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Abstract

Regularity results for fully
nonlinear equations with oblique

boundary conditions and
time-dependent tug-of-war games

Jeongmin Han

Department of Mathematical Sciences
The Graduate School

Seoul National University

In this thesis, we deal with two different types of problems related to nonlinear
partial differential equations. One is the oblique derivative problem and the
other is the tug-of-war game.

We study fully nonlinear elliptic and parabolic equations in nondivergnece
form with oblique boundary conditions in the first part. Our boundary condi-
tion is a generalization of the Neumann condition. We derive global Calderón-
Zygmund type estimates under a minimal boundary regularity assumption.

In the second part, we study a stochastic two-player zero-sum game which
is called tug-of-war. In particular, we consider time-dependent games. We
show global Lipschitz type estimates for value functions of such stochas-
tic games. Furthermore, we also investigate their long-time asymptotics and
PDE connections as applications.

Key words: Regularity, viscosity solution, fully nonlinear equation, oblique
derivative problem, tug-of-war, dynamic programming principle
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Chapter 1

Introduction

This thesis is based on the papers [8, 9, 28, 29]. The aim of this thesis
is to study regularity properties for oblique derivative problems and tug-
of-war games. More precisely, we first obtain global Calderón-Zygmund type
estimates for fully nonlinear elliptic and parabolic equations in nondivergence
form with oblique boundary conditions. We also derive regularity results and
other properties for value functions of time-dependent tug-of-war games with
noise.

Oblique derivative problems for fully nonlinear equations

The Neumann boundary condition is one of the most common types of bound-
ary conditions for partial differential equations along with Dirichlet boundary
condition. In the Neumann problems, boundary conditions are given by the
normal derivative of solutions. Then one can have the following question:
What happens if other directional derivatives are given as boundary data?
Oblique derivative problems are considered to deal with such cases.

The word ‘oblique’ means ‘having a sloping direction’. Literally, we con-
sider the case when the boundary condition is given by oblique directional
derivatives of solutions. In general, an oblique boundary condition is taking
the form of

β ·Du+ γu = g, (1.0.1)

where γ and g are real-valued functions defined on the boundary of a given
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CHAPTER 1. INTRODUCTION

domain, and β is a vector-valued function defined on the boundary with

β · n ≥ δ0 (1.0.2)

for some δ0 > 0 and the inward normal vector n. We note that (1.0.2) repre-
sents that the slope vector β makes an angle more than some level with the
boundary of the domain. We can see that Neumann condition is the case of
β = n and γ = 0.

Since the oblique boundary condition is a generalization of the Neumann
condition, approaches to oblique derivative problems are essentially no differ-
ent from those of the Neumann case. In these problems, the explicit boundary
values of our solution are still unknown. We only know the condition (1.0.1)
which our solution satisfies. Thus, as Milakis and Silvestre mentioned in [59],
it is wise to think that the oblique boundary condition is a part of the equa-
tion.

The theory for oblique derivative boundary value problems has been de-
veloping over the past decades. Winzell [79, 80], Lieberman [43, 44, 45, 46,
47, 48] and Ural’tseva [73] presented noteworthy results for oblique derivative
problems. We also refer the reader to [26, 49, 60, 68, 21, 20, 57, 58, 61, 69]
for further discussion on this topic. Several applications of oblique derivative
problems can be found in [19, 4, 25].

The notion of viscosity solutions suggested a new paradigm to study par-
tial differential equations. In particular, it promoted the development of re-
searches on PDEs in nondivergence form. Fundamental properties of viscosity
solutions to fully nonlinear elliptic equations were presented in [12, 11, 10, 33]
and Wang extended these results to the parabolic case in [75, 76, 77]. For
oblique derivative problems, Ishii [32] studied the existence and uniqueness
for the elliptic case. In the parabolic case, such issues were covered in [34].
Meanwhile, much progress has also been made on the regularity theory.
Milakis and Silvestre [59] established C1,α- and C2,α-regularity for elliptic
Neumann problems. We can find such regularity results for general oblique
derivative problems in [42] by Li and Zhang. Chatzigeorgiou and Milakis [16]
presented similar estimates for the parabolic case.

Tug-of-war games with noise

Probabilistic approaches for PDEs were first considered by Doob, Kac and
Kakutani in [38, 39, 36, 37, 22]. They studied the connection between Brow-
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CHAPTER 1. INTRODUCTION

nian motion and Laplacian. Such interpretation opened up a new direction
in comprehending PDEs. Since then, various probabilistic views for more
general equations have been discussed. Tug-of-war game, which will be con-
sidered in this thesis, is also one of these schemes. This game interpretation
is closely linked to p-Laplace type equations.

In the study of tug-of-war games, we are interested in the expectation
of game outcome, which is called the game value function. A dynamic pro-
gramming principle (DPP) is a key tool to investigate game values. In many
cases, the game value satisfies a DPP which arises from the game settings.
Thus, we can examine value functions by dealing with the corresponding
DPP. Various issues for game values, such as existence, uniqueness and reg-
ularity, can be investigated through studying related DPPs. On the other
hand, such approaches using DPP also play an important role to look into
the relation between tug-of-war game values and p-Laplace type equations.
We can regard the DPP linked to tug-of-war games as a discretization of the
p-Laplacian.

For 1 ≤ p <∞, the p-Laplace operator is defined by

∆pu := div(|Du|p−2Du) = |Du|p−2

(
∆u+ (p− 2)

〈D2uDu,Du〉
|Du|2

)
. (1.0.3)

Here we focus on the term

∆u+ (p− 2)
〈D2uDu,Du〉
|Du|2

=: ∆N
p u,

not including the scaling factor |Du|p−2. The nonlinear term

〈D2uDu,Du〉
|Du|2

=: ∆N
∞u

is called the (normalized) ∞-Laplace operator. We observe that ∆N
p is rep-

resented by a linear combination of ∆ and ∆N
∞. In [64], Peres, Schramm,

Sheffield and Wilson dealt with a game interpretation for ∞-Laplacian by
using tug-of-war. For a general p-Laplacian, Peres and Sheffield [65] studied
the connection with tug-of-war including noise.

A lot of progress has been made on the studies of tug-of-war games and
their related problems in the last decade. In [40, 53, 54, 55], several types
of mean value characterization for solutions to p-Laplace type equations. We
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CHAPTER 1. INTRODUCTION

can also find the existence and uniqueness results for functions satisfying
DPP related to elliptic p-Laplace equations in [52, 30]. For regularity is-
sues, we refer to [51, 67, 62] which considered Harnack inequality for game
values. Arroyo, Heino and Parviainen established Hölder type estimates for
space-varying time-independent games in [2]. Lipschitz type regularity for
such games was discussed in [3]. For time-dependence games, which is cor-
responding to parabolic equations, regularity estimates were presented in
[53, 62]. We also refer the reader to [15, 6, 1, 24, 56, 41] for further discus-
sions on tug-of-war games.

The reminder of this thesis is divided into two parts. The first part,
Chapter 3, deals with W 2,p-regularity theory of oblique derivative problems
for nondivergence elliptic and parabolic equations. Precisely, we will obtain
global Calderón-Zygmund estimates for fully nonlinear elliptic and parabolic
equations in nondivergence form with oblique boundary conditions. In both
cases, we first establish boundary Hessian estimates for oblique derivative
problems when the equation does not contain lower order terms. After that,
we consider boundary W 1,p-regularity for general equations in order to reach
the desired regularity. To this end, we get an estimate for boundary data and
apply this result to the Dirichlet case. Finally, we obtain the global regularity
results by using a standard flattening argument. We note that the preced-
ing results [42, 16] for the model problems are essential to deduce our main
results. We also refer to [78] which investigated elliptic Dirichlet problems.

In the second part, Chapter 4, we are devoted to the study of the value
function for time-dependent tug-of-war games. First, we prove the existence
and uniqueness of value functions. We also show that the value function sat-
isfies a DPP, (4.0.1). We next investigate regularity theory for game values.
For the interior regularity, we present Hölder and Lipschitz type estimates for
our value function. To do this, we first derive an estimate in the time direc-
tion. The method used to show this estimate is motivated from the study on
parabolic PDEs (see [35]). On the other hand, in order to establish regularity
estimates in the spatial directions, we utilize the cancellation argument intro-
duced in [62, 2, 50, 3]. It is remarkable that we need Hölder type regularity
result to derive Lipschitz type estimates. In the boundary case, we estab-
lish several estimates when the given boundary data is Lipschitz continuous.
For this purpose, we derive proper estimates for the exit time of our games
by considering an auxiliary stochastic process. In addition, we provide some
applications of our results. We investigate long-time behavior of our value
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CHAPTER 1. INTRODUCTION

functions and observe the connection with time-independent games. And we
also present uniform convergence results for value functions to solutions of a
parabolic p-Laplace type equation when the step size goes to zero.
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Chapter 2

Preliminaries

2.1 Oblique derivative problems

2.1.1 Notations

We start this section with some notations, which will be used throughout
this dissertation.

1. For x = (x1, x2, . . . , xn) ∈ Rn, we write x′ = (x1, x2, . . . , xn−1). We also
write x = (x′, xn).

2. S(n) is the set of n× n symmetric matrices and ||M || = sup|x|≤1 |Mx|
for every M ∈ S(n).

3. Rn
+ := {x ∈ Rn : xn > 0}.

4. For x0 ∈ Rn and r > 0, Br(x0) := {x ∈ Rn : |x − x0| < r}. We write
Br = Br(0) and B+

r = Br ∩ Rn
+.

5. We write Br,h = Br(−(R−h)en), where R satisfies (R−h)2 + r2 = R2.
We also write B+

r,h = Br,h ∩ R+.

6. We write Tr = {(x′, 0) ∈ Rn−1 : |x′| < r} and Tr(x′0) := Tr + x′0 where
x′0 ∈ Rn−1.

7. Qr(x0, t0) := Br(x0)×(t0−r2, t0) and Q+
r (x0, t0) := B+

r (x0)×(t0−r2, t0)
for (x0, t0) ∈ Rn × R and r > 0. Qr = Qr(0, 0) and Q+

r = Q+
r (0, 0).

6



CHAPTER 2. PRELIMINARIES

8. Q+
r,δ(x0, t0) := B+

r−δ(x0)× (t0 − r2 + δ2, t0), Q+
r,δ = Q+

r,δ(0, 0) (only used
in Chapter 3).

9. V +
r,h(x0, t0) := B+

r,h(x0)× (t0 − r2, t0), V +
r,h = V +

r,h(0, 0).

10. V +
r,h,δ(x0, t0) := B+

r−δ,h−δh/r(x0)× (t0 − r2 + δ2, t0), V +
r,h,δ = V +

r,h,δ(0, 0).

11. Q∗r(x0, t0) = Tr(x0)× (t0 − r2, t0), Q∗r := Q∗r(0, 0).

12. Kd
r = (−r/2, r/2)d for r > 0 and d = n− 1 or n, Kd

r (x0) = Kd
r + x0.

13. For |ν| ≤ r, we write Qν
1 = Qr(0, 0) ∩ ({xn > −ν} × R). We also write

Qν
r(x0, t0) = Qν

r + (x0, t0).

14. Qν
r,δ = Qr,δ(0

′, ν, 0) ∩ (Rn
+ × R), Qν

r,δ(x0, t0) = Qν
r,δ + (x0, t0).

15. Ω is a bounded domain of Rn, n ≥ 2, and ∂Ω is the boundary of Ω.

16. ΩT = Ω× (0, T ) and ST = ∂Ω× (0, T ) for T > 0.

17. For U ⊂ Rn × R, ∂pU is the parabolic boundary of U .

18. For U ⊂ Rn × R, we write rU := {(rx, r2t) ∈ Rn × R : (x, t) ∈ U} and
rU(x, t) := rU + (x, t).

19. We denote the time derivative, gradient and Hessian of u by ut, Du =
(D1u, · · · , Dnu), and D2u = (Diju), respectively, where Diu = ∂u

∂xi
and

Diju = ∂2u
∂xi∂xj

for 1 ≤ i, j ≤ n.

20. For each set U ⊂ Rn (U ⊂ Rn × R, respectively), |U | is the n-
dimensional ((n + 1)-dimensional, respectively) Lebesgue measure of
U .

21. Let U be a set in Rn (Rn × R, respectively) with |U | 6= 0, and f be a
measurable function on U . Then we write∫
U

f(x)dx =
1

|U |

∫
U

f(x)dx

(∫
U

f(x, t)dxdt =
1

|U |

∫
U

f(x, t)dxdt

)
.
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CHAPTER 2. PRELIMINARIES

22. Let Ω ⊂ Rn. If a function u is continuous in Ω, we write u ∈ C(Ω). The
C-norm of u is given by

||u||C(Ω) := sup
x∈Ω
|u(x)|.

If Du (D2u) is continuous in Ω, we write C1(Ω) (C2(Ω), respectively)
and

||u||C1(Ω) := ||u||C(Ω) + ||Du||C(Ω),

||u||C2(Ω) := ||u||C1(Ω) + ||D2u||C(Ω).

23. If a function u satisfies

|u(x)− u(y)| ≤ C|x− y|α

for any x, y ∈ Ω and some 0 < α ≤ 1 and C > 0, we write u ∈ C0,α(Ω).
The C0,α-norm of u is given by

||u||C0,α(Ω) := ||u||C(Ω) + sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|α

=: ||u||C(Ω) + [u]C0,α(Ω).

24. If a function u satisfies that Du is α-Hölder continuous in x, we write
u ∈ C1,α(Ω).

||u||C1,α(Ω) := ||u||C1(Ω) +
n∑
i=1

sup
x,y∈Ω
x 6=y

|Diu(x)−Diu(y)|
|x− y|α

=: ||u||C1(Ω) + [u]C1,α(Ω).

25. If a function u satisfies that D2u is α-Hölder continuous in x, we write
u ∈ C2,α(Ω). The C2,α-norm of u is given by

||u||C2,α(Ω) := ||u||C2(Ω) +
n∑

i,j=1

sup
x,y∈Ω
x 6=y

|Diju(x)−Diju(y)|
|x− y|α

=: ||u||C2(Ω) + [u]C2,α(Ω).
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26. Let 1 ≤ p ≤ ∞. If a function u satisfies that∫
Ω

|u(x)|pdx <∞,

we write u ∈ Lp(Ω). The Lp-norm of u is given by

||u||Lp(Ω) :=

(∫
Ω

|u(x)|pdx
)1/p

.

In addition, if a function u satisfies that

ess sup
x∈Ω

|u(x)| <∞,

we write u ∈ L∞(Ω) with its norm

||u||L∞(Ω) := ess sup
x∈Ω

|u(x)|.

27. If a function u satisfies that u,Du ∈ Lp(Ω), we write u ∈ W 1,p(Ω). The
W 1,p-norm of u is given by

||u||W 1,p(Ω) :=
(
||u||pLp(Ω) + ||Du||pLp(Ω)

)1/p
.

Moreover, if a function u satisfies that u,Du,D2u ∈ Lp(Ω), we write
u ∈ W 2,p(Ω). The W 2,p-norm of u is given by

||u||W 2,p(Ω) :=
(
||u||pLp(Ω) + ||Du||pLp(Ω) + ||D2u||pLp(Ω)

)1/p
.

28. Let Ω ⊂ Rn×R. If a function u is continuous in Ω, we write u ∈ C(Ω).
The C-norm of u is given by

||u||C(Ω) := sup
(x,t)∈Ω

|u(x, t)|.

If Du (D2u and ut) is continuous in Ω, we write C1(Ω) (C2(Ω), respec-
tively).

||u||C1(Ω) := ||u||C(Ω) + ||Du||C(Ω),

||u||C2(Ω) := ||u||C1(Ω) + ||ut||C(Ω) + ||D2u||C(Ω).
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29. If a function u satisfies

|u(x, t)− u(y, s)| ≤ C(|x− y|α + |t− s|α/2)

for any (x, t), (y, s) ∈ Ω and some 0 < α ≤ 1 and C > 0, we write u ∈
C0,α(Ω). (i.e, u is (α/2)-Hölder continuous in t and α-Hölder continuous
in x) The C0,α-norm of u is given by

||u||C0,α(Ω) := ||u||C(Ω) + sup
(x,t),(y,s)∈Ω
(x,t)6=(y,s)

|u(x, t)− u(y, s)|
|x− y|α + |t− s|α/2

=: ||u||C(Ω) + [u]C0,α(Ω).

30. If a function u is ((1+α)/2)-Hölder continuous in t and Du is α-Hölder
continuous in x, we write u ∈ C1,α(Ω).

||u||C1,α(Ω) := ||u||C1(Ω) + sup
(x,t),(x,s)∈Ω

t6=s

|u(x, t)− u(x, s)|
|t− s|(1+α)/2

+
n∑
i=1

sup
(x,t),(y,s)∈Ω
(x,t)6=(y,s)

|Diu(x, t)−Diu(y, s)|
|x− y|α + |t− s|α/2

=: ||u||C1(Ω) + [u]C1+α(Ω).

31. If a function u satisfies that ut is (α/2)-Hölder continuous in t and D2u
is α-Hölder continuous in x, we write u ∈ C2,α(Ω). The C2,α-norm of u
is given by

||u||C2,α(Ω) := ||u||C2(Ω) + sup
(x,t),(x,s)∈Ω

t6=s

|ut(x, t)− ut(x, s)|
|x− y|α + |t− s|α/2

+
n∑

i,j=1

sup
(x,t),(x,s)∈Ω
(x,t) 6=(y,s)

|Diju(x, t)−Diju(y, s)|
|x− y|α + |t− s|α/2

=: ||u||C2(Ω) + [u]C2+α(Ω).
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32. Let 1 ≤ p ≤ ∞. If a function u satisfies that∫
Ω

|u(x, t)|pdxdt <∞,

we write u ∈ Lp(Ω). The Lp-norm of u is given by

||u||Lp(Ω) :=

(∫
Ω

|u(x, t)|pdxdt
)1/p

.

In addition, if a function u satisfies that

ess sup
(x,t)∈Ω

|u(x, t)| <∞,

we write u ∈ L∞(Ω) with its norm

||u||L∞(Ω) := ess sup
(x,t)∈Ω

|u(x, t)|.

33. If a function u satisfies that u,Du,∈ Lp(Ω), we write u ∈ W 1,p(Ω). The
W 1,p-norm of u is given by

||u||W 1,p(Ω) :=
(
||u||pLp(Ω) + ||Du||pLp(Ω)

)1/p
.

34. If a function u satisfies that u, ut, Du,D2u ∈ Lp(Ω), we write u ∈
W 2,p(Ω). The W 2,p-norm of u is given by

||u||W 2,p(Ω) :=
(
||u||pLp(Ω) + ||ut||pLp(Ω) + ||Du||pLp(Ω) + ||D2u||pLp(Ω)

)1/p
.

2.1.2 Elliptic equations

Second order differentiability

Let V ⊂ Ω, M > 0 and u ∈ C(Ω). We define

GM(u, V )={x0 ∈ V |there is a concave paraboloid P with opening M such
that P (x0) = u(x0) and P (x) ≤ u(x) for any x ∈ V }

11
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and

AM(u, V ) = V \GM(u, V ).

Using convex paraboloids, we can defineGM(u, V ) andAM(u, V ) analogously.
And we also define

GM(u, V ) = GM(u, V ) ∩GM(u, V )

and
AM(u, V ) = AM(u, V ) ∩ AM(u, V ).

Now we set
Θ(u, V )(x) = inf{M > 0 : x ∈ GM(V )},

Θ(u, V )(x) = inf{M > 0 : x ∈ GM(V )}

and
Θ(u, V )(x) = sup{Θ(u, V )(x),Θ(u, V )(x)}.

We can see that the above notions are closely related to the second deriva-
tives of functions. To obtain second order regularity results, we need to look
at the properties of these sets.

Viscosity solutions

We begin this subsection with introducing the notion of viscosity solution.
First, we introduce Pucci extremal operators.

Definition 2.1.1 (Pucci extremal operator). For any M ∈ S(n), the Pucci
extremal operatorM+ andM− are defined as following:

M+(λ,Λ,M) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei andM−(λ,Λ,M) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei

where ei are eigenvalues of M .

Consider
L±b (λ,Λ, b, u) =M±(λ,Λ, D2u)± b|Du|

for b > 0, respectively.
The following notions are also essential in defining viscosity solutions.

12
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Definition 2.1.2. Let b ≥ 0 and 0 < λ ≤ Λ. We define the classes S(λ,Λ, b, f)
(S(λ,Λ, b, f), respectively) to be the set of all continuous functions u that sat-
isfy L+

b u ≥ f(L−b u ≤ f) in the viscosity sense in Ω. We also define

S(λ,Λ, b, f) = S(λ,Λ, b, f) ∩ S(λ,Λ, b, f)

and
S∗(λ,Λ, b, f) = S(λ,Λ, b, |f |) ∩ S(λ,Λ, b,−|f |).

When b = 0, we abbreviate S, S, S, S∗(λ,Λ, 0, f) to S, S, S, S∗(λ,Λ, f).

Now we can introduce the notion of viscosity solution. First, we consider
the case when f is a continuous function.

Definition 2.1.3 (C2-viscosity solution). Let F = F (X, q, r, x) be continu-
ous in all variables and f ∈ C(Ω ∪ Γ). A continuous function u ∈ C(Ω ∪ Γ)
is called a C2-viscosity solution of (3.1.1) if the following conditions hold:

(a) for all ϕ ∈ C2(Ω ∪ Γ) touching u by above at x0 ∈ Ω ∪ Γ,

F (D2ϕ(x0), Dϕ(x0), u(x0), x0) ≥ f(x0)

when x0 ∈ Ω and β(x0) ·Dϕ(x0) ≥ 0 when x0 ∈ Γ.

(b) for all ϕ ∈ C2(Ω ∪ Γ) touching u by below at x0 ∈ Ω ∪ Γ,

F (D2ϕ(x0), Dϕ(x0), u(x0), x0) ≤ f(x0)

when x0 ∈ Ω and β(x0) ·Dϕ(x0) ≤ 0 when x0 ∈ Γ.

We can also define viscosity solutions without continuity assumption for
f .

Definition 2.1.4 (W 2,p-viscosity solution). Let F = F (X, q, r, x) be con-
tinuous in X, q, r and measurable in x. Suppose p > n and f ∈ Lp(Ω). A
continuous function u is called a W 2,p-viscosity solution for (3.1.1) if the
following conditions hold:

(a) For all ϕ ∈ W 2,p(Ω) whenever ε > 0, O is open in Ω and

F (D2ϕ(x), Dϕ(x), ϕ(x), x) ≥ f(x) + ε a.e. in O

13
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and β ·Dϕ(x) ≥ ε a.e. on O ∩ ∂Ω,

u− ϕ cannot attain a local minimum in O.

(b) For all ϕ ∈ W 2,p(Ω) whenever ε > 0, O is open in Ω and

F (D2ϕ(x), Dϕ(x), ϕ(x), x) ≤ f(x)− ε a.e. in O

and β ·Dϕ(x) ≤ −ε a.e. on O ∩ ∂Ω,

u− ϕ cannot attain a local maximum in O.

2.1.3 Parabolic equations

Parabolic second order differentiability

Similarly to the elliptic case, we first need to characterize paraboloids to
observe second order differentiability.

Definition 2.1.5. Let M > 0. A convex paraboloid P with opening M is
defined by

P (x, t) = a+ l · x+
M

2
(|x|2 − t),

where a ∈ R and l ∈ Rn. We also define a concave paraboloid by replacing
M with −M in the above definition.

Let Ω be a bounded domain in Rn × R, U ⊂ Ω be an open subset of
Ω, M > 0, and u ∈ C(Ω). For s ∈ R, we use the following notation Us =
{(x, t) ∈ U : t ≤ s} temporarily. Next we define ‘good set’ and ‘bad set’. Let
GM(u, U) be the set of points (x0, t0) ∈ U which satisfy that there is a concave
paraboloid P with opening M such that P (x0, t0) = u(x0, t0) and P (x, t) ≤
u(x, t) for any (x, t) ∈ Ut0 , and AM(u, U) = U\GM(u, U). Analogously, we
can define GM(u, U) and AM(u, U) by using a convex paraboloid as a barrier.
In addition, we denote by

GM(u, U) = GM(u, U) ∩GM(u, U),

AM(u, U) = AM(u, U) ∪ AM(u, U).

Roughly speaking, AM can be understood to be a set of points with
‘bad Hessian’. Thus, we need to obtain uniform estimates for its measure to

14
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establishW 2,p-theory, which will be our main purpose investigated in Section
3.3.

Viscosity solutions

Let Ω ⊂ Rn be a bounded domain, Γ ⊂ ∂Ω and T > 0. Consider the following
problem{

F (D2u,Du, u, x, t)− ut = f in ΩT ,
β ·Du = 0 on ΓT = Γ× (0, T ).

(2.1.1)

As in the previous subsection, we can define a viscosity solution for (2.1.1)
as follows.

Definition 2.1.6 (C2-viscosity solution). Let F be continuous in all variables
and f ∈ C(ΩT ∪ ΓT ). A continuous function u ∈ C(ΩT ∪ ΓT ) is called a
viscosity solution of (2.1.1) if the following conditions hold:

(a) for all ϕ ∈ C2(ΩT ∪ ΓT ) touching u by above at (x0, t0) ∈ ΩT ∪ ΓT ,

F (D2ϕ(x0, t0), Dϕ(x0, t0), u(x0, t0), x0, t0)− ϕt(x0, t0) ≥ f(x0, t0)

when (x0, t0) ∈ ΩT and β(x0, t0) ·Dϕ(x0, t0) ≥ 0 when (x0, t0) ∈ ΓT .

(b) for all ϕ ∈ C2(ΩT ∪ ΓT ) touching u by below at (x0, , t0) ∈ ΩT ∪ ΓT ,

F (D2ϕ(x0, t0), Dϕ(x0, t0), u(x0, t0), x0, t0)− ϕt(x0, t0) ≤ f(x0, t0)

when (x0, t0) ∈ ΩT and β(x0, t0) ·Dϕ(x0, t0) ≤ 0 when (x0, t0) ∈ ΓT .

Definition 2.1.7 (W 2,p-viscosity solution). Let F be continuous in X and
measurable in x. Suppose p > n+1 and f ∈ Lp(ΩT ). A continuous function u
is called a W 2,p-viscosity solution for (3.1.1) if the following conditions hold:

(a) For all ϕ ∈ W 2,p(ΩT ) whenever ε > 0, O is open in ΩT ∪ ΓT and

F (D2ϕ(x, t), Dϕ(x, t), ϕ(x, t), x, t)− ϕt(x, t) ≥ f(x, t) + ε a.e. in O

and β ·Dϕ(x, t) ≥ ε a.e. on O ∩ ΓT ,

u− ϕ cannot attain a local minimum in O.

15
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(b) For all ϕ ∈ W 2,q(ΩT ) whenever ε > 0, O is open in ΩT ∪ ΓT and

F (D2ϕ(x, t), Dϕ(x, t), ϕ(x, t), x, t)− ϕt(x, t) ≤ f(x, t)− ε a.e. in O

and β ·Dϕ(x, t) ≤ −ε a.e. on O ∩ ΓT ,

u− ϕ cannot attain a local maximum in O.

Note that if a function u satisfies the condition (a) ((b), respectively)
in the above definition, we say that F (D2u,Du, u, x, t) − ut ≥ (≤)f in the
viscosity sense.

Next we introduce Pucci’s operator and the class S for the parabolic case.

Definition 2.1.8. For any M ∈ S(n), the Pucci extremal operatorM+ and
M− are defined as follows:

M+(λ,Λ,M) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei andM−(λ,Λ,M) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei

where ei are eigenvalues of M . For b ≥ 0 and u be a continuous function in
the viscosity sense, we also write

L±(λ,Λ, b, u) =M±(λ,Λ, D2u)± b|Du| − ut.

Next, we present an important concept to understand viscosity solutions.

Definition 2.1.9. Let Ω ⊂ Rn × R , b ≥ 0 and 0 < λ ≤ Λ. We define the
classes S(λ,Λ, b, f) (S(λ,Λ, b, f), respectively) to be the set of all continuous
functions u that satisfy L+u ≥ f(L−u ≤ f) in the viscosity sense in Ω. We
also define

S(λ,Λ, b, f) = S(λ,Λ, b, f) ∩ S(λ,Λ, b, f)

and
S∗(λ,Λ, b, f) = S(λ,Λ, b, |f |) ∩ S(λ,Λ, b,−|f |).

When b = 0, we abbreviate S(λ,Λ, 0, f) to S(λ,Λ, f).

2.2 Time-dependent tug-of-war games
We start with several notations, which will be used throughout Chapter 4.

16
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2.2.1 Notations

1. Let k ≥ 1. For each x = (x1, · · · , xk), y = (y1, · · · , yk) ∈ Rk,

〈x, y〉 :=
k∑
i=1

xiyi.

2. Sn−1 = {x ∈ Rn : |x| = 1} is the n-dimensional unit sphere.

3. For ν ∈ Sn−1, Bν
ε = {x ∈ Bε(0) : 〈x, ν〉 = 0}.

4. For each set U ⊂ Rn, dist(x, U) = inf{|x − y| : y ∈ U} is the distance
from x to U .

5. For each ε > 0, we write Oε = {x ∈ Rn\Ω : dist(x, ∂Ω) < ε} and
Iε = {x ∈ Ω : dist(x, ∂Ω) < ε}. We also write Γε = Oε ∪ Iε ∪ ∂Ω and
Ωε = Ω ∪Oε.

6. For ε > 0, Iε,T = {(x, t) ∈ Ω× [ ε
2

2
, T ] : dist(x, ∂Ω) < ε} ∪

(
Ω× (0, ε

2

2
)
)
,

Oε,T = {(x, t) ∈ (Rn\Ω) × (0, T ] : dist(x, ∂Ω) < ε} ∪
(
Ωε × (− ε2

2
, 0)
)

and Γε,T = Iε,T ∪Oε,T ∪ ∂pΩT . We write Ωε,T = ΩT ∪Oε,T .

7. For {Ai}i∈I ⊂ R, we write

midrange
i∈I

Ai =
1

2

(
sup
i∈I

Ai + inf
i∈I

Ai

)
.

8. For each (n − 1)-dimensional set U ⊂ Rn, Ln−1(U) is the (n − 1)-
dimensional Lebesgue measure of U .

9. Let U be an (n− 1)-dimensional set in Rn with Ln−1(U) 6= 0, and f be
a measurable function on U . Then we write∫

U

f(x)dLn−1(x) =
1

Ln−1(U)

∫
U

f(x)dLn−1(x).

10. Let r, ε > 0 be given numbers. We write Qr,ε = Br+ε(0)× (−r2 − ε2

2
, 0)

(only used in Chapter 4).

11. Σa = {(x, z, t, s) : x, z ∈ Bar(0),−ar2 < t < 0, |t− s| < ε2

2
}.

17
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12. Λt,ε = Br+ε(0)× (t− ε2

2
, t].

13. Rν = {M ∈ O(n) : Me1 = ν}, where O(n) is the orthogonal group in
dimension n and e1 = (1, 0, · · · , 0).

14. We abbreviate
sup

νx,νz∈Sn−1

(Pνx ,Pνz )∈Rνx×Rνz

to
sup

νx,νz∈Sn−1

.

2.2.2 Background knowledge

The time-dependent tug-of-war game

We introduce here the stochastic two-player zero-sum game which will be
considered in Chapter 4.

Let Ω ⊂ Rn be a bounded domain, T > 0 and α, β ∈ (0, 1) be fixed
numbers with α + β = 1. We also consider a function F ∈ C(Γε,T ). From
now on, we will use the symbol uε to denote a function satisfying the DPP
(4.0.1) in ΩT for given F .

Our game setting is as follows. There is a token located at a point
(x0, t0) ∈ ΩT . Players will move it at each turn according to the outcome of
the following processes. We write locations of the token as (x1, t1), (x2, t2), · · ·
and denote by Zj = (xj, tj) for our convenience.

When Zj ∈ Ω\Iε, Player I and II choose some vectors νI
j, ν

II
j ∈ ∂Bε. First,

players compete to move token with a fair coin toss. Next, they have one
more stochastic process to determine how to move the token. The winner of
first coin toss, Player i ∈ {I, II} can move the token to direction of the chosen
vector νij with probability α. Otherwise, the token is moved uniformly random
in the (n− 1)-ball perpendicular to νij. After these processes are finished, tj
is changed by tj+1 = tj − ε2/2.

If Zj ∈ Γε, the game progresses in the same way as above with probability
1− δε(Zj). On the other hand, with probability δε(Zj), the game is over and
Player II pays Player I payoff F (Zj).

We denote by τ the number of total turns until end of the game. One can
observe that τ must be finite in our setting since the game ends when t ≤ 0.

18
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Now we give mathematical construction for this game. Let ξ0, ξ1, · · · be
iid random variables to have a uniform distribution U(0, 1). This process
{ξj}∞j=0 is independent of {Zj}∞j=0.

Define C̃ := {0, 1}. We set random variables c0, c1, · · · ∈ C̃ as follows:

cj =

{
0 when ξj−1 ≤ 1− δε(Zj−1),
1 when ξj−1 > 1− δε(Zj−1)

for j ≥ 1 and c0 = 0. Then we can write the stopping time τ by

τ := inf{j ≥ 0 : cj+1 = 1}.

In our game, each player chooses their strategies by using past data (his-
tory). We can write a history as the following vector(

(c0, Z0), (c1, Z1), · · · , (cj, Zj)
)
.

Then, the strategy of Player i can be defined by a Borel measurable function
as Si = {Sji }∞j=1 with

Sji : {(c0, Z0)} ×
j−1⋃
k=1

(C̃ × Ωε,T )→ ∂Bε(0)

for any j ∈ N.
Next we define a probability measure PZ0

SI,SII
natural product σ-algebra

of the space of all game trajectories for any starting point Z0 ∈ Ωε,T . By
Kolmogorov’s extension theorem, we can construct the measure to the family
of transition densities

πSI,SII
((c0, Z0), (c1, Z1), · · · , (cj, Zj);C,Aj+1)

= (1− δε(Zj))πlocalSI,SII
((Z0, Z1, · · · , Zj);Aj+1)I0(C)Icj({0})

+ δε(Zj)IZj(Aj)I1(C)Icj({0}) + IZj(Aj)Icj({1})

for An = A× {tn} (A is any Borel set in Rn and n ≥ 0) and C ⊂ C̃, where

πlocalSI,SII
(Z0, Z1, · · · , Zj;Aj+1)

=
1

2

[
α(I(xj+νIj+1,tj+1)(Aj+1) + I(xj+νIIj+1,tj+1)(Aj+1)

)
19
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+
β

ωn−1εn−1

(
Ln−1(B

νIj+1
ε (Zj) ∩ Aj+1) + Ln−1(B

νIIj+1
ε (Zj) ∩ Aj+1

)]
.

Here, ωn−1 = Ln−1(Bn−1
1 ) where Bn−1

1 is the (n − 1)-dimensional unit ball
and

Iz(B) =

{
0 when z /∈ B,
1 when z ∈ B.

Finally, for any starting point Z0 = (x0, t0) ∈ ΩT , we define value func-
tions uI and uII of this game for Player I and II by

uI(Z0) = sup
SI

inf
SII

EZ0
SI,SII

[F (Zτ )]

and
uII(Z0) = inf

SII

sup
SI

EZ0
SI,SII

[F (Zτ )],

respectively.
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Chapter 3

Regularity results for oblique
derivative problems

In this chapter we are concerned with regularity theory for fully nonlinear
equations with oblique boundary conditions. We deal with the elliptic case
in Section 3.1 and the parabolic case in Section 3.2. In each case, we provide
a global Carlderón-Zygmund type estimate.

3.1 W 2,p-regularity for elliptic problems

3.1.1 Hypotheses and main results

In this section, we establish globalW 2,p−regularity theory for elliptic oblique
derivative problems. We consider the following problem{

F (D2u,Du, u, x) = f in Ω,
β ·Du = 0 on ∂Ω. (3.1.1)

Here, Ω ⊂ Rn is a bounded domain with its boundary ∂Ω, β is a given
vector-valued function on ∂Ω with ||β||L∞(∂Ω) ≤ 1 and F = F (X, q, r, x) is a
function on S(n)× Rn × R× Ω.

We assume that F is convex inX, continuous inX, q, r and x, and satisfies
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the following structure condition

M−(λ,Λ, X1 −X2)− b|q1 − q2| − c|r1 − r2|
≤ F (X1, q1, r1, x)− F (X2, q2, r2, x)

≤M+(λ,Λ, X1 −X2) + b|q1 − q2|+ c|r1 − r2|
(3.1.2)

for fixed 0 < λ ≤ Λ and b, c > 0, and X1, X2 ∈ S(n), q1, q2 ∈ Rn, r1, r2 ∈ R
and x ∈ Ω.

Next we introduce the following definition in order to measure the oscil-
lation of F in the variable x.

Definition 3.1.1. Let F : S(n)× Rn × R× Ω→ R and x0 ∈ Ω. For x ∈ Ω,
We define

ψF (x, x0) := sup
X∈S(n)\{0}

|F (X, 0, 0, x)− F (X, 0, 0, x0)|
||X||

.

We will assume that F has small oscillation in the Ln-sense to obtain
W 2,p-regularity.

We now state the main result in this subsection.

Theorem 3.1.2. Let Ω be a bounded C3-domain and n be the inward unit
normal vector of ∂Ω. Assume that u is a W 2,p-viscosity solution of (3.1.1)
where F (X, q, r, x) is convex in X, continuous in x and satisfies structure
condition (3.1.2) with F (0, 0, 0, x) ≡ 0, β ∈ C2(∂Ω) with β · n ≥ δ0 for some
δ0 > 0 and f ∈ Lp(Ω)∩C(Ω) for n < p <∞. Then there exist two constants

ε0 = ε0(n, p, λ,Λ, δ0, ||β||C2(∂Ω))

and
C = C(n, p, λ,Λ, δ0, ||β||C2(∂Ω), b, c, r0, diam(Ω))

if (∫
Br(x0)∩Ω

ψ(x0, x)n dx

)1/n

≤ ε0

for any x0 ∈ Ω and 0 < r < r0, then u ∈ W 2,p(Ω) with the estimate

||u||W 2,p(Ω) ≤ C(||u||L∞(Ω) + ||f ||Lp(Ω)).
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3.1.2 Auxiliary results

We introduce some useful lemmas in order to proceed with our discussion.
We first mention a well-known lemma from [13, Lemma 4.2] to be used

for our work.

Lemma 3.1.3 (Calderón-Zygmund decomposition). Assume that A and B
are measurable sets and A ⊂ B ⊂ Q1. Suppose that there exists an ε ∈ (0, 1)
such that |A| ≤ ε and for any dyadic cube Q and its predecessor Q̃, |A∩Q| >
ε|Q| =⇒ Q̃ ⊂ B. Then, |A| ≤ ε|B|.

Strong (p, p)-estimate is also necessary to derive our desired result. We
can find the proof in [71, Theorem 1].

Proposition 3.1.4 (Strong (p, p)-estimate). The maximal operator M is
defined as follows:

M(f)(x) = sup
ρ>0

∫
Bρ(x)

|f(x)|dx.

Then, for any f ∈ Lp(Rn) where 1 < p <∞,

||M(f)||Lp(Rn) ≤ C(n, p)||f ||Lp(Rn).

The following measure theoretic property can be found in several refer-
ences, for example, [13].

Proposition 3.1.5. Let g be a nonnegative and measurable function in Ω
and µg be its distribution function, that is,

µg(t) = |{x ∈ Ω : g(x) > t}| for t > 0.

Let η > 0 and M > 1 be constants. Then, for 0 < p <∞,

g ∈ Lp(Ω)⇐⇒
∑
k≥1

Mpkµg(ηM
k) =: S <∞

and
C−1S ≤ ||g||pLp(Ω) ≤ C(|Ω|+ S).

In [13], there are shown several properties of AM and GM in the interior
case. We can also find corresponding results for boundary estimates in [78].
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Lemma 3.1.6. [78] Assume that u ∈ S(λ,Λ, f) in B+

12
√
nh−1

1 ,12
√
n
⊂ Ω, u ∈

C(Ω) and ||u||L∞(Ω) ≤ 1. Then there exist universal constants M > 1 and
0 < σ < 1 such that ||f ||Ln(B+

12
√
nh−1

1 ,12
√
n

) ≤ 1 implies

|GM(u,Ω) ∩ (Qn−1
1 × (0, 1) + x0)| ≥ 1− σ

for any x0 ∈ B+

9
√
nh−1

1 ,9
√
n
∪ T9

√
nh−1

1
.

Lemma 3.1.7. [78] Let u ∈ S(λ,Λ, f) in B+

12
√
nh−1

1 ,12
√
n
⊂ Ω ⊂ Rn

+ and u
be continuous in Ω. Assume that ||u||L∞(Ω) ≤ 1. Then there exist universal
constants C, µ such that ||f ||Ln(B+

12
√
nh−1

1 ,12
√
n

)) ≤ 1 implies

|At(u,Ω) ∩ (Qn−1
1 × (0, 1) + x0)| ≤ Ct−µ

for any x0 ∈ B+

9
√
nh−1

1 ,9
√
n
∪ T9

√
nh−1

1
and t > 1.

3.1.3 Boundary W 2,p-estimates

The purpose of this subsection is to obtain boundary W 2,p-regularity for
elliptic oblique derivative problems.

Consider the following problem{
F (D2u, x) = f in B+

1 ,
β ·Du = 0 on T1.

(3.1.3)

We note that structure condition (3.1.2) can be replaced by the following
uniform ellipticity condition with constants λ and Λ for this problem, that
is,

λ||X2|| ≤ F (X1 +X2, q, r, x)− F (X1, q, r, x) ≤ Λ||X2||

for any X1, X2 ∈ S(n), X2 ≥ 0, q ∈ Rn, r ∈ R and x ∈ Ω.
Let us state the main theorem in this subsection.

Theorem 3.1.8. Let u be a C2-viscosity solution of (3.1.3) where F (X, x)
is uniformly elliptic with λ and Λ, convex in X, continuous in X and x,
F (0, x) = 0, β ∈ C2(T1) with β · n ≥ δ0 for some δ0 > 0, and f ∈
Lp(B+

1 ) ∩ C(B+
1 ) for n < p < ∞. Then there exist two constants ε0 =
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ε0(n, p, λ,Λ, δ0, ||β||C2(T1)) and C = C(n, p, λ,Λ, δ0, ||β||C2(T1)) such that(∫
Br(x0)∩B+

1

ψ(x0, x)n dx

)1/n

≤ ε0

for any x0 ∈ B+
1 and r > 0 implies u ∈ W 2,p(B+

1/2) and we have the estimate

||u||W 2,p(B+
1/2

) ≤ C(||u||L∞(B+
1 ) + ||f ||Lp(B+

1 )).

We first introduce the following lemmas in [42]. These results play an im-
portant role in establishing regularity results for oblique derivative problems.

Lemma 3.1.9 (ABP maximum principle). [42] Let Ω ⊂ B1 and u satisfy{
u ∈ S∗(λ,Λ, b, f) in Ω,
β ·Du = g on Γ. (3.1.4)

Suppose that there exists ξ ∈ ∂B1 such that β · ξ ≥ δ0. Then

||u||L∞(Ω) ≤ ||u||L∞(∂Ω\Γ) + C(||g||L∞(Γ) + ||f ||Ln(Ω)),

where C only depends on n, λ,Λ, b and δ0.

Lemma 3.1.10. [42] Let u satisfy (3.1.4). Then for any Ω′ ⊂⊂ Ω ∪ Γ,
u ∈ C0,α(Ω

′
) and

||u||C0,α(Ω
′
) ≤ C(||u||L∞(Ω) + ||f ||Ln(Ω) + ||g||L∞(Γ)),

where 0 < α < 1 only depends on n, λ,Λ, b and δ0, and C depends also on Ω′

and Ω.

In [42], the case b = 0 was only considered. We can extend Lemma 3.1.9
and 3.1.10 to the case of S(λ,Λ, b, f) with b 6= 0, since key ideas of the proof
of these theorems are ABP maximum principle and Harnack inequality. In
this case, the universal constant C also depends on b.

Meanwhile, interior and boundary C1,1-estimates for model problems are
necessary to establish W 2,p-estimates. For the interior case, once can find
C1,1-estimate in [13]. We refer to the following results in [42] for oblique
derivative problems.
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Lemma 3.1.11. [42] Let F be convex, u be a viscosity solution of{
F (D2u) = f in Ω,
β ·Du = g on Γ ⊂ ∂Ω, (3.1.5)

and 0 < α < α̃, where 0 < α̃ < 1 is a constant depending only on n, λ,Λ and
δ0. Suppose that Γ ∈ C1,α, β, g ∈ C1,α(Γ) and f ∈ C0,α(Ω). Then for any
Ω′ ⊂⊂ Ω ∪ Γ, u ∈ C2,α(Ω

′
) and

||u||C2,α(Ω
′
) ≤ C(||u||L∞(Ω) + ||f ||C0,α(Ω) + ||g||C1,α(Γ) + |F (0)|),

where C only depends on n, λ,Λ, δ0, α, ||β||C1,α(Γ),Ω
′ and Ω.

Now we fix small enough h0 > 0 such that

β(x) · n(y) < 0 (3.1.6)

for any x ∈ T1 and y ∈ ∂B+
1,h0
\T1 throughout this subsection. Then we can

obtatin the following approximation lemma for solutions of (3.1.3).

Lemma 3.1.12. Let 0 < ε < 1, h0 be a constant satisfying (3.1.6) and
u be a C2-viscosity solution of (3.1.3). Assume that ||u||L∞(B+

1,h0
) ≤ 1 and

||ψ(·, 0)||Ln(B+
1,h0

) ≤ ε. Then, there exists a function h ∈ C2(B
+
3
4
, 3
4
h0

) such that
u− h ∈ S(ϕ), ||h||

C2(B
+
3
4 ,

3
4h0

)
≤ C and

||u− h||L∞(B+
3
4 ,

3
4h0

) + ||ϕ||Ln(B+
3
4 ,

3
4h0

) ≤ C(εγ + ||f ||Ln(B+
1,h0

))

for some 0 < γ = γ(n, λ,Λ, δ0) < 1 and C = C(n, λ,Λ, δ0, ||β||C2(T1)). Here,
ϕ = f − F (D2h, ·).

Proof. We consider a function h which is a solution of
F (D2h, 0) = 0 in B+

7
8
, 7
8
h0
,

h = u on ∂B+
7
8
, 7
8
h0
\T 7

8
,

β ·Dh = 0 on T 7
8
.

(3.1.7)

Then by Lemma 3.1.10, for some α1 = α1(n, λ,Λ, δ0) and C = C(n, λ,Λ, δ0),

||u||C0,α1 (B+
7
8 ,

7
8h0

) ≤ C(1 + ||f ||Ln(B+
1,h0

)) (3.1.8)
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and by Lemma 3.1.11 with a proper scaling,

||h||L∞(B+
7
8−δ,(

7
8−δ)h0

) + δ||Dh||L∞(B+
7
8−δ,(

7
8−δ)h0

) + δ2||D2h||L∞(B+
7
8−δ,(

7
8−δ)h0

)

≤ C

for some constant C depending on n, λ,Λ, δ0 and ||β||C2(T1).
Let w = u− h. Observe that w satisfies

w ∈ S(λ/n,Λ, ϕ) in B+
7
8
, 7
8
h0
,

w = 0 on ∂B+
7
8
, 7
8
h0
\T 7

8
,

β ·Dw = 0 on T 7
8
.

(3.1.9)

By the ABP estimate (Lemma 3.1.9), we can see

||w||L∞(B+
7
8−δ,(

7
8−δ)h0

) ≤ C(||ϕ||Ln(B+
7
8−δ,(

7
8−δ)h0

) + ||w||L∞(∂B+
7
8−δ,(

7
8−δ)h0

\T 7
8−δ

))

≤ C(||f ||Ln(B+
7
8−δ,(

7
8−δ)h0

) + ||F (D2h, ·)||Ln(B+
7
8−δ,(

7
8−δ)h0

)

+ ||w||L∞(∂B+
7
8−δ,(

7
8−δ)h0

\T 7
8−δ

))

for some C = C(n, λ,Λ, δ0). Since h ∈ C2(B+
7
8
−δ), we also derive that

||F (D2h, ·)||Ln(B+
7
8−δ,(

7
8−δ)h0

) ≤ ||ψ(·, 0)||Ln(B+
7
8−δ,(

7
8−δ)h0

)||D
2h||L∞(B+

7
8−δ,(

7
8−δ)h0

)

≤ Cδ−2ε

where C = C(n, λ,Λ, δ0, ||β||C2(T1)).
On the other hand, we already know that w ≡ 0 on ∂B+

7
8
,h0
\T 7

8
and

u ∈ C0,α1(B
+
7
8
,h0

). We can also obtain a global Hölder regularity for h by
using [42, Corollary 3.1] and (3.1.8). Combining these results, we can derive
that

||w||L∞(∂B+
7
8−δ,(

7
8−δ)h0

\T 7
8−δ

) ≤ Cδα2(1 + ||f ||Ln(B+
1,h0

))

for some α2 ∈ (0, α1) and C = C(n, λ,Λ, δ0). Thus, if we put γ = δ
α2

2+α2 ,

||w||L∞(∂B+
7
8−δ,(

7
8−δ)h0

) ≤ C{||f ||Ln(B+
1,h0

) + δ−2ε+ δα2(1 + ||f ||Ln(B+
1,h0

))}
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≤ C(εγ + ||f ||Ln(B+
1,h0

))

for some constant C depending only on n, λ,Λ, δ0 and ||β||C2(T1). Then the
proof is completed by choosing δ = 1/8.

Next we show following lemmas which give us information about power
decay of |AM(u,Ω)|.
Lemma 3.1.13. Let 0 < ε0 < 1, B+

14
√
nh−1

1 ,14
√
n
⊂ Ω ⊂ Rn

+ and u be a
C2-viscosity solution of{

F (D2u, x) = f in B+

14
√
nh−1

1 ,14
√
n
,

β ·Du = 0 on T14
√
nh−1

1
,

(3.1.10)

where h1 = h1(δ0) is a small constant satisfying (3.1.6) for any x ∈ T14
√
nh−1

1

and y ∈ ∂B+

14
√
nh−1

1 ,14
√
n
\T14

√
nh−1

1
. Assume that

||f ||Ln(B+

14
√
nh−1

1 ,14
√
n

), ||ψ(·, 0)||Ln(B+

14
√
nh−1

1 ,14
√
n

) ≤ ε < 1

for some ε depending on n, ε0, λ,Λ, δ0 and ||β||C2(T
14
√
nh−1

1
). Then,

G1(u,Ω) ∩ (Qn−1
2 × (0, 2) + x̃0) 6= ∅

for some x̃0 ∈ B+

9
√
nh−1

1 ,9
√
n
∪ T9

√
nh−1

1
implies

|GM(u,Ω) ∩ (Qn−1
1 × (0, 1) + x0)| ≥ 1− ε0,

where x0 ∈ B+

9
√
nh−1

1 ,9
√
n
∪ T9

√
nh−1

1
and M is a constant depending only on

n, λ,Λ, δ0 and ||β||C2(T
14
√
nh−1

1
).

Proof. Let x1 ∈ G1(u,Ω) ∩ (Qn−1
2 × (0, 2) + x̃0). Then, for every x ∈ Ω and

some affine function L,

|(u− L)(x)| ≤ |x− x1|2/2.

Define ũ(x) = (u − L)(x)/C(n, δ0) so that ||ũ||L∞(B+

14
√
nh−1

1 ,14
√
n

) ≤ 1 and

|ũ(x)| ≤ |x|2 in Ω\B+

14
√
nh−1

1 ,14
√
n
. Observe that ||L||C1(B+

14
√
n

) is uniformly
bounded and depending only on n, δ0 in this case.
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Set F̃ (D2ũ, x) = F (CD2ũ, x)/C(n, δ0) and f̃(x) = f(x)/C(n, δ0). Then
we can observe that the elliptic constants of F and F̃ are the same and ũ
satisfies {

F̃ (D2ũ, x) = f̃ in B+

14
√
nh−1

1 ,14
√
n
,

β ·Dũ = −β ·DL/C(n, δ0) on T14
√
nh−1

1
.

(3.1.11)

Now consider a function h̃ ∈ C(B
+

13
√
nh−1

1 ,13
√
n) such that

F̃ (D2h̃, 0) = 0 in B+

13
√
nh−1

1 ,13
√
n
,

h̃ = ũ on ∂B+

13
√
nh−1

1 ,13
√
n
\T13

√
nh−1

1
,

β ·Dh̃ = −β ·DL/C(n, δ0) on T13
√
nh−1

1
.

(3.1.12)

Observe that β · DL ∈ C2(T14
√
nh−1

1
) since β ∈ C2(T14

√
nh−1

1
) and DL is a

constant vector. Hence, we can obtain C2-estimate for h̃. By using again
Lemma 3.1.10 and Lemma 3.1.11, we deduce that

||ũ||C0,α1 (B+

13
√
nh−1

1 ,13
√
n

)

≤ C(1 + ||f ||Ln(B+

14
√
nh−1

1 ,14
√
n

) + ||DL||L∞(B+

14
√
nh−1

1 ,14
√
n

))

for some α1 = α1(n, λ,Λ, δ0) and

||h̃||C(B+

(13
√
n−δ)h−1

1 ,13
√
n−δ

) + δ||Dh̃||C(B+

(13
√
n−δ)h−1

1 ,13
√
n−δ

)

+ δ2||D2h̃||C(B+

(13
√
n−δ)h−1

1 ,13
√
n−δ

)

≤ C(||h̃||L∞(B+

(13
√
n−δ)h−1

1 ,13
√
n−δ

) + ||β ·DL||C2(T
(13
√
n−δ)h−1

1
))

for some C depending on n, λ,Λ, δ0 and ||β||C2(T
14
√
nh−1

1
). Observe that

||β ·DL||C2(T
14
√
nh−1

1
) ≤ C(n, δ0)||β||C2(T

14
√
nh−1

1
)

≤ C(n, δ0, ||β||C2(T
14
√
nh−1

1
))
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and

||h̃||L∞(B+

(13
√
n−δ)h−1

1 ,13
√
n−δ

)

≤ ||h̃||L∞(∂B+

(13
√
n−δ)h−1

1 ,13
√
n−δ
\T

(13
√
n−δ)h−1

1
)

+ C(n, λ,Λ, δ0)||β ·DL||L∞(T
(13
√
n−δ)h−1

1
)

≤ ||ũ||L∞(∂B+

13
√
nh−1

1

\T
13
√
nh−1

1
) + C(n, λ,Λ, δ0)

+ C(n, λ,Λ, δ0)(1 + ||f ||Ln(B+

14
√
nh−1

1 ,14
√
n

) + ||DL||L∞(B+

14
√
nh−1

1 ,14
√
n

))δ
α2

≤ C(n, λ,Λ, δ0)

for some α2 ∈ (0, α1). We used the similar argument in the proof of Lemma
3.1.12 to estimate ||h̃||L∞(∂B+

(13
√
n−δ)h−1

1 ,13
√
n−δ
\T

(13
√
n−δ)h−1

1
). Then we see that

||D2h̃||L∞(B+

(13
√
n−δ)h−1

1 ,13
√
n−δ

) ≤ δ−2C(n, λ,Λ, δ0, ||β||C2(T
14
√
nh−1

1
))

and therefore

||D2h̃||L∞(B+

12
√
nh−1

1 ,12
√
n

) ≤ C(n, λ,Λ, δ0, ||β||C2(T
14
√
nh−1

1
)).

This implies

AN(h̃, B+

12
√
nh−1

1 ,12
√
n
) ∩ (Qn−1

1 × (0, 1) + x0) = ∅

for sufficiently large N = N(n, λ,Λ, δ0, ||β||C2(T14
√
nh
−1
1 )) > 1. Now we extend

h̃ to ḣ such that ḣ is continuous in Ω, ḣ = ũ in Ω\B+

13
√
nh−1

1 ,13
√
n
, and ||ũ −

ḣ||L∞(Ω) = ||ũ− h̃||L∞(B+

12
√
nh−1

1 ,12
√
n

). Then

||ũ− ḣ||L∞(Ω) ≤ ||ũ||L∞(B+

12
√
nh−1

1 ,12
√
n

) + ||h̃||L∞(B+

12
√
nh−1

1 ,12
√
n

) ≤ C0

for some C0 = C0(n, λ,Λ, δ0, ||β||C2(T
14
√
nh−1

1
)) and thus |ḣ(x)| ≤ C0 + |x|2 in
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Ω\B+

12
√
nh−1

1 ,12
√
n
. Hence, for some M0 ≥ N , we see

AM0(ḣ,Ω) ∩ (Qn−1
1 × (0, 1) + x0) = ∅.

Consider w = ũ− ḣ. We can see that
w ∈ S(λ/n,Λ, f̃ − F̃ (D2h̃, ·)) in B+

13
√
nh−1

1 ,13
√
n
,

w = 0 on ∂B+

13
√
nh−1

1 ,13
√
n
\T13

√
nh−1

1
,

β ·Dw = 0 on T13
√
nh−1

1
.

(3.1.13)

By ABP maximum principle and the definition of w,

||w||L∞(Ω) = ||w||L∞(B+

13
√
nh−1

1 ,13
√
n

) ≤ C(εγ + ||f ||Ln(B+

14
√
nh−1

1 ,14
√
n

)) ≤ Cεγ

for some 0 < γ = γ(n, λ,Λ, δ0) < 1 and

C = C(n, λ,Λ, δ0, ||β||C2(T14
√
nh
−1
1 )).

Set w̃ = w/Cεγ. We observe that w̃ satisfies the hypothesis of Lemma
3.1.7 and therefore

|At(w̃,Ω) ∩ (Qn−1
1 × (0, 1) + x0)| ≤ Ct−µ

for any x0 ∈ B+

9
√
nh−1

1 ,9
√
n
∪ T9

√
nh−1

1
and t > 1. Since

A2M0(ũ,Ω) ⊂ AM0(w,Ω) ∪ AM0(ḣ,Ω)

and
AM0(ḣ,Ω) ∩ (Qn−1

1 × (0, 1) + x0) = ∅,

we have

|A2M0(ũ,Ω)∩(Qn−1
1 × (0, 1) + x0)| ≤ |AM0(w,Ω) ∩ (Qn−1

1 × (0, 1) + x0)|
= |AM0/Cεγ (w̃,Ω) ∩ (Qn−1

1 × (0, 1) + x0)|
≤ C(M0/Cε

γ)−µ

≤ ε0

by choosing M = 2CM0 and ε sufficiently small. We finish the proof.
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Lemma 3.1.14. Let 0 < ε0 < 1 and u be a C2-viscosity solution of (3.1.10).
Assume that ||u||L∞(B+

14
√
nh−1

1 ,14
√
n

) ≤ 1 and ||f ||Ln(B+

14
√
nh−1

1 ,14
√
n

) ≤ ε. Extend f

to zero outside B+

14
√
nh−1

1 ,14
√
n
and let

(∫
Br(x0)∩B+

14
√
nh−1

1 ,14
√
n

ψ(x0, x)n dx

)1/n

≤ ε

for any x ∈ B+

14
√
nh−1

1 ,14
√
n
, r > 0 and some

ε = ε(n, ε0, λ,Λ, δ0, ||β||C2(T
14
√
nh−1

1
)) > 0.

Then, for
A := AMk+1(u,B+

14
√
nh−1

1 ,14
√
n
) ∩ (Qn−1

1 × (0, 1)),

B := (AMk(u,B+

14
√
nh−1

1 ,14
√
n
)∩(Qn−1

1 × (0, 1)))

∪ {x ∈ Qn−1
1 × (0, 1) : M(fn) ≥ (c0M

k)n}

where k ∈ N0, M > 1 only depends on n, λ,Λ, δ0, ||β||C2(T
14
√
nh−1

1
) and c0 also

depends on ε0, we have
|A| ≤ ε0|B|.

Proof. By definition of A and B, we can check that A ⊂ B ⊂ Qn−1
1 × (0, 1).

And since B ( Qn−1
1 × (0, 1) by Lemma 3.1.6, we can use Lemma 3.1.13 and

observe that |A| ≤ ε0. Thus, it is sufficient to obtain that for any dyadic cube
Q and its predecessor Q̃,

|A ∩Q| > ε0|Q| ⇒ Q̃ ⊂ B

by Lemma 3.1.3.
Let Q = (Qn−1

1/2i
× (0, 1/2i)) + x0 and Q̃ = (Qn−1

1/2i−1 × (0, 1/2i−1)) + x̃0.
Assume that |A ∩ Q| > ε0|Q| and Q̃ * B. Then one can find a point x1 ∈
Q̃ ∩GMk(u,B+

14
√
nh−1

1 ,14
√
n
) with M(fn)(x1) < (c0M

k)n.
First, assume that x0,n ≤ 8

√
n/2i. We consider a proper transforma-

tion Ty = (x′0, 0) + 2−iy and define ũ(y) = 22iM−ku(Ty), β̃(y) = β(Ty),
F̃ (X, y) = M−kF (MkX,Ty) and f̃(y) = M−kf(Ty). Then we can see that
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ũ is a viscosity solution of{
F̃ (D2ũ, y) = f̃ in B+

14
√
nh−1

1 ,14
√
n
,

β̃ ·Dũ = 0 on T14
√
nh−1

1
,

(3.1.14)

since B+

14
√
nh−1

1 ,14
√
n

+ (x′0, 0) ⊂ B+

14
√
nh−1

1 ,14
√
n
.

Note that β̃ ∈ C2(T14
√
nh−1

1
) and F̃ has the same elliptic constant of F and

||ψF̃ ||Ln(B+

13
√
nh−1

1 ,13
√
n

) ≤ Cε for some universal C, as ψF̃ (y, 0) = ψF (Ty, (x′0, 0)).

Now we can deduce that

||f̃ ||Ln(B+

14
√
nh−1

1 ,14
√
n

) =

(∫
B+

14
√
nh−1

1 ,14
√
n

|f̃(y)|n dy
)1/n

≤ C(n, δ0)c0

≤ ε,

by taking c0 sufficiently small, where we have used Proposition 3.1.4 in the
second inequality.

Again, since Q̃ ∩GMk(u,B+

14
√
nh−1

1 ,14
√
n
) 6= ∅, we observe that

T−1Q̃ ∩G1(ũ, T−1B+

14
√
nh−1

1 ,14
√
n
) 6= ∅.

We also see that |T−1x̃0| < 9
√
n from |x0 − x̃0| <

√
n/2i. Therefore, by

Lemma 3.1.13,

|T−1Q ∩GM(ũ, T−1B+

14
√
nh−1

1 ,14
√
n
)| ≥ 1− ε0,

which implies

|T−1Q ∩GMk+1(u,B+

14
√
nh−1

1 ,14
√
n
)| ≥ (1− ε0)|Q|,

but this is a contradiction.
Next, we consider the case x0,n > 8

√
n/2i. In this case, we can check that

B8
√
n/2i(x0 + en/2

i+1) ⊂ B+
8
√
n
. Define T : B8

√
n → B8

√
n/2i(x0 + en/2

i+1) as

Ty = x0 +
en

2i+1
+

y

2i+1
.

33



CHAPTER 3. REGULARITY FOR OBLIQUE DERIVATIVE
PROBLEMS

Now we define ũ(y) = 22(i+1)M−ku(Ty), F̃ (X, y) = M−kF (MkX,Ty) and
f̃(y) = M−ku(Ty). Then observe that F̃ (D2ũ, y) = f̃(y) in B8

√
n. By apply-

ing [13, Lemma 7.11] to ũ, we can conclude the proof.

Proof of Theorem 3.1.8. Fix a point x0 ∈ B1/2 ∩ {x ≥ 0}. When x0 ∈ T1/2,
consider a fixed number r ∈

(
0, 1−|x0|

14
√
n
h1

)
(h1 is the constant as in Lemma

3.1.13) and define

K =
εr

εr−1||u||L∞(B+
14r
√
n

(x0)) + ||f ||Ln(B+
14r
√
n

(x0))

where ε = ε(n, ε0, λ,Λ, p, δ0, ||β||C2(T1)) is the same as in Lemma 3.1.13 and
0 < ε0 < 1 is to be determined. We also define ũ(y) = Kr−2u(ry+x0), f̃(y) =
Kf(ry + x0), β̃(y) = β(ry + x0) and F̃ (X, y) = KF (K−1X, ry + x0). Then,
ũ is a viscosity solution of (3.1.14). Observe that F and F̃ have the same
elliptic constants, ||ũ||L∞(B+

14
√
nh−1

1 ,14
√
n

) ≤ 1, ||ψF̃ ||Ln(B+

14
√
nh−1

1 ,14
√
n

) ≤ ε, β̃ ∈

C2(T14
√
nh−1

1
) and ||f̃ ||Ln(B+

14
√
nh−1

1 ,14
√
n

) ≤ ε. Therefore, we can apply Lemma

3.1.14 to ũ. Let M and c0 be the same constants and ε0 = (2Mp)−1. Then
we obtain by using a similar argument in the proof of [78, Theorem 2.2],

||D2ũ||Lp(B+
1/2

) ≤ C,

that is,
||D2u||Lp(B+

r/2
(x0)) ≤ C(||u||L∞(B+

1 ) + ||f ||Lp(B+
1 )),

where C = C(n, λ,Λ, p, δ0, ||β||C2(T1)) > 0.
On the other hand, if x0 ∈ B+

1/2, we can apply the results of interior
estimates, like as in [13, Theorem 7.1]. Combining the interior and boundary
estimates, we get the desired results by using a standard covering argument.

3.1.4 Boundary W 1,p-estimates

In this subsection, we extend the regularity result in Section 3.1.3 for equa-
tions involving ingredients F (X, q, r, x).
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We now consider the following problem{
F (D2u,Du, u, x) = f in B+

1 ,
β ·Du = 0 on T1.

(3.1.15)

By means of the structure condition (3.1.2), we can see that u is also a
viscosity solution of {

F (D2u, 0, 0, x) = f̃ in B+
1 ,

β ·Du = 0 on T1
(3.1.16)

for some function f̃ with

|f̃ | ≤ |f |+ b|Du|+ c|u|. (3.1.17)

We already know that W 2,p-norm of u is estimated by L∞-norm of u and
Ln-norm of f̃ by Theorem 3.1.8. Therefore, it is essential in obtaining W 1,p-
estimate for u to show our desired result.

We first show the following approximation lemma.

Lemma 3.1.15. Let n < p <∞ and 0 ≤ ν ≤ 1. Assume that F is continuous
in x and satisfies (3.1.2) with F (0, 0, 0, x) = 0 and β ∈ C2(T2) with β ·
n ≥ δ0 for some δ0 > 0. Then, for every ρ > 0, ϕ ∈ C(∂B1(0′, ν)) with
||ϕ||C(∂B1(0′,ν)) ≤ C1 for some C1 > 0 and g ∈ C0,α(T2) with 0 < α < 1
and ||g||Cα(T2) ≤ C2 for some C2 > 0, there exists a positive number δ =
δ(ρ, n, λ,Λ, δ0, p, α, C1, C2) < 1 such that

||ψ(0, ·)||Lp(B+
2 ), ||f ||Lp(B+

2 ), b, c ≤ δ

implies the following: if u and v satisfy
F (D2u,Du, u, x) = f in B1(0′, ν) ∩ Rn

+,
u = ϕ on ∂B1(0′, ν) ∩ Rn

+,
β ·Du = g on B1(0′, ν) ∩ T1

and 
F (D2v, 0, 0, 0) = 0 in B 7

8
(0′, ν) ∩ Rn

+,
v = u on ∂B 7

8
(0′, ν) ∩ Rn

+,
β ·Du = g on B 7

8
(0′, ν) ∩ T1,
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then ||u− v||L∞(B 7
8

(0′,ν)∩Rn+) ≤ ρ.

We will use following facts to prove Lemma 3.1.15. These results can be
found in [78, Proposition 1.5] and [42, Theorem 3.1], respectively. For the
proof of Proposition 3.1.16, see [14, Theorem 3.8].

Proposition 3.1.16. For k ∈ N, let Ωk ⊂ Ωk+1 be an increasing sequence
of domains and Ω := ∪k≥1Ωk. Let p > n and F, Fk be measurable in x and
satisfy structure condition (3.1.2). Assume that f ∈ Lp(Ω), fk ∈ Lp(Ωk) and
that uk ∈ C(Ωk) are W 2,p-viscosity subsolutions (supersolutions, respectively)
of Fk(D2uk, Duk, uk, x) = fk in Ωk. Suppose that uk → u locally uniformly
in Ω and for Br(x0) ⊂ Ω and ϕ ∈ W 2,p(Br(x0))

||(s− sk)+||Lp(Br(x0)) → 0
(
||(s− sk)−||Lp(Br(x0)) → 0

)
(3.1.18)

where s(x) = F (D2ϕ,Dϕ, u, x) − f(x) and sk(x) = F (D2ϕk, Dϕk, uk, x) −
fk(x). Then u is an W 2,p-viscosity subsolution (supersolution) of

F (D2u,Du, u, x) = f(x) in Ω.

Moreover, if F and f are continuous, then u is an C2-viscosity subsolution
(supersolution) provided that (3.1.18) holds for ϕ ∈ C2(Br(x0)).

Lemma 3.1.17. Suppose that Γ ∈ C2 and β ∈ C2(Γ). Let u and v satisfy{
F (D2u) ≥ f1 in Ω,
β ·Du+ γu ≥ g1 on Γ

and {
F (D2v) ≤ f2 in Ω,
β ·Dv + γv ≤ g2 on Γ.

Then {
u− v ∈ S(λ/n,Λ, f1 − f2) in Ω
β ·D(u− v) + γ(u− v) ≥ g1 − g2 on Γ.

Proof of Lemma 3.1.15. We will show this lemma by contradiction. Suppose
not. Then there exists a number ρ0 > 0 so that for any Fk, fk, bk, ck, ψFk with

||ψFk(0, ·)||Lp(B+
2 ), ||fk||Lp(B+

2 ), bk, ck ≤ δk → 0
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as k →∞, if uk and vk satisfy
Fk(D

2uk, Duk, uk, x) = fk in B1(0′, νk) ∩ Rn
+,

uk = ϕk on ∂B1(0′, νk) ∩ Rn
+,

β ·Duk = gk on B1(0′, νk) ∩ T1

(3.1.19)

and 
Fk(D

2vk, 0, 0, 0) = 0 in B 7
8
(0′, νk) ∩ Rn

+,
vk = uk on ∂B 7

8
(0′, νk) ∩ Rn

+,
β ·Dvk = gk on B 7

8
(0′, νk) ∩ T1,

(3.1.20)

then ||u−v||L∞(B 7
8

(0′,ν)∩Rn+)>ρ0. Here, ϕk ∈ C(∂B1(0′, νk)) and gk ∈ C0,α(T2)

satisfy ||ϕk||L∞(∂B1(0′,νk)) ≤ C1 and ||gk||C0,α(T2) ≤ C2, respectively.
We assumed that Fk(X, q, r, x) are Lipschitz in X, q, r from the condition

(3.1.2), hence there exists a subsequence Fki and a function F∞ such that
Fki(·, ·, ·, 0) converges to F∞(·) uniformly on compact subsets of S(n)×Rn×R
by Arzelà-Ascoli theorem. Now we use Lemma 3.1.9 and get

||uk||L∞(B1(0′,νk)∩Rn+)

≤ ||ϕk||L∞(∂B1(0′,νk)∩Rn+)

+ C(n, λ,Λ, δ0)(||fk||Ln(B1(0′,νk)∩Rn+) + ||gk||L∞(T1))

≤ C(C1, C2, n, λ,Λ, δ0)

for sufficiently large k. We can also see that uk satisfy boundary Hölder
regularity by Lemma 3.1.10, that is, for any 0 < δ < 1,

||uk||C0,α1 (B1−η(0′,νk)∩Rn+) ≤ C(C1, C2, n, λ,Λ, δ0)η−α1 (3.1.21)

for some α1 = α1(n, λ,Λ, δ0) and sufficiently large k.
Suppose that there exists a number ν∞ and a subsequence {νki} such that

νki → ν∞ as i → ∞. We can assume that this subsequence is monotone. If
νki is decreasing, we can check that

B1(0′, ν∞) ∩ Rn
+ ⊂ B1(0′, νki) ∩ Rn

+
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for any i. Thus, we can observe that

||uki ||C0,α1 (B15/16(0′,ν∞)∩Rn+) ≤ C(C1, C2, n, λ,Λ, δ0) (3.1.22)

by using the result (3.1.21). Meanwhile, if νki is increasing, there exists a
number i0 such that

B31/32(0′, νki) ∩ Rn
+ ⊃ B15/16(0′, ν∞) ∩ Rn

+ for i ≥ i0.

Then we can also deduce (3.1.22) for some proper subsequence uki .
Hence, we can see that there is a subsequence uki and a function u∞ such

that uki uniformly converge to u∞ in B15/16(0′, ν∞) ∩ Rn
+.

On the other hand, we see that for φ ∈ C2(B+
2 ),

|Fki(D2φ,Dφ, uki , x)− fki(x)− F∞(D2φ, 0, 0, 0)|
≤ ckiC(C1, C2, n, λ,Λ, δ0) + bki |Dφ|+ ψFki (0, x)|D2φ|

+ |fki |+ |(Fki − F∞)(D2φ, 0, 0, 0)|

and thus,

lim
i→∞
||Fki(D2φ,Dφ, uki , x)− fki(x)− F∞(D2φ, 0, 0, 0)||Lp(Br(x0)) = 0.

for any ball Br(x0) ⊂ B15/16(0, ν∞) ∩ Rn
+. And we can observe that there

exists a function g∞ ∈ C0,α(T1) by Arzelà-Ascoli theorem, since gk are uni-
formly bounded and equicontinuous on T1. Therefore, we can deduce that
u∞ satisfies{

F∞(D2u∞, 0, 0, 0) = 0 in B15/16(0′, ν∞) ∩ Rn
+,

β ·Du∞ = g∞ on B15/16(0′, ν∞) ∩ T1,
(3.1.23)

in the viscosity sense by Proposition 3.1.16 and [42, Proposition 2.1].
Now consider wki := u∞ − vki for each i. Then wki satisfies

wki ∈ S(λ/n,Λ, 0) in B 7
8
(0′, ν∞) ∩ Rn

+,
wki = u∞ − uki on ∂B 7

8
(0′, ν∞) ∩ Rn

+,
β ·Dwki = g∞ − gki on B 7

8
(0′, ν∞) ∩ T1.

(3.1.24)
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by Lemma 3.1.17. Using Lemma 3.1.9, we observe that

||wki ||L∞(B 7
8

(0′,ν∞)∩Rn+)

≤ ||u∞ − uki||L∞(∂B 7
8

(0′,ν∞)) + C(n, λ,Λ, δ0)||g∞ − gki ||L∞(B 7
8

(0′,ν∞)∩T1)

(3.1.25)

and the right-hand side of (3.1.25) tends to zero as i → ∞, that is, wki
converge uniformly to zero. It implies that vki converge uniformly to u∞ in
B 7

8
(0′, ν∞) ∩ Rn

+. But this contradicts our assumptions, and therefore we can
complete the proof.

Now we can establishW 1,p-estimates for viscosity solutions of the problem
(3.1.15).

Theorem 3.1.18. Let n < p < ∞. Assume that F is convex in X and
continuous in x satisfies the structure condition (3.1.2) with F (0, 0, 0, x) = 0
and u be a C2-viscosity solution of (3.1.15) where f ∈ Lp(B+

1 ) ∩ C(B+
1 )

and β ∈ C2(T1) with β · n ≥ δ0 > 0. Then, there exists a constant ε0 =
ε0(n, λ,Λ, p, δ0, α) such that(∫

Br(x0)∩B+
1

ψ(x0, x)p dx

)1/p

≤ ε0

for any x0 ∈ B+
1 and r ≤ r0 for some r0 > 0 implies u ∈ C1,α(B

+

1/2) with
α = α(n, λ,Λ, p) ∈ (0, 1) and

||u||
C1,α(B

+
1/2)
≤ C(||u||L∞(B+

1 ) + ||f ||Lp(B+
1 ))

for some C = C(n, λ,Λ, b, c, p, δ0, ||β||C2(T1), r0).

Proof. Let n ≤ p′ < p. Fix y ∈ T1/2 and set d = min{1/2, r0}. First we
rescale the equation. Choose a constant σ such that

σ ≤ d

2
, σb ≤ δ

64MC(n)
, σ2c ≤ δ

64(M + 1)C(n)

where δ is from Lemma 3.1.15 and M is to be determined and C(n) is a
universal constant.
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Now we define

K = K(y)

:= ||u||L∞(B+
d (y)) +

1

ε0
sup
r≤d

[
r1−α

(
r−n

∫
B+
r (y)

|f(x)|p′ dx
) 1

p′
]

where 0 < α < 1 is a constant to be chosen later. Then we see that

K(y) ≤ ||u||L∞(B+
1 ) + C(n, ε0)

[
M(fp)(y)

] 1
p <∞

for any y. Set ũ(x) = u(σx)/K, f̃(x) = σ2f(σx)/K, β̃(x) = β(σx) and

F̃ (X, q, r, x) =
σ2

K
F (Kσ−2X,Kσ−1q,Kr, σx).

Then we observe that ũ satisfies{
F̃ (D2ũ, Dũ, ũ, x) = f̃ in B+

2 ,
β̃ ·Dũ = 0 on T2.

(3.1.26)

We check that F̃ satisfies (3.1.2) with bF̃ = σb, cF̃ = σ2c and

r1−α
(
r−n

∫
B+
r

|f̃(x)|p′ dx
) 1

p′

≤ ε0σ
1+α

for any r ∈ (0, 2). We can also deduce ||ψF̃ (0, ·)||Lp′ (B+
1 ) ≤ δ by choosing ε0

small enough since ψF̃ (0, x) = ψF ((0′, yn), σx).
Now we deduce boundary C1,α-estimates. We use induction to establish

this regularity result. It is sufficient to show that there exist some constants
µ,C3 > 0, 0 < α < 1 and a sequence of linear functions lk(x) = ak + bk · x
for k ≥ −1 such that

(i) ||ũ− lk||L∞(B+

µk
) ≤ µk(1+α)

(ii) |ak−1 − ak|+ µk−1|bk−1 − bk| ≤ 4C3µ
(k−1)(1+α)

(iii) β(0) · bk = 0.
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We set l−1 = l0 = 0 and choose µ ≤ 1/4 with 6C3||β||C2(T1)µ
2 ≤ µ1+α and

M = 4C3

∞∑
i=0

(
1

4

)iα
≥ 4C3

∞∑
i=0

µiα. (3.1.27)

For k = 0, we can check that all of these conditions are satisfied. Now
assume that (i), (ii) and (iii) hold for some k > 0. We show that these are
also satisfied for k + 1.

Define

vk(x) =
(ũ− lk)(µkx)

µk(1+α)
.

Then we observe that vk is a viscosity solution{
Fk(D

2vk, Dvk, vk, x) = fk + gk in B+
2 ,

β ·Dvk = −(β · bk)/µkα on T2,
(3.1.28)

where
Fk(X, q, r, x) = µk(1−α)F̃ (µk(α−1)X,µkαq, µk(α+1)r, µkx),

gk(x) =Fk(D
2vk, Dvk, vk, x)

− Fk(D2vk, Dvk + µ−kαbk, vk + µ−k(1+α)lk(µ
kx), x),

fk(x) = µk(1−α)f̃(µkx)

and
β(x) = β̃(µkx).

Observe that ψFk(0, x) = ψF̃ (0, µkx) and F̃ satisfies the structure condition
(3.1.2) with bFk = µkbF̃ and cFk = µ2kcF̃ .

For any x ∈ B+
1 ,

|gk(x)| = |Fk(D2vk, Dvk, vk, x)

− Fk(D2vk, Dvk + µ−kαbk, vk + µ−k(1+α)lk(µ
kx), x)|

≤ bFk · µ−kα|bk|+ cFk · µ−k(1+α)|lk(µkx)|.

We already know that |ak−1 − ak| + µk−1|bk−1 − bk| ≤ 4C3µ
(k−1)(1+α) by

assumption. By using this and (3.1.27), we can check that |ak|, |bk| ≤M and
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thus we obtain that ||lk||L∞(B+
1 ) ≤ 2M . Therefore,

|gk(x)| ≤ bFk · µ−kαM + cFk · µ−k(α+1) · 2M ≤ µk(1−α) δ

16
.

Now we deduce that

||fk||Lp′ (B+
1 ) + ||gk||Lp′ (B+

1 )) ≤
δ

2
+

δ

16
µk(1−α) ≤ δ.

On the other hand, we see that vk ∈ S∗(λ,Λ, 1, |fk|+ |gk|+ µ2kcF̃ ) when
k is large enough. Therefore by Lemma 3.1.10,

||vk||C0,α0 (B+
1 )

≤ ||vk||L∞(∂B+
1 ) + C(n, λ,Λ, δ0)×

(||fk||Ln(B+
1 ) + ||gk||Ln(B+

1 ) + µ2kcF̃ + µ−kα||β · bk||L∞(B+
1 ))

≤ 1 + C(n, λ,Λ, δ0)(δ + µ(1−α)k|bk|)
≤ C(n, λ,Λ, δ0, C3)

for some α0 = α0(n, λ,Λ, δ0). Note that we have used ||vk||L∞(B+
1 ) ≤ 1, β ∈

C2(T1), β(0) · bk = 0 and |bk| ≤ 6C3 to obtain the last inequality.
Consider h ∈ C(B

+
7
8
) such that

Fk(D
2h, 0, 0, 0) = 0 in B+

7
8

,
h = vk on ∂B+

7
8

\T 7
8
,

β ·Dh = −(β · bk)/µkα on T 7
8
.

(3.1.29)

By Lemma 3.1.11, we see that

||h||
C2(B

+
3
4

)
≤ C∗(1 + µ−kα||β · bk||C2(T 7

8
))

for some constant C∗ which only depends on n, λ,Λ, ||β||C2(T1) and δ0. Set
C∗ = C3. Then we see that

||h||
C2(B

+
3
4

)
≤ C3(1 + µ−kα||β · bk||C2(T 7

8
))

≤ C3(1 + µ−kα|bk| · µk||β||C2(T1))
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since β(0) · bk = 0. Then we have

||h||
C2(B

+
3
4

)
≤ C3(1 + 6C3µ

1−α||β||C2(T1)) ≤ 2C3.

We can also observe that

||vk − h||L∞(B+
3
4

) ≤ ρ

by Lemma 3.1.15 to vk and h with ρ = C3µ
2.

Set l(x) = h(0) +Dh(0) · x. Then,

||vk − l||L∞(B+
2µ) ≤ ||vk − h||L∞(B+

2µ) + ||h− l||L∞(B+
2µ)

≤ C3µ
2 +

1

2
C3(2µ)2

≤ µ1+α.

Note that the last inequality is deduced by 6C3||β||C2(T1)µ
2 ≤ µ1+α.

Since |(vk − l)(x)| ≤ µ1+α for any x ∈ B+
2µ, we see that

|ũ(x)− lk(x)− µk(1+α)l(µ−k(x))| ≤ µ(k+1)(1+α)

for any x ∈ B+
2µk+1 . We denote lk+1 by

lk+1(x) = lk(x) + µk(1+α)l(µ−k(x)).

We have shown that the condition (i) still holds. And in this case, we can
also observe that the second condition is satisfied because

|ak − ak+1|+ µk|bk − bk+1| = µk(1+α)(|h(0)|+ |Dh(0)|)
≤ µk(1+α)||h||

C2(B
+
3
4

)

≤ 4C3µ
k(1+α).

Finally, we also check that

β(0) · bk+1 = β(0) · (bk + µkαDh(0)) = β(0) · µkαDh(0) = 0,
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since
β(0) ·Dh(0) = β(0) ·Dh(0) = −(β(0) · bk)/µkα = 0.

Hence, as k tends to ∞, there exists a linear function l such that

|l(0)|, |Dl(0)| ≤ C4K(y) (3.1.30)

and

||u− l||L∞(B+
r (y)) ≤ C4r

1+αK(y) (3.1.31)

for any y ∈ T1/2, small number r and some universal constant C4 = 4C3.
Since

K(y) ≤ ||u||L∞(B+
1 ) + ε−1

0 sup
r≤d

(
r1−α−n

p ||f ||Lp(B+
1 )

)
, (3.1.32)

we get u|T 1/2
∈ C1,α(T1/2) with

||u||C1,α(T 1/2) ≤ C(||u||L∞(B+
1 ) + ||f ||Lp(B+

1 )) (3.1.33)

for some C = C(n, λ,Λ, δ0, ||β||C2(T1)) by choosing α = 1− n/p.
By proper scaling, we have u|T 2/3

∈ C1,α(T 2/3). From [59, Proposition
2.2], we can deduce that u satisfies the assumption of [78, Theorem 3.1].
Therefore, by combining (3.1.33) with and [78, Theorem 3.1], we can complete
the proof.

By means of the above result, we get a boundary W 1,p-estimate for solu-
tions of (3.1.15).

Corollary 3.1.19. Let n < p <∞ and u be a viscosity solution of (3.1.15).
Then, under the assumption of Theorem 3.1.18, u ∈ W 1,p(B+

1/4) and

||u||W 1,p(B+
1/4

) ≤ C(||u||L∞(B+
1 ) + ||f ||Lp(B+

1 ))

for some C = C(n, λ,Λ, b, c, p, δ0, ||β||C1,α(T1), r0).

3.1.5 Global estimates

We are now ready to prove the global regularity result, Theorem 3.1.2.
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Proof of Theorem 3.1.2. We use a flattening argument for applying to Corol-
lary 3.1.19. If ∂Ω ∈ C3, for any x0 ∈ ∂Ω there exists a neighborhood N(x0)
and a C3-diffeomorphism

Ψ : U(x0)→ B1 ∩ Rn
+

such that Ψ(x0) = 0. Then for ũ = u ◦ Ψ−1, it is known that ũ is a W 2,p-
viscosity solution of {

F̃ (D2ũ, Dũ, ũ, x) = f̃ in B+
1 ,

β̃ ·Dũ = 0 on T1.

where f̃ = f ◦Ψ−1, β̃ = (β ◦Ψ−1) · (DΨ ◦Ψ−1)t and

F̃ (D2ϕ̃, Dϕ̃, ũ, x) = F (D2ϕ,Dϕ, u, x) ◦Ψ−1

= F (DΨT ◦Ψ−1D2ϕ̃DΨ ◦Ψ−1 + (Dϕ̃∂i,jΨ ◦Ψ−1)1≤i,j≤n,

DϕDΨ ◦Ψ−1, ũ,Ψ−1(x))

for ϕ̃ ∈ W 2,p(B+
1 ) and ϕ = ϕ̃◦Ψ(∈ W 2,p(U(x0))). We observe that ψF̃ (x, x0) ≤

C(Ψ)ψF (Ψ−1(x),Ψ−1(x0)) and F̃ is uniformly elliptic with constants λC(Ψ),
ΛC(Ψ) where C(Ψ) is a uniform constant depending only on Ψ. (see [78])
And we also check that β̃ ∈ C2 since Ψ,Ψ−1 ∈ C3. Now by using Corollary
3.1.19 and covering argument, we get a boundary estimate.

Finally, we obtain the following global regularity result to combine interior
estimate (see [14, 72]) and Corollary 3.1.19.

3.2 W 2,p-regularity for parabolic problems

3.2.1 Hypotheses and main results

We now study the following parabolic oblique boundary value problem
F (D2u,Du, u, x, t)− ut = f in ΩT ,
β ·Du = 0 on ST ,
u(·, 0) = 0 in Ω,

(3.2.1)

where Ω ⊂ Rn is a bounded domain with n ≥ 2 and T > 0.
We always assume the following conditions: F (X, q, r, x, t) is convex in
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X, continuous in X, q, r, x and t, and satisfies

M−(λ,Λ, X1 −X2)− b|q1 − q2| − c|r1 − r2|
≤ F (X1, q1, r1, x, t)− F (X2, q2, r2, x, t)

≤M+(λ,Λ, X1 −X2) + b|q1 − q2|+ c|r − s|
(3.2.2)

for fixed 0 < λ ≤ Λ and b, c > 0,M,N ∈ S(n), and any q1, q2 ∈ Rn, r1, r2 ∈ R
and (x, t) ∈ Rn × R.

Similarly to the elliptic case, we consider an oscillation function ψF .

Definition 3.2.1. Let F : S(n)× Rn × R× ΩT → R and (x0, t0) ∈ ΩT . For
(x, t) ∈ ΩT , We define

ψF ((x, t), (x0, t0)) := sup
X∈S(n)\{0}

|F (X, 0, 0, x, t)− F (X, 0, 0, x0, t0)|
||X||

,

Theorem 3.2.2. Let Ω be a bounded C3-domain with T > 0 and n be the
inward unit normal vector to ∂Ω. Assume that u is a viscosity solution of
(3.2.1), where F (X, q, r, x, t) is convex in X, continuous in x and t, and
satisfies the structure condition (3.2.2) with F (0, 0, 0, x, t) = 0, β ∈ C2(ST )
with β ·n ≥ δ0 for some δ0 > 0 and f ∈ Lp(ΩT )∩C(ΩT ) for n+ 2 < p <∞.
Then there exists ε0 depending on n, p, λ,Λ, δ0 and ||β||C2(ST ) such that if(∫

Qr(x0,t0)∩ΩT

ψF ((x0, t0), (x, t))p dxdt

)1/p

≤ ε0

for any (x0, t0) ∈ ΩT and 0 < r < r0, then u ∈ W 2,p(ΩT ) with the global
W 2,p-estimate

||u||W 2,p(ΩT ) ≤ C(||u||L∞(ΩT ) + ||f ||Lp(ΩT ))

for some C depending only on n, p, λ,Λ, δ0, b, c, r0, ||β||C2(ST ), T and diam(Ω).

3.2.2 Auxiliary results

We present some geometric and analytic tools which will be used in this
section.

We first introduce a parabolic Calderón-Zygmund decomposition. The
following definition and lemma can be found in [31].
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Definition 3.2.3. Given m ∈ N, and a dyadic cube K of Q, the set Km

is obtained by stacking m copies of its predecessor K. More precisely, if the
predecessor K has the form L× (a, b), then Km

= L× (b, b+m(b− a)).

Lemma 3.2.4 (Calderón-Zygmund decomposition). [31] Let m ∈ N. Con-
sider two subsets A and B of a cube Q. Assume that |A| ≤ δ|Q| for some
δ ∈ (0, 1). Assume also the following: for any dyadic cube K ⊂ Q,

|K ∩ A| > δ|K| ⇒ K
m ⊂ B.

Then |A| ≤ m+1
m
δ|B|.

The following properties are parabolic counterparts of Proposition 3.1.4
and 3.1.5, which can be found in [75].

Proposition 3.2.5 (Strong (p, p)-estimate). Let f be a locally integrable
function in Rn × R and Ω be a bounded domain in Rn × R. The maximal
operator M is defined as follows:

M(f)(x, t) = sup
ρ>0

∫
Qρ(x,t)

|f(x, t)|dxdt.

Then
||M(f)||Lp(Ω) ≤ C(n, p)||f ||Lp(Ω),

whenever f ∈ Lp(Ω) for 1 < p <∞.

Proposition 3.2.6. Let f be a nonnegative and measurable function in a
domain Ω ⊂ Rn × R and µf be its distribution function, that is,

µf (λ) = |{(x, t) ∈ Ω : f(x, t) > λ}| for λ > 0.

Let η > 0 and M > 1 be given constants. Then, for 0 < p <∞,

f ∈ Lp(Ω) ⇐⇒
∑
k≥1

Mpkµf (ηM
k) =: S <∞

and
C−1S ≤ ||f ||pLp(Ω) ≤ C(|Ω|+ S),

where C is a universal constant.
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Next we focus on parabolic Hessian estimates. In [75], we can find the
following interior and boundary estimates with slight modifications.

Lemma 3.2.7. [75] Let u ∈ S(f) in Ω× (0, 1] for some domain Ω ∈ Rn. If
||u||L∞(Ω1) ≤ 1, then for any Ω′ ⊂⊂ Ω and τ 6= 1,

|As(u,Ω× (0, 1]) ∩ (Ω′ × (0, τ ])|

≤ C(n, λ,Λ,Ω, τ, d(Ω′, ∂Ω))
(1 + ||f ||Ln+1(Ω×(0,1]))

µ

sµ
,

where µ is universal.

Lemma 3.2.8. [75] Let u ∈ S(f) in Ω = Kn−1
4 × (0, 2) × (0, 2]. Suppose

||u||L∞(Ω) ≤ 1. Then

|As(u,Ω) ∩ (Kn−1
2 × (0, 1)× (0, 1])| ≤ C(n, λ,Λ)

(1 + ||f ||Ln+1(Ω))
µ

sµ
.

By using scaling argument, we can derive the next lemma as a direct
consequence of the above results.

Lemma 3.2.9. Let Ω = B+
12
√
n
× (0, 13], 0 < r ≤ 1, and (x0, t0) ∈ T12

√
n ×

(0, 13] such that rΩ(x0, t0) = B+
12r
√
n
× (t0, t0 + 13r2] ⊂ Ω. Assume that

u ∈ S(f) in rΩ(x0, t0), u ∈ C(Ω) and ||u||L∞(Ω) ≤ 1.
Then there exist universal constants M > 1 and 0 < σ < 1 such that if(∫

rΩ(x0,t0)

|f(x, t)|n+1dxdt

) 1
n+1

≤ 1,

then we have

|GM(u,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))|

|Kn−1
r × (0, r)× (0, r2)|

≥ 1− σ, (3.2.3)

whenever (x1, t1) ∈ (B9
√
n(x0) ∩ {xn ≥ 0})× [t0, t0 + 10r2].

Proof. Fix 0 < σ < 1. If t0 ≤ 15 − 5σr2, we can choose a large constant M
satisfying (3.2.3) by Lemma 3.2.7 and 3.2.8.

Consider the case t0 > 15− 5σr2. Observe that

|At(u,ΩT ) ∩ ((Kn−1
r × (0, r)× (0, r2) + (x0, t0)|
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≤
∣∣∣∣At(u,ΩT ) ∩ ((Kn−1

1 × (0, 1)×
(
t0 − 1, T − σ

2

]
+ (x0, 0))

∣∣∣∣
+

∣∣∣∣(Kn−1
1 × (0, 1)×

(
T − σ

2
, t0

)
+ (x0, 0))

∣∣∣∣
≤ C(n, λ,Λ, σ)t−µ +

σ

2
.

Then we can obtain the desired result by choosing M sufficiently large such
that

C(n, λ,Λ, σ)M−µ ≤ σ

2
,

and it gives the desired result.

The next lemma shows that if there is a point with opening 1, then the
density of ‘good sector’ is guaranteed large enough.

Lemma 3.2.10. Under the same hypotheses as in Lemma 3.2.9, we further
assume that u ∈ S∗(f) in rΩ(x0, t0), u ∈ C(Ω), and

G1(u,Ω) ∩ (Kn−1
3r × (0, 3r)× (r2, 10r2) + (x̃1, t̃1)) 6= ∅

for some (x̃1, t̃1) ∈ (B9r
√
n(x0) ∩ {xn ≥ 0})× [t0, t0 + 5r2].

Then there exist universal constants M > 1 and 0 < σ < 1 such that if(∫
rΩ(x0,t0)

|f(x, t)|n+1dxdt

) 1
n+1

≤ 1,

then we have

|GM(u,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))|

|Kn−1
r × (0, r)× (0, r2)|

≥ 1− σ

for any (x1, t1) ∈ (B9r
√
n(x0) ∩ {xn ≥ 0}) ∩ [t0, t̃1].

Proof. Let (x2, t2) ∈ G1(u,Ω)∩ (Kn−1
3r × (0, 3r)× (r2, 10r2)+(x̃1, t̃1)). By the

definition of G1, we have paraboloids with opening 1 touching u at (x2, t2)
from above and below. Then we can find a linear function (on x) L such that

|u(x, t)− L(x)| ≤ 1

2
(|x− x2|2 − (t− t2)).
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Define v(x, t) = (u(x, t)−L(x))/C where C = C(n) is a constant so that

||v||L∞(B+
12r
√
n

(x0)×(t0,t2)) ≤ 1

and

|v(x, t)| ≤ |x|2 + t2 − t in (B+
12
√
n
\B+

12r
√
n
(x0))× (0, t2). (3.2.4)

Now we can see that v ∈ S∗(f/C) in B+
12r
√
n
× [t0, t2). Then we have

|GM(v,B+
12r
√
n
× (t0, t1)) ∩ (Kn−1

r × (0, r)× (0, r2) + (x1, t1))|
|Kn−1

r × (0, r)× (0, r2)|
≥ 1− σ.

by Lemma 3.2.9.
Combining the above estimate with (3.2.4), we observe that

|GN(v,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))|

|Kn−1
r × (0, r)× (0, r2)|

≥ 1− σ

for some N ≥M . We also deduce that

GM(v,Ω) = GMC(n)(u,Ω),

and this completes the proof.

Using the Calderón-Zygmund decomposition, Lemma 3.2.4, we can prove
the following result.

Lemma 3.2.11. Under the same hypotheses as in Lemma 3.2.9, we further
assume that u ∈ S(f) in rΩ(x0, t0), u ∈ C(Ω), ||u||L∞(Ω) ≤ 1 and(∫

rΩ(x0,t0)

|f(x, t)|n+1dxdt

) 1
n+1

≤ 1.

Extend f by zero outside rΩ(x0, t0) and define

A := AMk+1(u,Ω) ∩ (Kn−1
r × (0, r)× (t1, t1 + r2)),

B :=(AMk(u,Ω) ∩ (Kn−1
r × (0, r)× (t1, t1 + r2))
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∪ {(x, t) ∈ Kn−1
r × (0, r)times(t0, t0 + r2) : M(|f |n+1)(x, t) ≥ (c0M

k)n+1}

for any k ∈ N0 and t1 ∈ [t0, t0 + 5r2].
Then |A| ≤ 2σ|B|, where c0 = c0(n), 0 < σ < 1 and M > 1 are universal.

Proof. By the definition of A and B, we know that

A ⊂ B ⊂ Kn−1
r × (0, r)× (t1, t1 + r2).

We also have |A| ≤ σ|Kn−1
r × (0, r) × (t1, t1 + r2)| from Lemma 3.2.9. Now

we prove that for any dyadic cube K ⊂ Q,

|K ∩ A| > σ|K| implies K
m ⊂ B

for some m ∈ N.
Let

K = (Kn−1
r/2i
× (0, r/2i)× (0, r2/22i) + (x2, t2)

be a dyadic cube with its predecessor

K̃ = (Kn−1
r/2i−1 × (0, r/2i−1)× (0, r2/22(i−1)) + (x̃2, t̃2)

for some i ≥ 1. Suppose that K satisfies |K ∩ A| > σ|K| but Km 6⊂ B for
any m. Then there is a point (x3, t3) ∈ K1\B, that is,

(x3, t3) ∈ K1 ∩GMk(u,Ω) and M(|f |n+1)(x3, t3) < (c0M
k)n+1.

Now we define a transformation T by

T (y, s) = (x̃2 + 2−iy, t̃2 + 2−2is),

and set ũ(y, s) = 22iM−ku(T (y, s)) and f̃(y, s) = M−kf(T (y, s)). Since K1 ⊂
Kn−1
r × (0, r)× (t1, t1 + r2), we can observe that

(r/2i)Ω(x̃2, t̃2) ⊂ rΩ(x1, t1)

and ũ ∈ S∗(f̃) in rΩ(0, 0). We also see that |x̃2 − x3| < 2−(i−1)r and thus
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B+
12r
√
n/2i

(x̃2) ⊂ Kn
28r
√
n/2i

(x3). Now we have the following estimate

(∫
rΩ(0,0)

|f̃(x, t)|n+1dxdt

) 1
n+1

≤ c0C(n) ≤ 1

by direct calculations. Note that we chose some sufficiently small c0 in order
to obtain the last inequality.

On the other hand, since (x3, t3) ∈ K1 ∩GMk(u,Ω), we have

G1(ũ, T−1Ω) ∩ (Kn−1
3r × (0, 3r)× (4r2, 13r2)) 6= ∅

and then the hypothesis of Lemma 3.2.10 is satisfied in Ω. Since x2,n ≥ x̃2,n,
t2,n ≥ t̃2,n and |x2 − x̃2| ≤ r

√
n/2i, we have

(2i(x2 − x̃2, 2
2i(t2 − t̃2)) ∈ (B9r

√
n ∩ {xn ≥ 0})× [0, 3r2].

Thus, we get the following quantity

|GM(ũ, T−1Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (2i(x2 − x̃2), 22i(t2 − t̃2)))|
|Kn−1

r × (0, r)× (0, r2)|

is less than 1− σ. From this estimate, we have

|GMk+1(u,Ω) ∩K| ≥ (1− σ)|K|,

and it contradicts our assumption. Therefore, we can conclude the proof.

Finally, we get the estimate for the density of ‘bad sector’.

Corollary 3.2.12. Under the same hypotheses as in Lemma 3.2.9, we further
assume that u ∈ S∗(f) in rΩ(x0, t0), u ∈ C(Ω), and ||u||L∞(Ω) ≤ 1. Then
there exist universal constants C and µ such that if(∫

rΩ(x0,t0)

|f(x, t)|n+1dxdt

) 1
n+1

≤ 1,

then we have

|As(u,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))|

|Kn−1
r × (0, r)× (0, r2)|

≤ Cs−µ
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for any (x1, t1) ∈ (B9r
√
n(x0) ∩ {xn ≥ 0})× [t0, t0 + 5r2].

Proof. Without loss of generality, we can assume that (x0, t0) = (0, 0). Let

αk =
|AMk(u,Ω) ∩ (Kn−1

r × (0, r)× (t1, t1 + r2))|
|Kn−1

r × (0, r)× (t1, t1 + r2)|
,

βk=
|{(x, t) ∈ Kn−1

r × (0, r)× (t0, t0 + r2) : M(|f |n+1)(x, t) ≥ (c0M
k)n+1}|

|Kn−1
r × (0, r)× (t1, t1 + r2)|

.

By Lemma 3.2.11, we have αk+1 ≤ 2σ(αk + βk) for any k ≥ 0. Then it can
be derived directly that

αk ≤ (2σ)k +
k−1∑
i=0

(2σ)k−iβi.

On the other hand, we can also obtain

βi ≤ C(c0M
i)−(n+1) ||f ||

n+1
Ln+1

rn+2
≤ CM−(n+1)i

by using Proposition 3.2.5. Thus, we can observe that

αk ≤ (2σ)k + C
k−1∑
i=0

(2σ)k−iM−(n+1)i ≤ (1 + Ck) max{2σ,M−(n+1)}k,

and the right-hand side is estimated by C(n)M−µk for some sufficiently small
µ. We now finish the proof.

3.2.3 Boundary W 2,p-estimates

As in the previous section, we first consider W 2,p-regularity for the following
problem {

F (D2u, x, t)− ut = f in Q+
1 ,

β ·Du = 0 on Q∗1.
(3.2.5)

in order to obtain the desired regularity results.

53



CHAPTER 3. REGULARITY FOR OBLIQUE DERIVATIVE
PROBLEMS

We are interested in the case when F is slightly perturbed in x and t from{
F (D2u)− ut = f in Q+

1 ,
β ·Du = 0 on Q∗1.

(3.2.6)

If a solution of the model equation is regular enough to have C1,1-regularity,
we can expect that the solution of (3.2.5) enjoys the requiredW 2,p-regularity.

The following is the main theorem of this subsection.

Theorem 3.2.13. Let u be a viscosity solution of (3.2.5) where F (X, x, t)
is uniformly elliptic with λ and Λ, convex in X, continuous in X, x and
t and F (0, x, t) = 0, β ∈ C2(Q

∗
1) with β · n ≥ δ0 for some δ0 > 0, and

f ∈ Lp(Q+
1 )∩C(Q+

1 ) for n+1 < p <∞. Then there exist ε0 and C depending
on n, p, λ,Λ, δ0 and ||β||C2(Q

∗
1) such that

(∫
Br(x0,t0)∩Q+

1

ψ((x0, t0), (x, t))n+1 dxdt

) 1
n+1

≤ ε0

for any (x0, t0) ∈ Q+
1 and r > 0 implies u ∈ W 2,p(Q+

1
2

), and we have the
estimate

||u||W 2,p(Q+
1
2

) ≤ C(||u||L∞(Q+
1 ) + ||f ||Lp(Q+

1 )). (3.2.7)

To prove Theorem 3.2.13, we use C1,1-regularity results for solutions of
(3.2.6), which is indeed, there are results for this problem proved in [16]. We
refer to a series of lemmas, Lemma 3.2.14 - 3.2.16, from [16] to present their
modifications as follows.

Lemma 3.2.14. Let f ∈ C(Q
+

1 ), g ∈ C(Q
∗
1), and u ∈ C(Q

+

1 ) satisfy{
u ∈ S∗(λ,Λ, f) in Q+

1 ,
β ·Du = g on Q∗1.

(3.2.8)

Suppose that there exists ξ ∈ Q∗1 such that β · ξ ≥ δ0. Then

||u||L∞(Q+
1 ) ≤ ||u||L∞(∂pQ

+
1 \Q∗1) + C(||g||L∞(Q∗1) + ||f ||Ln+1(Q+

1 ))

where C only depends on n, λ,Λ and δ0.
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Lemma 3.2.15. Let f ∈ C(Q
+

1 ), g ∈ C(Q
∗
1), and u ∈ C(Q

+

1 ) satisfy{
u ∈ S∗(λ,Λ, f) in Q+

1 ,
β ·Du = g on Q∗1.

(3.2.9)

Then u ∈ C0,α(Q+
1
2

) and

||u||
C0,α(Q

+
1
2

)
≤ C(||u||L∞(Q+

1 ) + ||f ||Ln+1(Q+
1 ) + ||g||L∞(Q∗1))

where 0 < α < 1 and C > 1 depend only on n, λ,Λ and δ0.

Lemma 3.2.16. Let F be convex, u ∈ C(Q+
1 ∪Q∗1) be a viscosity solution of{

F (D2u)− ut = f in Q+
1 ,

β ·Du = g on Q∗1,
(3.2.10)

and 0 < α < α̃, where 0 < α̃ < 1 is a constant depending only on n, λ,Λ and
δ0. Suppose that β, g ∈ C1,α(Q

∗
1) and f ∈ C0,α(Q

+

1 ). Then u ∈ C2,α(Q
+

1/4)
and

||u||
C2,α(Q

+
1/4)
≤ C(||u||L∞(Q+

1 ) + ||f ||
C0,α(Q

+
1 )

+ ||g||C1,α(Q
∗
1
2

))

where C only depends on n, λ,Λ, δ0, α and ||β||C1,α(Q
∗
1
2

).

Remark 3.2.17. Lemma 3.2.14 and 3.2.15 still hold if S∗(λ,Λ, f) is replaced
with S∗(λ,Λ, b, f), since b only influences the dependency of constant C.

Next we state and prove the following global Hölder estimate for model
problems which will be used later in Lemma 3.2.21.

Lemma 3.2.18. Let u ∈ C(V
+

1,h0
) be a viscosity solution of

F (D2u)− ut = 0 in V +
1,h0

,
β ·Du = 0 on Q∗1,
u = ϕ on ∂pV +

1,h0
\Q∗1,

(3.2.11)

where β ∈ C2(Q
∗
1), ϕ ∈ C0,α(∂pV

+
1,h0
\Q∗1) for some 0 < α < 1 and h0 > 0 is

sufficiently small with

β(x, t) · n(y) < 0 for any (x, t) ∈ Q∗1 and y ∈ ∂B+
1,h0
\T1. (3.2.12)
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Then u ∈ C0,α
2 (V

+

1,h0
) and

||u||
C0, α2 (V

+
1,h0

)
≤ C||ϕ||C0,α(∂pV

+
1,h0
\Q∗1),

where C only depends on n, λ,Λ and δ0.

To prove the above lemma, we need the following one which can be shown
by using the results of [17, Theorem 7] and [34, Lemma 4.1, Lemma 4.3] and
the arguments in the proof of [42, Theorem 3.1]. For Neumann problems, see
[16, Proposition 11].

Lemma 3.2.19. Let Ω ⊂ Rn be bounded, T > 0, β ∈ C2(Γ) with Γ ⊂ ΩT ,
and u, v satisfy {

F (D2u)− ut ≥ f1 in ΩT ,
β ·Du ≥ g1 on Γ,

and {
F (D2v)− vt ≤ f2 in ΩT ,
β ·Dv ≤ g2 on Γ

in the viscosity sense, respectively. Then{
u− v ∈ S(λ/n,Λ, f1 − f2) in ΩT ,
β ·D(u− v) ≥ g1 − g2 on Γ.

Proof of Lemma 3.2.18. For each (x1, t1) ∈ ∂pV +
1,h0
\Q∗1, consider

w1(x, t) = ϕ(x1, t1) + ||ϕ||C0,α(∂pV
+
1,h0
\Q∗1)Ψ(x, t)

and
w2(x, t) = ϕ(x1, t1)− ||ϕ||C0,α(∂pV

+
1,h0
\Q∗1)Ψ(x, t),

where
Ψ(x, t) := K1((n(x1, t1) · (x− x1) +K2(t1 − t))

α
2 ),

K1 > 0 only depends on n, λ,Λ, δ0 and K2 = (
√

1 + λ/2n− 1)/2.
Then we can check that{

F (D2Ψ)−Ψt ≤ 0 in V +
1,h0

,
β ·DΨ ≤ 0 on Q∗1.
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Since u is a viscosity solution of (3.2.11), we can observe that
u− w1 ∈ S(λ/n,Λ, 0) in V +

1,h0
,

β ·D(u− w1) ≥ 0 on Q∗1.
u− w1 ≤ 0 on ∂pV +

1,h0
\Q∗1

and 
u− w2 ∈ S(λ/n,Λ, 0) in V +

1,h0
,

β ·D(u− w2) ≤ 0 on Q∗1.
u− w2 ≥ 0 on ∂pV +

1,h0
\Q∗1

from Lemma 3.2.19. Then by ABP maximum principle, we have w2 ≤ u ≤ w1.
This implies

|u(x, t)−ϕ(x1, t1)| ≤ ||ϕ||C0,α(∂pV
+
1,h0
\Q∗1)Ψ(x, t)

≤ K1||ϕ||C0,α(∂pV
+
1,h0
\Q∗1)(n(x1, t1) · (x− x1) +K2(t1 − t))

α
2

≤ C||ϕ||C0,α(∂pV
+
1,h0
\Q∗1)(|x− x1|

α
2 + |t− t1|

α
4 )

for some constant C depending on n, λ,Λ and δ0. This implies boundary
Hölder regularity. Now we can complete the proof by combining this estimate
with Lemma 3.2.15.
Remark 3.2.20. We have assumed that β ∈ C2(Γ) in Lemma 3.2.18 and
3.2.19, as [34, Lemma 4.1, Lemma 4.3] hold under this assumption.

We now fix h0 = h0(n, δ0) > 0 given in Lemma 3.2.18.
Lemma 3.2.16 and Lemma 3.2.18 enable us to prove a useful approxima-

tion lemma below.
Lemma 3.2.21. Let 0 < ε < 1 and u be a viscosity solution of (3.2.5).
Assume that ||u||L∞(V +

1,h0
) ≤ 1 and ||ψ((·, ·), (0, 0))||Ln+1(V +

1,h0
) ≤ ε. Then, there

exists a function h ∈ C2(V
+
3
4
, 3
4
h0

) such that u− h ∈ S(ϕ), ||h||
C2(V

+
3
4 ,

3
4h0

)
≤ C

and

||u− h||L∞(V +
3
4 ,

3
4h0

) + ||ϕ||Ln+1(V +
3
4 ,

3
4h0

) ≤ C(εγ + ||f ||Ln+1(V +
1,h0

))

for some 0 < γ = γ(n, λ,Λ, δ0) < 1 and C = C(n, λ,Λ, δ0, ||β||C2(Q
∗
1)). Here,

ϕ(x, t) = f(x, t)− F (D2h(x, t), x, t) + F (D2h(x, t), 0, 0).
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Proof. Let h be a solution of
F (D2h, 0, 0)− ht = 0 in V +

7
8
, 7
8
h0
,

h = u on ∂pV +
7
8
, 7
8
h0
\Q∗7

8

,
β ·Dh = 0 on Q∗7

8

.
(3.2.13)

Applying Lemma 3.2.15 to u, we can obtain

||u||C0,α1 (V +
7
8 ,

7
8h0

) ≤ C(1 + ||f ||Ln+1(V +
1,h0

)) (3.2.14)

for some α1 = α1(n, λ,Λ, δ0) and C = C(n, λ,Λ, δ0). We also have

||h||L∞(V +
7
8 ,

7
8h0,δ

) + δ||Dh||L∞(V +
7
8 ,

7
8h0,δ

)

+ δ2(||ht||L∞(V +
7
8 ,

7
8h0,δ

) + ||D2h||L∞(V +
7
8 ,

7
8h0,δ

)) ≤ C,

where C is a constant depending on n, λ,Λ, δ0 and ||β||C2(Q
∗
1)) by means of

Lemma 3.2.16 with scaling.
We set w = u− h. Then, w satisfies

w ∈ S(λ/n,Λ, ϕ) in V +
7
8
, 7
8
h0
,

w = 0 on ∂pV +
7
8
, 7
8
h0
\Q∗7

8

,
β ·Dw = 0 on Q∗7

8

.
(3.2.15)

Apply Lemma 3.2.8 to w, we get

||w||L∞(V +
7
8 ,

7
8h0,δ

) ≤ C(||ϕ||Ln+1(V +
7
8 ,

7
8h0,δ

) + ||w||L∞(∂pV
+
7
8 ,

7
8h0,δ

\Q∗7
8

))

≤ C(||f ||Ln+1(V +
7
8 ,

7
8h0,δ

) + ||F (D2h, ·, ·)− F (D2, 0, 0)||Ln+1(V +
7
8 ,

7
8h0,δ

)

+ ||w||L∞(∂pV
+
7
8 ,

7
8h0,δ

\Q∗7
8

))

for some C = C(n, λ,Λ, δ0). Observe that

||F (D2h, ·, ·)−F (D2h, 0, 0)||Ln+1(V +
7
8 ,

7
8h0,δ

)

≤ ||ψ((·, ·), (0, 0))||Ln+1(V +
7
8 ,

7
8h0,δ

)||D
2h||L∞(V +

7
8 ,

7
8h0,δ

)
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≤ Cδ−2ε,

where C = C(n, λ,Λ, δ0, ||β||C2(Q
∗
1)). We have used h ∈ C2(V

+
7
8
, 7
8
h0

) in the
first inequality.

Meanwhile, we can see that w ≡ 0 on ∂pV +
7
8
, 7
8
h0
\Q∗7

8

and u ∈ C0,α1(V +
7
8
, 7
8
h0

).
Then we also obtain a global Hölder regularity for h by combining Lemma
3.2.18 with (3.2.14). Now we get

||w||L∞(∂pV
+
7
8 ,

7
8h0,δ

\Q∗7
8

) ≤ Cδα2(1 + ||f ||Ln+1(V +
1,h0

))

for some α2 ∈ (0, α1) and C = C(n, λ,Λ, δ0). Thus, if we put γ = δ
α2

2+α2 ,

||w||L∞(∂pV
+
7
8 ,

7
8h0,δ

) ≤ C{||f ||Ln+1(V +
1,h0

) + δ−2ε+ δα2(1 + ||f ||Ln+1(V +
1,h0

))}

≤ C(εγ + ||f ||Ln+1(V +
1,h0

))

for some constant C depending only on n, λ,Λ, δ0 and ||β||C2(Q∗1). This com-
pletes the proof.

The following lemmas give us useful information about solutions of (3.2.5)
in the viscosity sense.

Lemma 3.2.22. Let 0 < ε0 < 1, Ω = B+

14
√
nh−1

1 ,14
√
n
× (0, 15], r ≤ 1, and u

be a viscosity solution of{
F (D2u, x, t)− ut = f in Ω,
β ·Du = 0 on S := T14

√
nh−1

1
× (0, 15], (3.2.16)

where h1 = h1(n, δ0) is a small constant satisfying (3.2.12) for any (x, t) ∈
S and y ∈ ∂B+

14
√
nh−1

1 ,14
√
n
\T14

√
nh−1

1
. Consider a point (x0, t0) ∈ S with

rΩ(x0, t0) ⊂ Ω. Assume that(∫
rΩ(x0,t0)

|f(x, t)|n+1dxdt

) 1
n+1

+

(∫
rΩ(x0,t0)

|ψ((x, t), (x0, t0))|n+1dxdt

) 1
n+1

≤ ε

for some ε < 1 depending on n, ε0, λ,Λ, δ0 and ||β||C2(Q∗
14
√
nh−1

1

). Then,

G1(u,Ω) ∩ (Kn−1
3r × (0, 3r)× (r2, 10r2) + (x̃1, t̃1)) 6= ∅ (3.2.17)
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for some (x̃1, t̃1) ∈ (B+

9r
√
nh−1

1 ,9r
√
n
(x0)∪T9r

√
n(x0))× [t0 +2r2, t0 +5r2] implies

|GM(u,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))

|Kn−1
r × (0, r)× (0, r2)|

≥ 1− ε0,

where (x1, t1) ∈ (B+

9r
√
nh−1

1 ,9r
√
n
(x0) ∪ T9r

√
n(x0)) × [t0 + 2r2, t̃1] and M is a

constant depending only on n, λ,Λ, δ0 and ||β||C2(Q∗
14
√
nh−1

1

).

Proof. From (3.2.17), there exists a point (x2, t2) such that

(x2, t2) ∈ G1(u,Ω) ∩ (Kn−1
3r × (0, 3r)× (r2, 10r2) + (x̃1, t̃1)).

By the definition of G1, we can find a linear function L such that

|u(x, t)− L(x)| ≤ 1

2
(|x− x2|2 − (t− t2))

for any (x, t) ∈ B+

14
√
nh−1

1 ,14
√
n
× (0, t2). Let ũ(x, t) = (u(x, t) − L(x))/C(n)

with ũ satisfying ||ũ||L∞(B+

14r
√
nh−1

1 ,14r
√
n

(x0)×(t0,t2)) ≤ 1 and

|ũ(x, t)| ≤ |x|2 − (t− t2) in (B+

14
√
nh−1

1 ,14
√
n
\B+

14r
√
nh−1

1 ,14r
√
n
(x0))× [0, t2].

Here we can check that

||L||C1(B+

14r
√
nh−1

1 ,14r
√
n

(x0)×[0,t2]) ≤ C(n) + ||u||L∞(Ω),

and thus |DL| is uniformly bounded and depending only on n and ||u||L∞(Ω)

in this case.
Next we define F̃ (D2ũ, x, t) = F (CD2ũ, x, t)/C(n), f̃(x, t) = f(x, t)/C(n).

We see that the elliptic constants of F and F̃ are the same and ũ is a viscosity
solution of {

F̃ (D2ũ, x, t)− ũt = f̃ in rΩ(x0, t0),
β ·Dũ = −β ·DL/C(n) on rS(x0, t0).

(3.2.18)

Set Ω′ = B+

14
√
nh−1

1 ,14
√
nh1
× (1, 15], Ω′′ = B+

13
√
nh−1

1 ,13
√
n
× (2, 15] and S ′ =

T+
14
√
n
×(1, 15]. We also write Ω′δ = B+

(14−δ)
√
nh−1

1 ,(14−δ)
√
n
×(1+δ2, 15]. Consider
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a function h̃ ∈ C(rΩ′(x0, t0)) which solves
F̃ (D2h̃, 0, 0)− h̃t = 0 in rΩ′(x0, t0),
h̃ = ũ on ∂p(rΩ′(x0, t0))\rS ′(x0, t0),
β ·Dh̃ = −β ·DL/C(n) on rS ′(x0, t0)

(3.2.19)

in the viscosity sense. Since β ∈ C2(rS(x0, t0)) and DL is a constant vector,
β ·DL ∈ C2(rS(x0, t0)). Then we can derive that

||ũ||C(rΩ′(x0,t0)) + r[ũ]C0,α1 (rΩ′(x0,t0))

≤ C(1 + r
n
n+1 ||f ||Ln+1(rΩ(x0,t0)) + r||β ·DL||L∞(rΩ(x0,t0)))

for some α1 = α1(n, λ,Λ, δ0) ∈ (0, 1) and C = C(n, λ,Λ, δ0) > 0 by Lemma
3.2.15. On the other hand, applying Lemma 3.2.14 and 3.2.16 to h̃, we also
have

||h̃||C(r(Ω′δ)(x0,t0)) + rδ||Dh̃||C(r(Ω′δ)(x0,t0))

+ (rδ)2(||h̃t||C(r(Ω′δ)(x0,t0)) + ||D2h̃||C(r(Ω′δ)(x0,t0)))

≤ C(||h̃||L∞(rΩ′(x0,t0)) + r||β ·DL||C(rS(x0,t0)) + r2||Dβ ⊗DL||C(rS(x0,t0))

+ r2+α[Dβ ⊗DL]C0,α(rS(x0,t0)))

for any α ∈ (0, 1) and some C depending only on n, λ,Λ, δ0 and ||β||C2(rS(x0,t0)).
Next, we observe that

||β ·DL||C(rS(x0,t0)) + r||Dβ ⊗DL||C(rS(x0,t0)) + r1+α[Dβ ⊗DL]C0,α(rS(x0,t0)))

≤ C(n, ||β||C2(rS(x0,t0)))

and

||h̃||L∞(r(Ω′δ)(x0,t0))

≤ ||h̃||L∞(∂p(r(Ω′δ)(x0,t0)))\rS′(x0,t0)) + C(n, λ,Λ, δ0)r||β ·DL||L∞(rS(x0,t0))

≤ ||ũ||L∞(∂p(rΩ′(x0,t0))\rS′(x0,t0)) + C(n, λ,Λ, δ0, ||β||C2(rS(x0,t0)))r

+ C(n, λ,Λ, δ0)(1 + r
n
n+1 ||f ||Ln+1(rΩ(x0,t0)) + r||DL||L∞(rΩ(x0,t0)))δ

α2

≤ C(n, λ,Λ, δ0, ||β||C2(rS(x0,t0)))

for any 0 < δ < 2 and some α2 ∈ (0, α1). We have used a similar argument
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for the second inequality in the proof of Lemma 3.2.21. Hence, we get

||D2h̃||L∞(r(Ω′δ)(x0,t0))) + ||h̃t||L∞(r(Ω′δ)(x0,t0)))

≤ δ−2C(n, λ,Λ, δ0, ||β||C2(rS(x0,t0)))

for any 0 < δ < 2 and therefore

||D2h̃||L∞(rΩ′′(x0,t0)) + ||h̃t||L∞(rΩ′′(x0,t0)) ≤ C(n, λ,Λ, δ0, ||β||C2(rS(x0,t0))).

Then the above estimate leads to

AN(h̃, rΩ′′(x0, t0)) ∩ (Qn−1
r × (0, r)× (0, r2) + (x1, t1)) = ∅

for any (x1, t1) ∈ (B9r
√
n ∩ {xn ≥ 0}) × [t0 + 2r2, t̃1] and a sufficiently large

N = N(n, λ,Λ, δ0, ||β||C2(rS(x0,t0))).
Extend h̃|rΩ′′(x0,t0) to H with the property that H is continuous in Ωt2 ,

where
Σs := {(x, t) ∈ Σ : t ≤ s} for Σ ∈ Rn × R,

H = ũ in Ωt2\(rΩ′(x0, t0))t2 , and

||ũ−H||L∞(Ωt2 ) = ||ũ− h̃||L∞((rΩ′′(x0,t0))t2 ).

Then we have

||ũ−H||L∞(Ωt2 ) ≤ ||ũ||L∞((rΩ′′(x0,t0))t2 ) + ||h̃||L∞((rΩ′′(x0,t0))t2 ) ≤ C0

for some C0 = C0(n, λ,Λ, δ0, ||β||C2(rS(x0,t0))). From this, we see that

|H(x, t)| ≤ C0 + |x|2 − (t− t2) in Ωt2\(rΩ′′(x0, t0))t2 .

It can be obtained directly that

AM0(H,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1)) = ∅

for some M0 ≥ N .
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Define w = ũ−H. Then w satisfies w ∈ S(λ/n,Λ, f̃ − F̃ (D2h̃, ·, ·) + h̃t) in rΩ′(x0, t0),
w = 0 on ∂p(rΩ′(x0, t0))t2\(rS ′(x0, t0))t2 ,
β ·Dw = 0 on rS ′(x0, t0).

(3.2.20)

From Lemma 3.2.14, we can derive

||w||L∞(Ωt2 ) = ||w||L∞((rΩ′′(x0,t0))t2)
≤ C(εγ + ||f ||Ln+1(rΩ(x0,t0))) ≤ Cεγ

for some γ ∈ (0, 1) depending only on n, λ,Λ, δ0 and C > 1 which also
depends on ||β||C2(rS(x0,t0)).

Now write w̃ = w/Cεγ. Since w̃ satisfies the assumptions of Corollary
3.2.12, it holds that

|As(w̃,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))|

|Kn−1
r × (0, r)× (0, r2)|

≤ Cs−µ.

We also check that

A2M0(ũ,Ω) ⊂ AM0(w,Ω) ∪ AM0(H,Ω),

AM0(H,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1)) = ∅.

This implies

|A2M0(ũ,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))|

≤ |AM0(w,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))|

= |AM0/Cεγ (w̃,Ω) ∩ (Kn−1
r × (0, r)× (0, r2) + (x1, t1))|

≤ C(M0/Cε
γ)−µ|Kn−1

r × (0, r)× (0, r2)|
≤ ε0|Kn−1

r × (0, r)× (0, r2)|

for M = 2CM0 and a sufficiently small ε. Then we get the desired result.

Lemma 3.2.23. Let 0 < ε0 < 1, Ω = B+

14
√
nh−1

1 ,14
√
n
× (0, 15], r ≤ 1, and u

be a viscosity solution of (3.2.16). Assume that ||u||L∞(rΩ(x0,t0)) ≤ 1 and(∫
rΩ(x0,t0)

|f(x, t)|n+1dxdt

) 1
n+1

≤ ε
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for some ε > 0 depending only on n, ε0, λ,Λ, δ0, ||β||C2(rS(x0,t0)).
Extend f to zero outside rΩ(x0, t0) and let(∫

Qr(x1,t1)∩rΩ(x0,t0)

ψ((x1, t1), (x, t))n+1 dxdt

) 1
n+1

≤ ε

for any (x1, t1) ∈ rΩ(x0, t0), r > 0. Then, for

A := AMk+1(u,Ω) ∩ (Kn−1
r × (0, r)× (t0 + 2r2, t0 + 3r2)),

B :=(AMk(u,Ω) ∩ (Kn−1
r × (0, r)× (t0 + 2r2, t0 + 3r2)) ∪

{(x, t)∈Kn−1
r ×(0, r)× (t0 + 2r2, t0 + 3r2):M(|f |n+1)(x, t)≥(c0M

k)n+1},

where k ∈ N0, M > 1 only depends on n, λ,Λ, δ0, ||β||C2(rS(x0,t0)) and c0 also
depends on ε0, we have

|A| ≤ 2ε0|B|.

Proof. First of all, we observe that

A ⊂ B ⊂ Kn−1
r × (0, r)× (t0 + 2r2, t0 + 3r2).

We also have B ( Kn−1
r × (0, r)× (t0 + 2r2, t0 + 3r2) by Lemma 3.2.10. Thus,

applying Lemma 3.2.22 to u, we obtain |A| ≤ 2ε0. Then we only need to
show that for any parabolic dyadic cube K and its predecessor K̃,

|A ∩K| > ε0|K| ⇒ K
1 ⊂ B

by means of Lemma 3.2.4.
We define

K = (Kn−1
r/2i
× (0, r/2i)× (0, r2/22i)) + (x1, t1)

and
K̃ = (Kn−1

r/2i−1 × (0, r/2i−1))× (0, r2/22(i−1))) + (x̃1, t̃1).

Suppose that |A ∩K| > ε0|K| and K
1 * B. There exists a point (x2, t2) ∈

K
1 ∩GMk(u,Ω) with M(|f |n+1)(x2, t2) < (c0M

k)n+1.
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First, assume that x1,n ≤ 8r
√
n/2i. Consider a linear transformation

T (y, s) = (x′1, 0, t
∗) + (2−iy, 2−2is),

where t∗ = t1 − 21−2ir2. Now we set

ũ(y, s) = 22iM−ku(T (y, s)),

β̃(y) = β(T (y, s)),

F̃ (X, y) = M−kF (MkX,T (y, s))

and
f̃(y) = M−kf(T (y, s)).

Then ũ is a viscosity solution of{
F̃ (D2ũ, y, s)− ũt = f̃ in rΩ(0, 0),
β̃ ·Dũ = 0 on rS(0, 0),

(3.2.21)

since (r/2i)Ω(x′1, 0, t
∗) ⊂ rΩ(x0, t0). Observe that β̃ ∈ C2(rS(0, 0)) and F̃

has the same elliptic constant of F . Let

ψF̃ ((y, s), (0, 0)) = ψF (T (y, s), (x′1, 0, t
∗)).

Then we also have ||ψF̃ ||Ln+1(rΩ′(0,0)) ≤ Cε for some C = C(n) > 0
In addition, we obtain

||f̃ ||Ln+1(rΩ(0,0)) =

(∫
rΩ(0,0)

|f̃(y, s)|n+1 dyds

) 1
n+1

≤ C(n)c0

≤ ε

by using Proposition 3.2.5 and choosing c0 small enough.
One the other hand, we have

T−1K
1 ∩G1(ũ, T−1(rΩ(0, 0))) 6= ∅

by the assumption K1 ∩ GMk(u,Ω) 6= ∅. And since |x1 − x̃1| < r
√
n/2i, we

observe that |T−1x̃1| < 9r
√
n. Consequently, applying Lemma 3.2.22 to ũ,
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we get
|T−1K ∩GM(ũ, T−1(rΩ(0, 0)))|

|T−1K|
≥ 1− ε0.

Then it follows immediately that

|K ∩GMk+1(u, rΩ(0, 0))|
|K|

≥ 1− ε0.

This leads to a contradiction.
Now we consider the interior case x1,n > 8r

√
n/2i. Observe that

Q8r
√
n/2i(x1 + ren/2

i+1, t1) ⊂ Q+

8r
√
nh−1

1 ,8r
√
n
(x0, t0)

in this case. Again, set T : Q8r
√
n → Q8r

√
n/2i(x1 + ren/2

i+1, t1) such that

T (y, s) =

(
x1 +

ren
2i+1

+
y

2i+1
, t1 +

s

22(i+1)

)
.

and we write
ũ(y, s) = 22(i+1)M−ku(T (y, s)),

F̃ (X, y, s) = M−kF (MkX,T (y, s))

and
f̃(y, s) = M−ku(T (y, s)).

We can check that ũ is a solution of

F̃ (D2ũ, y, s)− ũt = f̃(y, s) in Q8r
√
n

in the viscosity sense. Applying [75, Corollary 5.2] to ũ, we can also deduce
our desired result.

Proof of Theorem 3.2.13. We fix (x0, t0) ∈ Q+
2/3 ∪Q∗2/3. If (x0, t0) ∈ Q∗2/3, let

r be a fixed number in
(
0,min

{1−|x0|
14
√
n
h1,
√
− t0

15

})
and we set

K =
εr

n+2
n+1

εr−1||u||L∞(rΩ(x0,t0)) + ||f ||Ln+1(rΩ(x0,t0))

.

Here, Ω = B+

14
√
nh−1

1 ,14
√
n
× (0, 15] with h1 = h1(δ0) as in Lemma 3.2.22
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and ε = ε(n, ε0, λ,Λ, p, δ0, ||β||C2(Q
∗
1)) is a constant as in Lemma 3.2.22 with

ε0 ∈ (0, 1) to be chosen later.
Let

ũ(y, s) = Kr−2u(ry + x0, r
2s+ t0),

f̃(y, s) = Kf(ry + x0, r
2s+ t0),

β̃(y, s) = β(ry + x0, r
2s+ t0),

and
F̃ (X, y) = KF (K−1X, ry + x0, r

2s+ t0).

Then, ũ is a solution of{
F̃ (D2ũ, y, s)− ũt = f̃ in Ω,
β̃ ·Dũ = 0 on S := T+

14
√
nh−1

1

× (0, 15]
(3.2.22)

in the viscosity sense. It can be checked without difficulty that F and F̃ have
the same elliptic constants, β̃ ∈ C2(S), ||ũ||L∞(Ω) ≤ 1,

||ψF̃ ||Ln+1(Ω) ≤ C(n)ε0 ≤ ε,

||f̃ ||Ln+1(Ω) ≤ Kr−
n+2
n+1 ||f ||Ln+1(rΩ(x0,t0)) ≤ ε

for a sufficiently small ε0. Thus, the assumption of Lemma 3.2.23 is satisfied.
Set

αk = |AMk(u,Ω) ∩ (Kn−1
1 × (0, 1)× (2, 3))|,

βk = |{(x, t) ∈ Kn−1
1 × (0, 1)× (2, 3) : M(|f |n+1)(x, t) ≥ (c0M

k)n+1}|

and choose ε0 = 1/(4Mp). By direct calculation, we have

αk ≤ (2ε0)k +
k−1∑
i=0

(2ε0)k−iβi.

We also observe that

||M(|f |n+1)||
L

p
n+1
≤ C(n, p)
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by Proposition 3.2.5, and this implies

∞∑
i=0

Mpkαk ≤ C(n, p).

Using Proposition 3.2.6, we discover

||ũt||Lp(Q+
1
2

(0,− 1
8

)) + ||D2ũ||Lp(Q+
1
2

(0,− 1
8

)) ≤ C,

that is,

||ut||Lp(Q+
r/2

(x0,t0− r
2

8
))

+ ||D2u||
Lp(Q+

r/2
(x0,t0− r

2

8
))
≤C(||u||L∞(Q+

1 ) + ||f ||Lp(Q+
1 )),

where C = C(n, λ,Λ, p, r, δ0, ||β||C2(Q
∗
1)) > 0.

Besides, when (x0, t0) ∈ Q+
2/3, we can apply the results of interior esti-

mates, like as in [75, Theorem 5.6]. Combining the interior and boundary
estimates, we get

||ut||Lp(Q+
1
2

(0,− 1
8

)) + ||D2u||Lp(Q+
1
2

(0,− 1
8

)) ≤ C,

where C = C(n, λ,Λ, p, δ0, ||β||C2(Q
∗
1)) > 0.

We also need to establish proper regularity results in Q+
1
2

× [−1/8, 0). For
these estimates, we extend F and β such that our assumptions are satisfied.
Then we can obtain the estimate (3.2.7).

3.2.4 Boundary W 1,p-estimates

We have obtained W 2,p-regularity for solutions of (3.2.5) in the previous
subsection. Here, we extend this regularity to the case when the function F
also contains ingredients q and r.

Let u be a viscosity solution of the following problem{
F (D2u,Du, u, x, t)− ut = f in Q+

1 ,
β ·Du = 0 on Q∗1,

(3.2.23)
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and assume that this u also solves{
F (D2u, 0, 0, x, t)− ut = f̃ in Q+

1 ,
β ·Du = 0 on Q∗1

(3.2.24)

for some function f̃ in the viscosity sense.
By virtue of the structure condition (3.2.2). we have (3.1.17) like as in

the elliptic case. Thus, we need to obtain W 1,p-regularity for u in order to
reach our goal. The following theorem provides the type of estimates which
we want to derive.

Theorem 3.2.24. Let n+ 2 < p <∞. Assume that F satisfies the structure
condition (3.2.2) with F (0, 0, 0, x, t) = 0 and u be a viscosity solution of
(3.2.23) where f ∈ Lp(Q+

1 ) ∩ C(Q
+

1 ) and β ∈ C2(Q
∗
1). Then, there exists a

constant ε0 = ε0(n, λ,Λ, p, δ0, α) such that if(∫
Qr(x0,t0)∩Q+

1

ψ((x0, t0), (x, t))p dxdt

)1/p

≤ ε0

for any (x0, t0) ∈ Q+
1 and r ≤ r0 for some r0 > 0, then u ∈ C1,α(Q

+
1
2
) with

α = α(n, p, λ,Λ) ∈ (0, 1) and we have the estimate

||u||
C1,α(Q

+
1
2

)
≤ C(||u||L∞(Q+

1 ) + ||f ||Lp(Q+
1 )) (3.2.25)

for some C = C(n, λ,Λ, b, c, p, ||β||C2(Q
∗
1), r0).

Several steps are needed to prove the above theorem. We first establish
W 1,p-regularity for Dirichlet problems, Theorem 3.2.28. Next, we derive C1,α-
regularity on the flat boundary for the oblique boundary problem (3.2.23).
Comparison estimates like Lemma 3.2.26 and 3.2.29 will be utilized to obtain
these regularity results.

We now introduce a useful building block in this section. One can find its
proof in [18, Theorem 6.1].

Proposition 3.2.25. For k ∈ N, let Ωk ⊂ Ωk+1 be an increasing sequence of
domains in Rn×R and Ω := ∪k≥1Ωk. Let p > n+ 1 and F, Fk be continuous
and measurable in x and t, and satisfy structure condition (3.2.2). Assume
that f ∈ Lp(Ω), fk ∈ Lp(Ωk) and that uk ∈ C(Ωk) are viscosity subsolutions
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(supersolutions, respectively) of

Fk(D
2uk, Duk, uk, x, t)− (uk)t = fk in Ωk.

Suppose that uk → u locally uniformly in Ω and that for any cylinders
Qr(x0, t0) ⊂ Ω and ϕ ∈ C2(Qr(x0, t0)),

||(s− sk)+||Lp(Qr(x0,t0)) → 0
(
||(s− sk)−||Lp(Qr(x0,t0)) → 0

)
(3.2.26)

where
s(x, t) = F (D2ϕ,Dϕ, u, x, t)− f(x, t),

sk(x, t) = F (D2ϕk, Dϕk, uk, x, t)− fk(x, t).

Then u is a viscosity subsolution (supersolution) of

F (D2u,Du, u, x, t)− ut = f in Ω.

W 1,p-regularity for Dirichlet problems

Before proving Theorem 3.2.24, we need to establish W 1,p-regularity for
Dirichlet boundary problems. For the elliptic case, we refer to [78].

First we introduce a global Hölder estimate. This can be obtained by
using the interior regularity [75, Theorem 4.19] and the boundary regularity
[76, Theorem 2.5, Theorem 2.17].

Lemma 3.2.26. Let n + 1 < p <∞ and Ω ⊂ Rn be a C2-domain. Suppose
that u ∈ S∗(λ,Λ, b, f) in ΩT satisfies u = ϕ on ∂pΩT where f ∈ Lp(ΩT )
and ϕ ∈ C0,β(∂pΩT ) with β ∈ (0, 1). Then u ∈ C0,α(ΩT ) for some α =
α(n, λ,Λ, b, p, β) ∈ (0, 1) with the estimate

||u||C0,α(ΩT ) ≤ C(||u||L∞(ΩT ) + ||ϕ||C0,β(∂pΩT ) + ||f ||Ln+1(ΩT )) (3.2.27)

for some C = C(n, λ,Λ, b, p, T, diam(Ω)).

Then we can show the following compactness lemma. (See [78, Proposition
3.2] for the elliptic case)

Lemma 3.2.27. Let n+ 1 < p <∞ and 0 ≤ ν ≤ 1. Assume that F satisfies
(3.2.2) with F (0, 0, 0, x, t) ≡ 0. Then, for every ρ > 0, ϕ ∈ C0,γ(∂pQ

ν
1)

with ||ϕ||L∞(∂pQν1) ≤ C1 for some C1 > 0, there exists a positive number
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δ = δ(ρ, n, λ,Λ, p, γ, C1) < 1 such that if

||ψ((0, 0), (·, ·))||Lp(Qν1) + ||f ||Lp(Qν1) + b+ c ≤ δ,

then for any u and v solving{
F (D2u,Du, u, x, t)− ut = f in Qν

1,
u = ϕ on ∂pQν

1,

and {
F (D2v, 0, 0, 0, 0)− vt = 0 in Qν

1,
v = ϕ on ∂pQν

1,

in the viscosity sense, respectively, we have ||u− v||L∞(Qν1) ≤ ρ.

Proof. Suppose not. Then there exists ρ0 > 0 such that if uk and vk are
viscosity solutions to{

Fk(D
2uk, Duk, uk, x, t)− (uk)t = fk in Qνk

1 ,
uk = ϕk on ∂pQνk

1 ,

and {
Fk(D

2vk, 0, 0, 0, 0)− (vk)t = 0 in Qνk
1 ,

vk = ϕk on ∂pQνk
1 ,

respectively, then ||uk − vk||L∞(Q
νk
1 ) > ρ0 for every Fk, fk, bk, ck,ψFk

with

||ψFk
((0, 0), (·, ·))||Lp(Q

νk
1 ), ||fk||Lp(Q

νk
1 ), bk, ck ≤ δk → 0 as k →∞

and ϕk ∈ C0,γ(∂pQ
νk
1 ) with ||ϕk||C0,γ(∂pQ

νk
1 ) ≤ C1.

Combining Arzelà-Ascoli theorem with (3.2.2), we see that there is a sub-
sequence Fki and a function F∞ such that Fki(·, ·, ·, 0, 0) converges uniformly
to F∞(·) on compact subsets of S(n) × Rn × R. Hence, by ABP maximum
principle, we have

||uk||L∞(Q
νk
1 )

≤ ||ϕk||L∞(∂pQ
νk
1 ) + C(n, λ,Λ)(||fk||Ln+1(Q

νk
1 ) + cFk ||uk||L∞(Q

νk
1 ))

and ||vk||L∞(Q
νk
1 ) ≤ ||ϕk||L∞(∂pQ

νk
1 ). Then for sufficiently large k, we can see
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that ||uk||L∞(Q
νk
1 ), ||vk||L∞(Q

νk
1 ) ≤ C(C1). Here we can also obtain

||uk||C0,α(Q
νk
1 ), ||vk||C0,α(Q

νk
1 ) ≤ C(C1, n, λ,Λ, b, p)

for some α = α(n, λ,Λ, b, p, γ) by using Lemma 3.2.26.
Assume there is a subsequence {νki} ⊂ {νk} and a number 0 ≤ ν∞ ≤ 1

such that νki → ν∞ as i→∞. It is sufficient to consider the case of monotone
subsequences. When {νki} is decreasing, then Qν∞

1 ⊂ Qνk
1 for every i. Thus

we can observe that there are functions u∞, v∞ such that uki , vki converge
uniformly to u∞, v∞ on Qν∞

1 by using Arzelà-Ascoli theorem directly. For
increasing subsequences, we consider an extension of ϕk to (B1 ∩ {−ν∞ ≤
xn ≤ −νk})× (−1, 0) with

||ϕk||C0,γ((B1∩{−ν∞≤xn≤−νk})×(−1,0)) ≤ C1.

Then we can also deduce the uniform convergence for increasing subse-
quences.

Now we have functions u∞, v∞ ∈ C(Q
ν∞
1 ) and ϕ ∈ C(∂pQ

ν∞
1 ) such that

uki → u∞, vki → v∞ uniformly on Qν∞
1

and
u∞ = v∞ = ϕ∞ on ∂pQν∞

1 .

We first observe that v∞ solves{
F∞(D2v∞, 0, 0, 0, 0)− (v∞)t = 0 in Qν∞

1 ,
v∞ = ϕ∞ on ∂pQν∞

1

(3.2.28)

in the viscosity sense. On the other hand, for u∞, we see that

|Fki(D2φ,Dφ,uki , x, t)− fki(x, t)− F∞(D2φ, 0, 0, 0, 0)|
≤ ckiC(C1) + bki |Dφ|+ψFki

((0, 0), (x, t))|D2φ|
+ |fki |+ |(Fki − F∞)(D2φ, 0, 0, 0, 0)|

for a test function φ ∈ C2(Qν∞
1 ). Therefore, we can check that

||Fki(D2φ,Dφ, uki , x, t)− fki(x, t)− F∞(D2φ, 0, 0, 0, 0)||Lp(Qr(x0,t0)) → 0
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as i→∞ for any Qr(x0, t0) ⊂ Qν∞
1 . Now applying Proposition 3.2.25 to u∞,

we derive that u∞ is also a solution of (3.2.28) in the viscosity sense. Then
we can get a contradiction because (3.2.28) has a unique solution.

We next consider the following problems{
F (D2u, 0, 0, 0, 0)− ut = 0 in Q1,
u = ϕ1 on ∂pQ1

(3.2.29)

and {
F (D2u, 0, 0, 0, 0)− ut = 0 in Q+

1 ,
u = ϕ2 on ∂pQ∗1,

(3.2.30)

where F is uniformly elliptic, ϕ1 ∈ C(∂pQ1) and ϕ2 ∈ C(∂pQ
+
1 ) ∩ C1,γ(Q∗1).

For (3.2.29), we can find the following estimate in [76, Theorem 4.8]:

||u||C1,α(Q 1
2

) ≤ C||u||L∞(Q1)

for some α and C depending only on n, λ and Λ. On the other hand, by using
[76, Theorem 2.1], we can also derive the following boundary estimates for
(3.2.30)

||u||
C1,α(Q

+
1
2

)
≤ C(||u||L∞(Q+

1 ) + ||ϕ2||C1,γ(Q∗1))

for some α and C depending only on n, λ and Λ. That is, F satisfies interior
and boundary C1,α-estimates. Furthermore, we can obtain

||u||C1,α(Q
ν
1
2

) ≤ C(||u||L∞(Qν1) + ||ϕ2||C1,γ(Q∗1)) (3.2.31)

for some α and C depending only on n, λ and Λ by a using proper scaling
argument.

Now we proveW 1,p-regularity for parabolic Dirichlet boundary problems.
In the elliptic case, the corresponding result can be found in [78, Theorem
3.1].

Theorem 3.2.28. Let n+ 1 < p <∞. Assume that F satisfies the structure
condition (3.2.2) with F (0, 0, 0, x, t) = 0 and u is a viscosity solution of{

F (D2u,Du, u, x, t)− ut = f in Q+
1 ,

u = ϕ on Q∗1,
(3.2.32)
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where f ∈ Lp(Q+
1 ) ∩ C(Q

+

1 ) and ϕ ∈ C1,γ(Q
∗
1). Then, the followings hold:

(i) For any p > n+ 2, there exists a constant ε0 = ε0(n, λ,Λ, p, α, α) such
that if (∫

Qr(x0,t0)∩Q+
1

ψ((x0, t0), (x, t))p dxdt

)1/p

≤ ε0

for any (x0, t0) ∈ Q+
1 and r ≤ r0 for some r0 > 0, then u ∈ C1,α(Q

+
1
2
)

with α < min{1− n+2
p
, α(1− γ), γ} and we have the estimate

||u||
C1,α(Q

+
1
2

)
≤ C(||u||L∞(Q+

1 ) + ||ϕ||C1,γ(Q∗1) + ||f ||Lp(Q+
1 )) (3.2.33)

for some C = C(n, λ,Λ, b, c, p, r0).

(ii) For any p ≤ n + 2, there exists a constant ε0 = ε0(n, λ,Λ, p) such that
if (∫

Qr(x0,t0)∩Q+
1

ψ((x0, t0), (x, t))p dxdt

)1/p

≤ ε0

for any (x0, t0) ∈ Q+
1 and r ≤ r0 for some r0 > 0, then u ∈ W 1,q(B+

1
2

)

for any q < p∗n+2 := (n + 2)p/(n + 2 − p) ((n + 2)∗n+2 := ∞) and we
have the estimate

||u||W 1,q(Q+
1
2

) ≤ C(||u||L∞(Q+
1 ) + ||ϕ||C1,γ(Q∗1) + ||f ||Lp(Q+

1 )) (3.2.34)

for some C = C(n, λ,Λ, b, c, p, q, r0).

Proof. We fix (y, s) ∈ Q+
1
2

, n + 1 < p′ < p and d = min{1
2
, r0}. Consider a

number σ > 0 with

σ ≤ d

2
, σb ≤ δ

32MC(n)
, σ2c ≤ δ

32(M + 1)C(n)
,

where δ is the constant in Lemma 3.2.27, C(n) is a constant and M is to be
determined.

We first consider the case yn < σ/2. Let

K = K(y, s)

:= ||u||L∞(Qd(y,s)∩Q+
1 ) + ||ϕ||C1,γ(Qd(y,s)∩Q∗1)
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+
1

ε0
sup
r≤d

[
r1−α

(
r−(n+2)

∫
Qr(y,s)∩Q+

1

|f(x, t)|p′dxdt
) 1

p′
]

for some 0 < α < 1 and ε0 > 0 to be determined. One can check that

K(y, s) ≤ ||u||L∞(Q+
1 ) + ||ϕ||C1,γ(Q∗1) + C(n, ε0)

[
M(fp)(y, s)

] 1
p <∞

for any (y, s). Now we define

ũ(x, t) =
1

K
u(σx+ y, σ2t+ s),

f̃(x, t) =
σ2

K
f(σx+ y, σ2t+ s),

F̃ (X, q, r, x, t) =
σ2

K
F (Kσ−2M,Kσ−1q,Kr, σx+ y, σ2t+ s),

ϕ̃(x, t) =
1

K
ϕ(σx+ y, σ2t+ s)

and ν = yn/σ. Then ũ solves the following problem{
F̃ (D2ũ, Dũ, ũ, x, t)− ũt = f̃ in Qν

2,
ũ = ϕ̃ on Q2 ∩ {xn = −ν}

in the viscosity sense. We observe that F̃ satisfies (3.2.2) with bF̃ = σb,
cF̃ = σ2c and

r1−α
(
r−(n+2)

∫
Qrν

|f̃(x, t)|p′ dxdt
) 1

p′

≤ ε0σ
1+α

for any r ∈ (0, 2). And since

ψF̃ ((0, 0), (x, t)) = ψF ((y, s), (σx+ y, σ2t+ s)),

we also obtain

||ψF̃ ((0, 0), (x, t))||Lp′ (Qν1) ≤ C(n)ε0 < δ

by taking sufficiently small ε0.
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Next we prove C1,α-regularity for the case p > n + 2. It is sufficient to
show that there exist universal constants µ,C1, C2, K(C2) > 0, 0 < α, β < 1
and functions lk,s(x) = ak,s + bk,s · x, ϕk(x, t) = µ−k(1+α)(ϕ̃ − lk,s)(µkx, µ2kt)
for each k ≥ −1 satisfying the followings:

(i) ||ũ− lk,s||L∞(Qµ
k
ν )
≤ µk(1+α).

(ii) |ak−1,s − ak.s|+ µk−1|bk−1.s − bk,s| ≤ C2µ
(k−1)(1+α).

(iii) |(ũ−lk,s)(ν
kx1,µ2kt1)−(ũ−lk,s)(νkx2,µ2kt2)|

(|x1−x2|+|t1−t2|
1
2 )β

≤ K(C2)C1µ
k(1+α)

for every (x1, t1), (x2, t2) ∈ Q1 ∩ {xn ≥ −ν}.

(iv) ||ϕk||C1,γ(Q1∩{xn=−νµ−k}) ≤ 4 if ν ≤ µk.

We define l−1,s = l0,s = 0 and C1 = C(n, λ,Λ, p), β = α(n, λ,Λ, p) where C, α
are constants as in Lemma 3.2.26 when it is applied to ũ ∈ S∗(λ/n,Λ, 1, f̃)
in Qν

2. And we also set C2 = 5C(n, λ,Λ) and α = α(n, λ,Λ) are constants in
(3.2.31). Now we choose α < min{α(1− γ), γ} and µ ≤ 1/4 such that

4C2(2µ)1+α ≤ µ1+α and M = 4C1

∞∑
i=0

(
1

4

)iα
≥ 4C1

∞∑
i=0

µiα. (3.2.35)

We first check that these conditions are true for k = 0. It is immediate that
(i) and (ii) hold in this case. We observe that ũ ∈ S∗(λ/n,Λ, 1, f̃ + δ

32C(n)
)

since σb ≤ 1, σ2c ≤ δ
32(M+1)C(n)

and |ũ| ≤ 1. Applying Lemma 3.2.26, we
obtain ||ũ||C0,β(Qν1) ≤ 4C1. For (iv), we see that

||ϕ0||C1,γ(Q1∩{xn=−ν}) = ||ϕ̃||C1,γ(Q1∪{xn=−ν}) ≤ 1.

Now we assume that (i)-(iv) are satisfied for k ≥ 0. We need to show that
these conditions still hold for k + 1. Set

vk(x, t) =
(ũ− lk,s)(µkx, µ2kt)

µk(1+α)
.
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We observe that vk solves{
Fk(D

2vk, Dvk, vk, x, t)− (vk)t = fk + gk in Q
ν

µk

2 ,
vk = ϕk on Q2 ∩ {xn = − ν

µk
}
(3.2.36)

in the viscosity sense. Here

Fk(X, q, r, x, t) = µk(1−α)F̃ (µk(α−1)X,µkαq, µk(α+1)r, µkx, µ2kt),

gk(x, t) =Fk(D
2vk, Dvk, vk, x, t)

− Fk(D2vk, Dvk + µ−kαbFk , vk + µ−k(1+α)lk,s(µ
kx), x, t),

and
fk(x, t) = µk(1−α)f̃(µkx, µ2kt).

We see that
ψFk

((0, 0), (x, t)) = ψF̃ ((0, 0), (µkx, µ2kt))

and F̃ satisfies (3.2.2) with bFk = µkbF̃ and cFk = µ2kcF̃ . On the other hand,
we also have

|gk(x, t)| = |Fk(D2vk, Dvk, vk, x, t)

− Fk(D2vk, Dvk + µ−kαbFk , vk + µ−k(1+α)lk,s(µ
kx), x, t)|

≤ bFk · µ−kα|bk,s|+ cFk · µ−k(α+1)|lk,s(µkx)|

for any (x, t) ∈ Q
ν

µk

1 . Therefore, we obtain |ak,s|, |bk,s| ≤M/2 from condition
(ii) and (3.2.35), and this implies ||lk||

L∞(Q

ν
µk

1 )
≤M . Now we have

|gk(x, t)| ≤ bFk · µ−kαM + cFk · µ−k(α+1)M ≤ µk(1−α) δ

16

and this yields

||fk + gk||
Lp′ (Q

ν
µk

1 )
≤ ||fk||

Lp′ (Q

ν
µk

1 )
+ ||gk||

Lp′ (Q

ν
µk

1 )
≤ δ

2
+

δ

16
µk(1−α) ≤ δ.
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Furthermore, we can also observe that

||vk||C0,β(Q1∩{xn≥νµ−k}) = ||vk||L∞(Q1∩{xn≥νµ−k}) + [vk]C0,β(Q1∩{xn≥νµ−k})

≤ 1 +K(C2)C1 =: C0

since we assumed that (i) and (iii) hold.

Next let h ∈ C(Q
ν

µk

1
2

) be a solution of

{
Fk(D

2h, 0, 0, 0, 0)− ht = 0 in Q
ν

µk

1 ,

h = vk on ∂pQ
ν

µk

1 ,
(3.2.37)

in the viscosity sense. Then Lemma 3.2.27 leads to

||vk − h||
L∞(Q

ν
µk

1 )
≤ ρ (3.2.38)

for ρ = C2(2µ)1+α. Meanwhile, we can also obtain

||h||
C1,α(Q

ν
µk

1
2

)
≤ C2 (3.2.39)

from (3.2.31).
Now we define l(x) = h(0, 0) + Dh(0, 0) · x. It can be checked without

difficulty that

||vk − l||
L∞(Q

ν
µk

2µ )
≤ ||vk − h||

L∞(Q

ν
µk

2µ )
+ ||h− l||

L∞(Q

ν
µk

2µ )

≤ 1

2
µ1+α + C2(2µ)1+α

≤ µ1+α

and this yields

|ũ(x, t)− lk,s(x)− µk(1+α)l(µ−k(x))| ≤ µ(k+1)(1+α)

for every (x, t) ∈ Qν
2µk+1 . Hence, we see that (i) is satisfied if we set

lk+1,s(x) = lk,s(x) + µk(1+α)l(µ−k(x)).
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Moreover, we also observe that

|ak,s − ak+1,s|+ µk|bk,s − bk+1,s| = µk(1+α)(|h(0, 0)|+ |Dh(0, 0)|)
≤ µk(1+α)||h||

C1,α(Q

ν
µk

1
2

)

≤ C2µ
k(1+α)

and this leads that (ii) also holds for k + 1.
It remains to show that (iii) and (iv) are still true. For (iv), we need to

derive that ||ϕk+1||C1,γ(Q1∩{xn=−νµ−(k+1)}) ≤ 4. Since

ϕk+1(x, t) =
(ϕ̃− lk+1,s)(µ

k+1x, µ2(k+1)t)

µ(k+1)(1+α)
,

we have

Dϕk+1(x, t) =
(Dϕ̃−Dlk+1,s)(µ

k+1x, µ2(k+1)t)

µ(k+1)α
.

Recall that we assumed that ||ϕk||C1,γ(Q1∩{xn=−νµ−k}) ≤ 4 and we also deduced
that ||ϕk+1||L∞(Q1∩{xn=−νµ−(k+1)}) ≤ 1. Then we can deduce that

||Dϕk+1||L∞(Q1∩{xn=−νµ−(k+1)})

=

∣∣∣∣∣∣∣∣Dϕk(µx, µ2t)−Dh(0, 0))

µα

∣∣∣∣∣∣∣∣
L∞(Q1∩{xn=−νµ−(k+1)})

≤
∣∣∣∣∣∣∣∣Dϕk(µx, µ2t)−Dϕk(0′,−ν/µ, 0))

µα

∣∣∣∣∣∣∣∣
L∞(Q1∩{xn=−νµ−(k+1)})

+

∣∣∣∣∣∣∣∣Dϕk(0′,−ν/µ, 0))−Dh(0, 0))

µα

∣∣∣∣∣∣∣∣
L∞(Q1∩{xn=−νµ−(k+1)})

≤ µ−α(2µ+ C2µ
α)

≤ (2 + C2)µα−α

and

[Dϕk+1]C0,γ(Q1∩{xn=−νµ−(k+1)}) ≤ µ(k+1)(γ−α)[Dϕ̃]C0,γ(Q1∩{xn=−ν})

≤ µ(k+1)(γ−α).
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Now we obtain the following estimate

||ϕk||C1,γ(Q1∩{xn=−νµ−k}) ≤ 1 + (2 + C2)µα−α + 4µ(k+1)(γ−α) ≤ 4

and thus (iv) is also true.
Finally, we prove that (iii) is satisfied for k + 1. We already know that

vk − l̃ ∈ S∗(λ/n,Λ, bk, fk + gk + δ/8) in Q
µ

νk

2µ . By Lemma 3.2.26, we have

||vk − l̃||
C0,β(Q

ν
µk
µ )
≤ C1µ

−β(2µ1+α + 2δµ
2−n+2

p′ + µγ[ϕk − l̃]C0,γ(Qµ∩{xn=− ν

µk
})).

Now we choose sufficiently small δ with 2δ ≤ µ
α+n+2

p′ −1. Since h = v = ϕ on
Q1 ∩ {xn = − ν

µk
}, we obtain∣∣∣∣ϕk(x′,− ν

µk
, t

)
− l̃(x′,− ν

µk

)∣∣∣∣ ≤ C2

∣∣∣∣(x′,− ν

µk
, t

)∣∣∣∣1+α

.

This implies
||ϕk − l̃||L∞(Qµ∩{xn=− ν

µk
}) ≤ 4C2µ

1+α

if ν/µk ≤ µ. (Note that Qµ∩{xn = − ν
µk
} = ∅ when ν/µk > µ) Furthermore,

we also derive from the above estimate that

|(ϕk − l̃)(x1, t1)− (ϕk − l̃)(x2, t2)|
= |(ϕk − l̃)(x1, t1)− (ϕk − l̃)(x2, t2)|γ|(ϕk − l̃)(x1, t1)− (ϕk − l̃)(x2, t2)|1−γ

≤ (4 + C2)γ(|x1 − x2|+ |t1 − t2|
1
2 )γ · (8C2)1−γµ(1+α)(1−γ)

for any (x1, t1), (x2, t2) ∈ Qµ ∩ {xn = − ν
µk
}. Now we deduce that

||vk − l̃||
C0,β(Q

ν
µk
µ )

≤ C1µ
−β(2µ1+α + 2δµ

2−n+2
p′ + µγ(4 + C2)γ(8C2)1−γµ(1+α)(1−γ))

≤ C1µ
−β(3 + (4 + C2)γ(8C2)1−γ)µ1+α

and this leads to

|(ũ− lk+1,s)(µ
k+1x1, µ

2(k+1)t1)− (ũ− lk+1,s)(µ
k+1x2, µ

2(k+1)t2)|
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≤ K(C2)C1µ
(k+1)(1+α)(|x1 − x2|+ |t1 − t2|

1
2 )β

with K(C2) = 3 + (4 + C2)γ(8C2)1−γ. Hence, we can conclude that (i)-(iv)
are satisfied for k + 1.

Therefore, we can always find a linear function ls with

|ls(0)|, |Dls(0)| ≤ CK(y, s) (3.2.40)

and

||u− ls||L∞(Qr(y,s)∩Q+
1 ) ≤ Cr1+αK(y, s) (3.2.41)

for any (y, s) ∈ Q
σ
2
1
2

and sufficiently small r > 0.
Next, in the case yn ≥ σ/2, we can refer to the interior C1,α-regularity in

[18, Lemma 7.4]. Thus, we get the estimate (3.2.33) in the case p > n + 2
with p′ = n+ 2 and α < 1− n+2

p
since

K(y, s)

≤ ||u||L∞(Qd(y,s)∩Q+
1 ) + ||ϕ||C1,γ(Qd(y,s)∩Q∗1) + ε−1

0 sup
r≤d

(
r1+α−n+2

p ||f ||Lp(Q+
1 )

)
.

Besides, we also see that (3.2.40) and (3.2.41) are also satisfied for almost
every (y, s) ∈ Q+

1
2

when n+ 1 < p ≤ n+ 2. Then we get

|u(y + x, s+ t)− u(y, s)|
|x|+ |t| 12

≤ CK(y, s)

for some C > 0 and almost every (y, s) ∈ Q+
1
2

and (x, t) ∈ Qr\{(0, 0)} such
that (y + x, s+ t) ∈ Q+

1 . Write

I(x,t)(y, s) :=
|u(y + x, s+ t)− u(y, s)|

|x|+ |t| 12
.

It is straightforward to check that

||I(x,t)||Lq(Q+
1
2

) ≤ C||K(·, ·)||Lq(Q+
1
2

) ≤ C(||u||L∞(Q+
1 ) + ||ϕ||C1,γ(Q∗1) + J)
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for any q ∈ (p′, (n+ 2)p′/[n+ 2− p′(1− α)]), where

J =

{∫
Q+

1
2

sup
r≤d

[
rq(1−α)

(
r−(n+2)

∫
Qr(y,s)∩Q+

1

|f(x, t)|p′ dxdt
) q

p′
]
dyds

} 1
q

.

As in the proof of [18, Lemma 7.4], we obtain J ≤ C||f ||Lp(Q+
1 ) for some

C = C(n, p, p′), and then

sup
|(x,t)|<r

||I(x,t)||Lq(Q+
1
2

) ≤ C(||u||L∞(Q+
1 ) + ||ϕ||C1,γ(Q∗1) + ||f ||Lp(Q+

1 ))

for any p′ ≤ q < p∗ with proper p′ and α. This leads to the second assertion.

Proof of Theorem 3.2.24

In this subsection, we give the proof of Theorem 3.2.24. As we mentioned
before, W 1,p-regularity for Dirichlet problems is necessary to show Theorem
3.2.24.

Similarly to the previous subsection, we first prove a compactness lemma
for problems with oblique boundary data.

Lemma 3.2.29. Let n+ 1 < p <∞ and 0 ≤ ν ≤ 1. Assume that F satisfies
(3.2.2) with F (0, 0, 0, x, t) ≡ 0 and β ∈ C2(Q∗2) with β · n ≥ δ0 for some
δ0 > 0. Then, for every ρ > 0, ϕ ∈ C(∂pQ1) with ||ϕ||L∞(∂pQ1) ≤ C1 for some
C1 > 0 and g ∈ C0,α(Q

∗
2) with 0 < α < 1 and ||g||C0,α(Q

∗
2) ≤ C2 for some

C2 > 0, there exists a positive number δ = δ(ρ, n, λ,Λ, δ0, p, C1, C2) < 1 such
that if

||ψ((0, 0), (·, ·))||Lp(Q+
2 ) + ||f ||Lp(Q+

2 ) + b+ c ≤ δ,

then for any u and v solving
F (D2u,Du, u, x, t)− ut = f in Q+

1 ,
u = ϕ on ∂pQ+

1 \Q∗1,
β ·Du = g on Q∗1,
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and 
F (D2v, 0, 0, 0, 0)− vt = 0 in Q+

3
4

,
v = u on ∂pQ+

3
4

\Q∗3
4

,
β ·Du = g on Q∗3

4

in the viscosity sense, respectively, we have ||u− v||L∞(Q+
3
4

) ≤ ρ.

Proof. Assume that there is a number ρ0 > 0 such that if uk and vk solve
Fk(D

2uk, Duk, uk, x, t)− (uk)t = fk in Q+
1 ,

uk = ϕk on ∂pQ+
1 \Q∗1,

β ·Duk = gk on Q∗1,
(3.2.42)

and 
Fk(D

2vk, 0, 0, 0, 0)− (vk)t = 0 in Q+
3
4

,
vk = uk on ∂pQ+

3
4

\Q∗3
4

,
β ·Dvk = gk on Q∗3

4

(3.2.43)

in the viscosity sense, respectively, then ||uk− vk||L∞(Q+
3
4

) > ρ0 for any Fk, fk,

bk, ck,ψFk
with

||ψFk
((0, 0), (·, ·))||Lp(Q+

2 ), ||fk||Lp(Q+
2 ), bk, ck ≤ δk → 0 as k →∞.

We also assume that ϕk ∈ C(∂pQ1) with ||ϕk||L∞(∂pQ1) ≤ C1 and gk ∈
C0,α(Q

∗
2) with ||gk||C0,α(Q

∗
2) ≤ C2 for each k, respectively.

From the structure condition (3.2.2), we can find a subsequence Fki and a
function F∞ so that Fki(·, ·, ·, 0, 0) converges uniformly to F∞(·) on compact
subsets of S(n) × Rn × R by using Arzelà-Ascoli theorem. Then for any
δ1 ∈ (0, 1) and sufficiently large k, it follows from Lemma 3.2.14 that

||uk||L∞(Q+
1 ) ≤ ||ϕk||L∞(∂pQ

+
1 \Q∗1)

+ C(n, λ,Λ, δ0)(||fk||Ln+1(Q+
1 ) + ||gk||L∞(Q∗1) + cFk ||uk||L∞(Q+

1 ))

and this implies

||uk||L∞(Q+
1 ) ≤ C(C1, C2, n, λ,Λ, δ0).
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Moreover, applying Lemma 3.2.15 to uk, we have

||uk||C0,α1 (Q+
1,δ1

)

≤ C(||uk||L∞(Q+
1 ) + ||fk||Ln+1(Q+

1 ) + ||gk||L∞(Q∗1))δ
−α1
1

≤ C(C1, C2, n, λ,Λ, δ0)δ−α1
1 ,

(3.2.44)

where α1 ∈ (0, 1) only depends on n, λ,Λ and δ0. Then we obtain

||uki ||C0,α1 (Q+
7
8

) ≤ C(C1, C2, n, λ,Λ, δ0) (3.2.45)

from (3.2.44). Therefore, there exists a subsequence {uki} ⊂ {uk} and a
function u∞ with uki converging uniformly to u∞ in Q+

7
8

.
Similarly as in the proof of Lemma 3.2.27, we take a test function φ ∈

C2(Q
+
7
8
). Then we can observe that

lim
i→∞
||Fki(D2φ,Dφ, uki , x, t)− fki(x, t)− F∞(D2φ, 0, 0, 0, 0)||Lp(Qr(x0,t0)) = 0

for any Qr(x0, t0) ⊂ Q+
7
8

. Since {gk} ⊂ C0,α(Q
∗
1) are uniformly bounded and

equicontinuous on Q∗1, we can find a function g∞ ∈ C0,α(Q∗1) by Arzelà-Ascoli
theorem. Thus by Proposition 3.2.25 and [16, Proposition 31], we have{

F∞(D2u∞, 0, 0, 0, 0)− (u∞)t = 0 in Q+
7
8

,
β ·Du∞ = g∞ on Q∗7

8

(3.2.46)

in the viscosity sense.
Set wki := u∞ − vki . Then we observe that

wki ∈ S(λ/n,Λ, 0) in Q+
3
4

,
wki = u∞ − uki on ∂pQ+

3
4

\Q∗3
4

,
β ·Dwki = g∞ − gki on Q∗3

4

(3.2.47)

in the viscosity sense by means of Lemma 3.2.19. Applying Lemma 3.2.8 to
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wki , we get

||wki ||L∞(Q+
3
4

)

≤ ||u∞ − uki ||L∞(∂pQ
+
3
4

\Q∗3
4

)) + C(n, λ,Λ, δ0)||g∞ − gki ||L∞(Q+
3
4

)

(3.2.48)

and this converges to zero as i→∞. This shows that vki converges uniformly
to u∞ on Q+

3
4

. But it is a contradiction since we already have assumed ||u−
v||L∞(Q+

3
4

) > ρ0.

Proof of Theorem 3.2.24. We show that u|Q∗2
3

∈ C1,α(Q
∗
2
3
) with

||u|Q∗2
3

||C1,α(Q
∗
2
3

) ≤ C(||u||L∞(Q+
1 ) + ||f ||Ln+1(Q+

1 )) (3.2.49)

for some 0 < α = α(n, p) < 1 and C = C(n, p, λ,Λ, δ0, ||β||C2(Q
∗
1)) > 0. Then

Theorem 3.2.24 is obtained by using the results of Theorem 3.2.28.
Let p′ ∈ (n+ 1, p), (y, s) ∈ Q∗2

3
, d = min{1

3
, r0}, and we choose σ > 0 such

that
σ ≤ d

2
, σb ≤ δ

32MC(n)
, σ2c ≤ δ

32(M + 1)C(n)
.

Here, δ is the same as in Lemma 3.2.29, C(n) is universal and M will be
chosen later.

Define

K = K(y, s)

= ||u||L∞(Qd(y,s)∩Q+
1 ) +

1

ε0
sup
r≤d

[
r1−α

(
r−(n+2)

∫
Qr(y,s)∩Q+

1

|f(x, t)|p′dxdt
) 1

p′
]
,

where 0 < α < 1 is to be determined. Observe that for any (y, s),

K(y, s) ≤ ||u||L∞(Q+
1 ) + C(n, ε0)

[
M(fp)(y, s)

] 1
p <∞.

Let
ũ(x, t) =

1

K
u(σx+ y, σ2t+ s),

f̃(x, t) =
σ2

K
f(σx+ y, σ2t+ s),

85



CHAPTER 3. REGULARITY FOR OBLIQUE DERIVATIVE
PROBLEMS

β̃(x, t) = β(σx+ y, σ2t+ s),

F̃ (X, q, r, x, t) =
σ2

K
F (Kσ−2X,Kσ−1q,Kr, σx+ y, σ2t+ s).

Then ũ is a viscosity solution of{
F̃ (D2ũ, Dũ, ũ, x, t)− ũt = f̃ in Q+

2 ,
β̃ ·Dũ = 0 on Q∗2.

(3.2.50)

We can see that F̃ also satisfies (3.2.2) with bF̃ = σb, cF̃ = σ2c,

r1−α
(
r−(n+2)

∫
Q+
r

|f̃(x, t)|p′ dxdt
) 1

p′

≤ ε0σ
1+α

for every r ∈ (0, 2). and

||ψF̃ ((0, 0), (·, ·))||Lp′ (Q+
1 ) ≤ δ

for small ε0.
Now we establish C1,α-regularity. To this end, we need to show that there

are some universal constants µ,C1 > 0, 0 < α < 1 and linear functions
lk,s(x) = ak,s + bk,s · x for each k ≥ −1 such that

(i) ||ũ− lk,s||L∞(Q+

µk
) ≤ µk(1+α).

(ii) |ak−1,s − ak.s|+ µk−1|bk−1.s − bk,s| ≤ 2C1µ
(k−1)(1+α).

(iii) β(0, 0) · bk,s = 0.

Let l−1,s = l0,s = 0 and consider a fixed number µ ≤ 1/4 such that

6C1||β||C2(Q
∗
1)µ

2 ≤ µ1+α

and

M = 4C1

∞∑
i=0

(
1

4

)iα
≥ 4C1

∞∑
i=0

µiα. (3.2.51)

We use induction to prove that the above conditions are satisfied for every
k. It can be checked without difficulty when k = 0. Next we show that (i)-(iii)
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are still satisfied for k + 1 under the assumption that these conditions hold
for k > 0.

Let

vk(x, t) =
(ũ− lk,s)(µkx, µ2kt)

µk(1+α)
.

Then vk is a viscosity solution of{
Fk(D

2vk, Dvk, vk, x, t)− (vk)t = fk + gk in Q+
2 ,

βk ·Dvk = −(βk · bk,s)/µkα on Q∗2,
(3.2.52)

where

Fk(X, q, r, x, t) = µk(1−α)F̃ (µk(α−1)X,µkαq, µk(α+1)r, µkx, µ2kt),

gk(x, t) =Fk(D
2vk, Dvk, vk, x, t)

− Fk(D2vk, Dvk + µ−kαbFk , vk + µ−k(1+α)lk,s(µ
kx), x, t),

fk(x, t) = µk(1−α)f̃(µkx, µ2kt)

and
βk(x, t) = β(µkx, µ2kt).

We remark that ψFk
((0, 0), (x, t)) = ψF̃ ((0, 0), (µkx, µ2kt)) and F̃ satisfies

(3.2.2) with bFk = µkbF̃ and cFk = µ2kcF̃ .
As in the proof of Theorem 3.2.32, we can observe that

|gk(x, t)| ≤ bFk · µ−kαM + cFk · µ−k(α+1)M ≤ µk(1−α) δ

16
.

This implies

||fk + gk||Lp′ (B+
1 ) ≤ ||fk||Lp′ (Q+

1 ) + ||gk||Lp′ (Q+
1 ) ≤

δ

2
+

δ

16
µk(1−α) ≤ δ.

On the other hand, we see that vk ∈ S∗(λ/n,Λ, bFk , |fk| + |gk| + µ2kcF̃ ).
Note that bFk ≤ 1 if k is sufficiently large. Therefore by Lemma 3.2.8,

||vk||C0,α0 (Q+
1 ) ≤ ||vk||L∞(∂pQ

+
1 ) + C(n, λ,Λ, δ0)(||fk||Ln+1(Q+

1 )

+ ||gk||Ln+1(Q+
1 ) + µ2kcF̃ + µ−kα||βk · bk||L∞(Q∗1))
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≤ 1 + C(n, λ,Λ, δ0)(δ + µ(1−α)k|bFk |)
≤ C(n, λ,Λ, δ0, C1)

for some α0 = α0(n, λ,Λ, δ0) ∈ (0, 1). Note that we have used ||vk||L∞(Q+
1 ) ≤ 1,

β ∈ C2(Q
∗
1) and |bk,s| ≤ C(C1) to obtain the last inequality.

Now let h ∈ C(Q
+
7
8
) be a solution of

Fk(D
2h, 0, 0, 0, 0)− ht = 0 in Q+

7
8

,
h = vk on ∂pQ+

7
8

\Q∗7
8

,
βk ·Dh = −(βk · bk,s)/µkα on Q∗7

8

(3.2.53)

in the viscosity sense. Applying Lemma 3.2.16 to h, we see that

||h||
C2(Q

+
3
4

)
≤ C∗(1 + µ−kα||β · bk,s||C2(Q∗7

8

)) (3.2.54)

for some C∗ = C∗(n, λ,Λ, δ0, ||β||C2(Q∗2)). Set C1 = C∗. Then we see that

||h||
C2(Q

+
3
4

)
≤ C1(1 + µ−kα||β · bk,s||C2(Q∗7

8

))

≤ C1(1 + µ−kα|bk,s| · µk||β||C2(Q
∗
1))

since β(0, 0) · bk,s = 0. Therefore, we have

||h||
C2(Q

+
3
4

)
≤ C1(1 + 6C3µ

1−α||β||C2(Q
∗
1)) ≤ 2C1.

We also have
||vk − h||L∞(Q+

3
4

) ≤ ρ

by applying Lemma 3.2.29 to vk and h with ρ = 4C1µ
2.

Define l(x) = h(0, 0) +Dh(0, 0) · x. Then we can obtain

||vk − l||L∞(Q+
2µ) ≤ ||vk − h||L∞(Q+

2µ) + ||h− l||L∞(Q+
2µ)

≤ 4C1µ
2 +

1

2
C1(2µ)2

≤ µ1+α
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and this leads to

|ũ(x, t)− lk,s(x)− µk(1+α)l(µ−kx)| ≤ µ(k+1)(1+α)

for any (x, t) ∈ Q+
2µk+1 . Therefore, we see that the first condition is satisfied

if we set
lk+1,s(x) = lk,s(x) + µk(1+α)l(µ−kx).

Moreover, we also observe that

|ak,s − ak+1,s|+ µk|bk,s − bk+1,s| = µk(1+α)(|h(0, 0)|+ |Dh(0, 0)|)
≤ µk(1+α)||h||C2(Q+

3
4

)

≤ 2C1µ
k(1+α).

Now the condition (ii) is proved. Finally, we can also check that

β(0, 0) · bk+1,s = β(0, 0) · (bk,s + µkαDh(0, 0)) = β(0, 0) · µkαDh(0, 0) = 0

since

β(0, 0) ·Dh(0, 0) = β(0, 0) ·Dh(0, 0) = −(β(0, 0) · bk,s)/µkα = 0.

Hence, we can always find a linear function ls with

|ls(0)|, |Dls(0)| ≤ C1K(y, s) (3.2.55)

and

||u− ls||L∞(Qr(y,s)∩Q+
1 ) ≤ r1+αK(y, s) (3.2.56)

for any (y, s) ∈ Q∗2
3
and sufficiently small r > 0. This implies u|Q∗2

3

∈ C1,α(Q
∗
2
3
)

with (3.2.49) by choosing α < 1− n+2
p

and p′ = n + 2. Then we can get the
desired result by employing Theorem 3.2.28.

Remark 3.2.30. We remark that the induction argument in the proof works
well only for (y, s) ∈ Q∗2

3

, not for (y, s) ∈ Q+
2
3

. One can observe that the
condition that β(0, 0) · bk,s = 0 may break down when yn > 0. On the other
hand, we have used the result of Theorem 3.2.28 in the above proof. Note that
it is required that boundary data ϕ ∈ C1,α(Q∗1) for some 0 < α < 1 in order
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to employ Theorem 3.2.28. However, for n+ 1 < p ≤ n+ 2, we cannot assert
that u|Q∗2

3

∈ C1,α(Q
∗
2
3
) for any α ∈ (0, 1). Therefore, in this case, we cannot

obtain the desired results in this way.

Thanks to Theorem 3.2.24, we get W 2,p-estimate for viscosity solutions
of (3.2.23) directly.

Corollary 3.2.31. Let n + 2 < p < ∞ and u be a viscosity solution of
(3.2.23). Then, under the assumption of Theorem 3.2.24, u ∈ W 2,p(Q+

1/4)
and

||u||W 2,p(Q+
1/4

) ≤ C(||u||L∞(Q+
1 ) + ||f ||Lp(Q+

1 ))

for some C = C(n, λ,Λ, b, c, p, ||β||C2(Q
∗
1)).

3.2.5 Global estimates

We can establish the global W 2,p-regularity for (3.2.1) by using Corollary
3.2.31.

Proof of Theorem 3.2.2. First, we get the following interior W 2,p-estimate

||u||W 2,p(Q) ≤ C(||u||L∞(Q) + ||f ||Lp(Q))

for any Q ⊂⊂ ΩT from [75, Theorem 5.9]. Thus, it is sufficient to consider
the boundary case.

We are going to use a flattening argument in order to get a boundary
estimate. For any x0 ∈ ∂Ω, we can find a neighborhood N(x0) of x0 and a
C3-diffeomorphism Ψ : U(x0) → B+

1 with Ψ(x0) = 0 since ∂Ω is C3. Then
for each t0 ∈ (0, T ], we define Ψt0 : U(x0)× (t0 − 1, t0)→ Q+

1 such that

Ψt0(x, t) = (Ψ(x), t− t0).

Fix t0 ∈ (0, T ] and let ũ = u ◦Ψ−1
t0 . Then ũ is a solution of{

F̃ (D2ũ, Dũ, ũ, x, t)− ũt = f̃ in Q+
1 ,

β̃ ·Dũ = 0 on Q∗1

in the viscosity sense, where f̃ = f ◦Ψ−1
t0 , β̃ = (β ◦Ψ−1

t0 ) · (DΨt0 ◦Ψ−1
t0 )t and

F̃ (D2ϕ̃,Dϕ̃, ũ, x, t) = F (D2ϕ,Dϕ, u, x, t) ◦Ψ−1
t0
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= F (DΨT
t0
◦Ψ−1

t0
D2ϕ̃DΨt0 ◦Ψ−1

t0
+ (Dϕ̃∂i,jΨt0 ◦Ψ−1

t0
)1≤i,j≤n,

DϕDΨt0 ◦Ψ−1
t0
, ũ,Ψ−1

t0
(x, t))

for ϕ̃ ∈ W 2,p(Q+
1 ) and ϕ = ϕ̃ ◦Ψt0 ∈ W 2,p(U(x0)× (t0− 1, t0)). Here, we also

note that we extended u by zero when t < 0.
Now we can see that there exists a uniform constant C(Ψ) such that

ψF̃ ((x, t), (x0, t0)) ≤ C(Ψ)ψF ((Ψ−1(x, t)), (Ψ−1(x0, t0)))

and F̃ is uniformly elliptic with constants λC(Ψ), ΛC(Ψ), see [78]. In addi-
tion, we also have β̃ = (β ◦ Ψ−1

t0 ) · (DΨt0 ◦ Ψ−1
t0 )t ∈ C2 since Ψ,Ψ−1 ∈ C3

and β ∈ C2(ST ). Therefore, we can obtain the boundary estimate, thanks to
Corollary 3.2.31 along with a standard covering argument. This completes
the proof.
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Chapter 4

Regularity results for
time-dependent tug-of-war games

In this chapter, we establish regularity theory for value functions of time-
dependent tug-of-war games introduced in Section 2.2. For the interior case,
we show a Lipschitz type estimate, Theorem 4.2.1. After that, we deal with
the boundary regularity in Section 4.3. Besides, we also observe the exis-
tence and uniqueness, long-time behavior and uniform convergence of game
values. We remark that our tug-of-war game is closely linked to the following
normalized parabolic p-Laplace equation

(n+ p)ut = ∆N
p u.

In studying value functions of tug-of-war games, it is unavoidable to introduce
the following DPP

uε(x, t)

=
1− δε(x, t)

2
×[

sup
ν∈Sn−1

{
αuε

(
x+ εν, t− ε2

2

)
+β

∫
Bνε

uε

(
x+ h, t− ε2

2

)
dLn−1(h)

}
+ inf
ν∈Sn−1

{
αuε

(
x+ εν, t− ε2

2

)
+β

∫
Bνε

uε

(
x+ h, t− ε2

2

)
dLn−1(h)

}]
+ δε(x, t)F (x, t).

(4.0.1)
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Here, 0 < α, β < 1 with α + β = 1, F : Γε,T → R is continuous and
δε ∈ C(Ωε,T ) is defined by

δε(x, t) =


0 in ΩT\Iε,T ,

min

{
1, 1− dist(x,∂Ω)

ε

}
×min

{
1, 1−

√
2t
ε

}
in Iε,T ,

1 in Oε,T .

We recall that

Iε,T =

{
(x, t) ∈ Ω×

[
ε2

2
, T

]
: dist(x, ∂Ω) < ε

}
∪
(

Ω×
(

0,
ε2

2

))
,

Oε,T =

{
(x, t) ∈ (Rn\Ω)× (0, T ] : dist(x, ∂Ω) < ε

}
∪
(

Ωε ×
(
− ε2

2
, 0

))
,

Γε,T = Iε,T ∪Oε,T ∪ ∂pΩT

and
Ωε,T = ΩT ∪Oε,T .

As we will see later, (4.0.1) represents the ‘law’ which value functions satisfy.
Therefore, we can consider that this DPP plays a similar role to the ‘equation’
in PDE theory (in fact, (4.0.1) also includes the boundary condition since it
contains the term δε(x, t)F (x, t).

For convenience, we introduce here a notation. For any Ln−1-measurable
function f defined on Ωε,T , we define

Aεf(x, t; ν) = αf(x+ εν, t) + β

∫
Bνε

f(x+ h, t)dLn−1(h)

for each (x, t) ∈ ΩT and ν ∈ Sn−1. Recall that

midrange
i∈I

Ai =
1

2

(
sup
i∈I

Ai + inf
i∈I

Ai

)
.

Then (4.0.1) can be written as

uε(x, t) = (1− δε(x, t)) midrange
ν∈Sn−1

Aεuε

(
x, t− ε2

2
; ν

)
+ δε(x, t)F (x, t).
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We call such a function uε a solution to (4.0.1).

4.1 The existence and uniqueness of game val-
ues

Before establishing regularity theory for game values, we investigate the ex-
istence and uniqueness of game values for time-dependent tug-of-war games.
We first prove the existence and uniqueness of a function satisfying (4.0.1)
with continuous boundary data F . After that, we show that this function is
the value function of our tug-of-war game.

In (4.0.1), the value of uε(x, t) is determined by values of the function in
Bε(x) × {t − ε2/2}. And we also see that this DPP contains integral terms
for the function at time t− ε2/2. Thus, we have to consider the measurability
for the function uε, more precisely, for strategies of our game. In general,
existence of measurable strategies is not guaranteed (for example, see [52,
Example 2.4]). But we can avoid this problem under our setting. The function
δε plays an important role in this issue.

We begin this section by observing a basic property of the operator Aε.

Proposition 4.1.1. Let u ∈ C(Ωε,T ). Then Aεu(x, t; ν) is continuous with
respect to each variable in ΩT,ε × ∂Bε(0).

Proof. For any (x, t), (y, s) ∈ ΩT , let us define a parabolic distance by

d((x, t), (y, s)) = |x− y|+ |t− s|1/2.

We write the modulus of continuity of a function f with respect to the
distance d by ωf .

For fixed |ν| = ε, we can see that for any x, y ∈ Ω,∣∣∣∣αu(x+ εν, t− ε2

2

)
− αu

(
y + εν, t− ε2

2

)∣∣∣∣ ≤ αωu(|x− y|)

and∣∣∣∣β ∫
Bνε

u

(
x+ h, t− ε2

2

)
dLn−1(h)− β

∫
Bνε

u

(
y + h, t− ε2

2

)
dLn−1(h)

∣∣∣∣
≤ β

∫
Bνε

∣∣∣∣u(x+ h, t− ε2

2

)
− u
(
y + h, t− ε2

2

)∣∣∣∣dLn−1(h)
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≤ βωu(|x− y|).

Thus, we get
|Aεu(x, t; ν)−Aεu(y, t; ν)| ≤ ωu(|x− y|).

Next, for any t, s > 0, we also calculate that∣∣∣∣αu(x+ εν, t− ε2

2

)
− αu

(
x+ εν, s− ε2

2

)∣∣∣∣ ≤ αωu(|t− s|1/2),

∣∣∣∣β ∫
Bνε

u

(
x+ h, t− ε2

2

)
dLn−1(h)− β

∫
Bνε

u

(
x+ h, s− ε2

2

)
dLn−1(h)

∣∣∣∣
≤ β

∫
Bνε

∣∣∣∣u(x+ h, t− ε2

2

)
− u
(
x+ h, s− ε2

2

)∣∣∣∣dLn−1(h)

≤ βωu(|t− s|1/2)

and hence
|Aεu(x, t; ν)−Aεu(x, s; ν)| ≤ ωu(|t− s|1/2).

Finally, for any ν, χ ∈ Sn−1,

W (x, t, ν)−W (x, t, χ)

= α

[
u

(
x+ εν, t− ε2

2

)
− u
(
x+ εχ, t− ε2

2

)]
+ β

[ ∫
Bνε

u

(
x+ h, t− ε2

2

)
dLn−1(h)−

∫
Bχε

u

(
x+ h, t− ε2

2

)
dLn−1(h)

]
.

Combining the above results, we see that

|W (x, t, ν)−W (x, t, χ)|
≤ αεωu(ε|ν − χ|)

+ β

∫
Bνε

∣∣∣∣u(x+ h, t− ε2

2

)
− u
(
x+ Ph, t− ε2

2

)∣∣∣∣dLn−1(h)

where P : ν⊥ → χ⊥ is a rotation satisfying |h− Ph| ≤ C|h||ν − χ|. Here, we
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check that∫
Bνε

∣∣∣∣u(x+ h, t− ε2

2

)
− u
(
x+ Ph, t− ε2

2

)∣∣∣∣dLn−1(h) ≤ ωu(|h− Ph|)

≤ ωu(Cε|ν − χ|).

Therefore, we obtain

|Aεuε(x, t; ν)−Aεuε(x, t;χ)| ≤ ωu(Cε|ν − χ|).

Now we can conclude the proof to combine above results.

For convenience, we write that

Tu(x, t) = (1− δε(x, t)) midrange
ν∈Sn−1

Aεu

(
x, t− ε2

2
; ν

)
+ δε(x, t)F (x, t).

(4.1.1)

Next we observe that the operator T preserves continuity and monotonicity.

Lemma 4.1.2. For any u ∈ C(Ωε,T ), Tu is also in C(Ωε,T ). Furthermore,
for any u, v ∈ C(Ωε,T ) with u ≤ v, it holds that

Tu ≤ Tv.

Proof. By the definition of T , we can check that u ≤ v implies Tu ≤ Tv
without difficulty.

Next we need to show that Tu ∈ C(Ωε,T ) if u ∈ C(Ωε,T ). When (x, t) ∈
Oε,T , we see that Tu = u = F ∈ C(Oε,T ) by assumption. We need to consider
the case of Iε,T and ΩT\Iε,T .

First assume that (x, t), (y, s) ∈ ΩT\Iε,T . Observe that∣∣midrange
ν∈Sn−1

Aεu(x, t; ν)−midrange
ν∈Sn−1

Aεu(y, s; ν)
∣∣

≤ 1

2

∣∣ sup
ν∈Sn−1

Aεu(x, t; ν)− sup
ν∈Sn−1

Aεu(y, s; ν)
∣∣

+
1

2

∣∣ inf
ν∈Sn−1

Aεu(x, t; ν)− inf
ν∈Sn−1

Aεu(y, s; ν)
∣∣.
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Since∣∣ sup
ν∈Sn−1

Aεu(x, t; ν)− sup
ν∈Sn−1

Aεu(y, s; ν)
∣∣ ≤ sup

ν∈Sn−1

|Aεu(x, t; ν)−Aεu(y, s; ν)|

and∣∣ inf
ν∈Sn−1

Aεu(x, t; ν)− inf
ν∈Sn−1

Aεu(y, s; ν)
∣∣ ≤ sup

ν∈Sn−1

|Aεu(x, t; ν)−Aεu(y, s; ν)|,

we get ∣∣midrange
ν∈Sn−1

Aεu(x, t; ν)−midrange
ν∈Sn−1

Aεu(y, s; ν)
∣∣

≤ sup
ν∈Sn−1

|Aεu(x, t; ν)−Aεu(y, s; ν)|

≤ ωu(d((x, t), (y, s))).

We used the result of Proposition 4.1.1 in the last inequality. Thus, Tu is
also continuous in ΩT\Iε,T .

When (x, t), (y, s) ∈ Iε,T ,∣∣(1−δε(x, t)) midrange
ν∈Sn−1

Aεu(x, t; ν)− (1− δε(y, s)) midrange
ν∈Sn−1

Aεu(y, s; ν)
∣∣

≤ (1− δε(x, t))
∣∣midrange

ν∈Sn−1

Aεu(x, t; ν)−midrange
ν∈Sn−1

Aεu(y, s; ν)
∣∣

+ |δε(x, t)− δε(y, s)
∣∣ · ∣∣midrange

ν∈Sn−1

Aεu(y, s; ν)
∣∣

≤ ωu(d((x, t), (y, s))) +
3

ε
||u||L∞(Ωε,T )d((x, t), (y, s))

because

|δε(x, t)− δε(y, s)| ≤
3

ε
d((x, t), (y, s)).

Similarly, we can also calculate

|δε(x, t)F (x, t)− δε(y, s)F (y, s)|

≤ ωF (d((x, t), (y, s))) +
3

ε
||F ||L∞(Γε,T )d((x, t), (y, s)).

Combining above results, we obtain the continuity of Tu in Iε,T .
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Finally, we need to check the coincidence of the function value on ∂Iε,T .
Observe that ∂Iε,T can be decomposed by two disjoint connected sets ∂pΩT

and ∂p(ΩT\Iε,T ) of Rn × R. Then we can observe that

lim
Oε,T3(y,s)→(x,t)

Tu(y, s) = lim
Iε,T3(y,s)→(x,t)

Tu(y, s) = Tu(x, t)

for any (x, t) ∈ ∂pΩT and

lim
ΩT \Iε,T3(y,s)→(x,t)

Tu(y, s) = lim
Iε,T3(y,s)→(x,t)

Tu(y, s) = Tu(x, t)

for any (x, t) ∈ ∂p(ΩT\Iε,T ) by using the above calculation. Thus we obtain
the continuity of Tu and the proof is finished.

Since T preserves continuity, we do not need to worry about the measur-
ability issue. Therefore, for any continuous function u, Tu is well-defined at
every point in ΩT .

Now we can obtain the existence and uniqueness of these functions.

Theorem 4.1.3. Let F ∈ C(Γε,T ). Then the bounded function uε satisfying
(4.0.1) with boundary data F exists and is unique.

Proof. We get the desired result via an argument similar to the proof of [52,
Theorem 5.2]. We can see the existence of these functions without difficulty
since the operator T is well-defined inductively for any continuous boundary
data.

For uniqueness, consider two functions u and v satisfying Tu = u, Tv = v
with boundary data F . We see that u(·, t) = v(·, t) when 0 < t ≤ ε2/2 by
definition of T . Then we can also get the same result when ε2/2 < t ≤ ε2

because past data of u and v still coincide. Repeating this process, we obtain
u(x, t) = v(x, t) for any (x, t) ∈ ΩT and hence the uniqueness is proved.

We look into the relation between functions satisfying (4.0.1) and values
for parabolic tug-of-war games here.

Theorem 4.1.4. The value functions of tug-of-war game with noise uI and
uII with payoff function F coincide with the function uε.

Proof. We need to deduce that

uε ≤ uI and uII ≤ uε

98



CHAPTER 4. REGULARITY FOR TIME-DEPENDENT TUG-OF-WAR

since uI ≤ uII by the definition of value functions.
First, we show the latter inequality. Let Z0 ∈ ΩT and denote by S0

II a
strategy for Player II such that

Aεuε(Zj; ν
II
j ) = inf

ν∈Sn−1
Aεuε(Zj; ν)

for j ≥ 0. Note that this S0
II exists since Aεuε is continuous on ν by Proposi-

tion 4.1.1. Measurability of such strategies can be shown by using [70, The-
orem 5.3.1].

Next we fix an arbitrary strategy SI for Player I. Define

Φ(c, x, t) =

{
uε(x, t) when c = 0,
F (x, t) when c = 1.

for any (x, t) ∈ Ωε,T . Then we have

EZ0

SI,S
0
II
[Φ(cj+1, Zj+1)|(c0, Z0), · · · , (cj, Zj)]

≤ 1− δε(Zj)
2

[
Aεuε(xj, tj+1; νI

j+1) + Aεuε(xj, tj+1; νII
j+1)

]
+ δε(Zj)F (Zj)

≤ (1− δε(Zj)) midrange
ν∈Sn−1

Aεuε(xj, tj+1; ν) + δε(Zj)F (Zj)

= Φ(cj, Zj).

Hence, we can see that Mk = Φ(ck, Zk) is a supermartingale in this case.
Since the game ends in finite steps, we can obtain

uII(Z0) = inf
SII

sup
SI

EZ0
SI,SII

[F (Zτ )] ≤ sup
SI

EZ0

SI,S
0
II
[F (Zτ )]

= sup
SI

EZ0

SI,S
0
II
[Φ(cτ+1, Zτ+1)] ≤ sup

SI

EZ0

SI,S
0
II
[Φ(c0, Z0)]

= uε(Z0)

by using optional stopping theorem.
Now we can also derive that uε ≤ uI by using a similar argument. Then

we get the desired result.
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4.2 Interior estimates
In this section, we prove interior Lipschitz regularity of game values. Since we
showed the relation between game values and (4.0.1) in the previous section,
we only need to investigate the properties of functions satisfying this DPP.

We first state our main theorem.

Theorem 4.2.1. Let Q̄2r ⊂ ΩT\Iε,T , 0 < α < 1 and ε > 0 be small. Suppose
that uε satisfies (4.0.1) with boundary data F ∈ L∞(Γε,T ). Then for any
x, z ∈ Br(0) and −r2 < t, s < 0,

|uε(x, t)− uε(z, s)| ≤ C||F ||L∞(Γε,T )(|x− z|+ |s− t|
1
2 + ε),

where C > 0 is a constant which only depends on r, α and n.

The proof of Theorem 4.2.1 is divided into two parts. In the first part, we
provide an estimate for the function uε with respect to t. Precisely, it shows
a relation between the oscillation of uε in time direction and the oscillation
in spatial direction. Next, we concentrate on proving regularity results with
respect to x. We first obtain Hölder type estimate and then turn to Lipschitz
estimate. Comparison arguments play a key role in the proof of the main
theorem.

4.2.1 Regularity with respect to time

In this subsection, we investigate regularity for the value function uε with
respect to t. The aim of this section is to prove Lemma 4.2.2 below. This
lemma provides some information about a relation between the oscillation in
a time slice and that in the whole cylinder.

We use a comparison argument in the proof of the lemma. We will first
find an appropriate function v̄ (v, respectively) which plays a similar role
as a supersolution (subsolution, respectively) in PDE theory. After that, we
will deduce the desired result by estimating the difference of those functions.
The method used here is motivated by [35, Lemma 4.3]. Our proof may be
regarded as a discrete version of this lemma.

From now on, we fix 0 < r < 1 and T > 0. Since we only consider interior
regularity, it is sufficient to show the regularity result in a cylinder Qr with
proper translation. We still use the notation ΩT after the translation.
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Lemma 4.2.2. Let Q̄2r ⊂ ΩT\Iε,T , −r2 < s < t < 0 and uε satisfies (4.0.1)
with boundary data F ∈ L∞(Γε,T ) for given 0 < α < 1. Then, for given ε > 0,
uε satisfies the estimate

|uε(x, t)− uε(x, s)| ≤ 18 sup
−r2<τ<0

osc
Λτ,ε

uε

for any x ∈ Br.

Proof. We set
A = sup

−r2<τ<0

osc
Λτ,ε

uε

and
v̄c(x, t) = c+ 7r−2At+ 2r−2A|x|2,

where c ∈ R. Define

c̄ = inf{c ∈ R : v̄c ≥ uε in Λ−r2,ε}

and we write v̄ = v̄c̄. Then for any η > 0, we can always choose (xη, tη) ∈
Λ−r2,ε so that

uε(xη, tη) ≥ v̄(xη, tη)− η.

In this case, there would be some accumulation points (x̄, t̄) ∈ Λ̄−r2,ε as
η → 0. Furthermore, x̄ must satisfy |x̄| ≤ r, since if not,

2A ≤ v̄(xη, tη)− v̄(0, tη) ≤ uε(xη, tη)− uε(0, tη) + η ≤ A+ η

for any η > 0, then it is a contradiction when A > 0.
Now we compare midrangeν∈Sn−1 A v̄(x, ν, t − ε2/2) with v̄(x, t). First,

observe that

midrange
ν∈Sn−1

A v̄

(
x, ν, t− ε2

2

)
≤ αmidrange

ν∈Sn−1

v̄

(
x+εν, t− ε2

2

)
+β sup

ν∈Sn−1

∫
B
e1
ε

v̄

(
x+ Pνh, t−

ε2

2

)
dLn−1(h)

for some Pν ∈ Rν . We see that∫
B
e1
ε

|x+ Pνh|2dLn−1(h) =

∫
Bνε

(|x|2 + 2〈x, Pνh〉+ |Pνh|2)dLn−1(h)
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≤ |x|2 + ε2

for any ν ∈ Sn−1. Next we need to show that

midrange
ν∈Sn−1

|x+ εν|2 ≤ |x|2 + ε2.

Observe that

sup
κ∈Bε
|x+ κ|2 = sup

ν∈Sn−1

sup
−ε≤a≤ε

|x+ aν|2

= sup
ν∈Sn−1

sup
−ε≤a≤ε

(a2 + 2a〈x, ν〉+ |x|2).

Since a2 + 2a〈x, ν〉+ |x|2 is convex in a, we observe that

sup
−ε≤a≤ε

(a2 + 2a〈x, ν〉+ |x|2) = ε2 + 2ε|〈x, ν〉|+ |x|2.

We also see that there is a unit vector µ so that

sup
ν∈Sn−1

(ε2 + 2ε|〈x, ν〉|+ |x|2) = |x+ εµ|2,

as Sn−1 is compact. Then we get

midrange
ν∈Sn−1

|x+ εν|2 ≤ 1

2
(|x+ εµ|2 + |x− εµ|2) = |x|2 + ε2.

Therefore, we discover

midrange
ν∈Sn−1

A v̄

(
x, ν, t− ε2

2

)
≤ c̄+ 7r−2A

(
t− ε2

2

)
+ 2r−2A{α(|x|2 + ε2) + β(|x|2 + ε2)}

≤ c̄+ 7r−2At+ 2r−2A|x|2 − 3

2
r−2Aε2 = v̄(x, t)− 3

2
r−2Aε2.

Thus,

midrange
ν∈Sn−1

A v̄

(
x, ν, t− ε2

2

)
≤ v̄(x, t) (4.2.1)
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for all (x, t) ∈ Qr.
Let M = supQr,ε\Λ−r2,ε(uε − v̄) and suppose M > 0. In this case, we see

that uε ≤ v̄+M in Qr,ε. For any η′ > 0, we can choose a point (xη′ , tη′) ∈ Qr,ε

such that
uε(xη′ , tη′) > v̄(xη′ , tη′) +M − η′.

We have to show that (xη′ , tη′) must be in Q̄r for any sufficiently small η′ > 0.
By the definition of M , tη′ > −r2. Note that we cannot assert this when
M ≤ 0. On the other hand, for any |x| ≥ r,

v̄(x, t)− v̄(0, t) ≥ 2A.

We also observe that uε(x, t)− uε(0, t) ≤ A. Hence it is always true that

(uε − v̄)(x, t) ≤ (uε − v̄)(0, t).

Thus, (xη′ , tη′) ∈ Q̄r. Then we obtain that

midrange
ν∈Sn−1

A

{
v̄

(
xη′ , ν, tη′ −

ε2

2

)
+M

}
≥ midrange

ν∈Sn−1

A uε

(
xη′ , ν, tη′ −

ε2

2

)
= uε(xη′ , tη′)

> v̄(xη′ , tη′) +M − η′.

In the first inequality, we have used that v̄ +M ≥ uε in Qr,ε. Therefore,

midrange
ν∈Sn−1

A v̄

(
xη′ , ν, tη′ −

ε2

2

)
> v̄(xη′ , tη′)− η′ (4.2.2)

for any η′ > 0. We combine (4.2.1) with (4.2.2) to discover that A = 0, and
so v̄ = uε = c̄. If uε is not a constant function, then we have a contradiction
to A > 0. Hence M ≤ 0 and therefore uε ≤ v̄ in Qr,ε.

On the other hand, consider

v(x, t) = c− 7r−2At− 2r−2A|x|2,

where
c = sup{c ∈ R : vc ≤ uε in Λ−r2,ε}.

Following the above procedure, we can show that uε ≥ v in Qr,ε. For arbitrary
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η > 0, we can choose (x̄η, t̄η), (xη, tη) ∈ Λ̄−r2,ε such that

uε(x̄η, t̄η) ≥ v̄(x̄η, t̄η)− η

and
uε(xη, tη) ≤ v̄(xη, tη) + η.

Then
v̄(x̄η, t̄η)− v(xη, tη) ≤ osc

Λt,ε
uε + 2η,

and hence
c̄− c ≤ 3A+

7

2
r−2Aε2 ≤ 7A.

Therefore, we obtain

osc
Qr

uε ≤ sup
Qr

v̄ − inf
Qr
v ≤ c̄− c+ 7A+ 4A ≤ 18A.

This completes the proof.

Remark 4.2.3. We showed in the proof of Lemma 4.2.2 that the oscillation
of uε in time direction is uniformly estimated by the oscillation of uε in spatial
direction on (ε2/2)-time slices. Note that an (ε2/2)-time slice Λt,ε shrinks to
Br × {t} as ε → 0 for any t. Thus, we can see that regularity for uε with
respect to t almost depends on the regularity with respect to x provided ε is
small enough.

4.2.2 Hölder regularity

The aim of this subsection is to obtain a Hölder type estimate for uε. This
result will be essentially used to prove Lipschitz regularity with respect to x
in the next section.

We will use a comparison argument arising from game interpretations
for obtaining regularity results in spatial direction. This argument plays an
important role in obtaining the desired estimate. Several regularity results
for functions satisfying various time-independent DPPs were proved by cal-
culations based on this argument (see [50, 2, 3]). It was proved in [62] that
functions satisfying another time-dependent DPP have Hölder regularity. Our
proof differs from that in [62] due to the difference of the setting of DPP.

Our argument depends on the distance between two points. If two points
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are relatively far away, we will consider ‘multidimensional DPP’(For a more
detailed explanation, see [50]). We divide the argument into two subcases.
For each case, we will get the desired estimate by choosing proper behavior
of an auxiliary function. In addition, we can derive our estimate by direct
calculation when two points are close enough.

Lemma 4.2.4. Let B̄2r(0) × [−2r2 − ε2/2, ε2/2] ⊂ ΩT\Iε,T , 0 < α < 1
and ε > 0 is small. Suppose that uε satisfies (4.0.1) with boundary data
F ∈ L∞(Γε,T ). Then for any 0 < δ < 1,

|uε(x, t)− uε(z, s)| ≤ C||uε||L∞(Ωε,T )(|x− z|δ + εδ),

whenever x, z ∈ Br(0), −r2 < t < 0, |t− s| < ε2/2 and C > 0 is a constant
which only depends on r, δ, α and n.

Proof. First, we can assume that ||uε||L∞(Ωε,T ) ≤ rδ by scaling. Let us con-
struct an auxiliary function. Define

f1(x, z) = C|x− z|δ +M |x+ z|2, (4.2.3)

f2(x, z) =

{
C2(N−i)εδ if (x, z) ∈ Ai
0 if |x− z| > Nε/10

(4.2.4)

and

g(t, s) = max{M(|t− r2|δ/2 − rδ),M(|s− r2|δ/2 − rδ)} (4.2.5)

where N = N(r, δ, α, n) ∈ N, C = C(r, δ, α, n) > 1 and M = M(r) > 1 are
constants to be determined, and

Ai = {(x, z) ∈ R2n : (i− 1)ε/10 < |x− z| ≤ iε/10}

for i = 0, 1, ..., N .
Now we define

H(x, z, t, s) = f1(x, z)− f2(x, z) + g(t, s). (4.2.6)

We first show that

|uε(x, t)− uε(z, s)| ≤ C(|x− z|δ + εδ)
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for every x, z (x 6= z) ∈ B2r(0), −2r2 < t < 0 and |t− s| < ε2/2. To this end,
choose M sufficiently large so that

uε(x, t)− uε(z, s)−H(x, z, t, s) ≤ C2Nεδ + Cεδ in Σ2\Σ1.

So, if we prove that

uε(x, t)− uε(z, s)−H(x, z, t, s) ≤ C2Nεδ + Cεδ in Σ1\Υ (4.2.7)

where Υ = {(x, z, t, s) ∈ R2n × R2 : x = z, −r2 < t < 0, |t − s| < ε2/2},
then it is shown that Lemma 4.2.4 holds in Σ2\Υ. Since we can obtain this
estimate for uε(z, s)− uε(x, t), we have

|uε(x, t)− uε(z, s)| ≤ C2Nεδ + Cεδ +H(x, z, t, s) in Σ2\Υ.

Now we can assume that z = −x by proper scaling and transformation, and
then we get

|uε(x, t)− uε(−x, s)| ≤ C|x|δ + C ′εδ

for some universal constant C ′ > 0. It gives the result of Lemma 4.2.4.
Suppose that (4.2.7) is not true. Then

K := sup
(x,z,t,s)∈Σ1\Υ

(uε(x, t)− uε(z, s)−H(x, z, t, s)) > C2Nεδ + Cεδ. (4.2.8)

Let η > 0. We can choose (x′, z′, t′, s′) ∈ Σ1\Υ such that

uε(x
′, t′)− uε(z′, s′)−H(x′, z′, t′, s′) ≥ K − η.

Recall the DPP (4.0.1). Using this together with the previous inequality,
we know that

K ≤ uε(x
′, t′)− uε(z′, s′)−H(x′, z′, t′, s′) + η

≤ 1

2

[
sup

νx′ ,νz′∈Sn−1

{
A uε

(
x′, νx′ , t

′ − ε2

2

)
−A uε

(
z′, νz′ , s

′ − ε2

2

)}
+ inf

νx′ ,νz′∈Sn−1

{
A uε

(
x′, νx′ , t

′ − ε2

2

)
−A uε

(
z′, νz′ , s

′ − ε2

2

)}]
−H(x′, z′, t′, s′) + 2η.
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Let

[I] =
1

2
sup

νx′ ,νz′∈Sn−1

{
A uε

(
x′, νx′ , t

′ − ε2

2

)
−A uε

(
z′, νz′ , s

′ − ε2

2

)}
and

[II] =
1

2
inf

νx′ ,νz′∈Sn−1

{
A uε

(
x′, νx′ , t

′ − ε2

2

)
−A uε

(
z′, νz′ , s

′ − ε2

2

)}
.

We see that

uε(x
′, t′)− uε(z′, s′)

= midrange
νx′∈Sn−1

A uε

(
x′, νx′ , t

′ − ε2

2

)
−midrange

νz′∈Sn−1

A uε

(
z′, νz′ , s

′ − ε2

2

)
≤ [I] + [II] + η.

By the definition of A , we see that

[I] =
1

2
sup

νx′ ,νz′∈Sn−1

[
α

{
uε

(
x+ ενx′ , t

′ − ε2

2

)
− uε

(
z′ + ενz′ , s

′ − ε2

2

)}
+ β

∫
B
νx′
ε

{
uε

(
x′ + Pνx′h, t

′ − ε2

2

)
− uε

(
z′ + Pνz′h, s

′ − ε2

2

)}
dLn−1(h)

]
.

Now we estimate [I](and [II]) by H-related terms. Let

[III] = αH(x+ ενx, z+ ενz, t, s) + β

∫
B
e1
ε

H(x+Pνxh, z+Pνzh, t, s)dLn−1(h).

Recall f(x, z) = f1(x, z)− f2(x, z) and H(x, z, t, s) = f(x, z) + g(t, s). Then
we see that

H(x+ ενx, z + ενz, t, s) = f(x+ ενx, z + ενz) + g(t, s)

and ∫
B
e1
ε

H(x+ Pνxh, z + Pνzh, t, s)dLn−1(h)
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=

∫
B
e1
ε

{
f(x+ Pνxh, z + Pνzh) + g(t, s)

}
dLn−1(h)

=

∫
B
e1
ε

f(x+ Pνxh, z + Pνzh)dLn−1(h) + g(t, s).

Then we can write [III] as

αf(x+ ενx, z + ενz) + β

∫
B
e1
ε

f(x+ Pνxh, z + Pνzh)dLn−1(h) + g(t, s).

Here we define an operator T as

Tf(x, z, Pνx , Pνz)

= αf(x+ ενx, z + ενz) + β

∫
B
e1
ε

f(x+ Pνxh, z + Pνzh)dLn−1(h).

Since

uε(y, t)− uε(ỹ, t̃) ≤ K +H(y, ỹ, t, t̃) = K + f(y, ỹ) + g(t, t̃) (4.2.9)

by the definition of K, we obtain that

[I] ≤ 1

2
sup

νx′ ,νz′∈Sn−1

[
α

{
K +H

(
x′ + ενx′ , z

′ + ενz′ , t
′ − ε2

2
, s′ − ε2

2

)}
+ β

∫
B
e1
ε

{
K +H

(
x′ + Pνx′h, z

′ + Pνz′h, t
′ − ε2

2
, s′ − ε2

2

)}
dLn−1(h)

]
≤ 1

2

[
K + sup

νx′ ,νz′∈Sn−1

Tf(x′, z′, Pνx′ , Pνz′ ) + g

(
t′ − ε2

2
, s′ − ε2

2

)]
.

Next we have to estimate [II]. Choose ρx′ , ρz′ ∈ Sn−1 so that

inf
νx′ ,νz′∈Sn−1

Tf(x′, z′, Pνx′ , Pνz′ ) ≥ Tf(x′, z′, Pρx′ , Pρz′ )− 2η.

Then we calculate that

[II] ≤ 1

2

[
α

{
uε

(
x+ ερx′ , t

′ − ε2

2

)
− uε

(
z′ + ερz′ , t

′ − ε2

2

)}
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+ β

∫
B
e1
ε

{
uε

(
x′ + Pρx′h, t

′ − ε2

2

)
− uε

(
z′ + Pρz′h, t

′ − ε2

2

)}
dLn−1(h)

]
≤ 1

2

[
K + αf(x′ + ερx′ , z

′ + ερz′)

+ β

∫
B
e1
ε

f(x′ + Pρx′h, z
′ + Pρz′h)dLn−1(h) + g

(
t′ − ε2

2
, s′ − ε2

2

)]
≤ 1

2

[
K + Tf(x′, z′, Pρx′ , Pρz′ ) + g

(
t′ − ε2

2
, s′ − ε2

2

)]
≤ 1

2

[
K + inf

νx′ ,νz′∈Sn−1
Tf(x′, z′, Pνx′ , Pνz′ ) + g

(
t′ − ε2

2
, s′ − ε2

2

)]
+ η.

We used (4.2.9) again in the second inequality.
Combining the estimate for [I] and [II], we obtain

K ≤ uε(x
′, t′)− uε(z′, s′)−H(x′, z′, t′, s′) + η

≤ K + midrange
νx′ ,νz′∈Sn−1

Tf(x′, z, Pνx′ , Pνz′ ) + g

(
t′ − ε2

2
, s′ − ε2

2

)
−H(x′, z′, t′, s′) + 2η.

Since η is arbitrarily chosen, if we show that

midrange
νx′ ,νz′∈Sn−1

Tf(x′, z′, Pνx′ , Pνz′ ) + g

(
t′ − ε2

2
, s′ − ε2

2

)
< H(x′, z′, t′, s′),

that is,

midrange
νx′ ,νz′∈Sn−1

Tf(x′, z′,Pνx′ , Pνz′ )− f(x′, z′)

< g(t′, s′)− g
(
t′ − ε2

2
, s′ − ε2

2

)
,

(4.2.10)

then the proof is completed.
Now we need to estimate (4.2.10). Without loss of generality, we assume

that t′ ≥ s′. Then we see that

g(t′, s′)−g
(
t′ − ε2

2
, s′ − ε2

2

)
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= M(|s′ − r2|δ/2 − rδ)−M
(∣∣∣∣s′ − ε2

2
− r2

∣∣∣∣δ/2 − rδ)
= M |s′ − r2|δ/2 −M

∣∣∣∣s′ − ε2

2
− r2

∣∣∣∣δ/2.
Note that

M |s′ − r2|δ/2 −M
∣∣∣∣s′ − ε2

2
− r2

∣∣∣∣δ/2 ≥M

{
rδ −

(
r2 +

ε2

2

) δ
2
}

and (
r2 +

ε2

2

) δ
2

≤ rδ +

(
ε2

2

) δ
2

≤ rδ + εδ

for 0 < δ ≤ 1. We also deduce that

M |s′ − r2|δ/2 −M
∣∣∣∣s′ − ε2

2
− r2

∣∣∣∣δ/2 ≥ −M δ

2
|s′ − r2|

δ
2
−1 ε

2

2
≥ −Mr

δ
2
−1ε2,

since h(t) = |t|δ/2 is concave.
Therefore, we see that

g(t′, s′)− g
(
t′ − ε2

2
, s′ − ε2

2

)
≥ min{−Mεδ,−MC̃(r)ε2} =: σ.

To establish (4.2.10), we will distinguish several cases. And from now
on, we will write (x, z, t, s) instead of (x′, z′, t′, s′) in our calculations for
convenience.

Case |x− z| > Nε/10

In this case, f(x, z) = f1(x, z) as f2(x, z) = 0. Thus we can write (4.2.10) as

midrange
νx,νz∈Sn−1

Tf1(x, z, Pνx , Pνz)− f1(x, z) < σ. (4.2.11)

For any η > 0, we can choose some vectors νx, νz ∈ Sn−1 and related rotations
Pνx ∈ Rνx , Pνz ∈ Rνz so that

sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz) ≤ Tf1(x, z, Pνx , Pνz) + η.
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Hence if we find some unit vectors µx, µz and rotations Pµx , Pµz such that

midrange
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)

≤ 1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, Pµx , Pµz) + η

}
,

then we obtain (4.2.11) by showing

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, Pµx , Pµz)

}
− f1(x, z) < σ − η. (4.2.12)

Denote v = x−z
|x−z| , yV =

〈
y,v
〉
and yV⊥ = y − yV v. Then y is orthogonally

decomposed into yV v and yV⊥ . By using Taylor expansion, we know that for
any hx and hz,

f1(x+ εhx, z + εhz)

= f1(x, z) + Cδ|x− z|δ−1(hx − hz)V ε+ 2M〈x+ z, hx + hz〉ε

+
1

2
Cδ|x− z|δ−2

{
(δ − 1)(hx − hz)2

V + |(hx − hz)V ⊥|2
}
ε2

+M |hx + hz|2ε2 + Ex,z(εhx, εhz),

where Ex,z(hx, hz) is the second-order error term. Now we estimate the error
term by Taylor’s theorem as follows:

|Ex,z(εhx, εhz)| ≤ C|(εhx, εhz)t|3(|x− z| − 2ε)δ−3

if |x− z| > 2ε. Thus if we choose N ≥ 100C
δ

, we get

|Ex,z(εhx, εhz)| ≤ 10|x− z|δ−2ε2.

Now we establish (4.2.11). We first consider a small constant 0 < Θ < 4 to
be determined later and we divide again this case into two separate subcases.
In the first subsection, we consider the case when νx, νz are in almost opposite
directions and nearly parallel to the vector x − z. Otherwise, it is covered
in the second subsection. In each case, we will choose proper rotations and
investigate changes in the value of the auxiliary function f1. The concavity
of f1 plays a key role in both cases.
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Case (νx − νz)2
V ≥ (4−Θ)

Observe that

midrange
νx,νz∈Sn−1

Tf1(x, z, Pνx , Pνz)

≤ 1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z,−Pνx ,−Pνz) + η

}
and

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z,−Pνx ,−Pνz)

}
− f1(x, z)

=
α

2

{
f1(x+ ενx, z + ενz) + f1(x− ενx, z − ενz)− 2f1(x, z)

}
+
β

2

{∫
B
e1
ε

f1(x+ Pνxh, z + Pνzh)dLn−1(h)

+

∫
B
e1
ε

f1(x− Pνxh, z − Pνzh)dLn−1(h)− 2f1(x, z)

}
.

We first estimate the α-term. Using the Taylor expansion of f1 and the above
estimates, we get

f1(x+ ενx, z + ενz) + f1(x− ενx, z − ενz)− 2f1(x, z)

= Cδ|x− z|δ−2
{

(δ − 1)(νx − νz)2
V + |(νx − νz)V ⊥ |2

}
ε2 + 2M |νx + νz|2ε2

+ Ex,z(ενx, ενz) + Ex,z(−ενx,−ενz)
≤ Cδ|x− z|δ−2{(δ − 1)(4−Θ) + Θ}ε2 + 2M(2ε)2 + 20|x− z|δ−2ε2

≤
[
Cδ|x− z|δ−2{(δ − 1)(4−Θ) + Θ}+ 8M + 20|x− z|δ−2

]
ε2.

And note that

|Pνxh− Pνzh| ≤ |νx + νz|, (4.2.13)

for some proper Pνx , Pνz and for any h ∈ Be1
1 (see [3, Appendix A]), to see

that∫
B
e1
ε

f1(x+ Pνxh, z + Pνzh)dLn−1(h)− f1(x, z)
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=

∫
B
e1
ε

[
Cδ|x− z|δ−1(Pνxh− Pνzh)V + 2M〈x+ z, Pνxh+ Pνzh〉

+
C

2
|x− z|δ−2

{
(δ − 1)(Pνxh− Pνzh)2

V + |(Pνxh− Pνzh)V ⊥ |2
}

+M |Pνxh+ Pνzh|2 + Ex,z(hx, hz)
]
dLn−1(h)

=
1

2

∫
B
e1
ε

[
C|x− z|δ−2

{
(δ − 1)(Pνxh− Pνzh)2

V + |(Pνxh− Pνzh)V ⊥|2
}

+ 2M |Pνxh+ Pνzh|2 + 2Ex,z(hx, hz)
]
dLn−1(h)

≤ 1

2

{
|x− z|δ−2(CΘ + 20) + 8M

}
ε2.

The last inequality follows from |νx + νz|2 ≤ Θ. In the same way, it is also
obtained ∫

B
e1
ε

f1(x− Pνxh,z − Pνzh)dLn−1(h)− f1(x, z)

≤ 1

2

{
|x− z|δ−2(CΘ + 20) + 8M

}
ε2.

These estimates give

1

2

{
Tf1(x, z, νx, νz) + Tf1(x, z,−νx,−νz)

}
− f1(x, z)

≤ α

2

[
Cδ|x− z|δ−2{(δ − 1)(4−Θ) + Θ}+ 8M + 20|x− z|δ−2

]
ε2

+
β

2

{
CΘ|x− z|δ−2 + 8M + 20|x− z|δ−2

}
ε2

≤
[
C

2

{
Θ + αδ(δ − 1)(4−Θ)

}
+ 10

]
|x− z|δ−2ε2 + 4Mε2.

Observe that Θ + αδ(δ − 1)(4− Θ) < 0 if Θ < 4αδ(1− δ)/{1− αδ(δ − 1)}.
Then we can choose sufficiently large C depending only on r, δ, α and n so
that

midrange
νx,νz∈Sn−1

Tf1(x, z, Pνx , Pνz)− f1(x, z) < −MC̃ε2.
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Thus, we get (4.2.11).

Case (νx − νz)2
V ≤ (4−Θ)

It is clear that |νx− νz|V < 2−Θ/4 in this case. Furthermore, we check that

midrange
νx,νz∈Sn−1

Tf1(x, z, Phx , Phz)

≤ 1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
+ η.

(4.2.14)

Now we estimate the right hand side. By the DPP, it can be written as

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
− f1(x, z)

=
α

2

{
f1(x+ ενx, z + ενz) + f1(x− εv, z + εv)− 2f1(x, z)

}
+
β

2

{∫
B
e1
ε

f1(x+ Pνxh, z + Pνzh)dLn−1(h)

+

∫
Be1ε

f1(x+ P−vh, z + Pvh)dLn−1(h)− 2f1(x, z)

}
.

We will continue in a similar way to the previous case. For the α-term, we
deduce that

f1(x+ ενx, z + ενz) + f1(x− εv, z + εv)− 2f1(x, z)

=
1

2

[
Cδ|x− z|δ−1{(νx − νz)V − 2}ε+ 2M〈x+ z, νx + νz〉ε

+
C

2
δ|x− z|δ−2{(δ − 1)((νx − νz)2

V ε
2 + (2ε)2) + |(νx − νz)V ⊥ |2ε2}

+ 4Mε2 +M |νx + νz|2ε2 + Ex,z(ενx, ενz) + Ex,z(−εv, εv)

]
≤ 1

2

{
−Θ

4
Cδ|x− z|δ−1ε+8Mεr+2Cδ|x− z|δ−2ε2+20|x− z|δ−2ε2+2Mε2

}
.

Then we see that

2Cδ|x− z|δ−2ε2 + 20|x− z|δ−2ε2 + 2Mε2
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≤ 10

N
(2Cδ + 20 + 2M diam(Ω)2−δ)|x− z|δ−1ε

≤ δ2|x− z|δ−1ε

for sufficiently large C and N ≥ 100C/δ , since |x − z| > Nε/10 and Ω is
bounded. Thus,

f1(x+ νx, z + νz) + f1(x− εv, z + εv)− 2f1(x, z)

≤
{
δ

2
|x− z|δ−1

(
δ − CΘ

4

)
+ 4Mr

}
ε.

Next, we estimate the β-term. By a direct calculation, we see that∫
B
e1
ε

{
f1(x+ Pνxh, z + Pνzh) + f1(x+ P−vh, z + Pvh)− 2f1(x, z)

}
dLn−1(h)

=

∫
B
e1
ε

{f1(x+ Pνxh, z + Pνzh)− f1(x, z)}dLn−1(h)

+

∫
B
e1
ε

{f1(x+ P−vh, z + Pvh)− f1(x, z)}dLn−1(h)

≤
∫
B
e1
ε

[
C

2
δ|x− z|δ−2

{
(δ − 1)(Pνxh− Pνzh)2

V + |(Pνxh− Pνzh)V ⊥|2
}

+M |Pνxh+ Pνzh|2 + Ex,z(hx, hz)
]
dLn−1(h)

+

∫
B
e1
ε

[
C

2
δ|x− z|δ−2(2h)2 + Ex,z(−εv, εv)

]
dLn−1(h)

≤ Cδ|x− z|δ−2(2ε)2 +M(2ε)2 + 20|x− z|δ−2ε2,

we have used (4.2.13) for the last inequality. Now we observe that

Cδ|x− z|δ−2(2ε)2 +M(2ε)2 + 20|x− z|δ−2ε2 ≤ 2δ2|x− z|δ−1ε.

Therefore β-term is estimated by 2δ2|x− z|δ−1ε.
Combining these estimates, we conclude

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
− f1(x, z)

≤ α

2

{
δ

2
|x− z|δ−1

(
δ − CΘ

4

)
+ 4Mr

}
ε+ βδ2|x− z|δ−1ε
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≤ −MC̃ε2

for sufficiently large C = C(r, δ, α, n). Combining this with (4.2.14), we ob-
tain (4.2.10).

Case 0 < |x− z| ≤ Nε/10

We observe that

|f1(x+ hx, z + hz)− f1(x, z)|
= C(|x− z + hx − hz|δ − |x− z|δ) +M(|x+ z + hx + hz|2 − |x+ z|2)

≤ C|hx − hz|δ + 2M |x+ z| |hx + hz|+M |hx + hz|2

≤ 2Cεδ + 8Mrε+ 4Mε2

≤ 3Cεδ

for any x, z ∈ Br and hx, hz ∈ Bε if C = C(r, δ) is sufficiently large. Therefore,
we see that

sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− f1(x, z)

= sup
hx,hz∈Sn−1

[
α{f1(x+ hx, z + hz)− f1(x, z)}+

β

∫
B
e1
ε

{f1(x+ Phxh, z + Phzh)− f1(x, z)}dLn−1(h)

]
≤ 3αCεδ + 3βCεδ = 3Cεδ

and

sup
hx,hz∈Sn−1

Tf(x, z, Phx , Phz) = sup
hx,hz∈Sn−1

T (f1 − f2)(x, z, Phx , Phz)

≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz).
(4.2.15)

By the assumption, we can find i ∈ {1, 2, · · · , N} such that

(i− 1)
ε

10
< |x− z| ≤ i

ε

10
.
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We deduce that

inf
hx,hz∈Sn−1

Tf(x, z, Phx , Phz)

≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− sup
hx,hz∈Sn−1

Tf2(x, z, Phx , Phz)

≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− αC2(N−i+1)εδ

= sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− α
(
C2 − 2

α

)
C2(N−i)εδ − 2C2(N−i)εδ

≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− 2f2(x, z)− 8Cεδ.

The last inequality is obtained if C is large. Therefore, we calculate that

midrange
νx,νz∈Sn−1

Tf(x, z, Phx , Phz) ≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− f2(x, z)− 4Cεδ

≤ f1(x, z) + 3Cεδ − f2(x, z)− 4Cεδ

≤ f(x, z)− Cεδ,

and then we get (4.2.10) for choosing C = C(r, δ, α, n) sufficiently large.

Case |x− z| = 0

According to the results in the previous sections, we observe that

|uε(x, t)− uε(z, s)| ≤ C1||uε||L∞(Ωε,T )(|x− z|δ + εδ),

for any x, z (x 6= z) ∈ Br(0), −r2 < t < 0, |t − s| < ε2/2 and some C1 =
C1(r, δ, α, n) > 0.

Fix x ∈ Br(0) and t, s ∈ (−r2, 0) with |t− s| < ε2/2. Then we can choose
a point y ∈ Bε(x) and deduce that

|uε(x, t)− uε(x, s)| ≤ |uε(x, t)− uε(y, s)|+ |uε(y, s)− uε(x, s)|
≤ C1||uε||L∞(Ωε,T )(|x− y|δ + εδ)

≤ 2C1||uε||L∞(Ωε,T )ε
δ.

Now set C = 2C1. Then we can conclude the proof of this lemma.
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For any x ∈ Br and −r2 < s < t < 0, consider a cylinder B√t−s(x)× [s, t].
Applying Lemma 4.2.4, we find that

osc
B√t−s(x)×

(
τ− ε2

2
,τ
)uε ≤ C(r, δ, α, n)||uε||L∞(Ωε,T )(|t− s|

δ
2 + εδ)

for any τ ∈ (s, t). Then we obtain the following estimate

|uε(x, t)− uε(x, s)| ≤ C(r, δ, α, n)||uε||L∞(Ωε,T )(|t− s|
δ
2 + εδ)

by virtue of Lemma 4.2.2.
Combining this and Lemma 4.2.4, we get the desired regularity.

Theorem 4.2.5. Let Q̄2r ⊂ ΩT\Iε,T , 0 < δ, α < 1 and ε > 0 is small.
Suppose that uε satisfies (4.0.1) with boundary data F ∈ L∞(Γε,T ). Then for
any x, z ∈ Br(0) and −r2 < t, s < 0,

|uε(x, t)− uε(z, s)| ≤ C||uε||L∞(Ωε,T )(|x− z|δ + |s− t|
δ
2 + εδ),

where C > 0 is a constant which only depends on r, δ, α and n.

4.2.3 Lipschitz regularity

We will prove Lipschitz type regularity for the function uε in this subsection.
In the previous section, we utilized the concavity on the distance of two
points of the auxiliary function to get the result. In order to prove Lipschitz
estimate, the auxiliary function is also needed to have this property. However,
we no longer have the strong concavity that was helpful in the proof there.
Therefore, we need to build the proof in a different manner in several places.

For this reason, we will construct other (concave) auxiliary function for
proving Lipschitz estimate. This causes some difficulties compared to the
Hölder case. As in the proof of Lemma 4.2.4, we will distinguish two subcases.
More delicate calculations are needed when two points are sufficiently far
apart. Note that we will exploit the Hölder regularity result here. In the case
that two points are sufficiently close, the proof is quite similar to the previous
section.

Lemma 4.2.6. Let B̄2r(0) × [−2r2 − ε2/2, ε2/2] ⊂ ΩT\Iε,T , 0 < α < 1
and ε > 0 is small. Suppose that uε satisfies (4.0.1) with boundary data
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F ∈ L∞(Γε,T ). Then,

|uε(x, t)− uε(z, s)| ≤ C||uε||L∞(Ωε,T )(|x− z|+ ε),

whenever x, z ∈ Br(0), −r2 < t < 0 and |t − s| < ε2/2 and C > 0 is a
constant which only depends on r, α and n.

Proof. We can expect that |x− z| will play the same role as f1 in the Hölder
case. But for a Lipschitz type estimate, we cannot deduce the desired result
by using that function |x− z|. Therefore, we need to define a new auxiliary
function ω : [0,∞)→ [0,∞). First define

ω(t) = t− ω0t
γ 0 ≤ t ≤ ω1 := (2γω0)−1/(γ−1),

where γ ∈ (1, 2) is a constant and ω0 > 0 will be determined later. Observe
that

ω′(t) = 1− γω0t
γ−1 ∈ [1/2, 1] for 0 ≤ t ≤ ω1

and
ω′′(t) = −γ(γ − 1)ω0t

γ−2 < 0 for 0 ≤ t ≤ ω1.

Then we can construct ω to be increasing, strictly concave and C2 in (0,∞).
Assume that ||uε||L∞(Ωε,T ) ≤ r by scaling as in the previous section, and

we define
f1(x, z) = Cω(|x− z|) +M |x+ z|2.

Consider the functions f2 and g for δ = 1 as (4.2.4) and (4.2.5), respectively.
Now we set again the auxiliary function H by

H(x, z, t, s) = f1(x, z)− f2(x, z) + g(t, s)

and let
f(x, z) = f1(x, z)− f2(x, z).

As in the previous section, we will first deduce that

|uε(x, t)− uε(z, s)| ≤ C(|x− z|+ ε) in Σ2\Υ.

We can choose M sufficiently large so that

uε(x, t)− uε(z, s)−H(x, z, t, s) ≤ C2Nε+ Cε in Σ2\Σ1.
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Thus, for proving the lemma, it is sufficient to show that

uε(x, t)− uε(z, s)−H(x, z, t, s) ≤ C2Nε+ Cε in Σ1\Υ.

Suppose not. Then

K := sup
(x,z,t,s)∈Σ1\Υ

(uε(x, t)− uε(z, s)−H(x, z, t, s)) > C2Nε+ Cε.

In this case, we can choose (x′, z′, t′, s′) ∈ Σ1\Υ such that

uε(x
′, t′)− uε(z′, s′)−H(x′, z′, t′, s′)) ≥ K − η (4.2.16)

for any η > 0.
Similarly as in Section 4.2.2, we need to establish (4.2.10) in order to prove

Lemma 4.2.6. The only difference is the right-hand side of the inequality. In
this case, it is sufficient to deduce that the left-hand side of (4.2.10) is less
than σ = min{−Mε,−MC̃ε2}, where C̃ only depends on r.

We use again the notation (x, z, t, s) instead of (x′, z′, t′, s′).

Case |x− z| > Nε/10

For the same reason as in the previous section, we shall deduce (4.2.11). To
do this, it is sufficient to show (4.2.12) for any η > 0 and some Pνx ∈ Rνx ,
Pνz ∈ Rνz .

Now we calculate the Taylor expansion of f1. We see

f1(x+ εhx, z + εhz)− f1(x, z)

≤ Cω′(|x− z|)(hx − hz)V ε+ 2M〈x+ z, hx + hz〉ε

+
1

2
Cω′′(|x− z|)(hx − hz)2

V ε
2 +

1

2
C
ω′(|x− z|)
|x− z|

|(hx − hz)V ⊥|2ε2

+ (4M + 10|x− z|γ−2)ε2

(4.2.17)

for any hx, hz ∈ Rn. Then we check that

|Ex,z(hx, hz)| ≤ C|(hx, hz)t|3(|x− z| − 2ε)γ−3 ≤ C|(hx, hz)t|3(|x− z| − 2ε)γ−3

if |x − z| > 2ε and hx, hz ∈ Bε, because for the third derivatives it holds
D3

(x,z)ω(|x − z|) ≤ C|x − z|γ−3 for some constant C > 0. Thus if we choose
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N ≥ 100C
δ

, we get
|Ex,z(hx, hz)| ≤ 10|x− z|γ−2ε2.

For estimating α-term in Tf1(x, z, Pνx , Pνz), we can use (4.2.17) directly.
On the other hand, more observations about Pνx , Pνz are needed to estimate
β-term. First we see that

f1(x+ εPνxζ, z + εPνzζ)− f1(x, z)

= Cω′(|x− z|)(Pνxζ − Pνzζ)V ε+ 2M〈x+ z, Pνxζ + Pνzζ〉ε

+
1

2
Cω′′(|x− z|)(Pνxζ − Pνzζ)2

V ε
2 +

1

2
C
ω′(|x− z|)
|x− z|

|(Pνxζ − Pνzζ)V ⊥|2ε2

+M |Pνxζ + Pνzζ|2ε2 + Ex,z(εhx, εhz)

from (4.2.17). Due to rotational symmetry, integral over the first-order terms
is zero. Note that ω′′ < 0 and (4.2.13) to see that∫

B
e1
ε

f1(x+ Pνxh, z + Pνzh)dLn−1(h)− f1(x, z)

≤ C

2

ω′(|x− z|)
|x− z|

|νx + νz|2ε2 + (4M + 10|x− z|γ−2)ε2.

Therefore,

Tf1(x, z, Pνx , Pνz)− f1(x, z)

≤ αCω′(|x− z|)(νx − νz)V ε+ 2αM〈x+ z, νx + νz〉ε

+
α

2
Cω′′(|x− z|)(νx − νz)2

V ε
2

+
1

2
C
ω′(|x− z|)
|x− z|

(α|(νx − νz)V ⊥|2 + β|νx + νz|2)ε2

+ (4M + 10|x− z|γ−2)ε2.

Now we set Θ = |x − z|s for some s ∈ (0, 1] to be chosen later. In order
to deduce (4.2.11), we divide again this case into two separate subcases.
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(νx − νz)2
V ≥ 4−Θ

Consider two rotations Pνx , Pνz which satisfy (4.2.13). Observe that

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z,−Pνx ,−Pνz)

}
− f1(x, z)

≤ α

2
Cω′′(|x− z|)(νx − νz)2

V ε
2

+
1

2
C
ω′(|x− z|)
|x− z|

(α|(νx − νz)V ⊥|2 + β|νx + νz|2)ε2

+ (4M + 10|x− z|γ−2)ε2.

(4.2.18)

Since Θ ≤ 1 for sufficiently small r and 1
2
≤ ω′ ≤ 1 and ω′′ < 0,

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z,−Pνx ,−Pνz)

}
− f1(x, z)

≤ 3

2
αCω′′(|x− z|)ε2 +

C

2

1

|x− z|
(α|(νx − νz)V ⊥|2 + β|νx + νz|2)ε2

+ (4M + 10|x− z|γ−2)ε2.

We know that |(νx − νz)V ⊥ |2 ≤ Θ by the assumption and we also see

|νx + νz|2 = 4− |(νx − νz)|2 ≤ 4− |(νx − νz)V |2 ≤ Θ.

Thus,

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z,−Pνx ,−Pνz)

}
− f1(x, z)

≤
{

3

2
αCω′′(|x− z|) +

C

2

Θ

|x− z|
+ 4M + 10|x− z|γ−2

}
ε2.

By the definition of ω, ω′′(|x− z|) = −γ(γ − 1)ω0|x− z|γ−2 if |x− z| < ω1.
Choosing γ = 1 + s. Since |x− z| < 1, we get

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z,−Pνx ,−Pνz)

}
− f1(x, z)

≤
[
C

{
− 3

2
αs(s+ 1)ω0 + 11

}
|x− z|s−1 + 4M

]
ε2.
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Note that if |x− z| < ω1 (See the definition of ω),

−3

2
αs(s+ 1)ω0 + 11 < 0

for sufficiently large ω0. Now we select C = C(r, α, n) sufficiently large so
that [

C

{
− 3

2
αs(s+ 1)ω0 + 11

}
|x− z|s−1 + 4M

]
ε2 ≤ −MC̃ε2

then we get (4.2.10).

Case (νx − νz)2
V < (4−Θ)

Consider two rotations Pv and P−v as follows: The first column vectors of
P−v and Pv are v and −v, respectively. And other column vectors are the
same. Then we observe,

Tf1(x, z, P−v, Pv)− f1(x, z)

≤ −2αCω′(|x− z|)ε+ 2αCω′′(|x− z|)ε2 + (4M + 10|x− z|γ−2)ε2

≤ −2αCω′(|x− z|)ε+ (4M + 10|x− z|γ−2)ε2,

and thus

1

2

{
Tf1(x, z,Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
− f1(x, z)

≤ αCω′(|x− z|){(νx − νz)V − 2}ε+ 2αM〈x+ z, νx + νz〉ε

+
1

2
C
ω′(|x− z|)
|x− z|

{α|(νx − νz)V ⊥ |2 + β|νx + νz|2}ε2

+ (4M + 10|x− z|γ−2)ε2.

Set
κ =
|(νx − νz)V ⊥ |2

Θ
.

Then 1 < κ ≤ 4
Θ
by the assumption. Observe that

|(νx − νz)V | ≤
√
|νx − νz|2 − κΘ ≤

√
4− κΘ ≤ 2− κ

4
Θ
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and hence
|(νx − νz)V ⊥ | ≤ 4(2− (νx − νz)V ).

On the other hand, we have

|νx + νz|2 = 4− |νx − νz|2

≤ 4− (νx − νz)2
V

≤ 4(2− (νx − νz)V ).

We observe that

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
− f1(x, z)

≤ 2αM〈x+ z, νx + νz〉ε+ (2− (νx − νz)V )Cω′(|x− z|)
(
− α +

20

N

)
ε

+ (4M + 10|x− z|γ−2)ε2,

as |x− z| > Nε/10.
Next we estimate M〈x + z, νx + νz〉ε. We already know that uε satisfies

Hölder type estimate for any exponent δ ∈ (0, 1) by Theorem 4.2.5. Now by
the counter assumption (4.2.16),

uε(x, t)− uε(z, s)− Cω(|x− z|)−M |x+ z|2 − g(t, s) ≥ K − η > 0.

Then we see

M |x+ z|2 < uε(x, t)− uε(z, s) ≤ Cuε(|x− z|1/2 + ε1/2).

Note that Cuε is a constant depending only on r, α and n. Thus, we obtain
that

|x+ z| <
√
Cuε
M

(|x− z|1/2 + ε1/2)1/2

≤
√
Cuε
M

[
|x− z|1/4 +

1

2
|x− z|−1/4ε1/2 + o(ε1/2)

]
≤
√
Cuε
M

[
|x− z|1/4 +

1

2

(
10

N

)1/4

ε1/4 + o(ε1/2)

]
.
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Hence we observe

M〈x+ z, νx + νz〉ε ≤ 2M |x+ z|ε

≤ 2
√
MCuε|x− z|1/4ε+

√
MCuε

(
10

N

)1/4

ε5/4 + o(ε3/2)

≤ 3
√
MCuε|x− z|1/4ε

since
√
MCuε(10/N)1/4ε5/4 +o(ε3/2) is bounded by

√
MCuε|x−z|1/2ε. There-

fore, if we choose γ = 1 + s = 5/4,

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
− f1(x, z)

≤ 6α
√
MCuε|x− z|sε+ Cω′(|x− z|)×[
− ακ |x− z|

s

4
+

5

N

{
α|(νx − νz)V ⊥ |2 +

β

n+ 1
|(ρx − ρz)V ⊥|2

}]
ε

+ (4M + 10|x− z|s−1)ε2.

Note that
(4M + 10|x− z|s−1)ε2 ≤ (4M + 10)

10

N
|x− z|sε.

Then

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
− f1(x, z)

≤ 6α
√
MCuε|x− z|sε+ (2− (νx − νz)V )Cω′(|x− z|)

(
− α +

20

N

)
ε

+ (4M + 10)
10

N
|x− z|sε.

Since we already know that κΘ/4 ≤ 2− (νx − νz)V and ω′ ∈ [1/2, 1], we
see that

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
− f1(x, z)

≤
[
6α
√
MCuε + C

(
− α

8
+

5

N

)
|(νx − νz)V ⊥|2

|x− z|s
+ (4M + 10)

10

N

]
|x− z|sε

≤
[
6α
√
MCuε + C

(
− α

8
+

5

N

)
+ (4M + 10)

10

N

]
|x− z|sε.
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Fix N > 100/α and choose C = C(r, α, n) large enough so that

6α
√
MCuε + C

(
− α

8
+

5

N

)
+ (4M + 10)

10

N
< 0.

Then we conclude that

1

2

{
Tf1(x, z, Pνx , Pνz) + Tf1(x, z, P−v, Pv)

}
− f1(x, z)

≤ N

10

[
6α
√
MCuε + C

(
− α

8
+

5

N

)
+ (4M + 10)

10

N

]
|x− z|s−1ε2

≤ −MC̃ε2,

since |x− z| > Nε/10. Now we obtained the desired result.

Case 0 < |x− z| ≤ Nε/10

It is quite similar to the Hölder case. First, we see that for any x, z ∈ Br and
hx, hz ∈ Sn−1,

|f1(x+ εhx, z + εhz)− f1(x, z)|
≤ C

∣∣ω(|x+ εhx − z − εhz|)− ω(|x− z|)
∣∣

+M
∣∣|x+ εhx + z + εhz|2 − |x+ z|2

∣∣
≤ C

(∣∣|x+ εhx − z − εhz| − |x− z|
∣∣+ ω0

∣∣|x+ εhx − z − εhz|γ − |x− z|γ
∣∣)

+M
∣∣|x+ εhx + z + εhz|2 − |x+ z|2

∣∣
≤ 2Cε+ 2Cω0γ(2r)γ−1(2ε) + 8Mrε+ 4Mε2.

Then we can choose a constant C > 0 such that

|f1(x+ εhx, z + εhz)− f1(x, z)| ≤ 20Cε.

As in the previous section,

sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− f1(x, z)

= sup
hx,hz∈Sn−1

[
α{f1(x+ εhx, z + εhz)− f1(x, z)}
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+ β

∫
B
e1
ε

{f1(x+ Phxh, z + Phzh)− f1(x, z)}dLn−1(h)

]
≤ 20αCε+ 20βCε = 20Cε

and note that (4.2.15) is still valid here. We can find i ∈ {1, 2, · · · , N} such
that (i − 1) ε

10
< |x − z| ≤ i ε

10
as in the previous section. Now, if C is large

enough,

inf
hx,hz∈Sn−1

Tf(x, z, Phx , Phz)

≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− sup
hx,hz∈Sn−1

Tf2(x, z, Phx , Phz)

≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− αC2(N−i+1)ε

= sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− α
(
C2 − 2

α

)
C2(N−i)ε− 2C2(N−i)ε

≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− 2f2(x, z)− 50Cε.

Therefore, we calculate that

midrange
hx,hz∈Sn−1

Tf(x, z, Phx , Phz)

≤ sup
hx,hz∈Sn−1

Tf1(x, z, Phx , Phz)− f2(x, z)− 25Cε

≤ f1(x, z) + 20Cε− f2(x, z)− 25Cε.

We finally choose a large constant C > M depending only on r, α and n to
obtain (4.2.10).

Case |x− z| = 0

Similar to the previous section, we already showed that

|uε(x, t)− uε(z, s)| ≤ C2||uε||L∞(Ωε,T )(|x− z|+ ε),

for any x, z (x 6= z) ∈ Br(0), −r2 < t < 0, |t − s| < ε2/2 and some C2 =
C2(r, α, n) > 0. Then we can obtain the desired result by using the same
argument as in Section 4.2.2.
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Now Lemma 4.2.2 and Lemma 4.2.6 yield the Lipschitz type regularity in
the whole cylinder. We remark here that if the boundary data F is bounded,
uε satisfies

||uε||L∞(ΩT ) ≤ ||F ||L∞(Γε,T )

(see [55, 62]). Then we can complete the proof of Theorem 4.2.1.

4.3 Boundary estimates
We now consider regularity for functions uε satisfying (4.0.1) near the bound-
ary.

For boundary estimates, we need to consider a suitable boundary regu-
larity condition. To this end, we introduce a boundary regularity condition
for the domain Ω.

Definition 4.3.1 (Exterior sphere condition). We say that a domain Ω satis-
fies an exterior sphere condition if for any y ∈ ∂Ω, there exists Bδ(z) ⊂ Rn\Ω
with δ > 0 such that y ∈ ∂Bδ(z).

Throughout this section, we always assume that Ω satisfies Definition
4.3.1 and Ω ⊂ BR(z) for some R > 0. We also assume that the boundary
data F satisfies

|F (x, t)− F (y, s)| ≤ L(|x− y|+ |t− s|1/2) (4.3.1)

for any (x, t), (y, s) ∈ Γε,T and some L > 0.
Let y ∈ ∂Ω and take z ∈ Rn\Ω with Bδ(z) ⊂ Rn\Ω and y ∈ ∂Bδ(z).

We consider a time-independent tug-of-war game. Assume that the rules to
move the token are the same as that of the original game, but of course, we
do not consider the time parameter t in this case. We also assume that the
token cannot escape outside BR(z) and the game ends only if the token is
located in Bδ(z). Now we fix specific strategies for both players. For each
k = 0, 1, . . . , assume that Player I and II takes the vector νI

k = − xk−z
|xk−z|

and
νII
k = xk−z

|xk−z|
, respectively. We write these strategies for Player I, II as SzI and

SzII. On the other hand, we need to define strategies and random processes
when Bε(xk)\BR(z) 6= ∅. In this case, xk+1 is defined by xk + ενI

k if Player I
wins coin toss twice and

xk + dist(xk, ∂BR(z))νII
k = z +R

xk − z
|xk − z|
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if Player II wins coin toss twice. When random walk occurs, xk+1 is chosen
uniformly in BνIk

ε (x) ∩BR(z).
We denote by

τ ∗ = inf{k : xk ∈ Bδ(z)}.

The following lemma gives an estimate for the the stopping time τ ∗.

Lemma 4.3.2. Under the setting as above, we have

Ex0SzI ,SzII [τ
∗] ≤ C(n, α,R/δ)(dist(∂Bδ(y), x0) + o(1))

ε2

for any x0 ∈ Ω ⊂ BR(z)\Bδ(z). Here o(1)→ 0 as ε→ 0 and dxe means the
least integer greater than or equal to x ∈ R.

Proof. Set gε(x) = ExSzI ,SzII [τ
∗]. Then we observe that gε satisfies the following

DPP

gε(x) =
1

2

[{
αgε(x+ ρxενx) + β

∫
Bνxε (x)∩BR(z)

gε(y)dLn−1(y)

}
+

{
αgε(x− ενx) + β

∫
Bνxε (x)∩BR(z)

gε(y)dLn−1(y)

}]
+ 1,

where ρx = min{1, ε−1 dist(x, ∂BR(z))} and νx = (x − z)/|x − z|. Note that
ρx = 1 for any x ∈ BR−ε(z)\Bδ(z). Next we define vε = ε2gε. It is straight-
forward that

vε(x) =
α

2

(
vε(x+ ρxενx) + vε(x− ενx)

)
+ β

∫
Bνxε (x)∩BR(z)

vε(y)dLn−1(y) + ε2.
(4.3.2)

From the definition of vε and (4.3.2), we observe that the function vε is
rotationally symmetric, that is, vε is a function of r = |x − z|. If we denote
by vε(x) = V (r), the DPP (4.3.2) can be represented by

V (r) =
α

2

(
V (r + ρrε) + V (r − ε)

)
+ β

∫
Bνxε (x)∩BR(z)

V (|y − z|)dLn−1(y) + ε2,
(4.3.3)
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where ρr = min{1, ε−1(R− r)}.
Now we can deduce that (4.3.3) has a connection to the following problem

1−α
2r

n−1
n+1

w′ + α
2
w′′ = −1 when r ∈ (δ, R + ε),

w(δ) = 0,
w′(R + ε) = 0

by using Taylor expansion. Note that if we set v(x) = w(|x|),

1− α
2r

n− 1

n+ 1
w′ +

α

2
w′′ = −1

can be transformed by
∆N
p v = −2(p+ n),

where p = (1 + nα)/(1− α) (for the definition of ∆N
p , see the next section).

On the other hand, we have

w(r) =

{
− n+1

2α+n−1
r2 + c1r

2αn−n+1
(n+1)α + c2 when α 6= n−1

2n
,

− n
n−1

r2 + c1 log r + c2 when α = n−1
2n

by direct calculation. Here

c1 =

{
2(n+1)2α

(2α+n−1)(2αn−n+1)
(R + ε)

n+2α−1
(n+1)α when α 6= n−1

2n
,

2n
n−1

(R + ε)2 when α = n−1
2n

is positive if α ≥ n−1
2n

and negative otherwise. We extend this function to the
interval (δ − ε, R + ε].

Observe that

α

2

(
w(r + ε) + w(r − ε)

)
+ β

∫
Bνxε (x)

w(|y − z|)dLn−1(y)

= w(r)− n+ 1

2α + n− 1

(
α +

n− 1

n+ 1
β

)
ε2 + o(ε2)

≤ w(r)−
[

n+ 1

2α + n− 1

(
α +

n− 1

n+ 1
β

)
− η
]
ε2

for some η > 0 when α 6= n−1
2n

(we can also obtain a similar estimate if
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α = n−1
2n

). Set

c0 :=
n+ 1

2α + n− 1

(
α +

n− 1

n+ 1
β

)
− η > 0.

Then we have

Ex0SzI ,SzII [v(xk) + kc0ε
2|x0, . . . , xk−1]

= α
(
v(xk−1 + ενxk−1

) + v(xk−1 − ενxk−1
)
)

+ β

∫
B
νxk−1
ε (xk−1)

v(y − z)dLn−1(y) + kc0ε
2

≤ v(xk−1) + (k − 1)c0ε
2,

if Bε(xk−1) ⊂ BR(z)\Bδ−ε(z). The same estimate can be derived in the case
Bε(xk−1)\BR(z) 6= ∅ since w is an increasing function of r and it implies

v(x+ ρxενx) ≤ v(x+ ενx)

and ∫
Bνxε (x)∩BR(y)

v(y − z)dLn−1(y) ≤
∫
Bνxε (x)

v(y − z)dLn−1(y).

Now we see that v(xk) + kc0ε
2 is a supermartingale. By the optional

stopping theorem, we have

Ex0SzI ,SzII [v(xτ∗∧k) + (τ ∗ ∧ k)c0ε
2] ≤ v(x0). (4.3.4)

We also check that
0 ≤ −Ex0SzI ,SzII [v(xτ∗)] ≤ o(1),

since xτ∗ ∈ Bδ(z)\Bδ−ε(z).
Meanwhile, it can be also observed that w′ > 0 is a decreasing function

in the interval (δ, R + ε) and thus

w′ ≤ 2(n+ 1)

2α + n− 1
δ

[(
R + ε

δ

)n+2α−1
(n+1)α

− 1

]
in (δ, R + ε).

131



CHAPTER 4. REGULARITY FOR TIME-DEPENDENT TUG-OF-WAR

From the above estimate, we have

0 ≤ w(x0) ≤ C(n, α,R/δ) dist(∂Bδ(y), x0). (4.3.5)

Finally, combining (4.3.5) with (4.3.4) and passing to a limit with k, we have

c0ε
2Ex0SzI ,SzII [τ

∗] ≤ w(x0)− Ex0SzI ,SzII [w(xτ∗)]

≤ C(n, α,R/δ) dist(∂Bδ(y), x0) + o(1)

and it gives our desired estimate.

By means of Lemma 4.3.2, we can deduce following boundary regularity
results. First, we give an estimate for uε on the lateral boundary.

Theorem 4.3.3. Assume that Ω satisfies the exterior sphere condition and
F satisfies (4.3.1). Then for the value function uε with boundary data F , we
have

|uε(x, t)− uε(y, s)|
≤ C(n, α,R, δ, L)(K +K1/2) + L(|x− y|+ |t− s|1/2 + 2δ),

(4.3.6)

where K = min{|x− y|, t}+ ε and R, δ are the constants in Lemma 4.3.2 for
every (x, t) ∈ ΩT and (y, s) ∈ Oε,T .

Proof. We first consider the case t = s. Set N = d2t/ε2e. Since Ω satisfies
the exterior sphere condition, we can find a ball Bδ(z) ⊂ Rn\Ω such that
y ∈ ∂Bδ(z). Assume that Player I takes a strategy SzI of pulling towards z.

We estimate the expected value for the distance |xτ −x0| under the game
setting. Let θ be the angle between ν and x− z. And we assume that x = 0
and z = (0, · · · , 0, r sin θ,−r cos θ) by using a proper transformation. Then
the following term

α|x+ εν − z|+ β

∫
Bνxε (x)

|x̃− z|dLn−1(x̃)

can be written as

A(θ)

= α
√

(r sin θ)2 + (r cos θ + ε)2 + β

∫
Tε

√
(y − r sin θ)2 + (r cos θ)2dLn−1(y)
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= α
√
r2 + 2rε cos θ + ε2 + β

∫
Tε

√
r2 − 2ryn−1 sin θ + |y|2dLn−1(y)

=: αA1(θ) + βA2(θ),

where r = |x − z| and Tε = {x = (x1, . . . , xn) ∈ Bε(0) : xn = 0}. Observe
that A1 is decreasing in the interval (0, π). (Thus, A1 has the maximum at
θ = 0 in [0, π]) On the other hand, we have

A
′

2(θ) = −
∫
Tε

ryn−1 cos θ√
r2 − 2ryn−1 sin θ + |y|2

dLn−1(y)

and this function is a symmetric function about θ = π/2. We also check that
A
′
2 < 0 in (0, π/2). Thus, we verify that A2 has a maximum at θ = 0, π in

[0, π] and θ(0) = θ(π). This leads to the following estimate

sup
ν∈Sn−1

[
α|x+ εν − z|+ β

∫
Bνε (x)

|x̃− z|dLn−1(x̃)

]
= α(|x− z|+ ε) + β

∫
Bνxε (x)

|x̃− z|dLn−1(x̃),

(4.3.7)

where νx = (x− z)/|x− z|.
Therefore, we have

E(x0,t)
SzI ,SII

[|xk − z||(x0, t0), . . . , (xk−1, tk−1)]

≤ 1− δε(xk−1, tk−1)

2

[
α(|xk−1 − z| − ε) + β

∫
B
νxk−1
ε (xk−1)

|x̃− z|dLn−1(x̃)

]
+

1− δε(xk−1, tk−1)

2

[
α(|xk−1 − z|+ ε) + β

∫
B
νxk−1
ε (xk−1)

|x̃− z|dLn−1(x̃)

]
+ δε(xk−1, tk−1)|xk−1 − z|

= |xk−1 − z|

+ β(1− δε(xk−1, tk−1))

(∫
B
νxk−1
ε (xk−1)

|x̃− z|dLn−1(x̃)− |xk−1 − z|
)
.

We also observe that

0 < β(1− δε(xk−1, tk−1)) < 1,
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|xk−1 − z| ≤ |x̃− z| ≤
√

(xk−1 − z)2 + ε2 for x ∈ Bνxk−1
ε ,

and
0 <
√
a2 + ε2 − a < ε2

2a
for a > 0.

Therefore,

E(x0,t)
SzI ,SII

[|xk − z||(x0, t0), . . . , (xk−1, tk−1)] ≤ |xk−1 − z|+ Cε2

for some C = C(n, δ) > 0. This yields that

Mk = |xk − z| − Ckε2

is a supermartingale.
Applying the optional stopping theorem and Jensen’s inequality to Mk,

we derive that

E(x0,t)
SzI ,SII

[|xτ − z|+ |tτ − t|1/2]

= E(x0,t)
SzI ,SII

[
|xτ − z|+ ε

√
τ

2

]
≤ |x0 − z|+ Cε2E(x0,t)

SzI ,SII
[τ ] + Cε

(
E(x0,t)
SzI ,SII

[τ ]
)1/2

.

(4.3.8)

Next we need to obtain estimates for E(x0,t)
SzI ,SII

[τ ]. To do this, we use the result
in Lemma 4.3.2. We can check that the exit time τ of the original game is
bounded by τ ∗ because the expected value of |xk − z| for given |xk−1 − z|
is maximized when Player II chooses the strategy SzII from (4.3.7). Thus, we
have

E(x0,t)
SzI ,SII

[τ ] ≤ min{Ex0SzI ,SzII [τ
∗], N}

≤ min

{
C(n, α,R/δ)(dist(∂Bδ(z), x0) + ε)

ε2
, N

}
for any strategy SII for Player II. We also see that

dist(x0, ∂Bδ(z)) ≤ |x0 − y|.

134



CHAPTER 4. REGULARITY FOR TIME-DEPENDENT TUG-OF-WAR

This and (4.3.8) imply

E(x0,t)
SzI ,SII

[|xτ − z|+ |tτ − t|1/2]

≤ |x0 − y|+ C min{|x0 − y|+ ε, ε2N}+ C min{|x0 − y|+ ε, ε2N}1/2,

where C is a constant depending on n, α,R and δ. Therefore, we get

|E(x0,t)
SzI ,SII

[F (xτ , tτ )]− F (z, t)|
≤ L(|x0 − y|+ C(n, α,R, δ) min{|x0 − y|+ ε, ε2N}

+ C(n, α,R/δ) min{|x0 − y|+ ε, ε2N}1/2)

and this yields

uε(x0, t) = sup
SI

inf
SII

E(x0,t)
SI,SII

[F (xτ , tτ )]

≥ inf
SII

E(x0,t)
SzI ,SII

[F (xτ , tτ )]

≥ F (z, t)− L{C(n, α,R, δ)(K +K1/2) + |x0 − y|}
≥ F (y, t)− C(n, α,R, δ, L)(K +K1/2)− L(|x0 − y|+ 2δ)

for K = min{|x0−y|+ε, ε2N}. Note that we can also derive the upper bound
for uε(x0, t) by taking the strategy where Player II pulls toward to z.

Meanwhile, in the case of t 6= s, we have

|uε(x, t)− uε(y, s)|
≤ |uε(x, t)− uε(y, t)|+ |uε(y, t)− uε(y, s)|
≤ C(n, α,R/δ, L)(K +K1/2) + L(|x− y|+ 2δ) + L|t− s|1/2,

where K = min{|x0 − y| + ε, ε2N} and N = d2t/ε2e. This gives our desired
estimate.

We can also derive the following result on the initial boundary.

Theorem 4.3.4. Assume that Ω satisfies the exterior sphere condition and
F satisfies (4.3.1). Then for the value function uε with boundary data F , we
have

|uε(x, t)− uε(y, s)| ≤ C(|x− y|+ t1/2 + ε) (4.3.9)
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for every (x, t) ∈ ΩT and (y, s) ∈ Ω×(−ε2/2, 0]. The constant C only depends
on n and L.

Proof. Set (x, t) = (x0, t0) and N = d2t/ε2e. As in the above lemma, we also
estimate the expected value of the distance between y and the exit point
xτ . Consider the case that Player I chooses a strategy of pulling to y. When
|xk−1 − y| ≥ ε, we have

E(x0,t0)

SyI ,SII
[|xk − y|2|(x0, t0), . . . , (xk−1, tk−1)]

≤ (1− δε(xk−1, tk−1))×[
α

2
{(|xk−1 − y|+ ε)2 + (|xk−1 − y| − ε)2}

+ β

∫
B
νxk−1
ε (xk−1)

|x̃− y|2dLn−1(x̃)

]
+ δε(xk−1, tk−1)|xk−1 − y|2

≤ α(|xk−1 − y|2 + ε2) + β(|xk−1 − y|2 + Cε2)

≤ |xk−1 − y|2 + Cε2

for some constant C > 0 which is independent of ε. We recall the notation
νxk−1

= (xk−1 − z)/|xk−1 − z| here. Otherwise, we also see that

E(x0,t0)

SyI ,SII
[|xk − y|2|(x0, t0), . . . , (xk−1, tk−1)]

≤ (1− δε(xk−1, tk−1))

[
α

2
(|xk−1 − y|+ ε)2 + β

∫
B
νxk−1
ε (xk−1)

|x̃− y|2dLn−1(x̃)

]
+ δε(xk−1, tk−1)|xk−1 − y|2,

and then we get the same estimate as above since

(|xk−1 − y|+ ε)2 ≤ 2(|xk−1 − y|2 + ε2).

Therefore, we see that

Mk = |xk − y|2 − Ckε2

is a supermartingale.
Now we obtain

E(x0,t)

SyI ,SII
[|xτ − y|2] ≤ |x0 − y|2 + Cε2E(x0,t)

SyI ,SII
[τ ]
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by using the optional stopping theorem. Since τ < d2t/ε2e, the right-hand
side term is estimated by |x0− y|2 +C(t+ ε2). Applying Jensen’s inequality,
we get

E(x0,t)

SyI ,SII
[|xτ − y|] ≤

(
E(x0,t)

SyI ,SII
[|xτ − y|2]

) 1
2

≤
(
|x0 − y|2 + C(t+ ε2)

) 1
2

≤ |x0 − y|+ C(t1/2 + ε).

From the above estimate, we deduce that

uε(x0, t) = sup
SI

inf
SII

E(x0,t)
SI,SII

[F (xτ , tτ )]

≥ F (y, t)− L E(x0,t)

SyI ,SII
[|xτ − y|+ |t− tτ |1/2]

≥ F (y, t)− C(|x0 − y|+ t1/2 + ε).

The upper bound can be derived in a similar way, and then we get the
estimate (4.3.9).

4.4 Applications

4.4.1 Long-time asymptotics

In PDE theory, the study of asymptotic behavior of solutions of parabolic
equations as time goes to infinity has drawn a lot of attention. We will have
a similar discussion for our value function uε when the boundary data F
does not depend on t in Γε × (ε2,∞). The heuristic idea in this section can
be summarized as follows. Assume that we start the game at (x0, t0) for
sufficiently large t0. Then we can expect that the probability of the game
ending in the initial boundary would be close to zero, that is, the game
finishes on the lateral boundary in most cases. Since we assumed that F is
independent of t for t > ε2, we may consider this game as something like a
time-independent game with the same boundary data. Thus, it is reasonable
to guess that the value function of the time-dependent game converges that
of the corresponding time-independent game. We refer the reader to [7] which
contains a detailed discussion of asymptotic behaviors for value functions of
evolution problems. Moreover, long-time asymptotics for related PDEs can
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be found in [5, 74, 66, 63].
To observe the asymptotic behavior of value functions, we first need to

obtain the following comparison principle. Since it can be shown in a straight-
forward manner by using the DPP (4.0.1), we omit the proof. One can find
similar results in [52, Theorem 5.3].

Lemma 4.4.1. Let u and v be functions satisfying (4.0.1) with boundary
data Fu and Fv, respectively. Suppose that Fu ≤ Fv in Γε,T . Then,

u ≤ v in Ωε,T .

Now we state the main result of this section.

Theorem 4.4.2. Let Ω be a bounded domain. Consider functions ψ ∈ C(Γε)
and ϕ ∈ C(Γε,T ∩ {t ≤ 0}), and define a function F ∈ C(Ωε,T ) as follows:

F (x, t) =


ψ(x) in Γε × (ε2, T ],
ϕ(x, ε2/2) + 2t(ψ(x)−ϕ(x,ε2/2))

ε2
in Γε × ( ε

2

2
, ε2],

ϕ(x, t) in Ωε × [− ε2

2
, ε

2

2
].

(4.4.1)

Assume that uε is the function satisfying (4.0.1) with boundary data F . Then
we have

lim
T→∞

uε(x, T ) = Uε(x)

where Uε is the function satisfying the following DPP

Uε(x)

= (1− δε(x)) midrange
ν∈Sn−1

[
αUε(x+ εν) + β

∫
Bνε

Uε(x+ h)dLn−1(h)

]
+ δε(x)ψ(x)

(4.4.2)

in Ωε with boundary data ψ where

δε(x) := lim
t→∞

δε(x, t) =


0 in Ω\Iε,
1− dist(x, ∂Ω)/ε in Iε,
1 in Oε.

Remark 4.4.3. We can find the existence and uniqueness of value functions
under different setting in [52], which is related to the normalized p-Laplace
operator for p ≥ 2. In that paper, the existence of measurable strategies is
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shown without regularization. Thus, we do not have to consider a “regularized
function” such as ϕ(x, ε2/2)+2t(ψ(x)−ϕ(x, ε2/2))/ε2 in that case. Meanwhile,
for the time-independent version of our settings, results for these issues are
shown in [30].

Proof of Theorem 4.4.2. We will set some proper barrier functions u, u such
that

u ≤ uε ≤ u

and show the coincidence for the limits of two barrier functions as t→∞. In
our proof, the uniqueness result for elliptic games is essential. The motivation
of this proof is from [2, Proposition 3.3].

Let ϕ, ϕ be constants defined by

ϕ = min{inf
Γε
ψ, inf

Ωε
ϕ} and ϕ = max{sup

Γε

ψ, sup
Ωε

ϕ},

respectively. We consider u, u be functions satisfying (4.0.1) with boundary
data F and F , where

F (x, t) =


ψ(x) in Γε × (ε2, T ] ,
ϕ+ 2t(ψ(x)− ϕ)/ε2 in Γε × ( ε

2

2
, ε2],

ϕ in Ωε × [− ε2

2
, ε

2

2
],

and

F (x, t) =


ψ(x) in Γε × (ε2, T ],
ϕ+ 2t(ψ(x)− ϕ)/ε2 in Γε × ( ε

2

2
, ε2],

ϕ in Ωε × [− ε2

2
, ε

2

2
],

respectively. Note that F and F are continuous in Γε,T and have constant
initial data.

By Lemma 4.4.1, we have u ≤ uε ≤ u. Thus it is sufficient to show that
limt→∞ u(·, t), limt→∞ u(·, t) exist and satisfy the limiting DPP (4.4.2). First
we see that

||u||L∞(Ωε,T ) ≤ ||F ||L∞(Γε,T ) and ||u||L∞(Ωε,T ) ≤ ||F ||L∞(Γε,T )

by using the DPP of u and u. Thus, these functions are uniformly bounded.
Next, we prove monotonicity of sequences {u(x, t+jε2/2)}∞j=0 and {u(x, t+
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jε2/2)}∞j=0 for any (x, t) ∈ Ωε×(−ε2/2, 0]. Without loss of generality, we only
consider the case u. Let (x0, t0) be a point in Ω× (−ε2/2, 0] and denote by

aj = u(x0, t0 + jε2/2)

for simplicity. For any (x0, t0) ∈ Ω× (−ε2/2, 0], we can derive that

ψ = a0 = a1 ≤ a2

by direct calculation and

a3 =

(
1− δε

(
x0, t0 +

3ε2

2

))
midrange
ν∈Sn−1

Aεu(x0, t0 + ε2; ν)

+ δε

(
x0, t0 +

3ε2

2

)
F

(
x0, t0 +

3ε2

2

)
≥ (1− δε(x0, t0 + ε2)) midrange

ν∈Sn−1

Aεu

(
x0, t0 +

ε2

2
; ν

)
+ δε(x0, t0 + ε2)F (x0, t0 + ε2) = a2

since δε(x0, t0 + ε2) = δε(x0, t0 + 3ε2/2) and F (x0, t0 + ε2) ≤ F (x0, t0 + 3ε2/2).
Next, assume that ak ≥ ak−1 for some k ≥ 4. Note that F (x, t) = ψ(x)

for x ∈ Γε and

δε

(
x0, t0 +

kε2

2

)
= δε

(
x0, t0 +

(k − 1)ε2

2

)
in this case. Then, we see

ak+1 =

(
1− δε

(
x0, t0 +

(k + 1)ε2

2

))
midrange
ν∈Sn−1

Aεu

(
x0, t0 +

kε2

2
; ν

)
+ δε

(
x0, t0 +

(k + 1)ε2

2

)
ψ(x0)

≥
(

1− δε
(
x0, t0 +

kε2

2

))
midrange
ν∈Sn−1

Aεu

(
x0, t0 +

(k − 1)ε2

2
; ν

)
+ δε

(
x0, t0 +

kε2

2

)
ψ(x0) = ak.

Therefore, {aj} is increasing for any (x0, t0) ∈ Ω × (−ε2/2, 0]. It is also
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possible to obtain {u(x, t+ jε2/2)} is decreasing by using similar arguments.
Therefore, we obtain {u(x, t+jε2/2)} and {u(x, t+jε2/2)} converges for any
(x, t) ∈ Ωε × (−ε2/2, 0] by applying the monotone convergence theorem.

Now we show that Uε satisfies the DPP (4.4.2). Fix −ε2/2 ≤ t1 < 0
arbitrary and write

Ut1(x) = lim
j→∞

u(x, t1 + jε2/2)

for x ∈ Ω. By definition of u, we see that

Ut1(x) = (1− δε(x)) lim
j→∞

[
midrange
ν∈Sn−1

Aεu

(
x, t1 +

jε2

2
; ν

)]
+ δε(x)ψ(x).

Therefore, it is sufficient to show that

lim
j→∞

sup
ν∈Sn−1

Aεu

(
x, t1 +

jε2

2
; ν

)
= sup

ν∈Sn−1

ÃεUt1(x; ν) (4.4.3)

and

lim
j→∞

inf
ν∈Sn−1

Aεu

(
x, t1 +

jε2

2
; ν

)
= inf

ν∈Sn−1
ÃεUt1(x; ν) (4.4.4)

where

Ãεv(x; ν) = αv(x+ εν) + β

∫
Bνε

v(x+ h)dLn−1(h). (4.4.5)

These equalities can be derived by the argument in the proof of [2, Proposi-
tion 3.3]. First, we get (4.4.3) from monotonicity of {u(x, t1 +jε2/2)}. On the
other hand, by means of the monotonicity of {u(x, t1 +jε2/2)} and continuity
of Aεu(x, t; ·), we can show the existence of a vector ν̃ ∈ Sn−1 satisfying

Aεu

(
x, t1 +

jε2

2
; ν̃

)
≤ lim

j→∞
inf

ν∈Sn−1
ÃεUt1(x; ν) for any j ≥ 0.

Now (4.4.4) is obtained by the monotone convergence theorem. Thus, we
deduce that Ut1 satisfies the DPP (4.4.2) for every −ε2/2 ≤ t1 < 0. By
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uniqueness of solutions to (4.4.2), [2, Theorem 3.7], we can deduce that

lim
t→∞

u(x, t) = Uε(x).

We can prove the same result for u by repeating the above steps. Com-
bining these results with u ≤ uε ≤ u, we get

lim
t→∞

uε(x, t) = Uε(x)

and then we can finish the proof.

We finish this section by proving a corollary. One can apply the above
theorem with Theorem 4.2.1. This coincides with the result for elliptic case,
[3, Theorem 1.1].

Corollary 4.4.4. Let B̄2r ⊂ Ω\Iε and ε > 0 be small. Suppose that Uε
satisfies (4.4.2). Then for any x, y ∈ Br(0),

|Uε(x)− Uε(y)| ≤ C(|x− y|+ ε),

where C > 0 is a constant which only depends on r, n and ||ψ||L∞(Γε).

Proof. Let r > 0 with B̄2r ⊂ Ω\Iε and x, y ∈ Br(0). By Theorem 4.4.2, for
any η > 0, we can find some large t > 0 such that

|uε(x, t)− Uε(x)| < η and |uε(y, t)− Uε(y)| < η,

where uε is a function satisfying (4.0.1). And by Theorem 4.2.1, we know
that

|uε(x, t)− uε(y, t)| ≤ C(|x− y|+ ε),

where C is a constant depending on r, n and ||F ||L∞(Γε,T ). (Here, F is a
boundary data as in Theorem 4.4.2)

Then we have

|Uε(x)− Uε(y)| ≤ |Uε(x)− uε(x, t)|+ |uε(x, t)− uε(y, t)|+ |uε(y, t)− Uε(y)|
< C(|x− y|+ ε) + 2η.

Since we can choose η arbitrarily small, we obtain

|uε(x, t)− uε(y, t)| ≤ C(|x− y|+ ε)
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for some C = C(n, p,Ω, ||ψ||L∞(Γε)) > 0 since we can estimate

||F ||L∞(Γε,T ) ≤ ||ψ||L∞(Γε)

by choosing proper boundary data F .

4.4.2 Uniform convergence as ε→ 0

The objective of this section is to study behavior of uε when ε tends to zero.
This issue has been studied in several preceding papers (see [40, 52, 62, 2]).
Those results show that there is a close relation between value functions of
tug-of-war games and certain types of PDEs. Now we will establish that there
is a convergence theorem showing that uε converge to the unique viscosity
solution of the following Dirichlet problem for the normalized parabolic p-
Laplace equation {

(n+ p)ut = ∆N
p u in ΩT ,

u = F on ∂pΩT
(4.4.6)

as ε→ 0. Here, p satisfies α = (p− 1)/(p+ n) and β = (n+ 1)/(p+ n).
Now we introduce the notion of viscosity solutions for (4.4.6). Note that

we need to consider the case when the gradient vanishes. Here we use semi-
continuous extensions of operators in order to define viscosity solutions. For
these extensions, we refer the reader to [23, 27] for more details.

Definition 4.4.5 (Viscosity solution). A function u ∈ C(ΩT ) is a viscosity
solution to (4.4.6) if the following conditions hold:

(a) for all ϕ ∈ C2(ΩT ) touching u from above at (x0, t0) ∈ ΩT ,
∆N
p ϕ(x0, t0) ≥ (n+ p)ϕt(x0, t0) if Dϕ(x0, t0) 6= 0,

λmax((p− 2)D2ϕ(x0, t0))
+∆ϕ(x0, t0) ≥ (n+ p)ϕt(x0, t0) if Dϕ(x0, t0) = 0.

(b) for all ϕ ∈ C2(ΩT ) touching u from below at (x0, t0) ∈ ΩT ,
∆N
p ϕ(x0, t0) ≤ (n+ p)ϕt(x0, t0) if Dϕ(x0, t0) 6= 0,

λmin((p− 2)D2ϕ(x0, t0))
+∆ϕ(x0, t0) ≤ (n+ p)ϕt(x0, t0) if Dϕ(x0, t0) = 0.
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Here, the notation λmax(X) and λmin(X) mean the largest and the smallest
eigenvalues of a symmetric matrix X.

The following Arzelà-Ascoli criterion will be used to obtain the main
result in this section. It is essentially the same proposition as [62, Lemma
5.1]. We can find the proof of this criterion for elliptic version in [55, Lemma
4.2].

Lemma 4.4.6. Let {uε : ΩT → R, ε > 0} be a set of functions such that

(a) there exists a constant C > 0 so that |uε(x, t)| < C for every ε > 0 and
every (x, t) ∈ ΩT .

(b) given η > 0, there are constants r0 and ε0 so that for every ε > 0 and
(x, t), (y, s) ∈ ΩT with d((x, t), (y, s)) < r0, it holds

|uε(x, t)− uε(y, s)| < η.

Then, there exists a uniformly continuous function u : ΩT → R and a subse-
quence {uεi} such that uεi uniformly converge to u in ΩT , as i→∞.

Now we can describe the relation between functions satisfying (4.0.1) and
solutions to the normalized parabolic p-Laplace equation.

Theorem 4.4.7. Assume that Ω satisfies the exterior sphere condition and
F ∈ C(Γε,T ) satisfies (4.3.1). Let uε denote the solution to (4.0.1) with bound-
ary data F for each ε > 0. Then, there exist a function u : Ωε,T → R and a
subsequence {εi} such that

uεi → u uniformly in ΩT

and the function u is a unique viscosity solution to (4.4.6).

Remark 4.4.8. The uniqueness of solutions to (4.4.6) can be found in [62,
Lemma 6.2].

Proof. First we check that there is a subsequence {uεi} with uεi converge
uniformly to u on ΩT for some function u. By using the definition of uε, we
have

||uε||L∞(ΩT ) ≤ ||F ||L∞(ΩT ) <∞
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for any ε > 0. Hence, uε are uniformly bounded. By means of Theorem 4.2.1,
Theorem 4.3.3 and Theorem 4.3.4, we know that {uε} are equicontinuous.
Therefore, we can find a subsequence {uεi}∞i=1 converging uniformly to a
function u ∈ C(ΩT ) by Lemma 4.4.6.

Now we need to show that u is a viscosity solution to (4.4.6). On the
parabolic boundary, we see that

u(x, t) = lim
i→∞

uεi(x, t) = F (x, t)

for any (x, t) ∈ ∂pΩT .
Next we prove that u satisfies

(n+ p)ut = ∆N
p u in ΩT

in the viscosity sense. Without loss of generality, it suffices to show that u
satisfies condition (a) in Definition 4.4.5.

Fix (x, t) ∈ ΩT . Then there is a small number R > 0 such that

Q := (x0, t0) +BR(0)× (−R2, 0) ⊂⊂ ΩT .

We also assume that ε > 0 satisfies Q ⊂ ΩT\Iε,T . Suppose that a function
ϕ ∈ C2(Q) touches u from below at (x, t). Then we observe that

inf
Q

(u− ϕ) = (u− ϕ)(x, t) ≤ (u− ϕ)(z, s)

for any (z, s) ∈ Q. Since uε converge uniformly to u, for sufficiently small
ε > 0, there is a point (xε, tε) ∈ Q such that

inf
Q

(uε − ϕ) ≤ (uε − ϕ)(z, s)

for any (z, s) ∈ Q. We also check that (xε, tε)→ (x, t) as ε→ 0.
Recall (4.1.1). Since (xε, tε) ∈ ΩT\Iε,T , we have

Tu(x, t) = midrange
ν∈Sn−1

Aεu

(
x, t− ε2

2
; ν

)
.

We also set ψ = ϕ + (uε − ϕ)(xε, tε) and observe that uε ≥ ψ in Q. Now it
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can be checked that

uε(xε, tε) = Tuε(xε, tε) ≥ Tψ(xε, tε)

and

Tψ(xε, tε) = Tϕ(xε, tε) + (uε − ϕ)(xε, tε)

Therefore,

uε(xε, tε) ≥ Tϕ(xε, tε) + (uε − ϕ)(xε, tε)

and this implies

0 ≥ Tϕ(xε, tε)− ϕ(xε, tε). (4.4.7)

On the other hand, by the Taylor expansion, we observe that

1

2

[
ϕ

(
x+ εν, t− ε2

2

)
+ ϕ

(
x− εν, t− ε2

2

)]
= ϕ(x, t)− ε2

2
ϕt(x, t) +

ε2

2
〈D2ϕ(x, t)ν, ν〉+ o(ε2)

and ∫
Bνε

ϕ

(
x+ h, t− ε2

2

)
dLn−1(h)

= ϕ(x, t)− ε2

2
ϕt(x, t) +

ε2

2(n+ 1)
∆ν⊥ϕ(x, t) + o(ε2)

where

∆ν⊥ϕ(x, t) =
n−1∑
i=1

〈D2ϕ(x, t)νi, νi〉

with ν1, · · · , νn−1 the orthonormal basis for the space ν⊥ for ν ∈ Sn−1.
We already know that Aεϕ is continuous with respect to ν in Proposition

4.1.1. Therefore, there exists a vector νmin = νmin(ε) minimizing Aεϕ(xε,η, tε; ·).
Then we can calculate

Tϕ(xε, tε)
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≥ α

2

{
ϕ

(
xε+νmin, tε −

ε2

2

)
+ϕ

(
xε−νmin, tε −

ε2

2

)}
+ β

∫
B
νmin
ε

ϕ

(
xε + h, tε −

ε2

2

)
dLn−1(h)

≥ ϕ(xε, tε)−
ε2

2
ϕt(xε, tε)

+
β

2(n+ 1)
ε2
{

∆ν⊥min
ϕ(xε, tε) + (p− 1)〈D2ϕ(xε, tε)νmin, νmin〉

}
.

Then by (4.4.7), we observe that

ε2

2
ϕt(xε, tε) ≥

βε2

2(n+ 1)

{
∆ν⊥min

ϕ(xε, tε) + (p− 1)〈D2ϕ(xε, tε)νmin, νmin〉
}
.

(4.4.8)

Suppose that Dϕ(x, t) 6= 0. Since (xε, tε)→ (x, t) as ε→ 0, it can be seen
that

νmin → −
Dϕ(x, t)

|Dϕ(x, t)|
=: −µ

as ε→ 0. We also check that

∆(−µ)⊥ϕ(x, t) + (p− 1)〈D2ϕ(xε, tε)(−µ), (−µ)〉 = ∆N
p ϕ(x, t).

Now we divide both side in (4.4.8) by ε2 and let ε → 0. Since QR ⊂ ΩT , it
can be seen that δε(xε, tε)ε−2 → 0 as ε→ 0. Hence, we deduce

ϕt(x, t) ≥
1

n+ p
∆N
p ϕ(x, t).

Next consider the case Dϕ(x, t) = 0. Observe that

∆ν⊥min
ϕ(xε, tε) + (p− 1)〈D2ϕ(xε, tε)νmin, νmin〉

= ∆ϕ(xε, tε) + (p− 2)〈D2ϕ(xε, tε)νmin, νmin〉.

For p ≥ 2, we see

(p− 2)〈D2ϕ(xε, tε)νmin, νmin〉 ≥ (p− 2)λmin(D2ϕ(xε, tε)).

We already know that (xε, tε)→ (x, t) as ε→ 0 and the map z 7→ λmin(D2ϕ(z))
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is continuous. Therefore, it turns out

ϕt(x, t) ≥
1

n+ p

{
∆ϕ(x, t) + (p− 2)λmin(D2ϕ(x, t))

}
(4.4.9)

by similar calculation in the previous case.
For 1 < p < 2, by using similar argument in the previous case and

(p− 2)〈D2ϕ(xε, tε)νmin, νmin〉 ≥ (p− 2)λmax(D2ϕ(xε, tε))

= λmin((p− 2)D2ϕ(xε, tε)),

we also obtain the inequality (4.4.9).
We can also prove the reverse inequality to consider a function ϕ touching

u from above and a vector νmax maximizing Aεϕ(xε, tε; ·) and to do similar
calculation again as above.
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국문초록

이 학위 논문에서는 비선형 편미분방정식과 관련된 두 가지 유형의 문제

를 다룬다. 구체적으로 우리는 사선형 문제와 줄다리기 경기에 대하여 해의
정칙성을 중점적으로 탐구한다.
먼저, 우리는 논문의 전반부에서 사선형 미분경계조건이 주어진 비발산

완전 비선형 타원형 및 포물형 방정식을 연구한다. 사선형 경계조건은 노이
만 경계조건의 일반화라고 할 수 있는데, 우리의 목표는 이러한 문제에 대해
경계의 C3-정칙성 가정 하에서 칼데론-지그문트 유형의 가늠을 이끌어내는
것이다.
한편, 후반부에서 우리는 줄다리기 경기로 불리우는 2인 영합 확률경기,

그 중에서도 시간 의존형 경기에 대해 탐구한다. 우리는 이러한 확률경기의
결과값에 대한 립쉬츠 유형의 가늠을 얻는다. 또, 이러한 결과의 응용으로서
우리는 결과값 함수의 장기간 점근적 행동과 편미분방정식과의 연관성에 대

해서 연구한다.

주요어휘: 정칙성, 점성해, 완전 비선형 방정식, 사선형 문제, 줄다리기 경기,
동적계획원리

학번: 2014-21193
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Adimurthi박사님;연구실생활을하면서같이열심히공부한민규,원태형,남
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