2(x

14y/mhy L

4\/ah;1)

)
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and

A oo
H ||L (B(t3ﬁ—6)h;1,13ﬁ—6)

<||A|| e
<[l (8B:;3ﬁ_6)h1_1713\/ﬁ_5\T(13\/ﬁ—6)h1_1)

—+ C(n, )‘7 A7 60)||ﬁ : DL| |Lw(T(13ﬁ—6)hf1)

)+ O, A A &)

1

+ C(n> )‘7 A> 50)(1 + HfHL"(B;r4

= ||a||Lm(aB1+3\/m1—1\T13\/ﬁh
) + HDLHLOO(B+ 1 ))5a2
Vn 14y/nhy 140

nhl ,14

< C’(n, )\, A, 60)

for some ay € (0, 1). We used the similar argument in the proof of Lemma

3.1.12 to estimate ]|71||Loo(33+
(

\T - Then we see that
13ym—6)hT L 18ym—s \ (13vn=8)hy

D?h||; o < 572C(n, A\, A, &,
DRl By et ams) = ( 0 HﬁHoz(TMhl_l))

and therefore

97
HD hHLoo(B:-Q\/thl,m\/ﬁ) < C(”? )‘7A7507 HﬁHCQ(TMﬁhl—ﬂ)‘

This implies

An(h, B, a1 ) N Q171 % (0,1) + 1) = @

for sufficiently large N = N(n, \, A, dy, ||ﬂ||02(T14ﬁh;1)) > 1. Now we extend

7 5 s . . . s o~ + ~
l‘z to h such that~h is continuous in Q, h = @ in Q\B13¢ﬁh;1,13ﬁ’ and ||a —
hl|ze () = |1t — h||L°°(B+ ) Then
12vmhy b 2ym
|a — hHL‘X’(Q) < HaHLOO(3+ 1 ) + HhHLoo(B+ 1 ) < Co
12v/mhy t12v/m 12v/mhy t12vm

for some Cy = Cy(n, A, A, do, ||ﬁ||02(T14\mf1)) and thus |h(z)| < Co + |z[* i
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+
Q\Bm\/ﬁh;l,m\/ﬁ‘ Hence, for some My > N, we see

Ay (h, Q) 0(QF7 % (0,1) + 20) = @.
Consider w = @ — h. We can see that

we SA/n, A, f — F(D?h,-)) in Bl+i’>\/ﬁhf1,13\/ﬁ’
w=0 on 8B;L3ﬁh1,1713ﬁ\T13ﬁh;1, (3.1.13)

B-Dw=0 on T13\/ﬁh1_1.
By ABP maximum principle and the definition of w,

L) =

lwllLoe@) = [[wl] oo+
13 nhl ,14/n

<@+ Ml
ﬁhl ,13y/n 14

for some 0 < v =7(n,A\,A,dy) < 1 and

C = C(n,\ A, do, ||8]]co

(T14ﬁhf1))'

Set w = w/Ce’. We observe that w satisfies the hypothesis of Lemma
3.1.7 and therefore

[Ad(@, ) N QT % (0,1) + )| < CE*

_l’_

for any x( € B9\/ﬁh;1,9\/ﬁ

U Ty jmp-r and £ > 1. Since

Aot (1, Q) C Ay, (w, Q) U Apgy (7, Q)

and .
AMO(h7 Q) N (QT_I X (O, 1) =+ l’o) = @,
we have
| Aoy (2, Q)N(QT 1 % (0,1) 4 o) | < [Ange (w, ) N (QT ! % (0,1) 4 )|
= |Anyjcer (0, 2) N (QF " x (0,1) + o)
< C(My/Cer)™*
< €

by choosing M = 2C'M, and e sufficiently small. We finish the proof. O]
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Lemma 3.1.14. Let 0 < ¢y < 1 and u be a C*-viscosity solution of (3.1.10).

Assume that |[u]| o p+ )y < 1and |[f|[pn s+ ) < €. Extend f
14ymhT L 1aym 1aymhT L 1aym

LRt 14y and let

1/n
<]{9( B v, o) dm) =
r(zo)N

1aymhy b aym

to zero outside B

for any x € B r >0 and some

14y/nhy b 14/n’

€= e(n €0, A\, A 50a||5||c 2T, ) 0.

14y/mhy 1)

Then, for
A= Aypen (0, B, s, ) D@5 (0,1),

(AMk( 14fh 1 14\/>) (Q?_l X (07 1)))
U{r € Q1 x (0,1) : M(f™) > (coM™)"}
where k € No, M > 1 only depends on n, X\, A, do, ||B]|c2(r

depends on €y, we have

avnst) and cy also

Al < el Bl.

Proof. By definition of A and B, we can check that A € B C Q7" x (0, 1).
And since B € Q7" x (0,1) by Lemma 3.1.6, we can use Lemma 3.1.13 and
observe that |A| < €. Thus, it is sufficient to obtain that for any dyadic cube
Q and its predecessor Q,

[ANQI>alQl = QCB

by Lemma 3.1.3. 3

Let @ = (QY 1/21 x (0,1/2") 4+ 29 and Q = (Ql/y p X (0,1/271) + .
Assume that |[AN Q| > Q] and Q@ € B. Then one can find a point x; €
QN G (u, Bl4fh . 14f) with M(f")(z1) < (coM*)™.

First, assume that z,, < 8y/n/2. We consider a proper transforma-
tion Ty = (z(,0) + 27y and define a(y) = 2*M *u(Ty), B(y) = B(Ty),
F(X,y) = M *F(M*X,Ty) and f(y) = M~*f(Ty). Then we can see that
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U is a viscosity solution of

~ 2~ o rs —+
fj(D iy)=[f in Bl4fh Ldyn’ (3.1.14)
B-Di=0 on Ty mpts

- -
since B14fh_1 14y/n +(2,0) € Bl4\fh_1 14/n’
Note that 3 € C*(T, Janot) and F has the same elliptic constant of F' and
KR ) < Cefor some universal C, as ¢ (y, 0) = Yr(Ty, (25, 0)).
13y/nhy 1 13v/m

Now we can deduce that

=L era)”

14\fh1 ,14y/n
(n (50)C0

1 linsr,

I/\ IA

by taking cq sufficiently small, where we have used Proposition 3.1.4 in the
second inequality.

Again, since Q N Gy (u, BT

14\/%1,1,14\/5) #+ &, we observe that

1A ~ 1+
TQ NG (u, T~ BMIthW);A@.

We also see that |T7'7y| < 9y/n from |rg — To| < /n/2'. Therefore, by
Lemma 3.1.13,

T'Q NGy, T 1Bafh 114f)’

11— €0,
which implies
|T_1Q N G e (u, B;L\/ﬁhfl,u\/ﬁ” > (1 — 60)|Q|,

but this is a contradiction.
Next, we consider the case zg, > 8y/n/2". In this case, we can check that
BS\/E/Q'L('IO + en/2i+1) C Bé—;f Define T : Bg\/ﬁ — Bgﬁ/y(wo + en/Q”l) as

_ Y
Ty=20+ 77 22+1 + 9it+1’
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Now we define @(y) = 22V M ~*u(Ty), F(X,y) = M~"F(M*X,Ty) and
f(y) = M~*u(Ty). Then observe that F(D?*a,y) = f(y) in By . By apply-
ing [13, Lemma 7.11] to @, we can conclude the proof. O

Proof of Theorem 8.1.8. Fix a point xy € By N {x > 0}. When x € T /s,

consider a fixed number r € (O, Z‘j%‘hl) (hy is the constant as in Lemma

3.1.13) and define

o €r

E7“_1||U||Loo(Ezlthﬁ(gco)) + ||f||L”(BLTﬁ(xU))

where € = €(n, €, A\, A, p, do, ||B||c2(ry)) is the same as in Lemma 3.1.13 and
0 < €y < 1is to be determined. We also define w(y) = Kr~*u(ry+mzo), fly) =
Kf(ry+ xo), B(y) = B(ry + xo) and F(X,y) = KF(KlelTy + x¢). Then,
@ is a viscosity solution of (3.1.14). Observe that F' and F' have the same

elliptic constants, |[@|[(z+ y S e fBe€
14v/mht14vm

) < 17 HwFHL”(B7L 1
14y/mh 14y

C*(Tyy mp-1) and ||f||Ln<B+ ) < €. Therefore, we can apply Lemma
1 14y/mht1avm

3.1.14 to @. Let M and ¢y be the same constants and ¢y = (2M?)~!. Then
we obtain by using a similar argument in the proof of [78, Theorem 2.2|,

2~
|D u”Lp(Bfr/Q) <C,
that is,
HDzUHLp(Bj/Z(zO)) < C(HUHLOO(Bj) + HfHLP(BfL))v

where C'= C(n, A\, A, p, do, || Bllc2(r)) > 0.
On the other hand, if xq € B;“/2, we can apply the results of interior
estimates, like as in [13, Theorem 7.1|. Combining the interior and boundary

estimates, we get the desired results by using a standard covering argument.
O

3.1.4 Boundary W!?-estimates

In this subsection, we extend the regularity result in Section 3.1.3 for equa-
tions involving ingredients F(X,q,r, x).
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We now consider the following problem

{ F(D?*u, Du,u,z) = f in B,

B-Du=0 on T7. (3.1.15)

By means of the structure condition (3.1.2), we can see that u is also a
viscosity solution of

F(D?*u,0,0,z) = f in Bf
) ) ) ) .1.1
{B-Du:O on Ty (3.1.16)
for some function f with

If| < |f] + b Dul + clul. (3.1.17)

We already know that W?P-norm of u is estimated by L*>-norm of u and
L™-norm of f by Theorem 3.1.8. Therefore, it is essential in obtaining -
estimate for u to show our desired result.

We first show the following approximation lemma.

Lemma 3.1.15. Letn < p < oo and 0 < v < 1. Assume that F is continuous
in x and satisfies (3.1.2) with F(0,0,0,z) = 0 and B € C*(Ty) with (3 -
n > dy for some dg > 0. Then, for every p > 0, ¢ € C(0B,(0,v)) with
lellcopiow)y < Ci for some Cp > 0 and g € C¥(Ty) with 0 < a < 1
and ||g||cem) < Cy for some Cy > 0, there exists a positive number 6 =
d(p,n, A\, A\, 0o, p, 0, C1,Co) < 1 such that

|14(0, ')||LP(B;)’ Hf“Lp(B;r)a byc <4

implies the following: if u and v satisfy

F(D*u, Du,u,z) = f in B;(0/,v) "R,
U= on 0B (0", v) NRY,
B-Du=yg on B1(0/,v)NT}y

and
F(DQU,O,O,O) =0 in B%(O’, V) NRY,

V=1 on OB (0/,v) NRY,
B-Du=yg onBé(O’,V)ﬂTb
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then ||u — U||LOO(B%(0/7V)QR1) < p.

We will use following facts to prove Lemma 3.1.15. These results can be
found in [78, Proposition 1.5] and [42, Theorem 3.1|, respectively. For the
proof of Proposition 3.1.16, see [14, Theorem 3.8|.

Proposition 3.1.16. For k € N, let . C Qriq be an increasing sequence
of domains and € := Up>1Q. Let p > n and F, F}, be measurable in x and
satisfy structure condition (3.1.2). Assume that f € LP(QQ), fr € LP(Sy) and
that uy, € C(Q) are WP-viscosity subsolutions (supersolutions, respectively)
of Fy(D*uy, Dug, ug, ) = fi in Q. Suppose that u, — u locally uniformly
in Q and for B.(xy) C Q and p € W*P(B,(x0))

15 = 50 loozieon = 0 (165 = ) vy = 0)  (3.118)

where s(x) = F(D?*p, Do, u,x) — f(x) and si(x) = F(D*¢y, Doy, ug, ) —
fr(x). Then u is an W>P-viscosity subsolution (supersolution) of

F(D?*u, Du,u,z) = f(x) in Q.

Moreover, if F' and f are continuous, then u is an C?*-viscosity subsolution
(supersolution) provided that (3.1.18) holds for ¢ € C?*(B,(zy)).

Lemma 3.1.17. Suppose that T' € C? and 8 € C*(T'). Let u and v satisfy

F(D%u) > fi in §Q,
f-Du+yu>g onl

and

F(DQ’U) < fg m Q,
B-Dv+~v<gy onl.

Then

u—v € SA/n, A, fi — f2) in Q
B-Du—v)+~vyu—v)>g —gs onl.

Proof of Lemma 3.1.15. We will show this lemma by contradiction. Suppose
not. Then there exists a number py > 0 so that for any Fj, fi, b, cx, ¥p, with

19500, M Losgys el oy brs e < 0k = 0
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as k — oo, if u; and vy satisfy

Fk(D2uk, Duk,uk,x) = fk in Bl(O’, Vk) N Ri,
Up = QO on 0B, (0, v,) NRY, (3.1.19)
B+ Duy, = g on By (0, v,) NTy

and

Fk(D2Uk,O,O, 0) =0 in B%(Ol, I/k) N Rﬁ_,
U = uy, on OBz (0, v) NRY, (3.1.20)
B+ Dy = gx on B%(O’,uk)ﬂTl,

then ||U,—'U||LOO(B%(017V)QR1) > po. Here, ¢ € C(OB1(0/, 1)) and g € CY*(T3)

satisfy ||or||zoc @B, (/) < C1 and ||gi||coe(m) < Oy, respectively.

We assumed that Fi (X, ¢, 7, x) are Lipschitz in X, ¢, r from the condition
(3.1.2), hence there exists a subsequence Fj, and a function F,, such that
F,(+,+,-,0) converges to F.(+) uniformly on compact subsets of S(n) xR" xR
by Arzela-Ascoli theorem. Now we use Lemma 3.1.9 and get

| |Uk | |L°o(Bl(0/,uk)mR1)
< |lexllL @B (0 mnrr)

+ C(ns A A, 00) (| fel e By 0y o) + gkl Lo (1)
S C(Ola 027 n, )‘7 A> 60)

for sufficiently large k. We can also see that wu, satisfy boundary Holder
regularity by Lemma 3.1.10, that is, for any 0 < 0 < 1,

Huk\ |Co’ul(m) S C(Cl, CQ, n, )\, A, 50)7770[1 (3121)

for some a; = ay(n, A\, A, ) and sufficiently large k.

Suppose that there exists a number v, and a subsequence {1y, } such that
Vg, — Voo @S 1 — 00. We can assume that this subsequence is monotone. If
Vi, is decreasing, we can check that

Bl(O', Voo) N Ri C Bl<0/7 Vki) M R:ﬁ
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for any 7. Thus, we can observe that

||U’kz Coval(m) S C(C’l,C'Q,n,/\,A,&)) (3122)
by using the result (3.1.21). Meanwhile, if v, is increasing, there exists a
number %g such that

B31/32(0I7 Vki) N R:L_ D) Bl5/16(0/7 Voo) N RZL_ for ¢ Z io.

Then we can also deduce (3.1.22) for some proper subsequence uy, .

Hence, we can see that there is a subsequence wuy, and a function u., such
that uy, uniformly converge to us in Bis/16(0', Voo) N R}

On the other hand, we see that for ¢ € C*(By),

|Fk1(D2¢7 D¢a ukmx) - fk,(x) - FOO(D2¢7O7070)|
S CkiC<Cl7 C2vn7 )\7 A7 50) + bkz D¢| + kal (07 $)|D2¢|
+ | fis| + [(F, — Fao)(D?6,0,0,0)

and thus,
ZIE?O ||sz<D2¢7 D(b? Uk, x) - sz(x) - FOO(DQ(b: 07 O? 0)||LP(B1~(9E0)) = 0.

for any ball B,(x9) C Bis/16(0,7s) N R. And we can observe that there
exists a function go, € C¥%(T}) by Arzela-Ascoli theorem, since g;, are uni-
formly bounded and equicontinuous on 7. Therefore, we can deduce that
Uoo Satbisfies

{ Feo( D115, 0,0,0) = 0 in Bisio(0/, voo) N RY, (3.1.23)

B+ Dis = goo on Bis/16(0, vee) N7,

in the viscosity sense by Proposition 3.1.16 and [42, Proposition 2.1].
Now consider wy, := us — vi, for each ¢. Then wy, satisfies

wg, € S(A\/n,A,0) in Bé(O’,VOO)ﬂRi,
W, on 835(0’,%0) NR7Y, (3.1.24)
B Dwy, = goo — gr; ON Bg(O’,VOO)ﬂTl.

= U — UL,

K3
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by Lemma 3.1.17. Using Lemma 3.1.9, we observe that

|[wi|[Loo (B (0 vo0) T
8

< |t — Uk:l-HLOO(GB%(O’,VOO)) +C(n, A\, A, 60)||goe — gki||L°°(B%(0’,z/oo)ﬂT1)
(3.1.25)

and the right-hand side of (3.1.25) tends to zero as i — oo, that is, wy,
converge uniformly to zero. It implies that vy, converge uniformly to u., in
B 1 (0/, vs) N R’} But this contradicts our assumptions, and therefore we can
complete the proof. O

Now we can establish W P-estimates for viscosity solutions of the problem
(3.1.15).

Theorem 3.1.18. Let n < p < oo. Assume that F is convexr in X and
continuous in x satisfies the structure condition (3.1.2) with F(0,0,0,2) =0
and u be a C*-viscosity solution of (3.1.15) where f € LP(Bf) N C(B;)
and 8 € C*(Ty) with 8-n > & > 0. Then, there exists a constant ¢y =
eo(n, A\, A, p, 0o, ) such that

1/p
( fo ey dx) <e
By (z0)NB;

for any xy € B and r < ry for some vy > 0 implies u € C’l’a(gfﬂ) with
a=a(n,\ A p) e (0,1) and

’|u‘|cl,a(§1+/2) < C(HUHLOO(BD + HfHLp(Bf))

for some C' = C(n, A\, A, b, c,p, o, ||B||c2y), T0)-

Proof. Let n < p' < p. Fix y € Ty; and set d = min{1/2,ry}. First we
rescale the equation. Choose a constant ¢ such that
) 9 )

d
< — b ——— <
7=% =smicm)y 7 T 6aM + )C0)

where ¢ is from Lemma 3.1.15 and M is to be determined and C(n) is a
universal constant.
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Now we define

K = K(y)

s ([ e )|
= |ull;oor gty +—sup |r— | r " z) P dx
iz + o [P (7 [ 1)

where 0 < o < 1 is a constant to be chosen later. Then we see that

3

K(y) < llull gz + Cln, e0) [M(f7) ()] 7 < o

for any y. Set i(z) = u(ox) /K, f(z) = 0*f(ox)/K, B(z) = B(oz) and

2

F(X,qrz)= JEF(KU*QX, Ko 'q,Kr,ox).
Then we observe that 4 satisfies

(3.1.26)

F (D@, Da, i, x) = f in By,
B-Du= on Ts.

We check that F satisfies (3.1.2) with bz = ob, ¢ = o%c and

1
7

ri=e (7""/ \f(x)\pl dx) < gool™™
BY

for any r € (0,2). We can also deduce [[¢4(0, )51y < 0 by choosing €
small enough since ¥5(0,x) = Yr (0, y,), o).

Now we deduce boundary Ch*-estimates. We use induction to establish
this regularity result. It is sufficient to show that there exist some constants
i1, C3 > 0,0 < a < 1 and a sequence of linear functions ly(x) = ay + by - x
for k > —1 such that

S

@) 118 = il s,y <

(i) Jar—1 — ag] + pFHbpoy — by| < 4Cut—D0+)
(iii) B(0) - b = 0.
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We set [ = [y = 0 and choose p < 1/4 with 6Cs||8]|c2(myyp? < p'+* and

] 1 (16" o0 ‘
M =4C5) (Z) > 405y (3.1.27)
=0

=0

For k£ = 0, we can check that all of these conditions are satisfied. Now
assume that (i), (ii) and (iii) hold for some k& > 0. We show that these are
also satisfied for k + 1.

Define (0 — 1) ()

u—lg)(u"x
vk(z) = T

Then we observe that v, is a viscosity solution

{ Fi(D?vg, Doy, vg, ) = fy + g in By, (3.1.28)
B Du, = —(B - by)/ " on Ts, o
where 3
Fu(X, q,r,x) = PO P (VX g, yMo D, ik,
gi(z) =F(D*vy, Doy, vy, x)
— F(D*vg, Dug, + by, v + 0 (1), 2),
fr(x) = pF = f(uta)

and

B(x) = B(u*z).
Observe that 1, (0,2) = 15(0, u*x) and F satisfies the structure condition
(3.1.2) with bg, = p*bz and cp, = p?*eg.
For any z € By,
|9 ()| = | Fx(D?vy, Dy, vy, )
— Fy(D?vy,, Dy 4 p by, vp, + ,u_k(Ha)lk(,uka:), il
< by - o]+ ey p Tl (i)

We already know that |ap_; — ag| + 'y — bp| < 4C5uF~D0+a) y
assumption. By using this and (3.1.27), we can check that |ay|, |bx] < M and
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thus we obtain that [|l|[«p+) < 2M. Therefore,

ko ha 6
\gk(2)] < bp, - p k M+ cp, - 1 Rotl)  opr < k0 )E'

Now we deduce that

55 .
||fk||Lp’(B;r)+||gk||Lp/(Bl+)) < §+1_6Mk(1 )S(S

On the other hand, we see that v, € S*(A\, A, 1, | fe| + |gx| + p**cz) when
k is large enough. Therefore by Lemma 3.1.10,

[k co.00 (BiH)
< HUkHLoo(aBj) + C(n, A, A, 0p) x

U fellznary + Nowllpnssy + e+ 7 (B - bl | Lo (B1))
<14 C(n, N\ A, 50) (6 + p=2%b,))
S C(n7 Aa A7 607 03)

for some ag = ao(n, A, A, d). Note that we have used |[vg[|jc(pr) < 1, B €
C?(Ty), B(0) - by, = 0 and |bi| < 6C5 to obtain the last inequality.
Consider h € C (E%—) such that

F.(D?h,0,0,0) =0 in BY,

8
h = vy, on OBI\Tx, (3.1.29)
_ _ 8
B-Dh=—(B"-by)/uk on T7.

By Lemma 3.1.11, we see that

||h||02(§§) <Ci(1+ :u_kaHB : bk”C?(T%))
1

for some constant C, which only depends on n, A, A, ||B||c2(ry) and dg. Set
C, = C3. Then we see that

[1Blleaasy < Ca(l+u ™18 - bell2ry))
1
< (s

(1 175 el - 1Bl )
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since B(0) - by = 0. Then we have

17l oty < Ca(1+6Csu' [ Bllc2r) < 2Cs.
4
We can also observe that
||ox — h”Loo(B-g) <p
4

by Lemma 3.1.15 to vy, and h with p = Csp?.
Set [(x) = h(0) + Dh(0) - z. Then,

ok — ZHLOO(B;L) < |log — h”Loo(B;#) + ||k — ZHLOO(B;L)

1
< Oy + 503(2/02

S Iu/].+01.

Note that the last inequality is deduced by 6Cs||3||cz(r)p® < p'te.

Since |(vx —1)()| < p'** for any & € By, we see that
|ﬂ($) — lk(l’) — /~Lk(1+a)z<ﬂ_k(l’))| < u(k+1)(1+°‘)

for any = € B;L,CH. We denote [ by

I (2) = () + @O (" ().

We have shown that the condition (i) still holds. And in this case, we can

also observe that the second condition is satisfied because

|ar = agpi| + p*lox = brsa | = O (|R(0)] + [DR(0)])
< /J’k(1+a)|’h’|02(§'g)
a

< 403Mk(1+a) )

Finally, we also check that

B(0) - bsr = B(0) - (b, + u**Dh(0)) = B(0) - ** D1(0) = 0,
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B(0) - Dh(0) = B(0) - Dh(0) = —(B(0) - by)/u"* = 0.

Hence, as k tends to oo, there exists a linear function [ such that
L0)], |DI0)] < C4K (y) (3.1.30)
and
= Ul oo By ¢y < Car' T K (y) (3.1.31)

for any y € T/, small number r and some universal constant Cy = 4Cj.
Since

K(y) < |lull gy + €0 sup O o sr)) (3.1.32)
we get ulg, , € Ch(Ty/2) with
||u||Cl7a(T1/2) < O(HUHLOO(Bj) + ||f||LP(B;F)) (3.1.33)

for some C' = C(n, A\, A, b, ||B||c2(r,)) by choosing o =1 —n/p.

By proper scaling, we have u|72/3 € C*(Ty3). From [59, Proposition
2.2], we can deduce that u satisfies the assumption of [78, Theorem 3.1].
Therefore, by combining (3.1.33) with and |78, Theorem 3.1], we can complete
the proof. O

By means of the above result, we get a boundary W1!P-estimate for solu-
tions of (3.1.15).

Corollary 3.1.19. Let n < p < oo and u be a viscosity solution of (3.1.15).
Then, under the assumption of Theorem 3.1.18, u € W17P(Bl+/4) and

||U||WLP(B+ ) < C(H“HLOO(Bj) + ||f||Lp(Bj))

1/4

fO?” some C = C(”? )\7A7 ba ¢ p, 507 Hﬂ”cl’a(Tl)’ro)'

3.1.5 Global estimates

We are now ready to prove the global regularity result, Theorem 3.1.2.
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Proof of Theorem 3.1.2. We use a flattening argument for applying to Corol-
lary 3.1.19. If 9Q € C3, for any xy € 9 there exists a neighborhood N (zg)
and a C3-diffeomorphism

\I/ZU($0)—>B1HR?_

such that W(zg) = 0. Then for @ = w o ¥~ it is known that u is a W*P-
viscosity solution of

F (D@, Di, @i, x) = f in By,
B-Du=0 on Tj.

where f= foU™, B =(BoU!). (DVo U 1) and

F(D*¢, D, i, ) = F(D*p, Dp,u,x) o W
= F(DY" o U D?*3DW o U™t + (DG0; ;W 0 U 1 jan,
DDV o U™ 4, U~ (x))

for o € W2P(B;) and ¢ = goW¥(€ W*P(U(xy))). We observe that ¢z (z, ) <
C(U)hp(U=1(z), U~ (x0)) and F is uniformly elliptic with constants AC'(¥),
AC(¥) where C(¥) is a uniform constant depending only on V. (see [78])
And we also check that 3 € C? since ¥, ¥~! € C3. Now by using Corollary
3.1.19 and covering argument, we get a boundary estimate.

Finally, we obtain the following global regularity result to combine interior
estimate (see [14, 72]) and Corollary 3.1.19. O

3.2 W?P-regularity for parabolic problems

3.2.1 Hypotheses and main results

We now study the following parabolic oblique boundary value problem

F(D?u, Du,u,z,t) —u; = f in Qrp,
B-Du=0 on St, (3.2.1)
u(-,0) =0 in

where (2 C R™ is a bounded domain with n > 2 and T" > 0.
We always assume the following conditions: F'(X,q,r, z,t) is convex in
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X, continuous in X, ¢,r, z and ¢, and satisfies

Mf()\aA;Xl - X2) - b‘Ql - Q2’ - C|7“1 - 7’2!
S F(Xl,(h,?"lax»t) - F(X27Q27T2axvt) (322>
< MTOA X — Xo) + blgy — qo| + ¢|r — s
for fixed0 < A < Aandb,c >0, M,N € S(n),and any q1,q2 € R", r;,m5 € R

and (z,t) € R* x R.
Similarly to the elliptic case, we consider an oscillation function .

Definition 3.2.1. Let F: S(n) x R" x R x Q7 — R and (xq,tg) € Q. For
(x,t) € Qp, We define

F(X,0,0,2,t) — F(X,0,0, 0, t
Yie((x,1t), (w0, t0)) ==  sup |£( ) ( 0:to)|
Xes(m)\{0) X7l

)

Theorem 3.2.2. Let Q be a bounded C3-domain with T > 0 and n be the
inward unit normal vector to 0S2. Assume that u is a viscosity solution of
(3.2.1), where F(X,q,r,x,t) is convex in X, continuous in = and t, and
satisfies the structure condition (3.2.2) with F(0,0,0,z,t) = 0, 8 € C*(S7)
with 5-n > dy for some &g > 0 and f € LP(Qp)NC(Qr) forn+2 < p < oo.
Then there exists € depending on n,p, \, A, 8 and ||B||c2(sy) such that if

1/p
(][ Y (20, to), (x,1))" dxdt) < ¢
Qr(ﬁo,to)ﬂQT

for any (zo,t0) € Qr and 0 < r < rq, then u € W?P(Qr) with the global
W2P_estimate

lullwr@ry < Cllullz=@r) + 1fllzr@r)

for some C' depending only on n,p, X, \, 6o, b, ¢, o, ||B]|c2(sp), T and diam(€2).

3.2.2 Auxiliary results

We present some geometric and analytic tools which will be used in this
section.

We first introduce a parabolic Calderén-Zygmund decomposition. The
following definition and lemma can be found in [31].
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Definition 3.2.3. Given m € N, and a dyadic cube K of Q, the set K"
is obtained by stacking m copies of its predecessor K. More precisely, if the
predecessor K has the form L x (a,b), then K = L x (b,b+m(b—a)).

Lemma 3.2.4 (Calderéon-Zygmund decomposition). [31] Let m € N. Con-
sider two subsets A and B of a cube Q). Assume that |A| < 6|Q| for some
5 € (0,1). Assume also the following: for any dyadic cube K C @,

IKNA|l>6K|=K CB.
Then |A| < 15| BJ.

The following properties are parabolic counterparts of Proposition 3.1.4
and 3.1.5, which can be found in [75].

Proposition 3.2.5 (Strong (p,p)-estimate). Let f be a locally integrable
function in R™ x R and Q be a bounded domain in R™ x R. The mazximal
operator M s defined as follows:

p>0

M(f)(x, 1) :sup]{g( NICEE

Then
M (f)||re) < Cn, )| fllre 9,

whenever f € LP(Q) for 1 <p < occ.

Proposition 3.2.6. Let f be a nonnegative and measurable function in a
domain Q C R™ x R and py be its distribution function, that is,

1N = {(w, 1) € Q: f(a,t) > MM for A >0,
Letn >0 and M > 1 be given constants. Then, for 0 < p < oo,

ferr(Q) — ZMpkuf(an) =5 < o0

k>1

and

18 < ||flffpiq) < O +5)

where C is a universal constant.
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Next we focus on parabolic Hessian estimates. In |75], we can find the
following interior and boundary estimates with slight modifications.

Lemma 3.2.7. [75] Let u € S(f) in Q x (0,1] for some domain Q € R"™. If
l|u||zoo (i) < 1, then for any ¥ CC Q and 7 # 1,

| A (€2 % (0,1]) N (€ x (0, 7])]

(L4 [ f]|zr+rx 0,)"
SH

< CO(n, \, A, Q,7,d(Q,090))

Y

where p is universal.

Lemma 3.2.8. [75] Let u € S(f) in Q = K} x (0,2) x (0,2]. Suppose
u||roe) < 1. Then

(L4 f[| rrro)*
St '

A (u, @) 0 (K57 % (0,1) x (0,1])] < C(n, A, A)

By using scaling argument, we can derive the next lemma as a direct
consequence of the above results.

Lemma 3.2.9. Let @ = B, - x (0,13], 0 <7 < 1, and (20, ty) € Thiaym X

(0,13] such that rQ(zo,to) = By, = % (to,to + 13r°] C Q. Assume that
u € S(f) in rQ(xo, to), u € C(Q) and ||ul| @) < 1.

Then there exist universal constants M > 1 and 0 < o < 1 such that if

1
n+1
< ][ | f(:r,t)|"“dxdt) <1,
TQ(Io,to)
then we have

|G (u, ) N (K™ % (0,7) x (0,7%) + (21, 1))
[ B (0,7) X (0,72)]

>1—o, (3.2.3)

whenever (x1,t1) € (Bgm(x0) N {xy > 0}) X [to, to + 1077].

Proof. Fix 0 < 0 < 1. If ty < 15 — 50712, we can choose a large constant M
satisfying (3.2.3) by Lemma 3.2.7 and 3.2.8.
Consider the case ty > 15 — 5or2. Observe that

|At(uv QT) N ((K:L_l X (07 T) X (Ov r2) + (m07t0)|
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<

A, (u, Q) N (K % (0,1) x (to —-1,T - %} + (xo,O))‘
+ '(K{“l x (0,1) x (T— %,to) + (:L‘O,O))‘
< Cln A, o)t + %
Then we can obtain the desired result by choosing M sufficiently large such

that
Cn, A\, A\,o) M+ <

o] Q

Y

and it gives the desired result. O]

The next lemma shows that if there is a point with opening 1, then the
density of ‘good sector’ is guaranteed large enough.

Lemma 3.2.10. Under the same hypotheses as in Lemma 3.2.9, we further
assume that u € S*(f) in rQ(xo, to), u € C(Q), and

Gl(u, Q) N (Kgril X (O, 37") X (7“2, 107“2) + (-i.lagl)) # %)

for some (Z1,11) € (By,ym(zo) N{zy > 0}) x [to, to + 5r?].
Then there exist universal constants M > 1 and 0 < o < 1 such that if

1
et
<][ |f(x, t)|”+1dxdt) <1,
T'Q(:Eo,to)
then we have

|Gar(u, Q) N (K21 x (0,7) x (0,72) + (21, t1))]

(
> 1 —
(K21 % (0,7) x (0,72)] =7

for any (z1,t1) € (By, /m(w0) N {z, > 0}) N [to, th].

Proof. Let (za,t5) € G1(u, Q)N (K5 % (0,3r) x (r2,10r2) + (#1,11)). By the
definition of G, we have paraboloids with opening 1 touching u at (z9,2)
from above and below. Then we can find a linear function (on ) L such that

u(z,t) = L(@)] < 5(jz — z2]* = (t — 1))

| —
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Define v(z,t) = (u(z,t) — L(x))/C where C' = C(n) is a constant so that

1]l B, - mopx otz < 1

and
oz, )] <o +ta —t i (B, ;\B,, u(w0)) x (0,t2). (3.2.4)

Now we can see that v € S*(f/C) in B

12rym % [to, t2). Then we have

|GM(UaBETﬁ X <t07t1)) n (Kﬁ_l X (O7T> X (07T2) + ('rlatl))’

>1— .
[Kn1 % (0,7) x (0,72)] =

by Lemma 3.2.9.
Combining the above estimate with (3.2.4), we observe that

|G (v, )N (K x (0,7) x (0,7%) + (21,11))]
[K7=1 % (0,7) x (0,72)]

>1—0

for some N > M. We also deduce that
GM(/Ua Q) = GMC(n) <U'7 Q)7
and this completes the proof. n

Using the Calderéon-Zygmund decomposition, Lemma 3.2.4, we can prove
the following result.

Lemma 3.2.11. Under the same hypotheses as in Lemma 3.2.9, we further
assume that u € S(f) in rQ(xo,ty), u € C(Q), ||ul|re@) <1 and

1
n+l
< ][ f(x, t)|"“dxdt) <1
'r‘Q(z‘o,to)

Extend f by zero outside rQ(zo,ty) and define

A= AMk+1(u, Q) N (K:_l X (O,T) X (tl,tl + 7“2)),

B i=(Ayp(u, Q) N (KM % (0,7) % (t, 11 + %))
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U{(z,t) € K" x (0,r)times(ty, to + r*) : M(|f|"")(z,t) > (cgM*™)" T}

for any k € Ny and t; € [to,to + 5r?].
Then |A| < 20|B|, where ¢y = ¢o(n), 0 < o <1 and M > 1 are universal.

Proof. By the definition of A and B, we know that
ACBC K;Lil X (O,T) X (tl,tl +T2).

We also have |A| < o| K" x (0,7) x (t1,t; + 7?)| from Lemma 3.2.9. Now
we prove that for any dyadic cube K C @),

|KNA|l>o|K| implies K CB

for some m € N.
Let ' 4
K = (K5 x (0,7/2°) x (0,7%/2%) + (22, t2)
be a dyadic cube with its predecessor

K = (K5l < (0,7/2771) x (0,72 /2207D) 4 (g, )

r

for some i > 1. Suppose that K satisfies |K N A| > o|K| but K= ¢ B for
any m. Then there is a point (z3,t3) € 71\8, that is,

(23,t3) € K N Gope(u, Q) and  M(|f|" ) (s, ts) < (coM*)" .
Now we define a transformation 7" by
T(y7 S) = (jQ + 2_iy7 £2 + 2_%8)’

) = 2% M *u(T(y, s)) and f(y,s) = M~*f(T(y,s)). Since K c

and se , S
r) X (t1,t; +r?), we can observe that

t a(y
K1 % (0,

(r/2Q(Za, t5) C 721, 1)

and @ € S*(f) in rQ(0,0). We also see that |Zy — x3] < 270D and thus
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Birzr\/ﬁ/zi (%2) C K3y, /7 /0i(w3). Now we have the following estimate

N T
<][ \f(m,t)]”“dfndt) <cC(n) <1
r(0,0)

by direct calculations. Note that we chose some sufficiently small ¢y in order
to obtain the last inequality:.

On the other hand, since (z3,t3) € ' N Gre(u, 2), we have
G(a, T7'Q) N (K5 < (0,3r) x (47%,13r%)) # @

and then the hypothesis of Lemma 3.2.10 is satisfied in €. Since x5, > T2,
ton > ton and |zo — Zo| < 1ry/n/2', we have

(2'(zg — T2,2%(t2 — 12)) € (Boyym N {xn > 0}) x [0,3r7].
Thus, we get the following quantity

|G (@, T71Q2) N (K2 % (0,7) % (0,7%) + (20 — 32), 2%(ts — 1))
(K=t (0,1) > (0,72)]

is less than 1 — o. From this estimate, we have
|Gy (u, QN K| > (1—0)|K],
and it contradicts our assumption. Therefore, we can conclude the proof. [J
Finally, we get the estimate for the density of ‘bad sector’.

Corollary 3.2.12. Under the same hypotheses as in Lemma 3.2.9, we further
assume that w € S*(f) in rQ(zo, 1), u € C(R), and ||u||z=@) < 1. Then
there exist universal constants C' and p such that if

1
o
(f o)™ <1,
T'Q(:Eo,to)
then we have

| As(u, Q) 0 (K % (0,7) x (0,7%) + (21,1
(K=t % (0,7) x (0,72)]
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for any (z1,t1) € (By,/m(w0) N {zn > 0}) X [to, to + 5r2].

Proof. Without loss of generality, we can assume that (z¢,%) = (0,0). Let

A (u, ) N (K"t x (0,7) x (ty1,t; +12))|

o (K71 % (0,7)  (t1, 11+ 17)] !

5= [{(x,t) € K7 % (0,7) x (to, to +7%) : M(|f|""") (2, 1) > (coM*)" T}

B |K7=1 % (0,7) x (1,1 + r2)| '
By Lemma 3.2.11, we have a1 < 20(ay + 5g) for any k& > 0. Then it can
be derived directly that

k—

ap < (20)F 4+ (20)7B;.

1=0

[y

On the other hand, we can also obtain

n+1
‘ iy—(n+1) HfHLn+1 —(n+1)i
ﬁz S C(COM ) 2 S M

by using Proposition 3.2.5. Thus, we can observe that

k—1
ap < (20)F +C D (20)F M < (14 Ck) max{20, M~ IE,
=0

and the right-hand side is estimated by C(n)M ~#* for some sufficiently small
1. We now finish the proof. m

3.2.3 Boundary W?P-estimates

As in the previous section, we first consider W2P-regularity for the following
problem

F(D*u,z,t) —u, = f in QF,
{ G- Du=0 on Ql”{ (3.2.5)

in order to obtain the desired regularity results.
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We are interested in the case when F' is slightly perturbed in x and ¢ from

F(DQu)_ut:f iHQ+,
{ B-Du=0 on Qlf (3.2.6)

If a solution of the model equation is regular enough to have C*!-regularity,
we can expect that the solution of (3.2.5) enjoys the required W?P-regularity.
The following is the main theorem of this subsection.

Theorem 3.2.13. Let u be a viscosity solution of (3.2.5) where F(X,x,t)
1s uniformly elliptic with A and A, convex in X, continuous in X, x and
t and F(0,z,t) =0, 8 € CQ(@T) with B -n > g for some &g > 0, and
[ e P(QNHNC(QT) forn+1 < p < co. Then there exist ey and C' depending
onn,p,\, \,dy and ||B||CQ@D such that

1

n+1
<][ P ((wo, to), (x,))"*! d:cdt) < €
By (x0,t0)NQ7

for any (zo,ty) € QF and r > 0 implies u € W*P(QT), and we have the
2
estimate

||u||W2,P(QJ%F) < Cllullpee @y + 11 loor))- (3.2.7)

To prove Theorem 3.2.13, we use Cll-regularity results for solutions of
(3.2.6), which is indeed, there are results for this problem proved in [16]. We
refer to a series of lemmas, Lemma 3.2.14 - 3.2.16, from [16] to present their
modifications as follows.

Lemma 3.2.14. Let f € C(Q;), g € C(Q}), and u € C(Q]) satisfy

u € S*(\A, f) in QF,
{ 8- Du—g on Ql? (3.2.8)

Suppose that there exists & € Q7 such that - & > 6g. Then

||U||Loo(Q1+) < ||u||Loo(apQ;r\Q;) + C(||9||L°°(Q’{) + ||f||Ln+1(Ql+))

where C only depends on n, \, A\ and .
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Lemma 3.2.15. Let f € C(Q, ), g € C(Q}), and u € C(Q,) satisfy

we S A, f) inQF,
{ 5 Du—y o Ql,{. (3.2.9)

Then u € C%(Q7T) and

2

where 0 < a < 1 and C > 1 depend only on n, A\, A\ and dy.

Lemma 3.2.16. Let F be convez, u € C(QF UQ?) be a viscosity solution of

F(DQU)_ut:f inQJru
{ 5 Due g " Qli; (3.2.10)

and 0 < o < &, where 0 < & < 1 s a constant depending only on n, A\, A and
8o. Suppose that B,g € CY(Q)) and f € C**(Q,). Then u € C’2’°‘(@IF/4)
and

lulleaagy,y < Cllullzmiar) + 1/ llgnagty + l9llcray)

where C" only depends on n, A\, A, 6y, o and ||B]|cra gy )-
2

Remark 3.2.17. Lemma 3.2.14 and 3.2.15 still hold if S*(\, A, f) is replaced
with S*(A\, A, b, f), since b only influences the dependency of constant C'.

Next we state and prove the following global Holder estimate for model
problems which will be used later in Lemma 3.2.21.

Lemma 3.2.18. Let u € C’(Viho) be a viscosity solution of

F(D*u) —u; =0 in Vi,
B-Du=0 on Q7F, (3.2.11)

where § € C2(Q)), ¢ € CO* (9,1, \@7) for some 0 < a <1 and hy > 0 is
sufficiently small with

B(z,t) -n(y) <0 for any (x,t) € Q] and y € OB, \T1. (3.2.12)
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Then u € Cov%(Viho) and
lellens w7,y < Cllellooaw,s, \on

where C only depends on n, X\, \ and .

To prove the above lemma, we need the following one which can be shown
by using the results of [17, Theorem 7| and [34, Lemma 4.1, Lemma 4.3] and
the arguments in the proof of [42, Theorem 3.1|. For Neumann problems, see
[16, Proposition 11].

Lemma 3.2.19. Let Q C R” be bounded, T > 0, B € C*(T') with T' C Q,
and u,v satisfy

F(D?*u) —u; > fi in Qr,
ﬂDuzgl O’H,F,

and

F(D*v) —v; < fy in Q,
8- Dv < go on T

in the viscosity sense, respectively. Then

u—veSAnA, fi —f) inQr,
B-D(u—v)>g1— go onT.

Proof of Lemma 3.2.18. For each (x1,t1) € 9,V}}, \Q}, consider
wi(7,t) = (w1, 1) + |’@Hc&a(apv;ho\cg;)‘lj(xat)
and

wg(l‘,t) = (P([L'l,t1) - ||<p||00aa(8pvlfh0\Q’l‘)\Ij<x7t)a

where

\If(l’,t) = Kl((n(xl,tl) . (I - 1’1) + Kg(tl — t))%),

K > 0 only depends on n, A, A, §y and Ky = (\/1+ A\/2n —1)/2.
Then we can check that

F(D*W) — ¥, <0 in W},
B-D¥ <0 on Q.
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Since wu is a viscosity solution of (3.2.11), we can observe that

u—w; € §()‘/na Av O) n Vl—j_ho’
B-D(u—wy) >0 on Q7.
u—w; <0 on 0, V', \Q1

and
u—wy € S(A/n,A,0) in V7 |

B D(u—ws) <0 on Q7.
u—wy >0 on 3,V \Q}

from Lemma 3.2.19. Then by ABP maximum principle, we have wy < u < wy.
This implies

[u(z, t)—p(z1,t1)] < ||90||00,a(apvlfh0\Q;)‘I’($7t)
S Kngp‘|CO,a(apV14’ﬁhO\Q>{)(n(xlatl) . (x - $1) + KQ(tl - t))§

< O||80||00»a(8pvlfh0\cg;)(|x — 1|7 4 [t —1]7)

for some constant C' depending on n, A, A and dy. This implies boundary
Holder regularity. Now we can complete the proof by combining this estimate
with Lemma 3.2.15. [

Remark 3.2.20. We have assumed that 3 € C*(T) in Lemma 3.2.18 and
3.2.19, as [34, Lemma 4.1, Lemma 4.3] hold under this assumption.

We now fix hg = ho(n,d) > 0 given in Lemma 3.2.18.
Lemma 3.2.16 and Lemma 3.2.18 enable us to prove a useful approxima-
tion lemma below.

Lemma 3.2.21. Let 0 < € < 1 and u be a viscosity solution of (3.2.5).
Assume that ||“||L°°(V1fh0) <1 and||¥((-"), (0’0))””*1(‘/1%) < €. Then, there

exists a function h € C’Q(V;L 8p,) such that u —h € S(yp), Hh||CQ(V e
11 ho

+
33
44

and

Hu - hHLOO(V%,%hO) + H(pHLn-H(Vg . ) S C(E’y =+ "fyan+1(VlJ,rh0))

3
4>2"0

for some 0 < v =7(n,\,A,0) <1 and C = C(n, A, A, 0, ||l c2(gzy)- Here,
o(z,t) = f(x,t) — F(D?h(z,t),2,t) + F(D?*h(z,1),0,0).
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Proof. Let h be a solution of

F(D?h,0,0) —h; =0 in V", |
8’8
h=u on 6pVZ+ZhO\Q§a (3213)
878 8
B-Dh=0 on Q%.
8

Applying Lemma 3.2.15 to u, we can obtain
HuHco,al(Vg’%ho) S C(l + ’|f“Ln+l(V1‘t'h0)) (3214)
for some a1 = ay(n, A\, A, d) and C' = C(n, A\, A, dp). We also have

Ml g,y + 0Dy

5 8ho,

2 2
+0 (||ht||Loo(v§%hO’6) + D h||Loo(V7+7h )) <C,

8810

where C' is a constant depending on n, A\, A, §y and ||5||CQ@D) by means of
Lemma 3.2.16 with scaling.
We set w = u — h. Then, w satisfies
we SA/n,A¢) in V1+1ho’
8’8
w=0 on 9pVi's, \Q7, (3.2.15)
B-Dw=0 on Q%.
8

Apply Lemma 3.2.8 to w, we get

||w||Loo(v7+7h 5) < C(||80||Ln+1(v7+%hoﬁ) + ||w||L°°(8pV§%h076\Q*%))

g-8ho0- EE
S C(HfHL"+1(V7+7h 5) + HF(DQh, . ) — F(D27O’O>HL”+1(V;—7}L 5)

g:8h0; 8870

+ HU’||L<>O(8,,V7+7 \Q%))

5:8h00 " g
for some C' = C(n, A\, A, dy). Observe that
||F(D2h7 * ')_F(D2h7070)”L”+1(V;'7h 5)
8810
< ++),(0,0 — D?h|

< (), (0,0)| o+ (Vg’%ho’a)H Iz (V%*%ho’g)

o8
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< O 2,

where C' = C(n, A, A, do, [|Bl]c2g7))- We have used h € C’Q(V?%ho) in the
first inequality.
Meanwhile, we can see that w = 0 on 8pVZ+ZhO\Q§ and u € C% (V;zho).
'8 8 8’8

Then we also obtain a global Hélder regularity for h by combining Lemma
3.2.18 with (3.2.14). Now we get

lollmyry ez < O F gy, )

for some a3y € (0,1) and C' = C(n, A\, A, §). Thus, if we put v = 52%27

-2 for
wllim@vy o 5 S Oy, ) 07 H 02 A Mg, )}

<C(e"+ ||f||Ln+1(v1fh0))

for some constant C' depending only on n, A, A, dg and [|S]|c2(gr). This com-
pletes the proof. n

The following lemmas give us useful information about solutions of (3.2.5)
in the viscosity sense.

Lemma 3.2.22. Let 0 < ¢y < 1, Q = Bitl\/ﬁhfl,M\/ﬁ x (0,15], r <1, and u

be a viscosity solution of

F(D*u,z,t) —us = f inQ,
{ 8. Du=0 on S i=Tyy 1 x (0,15, (3.2.16)
where hy = hi(n,d) is a small constant satisfying (3.2.12) for any (x,t) €

S and y € 33;1\/5,11_1714\/5\7714\/5,11—1. Consider a point (zo,ty) € S with

r§Q(zo, to) C 2. Assume that

1 1
n+l nFl
(][ | f (z, t)|”+1dxdt> + (][ [ ((z,t), (xo, to))]”dedt) <e
rQ(xo,t0) rQ(xo,t0)

for some € < 1 depending on n, €y, A, A, &g and HﬁHO?(QL - Then,

G1(u, Q)N (K % (0,3r) x (r2,10r°) + (31, 11)) # @ (3.2.17)
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for some (Z1,t,) € (B 20) U Ty, /n (o)) X [to+212, to+5r?] implies

N (
9ry/nh*9ry/n

|Gar(u, ) 0 (K2 % (0,7) % (0,72) + (21, 1))
(K=t % (0,7) > (0,72)]

21_607

where (x1,t) € (B;L\fh,19 f(xo) U Ty, ym(20)) X [to + 2r%, 1] and M is a
rv/nhi = ,9r/n
constant depending only on n, A\, \,dy and ||B||c2(qg-

14\/ﬁh;1)'
Proof. From (3.2.17), there exists a point (z,?2) such that
(z2,t2) € G1(u, Q) N (K5 % (0,3r) x (r*,10r%) + (i1, t1)).

By the definition of GG1, we can find a linear function L such that

u(z,t) = L(z)| < 5 (Jo = zaf* = (t = t2))

N | —

for any (z,t) € Baﬁhfl,m\/ﬁ

with @ satisfying H&HLoo(B+
14r

x (0,tq). Let a(x,t) = (u(x,t) — L(z))/C(n)

< 1 and
ﬂhfl’w‘ﬁ(wo)x(to»tz)) =

|fL(I,t)| < |"Ll|2 - (t - t2) n <B;r4\/ﬁh1’1714\/E\B;;1r\/ﬁh;1,14r\/ﬁ(xo>> X [Oth]'

Here we can check that

’|L|‘Cl(BLTﬁhfl}Mrﬁ(xo)><[0,t2]) < C(n) + [[ull (o),
and thus |DL| is uniformly bounded and depending only on n and ||u|L= (o)
in this case.
Next we define F(D?@, x,t) = F(CD*a, x,t)/C(n), f(z,t) = f(x,t)/C(n).
We see that the elliptic constants of F' and F are the same and @ is a viscosity
solution of

FN’(Z)ZIZLa:Eat)_at:f~ iHTQ(:IZ‘,]f)7
{ B-Di=—f-DL/C(n) on rS(xOO,t[;)_ (3.2.18)

/o + "o __ + [
Set ' = B, vy X (L1, Q1= Bl < (2,15] and 7 =

le\/ﬁx (1,15]. We also write (5 = B(J;4—5)\/ﬁh1_1,(14—6)\/ﬁx (1+62,15]. Consider
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a function h € C(r{Y (o, ty)) which solves

F(D?h,0,0) —hy =0 in 7 (z, 1),
h=ua on J,(rY (xg, o)) \rS" (xo, to), (3.2.19)
f-Dh=—p-DL/C(n) onrS'(xg,to)

in the viscosity sense. Since 8 € C?(rS(zg,t)) and DL is a constant vector,
B-DL € C*(rS(zo,ty)). Then we can derive that

@l zo.to)) + Tt co o‘l(rQ’(aco t0))
< C(1+ 17| fllzos1 ooy + 7118 - DL e raiao o))

for some oy = ai(n, A\, A, ) € (0,1) and C' = C(n, A\, A, ) > 0 by Lemma
3.2.15. On the other hand, applying Lemma 3.2.14 and 3.2.16 to h, we also
have

[1hllo @)oo + Tl Dhllewag e o)
+ (6 sl ot sy anton + 1Dl sy anton)
C1 Pl rsv (oo + 7118 - DLl ctrstorto)) + 72 11DB ©@ DL|lo@s (o)
+ r*7[DB ® DL]co.e(r8(zot0)))

for any a € (0, 1) and some C depending only on n, A\, A, 5 and || B||c2(r8(z0,t0))-
Next, we observe that

HB : DLHC(TS(:EQ,to)) + THDﬂ ® DLHC’(rS(xo,to)) + rite [Dﬁ ® DL]CO’Q(TS(IO’tO)))
< C(?’L, ||ﬁ| |CQ(7’S(LB0¢0)))

and

||h||L°° (r(€25)(zo,t0))

<1 o 0y (r(@) oo (o o)) + C (15 A A, 80)7 |8 - DL Lo o 1)
< [@] oo (8, (r2 (o to))\r S (20,t0)) T C (105 Ay A, 0, [|Bllc2 (5 (wo,t0)))T

+ C(n, A A, 00) (14 7731 || £ ot ra(aonto)) + 71D L oo (rea(e 1))
< C(n, A A, b0, | 1Bllo2(rs o o))

for any 0 < § < 2 and some ay € (0, ;). We have used a similar argument
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for the second inequality in the proof of Lemma 3.2.21. Hence, we get

DR o< (r(2) o to))) + el 2o () o ,t0)))
S 6720(”7 )\7 A? 607 HB’ ’CQ(T‘S(Io,to)))

for any 0 < 6 < 2 and therefore
|1 D?R| Lo (rr (o)) + |1 |20 0oty < C (s Ay A, 00, 18] 28 (o rto)))-
Then the above estimate leads to
An(h, Q" (20, 10)) N (QF" % (0,7) x (0,7%) + (21, t1)) = @

for any (z1,t1) € (By,ym N {zn > 0}) X [to + 2%, 11] and a sufficiently large
N = N(n, A, A, 0o, [|B]lc2 (w0 to)))-
Extend h|,q/(go4) to H with the property that H is continuous in (2,

where
Y :={(z,t) eX:t < s} for ¥ eR" xR,

H =1 in Q) \(r (zo,t9))s,, and
1@ = Hlro(u,) = |1 = Al Lo (eo.t0))0y):
Then we have
@ = HI[ oo @u,) < |0 Loo(reri(@o.to))ey) + 1l Lo (re (o to))ey) < Co

for some C’0 = CO(na )‘7 Aa 50a H/BHC2(T‘S(.Z0,t0)))‘ From thiS, we see that

|H(z,t)] < Co+ |.r|2 —(t—tg) in - Qu,\(rQ"(zo, t0))s,-
It can be obtained directly that

Ay (H, Q)N (Kf‘l x (0,7) x (O,TQ) + (21,11)) =@

for some My > N.
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Define w = @ — H. Then w satisfies

we SA/n, A, f — F(D?h,-,-) + hy) in rQ(zo, to),
w =10 on 0, (1Y (0, t0) )e, \ (1S (0, t0) )1a5
f-Dw=0 on 15’ (xg, to).

(3.2.20)

From Lemma 3.2.14, we can derive

[wllze @) = llwllz=@or @t < O+ Ifllmtea@mn) < C

for some v € (0,1) depending only on n,\, A, and C' > 1 which also
depends on ||B|c2 (8 (z0,t0))-

Now write w = w/Ce?. Since W satisfies the assumptions of Corollary
3.2.12, it holds that

|As(0, Q) N (K1 x (0,7) x (0,7%) + (21,t1))]
KrTx (0.r) x (0,77 =¢

sTH.

We also check that
AQMO('I:L, Q) C AMO('IU, Q) U AMO (H, Q),
AMO(H, Q) M (K:}il X (O,T’) X (0,7’2) + (xl,tl)) = .
This implies

| Aoa, (0, ) N (K21 % (0,7) x (0,7%) + (21, 11))]
< [Ang (w, Q) O (K7™ % (0,7) % (0,72) + (21, 11)))]
= [Angy /o (0, Q2) O (K71 % (0,7) x (0,7%) + (21, 11))]
< C(Mo/Ce) K™ % (0,7) x (0,7%)]
< e KM x (0,7) x (0,7%)]

for M = 2C M, and a sufficiently small €. Then we get the desired result. [

Lemma 3.2.23. Let 0 < ¢ < 1, Q = Bth ' laym x (0,15], r <1, and u
be a viscosity solution of (3.2.16). Assume that ||u||Le(ro(zot)) < 1 and

_1
n+1
<][ yf(x,t)|"+1da:dt> <e
TQ(Z‘o,to)
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for some € > 0 depending only on n, €o, A, A, 0o, || B]|c2(r8(z0,t0)) -
Eztend f to zero outside rQ)(xg,ty) and let

1
n+1
(][ W((wy, ), (z,t))" dxdt) <e
Qr(w1,t1)ﬁrQ(zO,t0)

for any (x1,t1) € rQ(z0,t0), 7 > 0. Then, for

A= Ay (u, Q) NV (K x (0,7) % (tg + 22, g + 3r%)),

B i=(Ap(u, Q) N (K1 x (0,7) X (tg + 2r®, tg + 3r%)) U
{(z,1) EK,’?‘IX(O, r) X (to + 212 to + 37"2):M(|f|"+1)(:z:, t)> (coMk)"+1},

where k € No, M > 1 only depends on n, X\, A, 0o, ||B8]|c2(r8(z0,t0)) @0 co also

depends on €y, we have
|A| < 2¢|BJ.

Proof. First of all, we observe that
ACBCKM x(0,7) x (to + 2r% to + 3r%).

We also have B C K" ! x (0,7) x (tg+2r?,to+ 3r?) by Lemma 3.2.10. Thus,
applying Lemma 3.2.22 to u, we obtain |A| < 2¢. Then we only need to
show that for any parabolic dyadic cube K and its predecessor K,

IANK|>elK| = K CB

by means of Lemma 3.2.4.
We define

K = (K50 % (0,7/2') x (0,7%/2%)) + (21, t1)

and
R = (K50 % (0,r/270) x (0,02/226°0)) + (&1, ).

Suppose that |A N K| > ¢|K| and K ¢ B. There exists a point (z2,t) €
K0 G (u, Q) with M(|f]") (22, ) < (coM*)m+L,
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First, assume that 1, < 8ry/n/2'. Consider a linear transformation
T(y,s) = (21,0,t) + (27'y,27%s),
where t* = t; — 21722, Now we set
Ay, s) = 2 M~ u(T(y, 5)),

Bly) = B(T(y.s)),

and 5
fly) = M7*f(T(y,s)).
Then @ is a viscosity solution of

F(D%u,y,s) —i; = f in r0(0,0),

- 3.2.21
{ B-Du= on 15(0,0), ( )
since (r/2)Q(x),0,t*) C rQ(z0,ty). Observe that 3 € C2(rS(0,0)) and F
has the same elliptic constant of F'. Let

¢F<<yv S)’ (07 0)) = ¢F(T(yv 8)7 (xllv 0, t*)>

Then we also have || z||Ln+1(r0r(0,0)) < Ce for some C' = C(n) > 0
In addition, we obtain

1
n+1

11|+ 200,00 s)["t dyds)

< Q(O 0)
C(n

I/\ IN

by using Proposition 3.2.5 and choosing ¢y small enough.
One the other hand, we have

T'K' NGy, T (r0,0))) # @

by the assumption KN G (u, Q) # @. And since |z1 — 71| < ry/n/2', we
observe that [T 'z;| < 9ry/n. Consequently, applying Lemma 3.2.22 to 4,
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we get
IT'K N Gy(a, T-1(r0(0,0)))]
Z 1-— €0-
[T K|
Then it follows immediately that
| K N Gyper (u, 7€2(0,0))] > 16

K]

This leads to a contradiction.
Now we consider the interior case x1, > 8r\/n/ 2¢. Observe that

, i+1 +
C\?S'I‘\/H/QI (‘7:1 + Ten/2 7t1) - QS’I‘\/ﬁhl_lﬂr\/’ﬁ(xo’tO)
in this case. Again, set T : Qg, m — Qs m/2i (21 + ren /2%, 1) such that

rén, Y S
T(y,s) = (xl + 9i+1 + 2i+1’t1 + 22(i+1))'

and we write .
(y, s) = 22CHDMFu(T(y, 5)),

F(X,y,s) = M"F(M*X,T(y,s))
and 3
fly,s) = M~ u(T(y, s)).
We can check that @ is a solution of

F<D21~l’7 Y, S) — U = f(ya 8) in QST\/E

in the viscosity sense. Applying |75, Corollary 5.2] to @, we can also deduce
our desired result. O]

Proof of Theorem 3.2.13. We fix (o, 1) € Q;r/:,) UQss If (xo,to) € Q3)3, let

r be a fixed number in (O, min { 11119;7%' hq, —%}) and we set

n+2
€rntl
K =

er = |u|| Lo (raao,to)) T 1 f1lLrrra@aoto))

Here, Q = B

Ty X (0,15] with hy = hy(dp) as in Lemma 3.2.22
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and € = €(n, €, A, A, p, do, [|B]|c2(gr)) 1s @ constant as in Lemma 3.2.22 with
€0 € (0,1) to be chosen later.

Let
a(y, s) = Kr—2u(ry + zo,7%s + to),
fly,s) = K f(ry + xo,r%s + to),
By, s) = Blry + zo,7°s + to),
and

F(X,y) = KF(K'X,ry + 0,725 + tg).

Then, @ is a solution of

{

in the viscosity sense. It can be checked without difficulty that F* and F have
the same elliptic constants, 3 € C*(S), ||||p~@) < 1,

(Dgfb,y,S)—th:f in Qa

— Tt
D=0 on § =Ty - % (0,15]

QZ ’T‘jz

(3.2.22)

=g}

[ z|[Lrir0) < C(n)eo <,

_nt2
prrr(e) S K[ o o o)) < €

1]
for a sufficiently small €. Thus, the assumption of Lemma 3.2.23 is satisfied.
Set

ap = ’AM’“(ua Q) N (K?il X (07 1) X (2’3))‘a
B = {(z, 1) € K77 % (0,1) x (2,3) : M(|f]"")(w,1) > (coM*)" 1}

and choose ¢g = 1/(4MP). By direct calculation, we have

N
—_

(073 S (260)k + (2€O)kiiﬁi.

i

I
o

We also observe that

1My < Clnap)

n+1
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by Proposition 3.2.5, and this implies
ZMpkozk < C(n,p).
i=0

Using Proposition 3.2.6, we discover
||ﬂt||LP(Qg(O,—%)) + ||D2a||LP(QJ%F(O,—é)) <,
that is,
||“t||LP(Qj/2(zo,to—§)) + ||D2u||LP(Q;‘F/2(Z‘07tO_%)) SC(HUHLOO(QD + ||f||Lp(Q1+))7

where C'= C'(n, A\, A, p, r, do, ||5||c2@j)) > 0.

Besides, when (xg,t) € Q;“/3, we can apply the results of interior esti-
mates, like as in [75, Theorem 5.6]. Combining the interior and boundary
estimates, we get

8

||ut||LP(Q"%'(O,—é)) + ||D2u||LP(Qg(07—l)) <G

Where C = C(Tl, )\7 A7p7 507 HBHCQ(@T)) > 0
We also need to establish proper regularity results in Q7 x [~1/8,0). For
2

these estimates, we extend F' and [ such that our assumptions are satisfied.
Then we can obtain the estimate (3.2.7). O

3.2.4 Boundary W!?-estimates

We have obtained W?P-regularity for solutions of (3.2.5) in the previous
subsection. Here, we extend this regularity to the case when the function F'
also contains ingredients ¢ and 7.

Let u be a viscosity solution of the following problem

2 —w, = f in QF
{F(D u, Du,u, 2,t) —up = fin Q7 (3.2.23)

B-Du=0 on 7,
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and assume that this « also solves

2 —up = f i T
{ F(D?u,0,0,z,t) —uy = f in Qf, (3.2.24)

B-Du=0 on Q7

for some function f in the viscosity sense.

By virtue of the structure condition (3.2.2). we have (3.1.17) like as in
the elliptic case. Thus, we need to obtain W'P-regularity for u in order to
reach our goal. The following theorem provides the type of estimates which
we want to derive.

Theorem 3.2.24. Let n+2 < p < oo. Assume that F' satisfies the structure
condition (3.2.2) with F(0,0,0,z,t) = 0 and u be a viscosity solution of
(3.2.23) where f € LP(QF) N C(QF) and B € CX(Q)). Then, there exists a
constant €9 = €g(n, X\, A, p, by, @) such that if

1/p
(][ ¥((wo,t0), (2,1))" dmdt) < €
Qr(20,t0)NQT

for any (xo,ty) € QF and r < ry for some ro > 0, then u € Cl’o‘(@;) with
a=a(n,p,\,A) € (0,1) and we have the estimate

HuHCLG@E) < C(HUHLOO(Q;) + HfHLP(Q‘l")) (3.2.25)

for some C = C(n,\, A, b, c,p, \\5“02(@),7"0).

Several steps are needed to prove the above theorem. We first establish
WP regularity for Dirichlet problems, Theorem 3.2.28. Next, we derive C'h°-
regularity on the flat boundary for the oblique boundary problem (3.2.23).
Comparison estimates like Lemma 3.2.26 and 3.2.29 will be utilized to obtain
these regularity results.

We now introduce a useful building block in this section. One can find its
proof in [18, Theorem 6.1].

Proposition 3.2.25. For k € N, let Q2 C Qi1 be an increasing sequence of
domains i R" x R and Q) := Up>1Qy. Let p > n+1 and F, F}, be continuous
and measurable in x and t, and satisfy structure condition (3.2.2). Assume
that f € LP(QY), fr € LP(Q2) and that uy € C(Qy) are viscosity subsolutions
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(supersolutions, respectively) of
Fk(DQUk, Duk,uk,x,t) — (Uk)t = fk m Qk

Suppose that uy, — w locally uniformly in Q and that for any cylinders
Qr(lL‘O,to) C Q and (Y2 € Cz(Qr(ﬁo,to)),

(s = s6) " Mer@ oty = 0 (18 = s1) 7 ll2r(@rwoto)y = 0)  (3.2.26)

where
S(x’ t) = F(D290’ D(107 u? x? t) - f(I’ t)?

sk(z,t) = F(D2gok, D, ug, z,t) — fr(x,t).

Then u is a viscosity subsolution (supersolution) of

F(D?*u, Du,u,z,t) —u; = f in Q.

WltP-regularity for Dirichlet problems

Before proving Theorem 3.2.24, we need to establish W1P-regularity for
Dirichlet boundary problems. For the elliptic case, we refer to [78].

First we introduce a global Holder estimate. This can be obtained by
using the interior regularity |75, Theorem 4.19] and the boundary regularity
[76, Theorem 2.5, Theorem 2.17|.

Lemma 3.2.26. Letn+1 < p < oo and Q C R" be a C*-domain. Suppose
that w € S*(A\, A, b, f) in Qr satisfies u = ¢ on 0,0y where f € LP(Qr)
and ¢ € C%P(0,Qr) with B € (0,1). Then u € C%*(Qr) for some a =
a(n,\,A\,b,p,B) € (0,1) with the estimate

ullcoo@y < Clllullze@r) +11llcos@,00) + [ fllei@r) — (3.2.27)
for some C = C(n,\, A\, b,p, T, diam(2)).

Then we can show the following compactness lemma. (See |78, Proposition
3.2] for the elliptic case)

Lemma 3.2.27. Letn+1<p < oo and 0 < v < 1. Assume that F' satisfies
(3.2.2) with F(0,0,0,z,t) = 0. Then, for every p > 0, ¢ € C*(9,Q%)
with ||¢l|r~@,qn < C1 for some Cy > 0, there exists a positive number
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d=0d(p,n,\, A, p,7v,C1) <1 such that if

19((0,0), (5 Dllze@n) + [1fllr@n +0+¢ <9,
then for any u and v solving
{ F(D?*u, Du,u,z,t) —us = f in QY,
U= on 9,Q7,
and

F(D?v,0,0,0,0) —v;, =0 in QY,
v = 90 on alefa

in the viscosity sense, respectively, we have ||u — UHLW(QT) <.

Proof. Suppose not. Then there exists py > 0 such that if u; and vy are
viscosity solutions to

Fk(DQUk, Duk,uk,x,t) — (uk)t = fk n Qlllk,
U = P on 9,Q7",

and

{ Fk(D2vk70707070) - (Uk)t =0 in Qlljk7
Vg = Pk on 8lefk7

respectively, then ||u, — kaLw(Q:k) > po for every Fy, fi, b, ck, ¥ p, with
195, (00,00, (Dl ooy ity b < 0 — 0 as b = oo

and ¢y, € C%7(9,Q7*) with |2kl lco (5,04 < Ch-

Combining Arzela-Ascoli theorem with (3.2.2), we see that there is a sub-
sequence Fy, and a function F, such that Fy,(-,-,,0,0) converges uniformly
to Fo(+) on compact subsets of S(n) x R™ x R. Hence, by ABP maximum
principle, we have

||Uk||Loo(Q§k)

< loul a0t + €01 A A (el s oy + em el o)

and ||vg|[ oo gry < |10kl 120(9,qur)- Then for sufficiently large k, we can see
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that [|uk|| oo grr)s [[Vk]| oo (@ur) < C(Ch). Here we can also obtain
HukHCOaa(QT’Vy H'Uk‘ ‘Coﬂl(Q’l”“) < C(Cb n, A, A, b,p)

for some a = a(n, \, A, b, p,y) by using Lemma 3.2.26.

Assume there is a subsequence {vg,} C {vx} and a number 0 < v, <1
such that v, — v as i — oo. It is sufficient to consider the case of monotone
subsequences. When {vy, } is decreasing, then Q7> C Q7" for every i. Thus
we can observe that there are functions u.., Vo such that wug,, vy, converge
uniformly to us, v on Q7> by using Arzela-Ascoli theorem directly. For
increasing subsequences, we consider an extension of @i to (By N {—vs <
xn < —v}) x (—1,0) with

H90k| ‘C’OW((Blﬂ{—Vooﬁxng—uk})><(—1,0)) < Cl-

Then we can also deduce the uniform convergence for increasing subse-
quences.
Now we have functions ., vs, € C(Q,) and ¢ € C(8,Q7*) such that

. Voo
Uk, — Uso, Uk, — Uso uniformly on @

and
V
Uo = Voo = Poo O 8pCQloo'

We first observe that v, solves

Fo(D%*04,0,0,0,0) — (vs0); = 0 in QV,
{ Ve = n on 9,Q" (3.2.28)
in the viscosity sense. On the other hand, for u.,, we see that

|FkZ(D2¢7 DQS,Uki,ﬂf,t) - fk‘z(xyt) - FOO(D2¢7 07 07 Oa O)’
< e, C(C) + by, | D] + 4 ((0,0), (2, 1))| D*9|

for a test function ¢ € C*(Q}>). Therefore, we can check that

||Fk‘z(D2¢7 ngvukwxvt) - sz($7t) - FOO(D2¢a0709070)||LP(QT(5E0,7§0)) — 0
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as i — oo for any Q,(xg,ty) C Q7. Now applying Proposition 3.2.25 to u,
we derive that uy is also a solution of (3.2.28) in the viscosity sense. Then
we can get a contradiction because (3.2.28) has a unique solution. O]

We next consider the following problems

F(D%u,0,0,0,0) —u; =0 in @
T ’ 3.2.29
and
F(D?u,0,0,0,0) —u; =0 in Qf
T ! 3.2.30
{ U = @2 on ap@ika ( )

where F' is uniformly elliptic, ¢1 € C(9,Q1) and ¢y € C(0,QF) N CH(Q7).
For (3.2.29), we can find the following estimate in |76, Theorem 4.8]:

|ullereg,y < Cllullz=qn)

[N

for some v and C' depending only on n, A and A. On the other hand, by using
[76, Theorem 2.1|, we can also derive the following boundary estimates for
(3.2.30)

el enagy) < Cllullump) + ligallernian)

for some a and C' depending only on n, A and A. That is, F' satisfies interior
and boundary C1®-estimates. Furthermore, we can obtain

||u||01,a@v%) < C(l[ullzee @y + lle2llerran) (3.2.31)

for some o and C' depending only on n, A and A by a using proper scaling
argument.
Now we prove W bP-regularity for parabolic Dirichlet boundary problems.

In the elliptic case, the corresponding result can be found in |78, Theorem
3.1].

Theorem 3.2.28. Letn+1 < p < oo. Assume that F' satisfies the structure
condition (3.2.2) with F(0,0,0,2,t) =0 and u is a viscosity solution of

2 — U = ) T
{F(D u, Duu, o t) —w = fin QF, (3.2.32)

U= on Q7,
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where f € LP(QT)NC(Q)) and ¢ € CY(Q)). Then, the followings hold:

(i) For any p > n+ 2, there exists a constant €g = €g(n, \, A, p, o, @) such
that if

1/p
(][ ¥ ((wo,t0), (2,1))" dxdt) < €
Qr(moﬂfo)ﬁQir

for any (zo,t0) € QF and r < ry for some ro > 0, then u € C**(Q1)
with o < min{1 — ”Tﬁ,a(l —7),7} and we have the estimate

||u||cl,a@g) < Cll[ullpe @y + llellerr@p + 1 llngry)  (3:2:33)
for some C = C(n,\, A, b,c,p,ro).

(i1) For any p < n+ 2, there exists a constant €g = €y(n, A, A, p) such that
if

1/p
<][ ¥((wo,t0), (2,1))" dxdt) < €y
Qr(ﬂﬁoyto)ﬂQf

for any (z9,t0) € Q7 and r < ry for some ry > 0, then u € WH4(BY)
2

for any q¢ < p; 5 = (n+2)p/(n+2—p) ((n+2); ., := o) and we
have the estimate

HUHWL‘I(Q%L) < Cllull e @y T llellerv@n + 1 llrgry)  (3:2:34)

for some C' = C(n,\,\,b,c,p,q,r0).

Proof. We fix (y,s) € Qf, n+1 < p' < p and d = min{,r}. Consider a
2
number o > 0 with

5 5
< — < 2
=3 S nemy C S RarEnom)

where 0 is the constant in Lemma 3.2.27, C'(n) is a constant and M is to be
determined.

We first consider the case y, < /2. Let
K =K(y,s)
= [ull oo (@umsiner) T l1ellerr@uwsnen
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1
1 / o
+ — sup {rla (r("+2) / |f(x, t)|P da:dt) ’ }
€0 r<d Qr(y,9)NQY

for some 0 < v < 1 and ¢y > 0 to be determined. One can check that

S =

K(y,s) < [Jull o) + lellora@n + Cn,e) [M(f7)(y, 5)] 7 < o0

for any (y, s). Now we define

1
u(z,t) = Eu(ax + 1y, 0%t + s),

~ 0‘2
f(z,t) = Ef(a:c +y, 0%t + 5),

2
F(X,q,rxt) = %F(KU_QM, Ko™ 'q,Kr,ox +y,0 + s),

1
oz, t) = ggp(ax +y, 0%t + s)

and v = y,,/o. Then @ solves the following problem

IS

F (D24, Da, i, x,t) — i, = [ in QY,
U= Q on Qs N{zx, = —v}

in the viscosity sense. We observe that F satisfies (3.2.2) with bz = ob,

2
cp = o“c and

e

Pl (T_(”+2)/ |f(x, ) dxdt) < epott™
Qy
for any r € (0,2). And since

¥5((0,0), (z,1)) = ¥r((y. 5), (0x +y, 07t + 5)),

we also obtain

19 £((0,0), (2, )| L @y < Cn)eo <0

by taking sufficiently small €.
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Next we prove C'*regularity for the case p > n + 2. It is sufficient to
show that there exist universal constants u, Cy,Cy, K(C3) > 0,0 < a,f < 1
and functions Iy ,(¥) = ag + bps - T, @i, t) = pFEFN(G — 1, ) (b, ukt)
for each k > —1 satisfying the followings:

k(14+a)
() || lk5||LooQ#k)§l’[’ .

(11> |ak—1,s - CLk.s| + Mk71|bk—1.s - bk,sl S OQN(kil)(lJra)‘

oy (A=l ) (VR PR ) — (A, e)(Vkl’zu t2)| k(1+a
1ii < K(Cy)Cypuk+e)
(i) (712l 41ty 12137 (C)Cn

for every (x1,t1), (xg,t9) € Q1 N {x, > —v}.

(i) llerllorr@unfanm—vury < 4if v < b,

We define l_; s = lps = 0 and Cy = C(n, \, A, p), B = a(n, A\, A, p) where C, «
are constants as in Lemma 3.2.26 when it is applied to @ € S*(A\/n, A, 1, f)
in Q4. And we also set Cy = 5C(n, A\, A) and @ = a(n, A\, A) are constants in
(3.2.31). Now we choose av < min{@(1 —v),~v} and u < 1/4 such that

_ = 71\ ™ >,
402(2M)I+0¢ S M1+a and M = 401 Z (Z) Z 401 Zula‘ (3235)
1=0

1=0

We first check that these conditions are true for £k = 0. It is imquiate that
(i) and (ii) hold in this case. We observe that @ € S*(A\/n,A, 1, f +

since ob < 1, o%¢c <

5
320(n)>
—32(Mf1)c and |a| < 1. Applying Lemma 3.2.26, we
obtain ||il|co.s(qr) < 4C). For (iv), we see that

2ol lerv(@infen=—v}) = II@llc17(@iufen=—v}) < 1.

Now we assume that (i)-(iv) are satisfied for £ > 0. We need to show that
these conditions still hold for £ + 1. Set

(@ — ly) (', p*t)
k(1) = ) :
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We observe that v, solves

Fk(D20k7kaavkax7t)_(Uk)t:fk+gk in Q;T’
Vg = QO on Qo N{zx, = —Mik}
(3.2.36)

in the viscosity sense. Here

Fo(X, q,r 2, t) = pFOm O B(uHeD X ko Moty ke 124),

gk('ra t) :Fk(DQ'Uk;, ka‘a Vg, T, t)
— Fi(D*vy, Duy, + g, , v + p"OF (uFx), 2, 1),
and )
felw,t) = pPO= F (b, ).
We see that
V5, ((0,0), (2,)) = P5((0,0), (uz, u*t))
and F satisfies (3.2.2) with bp, = p*bz and cp, = p?*cz. On the other hand,
we also have
gk (2, )| = [ Fr(D*0, Do, vg, @, 1)
— Fy(D*vy,, Dug + %, v + p FET0, (b)), 2, )|
A T L A T N (T3]
for any (z,t) € Q. Therefore, we obtain |lag s|, |br.s| < M/2 from condition
(i) and (3.2.35), and this implies ||| v < M. Now we have

L>@f")

)0

g (2, 1) < bp, - "M + gy, - pFOTI M < g0 16

and this yields

e+l e <|Ifill o Fllgwll o <
Lr(Qf") L@y ) L

1
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Furthermore, we can also observe that

||vk||CO!B(Q1ﬂ{znZV;F’“}) = ||Uk||L°°(Q1ﬂ{zn2ka}) + [Uk]CO,B(le{anWFk})
S 1+ K(Cg)cl = Co

since we assumed that (i) and (iii) hold.

v

Next let h € C(Q4") be a solution of
2

2 0 i OFF
{ Fk(‘D h707 07070) ht 0 mn Ql 7% (3237)
h = v on 0,Q1" ,

in the viscosity sense. Then Lemma 3.2.27 leads to

low = Al o <p (3.2.38)
L=(Qf)
for p = Cy(21)'*®. Meanwhile, we can also obtain

[|A]] <Cy (3.2.39)

cLa@tty
2

from (3.2.31). )
Now we define {(x) = h(0,0) + Dh(0,0) - z. It can be checked without
difficulty that

low =1l o <=0l o +[p=1] &
Lo L Lee

hy T QL)

@)
M1+cx + 02 (2,u)1+5

14+«

IN A
T o=

and this yields
() = lyo(x) — MO (@) < ptrDi)

for every (z,t) € Q7 .. Hence, we see that (i) is satisfied if we set

lk—H,S(*T) = lk75<x) + Mk(1+a)z(ﬂ_k(x))'
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Moreover, we also observe that

ks = aris] + 8 0rs = bigs = pFF(|R(0, 0)] + [ DR(0, 0)])
T [

crE@ut)
2

< C2Mk(1+a)

and this leads that (ii) also holds for k + 1.
It remains to show that (iii) and (iv) are still true. For (iv), we need to
derive that [|or11]]c14(Q1n{z,=—vu-t+ny) < 4. Since

(% = ln) (i 2)

Pry1(T,t) = D) (1) ’

we have ( (i 2(k+1)t)
D(ﬁ_leJrl,s 2 T, (b
Dppia(z,t) = DA ‘

Recall that we assumed that |[x||c14 0,0z, =—vu-+y) < 4 and we also deduced
that ||¢ky1llpe(@un{zn=—vu-t:+ny) < 1. Then we can deduce that

[ D@k41] Lo (01 n{wn=—vp- 41}
_ ‘ ‘ Doy (i, p?t) — Dh(0,0))

e L@ {@n=—vu~(+1)})
- HD%(M:U, p*t) — Depy(0', —v/ 1, 0))

pe Lo (@i {@n=—vu~ D}
N HDSOk(Ola —v/p,0)) = Dh(0,0))
e Lo (Qun{an=—vp—(+1})
< (2p + Cyp®)
< (24 Cyu®™

and

[Dgpk+1]Cov'Y(Qll"l{an*l/;L7<k+l)}) S /L(k+1)(’7*a) [D@]

< kDo)

COT(Qun{an=—1})

79



CHAPTER 3. REGULARITY FOR OBLIQUE DERIVATIVE
PROBLEMS

Now we obtain the following estimate
[0kl lcr(@ingan——vu—ry < 14 (24 Co)u™* + 4pFH0=) <4
and thus (iv) is also true.

Finally, we prove that (iii) is satisfied for k + 1. We already know that
v — 1 € S*(N/n, A, by, fr + gr +6/8) in Qé’f By Lemma 3.2.26, we have

~ _ a 2771,74;2 ~
||ox — choa o) < Cup P 2ut 2007 4 1 [pr — leon @untan=-251)-
’ Iz
Now we choose sufficiently small § with 2§ < ua+n7ﬂfl. Since h = v = ¢ on
Q1N {zy, = — %}, we obtain
v
', ——, t)
( p*

1+a@
/ v 77 0 v
Ok x,——,t) —l(x,——)’ < (%
( pF I
o = Ul @untan=-21 < AC,u'

This implies

if v/pu* < p. (Note that Q,N{x, = — %} = & when v/u* > p) Furthermore,
we also derive from the above estimate that

|(or — l)(ffilatl) — (o — l)(ai2»t2)| ) )
= (r = D(x1,t1) — (0 — D) (@, t2) (0 — 1) (21, 1) = (0 — 1) (22, 82) [
< 4+ Co) (|21 — @] + [ty — t]2)7 - (8Cy) 7 p+@ A=)

for any (21,t1), (22,2) € Qu N {2y = —5}. Now we deduce that

v —lN v
e Hcoﬁ(@;i‘k)
< 01#_6(2M1+a + 25”2*%2 + [ﬂ<4 + 02)7(802)1—7#(14-&)(1_7))
< P (34 (4 + Cy) " (8Cy) )l
and this leads to

(@ = ler,s) (" g, f2F08) — (0 = D) (05 2, 120 01))|
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1
< K(Co)Crp*FDH) (|3 — o] + [ty — to]2)P

with K(Cy) = 3+ (4 + C5)7(8C)' ™. Hence, we can conclude that (i)-(iv)
are satisfied for k + 1.
Therefore, we can always find a linear function [, with

l1s(0)], |DIs(0)| < CK(y,s) (3.2.40)
and

||u - ls‘ ‘LOO(QT(?J,S)QQT) S CT1+QK<Z], 8) (3241)

for any (y,s) € Q% and sufficiently small r > 0.
2

Next, in the case y,, > /2, we can refer to the interior C''**-regularity in
[18, Lemma 7.4]. Thus, we get the estimate (3.2.33) in the case p > n + 2
with p =n+2 and a < 1—%2 since

K(y,s)

< ull poo(@u@sinar) T 1ellcrr@atwsinen + €' Sgg (r

_nt2
14+« >

HfHLP(Q{L))‘

Besides, we also see that (3.2.40) and (3.2.41) are also satisfied for almost
every (y,s) € Qf when n+1 < p <n+ 2. Then we get
2

lu(y + z,s +t) —u(y, s)|
x| + [t]2

< CK(y,s)

for some C' > 0 and almost every (y,s) € Q1 and (x,t) € Q,\{(0,0)} such
2
that (y +z,s +t) € Q7. Write

|U(y +x,5 +t) — U’(yu 8)|

T (y,s) = ISETE

It is straightforward to check that

@l Loty < CHEC ooty < CUlullpgr) + llellerrer + )
2 2
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for any g € (p/, (n+2)p'/[n+2 — p'(1 — a)]), where

J = { / sup [rqﬂ—@ (T_(””V |f(z, O dmdt)p ]dyds}q.
Q)r=d Qr(y,5)NQY

As in the proof of [18, Lemma 7.4|, we obtain J < C||f||Lp(Q1+) for some
C =C(n,p,p'), and then

|(Sltl)I|) ||](x,t)||Lq(Q§) < C(||U||Loo(Q1+) + ||S0||01’7(Q’{) + ||f||Lp(Q1+))
x,t)|<r 2

for any p’ < ¢ < p* with proper p’ and «. This leads to the second assertion.
m

Proof of Theorem 3.2.24

In this subsection, we give the proof of Theorem 3.2.24. As we mentioned
before, WlP-regularity for Dirichlet problems is necessary to show Theorem
3.2.24.

Similarly to the previous subsection, we first prove a compactness lemma
for problems with oblique boundary data.

Lemma 3.2.29. Letn+1<p< oo and 0 < v < 1. Assume that F' satisfies
(3.2.2) with F(0,0,0,z,t) = 0 and 8 € C*(Q3) with B -n > & for some
8o > 0. Then, for every p >0, ¢ € C(0,Q1) with ||p||r=@,0,) < C1 for some
Cy >0 and g € C*(Q,) with 0 < a < 1 and 9llcowgyy < Co for some
Cy > 0, there exists a positive number 6 = 6(p,n, A\, A, o, p, C1,Cy) < 1 such
that if

||17/)((07 0)7 (’7 ))HLP(Q‘;) + ||f||Lp(Q3’) + b +c S 6,

then for any u and v solving

F(D?*u, Du,u,z,t) —us = [ in QF,
u = QD on aPQT\QT;
/6 - Du = g on QT;
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and
F(D?v,0,0,0,0) —v; =0 in QF,
4
v=u on 3,Q3\Q3%,
4 4
B-Du=g on Q%

in the viscosity sense, respectively, we have ||u — v||Loo(QJ3r) <p.
1

Proof. Assume that there is a number py > 0 such that if u; and vy solve

F.(D*uy, Dug, ug, x,t) — (ug)e = fr in QF,
Up = Pk on 9,Q7\Q3, (3.2.42)
ﬁDuk‘:gk’ OHQT,

and
Fk(DQUk7070707 0) o (vk)t =0 in QJEF7
4
O = Uy, on 9,Q5\Q3, (3.2.43)
B - Dug = gy, on Q%

in the viscosity sense, respectively, then ||uy — vg|[ o gty > po for any Fy, fi,
1

bkack7ka with
1% 5,000, 0); Gy Doz ol oy bk < 0 = 0 as k — oo

We also assume that ¢, € C(9,Q1) with ||¢k|[z=@,0,) < C1 and gp €
C%(Q,) with grllcoa(gy) < C2 for each k, respectively.

From the structure condition (3.2.2), we can find a subsequence Fy, and a
function F, so that Fy,(-,-,-,0,0) converges uniformly to F..(-) on compact
subsets of S(n) x R"™ x R by using Arzela-Ascoli theorem. Then for any
91 € (0,1) and sufficiently large k, it follows from Lemma 3.2.14 that

lurll ooty < ekl @,000
+ O, A A 0o) ([ fell gy + gkl 2oy + crllukl Lo gr)

and this implies

||uk||L°°(Qf) < C<Cl’ 027 n, >\7 Aa 50)
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Moreover, applying Lemma 3.2.15 to uy, we have

HukHCO’al(Qtél)
< Cllunll ooy + 1kl prgry + gl @p)or ™! (3.2.44)
S C(Cl, 027 n, )\7 A7 60)51_a17

where a; € (0, 1) only depends on n, A\, A and dy. Then we obtain

HU}CZ 0,01 (Qt) S C(Cl, 02, n, )\, A, (50) (3245)
8

from (3.2.44). Therefore, there exists a subsequence {uy,} C {ux} and a
function us, with uy, converging uniformly to u., in Q7.

Similarly as in the proof of Lemma 3.2.27, we take a test function o €
C? (@g) Then we can observe that

zll)lg ||Fkl(D2¢7 D¢7 Uk, , X, t) - fkl(l',t) - FOO(D2¢7 07 07 Oa O)HLT’(QT(CEQ,tO)) =0

for any Q,(o,t0) C QF. Since {gx} € C%*(Q)) are uniformly bounded and
8

equicontinuous on Q}, we can find a function g, € C%*(Q?) by Arzela-Ascoli
theorem. Thus by Proposition 3.2.25 and [16, Proposition 31|, we have

{ Fioo(D?1se,0,0,0,0) — (too); = 0 in QF,
8

3.2.46
ﬂ : Duoo = Jxo on Q% ( )

in the viscosity sense.
Set wg, := Uso — Vi, Then we observe that

Wy, € S()\/TL,A,O) n Qg,

4
Wy, = Uoo — Uk, on 9,3 \Q3, (3.2.47)
B - Dwy, = goo — gr, ON Q’%

in the viscosity sense by means of Lemma 3.2.19. Applying Lemma 3.2.8 to
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Wy, , We get

|[wh, L>=(Q%)
4

(3.2.48)

< uoo = uki||L°°(8pQ'§\Q’g)) + C(n, A, A, 00)[|goc — gr, L (QF)
K 4 4

and this converges to zero as ¢ — 0o. This shows that vy, converges uniformly
to us on Q3. But it is a contradiction since we already have assumed ||u —

4
U||L°°(Q§) > Po- O

Proof of Theorem 3.2.24. We show that u

o € Cl’a(@%) with

|[u Q’% olva@%) < C(HUHLOO(QD + HfHLnJrl(Qj)) (3.2.49)
for some 0 < a = a(n, p) < 1 and C = C(n, p, A, A, 6o, ||8]|c2g7)) > 0. Then
Theorem 3.2.24 is obtained by using the results of Theorem 3.2.28.

Let p' € (n+1,p), (y,s) € Q%, d= min{%,ro}, and we choose o > 0 such

that
) 9 )

d
< = L < :
=% S semy © S ROrs nom)

Here, ¢ is the same as in Lemma 3.2.29, C'(n) is universal and M will be
chosen later.

Define
K — K(% S)
1 =
, P
ull Lo (@utwsnet) €0 r=d Qr@,s)n@r‘ )

where 0 < a < 1 is to be determined. Observe that for any (y, s),

D =

K(y,s) < [[ull e gp) + Cn, €0) [M(fF)(y, s)]* < o0.

Let ]
u(z,t) = % (ox + 1y, 0% + s),
~ 0'2 2
f(l’,t) = ?f(gl’—f—y,()' t+8)7
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B(x,t) = B(ox +y, 0%t + s),
2

F(X,qr.2,t) = F(Ko X, Ko™'q Kr,00 +y,0% + 5).

Then u is a viscosity solution of

{ F(D%i, Dit, i, x,t) — i = f in Qf, (3.2.50)

B-Di=0 on Q3.

We can sce that F also satisfies (3.2.2) with bz = ob, ¢z = o’c,

ri- (T_(”+2)/ |f(:v,t)|p, dxdt)
QF

for every r € (0,2). and

||¢F((07 0)7 ('7 '))HLF’(QD <0

1
p/
< ggotte

for small ¢q.

Now we establish C1%-regularity. To this end, we need to show that there
are some universal constants pu,C; > 0, 0 < a < 1 and linear functions
lis(x) = ags + by s - « for each k > —1 such that

(i) [lu— lk,s||Loo(Q:k) < pkQte)
(i) |ar_1.s — aps| + o pors — brs| < 20, pE—D0+),
(iii) 5(0,0) - by, = 0.
Let -1 =lps = 0 and consider a fixed number p < 1/4 such that

601H5H02(@*;)Nz < ptte

and
- 1 “ - 1ot
M = 4C, ; (Z) > 40 ;u : (3.2.51)

We use induction to prove that the above conditions are satisfied for every
k. It can be checked without difficulty when k£ = 0. Next we show that (i)-(iii)
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are still satisfied for £ + 1 under the assumption that these conditions hold
for k > 0.

Let y i o
(@ = ls)(p"w, p*"t)
[k (1+a) :

vg(z,t) =
Then vy, is a viscosity solution of

{ Fi(D?vy,, Doy, vg, 2, t) — (vp)e = fr +gx in Q3 (3.2.52)
By, - Duy, = —(Bg - bis) / 1*® on @3, o

where

Fi(X,q.r,x,t) = PO P(FeD X phoq q Mo pba, i®t),

gr(x,t) :Fk(DQUk,DUk,Uk,SU,t)
— Fy(D*vy,, Dug + g, v + p FETO (b)), 2, t),

fu(z,t) = 0= fuba, )
and
Belw, t) = B(ptx, p**).

We remark that v ((0,0), (2,t)) = ¥3((0,0), (uFz, p?*t)) and F satisfies
(3.2.2) with bp, = p*bz and cp, = p*cp.
As in the proof of Theorem 3.2.32, we can observe that

ko —k(ao —a )
lge(x, )| < bp, - p k M +cp, - i ket pr < ,uk(l )1_6.

This implies
o

k(1—a) < 6.

)
Lk + gl sy < el @r) + gkl o) < 5T

On the other hand, we see that v, € S*(A\/n, A, br,, | fi] + |gr| + #**cz).
Note that bg, <1 if £ is sufficiently large. Therefore by Lemma 3.2.8,

[vkllcoao oty < Vel 5,01y + C (s A A 80) (] fil[ s oy
+lgrll prer gy + 1% ep + 1 1 Br - bkl (op)
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<14 C(n, A A, 60) (0 + pt' =¥ (b, )
S C(”a )\7 A7 507 Cl)

for some ag = ag(n, A, A, dp) € (0, 1). Note that we have used |[vg|| o (or) < 1,
B e C?(Q;) and |b.s| < C(Ch) to obtain the last inequality.
Now let h € C (@Jr) be a solution of

7
8

Fy(D?1h,0,0,0,0) —h; =0 in QF,

8
h =y on 8PQ;¥\Q*§, (3.2.53)
Bi+ Dh= —(By - bs) [t on Q3

in the viscosity sense. Applying Lemma 3.2.16 to h, we see that
1Plleaigy) < Gl + B - besllesay)) (3.2.54)
for some C, = Ci(n, A\, A, do, ||Bllc2qs))- Set C1 = Ci. Then we see that
HhHCQ@%) < Ci(1+p B bislle2az)
< O+ p bl - 1818l 2y
since 3(0,0) - by s = 0. Therefore, we have

HhHCQ(é‘g) S 01(1 + GCS,UliaHﬁHCa(@D) S 201
4

We also have
||k — hHLOO(Q%') <p

by applying Lemma 3.2.29 to v and h with p = 4C\ .
Define I(z) = h(0,0) + Dh(0,0) - x. Then we can obtain

o = Tlliag,) < 10 = Allieqazy + 1A = Tlzeia,
1
<40 + 5 Ci(2p)°
<t
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and this leads to
iz, t) — Uy (2) — PO+ (hg)| < gD 0+)

for any (z,t) € Q;ﬂk +1- Therefore, we see that the first condition is satisfied
if we set

lir1,s(x) = U s (@) + PO (0" 2).

Moreover, we also observe that

ks = argrs| + 1 brs — bigrs| = T ([R(0,0)] + [ DR(0, 0)])
< Mk(Ha)Hthz(Qg)
1
< 201,uk(1+o¢)‘
Now the condition (ii) is proved. Finally, we can also check that
B(0,0) - bpy1.s = £(0,0) - (bgs + p**Dh(0,0)) = B(0,0) - t**Dh(0,0) = 0
since
3(0,0) - Dh(0,0) = 3(0,0) - Dh(0,0) = —(5(0,0) - by) /i = 0.
Hence, we can always find a linear function [, with

L(0)], [DI(0)] < CLK (y, s) (3.2.55)

and
HU - lSHLOO(QT(y,s)ﬁQIL) < T1+aK(y, S) (3256)

for any (y, s) € @% and sufficiently small 7 > 0. This implies u|5; € Cl’o‘(@%)
3

with (3.2.49) by choosing o < 1 — ”TTQ and p’ = n 4 2. Then we can get the
desired result by employing Theorem 3.2.28. [

Remark 3.2.30. We remark that the induction argument in the proof works
well only for (y,s) € Q%, not for (y,s) € Q3. One can observe that the
3 3

condition that 3(0,0) - by s = 0 may break down when y, > 0. On the other
hand, we have used the result of Theorem 3.2.28 in the above proof. Note that
it is required that boundary data p € CH*(Q3) for some 0 < a < 1 in order
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to employ Theorem 3.2.28. However, forn+1<p<n+2, we cannot assert

that u|@*2 € C’l’a(Q%) for any o € (0,1). Therefore, in this case, we cannot
3

obtain the desired results in this way.

Thanks to Theorem 3.2.24, we get W?P-estimate for viscosity solutions
of (3.2.23) directly.

Corollary 3.2.31. Let n + 2 < p < oo and u be a wviscosity solution of
(3.2.23). Then, under the assumption of Theorem 3.2.24, u € W?P( I“/4)
and

lullwzor,) < Cllull =iy + 1 fllo)
for some C'= C(n, A, A, b, ¢, p, |[B]|c2qr))-

3.2.5 Global estimates

We can establish the global W2P-regularity for (3.2.1) by using Corollary
3.2.31.

Proof of Theorem 3.2.2. First, we get the following interior W?P-estimate

ullw2eq) < C(l|ullLe@) + 1 f]lr@)

for any @Q CC Qp from |75, Theorem 5.9]. Thus, it is sufficient to consider
the boundary case.

We are going to use a flattening argument in order to get a boundary
estimate. For any zy € 02, we can find a neighborhood N(z) of xy and a
C3-diffeomorphism ¥ : U(xg) — By with ¥(zg) = 0 since 99 is C*. Then
for each ty € (0,T], we define Wy, : U(xg) x (to — 1,%p) — Q7 such that

Wiy (,t) = (V(2),t — o).

Fix ty € (0,7] and let @ = wo W, '. Then @ is a solution of

{ F (D24, Da, 6, x,t) — iy = [ in QF,

B-Du=0 on Q7
in the viscosity sense, where f = f o \Ift_ol, B = (Bo \Ilg)l) (DWW, o @;)1)t and
F(D%E,ng, i, 2,t) = F(D*p, Dp,u,x,t) o \Ift_ol
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= F(DVU/} o U, ' D*¢DW, o Ut + (D@0, j Vs, 0 Wy )i<s j<n,
DDV, o U, b 4, W, H(z, 1))

for p € W2P(QF) and ¢ = go W, € WP(U(xg) X (to —1,19)). Here, we also
note that we extended u by zero when ¢ < 0.
Now we can see that there exists a uniform constant C'(V) such that

¢F(($7 t)v (x07 to)) < O(\I’)’l/)F((\P_l(l‘, t))? (\Ij_l(x(h to)))

and F' is uniformly elliptic with constants A\C'(¥), AC(¥), see [78]. In addi-
tion, we also have 5 = (3 o U ) - (DU, 0 U ) € C? since ¥, 071 € C?
and 3 € C?(Sr). Therefore, we can obtain the boundary estimate, thanks to
Corollary 3.2.31 along with a standard covering argument. This completes
the proof. n
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Chapter 4

Regularity results for
time-dependent tug-of-war games

In this chapter, we establish regularity theory for value functions of time-
dependent tug-of-war games introduced in Section 2.2. For the interior case,
we show a Lipschitz type estimate, Theorem 4.2.1. After that, we deal with
the boundary regularity in Section 4.3. Besides, we also observe the exis-
tence and uniqueness, long-time behavior and uniform convergence of game
values. We remark that our tug-of-war game is closely linked to the following
normalized parabolic p-Laplace equation

(n+p)u, = Alu.

In studying value functions of tug-of-war games, it is unavoidable to introduce
the following DPP

ue(, )
1—(5(30 t)

2 2
|:VES;17P 1 {ozu€ (x +ev,t — %)%BJ[UUE ($ +h,t— %) dﬁn_l(h)} (4.0.1)

| )

€ €
+ inf {au.lz+ev,t —— +B][ U | x+ h,t — —
VES" 1 2 v 2

Oc(x,t)F(x,t). E
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Here, 0 < o, < 1 with a+ 8 =1, F : I'.r — R is continuous and
de € C(Qer) is defined by

0 n QT\]e,Tv
Sc(x,t) ={ min {1, 1— M} X min {1, 1— @} in 1.,
1 in_()QT.

We recall that

I.r = {(a:,t) €0 x [;,T] : dist(z, 002) < e} U <Q X (O, ;)),

Our = {(m,t) € (R™\Q) x (0,7 : dist(z, 09) < e} U <Q x < - §0>>

Fer =1er U0 7 UDQrp
and

Qer = QrUO 7.

As we will see later, (4.0.1) represents the ‘law’ which value functions satisfy.
Therefore, we can consider that this DPP plays a similar role to the ‘equation’
in PDE theory (in fact, (4.0.1) also includes the boundary condition since it
contains the term d.(z,t)F(x,t).

For convenience, we introduce here a notation. For any £" !-measurable
function f defined on €2 1, we define

A f(x,t;v) =af(z+ev,t)+ 5 f(z+h,t)dC" 1 (h)

BY
for each (z,t) € Q7 and v € S"1. Recall that
. 1 .
midrange A; = = (sup A; + inf Ai).
i€l 2\ ier iel

Then (4.0.1) can be written as

2
ue(x,t) = (1 — 0.(x, t)) midrange o/ u, (x,t — %; 1/) + 0 (z, t)F(x,t).

vesn—1
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We call such a function u, a solution to (4.0.1).

4.1 The existence and uniqueness of game val-
ues

Before establishing regularity theory for game values, we investigate the ex-
istence and uniqueness of game values for time-dependent tug-of-war games.
We first prove the existence and uniqueness of a function satisfying (4.0.1)
with continuous boundary data F. After that, we show that this function is
the value function of our tug-of-war game.

In (4.0.1), the value of u(x,t) is determined by values of the function in
B.(z) x {t — €2/2}. And we also see that this DPP contains integral terms
for the function at time ¢ — /2. Thus, we have to consider the measurability
for the function w., more precisely, for strategies of our game. In general,
existence of measurable strategies is not guaranteed (for example, see [52,
Example 2.4]). But we can avoid this problem under our setting. The function
0. plays an important role in this issue.

We begin this section by observing a basic property of the operator 7.

Proposition 4.1.1. Let u € C(Qer). Then u(x,t;v) is continuous with
respect to each variable in Qr . x 0B(0).

Proof. For any (x,t), (y,s) € Qr, let us define a parabolic distance by
d((z,1), (y, ) = & —y| + [t — s/,

We write the modulus of continuity of a function f with respect to the
distance d by wy.
For fixed |v| = €, we can see that for any =,y € €,

€ €
au(x—i—eu,t — 5) - au(y—l—eu,t — 5)‘ < awy(|z —y|)

and

2 2
‘5][ “(“h’t—e—)dﬁ“(h)—ﬁ U<y+h,t—€—)d£”1(h)‘
€2 €?
<p U($+h,t—§)—u<y+h,t—§)’d£”1(h)
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< Bwu(lz = yl)-

Thus, we get
| ew(z, t;v) — Ay, tv)| < wullz —y)).

Next, for any t,s > 0, we also calculate that

au :L‘—f-EI/,t—E —au x+ey,s—§ < awy (|t = s]7?),

2 2
‘B][ u(a:+h,t—€—)d£”_1(h)—5 u(x—l—h,s—g—)dﬁn_l(h)‘
BY 2 By 2

€ €
<p u(a:—l—h,t——)—u(x—i—h,s——)‘dﬁ"‘l(h)
e 2 2

< Bwu ([t — s|'?)

and hence
’%U(l‘,t, V) - JZ%GU(ZE, S5 V)| S wu(|t - 8|1/2)'

Finally, for any v,y € S !,

Wz, t,v) — W(z,t,x)

:a[u<x+eu,t— ?) —u(x—i—ex,t_ i;)}
’ 2
+5{]{3?u<x+h,t— %)dﬁn—l(h) —][Bzu(x—kh,t_ %)dﬁn—l(h):|'

Combining the above results, we see that

‘W(Z’,t, V) - W(lC,t,X)‘
< aew,(elv — x|)

2 2
ny u<m+h,t— %) —u(x+Ph,t— %)‘dﬁ”‘l(h)

By

where P : vt — x* is a rotation satisfying |h — Ph| < C|h||v — x|. Here, we
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check that

f,

€

2 2
u(x Fht— %) - u(x + Ph,t — %) ‘d/;”‘l(h) < wu(|h — Ph|)

< wu(Celv — x|).
Therefore, we obtain
| Feue(w, t;v) — Feue(z, b x)| < wu(Celv — x|).
Now we can conclude the proof to combine above results. O

For convenience, we write that

2
Tu(x,t) = (1 — 0c(x,t)) midrange <Zu (x,t — %; 1/) + dc(z,t)F(x,t).
vesSn—1
(4.1.1)

Next we observe that the operator T' preserves continuity and monotonicity.

Lemma 4.1.2. For any u € C(Q.7), Tu is also in C(Qcr). Furthermore,

for any u,v € C(Qer) with u < wv, it holds that
Tu < Tw.

Proof. By the definition of T, we can check that v < v implies Tu < Tw
without difficulty. B B
Next we need to show that Tu € C(Qer) if u € C(Qer). When (z,t) €

Ocr, we see that Tu = u = F € C(O.r) by assumption. We need to consider
the case of I.r and Qp\ I 7.
First assume that (z,?), (y,s) € Qr\I.r. Observe that

| midrange Z.u(z, t; v) — midrange u(y, s; l/)|

vesSn—1 vesSn—1
1
< 5| sup u(e,t;v) = sup Fuly,sv)|
vesSn—1 vesSn—1

1
—|—§| inf “Au(x t;v)— 'élflszf;u(y,s;yﬂ.

vesn—1 vesSn—
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Since

sup eu(x,t;v) — sup eu(y,s;v)| < sup |z, t;v) — dauly, s;v)]

vesn—1 vesn—1 vesn—1

and

| inf u(z,t;v)— inf du(y,sv)| < sup |du(z, t;v)— daly, s v)l,

vesn—1 vesn—1 vegn—1
we get

| midrange#Z.u(z, t; v) — midrange Zu(y, s; )|
vesn—1 vesn—1
< sup |,Q{5u(x,t, V) _JZ{eu(ywSaV”

I/ESn71

< wu(d((,1), (y,9)))-

We used the result of Proposition 4.1.1 in the last inequality. Thus, Tu is
also continuous in QT\I& T.
When (z,1), (y, s) € Ler,

|(1—6.(z, t)) midrange Fu(z, t;v) — (1 — 6.(y, s)) midrange Zu(y, s; V)|

vesn—l1 vesn—1
< (1 = bc(x,t))| midrange u(z, t; v) — midrange Zu(y, s; v)|
vesn-1t vesn—1
16,2, 2) — 6.(y,5)| - | midrange u(y, 5;)]
vesSn-1

< (), (5,90) + Nl .0, (3,5))
because
5, 6) = Ly, 5)| < 2, 0), ().
Similarly, we can also calculate
[0c (2, ) F (1) = 0c(y, 5) F(y, 5)]

< wp(@{(z, 1), (1, 50) + 2N F e, (1), (5, 5))

Combining above results, we obtain the continuity of T'w in I, 7.
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Finally, we need to check the coincidence of the function value on 9/ 7.
Observe that dI. r can be decomposed by two disjoint connected sets 9,€)p
and 0,(Qr\I.r) of R® x R. Then we can observe that

lim Tu(y,s) = lim Tu(y,s) =Tu(x,t
OE’TB(y,S)ﬁ(ZU,t) (y ) IC’TB(y,S)—}(I,t) (y ) ( )

for any (z,t) € 0,0 and

lim Tu(y,s) = lim Tu(y,s) =Tu(x,t
QT\IE,TB(yzs)—}(mﬂt) (y ) IC,TB(y,S)—}(l‘,t) <y ) ( )

for any (z,t) € 0,(2r\Ir) by using the above calculation. Thus we obtain
the continuity of T'w and the proof is finished. ]

Since T preserves continuity, we do not need to worry about the measur-
ability issue. Therefore, for any continuous function u, Tu is well-defined at
every point in (.

Now we can obtain the existence and uniqueness of these functions.

Theorem 4.1.3. Let F' € C(T.r). Then the bounded function u. satisfying
(4.0.1) with boundary data F exists and is unique.

Proof. We get the desired result via an argument similar to the proof of [52,
Theorem 5.2]. We can see the existence of these functions without difficulty
since the operator T' is well-defined inductively for any continuous boundary
data.

For uniqueness, consider two functions u and v satisfying Tu = u, Tv = v
with boundary data F. We see that u(-,¢) = v(-,¢) when 0 < t < €/2 by
definition of 7. Then we can also get the same result when €%/2 < t < €2
because past data of v and v still coincide. Repeating this process, we obtain
u(z,t) = v(x,t) for any (z,t) € Qr and hence the uniqueness is proved. [

We look into the relation between functions satisfying (4.0.1) and values
for parabolic tug-of-war games here.

Theorem 4.1.4. The value functions of tug-of-war game with noise u; and
ury with payoff function F coincide with the function wu..

Proof. We need to deduce that

ue < up and urr < Ue
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since u; < uy; by the definition of value functions.
First, we show the latter inequality. Let Zy, € Qr and denote by Sj a
strategy for Player II such that
JZ%Ue( g j ) = Uei.?f—l %UE(ZJ, V)
for j > 0. Note that this S} exists since @/, is continuous on v by Proposi-
tion 4.1.1. Measurability of such strategies can be shown by using |70, The-

orem 5.3.1].
Next we fix an arbitrary strategy S for Player I. Define

[ uc(x,t) when ¢ =0,
(e z,1) = { F(z,t) when c=1.

for any (z,t) € Q7. Then we have

ng,sﬂ [(I)(Cj+1’ ZJ'Jrl)‘(CU: ZO)7 T, (Cj, Z])]

1—6.(2;
2( i) [(eue(wj, tipr; Vi) + Deue(wy, L ViNy)] + 0.(2;)F(Z))

< (1= 0.(%;)) midrange eue (25, 111, v) + 0(Z;) F(Z;)

vesSn—1

<

= (I)(Cj7 Z])

Hence, we can see that My = ®(ci, Zy) is a supermartingale in this case.
Since the game ends in finite steps, we can obtain

urr(Zp) = inf sup IESI NF(Z;)] < supE [F(Z,)]

S g
= Sup ]ES SO [(I)(CT+17 ZT+1)] S Sup ]E?OSO [(I)(C()7 ZO)]

S1,8%

= Ue(Zo)
by using optional stopping theorem.

Now we can also derive that u. < uy by using a similar argument. Then
we get the desired result. O
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4.2 Interior estimates

In this section, we prove interior Lipschitz regularity of game values. Since we

showed the relation between game values and (4.0.1) in the previous section,

we only need to investigate the properties of functions satisfying this DPP.
We first state our main theorem.

Theorem 4.2.1. Let Qa, C Qp\I.7r, 0 < a <1 and € > 0 be small. Suppose
that u. satisfies (4.0.1) with boundary data F € L*(T.r). Then for any
z,2 € B.(0) and —r* < t,s <0,

1
uc(z,t) — ue(2, )| < ClF||Lo gy (l2 — 2| +|s = 2] +¢),
where C' > 0 is a constant which only depends on r, o and n.

The proof of Theorem 4.2.1 is divided into two parts. In the first part, we
provide an estimate for the function u, with respect to t. Precisely, it shows
a relation between the oscillation of u, in time direction and the oscillation
in spatial direction. Next, we concentrate on proving regularity results with
respect to . We first obtain Holder type estimate and then turn to Lipschitz
estimate. Comparison arguments play a key role in the proof of the main
theorem.

4.2.1 Regularity with respect to time

In this subsection, we investigate regularity for the value function u. with
respect to t. The aim of this section is to prove Lemma 4.2.2 below. This
lemma provides some information about a relation between the oscillation in
a time slice and that in the whole cylinder.

We use a comparison argument in the proof of the lemma. We will first
find an appropriate function v (v, respectively) which plays a similar role
as a supersolution (subsolution, respectively) in PDE theory. After that, we
will deduce the desired result by estimating the difference of those functions.
The method used here is motivated by [35, Lemma 4.3]. Our proof may be
regarded as a discrete version of this lemma.

From now on, we fix 0 < r < 1 and T" > 0. Since we only consider interior
regularity, it is sufficient to show the regularity result in a cylinder @), with
proper translation. We still use the notation ()7 after the translation.
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Lemma 4.2.2. Let Qy, C Qp\I.7, —1? < s <t <0 and u, satisfies (4.0.1)
with boundary data F' € L>®(L. 1) for given 0 < o < 1. Then, for given e > 0,
ue satisfies the estimate

[ue(z,t) — ue(x,s)] <18 sup oscue
—r2<r<0 Are

for any x € B,.

Proof. We set

A= sup oscu,
—r2<r<0 e

and
Uo(m,t) = c+ Tr 2 At + 2r 2 Alx|?,

where ¢ € R. Define
c=inf{ceR: 0, >u in A_,2 .}

and we write o = Uz. Then for any n > 0, we can always choose (z,,t,) €
A_,2 so that

ue<xn>tn) > Q_J(xnvtn) — 1.

In this case, there would be some accumulation points (7,t) € A,rz’e as
n — 0. Furthermore, = must satisfy |Z| < r, since if not,

24 < 0(xy, ty) —0(0,t) < ue(wy, ty) —uc(0,ty) +n < A+n
for any 1 > 0, then it is a contradiction when A > 0.

Now we compare midrange,cgn-1 Z0(x,v,t — €/2) with 0(z,t). First,
observe that

vesn—1

2
midrange &7 v (:U, vt — %)
€ 2
< amidrange <=”3+6%t - —) +/3 sup ][ @(x + P,h,t — —) L' (h)
vesSn—1 2 vesSn—1 B:l 2

for some P, € R,. We see that

][ @+ PR (h) = ][ (2 + 20z, PhY + | PHR)dLr(h)
B BY
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< |z +é
for any v € S"1. Next we need to show that

midrange |z + ev|* < |z|* + €%

vesn—1
Observe that
2 _ 2
sup |z + k|*= sup sup |z + ay|
KEDBe vesSn—1 —e<a<e

= sup sup (a*+ 2a(x,v) + |z]*).

veSn—1 —e<a<e
Since a? + 2a{x,v) + |z|* is convex in a, we observe that

sup (a” + 2a(z,v) + |2[*) = € + 2¢|(z, V)| + |2

—e<a<e

We also see that there is a unit vector p so that

sup (€2 + 2¢[(z, V)| + |z|*) = |z + epl?,

vesn—1

as S" ! is compact. Then we get

midrange |z + ev|* < =(|z + ep* + |z — eul?) = |2]* +

vesn—1

N | —

Therefore, we discover

2
€
midrange o7/ v (:L’, vt — —>
vesSn—1 2
2

<c+Tr2A (t — %) +2r2Ala(|z]* + €) + B(|z)* + )}
<C+Tr At 4+ 2r 2 Ala)? — grQAGQ = o(z,t) — ;T2A62.
Thus,

2
midrange .o/ v (x, vt — %) < o(x,t) (4.2.1)

vesn—1
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for all (z,t) € Q,.
Let M = supg, \a , (ue — ) and suppose M > 0. In this case, we see

that u. < v+ M in Q... For any 7 > 0, we can choose a point (z,,t,) € Q.
such that
ug(xn/,tn/) > @(xn/, tﬁ') + M — 77/.

We have to show that (z,,,t,/) must be in @, for any sufficiently small 7’ > 0.
By the definition of M, t,, > —r?. Note that we cannot assert this when
M < 0. On the other hand, for any |z| > r,

v(x,t) —0(0,t) > 2A.
We also observe that ue(z,t) — u.(0,t) < A. Hence it is always true that
(ue — 0)(x,t) < (ue — 0)(0,1).

Thus, (z,,t,) € Q,. Then we obtain that

vesn—1 vesn—1 2

2 2
midrange M{TJ (xn/, Uty — %) + M} > midrange o7 u, (xn/, U, by — 6_)
= ue(mnﬂ tn’)
> @(In/,tn/> + M — T]/.
In the first inequality, we have used that v + M > u. in @, .. Therefore,
. _ € _ )
midrange &0 ( z,y, v, t,y — 5> 0(zy, ty) — 1 (4.2.2)
vesn—1

for any " > 0. We combine (4.2.1) with (4.2.2) to discover that A = 0, and
so v = u, = ¢. If u, is not a constant function, then we have a contradiction
to A > 0. Hence M < 0 and therefore u, < v in Q.

On the other hand, consider

v(z,t) = c— Tr2At — 2r 2 Alz|?,

where
c=sup{ceR:v, <uc.in A2}

Following the above procedure, we can show that u. > v in @), .. For arbitrary
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1 > 0, we can choose (Z,,t,), (z,,1,) € A2, such that

ue(fmfn) > T’(jmtn) -

and
U’e(gnvzr) S @(£n7tr]) + T]
Then
0(Ty, ty) —v(z,,1,) < 0sC e + 27,
and hence

7
c—c<3A+ 57’721462 < TA.
Therefore, we obtain

QQscu6 §sup17—icr91f2_)§é—g—|—7A+4A§ 18 A.
r Qr r

This completes the proof. n

Remark 4.2.3. We showed in the proof of Lemma 4.2.2 that the oscillation
of ue in time direction is uniformly estimated by the oscillation of u. in spatial
direction on (€?/2)-time slices. Note that an (€*/2)-time slice Ay shrinks to
B, x {t} as e — 0 for any t. Thus, we can see that reqularity for u. with
respect to t almost depends on the reqularity with respect to x provided € s
small enough.

4.2.2 Holder regularity

The aim of this subsection is to obtain a Holder type estimate for u.. This
result will be essentially used to prove Lipschitz regularity with respect to x
in the next section.

We will use a comparison argument arising from game interpretations
for obtaining regularity results in spatial direction. This argument plays an
important role in obtaining the desired estimate. Several regularity results
for functions satisfying various time-independent DPPs were proved by cal-
culations based on this argument (see [50, 2, 3]). It was proved in [62] that
functions satisfying another time-dependent DPP have Hélder regularity. Our
proof differs from that in [62] due to the difference of the setting of DPP.

Our argument depends on the distance between two points. If two points
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are relatively far away, we will consider ‘multidimensional DPP’(For a more
detailed explanation, see [50]). We divide the argument into two subcases.
For each case, we will get the desired estimate by choosing proper behavior
of an auxiliary function. In addition, we can derive our estimate by direct
calculation when two points are close enough.

Lemma 4.2.4. Let By (0) x [—2r2 — €2/2,€%/2] C Qr\l.r, 0 < a < 1
and € > 0 is small. Suppose that u. satisfies (4.0.1) with boundary data
F e L>*(T.r). Then for any 0 <6 < 1,

|’U,€(.T,t) - ue(’Z’ S)’ < CHU’EHLO"(QE,T)Hx - Zl(s + 66)7

whenever z,z € B,.(0), —r* <t <0, |t —s| < €/2 and C > 0 is a constant
which only depends on r,d,a and n.

Proof. First, we can assume that ||u|| ;g ) < 7° by scaling. Let us con-

struct an auxiliary function. Define

)

filz, 2) = Clo — z|° + M|z + 2|, (4.2.3)
[ CPNEIE i (2,2) € A,
fal@,2) = { 0 if |2 — z| > Ne/10 (424)
and
g(t,s) = max{M (|t — r?|*/* — %), M(|s — r*|*/* —1°)} (4.2.5)

where N = N(r,0,a,n) € N, C = C(r,0,a,n) > 1 and M = M(r) > 1 are
constants to be determined, and

Ay ={(x,2) € R*™: (i — 1)e/10 < |z — 2| < ie/10}

fori=0,1,..., N.
Now we define

H(z,z,t,8) = fi(z,z) — falx, 2) + g(t, s). (4.2.6)
We first show that

|UE($,t> - U’E(ZJ 8)‘ < C<|LE‘ - 2‘6 + 65)
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for every =,z (z # z) € B,.(0), —2r* <t < 0 and |t — s| < €2/2. To this end,
choose M sufficiently large so that
uc(x,t) — uc(z,8) — H(x, 2,t,5) < C*Ne® + O in 35\%;.
So, if we prove that
uc(x,t) — uc(z,8) — H(zx, 2,t,8) < C*Ne® 4 O in X\YT (427

where T = {(z,2,t,8) e R xR? : z = 2z, —r? <t <0, |t —s| < €/2},
then it is shown that Lemma 4.2.4 holds in 35\ Y. Since we can obtain this
estimate for u.(z, s) — u(z,t), we have

lue(x,t) — uc(z,8)| < CNe® + Ce® + H(x, 2,t,5) in 3.\ 7T.

Now we can assume that z = —z by proper scaling and transformation, and
then we get
lue(x,t) — uc(—x,5)| < Clzl° + C'e

for some universal constant C’ > 0. It gives the result of Lemma 4.2.4.
Suppose that (4.2.7) is not true. Then

K = sup  (uc(x,t) —uc(z,8) — H(z,2,t,8) > C*Ne’ 4 C®. (4.2.8)
(z,2,t,8)€X1\Y

Let n > 0. We can choose (2, 2/, t',s") € £\ Y such that
(2 ) —u (2,8 — H(', 2 t',s') > K —n.

Recall the DPP (4.0.1). Using this together with the previous inequality,
we know that

K <u (', t")—u(,s)— H(, 2t s)+n

1 / / 62 / / 62
<= sup du | ' vt — — | — Fu| 2 v, 8 — —
2 I/I/,VZ/ES"L_1 2 2

€ €2
+ inf du\ 2 vt — — ) —du| vy, s — —
Vs W €8M—1 2 2

— H(2', 2t s) + 2n.
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Let

1 / / 62 / / €
[I]:_ sup %ue {L’,Vx/’t —_ — —due 2 Vyy, 8§ — —
2 2 2

VoV, egn—1

and

[H]—l inf du | o vt e du | 2 v, s i
= 21%/’12/65"71 € s Valsy 2 € s Vo 2 .

We see that

ue(2', ') — u (2,8

2 2
= midrange </ u,. <m’, U 1 — 6—) — midrange &7 u, (z', Vy,s — 6—)
I/IIGSn71 2 ll/ESni1 2
<M+ [II] + 7.

By the definition of &7, we see that
2

1 € €
I == sup [04{uE (3: + vy, t — 5) — U, (z’ +evy, s — 5) }

2 Vyr v, €M1
€ €
+81 {ue (:v' + P, h,t' — 5) — U, (z’ + P, h,s — 5) }dﬁ"‘l(h)} .
B/’

Now we estimate [I](and [II]) by H-related terms. Let

[III] = aH (x + evy, 2+ ev,, t,8) + 5 H(z+ P, h,z+ P, h,t,s)dC"*(h).
Bt

Recall f(x,z) = fi(z,2) — fo(z,2) and H(x, z,t,s) = f(x,2) + g(t,s). Then
we see that

H(x+evy,z+ev,,t,s) = f(x+evy, z+ev,) + g(t, s)

and

H(z+ P,,h,z+ P, h,t,s)dC " (h)

B
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= . {f(x+PyTh7Z+PVzh)+g(t78)}dﬁn_1(h)
Bt

= f(x+ P, h,z+ P, h)dL" ' (h) + g(t, s).
BSt

Then we can write [ITII] as

af(x+ evy, z +ev,)+ f(x+ P, h,z+ P, h)dL " (h) + g(t, s).
B

Here we define an operator 1" as
Tf<$7 Z, PVz? Pl/z)

=af(r+ev,,z+ev,)+ 0 f(x+ P, h,z+ P, h)dL" ' (h).
Bt

Since
uly,t) = w(§.8) < K + Hy, 5 t,0) = K + f(5.5) +9(t,7)  (4.29)

by the definition of K, we obtain that

]' / / / 62 / 62
I <= sup R K+H|2 +evy, 2z +evy,t ——,8 — —
2 VsV €871 2 2

2 2
+ 5][ {K + H(.:E’ + Py h, 2+ Py bt — % s — %) }dﬁ"‘l(h)}
Bt

€ €

1 2 2
S_K"i_ sup Tf(xlvzlapumpuz)_‘_g t/__asl__ .
2 V1,0, €81 ‘ : 2 2

Next we have to estimate [II]. Choose p,, p.» € S"! so that

inf Tf(,2,P,,,B,,)>Tf(a',2,P,,,P,,)—2n.
xT z p:E pz

Vo1,V 1 esn—1

Then we calculate that

1 2 2
] < 2 {0‘{“6 (33 + €, t' — %) — U <z’ + €par, t' — %)}
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2 2
n 5][ {u (x + P, bt — 6—) ~ (z + P, bt — i) }dﬁ”‘l(h)}
BSl * 2 # 2

1
<3 [K+af(fv’ + €par, 2+ €pr)

+5 f(@ + P, h, 2"+ P, ,h)dL"(h) + gt —
B

o
N
o | M

“%\

|

| T
~__
—_ 1

1 / / / 62 / 62
§§ K"’Tf(xazappmmppzz)_‘_g t_Eas _5
<1K+ inf Tf(a,2',\P,,,P,,)+glt 625’ < -
a m X,z vyt vy ) - 5 .
=3 o Eo v fva) T 2 2 g

We used (4.2.9) again in the second inequality.
Combining the estimate for [I] and [IT], we obtain

K <wu (2 t') —u(,s)— H(', 2t s)+n
2 2
< K + midrange Tf (', 2, P, ,, P, ,) +g(t’ — 6_,3’ — 6_)
l/z/,VZ/ESnf1 B # 2 2

— H(z' 2t s) + 2n.

Since 7 is arbitrarily chosen, if we show that

€2 €
midrange T f(«',2', P, ,,P,,) + g<t’ 3 s — 5) < H(', 2t ),
Vs Wy €8M1

that is,

midrange T'f(«',2'.P, ,, P, ) — f(z', %)

VgV €81

then the proof is completed.

Now we need to estimate (4.2.10). Without loss of generality, we assume
that ¢ > s’. Then we see that

2 2
t/ /_ t/_e_ /_6_
g(t',s") g( 55 T3
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=Ml =2 =) = b ([ - G - " )
:M|s’—r2|6/2—Ms'—§—r2 "
Note that
M|s' —r**% — M|s’ € _ " >M{7’6_ (7’2+§)g}

and

s s
A A
<r2+§) §r‘5+<5> §T5+€6

for 0 < § < 1. We also deduce that

€2 5/2 5 2
M|s' —r2P2 = M|s' — — —r?| > —-M=|s —r}>7'— > —Mr>7te,
2 2 2
since h(t) = [t|%/? is concave.
Therefore, we see that
€ € ~
g(t',s") —g(t' — 5 s — 5) > min{—-Meé’, —MC(r)e*} =: 0.

To establish (4.2.10), we will distinguish several cases. And from now
on, we will write (z,z,t,s) instead of (2/,2',¢,s') in our calculations for
convenience.

Case |z — z| > N¢/10
In this case, f(x,z) = fi(x, z) as fao(x,z) = 0. Thus we can write (4.2.10) as

midrange T fi(z, 2z, P,,, P,.) — fi(z,2) < 0. (4.2.11)

Vzﬂ/zES"_l

For any n > 0, we can choose some vectors v,, v, € S"! and related rotations
P, R, P, R, sothat

sup Tfi(z,z, Py, P.) <Tfi(x,2z,P,,P,.)+n.
hy,h,€S7—1
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Hence if we find some unit vectors i, i1, and rotations P, , P, such that

midra’ngeTfl (‘TJ <, Ph],‘? th)
hm,hz65”71

1
< §{Tf1(m, 2, P, ,P,)+Tf(x,2, P,,,P.)+ 77},
then we obtain (4.2.11) by showing

1

é{Tfl(x, z2,P,,P,.)+Tfi(z, 2 P, PM)} — filz,2) <o —n. (4212)
Denote v = ‘i:;, Yy = <y,v> and yy, = y — yyv. Then y is orthogonally
decomposed into yyv and yy, . By using Taylor expansion, we know that for
any h, and h,,

fi(z + €hy, 2 + €h)
= fi(x, 2) + COlz — 2[° M (he — ho)ye+ 2M{(x + 2, hy + h.)e

1
+ 5Cole - 2P0 = 1) (hy — h2)} + [(he — ha)yi [} €2
+ M|hy + h.|*€® + &,.(€hy, €h.),

where &, ,(hy, h.) is the second-order error term. Now we estimate the error
term by Taylor’s theorem as follows:

|Ex 2 (€hy, €hy)| < Cl(ehy, ehz)t|3(]x —z| - 26)673

if |z — z| > 2e. Thus if we choose N > %, we get

‘Sx,z(Ehx, eh,)| < 10|z — Z|6_262_

Now we establish (4.2.11). We first consider a small constant 0 < © < 4 to
be determined later and we divide again this case into two separate subcases.
In the first subsection, we consider the case when v,, v, are in almost opposite
directions and nearly parallel to the vector x — z. Otherwise, it is covered
in the second subsection. In each case, we will choose proper rotations and
investigate changes in the value of the auxiliary function f;. The concavity
of fi plays a key role in both cases.
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Case (v, — 1)} > (4—0)
Observe that

midrangeT fi(x, z, P, , P,.)

Va:7Vz€Sn71

—_

< ATfi(z,2P,,P,)+Tf(x,z,—P,,—P,.)+n}

[\)

and

1
§{Tf1(x7Z7PVz7PVZ)+Tf1(x’ Va:7_ Uy } fl ‘7: Z
= %{ﬁ(:c vy, 2+ ev) + fi(e — evy, 2z — ev.) — 2fi(x, 2) }

+ g{ fi (a: + P, h,z+ Pyzh)dﬁn’l(h)
B

+ fi(x — P, h,z— P, h)dL" ' (h) — 2fi(x, z)}
Bt

We first estimate the a-term. Using the Taylor expansion of f; and the above
estimates, we get

filz +evy, z+ev,) + fi(x — vy, 2 — ev,) — 2f1(x, 2)

= C’5|x—z|6_2{ — D)o —v2)¥ + (v — VZ)VL|2}€2+2M|VI+VZ|2€2
+ & o€y, ev,) + Ep L (—evy, —ev,)

< C6lz —2°2{(0 — 1)(4 — ©) + O}Ye® + 2M (2¢)* 4 20|z — z|° 22

< [Clz — 2" {(§ — 1)(4 — ©) + O} + 8M + 20|z — 2|°~?] ¢

And note that
|Py,h— P h| < |vp + v, (4.2.13)

for some proper P, , P, and for any h € B{'(see [3, Appendix A]), to see
that

filx+ P, h,z+ Pyzh)dﬁn_l(h) — fi(z, 2)
B¢t
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:][ {Cé|x—z|5_1(P,,zh—P,,Zh)v+2M(:v+z,Pymh+P,,zh>

B
+g|x—z|5_2{ (6~ 1)(Boh — b + [Pk — By )y )
+ M|P, h+ P,_h|* + &,.(ha, hz)} dL"1(h)

= % ][ [Clx — 2[72{(§ = 1)(P,h — P,.h)% + |(Poh — P h)y|*}
B¢t

+2M|P, h+ P,.h|* + 2&, . (h,, hz)} dc"*(h)

{|x z|°72(CO +20) + 8M } €.

The last inequality follows from |v, + v,|* < ©. In the same way, it is also

obtained

file — P, h,z — Pyzh)dﬁn_l(h) — fi(zx, 2)
B&1

—_

§{|x — 2|°7%(CO +20) + 8M } .

These estimates give
1
Q{Tfl(x, 2, Vg, V) + T fi(x, 2, — vy, —VZ)} — fi(z, 2)
< %[05@ — 2" {5 — 1)(4 — ©) + O} + 8M + 20|z — 2|°~?] €
+ g{C’@M — 2|72+ 8M + 20|z — 2|2}

%{@ +ad(6 —1)(4—0)} + 10| |z — 2|° %€ + 4M .

Observe that © + ad(d —1)(4 —0) < 0if © < 4ad(1 —6)/{1 —ad(0 —1)}.
Then we can choose sufficiently large C' depending only on 7,6, a and n so
that

midrange T'f,(z, 2, P,,, P,.) — fi(z,2z) < —MCé>.

Vg, V€871
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Thus, we get (4.2.11).

Case (v, —1,)} < (4—0)

It is clear that |v, — v.|y < 2—©/4 in this case. Furthermore, we check that

midrangeT f1(x, z, Py, , Pp.)

Vg, vy €8M1

1 (4.2.14)
< S {Th(z,2 B, B) + Thw, 2, Py, P} 401

Now we estimate the right hand side. By the DPP, it can be written as

%{Tfl(:r,z,Pyx,Pyz) + T fi(x, z, P_V,Pv)} — fi(z, 2)

= %{ﬁ(x +evy,zt+ev) + filv —ev,z+ev) — 2fi(z, 2)}

+ g{ filx + P, h,z+ P, h)dL" *(h)
Bt

- fi(z + P_yh,z 4+ P,h)dL " (h) — 2f1(z, z)}

1
B¢

We will continue in a similar way to the previous case. For the a-term, we
deduce that

filr + evp,z+ev,) + fi(x —ev, 2+ ev) — 2f1(z, 2)

= % [Cé\x — 2 H(vy — 1)y — 2e + 2M (x4 2, vy + 1.)e
C
+ 5 0le = 20 = (e — )b + (20%) + |(va — v2)ys e’}

+AME® + My, + v, > + E, . (evy, ev.) + Ex 2 (—ev, ev)]

1{ ©
< 5{—16’5@ — 2" Ye+8Mer+206|x — 2° 22+ 20|z — z|5_262+2M62}-

Then we see that

208|x — 2|° 2% 4 20|z — 2[° 2% + 2M €2
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1
< Wo(zca 420 4+ 2M diam(Q) %)z — 2

< 0%z — 2 e

for sufficiently large C' and N > 100C/§ , since |z — z| > Ne/10 and € is
bounded. Thus,

filt +ve,z4+v,) + fi(x —ev, 2+ ev) — 2f1 (2, 2)

< {g|x — 2! (5 - C%) + 4Mr}e.

Next, we estimate the S-term. By a direct calculation, we see that
][ {fl(x + Pyzh, z 4+ Pyzh) + fl(a: + P,vh,z + th) _ 2f1<5572)}d£n71(h)
BSL

=+ {filex+ P, h,z+ P,.h) — fi(x,z)}dL " ()
B

+ {filx + P_yh,z+ P,h) — fi(z, z)}dﬁ"‘l(h)
BEt

< ]{9 {%‘ﬂl’ — 2|28 = 1)(Pyh — P12 + |(Buh — Py h)yo [*}
+ M|P,,h+ P h* + & (D, hz)} AL (h)
+ [t ren + nntmev,en)|ar
< bl — =220+ M(20" + 20l — =,
we have used (4.2.13) for the last inequality. Now we observe that
Cola — 2[2(2€)” + M(2€)* + 20|z — 2 2€* < 20%|z — 2.

Therefore B-term is estimated by 26%|z — z|°~Le.
Combining these estimates, we conclude

%{Tfl(x,z7PVZ,Pyz) +Tf1($’zvp—v>Pv)} - fl(ZU,Z)

< %{g]x — 2|7} ((5 - C%) + 4M7"}e + B0% |z — 2" e
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< —MCé?

for sufficiently large C' = C(r,d, a,n). Combining this with (4.2.14), we ob-
tain (4.2.10).

Case 0 < |z — z| < Ne/10

We observe that

\fi(x + hy, 2+ h.) — fi(z, 2)|
=C(lz—z2+hy —h|° — |2 —2°) + M(|z + 2+ hy + b — |2 + 2|?)
< Clhy — b’ +2M |z + 2| |he + ha| + M|hy + b
< 206 + 8Mre + 4Mé?
< 3C¢°

forany z,z € B, and h,, h, € B.if C = C(r, ) is sufficiently large. Therefore,
we see that

sup Tfl(l’,Z,PhI,th)—fl(.’]?,Z)
hzh,eSm—1

= sup |:Oé{f1<37+hx,z+hz>_fl(x7z)}+

hz»hzesn_l
84 A+ Pzt Puh) = Al 2)}ae (b
B¢t

< 3aCe® + 3ﬁ065 = 3C¢°

and
sup  Tf(z,2z,Pn,,Pn.)= sup T(f1— fo)(z,2, Py, Ppn.)
hg,h,€87—1 hy,h,€8n—1 (4 9 15)
< sup Tfilz,z, Py, Pn.). o
hz,h,€S8n—1

By the assumption, we can find i € {1,2,---, N} such that

(z'—l)l—eo<|a:—z|§i%.

116

&

| &1



CHAPTER 4. REGULARITY FOR TIME-DEPENDENT TUG-OF-WAR

We deduce that

inf  Tf(x, 2 Py, Pp.)

ha,hseSn—1
< sup Tfilz,z,P,,Pn.)— sup Tfo(x,z, P, P)
he,h,€87—1 he,hy€S8m—1
< sup Tfilz,z, Py, Pn)— a2 N—i+1) o
hg,h,eS—1
2 ) )
= sup Tfi(z,z, P, Py)— a(C’2 — —) CAN=)d _ 92(N=1) b
hz,h,€8n—1 «
< sup Tfilz,z, Py, Pn.)—2fo(z,2) — 8C'.
ha,h,€87—1

The last inequality is obtained if C' is large. Therefore, we calculate that

Vg, v, €871 hy,h,€8m—1
< filz,2) + 30’ — fo(x, 2) — 4C'¢°
< f(xa Z) o 0657

and then we get (4.2.10) for choosing C' = C(r, d, a, n) sufficiently large.

Case [t —z| =0

According to the results in the previous sections, we observe that
|U€(.T, t) - u€<z7 S)’ < ClHueuLoo(ﬁé,T)(‘x - 2’5 + 66)7

for any z,2 (v # z) € B.(0), —r* <t < 0, |t — s| < €%/2 and some C; =
Cy(r,d,a,mn) > 0.

Fix z € B,(0) and t,s € (—r?,0) with |t — s| < €2/2. Then we can choose
a point y € B.(z) and deduce that

uc(@,t) = ue(, s)| < |uc(, 1) = uc(y, )| + |ue(y, s) — ue(z, s)|

< Cilluel e, Iz = 9l +¢°)

< 201||ue||L°°(ﬁe,T)€5'

Now set C' = 2C;. Then we can conclude the proof of this lemma. O
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For any x € B, and —r? < s <t < 0, consider a cylinder B z—(z) X [s,t].
Applying Lemma 4.2.4, we find that

0sc Ue SC’(r,(5,oz,n)||u€||Loo(§€T)(|t—s|g + €%)
Bm(I)X(T—%ﬂ' ’

for any 7 € (s,t). Then we obtain the following estimate
)
[ue(z,t) = uc(w, s)| < C(r, 6, a,n)Juel| g, (|t = 512 + )

by virtue of Lemma 4.2.2.
Combining this and Lemma 4.2.4, we get the desired regularity.

Theorem 4.2.5. Let Qo C Qr\Ier, 0 < §,a < 1 and € > 0 is small.
Suppose that u. satisfies (4.0.1) with boundary data F' € L>(L.r). Then for
any z,z € B.(0) and —r* < t,s <0,

[
’u€($7t> - UE(Z,S)l < CHUEHLOO(QQT)(L%. B 2‘6 + ‘S - t‘Q + 66)7

where C' > 0 is a constant which only depends on r,d,a and n.

4.2.3 Lipschitz regularity

We will prove Lipschitz type regularity for the function wu, in this subsection.
In the previous section, we utilized the concavity on the distance of two
points of the auxiliary function to get the result. In order to prove Lipschitz
estimate, the auxiliary function is also needed to have this property. However,
we no longer have the strong concavity that was helpful in the proof there.
Therefore, we need to build the proof in a different manner in several places.

For this reason, we will construct other (concave) auxiliary function for
proving Lipschitz estimate. This causes some difficulties compared to the
Holder case. As in the proof of Lemma 4.2.4, we will distinguish two subcases.
More delicate calculations are needed when two points are sufficiently far
apart. Note that we will exploit the Holder regularity result here. In the case
that two points are sufficiently close, the proof is quite similar to the previous
section.

Lemma 4.2.6. Let By (0) x [—2r2 — €2/2,€%/2] C Qr\l.r, 0 < a < 1
and € > 0 is small. Suppose that u. satisfies (4.0.1) with boundary data
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F e L>(T.r). Then,
Jue(, 1) = uc(z, 8)| < Clluc|[p @, 1 (l2 = 2] +€),

whenever z,z € B,(0), —r* <t < 0 and |t —s| < /2 and C > 0 is a
constant which only depends on r,a and n.

Proof. We can expect that |z — z| will play the same role as f; in the Holder
case. But for a Lipschitz type estimate, we cannot deduce the desired result
by using that function |x — z|. Therefore, we need to define a new auxiliary
function w : [0, 00) — [0, 00). First define

wt) =t —wet?  0<t<w = (2ywp) VO,

where v € (1,2) is a constant and wy > 0 will be determined later. Observe
that
W(t)=1—ywet" P €[1/2,1] for 0<t<w

and
W't)=—y(y—Dwet’™2 <0  for 0<t<w.

Then we can construct w to be increasing, strictly concave and C? in (0, 00).
Assume that [|ue[ (g _,) < 7 by scaling as in the previous section, and
we define
fi(z,2) = Cw(|lz — 2|) + M|z + 2|

Consider the functions fy and g for 6 =1 as (4.2.4) and (4.2.5), respectively.
Now we set again the auxiliary function H by

H(xazvt73) = fl('r’ Z) - f2(x’ Z) +g(t78)

and let
f(xv Z) = fl(ZL‘,Z) - fQ(xvz)'

As in the previous section, we will first deduce that
lue(x,t) — uc(z, 8)] < C(lx — z| +¢) in  Xo\T.
We can choose M sufficiently large so that

uc(z,t) —u(z,8) — H(w, 2,t,8) < C*Ne 4 Ce in 35\%;.

119



CHAPTER 4. REGULARITY FOR TIME-DEPENDENT TUG-OF-WAR

Thus, for proving the lemma, it is sufficient to show that
u(z,t) —u(z,8) — H(z,2,t,8) <C*™Ne+Ce  in L\7T.
Suppose not. Then

K:= sup (ulz,t) —uz,s) — H(zx, 2,t,5) > C* e+ Ce.
(z,2,t,5)€X1\T

In this case, we can choose (z/,2/,t',s") € ¥\ T such that
ue(2' ) —u (28" — H(2', 2/t ") > K —n (4.2.16)

for any n > 0.

Similarly as in Section 4.2.2, we need to establish (4.2.10) in order to prove
Lemma 4.2.6. The only difference is the right-hand side of the inequality. In
this case, it is sufficient to deduce that the left-hand side of (4.2.10) is less
than ¢ = min{—Me, —MCe®}, where C only depends on 7.

We use again the notation (z, z,t, s) instead of (2/, 2,1/, s).

Case |r — z| > N¢/10

For the same reason as in the previous section, we shall deduce (4.2.11). To
do this, it is sufficient to show (4.2.12) for any n > 0 and some P, € R,,,
P,eR,..

Now we calculate the Taylor expansion of f;. We see

fi(z + ehy, z 4+ €h,) — fi(x, 2)
< CW'(|z = 2])(he — hz)ve + 2M(x + 2, hy + h.)e
1. > o, 1 Wz —2]) 2 2 (4217)
+ QC’w (|lx = z])(hy — h.)ye” + 20 7= 2] |(he — h.)y o€
+ (4M + 10|z — 2|7 2)é?

for any h,, h, € R". Then we check that
&z (ha, h2)| < C(hy, hZ)t|3(|x -z = 26)7_3 < C|(ha, hZ)t|3(|x —z| = 26)7_3

if |[vt — z| > 2¢ and h,,h, € B, because for the third derivatives it holds
D, yw(|z — z]) < Clz — 2|"~? for some constant C' > 0. Thus if we choose
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N > %,we get

|E2(hay he)| < 10]x — 277262
For estimating a-term in T'fi(x, 2, P,,, P,.), we can use (4.2.17) directly.
On the other hand, more observations about P, , P,. are needed to estimate
[-term. First we see that

fl(x +e€P,,(, 2+ EPVZC) - fl(xv Z)
= CW'(|z — 2)(P,,¢ — P.Qve+2M(z + 2, B, + P,.()e

1., 1 W(x—=2
+ §C’w (|lx — z])(P, ¢ — PZ,ZC)%/€2 + §OM|(PWQ — PVZC>VJ_|2€2

|z — 2|

+ M|P,,¢ + P,.C|*€* + &, .(ehy, €h.)

from (4.2.17). Due to rotational symmetry, integral over the first-order terms
is zero. Note that w” < 0 and (4.2.13) to see that

filx + P, h,z+ P, h)dL " *(h) — fi(x, 2)
B¢t

L Cw(lz =2

< w7 vy + v.|?€® + (AM + 10|z — 2|7 ?)é.

Therefore,

Tf1<£L',Z, PI/z?PI/z) - fl(x7 Z)
< aCuw'(|x — 2|)(ve — vo)ve+ 2aM(x + z, v, + 1, )€

+ %C’w”(|x — 2| (Ve — VZ)%/EQ

PR :
2 |x—z|

+ (4M + 10|z — 2|7 2)é.

(O‘|<Vm - Vz)VL‘2 + 5‘% + VZ|2>€

Now we set © = |z — z|* for some s € (0, 1] to be chosen later. In order
to deduce (4.2.11), we divide again this case into two separate subcases.
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(Vp —1.)3, >4—0

Consider two rotations P, , P,, which satisfy (4.2.13). Observe that

1
E{Tf].(x’Z?PVI?PVz) +Tf1<.1',2, _PVz’ _PVZ)} - f1($,2>

«

< —CW'(Jx — 2)) (Ve — 1) 3

2 (4.2.18)

1 "(lx —
2 g, w2 Bl 4 )

2 |x—2
+ (4M + 10|z — 2|7 7?)é.

Since © < 1 for sufficiently small r and % <w <landw <0,

1
§{Tf1($,Z,PVI,P,/z)+Tf1(l’,2,—P,/I,—PVZ)} _fl(xaz)
3 ¢ 1
< Z " . 2 -
< 2aC’w (|lz — z|)e* + 2Tr 7

+ (4M + 10|z — 2|77 %)€.

(O‘|(Vﬂc - Vz)Vi|2 + /3|Vac + Vz|2)€2

We know that |(v, — v,)y1|* < © by the assumption and we also see
e + P =4~ |(ve — ) <4 — |(ve — v.)v]* < O.
Thus,
1
§{Tf1(x7z7pl/$7pl/z) + Tfl(xu 2, _PI/,N _Pzzz)} - f1<l’,Z)

3 Cc ©
= N

By the definition of w, W”(|z — z|) = —y(y — Dwo|z — 2|72 if |2 — 2| < w;.
Choosing v = 1+ s. Since |z — z| < 1, we get

1
§{Tf1(x, z,P,,P,)+Tfi(x,z,—P,,, —Pl,z)} — fi(z, 2)

3
< {C{ - 5045(8 + Dwo + 11}|m -zt + 4M} €.
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Note that if | — z| < w; (See the definition of w),
3
—5043(3 + Dwy+11<0

for sufficiently large wy. Now we select C' = C(r,a,n) sufficiently large so
that

3 ~
[C{ — 5045(5 + Dwo + 11}|x . 4M] ¢ < —MCé
then we get (4.2.10).

Case (v, — 1)} < (4—0)

Consider two rotations P, and P_, as follows: The first column vectors of
P_, and P, are v and —v, respectively. And other column vectors are the
same. Then we observe,

Tfl(l’,Z, P—V7 PV) - fl(x7z)
< —20CW (|2 — 2])e + 2aCW" |z — 2[)e* + (4M + 10|z — 2["~*)¢”
< —2aCW'(|Jz — 2z|)e + (AM + 10|z — 2|7 2)é?,

and thus

%{Tfl(m, z2,P, ,P,)+ Tfi(x,z Py, PV)} — fi(zx, 2)

< aCuw'(|x — 2|){(ve — 1)y — 2} + 2aM(x + 2z, v, + V.)€
1 Wz —
* 50%;”{04(% — vy [+ Blve + vaf*}e?

+ (4M + 10|z — 2|7 2)e
Set )
[ —ve)ve P
5 .
Then 1 < k < % by the assumption. Observe that

K =

|(I/z—l/z)v|§\/|Vx—VZ|2—KJ@§\/4—I£@§2—g@
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and hence
(Ve — )y < 42— (Ve — 1v2)v).
On the other hand, we have

Ve + V> =4 — |1y — v, ]2
<d— (v — 1)y
<42 — (Ve — 2)v).
We observe that
1
§{Tfl($a 2 Pl/za PVZ) + Tfl(l‘,z, P—Va PV)} - fl(xa Z)
20
<2aM{x+z,v, +v.)e+ (2 — (v — v.)v)CW |z — 2|) ( —a+ N)e
+ (4M + 10|z — 2|772)é?,
as |x — z| > Ne/10.
Next we estimate M (z + z,v, + v,)e. We already know that u, satisfies

Holder type estimate for any exponent § € (0,1) by Theorem 4.2.5. Now by
the counter assumption (4.2.16),

ue(x7t) - UE(Z,S) - C(A}(|l‘ - Z|> - M|ZL’+ Z|2 - g<t78) > K — n>0.
Then we see
Mz + 2> < u(z,t) — uc(z,5) < Cy(Jz — 2|2 4 €Y/2).

Note that (), is a constant depending only on 7, @ and n. Thus, we obtain

that
£+ 2] < 4 S
X yA M
/C’ue{
< gy ] e
- M

< C“f{
M

T — Z|1/2 + 61/2)1/2

1
x— 2|4+ 5]3& — 2| 7MY ¢ 0(61/2):|

1/10\"*
$—Z’1/4+—(—) 61/4—|-O(€1/2):|.

2\ N
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Hence we observe

M(x + z,v, + v)e < 2M |z + z|e
10

1/4
<2 /M |.1' 1/4 Mcue <W) 65/4 + 0(63/2)
< 3/MC, |z — z|"*e
since \/MC,_(10/N)Y/*e¥/* +0(e*?) is bounded by \/MC,,_|x — z|*/?¢. There-

fore, if we choose v =1+ s = 5/4,

%{Tfl(x,z,P%,Pyz) + T fi(x, z, P_V,PV)} — fi(z, 2)

< 6ay/MC, |z — z|°e + Cw'(|z — z|) %
x—2z* 5 6]
- om| 1 | + N{a!(ux — vy + — (P — pz)VL\z}] €
+ (4M + 10|z — 2|5 1)e2,
Note that 10
(4M + 10|z — 2>~ 1)e? (4M+1O)N|x—z\
Then

1
i{Tfl(x,z, P,.P,)+ Tfl(x,z,P_v,Pv)} — fi(z, 2)
2
< 6aV/MCole = e + (2= (= 1) )Co— ) —a+ 3 )
UM 4 10) D~ 2]

Since we already know that k©/4 < 2 — (v, — v,)y and W' € [1/2,1], we
see that

—{Tf1 (x,2,P,,,P,.)+Tfi(x,z, Py, P } fi(z, 2)

< o+ -
(-5

[6a\/— +C

xr — z|°

ool@ ool@

5 10
) + (4M + 10) N} |z — z|%€
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Fix N > 100/« and choose C' = C(r, a, n) large enough so that

1
6o/ MC,, +C(— % +%) + (4M+10)N0 <0.

Then we conclude that
1
§{Tf1($,z, PVm? PVz) + Tfl(xa Z, P—V7 PV)} - fl(xvz)

N a 5 10 i
1—0{604\/M0u6+0(_§+ﬁ)+(4M‘|’10)N]‘I z|* e

< —Méez,

IA

since |z — z| > N¢/10. Now we obtained the desired result.

Case 0 < |z — z| < N¢/10
It is quite similar to the Holder case. First, we see that for any z, 2z € B, and
hy,h, € 8™ 1
|f1(l‘ + Ehmz + Ghz) - f1<l’,Z)|
< Clw(lz + ehy — 2 — €h.]) — w(|lz — 2|)|
+ M|z + €hy + 2 + €h.|* — |z + 2|
< C’(Hx—l—ehz —z—c¢€h,| — |x—z|‘ +w0‘|x+ehm —z—¢€h,|" — |x—z|”’|)
+ M|z + €hy + 2z + €h.|* — |z + 2|
< 2Ce€ + 2Cwoy(2r) 1 (2€) + 8Mre + AMé>.
Then we can choose a constant C' > 0 such that
|fi(z + €hy, 2z 4+ €h,) — fi(x, 2)| < 20Ce.

As in the previous section,

sup Tfl(l',Z,th,th)—f1(CC,Z)
he,h,eS71

= sup af fi(x + €hy, z + €h,) — fi(z,2)}
B b €51
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+8 4 (Aot Puhz+ Pul) = fiw,2))de™ h)
B¢t
< 20aCe+208Ce = 20Ce

and note that (4.2.15) is still valid here. We can find i € {1,2,---, N} such
that (i —1)75 < |v — z| < igj as in the previous section. Now, if C' is large
enough,

inf  Tf(x,z P, Pn.)

hahseSn—1

< sup Tfilz,z,Pn,,Pn.)— sup Tfolx,z, P, Pr)
he,h,€Sm—1 hg,h,€Sm—1

< sup  Tfi(z,2, Py, Pp.) — aC?*N e

he,h,€Sm—1

2 . .
= sup Tfi(z,z, B, Pr) — 04(02 — —) C*N=ie — 202 N=i)¢

hzyhzesn_l Q

< sup Tfi(z,z, P, Pn.) — 2f2(x,2) — 50Ce.
hashz €571

Therefore, we calculate that

midrange T'f(z, z, Py, Py.)
ha,h,€8m—1

< sup Tfilz,z, Py, Pn.)— folz,2) — 25Ce
ha,h.€Sm—1
< fi(z,2) +20Ce — fo(x, 2) — 25Ce.

We finally choose a large constant C' > M depending only on r, o and n to
obtain (4.2.10).

Case |t — 2| =0
Similar to the previous section, we already showed that
|ue(z, t) — ue(z,5)| < Cof|uel| @, (7 — 2| +€),
for any x,z (v # 2) € B.(0), —r* <t < 0, |t — s| < €2/2 and some Cy =

Cy(r,a,n) > 0. Then we can obtain the desired result by using the same
argument as in Section 4.2.2. O]
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Now Lemma 4.2.2 and Lemma 4.2.6 yield the Lipschitz type regularity in
the whole cylinder. We remark here that if the boundary data F' is bounded,
u, satisfies

[luellz @) < NFlLoe o)
(see [55, 62]). Then we can complete the proof of Theorem 4.2.1.

4.3 Boundary estimates

We now consider regularity for functions u, satisfying (4.0.1) near the bound-
ary.

For boundary estimates, we need to consider a suitable boundary regu-
larity condition. To this end, we introduce a boundary regularity condition
for the domain 2.

Definition 4.3.1 (Exterior sphere condition). We say that a domain Q satis-
fies an exterior sphere condition if for any y € 0N, there exists Bs(z) C R™\Q
with § > 0 such that y € 0Bs(2).

Throughout this section, we always assume that () satisfies Definition
4.3.1 and Q C Bg(z) for some R > 0. We also assume that the boundary
data F' satisfies

|[F(,t) = F(y,s)| < L(lz —y| + [t = 5]?) (4.3.1)

for any (z,1), (y,s) € I'er and some L > 0.

Let y € 02 and take z € R™\Q with Bs(z) € R"\Q and y € 0B;(z).
We consider a time-independent tug-of-war game. Assume that the rules to
move the token are the same as that of the original game, but of course, we
do not consider the time parameter ¢ in this case. We also assume that the
token cannot escape outside Bg(z) and the game ends only if the token is
located in Bs(z). Now we fix specific strategies for both players. For each
k=0,1,..., assume that Player I and II takes the vector v} = — é::z' and
v = =, respectively. We write these strategies for Player I, I as Sf and
Sfi- On the other hand, we need to define strategies and random processes
when B (z;)\Br(z) # @. In this case, x4 is defined by z + ev} if Player I
wins coin toss twice and

T — 2

xy, + dist(zy, 0Br(2))vy = z+R|$ 2]
. —
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if Player II wins coin toss twice. When random walk occurs, xx,; is chosen
uniformly in Béj’g (x) N Bgr(2).
We denote by
™ = inf{k : 2, € Bs(2)}.

The following lemma gives an estimate for the the stopping time 7*.

Lemma 4.3.2. Under the setting as above, we have

C(n,a, R/0)(dist(0Bs(y), xo) + o(1))

2

BR 5[] < 6

for any vy € Q C Br(2)\Bs(2). Here o(1) — 0 as € — 0 and [x] means the
least integer greater than or equal to x € R.

Proof. Set ge(z) = Eg; g: [T"]. Then we observe that g. satisfies the following
DPP

oe) =3 | {ana + pues) 4.9 0)ic )}

B* (z)NBr(2)

+ {age(fv —ev,) + ge(y)dﬁ”‘l(y)H +1,

B<* (z)NBR(2)

where p, = min{1, e " dist(z,0Bgr(2))} and v, = (z — 2)/|z — 2|. Note that
ps = 1 for any x € Bg_(2)\Bs(z). Next we define v, = e?g.. It is straight-
forward that

vo(z) = g(w + prev) + ve( — evy))

(4.3.2)
+ ve(y)dL" (y) + €.

B* (z)NBR(2)

From the definition of v. and (4.3.2), we observe that the function v is
rotationally symmetric, that is, v, is a function of r = |z — z|. If we denote
by ve(x) = V(r), the DPP (4.3.2) can be represented by

V(r)= %(V( + pre) + V(r —e))

+ 8 V(ly — z))dL" (y) + €,

B¢* (z)NBr(2)

(4.3.3)
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where p, = min{l,e '(R —r)}.
Now we can deduce that (4.3.3) has a connection to the following problem

SAtow' + Sw” = =1 when 7 € (6§, R+ ¢),
w(R+€)=0

by using Taylor expansion. Note that if we set v(x) = w(|z|),

1—an—1w,+gw,,:_1
2r n+1 2

can be transformed by
N, _
AJv==2(p+n),

where p = (1 +na)/(1 — a) (for the definition of A, see the next section).
On the other hand, we have

w(r) = 2a+n—1 1 2 2n1’
n—

—Lr? ey logr + ¢ when o = 21
by direct calculation. Here

n+2a—1

o { 2nt1)a j(R+€) e when o #
L=

)

1
(2a+n—1)(2an—n+1 2n
2n 2 _ n—1
= (R+e¢) when o = "~

is positive if v > "2—;1 and negative otherwise. We extend this function to the
interval (6 — ¢, R + €.
Observe that

%(w(r +e)+w(r— 6)) + 5 w(ly — z))dL"(y)
B{7 (2)
— () - g (o B8 ofe)
1 —1
< w(r) - [2a712—1(0‘+2+16) _”]62

for some n > 0 when a # ”2—_nl (we can also obtain a similar estimate if
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o= "1). Set

n+1 n n — 15 -0
cpi=— |« — )
0 20+n—1 n—+1 "
Then we have
ES sz [v(zg) + keoe®|zo, - - -, Tp1]

= 04@(%-1 +evy, ) Fu(xp_g — €ka,1))
+ ][ ” v(y — 2)dL" () + keoe?
Be "7 (zg1)
< v(wp_y) + (k= 1)eoe?,

if B(x_1) C Br(2)\Bs_(2). The same estimate can be derived in the case
B (zg-1)\Br(z) # @ since w is an increasing function of r and it implies

v(x + prevy) < v(z + evy)

and

][ v(y — z)d/l”’l(y) < ][ v(y — z)dﬁ"’l(y).
B¢* (x)NBg(y)

Be* (2)
Now we see that v(zy) + kcoe? is a supermartingale. By the optional
stopping theorem, we have
ES sz [v(@renr) + (77 A k)coe?] < (o). (4.3.4)
We also check that
_[E*o
0< ESIZ,SIZI [v(z)] < o(1),

since 7, € Bs(2)\Bs_c(2).
Meanwhile, it can be also observed that w’ > 0 is a decreasing function
in the interval (§, R + ¢) and thus

n+2a—1
, 2(n+1) R+ ¢\ (iDa :
< — .
w_2a+n—15[( 5 ) 1} in (0, R+ €)
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From the above estimate, we have
0 <w(zg) < C(n,a, R/)dist(0Bs(y), zo). (4.3.5)
Finally, combining (4.3.5) with (4.3.4) and passing to a limit with &, we have

OB gy l] < i) — B ()
< C(n,a, R/§)dist(0Bs(y), xo) + o(1)

and it gives our desired estimate. O]

By means of Lemma 4.3.2, we can deduce following boundary regularity
results. First, we give an estimate for u, on the lateral boundary.

Theorem 4.3.3. Assume that Q) satisfies the exterior sphere condition and
F satisfies (4.3.1). Then for the value function u. with boundary data F', we
have

Jue(z, 1) — uc(y, s)|

4.3.6
< C(n,o, R, 6, L) (K + KY?) + L(|lx — y| + |t — 5|/ + 26), (4.3.6)

where K = min{|x —y|,t} + ¢ and R, 0 are the constants in Lemma 4.5.2 for
every (x,t) € Qr and (y,s) € Ocr.

Proof. We first consider the case t = s. Set N = [2t/€*]. Since () satisfies
the exterior sphere condition, we can find a ball Bs(z) C R™\Q such that
y € 0Bs(z). Assume that Player I takes a strategy S7 of pulling towards z.

We estimate the expected value for the distance |z, — xo| under the game
setting. Let 6 be the angle between v and z — z. And we assume that x =0
and z = (0,---,0,rsinf, —rcos ) by using a proper transformation. Then
the following term

alr+ev—2z|+ | — z|dC" (%)
B (x)

can be written as
A(9)

= 0/ smd) + (reosd + P + 4 f /Iy rsimd) + (reoshPaL ()
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= aVr? 4 2recosO+ e+ F F /12 = 2ry,_ysind + [y2dL" (y)
Te

=: &Al(e) -+ /BAQ(G),

where r = |x — z| and T, = {z = (x1,...,2,) € B(0) : x, = 0}. Observe
that A; is decreasing in the interval (0, 7). (Thus, A; has the maximum at
6 =0 in [0, 7]) On the other hand, we have

/ TYp_1 COS O

Ay(0) = — ach
2(0) 7. /7% — 2ry,_1sinf + |y|? )

and this function is a symmetric function about 6 = 7/2. We also check that
A, < 0 in (0,7/2). Thus, we verify that A, has a maximum at § = 0,7 in
[0, 7] and 6#(0) = 6(m). This leads to the following estimate

sup {a!x +ev—z|+ 5 |z — z\dﬁ”_l(:ﬁ)]

vest Bt (4.3.7)
=aflz—zl+¢€)+p |7 — 2|dC" (%),
B® (x)
where v, = (x — z)/|x — z|.
Therefore, we have
xg,t
ESsh ok — 211(z0, t0), - (41, tx1)]
1 —0c(xp_1,ti - o
< ( k—1,Uk 1) [a(|xk_1—2|—€)+ﬂ][uz |;L‘—Z’d£n 1(.1‘):|
2 B (g )
1— (Se Lhe— ,t — ~ n—1/~
Dbl oy -l oo f,, |l sie @)
2 B (g a)
+ 0c(Th—1, th—1)[TR—1 — 2|
= |zp1 — 2|

+6(1 — 56(xk1,tk1))<]{9

We also observe that

0< 5(1 - 55(l'k_1,tk_1)) < 17
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|po1 — 2| S |F = 2 < V(mpo1 — 2)% + € for x € B:xk*l,

and
2

0<\/a2+62—a<26— for a > 0.

a
Therefore,

B0 ok — 2ll(z0,t0), - (o1, tho1)] < |mpoy — 2| + C€
for some C' = C(n,d) > 0. This yields that
Mk = ‘.Tk — Z| — Ck’EQ

is a supermartingale.
Applying the optional stopping theorem and Jensen’s inequality to My,
we derive that

ES g [lor — 2| + |t — 1]/

T T
=ESS {yq;T — 2|+ e\/;] (4.3.8)

0, (z 1/2
< lwo — 2| + CEEGEG [7] + Ce(BEG 1)
Next we need to obtain estimates for Eg- (o, t) ~.[7]. To do this, we use the result
in Lemma 4.3.2. We can check that the ex1t time 7 of the original game is
bounded by 7* because the expected value of |z) — z| for given |z, — 2|
is maximized when Player II chooses the strategy Sf from (4.3.7). Thus, we
have

Eggulr] < min{E g (7], N}
< min { C(n,a, R/0)(dist(0Bs(z), zo) + €) ’ N}

€2

for any strategy St for Player II. We also see that

dist(xg, 0Bs(2)) < |zo — yl.
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This and (4.3.8) imply

B [l — 2| + [t — ¢/

< |zo — y| + Cmin{|zo — y| + €, N} + C min{|z — y| + €, N2,
where C' is a constant depending on n, a, R and 9. Therefore, we get

B o [F(2r,t,)] — F(2,1)]
< L(|lwo — y| + C(n,a, R, §) min{|xg — y| + ¢, N}
+ C(n,a, R/8) min{|zy — y| + €, 2N }/?)

and this yields

ue (o, t) = supinf B [F(a,, t,)]
S; Su

> int B [F(2r, 1)
> F(z,t) — L{C(n,a, R, 0)(K + Kl/z) + |zo — y|}
Z F(yat) - C(n,a, R7 57 L)(K + K1/2> - L(|$0 - yl + 25)

for K = min{|zo—y|+e¢, e2N}. Note that we can also derive the upper bound
for u.(zo,t) by taking the strategy where Player IT pulls toward to z.
Meanwhile, in the case of t # s, we have

|u5(x,t) - ue(y78>|
< |Ue($,t> - ué(y7t>| + |u€(y7t) - ue(y7 S)|
< C(n,a,R/8, L)(K + KY?) + L(|x — y| + 28) + L|t — s|*/%,

where K = min{|zq — y| + ¢,>N} and N = [2t/€e*]. This gives our desired
estimate. [l

We can also derive the following result on the initial boundary.

Theorem 4.3.4. Assume that 2 satisfies the exterior sphere condition and
F satisfies (4.3.1). Then for the value function u. with boundary data F', we
have

[ue(,t) = ue(y, )] < C(lx —y| + 7 +¢) (4.3.9)
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for every (x,t) € Qr and (y,s) € Qx(—€2/2,0]. The constant C' only depends
onn and L.

Proof. Set (z,t) = (xo,t9) and N = [2t/e?]. As in the above lemma, we also
estimate the expected value of the distance between y and the exit point
x-. Consider the case that Player I chooses a strategy of pulling to y. When
|z_1 — y| > €, we have
o,
Egs [lox =yl (20, t0)s - - (w41, )]

< (1= 0e(zpe1, tp—1)) %

{%{(m_l —yl+ "+ (o —yl =)}

+8 ][ — |7 —y[PdL (D) | + Oc(wpor, thr)lor — I
Be B ("Ekfl)

S Oé(|£L‘k_1 — y|2 + 62) + 5(|Ik_1 — y|2 + CEZ)
< |£L‘k_1 — y|2 + 062

for some constant C' > 0 which is independent of €. We recall the notation
Ve, = (Tk—1 — 2)/|2k—1 — 2| here. Otherwise, we also see that

EA(S‘?O;SI)HZE’“ o y|2|($07 tO)v R (xk—h tk‘—l)]

a N e/~
< (1= bt )| Sn—sl+ 45 o=y @)
Be Tt (2g-1)
+ 0c(Tp1, tre1)|zp—1 — Y,
and then we get the same estimate as above since
(lze—1 =yl + €)* < 2(|wpr —y* + €.
Therefore, we see that

My, = |z — y|* — Cké?

is a supermartingale.
Now we obtain

20,t xo,t
B0 o, — o) < foo — yP? + CEEGED ]
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by using the optional stopping theorem. Since 7 < [2t/e?], the right-hand
side term is estimated by |z — y|* + C'(t + €*). Applying Jensen’s inequality,
we get

z 7t €T ’t 1

EG [lr — ] < (B [lor — of?))?
1
2

< (w0 =y + C(t + %)
<|wo —y| + C/* + ).

From the above estimate, we deduce that

ue(xg,t) = supinf Egoéz [F(z,,t;)]
S; Su

> F(y,t) — LEGG lv, =yl + [t — t["?
> F(y,t) — C(lmo — y| + "% +¢).

The upper bound can be derived in a similar way, and then we get the
estimate (4.3.9). O

4.4 Applications

4.4.1 Long-time asymptotics

In PDE theory, the study of asymptotic behavior of solutions of parabolic
equations as time goes to infinity has drawn a lot of attention. We will have
a similar discussion for our value function u. when the boundary data F
does not depend on ¢t in T'; x (¢2,00). The heuristic idea in this section can
be summarized as follows. Assume that we start the game at (xg,tq) for
sufficiently large t5. Then we can expect that the probability of the game
ending in the initial boundary would be close to zero, that is, the game
finishes on the lateral boundary in most cases. Since we assumed that F' is
independent of ¢ for ¢t > €2, we may consider this game as something like a
time-independent game with the same boundary data. Thus, it is reasonable
to guess that the value function of the time-dependent game converges that
of the corresponding time-independent game. We refer the reader to |7| which
contains a detailed discussion of asymptotic behaviors for value functions of
evolution problems. Moreover, long-time asymptotics for related PDEs can
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be found in |5, 74, 66, 63].

To observe the asymptotic behavior of value functions, we first need to
obtain the following comparison principle. Since it can be shown in a straight-
forward manner by using the DPP (4.0.1), we omit the proof. One can find
similar results in [52, Theorem 5.3].

Lemma 4.4.1. Let u and v be functions satisfying (4.0.1) with boundary
data F, and F,, respectively. Suppose that F,, < F, in I'cp. Then,

u<v in Qe .

Now we state the main result of this section.

Theorem 4.4.2. Let 2 be a bounded domain. Consider functions ¢ € C(T',)
and p € C(Ter N {t <0}), and define a function F € C(Q 1) as follows:

P(x) in Te x (€2, T,
F(z,t) =} oz, e/2) + 20@e@e/2) gy oy (£ ¢, (4.4.1)
62 62
(,D(I',t) in Q X [ 2 ?]

Assume that u. is the function satisfying (4.0.1) with boundary data F. Then
we have

lim u.(x,T) = U(x)

T—o00

where U, is the function satisfying the following DPP

Ue(z)
= (1 —0.()) mldrange {aU (x+ev)+ B+ Udlw+h)dL"(h)| (4.4.2)
vesn— BY
+0c(2)¥ ()
mn Qe with boundary data i where
B 0 in Q\ I,
de(z) == hm de(x,t) = ¢ 1 —dist(z,00)/e in I,
el 1 in O,.

Remark 4.4.3. We can find the existence and uniqueness of value functions
under different setting in [52], which is related to the normalized p-Laplace
operator for p > 2. In that paper, the existence of measurable strategies is
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shown without regularization. Thus, we do not have to consider a “reqularized
function” such as o(x, €% /2)+2t((x)—p(x, €2/2)) /€ in that case. Meanwhile,
for the time-independent version of our settings, results for these issues are
shown in [30].

Proof of Theorem 4.4.2. We will set some proper barrier functions w, w such
that
u<u <u

and show the coincidence for the limits of two barrier functions as t — oo. In
our proof, the uniqueness result for elliptic games is essential. The motivation
of this proof is from |2, Proposition 3.3].

Let ¢, be constants defined by

o= min{illgf@/), i§121f ¢} and P = max{sup v, sup ¢},
- € € T, Qe

respectively. We consider u, u be functions satisfying (4.0.1) with boundary
data F' and F', where

() inT, x (2,7,
Fla,t) = o+2t((r) — 9) /e inTox (5,
% in Q. x [—%, %],
and
P(x) in . x (2,7,
F(z,t) = 7+2t(Y(x) =)/ inL.x (5,6,
] in Q. x [-<,<],

respectively. Note that F and F are continuous in E and have constant
initial data.

By Lemma 4.4.1, we have u < u. < wu. Thus it is sufficient to show that
limy o0 u(-, ), limy oo T(+, t) exist and satisfy the limiting DPP (4.4.2). First
we see that

lullze @) < N|Ellpr. ) and [l o, r) < |[Fllpewer)

by using the DPP of v and u. Thus, these functions are uniformly bounded.

Next, we prove monotonicity of sequences {u(x, t-+j€*/2)}52, and {u(z, t+
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J€%/2)}32, for any (z,t) € Qc x (—€?/2,0]. Without loss of generality, we only
consider the case u. Let (g, %) be a point in  x (—€?/2,0] and denote by
a; = u(zo,to + je/2)
for simplicity. For any (xg,t) € Q x (—€%/2,0], we can derive that
Y =ag=a; <ay

by direct calculation and

3 2
as = (1 — 0, (xo,to + %)) midrange <Z.u(zg, to + €; )

vesSn—1

3¢2 3¢2
+ . (xg,to n %)F(:f;o,to n %)

2
> (1 — 6c(z0, to + €*)) midrange Z.u (xo, to + %; 1/)
vesSn—1

+ de(To, to + 62)F(a:0, to + 62) = a9

since 0. (g, to + €2) = 0c(x0, to + 3€2/2) and F(xg, to+€*) < F(x0,t0 + 3€%/2).
Next, assume that a; > a1 for some k > 4. Note that F(x,t) = ¢(x)

for x € I'. and
ke? kE—1)e
Oc xoﬂfo—i‘i = 0c xoio*"g
2 2
in this case. Then, we see

1)e 2
Af+1 = (1 — 0 <J}0, to + M)) midrange 2. u <JZ0, to + %E; 1/)

2 vesSn—1

2
+ 56 <3§'0, tO + @)7?(370)

ke? k—1)ée
> (1 — 0, (xo,to + %)) midrange %7, u (xo,to + ﬁ; V)

vesn—1 2

ke?
+ 65 Zo, t(] + 7 ¢(JIO) = ag.
Therefore, {a;} is increasing for any (zo,t9) € Q x (—€?/2,0]. It is also
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possible to obtain {u(x,t+ je*/2)} is decreasing by using similar arguments.
Therefore, we obtain {u(x,t+ je?/2)} and {u(xz,t+ je*/2)} converges for any
(z,t) € Q. x (—€2/2,0] by applying the monotone convergence theorem.

Now we show that U, satisfies the DPP (4.4.2). Fix —¢?/2 < t; < 0
arbitrary and write

U, (z) = lim u(z,t, + j€%/2)

j—o0

for = € (). By definition of u, we see that

- 2
Uy, () = (1 - 5.(x)) lim {midrange A ( bl )} + T (@)la).
T J—roe vesn—1

Therefore, it is sufficient to show that

. 2 _
lim sup Qﬂg(ﬂ:, t + ‘Yi; V) = sup U, (z;v) (4.4.3)
J 700 yegn—1 2 vesn-t T
and
o je* : ;
lim inf ulz,t+—;v|= inf FU,(x;v) (4.4.4)
j—00 peSn—1 2 vesn—1  ——
where
d(r;v) = av(z +ev) + B+ vz + h)dL" " (h). (4.4.5)
By

These equalities can be derived by the argument in the proof of |2, Proposi-
tion 3.3|. First, we get (4.4.3) from monotonicity of {u(z,t; +j€*/2)}. On the
other hand, by means of the monotonicity of {u(x,t; +j€*/2)} and continuity
of u(x,t;-), we can show the existence of a vector 7 € S"! satisfying

j—roo peSn—

. 2 _
%Q(l’,tl + %;D) < lim inf 1@4&(:& V) for any j > 0.

Now (4.4.4) is obtained by the monotone convergence theorem. Thus, we
deduce that U,, satisfies the DPP (4.4.2) for every —e?/2 < t; < 0. By

141



CHAPTER 4. REGULARITY FOR TIME-DEPENDENT TUG-OF-WAR

uniqueness of solutions to (4.4.2), |2, Theorem 3.7|, we can deduce that

lim u(z,t) = Uc(x).

t—o00

We can prove the same result for u by repeating the above steps. Com-
bining these results with u < u. < w, we get

lim w(z,t) = Uc(x)
t—o0

and then we can finish the proof. ]

We finish this section by proving a corollary. One can apply the above
theorem with Theorem 4.2.1. This coincides with the result for elliptic case,
[3, Theorem 1.1].

Corollary 4.4.4. Let B,, C O\I. and ¢ > 0 be small. Suppose that U,
satisfies (4.4.2). Then for any x,y € B,(0),

Ue(x) = Uc(y)] < C(|lz —y| +€),

where C' > 0 is a constant which only depends on r,n and ||{||p~ ).

Proof. Let r > 0 with By, C Q\I. and z,y € B,.(0). By Theorem 4.4.2, for
any 1 > 0, we can find some large ¢ > 0 such that

|UE(ZL‘,t) - Ue($>‘ < n and ’ue(yat) - U€(y)| < m,

where u, is a function satisfying (4.0.1). And by Theorem 4.2.1, we know
that
|U€($, t) - ué(yu t)| < C(’;C - y’ + 6)7

where C' is a constant depending on 7,n and ||F||ze(r, ). (Here, Fis a
boundary data as in Theorem 4.4.2)
Then we have

Ue(z) = Ue(y)| < [Ue(z) — ue(z, t)| + ue(z,t) — uc(y, t)| + [ue(y,t) — Ue(y)|
<C(lz —y| +e€) +2n.

Since we can choose 1 arbitrarily small, we obtain
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for some C' = C(n,p, Q, ||Y||L=(r.)) > 0 since we can estimate

[1E 2o rery < M0l]zee e

by choosing proper boundary data F'. O]

4.4.2 Uniform convergence as ¢ — (

The objective of this section is to study behavior of u. when € tends to zero.
This issue has been studied in several preceding papers (see [40, 52, 62, 2|).
Those results show that there is a close relation between value functions of
tug-of-war games and certain types of PDEs. Now we will establish that there
is a convergence theorem showing that u. converge to the unique viscosity
solution of the following Dirichlet problem for the normalized parabolic p-
Laplace equation

{ (n+puy = Alu in Q,

u=F on 9,7 (44.6)

as € — 0. Here, p satisfies a = (p—1)/(p+n) and B = (n+1)/(p+ n).

Now we introduce the notion of viscosity solutions for (4.4.6). Note that
we need to consider the case when the gradient vanishes. Here we use semi-
continuous extensions of operators in order to define viscosity solutions. For
these extensions, we refer the reader to [23, 27| for more details.

Definition 4.4.5 (Viscosity solution). A function u € C(Qr) is a viscosity
solution to (4.4.6) if the following conditions hold:

(a) for all p € C*(Q7) touching u from above at (x,ty) € Qr,

AJp(0,t0) > (1 + p)ei(o, to) if Do(zo,t0) # 0,
>\rnax<<p - 2)D290<x07 tO))
+A@<I0,t0) Z (n—i‘p)@t(l’o,to) Zf Dgp(aco,to) = 0

(b) for all o € C*(Qr) touching u from below at (zg,ty) € Qr,
A (o, t0) < (n+ p)gi(To, to) if Do(xo,t0) # 0,

>\min<<p - 2>D2¢(x07 tO))
+Ag0<$0,t0) S (Tl—i-p)g@t(l’o,to) Zf DQO(Z‘(),to) =0.
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Here, the notation Apax(X) and Amin(X) mean the largest and the smallest
eigenvalues of a symmetric matriz X .

The following Arzelad-Ascoli criterion will be used to obtain the main
result in this section. It is essentially the same proposition as [62, Lemma
5.1]. We can find the proof of this criterion for elliptic version in [55, Lemma
4.2].

Lemma 4.4.6. Let {u. : Qr — R, e > 0} be a set of functions such that

(a) there exists a constant C' > 0 so that |u.(z,t)| < C for every e > 0 and
every (x,t) € Qr.

(b) given n > 0, there are constants ro and €y so that for every € > 0 and
(x,t), (y,s) € Qp with d((x,t),(y,s)) < ro, it holds

’ue(xat) - ue(ya S)| <n.
Then, there exists a uniformly continuous function u : Qpy — R and a subse-
quence {u.,} such that u., uniformly converge to u in Qr, as i — 0.

Now we can describe the relation between functions satisfying (4.0.1) and
solutions to the normalized parabolic p-Laplace equation.

Theorem 4.4.7. Assume that Q2 satisfies the exterior sphere condition and
F e C(Ler) satisfies (4.3.1). Let u. denote the solution to (4.0.1) with bound-
ary data F for each € > 0. Then, there exist a function u: Q.7 — R and a
subsequence {€;} such that

Ue, — U uniformly in  Qrp
and the function u is a unique viscosity solution to (4.4.6).

Remark 4.4.8. The uniqueness of solutions to (4.4.6) can be found in [62,
Lemma 6.2].

Proof. First we check that there is a subsequence {u.,} with u., converge
uniformly to u on Q¢ for some function u. By using the definition of u., we
have

[luel|Le(@r) < [[Fl[ze (@) < 00
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for any € > 0. Hence, u, are uniformly bounded. By means of Theorem 4.2.1,

Theorem 4.3.3 and Theorem 4.3.4, we know that {u.} are equicontinuous.

Therefore, we can find a subsequence {u,,}°, converging uniformly to a

function u € C(Qr) by Lemma 4.4.6.
Now we need to show that u is a viscosity solution to (4.4.6). On the
parabolic boundary, we see that

w(z,t) = lim u,, (z,t) = F(x,t)

1—00

for any (z,t) € 0,Qr.
Next we prove that u satisfies

(n+pu=Au  inQp

in the viscosity sense. Without loss of generality, it suffices to show that u
satisfies condition (a) in Definition 4.4.5.
Fix (z,t) € Qr. Then there is a small number R > 0 such that

Q = (z0,t9) + Br(0) x (—=R*,0) CC Qr.

We also assume that € > 0 satisfies @ C Qr\I. 7. Suppose that a function
¢ € C?(Q) touches u from below at (x, ). Then we observe that

inf(u — @) = (u—¢)(@,1) < (u—)(z,5)

for any (z,s) € Q. Since u, converge uniformly to wu, for sufficiently small
e > 0, there is a point (z.,t.) € @ such that

inf(ue — ) < (u = ¢)(z,5)

for any (z,s) € Q. We also check that (z,t.) = (z,t) as € — 0.
Recall (4.1.1). Since (z,t.) € Qr\I.r, we have

2
Tu(x,t) = midrange <7, u <a:, t— 6—; V).
vesn—1 2

We also set ¢ = ¢ + (ue — ¢)(z., tc) and observe that u. > ¢ in . Now it
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can be checked that
Ue(xe, te) = Tue(e, ) > T(x, te)

and

T(e,te) = To(we, te) + (ue — ) (e, te)
Therefore,

Ue(Te, te) > Tip(xe, te) + (ue — ) (e, te)
and this implies

0> To(xe, t) — @z, to). (4.4.7)
On the other hand, by the Taylor expansion, we observe that

L -S4 ;&
—lolz+ev,t — — r—ev,t — —
5 |¢ vt—o |+ ev,t— -

= p(z,t) — E—got(x,t) + %(D2<p(x,t)y, V) + o(€?)

2
and
][ gp(x + h,t— ;) dL"(h)
‘ 2 2
= p(z,t) — ggot(x,t) + mAngp(x,t) + o(€%)
where o
Ayp(a,t) =Y (D*o(x, t)v,v,)

i=1

with vy, -+, v,_1 the orthonormal basis for the space v+ for v € S"1.

We already know that <7 ¢ is continuous with respect to v in Proposition

4.1.1. Therefore, there exists a vector Viyin = Viin(€) minimizing . p(x ), te; -).

Then we can calculate

TSO(SCO te)
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S« N . €2 N . €?
a Te Vmin, le — = Le — Vminy le —
=2\” 2 )¢ 2

2
+ 8 go(x;l—ht )dﬁ” L(R)
B"min 2
62
> p(xe, te) — Esot(:vg,tg)
B

——{A, —1)(D? L
+ 2<n+ 1)6 { I/mingp(xeate) +( )( SO(.TQ )len,me>}

Then by (4.4.7), we observe that

€ Be?

—_— —_— J_ _ 2 . . .
9 QOt(l'E,te) = 2(7’L+ 1 {A QO Le, e) + (p ]-><D (xw )Vm1n7Vm1n>}

(4.4.8)

Suppose that Dy(z,t) # 0. Since (z.,t.) — (x,t) as € — 0, it can be seen
that Doo(e.)
PAT,
Umin =7 — 7~ g — — M
|Dep(, 1))

as € — 0. We also check that

Ay, t) + (p = D(D*p(ze, te) (=), (=) = A (. ).

Now we divide both side in (4.4.8) by €% and let ¢ — 0. Since Qg C Qr, it
can be seen that d.(z,t.)e > — 0 as € — 0. Hence, we deduce

pr(2,t) = A (1),

n+p

Next consider the case Dp(x,t) = 0. Observe that

A vt 90( t ) + (p - 1)<D2S0($67te)ymina Vmin)

mln

- AQO([L’e, e) + (p - 2)<D290(x67 te)ymim Vmin>-

For p > 2, we see

(p— 2)<D2<,0(:r€, ¢)Vmin; Vmin) > (p_Q)/\mm(DQ (Tes te))-

We already know that (z.,t.) — (z,t) as € — 0 and the map 2 > Apin (D%*¢(2))
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is continuous. Therefore, it turns out

th(:m t) > (p - Q)Amin(DQSO(aj’ t))} (449)

by similar calculation in the previous case.
For 1 < p < 2, by using similar argument in the previous case and

— 2) Amax(D%p (¢, te))

( 2)<D2()0($67 )Vrnin’Vmin> (
Amin((p — 2) D*p(2e, L)),

we also obtain the inequality (4.4.9).

We can also prove the reverse inequality to consider a function ¢ touching
u from above and a vector vy, maximizing </.¢(x,t.;-) and to do similar
calculation again as above. O]
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