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Abstract 

Detection and surveillance of vessels are regarded as a crucial application of SAR 

for their contribution to the preservation of marine resources and the assurance on 

maritime safety. Introduction of machine learning to vessel detection significantly 

enhanced the performance and efficiency of the detection, but a substantial majority 

of studies focused on modifying the object detector algorithm. As the fundamental 

enhancement of the detection performance would be nearly impossible without 

accurate training data of vessels, this study implemented AIS information 

containing real-time information of vessel’s movement in order to propose a robust 

algorithm which acquires the training data of vessels in an automated manner.  

As AIS information was irregularly and discretely obtained, the exact target 

interpolation time for each vessel was precisely determined, followed by the 

implementation of Kalman filter, which mitigates the measurement error of AIS 

sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR 

image named as Doppler frequency shift, it was calibrated by restoring the elliptic 

satellite orbit from the satellite state vector and estimating the distance between the 

satellite and the target vessel. From the calibrated position of the AIS sensor inside 

the corresponding SAR image, training data was directly obtained via internal 

allocation of the AIS sensor in each vessel. For fishing boats, separate information 

system named as VPASS was applied for the identical procedure of training data 

retrieval. 
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Training data of vessels obtained via the automated training data procurement 

algorithm was evaluated by a conventional object detector, for three detection 

evaluating parameters: precision, recall and F1 score. All three evaluation 

parameters from the proposed training data acquisition significantly exceeded that 

from the manual acquisition. The major difference between two training datasets 

was demonstrated in the inshore regions and in the vicinity of strong scattering 

vessels in which land artifacts, ships and the ghost signals derived from them were 

indiscernible by visual inspection. This study additionally introduced a possibility 

of resolving the unclassified usage of each vessel by comparing AIS information 

with the accurate vessel detection results.  
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Chapter 1.  

Introduction 

 

1.1 Research Background 
 

Maritime safety and preservation of oceanic resources can be ensured via stable 

monitoring of littoral and pelagic regions [1]. Recent studies on surveillance over 

such regions predominantly focused on vessels, with implications for both trade 

monitoring and managing illegal fisheries [2]. Continuous and robust monitoring of  

vessel movement has been widely conducted using a variety of apparatus, most of 

which have been failed to overcome the scarcity of information, especially small 

quantity of data [3, 4]. Hence, remote sensing devices were generally preferred for 

ship surveillance for their wide coverage, high accessibility and precision [5]. 

Conventional usages of remote sensing platforms for ship monitoring include 

hyperspectral, electro-optical, infrared imaging [6]; synthetic aperture radar (SAR) 

was considered stable and influential for its independence from weather conditions 

and sunlight [7, 8].  

In SAR images, a substantial number of man-made structures often demonstrate 

high backscattering coefficient, especially double-bounce scattering [9]. In the  

case of vessels on the ocean, their discernibility generally increased as background 

ocean exhibited feeble backscattering [10].  

Surveillance and monitoring vessels with SAR imaging were achieved by 
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detection and recognition of vessels, especially for ship traffic [11]. A rudimentary 

ship detection algorithm under such conditions focused on a vivid footprint of the 

object imprinted on the SAR image. Presenting a threshold on the calibrated SAR 

image intended to separate high backscattering pixels in the ocean, often improperly 

considered as a signal from ship, was examined [12], or an attempt to measure 

Radar Cross Section (RCS) of ships in a corresponding SAR image was made [5]. 

Given that backscatter and RCS could be affected by incidence angle, object length 

and shape, material and cross section, high probability of misdetection on ship-like 

scatterers remains in case of using such methodologies [13].  

Another stream of research on spectral vessel characteristics involved statistical 

analysis, such as implementing principal component analysis (PCA) to classify 

destroyers [14] or comparing different parameters one other such as coherence, 

cross-correlation, entropy and generalized likelihood ratio test to derive the best 

performance parameter in ship detection [15]. Spectral and statistical analyses on 

ships not only enabled ship detection, but was also applied in recognition because 

superstructure of vessel was directly imprinted in each SAR image pixel; scattering 

features on different types of vessel could be used in segmenting chips of vessels 

from RADARSAT-2 SAR images [16]. For classifying ships in SAR image 

coverage, difference in polarimetric and spectral character between each class of 

ship was deliberated. To mitigate the obstacles in procuring fully-polarized SAR 

image data, a SAR simulation algorithm was implemented and tested for diverse 

bearing angle and incidence angle [17]. Furthermore, as a deterministic algorithm, 
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fuzzy logic, was subsequently proposed for single-polarimetric SAR images for 

discriminating ship chips inside ENVISAT SAR images [18]. However, 

discriminating vessels in SAR images with their spectral signatures could 

potentially lead to misdetection on ship-like structures, such as onshore facilities, 

small islets and group of sea scatterers, or derive an image-dependent result on 

detection and classification.  

Attempts to exploit additional information elicited the usage of polarimetric SAR 

(PolSAR), which involved SAR imagery implementing various polarizations [19]. 

An algorithm was devised to mitigate the tradeoff between swath width and 

polarimetric information [20] and polarimetric algorithm derivation discriminating 

symmetric properties between artificial scatterers and the sea surface was tested 

[21]. Applying full-PolSAR data implementing the UAVSAR L-band dataset, a 

study managed to detect vessels via a complete polarimetric covariance difference 

matrix [22]. 

Conventional methodologies on ship detection had limitations that prevented them 

from being widely applied for full-size SAR images. Presenting a threshold value to 

the backscattering value of SAR images encompasses a risk of detecting ship-like 

structures in the ocean, especially in boisterous oceanic conditions which increase 

the background backscattering [10]. For identical exploitation of PolSAR on ship 

detection, quad-polarimetric data were required containing full information on four 

channels of scattering matrix, which was minimally accessible when relatively 

compared to single-pol or dual-pol SAR data [18]. Statistical vessel analysis often 
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inspected pixels corresponding to the target ships without including oceanic 

background [5]; it limited the hazard of detecting ground scatterers as ships.  

In the case of detecting and recognizing vessels in full-sized SAR images both 

regarding ships and the contrast between ships and their background, machine 

learning and artificial intelligence imitating a humanisticlogical algorithm were 

employed; beginning with constant false alarm rate (CFAR), artificial neural 

network (ANN) and support vector machine (SVM) [23-26]. Among a number of 

machine learning algorithms, the convolutional neural network (CNN) was regarded 

as suitable for ship detection and recognition which offers optimized architecture 

for character extraction inside each image [27]. Implementing CNN for ship 

detection and recognition often involved architectural reform, an algorithmic 

mitigation that mitigates performance and efficiency on time and workload. Such 

reform was primarily owing to the procurement of a vessel’s training data, because 

a detector based on CNN requires a significant quantity of training data [28]. 

Typical applications on such enhancement include modifying conventional faster 

region-base convolutional neural network (Faster R-CNN) to retrieve multiscale 

information [29], constructing a new grid CNN (G-CNN) model inspired by you 

only look once (YOLO) detection architecture [30] and rendering a hierarchical 

CNN (H-CNN) based ship detection algorithm to effectively discern ships from 

their ghost signals [31]. However, implementing CNN-based detection algorithm in 

ship detection contains fundamental limitations in gathering training data; 

signatures of ships are not always decisively discernable in SAR images, especially 
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in mid-to-low resolution SAR images. 

Apart from monitoring vessels in SAR images, real-time and expeditious data for 

tracking ships has been implemented for such an objective: Automated 

Identification System (AIS). It operates as a measurement for vessel surveillance 

which is a ship identification sensor containing real-time information on its position, 

velocity and acquisition time. Such conditions allow AIS information to be widely 

implemented as a reliable information source for vessel surveillance, tracking and 

monitoring. Notwithstanding, AIS information corresponding to each ship was 

gathered in a discrete fashion, so precise interpolation with respect to targeted time 

was widely examined. A research that identified the contrast between linear 

interpolation, circular interpolation and Kalman filter was conducted and 

determined that the accuracy of circular interpolation and Kalman filter exceeded 

that of linear interpolation [32]. In addition, the methodology on interpolating AIS 

information in missing regions was analyzed using linear and cubic Hermit 

interpolation [33]. 

In addition to being solely implemented, AIS information was often accompanied 

by remote sensing data. Comparison between AIS information characteristics for 

each vessel and its SAR image signatures were conducted; combining TerraSAR-X 

SAR images with terrestrial and satellite AIS information was pursued [34]. 

Subsequent studies on such research field, data fusion between AIS information and 

vessels in SAR images, were often targeted to mitigated the difference between the 

two domains, presenting an unsupervised domain adaptation method proposed for 
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vessel classification by accurately matching ship length and beam [35] and adopting 

a knowledge transfer mechanism implementing parameters derived from ship length 

and beam [36]. A study further analyzed the velocity evaluation from SAR image 

data and AIS information via Doppler frequency shift of moving object [37]. 

An operation to render an uninterrpted connection between AIS information and 

vessels’ signature in SAR images was recently conducted where an algorithm was 

proposed to assemble a dataset containing the chips of SAR images containing the 

signature of each vessel [38]. Designated as OpenSARShip, the database was 

established using a projected AIS signal on each SAR image, GF-3 and Sentinel-1, 

and retrieving a SAR image sector with respect to the projection. After interpolation 

and calibrating azimuth shift caused by the maneuvering vessel’s velocity, the 

algorithm searches for the target vessel within a 300m radius from the projected AIS 

position. Inside the radius, the vessel demonstrating the smallest offset in length and 

beam is selected as the target vessel, of which the signature is yielded and saved in a 

separate database. In spite of the OpenSARShip database involving diverse 

application fields, the algorithm constructing it has limitations in restoration. In the 

procedure of comparing the length and beam of each vessel in the SAR image and 

AIS information, unlike the latter, which was directly obtained from AIS 

information, the former was manually procured via visual interpretation. Such cases, 

especially in low resolution SAR images, could cause confusion between vessel-like 

scatterers and vessels, resulting in a mismatch between the target vessels in the SAR 

image and corresponding AIS information. Moreover, when similar types of vessels 
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are present in close vicinity of each other, disorientation could be induced in 

determining the target vessel. Avoidance of such conditions requires compact, 

robust and tight training datasets extracted from manual inspection and involving 

unnecessary background or other scatterers.  
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1.2 Research Objective 
 

Real-time surveillance and handling vessels that are not registered or permitted, 

monitoring and discriminating AIS-deprived vessels are imperative. Achieving such 

study objectives could involve estimating the number of vessels that access the 

major ports or trespass in the exclusive economic zone (EEZ). In addition, it could 

be effective if AIS information is accompanied by th detection results to 

discriminate illegal vessels from the others. It could be beneficial to ascertain the 

nation-wide trade and administration of national water bodies in a quantified 

manner, especially in Korea where major ports are located close to each other and 

illegal fishing boats prevail in the EEZ.  

In order to effectively perform these objectives and fundamentally ameliorate the 

limitations of conventional vessel detection studies, this study deduced that 

rendering training data which securely and robustly contain the spectral 

characteristics of diversified vessels was crucial. Hence, an automated training data 

retrieval algorithm was devised and implemented on SAR images to improve the 

performance of a CNN-based vessel detection model. The proposed algorithm 

directly associates SAR images and AIS information corresponding to SAR images, 

considering discrete position, velocity and interior allocation of AIS sensor to train 

the intrinsic characteristics of a vessel. Furthermore, to demonstrate the 

effectiveness of applying such an algorithm to monitoring oceanic regions and to 

indicate this algorithm could be executed under any type of SAR image, training 
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data was acquired targeting a number of fishing boats in SAR images with high 

spatial resolution. 

The remainder of the dissertation introduces the automated training data retrieval 

algorithm of vessels and detection of vessels in full-sized SAR images using the 

proposed algorithm. Explanation of the input data, SAR image data, SAR ancillary 

data, AIS and VPASS information, is described in Chapter 2. The detailed and 

explicit procedure of the training data retrieval algorithm from input data is 

presented in Chapter 3, which successively implements (i) accurate interpolation of 

discrete AIS information, both position and velocity, with respect to the target 

interpolation time of each vessel, (ii) mitigating the Doppler frequency shift, or 

azimuth shift, induced by the movement of each ship and (iii) direct retrieval of 

training data from AIS position and its allocation inside each ship. The chapter also 

contains a training data retrieval algorithm for fishing boats from VPASS 

information, while suggesting a supplementary algorithm for AIS information 

combining two algorithms proposed in advance. Chapter 4 introduces the 

architecture of the CNN-based training algorithm implemented for ship detection. 

The detection results and discussions for both AIS-based ships and VPASS-based 

fishing boats, examples of training data verification using binarization of 

backscattering coefficient are presented in Chapters 5 and 6, accompanied by the 

applications in discerning unclassified vessels. The concluding remarks are 

provided in Chapter 7.   
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Chapter 2.  

Data Acquisition 

 

Input data for this research consists of SAR image and AIS data, both of which 

essentially operate in establishing vessel training datasets. Information on these two 

data sources is described in the following sub-sections. 

 

2.1  Acquisition of SAR Image Data 

 

As the primary intent of the study is to successfully detect ships inside SAR image, 

it was essential to select SAR image data containing as many ships as possible. 

Given the tradeoff between spatial resolution and the scope of the SAR image, the 

author determined that wide coverage that can render mass training data could be 

decisive in the model’s performance. For mid-resolution SAR image ensuring a 

wide swath and coverage, the Sentinel-1 interferometric wide (IW) mode image 

data was implemented, which is the general method of acquisition in the mid-

latitude region .  

Sentinel-1A and Sentinel-1B SAR satellites provide six days of temporal 

resolution under constellation, which is considered relatively high, without any 

monetary charge. Such conditions make Sentinel-1 SAR data highly available, 

accessible and user-friendly. Owing to the compromise between resolution and SAR 
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data coverage, spatial resolution of Sentinel-1 SAR is inferior to that of other 

commercial SAR satellites. In order to exploit the advantage of such a condition, the 

high possibility of including abundant ships, the research selected the spatial scope 

of the SAR data in the vicinity of major Korean harbors. The coverage of the 

Sentinel-1 SAR images included the southeast coast of Korea with Busan, the 

largest port in South Korea, Ulsan, Pohang and Geoje.  

For detecting fishing boats whose magnitude was around 15~20m were mostly 

invisible in the Sentinel-1 IW mode SAR images which had 20m of spatial 

resolution. As a supplement, Cosmo-SkyMed SAR images covering the major 

harbors of southwestern Korea, Yeosu and Gwangyang, were implemented. With 

higher resolution than Sentinel-1 SAR, with four days of temporal resolution under 

constellation and the highest spatial resolution of 1 m when implemented without 

martial purposes, these SAR images were expected to effectively identify the target 

fishing boats compared to Sentinel-1 SAR images. For this research, Stripmap 

Himage mode of Cosmo-SkyMed SAR images with 3m of spatial resolution were 

implemented. 

 The detailed coverage and information of Sentinel-1 SAR image data in both 

ascending path (Sentinel-1A) and descending path (Sentinel-1B) with Cosmo-

SkyMed image data are described in Figure 2-1 and Table 2-1, where the 

fundamental information of Sentinel-1 IW GRDH mode and Cosmo-SkyMed 

Stripmap mode is respectively presented in Tables 2-2 and 2-3.  
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As the study intended to directly associate SAR image data and AIS information, 

the SAR image ought to have an adequate configuration where AIS information for 

each ship could be easily projected. In addition, each SAR image pixel should 

represent the precise backscattering coefficient of the corresponding physical 

environment. This implies that the SAR image after radiometric and geometric 

calibration is suitable as training and test image data and the SAR image data 

should be eligible for such calibration.  

In addition to the SAR image data, ancillary data of each SAR image data was 

necessary for projecting AIS information on the corresponding SAR image. The 

explicit duration of satellite image acquisition time and heading angle was 

imperative for resolving the accurate acquisition time for each pixel inside SAR 

spatial coverage. In addition, geocentric state vector of the SAR satellite was 

essential in calculating the slant range and incidence angle of each pixel. The SAR 

satellite state vector contains position and velocity in geocentric coordinates, which 

describes the movement of satellite in a discrete, but periodic fashion. Ancillary 

data corresponding with the SAR image was obtained from the annotation file of the 

respective Sentinel-1 GRDH IW mode images, but separately rendered via 

GAMMA remote sensing software as corresponding parameter files for Cosmo-

SkyMed Stripmap mode images.  

Both SAR image and ancillary data were implemented; the SAR images were 

applied to match the real-time data of vessels and derive the bounding box of 

training data in a precise format, where the SAR ancillary data, especially the state 
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vector of SAR in geocentric coordinates, was implemented for restoration of the 

elliptic SAR satellite path. It successively mitigates the offset imprinted in SAR 

image to match the real-time vessel data into the precise location of the 

corresponding SAR image. 
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Figure 2-1 Spatial coverage of Sentinel-1 and Cosmo-SkyMed SAR data.
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Table 2-1 Acquisition time of SAR image data 

Satellite & Mode Acquisition Time (UTC) Region 

Sentinel-1A, IW 26/06/2018 09:23:00~09:23:29 Southeast Korea 

Sentinel-1A, IW 08/07/2018 09:23:00~09:23:29 Southeast Korea 

Sentinel-1A, IW 20/07/2018 09:23:01~09:23:30 Southeast Korea 

Sentinel-1A, IW 01/08/2018 09:23:02~09:23:31 Southeast Korea 

Sentinel-1A, IW 18/09/2018 09:23:04~09:23:33 Southeast Korea 

Sentinel-1A, IW 30/09/2018 09:23:04~09:23:33 Southeast Korea 

Sentinel-1A, IW 12/10/2018 09:23:05~09:23:34 Southeast Korea 

Sentinel-1A, IW 24/10/2018 09:23:05~09:23:34 Southeast Korea 

Sentinel-1A, IW 17/11/2018 09:23:04~09:23:33 Southeast Korea 

Sentinel-1A, IW 29/11/2018 09:23:04~09:23:33 Southeast Korea 

Sentinel-1A, IW 11/12/2018 09:23:03~09:23:32 Southeast Korea 

Sentinel-1A, IW 23/12/2018 09:23:03~09:23:32 Southeast Korea 

Sentinel-1A, IW 16/01/2019 09:23:02~09:23:31 Southeast Korea 

Sentinel-1B, IW 12/09/2018 21:23:52~21:24:26 Southeast Korea 

Sentinel-1B, IW 24/09/2018 21:23:53~21:24:26 Southeast Korea 
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Sentinel-1B, IW 18/10/2018 21:23:53~21:24:27 Southeast Korea 

Sentinel-1B, IW 30/10/2018 21:23:53~21:24:27 Southeast Korea 

Sentinel-1B, IW 11/11/2018 21:23:53~21:24:26 Southeast Korea 

Sentinel-1B, IW 23/11/2018 21:23:53~21:24:26 Southeast Korea 

Sentinel-1B, IW 05/12/2018 21:23:52~21:24:26 Southeast Korea 

Sentinel-1B, IW 17/12/2018 21:23:52~21:24:25 Southeast Korea 

CosmoSkyMed1, 

Stripmap, Himage 
08/07/2018 21:08:08~21:08:15 Yeosu, Gwangyang 

CosmoSkyMed2, 

Stripmap, Himage 
10/03/2018 21:07:50~21:07:57 Yeosu, Gwangyang 

CosmoSkyMed2, 

Stripmap, Himage 
13/05/2018 21:07:59~21:08:06 Yeosu, Gwangyang 

CosmoSkyMed2, 

Stripmap, Himage 
13/03/2019 21:08:11~21:08:19 Yeosu, Gwangyang 

CosmoSkyMed2, 

Stripmap, Himage 
16/05/2019 21:08:20~21:08:27 Yeosu, Gwangyang 

CosmoSkyMed4, 

Stripmap, Himage 
09/01/2018 21:07:42~21:07:49 Yeosu, Gwangyang 

CosmoSkyMed4, 

Stripmap, Himage 
06/09/2018 21:08:08~21:08:15 Yeosu, Gwangyang 

CosmoSkyMed4, 

Stripmap, Himage 
09/11/2018 21:08:15~21:08:23 Yeosu, Gwangyang 
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CosmoSkyMed4, 

Stripmap, Himage 
12/01/2019 21:08:12~21:08:20 Yeosu, Gwangyang 
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Table 2-2 Specifications of Sentinel-1 IW GRDH mode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter name Parameter for Sentinel-1 Remark 

Sensor complement C-Band SAR 

 

Central frequency 5.4GHz 

 

Polarization VH, VV Dual polarization 

Look Right 

 

Antenna size 12.3 × 0.821 (m) 

 

Spatial Resolution 20.4×22.6 (m)  

Pixel Spacing 10×10 (m)  

Number of Looks 5×1 Range × Azimuth 

Bits per pixel 16 

 

Ground range coverage 251.8 (km) 
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Table 2-3 Specifications of Cosmo-SkyMed Stripmap Himage mode 

 

 

 

 

 

Parameter name Parameter for Cosmo-SkyMed Remark 

Sensor complement X-Band SAR 

 

Central frequency 9.6GHz 

 

Polarization HH Single polarization 

Look Right 

 

Spatial Resolution 3×3 (m)  

Swath Width 40 (km) 
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2.2  Acquisition of AIS and VPASS Information 

 

AIS information for each Sentinel-1 SAR image was accordingly obtained to 

procure ship training data. The AIS dataset could be utilized as a means for vessel 

tracking apparatus, which has been widely accomplished in marine surveillance 

since vessels are required to address their AIS signals to either a ground station or 

the satellite [33]. Ships without AIS information therefore, were considered as 

unclassified. 

AIS information was povided by the Ministry of Oceans and Fisheries, Korea 

(MOF) for the sake of the research. It could be classified into two different 

categories: dynamic and static AIS information. Dynamic AIS information contains 

real-time messages from the ship which is transmitted to the station. It is the 

discrete, but unevenly received data of which the interval between the adjacent 

messages is not constant. For each time of acquisition, dynamic AIS information 

offers the data which identifies the longitude and latitude in degrees and the ship 

movement with the corresponding ship identification number. Explanation of the 

maneuvering fashion of vessel is depicted in two parameters: course-over-ground 

(COG) and speed-over-ground (SOG). The COG denotes the ship’s heading angle 

with respect to the direction towards the North Pole, while SOG denotes the ship 

velocity towards COG, usually expressed in knots. Conversely, static AIS 

information includes the constant specification of each ship, including the ship 
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identification number, ship type and dimensions indicating the internal allocation of 

AIS sensor. Figure 2-2 briefly describes the COG, SOG and dimension of each ship. 

Four dimensions, DimA, DimB, DimC and DimD respectively represent the 

distance from the AIS sensor to the vessel’s bow, stem, port and starboard in meters. 

Black letters in Figure 2-2 explain information from dynamic AIS information 

(COG, SOG and position of AIS sensor), where white letters denote information 

from static AIS information (Dimensions). 

Figure 2-3 indicates an abridged example of AIS information, both static and 

dynamic, received from the MOF. Dynamic AIS data includes MMSI number, 

which dictates Ship ID, exact acquisition time for each piece of AIS information, 

longitude and latitude of AIS sensor, SOG, COG and heading information. Static 

AIS data for each ship includes MMSI number, name and type of each ship, IMO 

number, call sign, dimension information expressed as DimA-D, draft and beam. 

Among these static AIS data constituents, MMSI number for matching static data to 

corresponding dynamic data, type of ship and dimensional information was 

implemented for the proposed algorithm.  

The temporal span of the AIS information was 10 minutes which securely 

includes the SAR image acquisition time. The spatial coverage was assigned 

identically to the spatial coverage of the respective Sentinel-1 SAR image as 

presented in Table 2-1.  

However, AIS information does not cover the entire amount of available vessel 
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information; small fishing boats are operating a different system named VPASS. 

The operation of VPASS system resembles that of AIS, containing location, SOG 

and COG of each fishing boat in an irregular and discrete manner in the case of 

dynamic information. The difference between AIS and VPASS information lies in 

static information, where static information only contains length and beam of each 

fishing boat, respectively corresponding to DimA+DimB and DimC+DimD in static 

AIS information. VPASS information was also truncated into 10 minute intervals 

including the SAR image acquisition time with conforming coverage of each image.  

For Korean guidelines, an AIS sensor is required to be installed on fishing boats 

exceeding 10 tons, ships maneuvering in coastal regions over 50 tons and passenger 

ships exceeding 150 tons, while the VPASS sensor is attached to licensed fishing 

boats or those inside inland water bodies; fishing boats docked at the port are spared 

from VPASS information report [39, 40]. This implies that VPASS information is  

acquired from restricted number and type of ship (fishing boat) whereas AIS 

information is obtained from various vessel types and magnitudes. 

In short, information related to position, velocity and dimensions of a vessel was 

sorted and implemented from dynamic and static information of real-time data. 

Within dynamic information, discrete latitude and longitude indicating the sensor’s 

position along with COG and SOG elaborating the vessel’s velocity were selected 

for interpolation within the corresponding SAR image. From static information, 

information which indicates the internal allocation of the real-time sensor of vessel, 

identified as dimensions, was updated for defining the training data bounding box in 
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an accurate and compact manner reflecting the genuine extent of the vessel.
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Figure 2-2 Illustration on individual maneuvering fashion of AIS sensor-installed vessel. 
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Figure 2-3 Abridged example of Dynamic and Static AIS information received from 

MOF, Korea.   
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Chapter 3.  

Methodology on Training Data Procurement 

 

In relation to rendering training data for machine learning object detection 

architecture, it is anticipated that it would be effective to create a training data 

bounding box which indicates the intrinsic character of vessel in appropriate size. 

The ship bounding box, therefore, should be constructed tightly with respect to each 

ship’s exact size. Such an objective requires precise processing and execution of 

AIS information as much as possible. Conventional research handled similar 

procedure, projecting AIS data to position with respect to the target time and 

Doppler frequency shift calibration [38], but without explicit explanation which 

ensures high accuracy of performance. This study however, aims to keep the 

inaccurate and deficient training data from degrading the overall detection 

performance.  

Since the major objective of this study was obtaining mass training data of ship to 

fundamentally ameliorate ship detection performance, this section concentrated on 

obtaining vessel training data. Automated procurement of vessel training data 

consisted of three stages: Interpolation of discrete AIS information with respect to 

acquisition time, mitigation of Doppler frequency shift caused by each ship’s 

maneuvering fashion and direct derivation of training data in the form of a bounding 

box from calibrated AIS information. Sentinel-1 SAR images, as explained in the 

previous chapter, were implemented in the first stage of interpolation, accompanied 
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by dynamic AIS information and the portion of the SAR ancillary data related to the 

acquisition time of each image. The other portion of the SAR ancillary data 

including satellite state vector and interpolated AIS data were entered as input data 

for the second stage. Static information was used for the final stage, along with the 

COG from the first stage and precise AIS position from the second stage. The final 

output of this chapter contains a text file corresponding to the SAR image, 

following the conventional style of training data of object detection.  

The schematic overview of flowchart is shown in Figure 3-1, describing the input 

data and the procedure of Chapter 3. 
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Figure 3-1 Flowchart of the training data procurement algorithm for AIS information.
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3.1  Interpolation of Discrete AIS Data 

 

3.1.1 Estimation of Target Interpolation Time for Vessels 

 

This study implemented AIS information received from the ground station, offered 

in a discrete manner and rarely matched with the desired time. Accurate 

interpolation to remedy such issues was therefore required, which could ascertain 

the identical allocation of each ship. Apart from conventional photogrammetric 

images, SAR images are procured while the SAR antenna and satellite or aircraft 

carrying it are moving [7]. Owing to the acquisition conditions, each pixel inside the  

SAR image has different acquisition times.  

The acquisition time of a pixel in the SAR image strongly depends on the pulse 

repetition frequency (PRF). The PRF is a parameter of the SAR antenna which 

identifies the number of pulse emissions per second [7, 8]. Pulses from the SAR 

antenna therefore, are emitted every 1/PRF second, often declared as pulse 

repetition interval (PRI) [7]. Within a single pulse transmission taking place inside a 

PRI, both pulse transmission from the SAR antenna and subsequent echo retrieval 

from ground or ocean occur. Given that the difference in fast time in range direction 

is negligible to the difference in slow time in azimuth direction, it could be 

approximated that pixels in the azimuth line share an identical acquisition time [41].  

The acquisition time of each azimuth line could be quantitatively speculated, 

provided that the SAR satellite system is a zero-Doppler geometry, which is the 
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case for the Sentinel-1 IW mode, 

  𝑧           𝐼    𝑧       (1) 

where   𝑧, the acquisition time of target azimuth line could be described by the 

SAR image acquisition start time,       , start time of SAR image acquisition time, 

  𝑧, the order of target azimuth line from the fastest acquired azimuth line, and  , 

number of looks.  

Sentinel-1 SAR images acquired in IW, GRDH mode were preprocessed as 

radiometric and geometric calibration. Radiometric calibration in SAR image 

converts the digital number (DN) of each pixel into radar cross section (RCS), 

removing the path scattering and featuring the backscattering from the desired target 

[42]. Geometric calibration removes the geometric distortion of target scatterers 

owing to side-looking and turbulence of SAR platform itself, of which the 

conclusive objective lies on geocoding [43]. Such calibrations were applied to all 

SAR image input data, combining the incidence angle map with conventional dual-

PolSAR images. With respect to (1), acquisition time of each SAR image pixel was 

speculated and conserved as separate data for subsequent use. The target time for 

interpolating AIS information should be deliberated for every vessel. Presentation 

of an iterative algorithm to define target interpolation time for each vessel was 

essential since acquisition time from (1) may not precisely describe the veritable 

AIS sensor location as the vessels passing through the SAR image pixels possess 

different acquisition times.  
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For each SAR image containing a number of ships, all of the AIS data were 

interpolated with respect to the average time of acquisition time span: mean of the 

initiation and termination of acquisition time. As the acquisition time map for every 

pixel in the corresponding SAR image was already acquired, the acquisition time of  

the grossly interpolated position was diversely driven. Subsequently, the referred 

acquisition time was shifted to temporary target interpolation time; two pieces of 

AIS information showing the least time interval with the target time were selected, 

each prior and after it, and the interpolation was conducted using these two AIS 

positions. After the second interpolation, the above procedure was operated in an 

iterative manner, repeating the interpolation using the nearest two AIS positions and 

applying the acquisition time for the desired position. Such iteration was terminated 

only when the interpolation and successive migration of AIS information were 

conducted inside a single spatial resolution. The referred acquisition time for 

decisive position was selected as conclusive target interpolation time, which was 

implemented for the next interpolation procedure. Figure 3-2 expresses a schematic 

outline of the iterative procedure of defining target interpolation time for each 

vessel.  

In addition to determining of explicit target interpolation for each vessel, such 

procedure also conducts an interpolation on AIS information itself. Because the 

position and velocity interpolation was conducted, additional interpolation 

procedures may not be mandatory. In contrast, sensors including AIS often contain 

a measurement error term, which relies on the system of sensor and constantly 
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keeps the measurement from elaborating the precise state and location of the target. 

Hence, this study implemented another algorithm to eliminate the measurement 

error term and effectively uncover the veritable and genuine position and velocity of 

each vessel. 

Vessels often maneuver at high-velocity in offshore conditions where 

implementing the proposed algorithm of target interpolation time estimation could 

be effective. Provided that the high-speed vessel at the azimuthal tip of the SAR 

image navigated in 20 knots (10.3 m/s), it may reduce approximately 150 m of 

interpolation offset which could have occurred when the average time of acquisition 

time span was used. Such quantity of interpolation offset would be reckoned as 7 to 

8 pixels in the current Sentinel-1 IW GRDH mode SAR image where the case 

contaminates the training data of ship by improper bounding box position derivation. 
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Figure 3-2 Schematic outline of defining target interpolation time for each vessel. 
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3.1.2 Application of Kalman Filter to AIS Data 

 

Previous studies attempted the AIS data interpolation on the desired position by 

applying different interpolation methodologies: linear interpolation, circular 

interpolation and cubic interpolation [32, 33]. Linear interpolation applies the 

twonearest points to speculate the desired position, where cubic interpolation 

implements quadratic or higher dimension functions for each path section in order 

to conduct the interpolation in a curvature. Circular interpolation assumes the 

maneuvering path of an object is an ideal circle, restoring the target path circle from 

three previous measurements.  

This study determined that instead of applying conventional interpolation 

methodologies, a renewed approach that could perform both interpolation and 

measurement error elimination was suitable because every sensor, including the AIS 

sensor, was susceptible to measurement error terms [44]. For such an objective, a 

Kalman filter was implemented in order to anticipate the precise position and 

velocity of each vessel while eradicating the influence on AIS sensor from possible 

observational error terms. The Kalman filter was adopted as a state estimator first 

designed for a linear system containing Gaussian noise, but renowned to be 

performed as the best linear estimator even though the system contains non-

Gaussian noise [45]. Because with such characteristics, a Kalman filter was widely 

implemented in traffic monitoring; given that the Kalman filter underwent several 
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modifications after it had been presented, a performance contrast on various 

Kalman filter algorithms was implemented [46], where another research was 

conducted regarding the macroscopic traffic model based on the Extended Kalman 

filter and its localized variation [47]. Another application of Kalman Filter was 

conducted in SAR signal processing; it significantly enhanced the performance of 

phase gradient autofocus for stripmap SAR data [48]. 

This study speculated that not only the implementation of Kalman filter on AIS 

information could be effective, but also applying an elementary Kalman filter 

without enhancement would suffice given the relatively low spatial resolution of the 

Sentinel-1 SAR images. A Kalman filter has been applied to calibrating AIS data, 

which was shown to outperform linear interpolation in terms of interpolation [32]. 

Moreover, as the style of input AIS data for the Kalman filter was already described 

[49], this study followed the data format previously presented.  

The Kalman filter is an iterative procedure which requires the initial stage, output 

and estimation from AIS to be arranged as a tractable form called state vector. It is a 

4×1 vector which consists of the position of the ship in SAR image coordinates as 

(𝑥; 𝑦) and velocity with respect to each direction calculated by COG and SOG of 

dynamic AIS data as (𝑣𝑥;  𝑣𝑦). The Kalman filter is a double-staged procedure each 

of which is  named as prediction and estimation. Prediction stage of the Kalman 

filter provisionally determines the anticipated state vector of the successive iteration, 

from the time interval between the two adjacent stages as in (2). The style of each 

composition of the Kalman filter for AIS application followed the previous research 
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on AIS information [49], 

𝑥𝑘
−  𝐴  𝑥𝑘−1  𝐵  𝑢𝑘  𝑤𝑘−1                  (2) 

From the initial state vector, or the previous stage state vector 𝑥𝑘−1, the system 

implements a time interval between the current and the next adjacent AIS 

information, expressed as a transition matrix 𝐴. The acceleration of the system is 

denoted as 𝐵  𝑢𝑘, which acts as an additional term modifying the position and 

velocity. The process noise term in (2) is marked as  𝑤𝑘−1 . Conventional 

explanations on components in (2) are described as in (3)-(6) [49], where (6) 

denotes the initial calculation form of 𝑥𝑘−1. 

𝐴  [

1 0 ∆𝑡 0
0 1 0 ∆𝑡
0 0 1 0
0 0 0 1

]    (3) 

𝐵  𝑢𝑘  

[
 
 
 
 
 
 𝑥 ∆ 

2

2

 𝑦 ∆ 
2

2

𝑎𝑥  ∆𝑡
𝑎𝑦  ∆𝑡]

 
 
 
 
 

         (4) 

𝑤𝑘−1  [

0
0
0
0

]        (5) 

𝑥𝑘−1  [

𝑙𝑜𝑛𝑘−1
𝑙𝑎𝑡𝑘−1

𝑆𝑂𝐺  cos (𝐶𝑂𝐺)

𝑆𝑂𝐺  sin (𝐶𝑂𝐺)

]      (6) 
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The time interval between two adjacent AIS data was marked as ∆𝑡, acceleration 

with respect to longitude and latitude marked as 𝑎𝑥, 𝑎𝑦 and (𝑙𝑜𝑛𝑘−1, 𝑙𝑎𝑡𝑘−1) states 

the position information from the dynamic AIS data in phase 𝑘 − 1. 

In addition to (2), the Kalman filter holds an additional procedure which revises 

the system implementing the state vector of the given time lapse; the iterative 

reflection on the maneuvering fashion of each vessel is conducted to the Kalman 

filter. A covariance matrix is adopted for such an objective, which is 4 × 4 array 

composed of covariance between position and velocity in dynamic AIS data. The 

initial context of covariance matrix is described in (7) and its iterative amendment is 

described in (8). 

 𝑖𝑛𝑖  

[
 
 
 
 

𝜎𝑥
2 𝑐𝑜𝑣(𝑥, 𝑦) 𝑐𝑜𝑣(𝑥, 𝑣𝑥) 𝑐𝑜𝑣(𝑥, 𝑣𝑦)

𝑐𝑜𝑣(𝑥, 𝑦) 𝜎𝑦
2 𝑐𝑜𝑣(𝑦, 𝑣𝑥) 𝑐𝑜𝑣(𝑦, 𝑣𝑦)

𝑐𝑜𝑣(𝑥, 𝑣𝑥) 𝑐𝑜𝑣(𝑦, 𝑣𝑥) 𝜎𝑣𝑥
2 𝑐𝑜𝑣(𝑣𝑥 , 𝑣𝑦)

𝑐𝑜𝑣(𝑥, 𝑣𝑦) 𝑐𝑜𝑣(𝑦, 𝑣𝑦) 𝑐𝑜𝑣(𝑣𝑥 , 𝑣𝑦) 𝜎𝑣𝑦
2

]
 
 
 
 

 (7) 

 𝑘
−  𝐴   𝑘−1  𝐴

𝑇  𝑄       (8) 

Following  the initial context previously proposed [49], the process noise 

covariance matrix 𝑄 was regarded as  𝑘−1. Transition matrix  𝐴 is also used in 

order to reform covariance matrix  𝑘−1. In (2) and (8), the notation on 𝑥𝑘
− and  𝑘

− 

implies the a priori state, which is the state before calibrated by covariance matrix  . 

The prediction of the Kalman filter is terminated after deriving the a priori state of 

the state vector and covariance matrix.  
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The successive procedure of estimation consists of modifying the a priori state 

using Kalman gain, which determines the influence of the following measurement 

on the conclusive state. The calculation of Kalman gain is performed from (9), 

where measurement transformation matrix  𝐻  and measurement covariance 

matrix   are defined as (10) and (11), 

𝐾𝑘   𝑘
−  𝐻𝑇  (𝐻   𝑘

−  𝐻𝑇   )−1      (9) 

𝐻  [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]       (10) 

  

[
 
 
 
 
𝜎𝑥
2 0 0 0

0 𝜎𝑦
2 0 0

0 0 𝜎𝑣𝑥
2 0

0 0 0 𝜎𝑣𝑦
2
]
 
 
 
 

       (11) 

The Kalman gain derived by (9) modifies both the a priori state vector 𝑥𝑘
− and 

covariance matrix  𝑘
− while additionally implementing the measurement, in this 

case the AIS information, from the next time step. Detailed modifications are 

expressed in (12) and (13), where the 𝑧𝑘 stands for the measurement state vector 

from the next phase.  

𝑥𝑘  𝑥𝑘
−  𝐾𝑘  (𝑧𝑘 −𝐻  𝑥𝑘

−)        (12) 

 𝑘  (𝐼 − 𝐻  𝐾𝑘)   𝑘
−      (13) 

The iteration proceeds as the a posteriori state vector 𝑥𝑘 and covariance matrix  𝑘 
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respectively substitute  𝑥𝑘−1  and   𝑘−1  in (2) and (8). As the Kalman gain  𝐾𝑘 

determines the influence of measurement on the a posteriori state, it was speculated 

that iterative application of the Kalman filter on AIS information could minimize 

the error and offset which are consistently imposed. Given that the measurement 

error of AIS information was left unchanged for 10 minutes of acquisition span, this 

study concluded that the error term from observation could be effectively 

diminished by using the Kalman filter.  

The iterative Kalman filter was applied to dynamic AIS data which was obtained 

before the target interpolation time derived from the previous section of this study. 

Final stage speculation implements the a posteriori state vector and covariance 

matrix for the closest state of measurement before the target interpolation time with 

the interpolated position data obtained during the estimation of target interpolation 

time; this interpolated position data substitutes the measurement data for target 

stage, which is not available. The conclusive result in the state vector format 

precisely describes the position and velocity of the vessel with respect to the target 

interpolation time, minimizing the measurement error introduction from the AIS 

sensor.  
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3.2  Doppler Frequency Shift Correction 

 

3.2.1 Theoretical Basis of Doppler Frequency Shift 

 

The SAR image is acquired by synthesizing the echo received from the reflected 

wave on the scatterer in both range and azimuthal directions. The frequency in the 

SAR system is often called Doppler frequency, which is frequency susceptible to 

the variation of slant range [7]. As the major objective of this section was to 

establish a precise relationship between the vessel in the SAR image and 

corresponding AIS information, ascertaining the amount of the Doppler frequency 

shift caused by the instantaneous target movement was indispensable. This section 

describes and quantifies the Doppler frequency shift, referring to the conventional 

studies regarding the detection of the maneuvering target inside the SAR image [50-

56]. 

Figure 3-3 illustrates the schematic geometry of SAR platform and the moving 

target object. The receiving antenna at the platform head is situated at (0,0, 𝑧 ), 

where the target is maneuvering from  (0, 𝑦 , 0)  to (𝑣𝑥𝜂, 𝑦  𝑣𝑦𝜂, 0)  with 

separation of slow time 𝜂. An assumption was made that the transmitter was 

installed only at the head antenna with the receiver, where other antennas behind it 

only act as receivers [52]. The separation between the adjacent antenna sensors in 

an identical SAR platform is constant as  𝑑 . The object delivers a constant 
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movement which is left unchanged for a given slow time interval 𝜂, both in range 

and azimuth direction: 𝑣𝑦 and 𝑣𝑥. The velocity of the SAR platform is denoted 

as 𝑉   .  
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Figure 3-3 Geometry of SAR antenna and the maneuvering target object. 
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The round-trip slant range    (𝜂) could be decomposed as the slant range from 

the transmitter to the target   (𝜂) and the slant range from the target to the 

receiver   (𝜂), provided that the wave could be received from multiple antennas 

[53]. From Figure 3-3,   (𝜂) could be expressed as (14), where 𝑚 describes the 

order of antenna from zero to M-1. In addition to (14), previous studies suggested 

that the Taylor expansion could be implemented with respect to slow time 𝜂 as 

approximately expressed in (15) with an order of two [51, 53], 

  (𝜂)  √((𝑉   − 𝑣𝑥)𝜂 − 𝑚𝑑)
2  (𝑦  𝑣𝑦𝜂)

2  𝑧 
2    (14) 

   (𝜂)    (𝜂)    (𝜂) ≈ 2   𝜂
2𝑦0𝑣𝑦−(𝑉𝑠𝑎𝑡−𝑣𝑥) 𝑑

𝑅0
 𝜂2

(𝑉𝑠𝑎𝑡−𝑣𝑥)
2+𝑣𝑦

2

𝑅0
 
( 𝑑)2

2𝑅0
 (15) 

 Suggestions were made that the approximated components in the right side of (15) 

could be substituted by Doppler frequency terms [53, 54]. The first and second 

order components of the approximation were illustrated as (16) and (17), where the 

first order term in (16) could be separated into Doppler frequency from antenna 

location 𝑓  and that from the target’s motion 𝑓𝑑. Doppler rate of the static target 

was denoted as 𝑓  in (20), while that of the maneuvering target was denoted as 𝑓 𝑇 

in (17) [54], 

𝑓𝐷,  −
2𝑦0𝑣𝑦−(𝑉𝑠𝑎𝑡−𝑣𝑥) 𝑑

𝜆𝑅0
 𝑚𝑓  𝑓𝑑     (16) 

𝑓 𝑇  −2
(𝑉𝑠𝑎𝑡−𝑣𝑥)

2+𝑣𝑦
2

𝜆𝑅0
       (17) 
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𝑓  
𝑉𝑠𝑎𝑡−𝑣𝑥

𝜆𝑅0
𝑑                   (18) 

𝑓𝑑  −2
𝑣𝑦𝑦0

𝜆𝑅0
          (19) 

𝑓  −2
𝑉𝑠𝑎𝑡

2

𝜆𝑅0
          (20) 

The response signal of the moving target was expressed as (21), after conducting 

preprocessing the echo signal from the target [52]. The complex image data was 

obtained for each receiver antenna such that the number of the signal became 𝑀. 

𝑆(𝑚)  𝐴𝑠𝑖𝑛𝑐 (𝐵 (𝜂  
�̂�𝑑

𝑓𝑟
)) exp (−𝑗𝜋𝑚𝑓𝑑

𝑑

𝑉𝑠𝑎𝑡
)        (21) 

𝑓𝑑  𝑓𝑑   𝑇    𝐹      (22) 

Owing to the limitations of PRF, target Doppler frequency is left ambiguous, 

denoted as 𝑓𝑑 in (21). The relationship between 𝑓𝑑 and 𝑓𝑑 is expressed in (22), 

where  𝑇 designates the folding integer of time domain Doppler ambiguity. From 

(21), the target is focused while shifted from the conventional position owing to its 

motion; appearance of the target without velocity in azimuth time domain transpired 

in 𝜂  0, while the target with motion emerged at 𝜂  −
�̂�𝑑

𝑓𝑟
. Given the velocity of 

the SAR platform, the offset generated by the target’s motion could be quantified by 

(23), 

𝛿𝑜𝑓𝑓  −
�̂�𝑑

𝑓𝑟
𝑉                 (23) 
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The majority of the studies on azimuth shift of the moving target concentrated on 

velocity extraction from the azimuth offset. In such a case, the estimated velocity 

obtained from the Doppler frequency possessed the ambiguity caused by the PRF 

limitation. Implementing (23) for reckoning the azimuth shift in this research 

however, the exact velocity and the Doppler frequency from such velocity could be 

determined from the dynamic AIS information. It was speculated that the ambiguity 

of Doppler frequency and the target velocity would be trivial in such a condition. 

Hence, (23) could be approximated for this research as (24), 

𝛿𝑜𝑓𝑓 ≈ −
𝑓𝑑

𝑓𝑟
𝑉    −

𝑣𝑦𝑦0

𝑉𝑠𝑎𝑡
 −

𝑣𝑟

𝑉𝑠𝑎𝑡
      (24) 

The approximation in (24) was also implemented in conventional studies regarding 

the application of the moving target in SAR images, such as ocean surface waves 

[57] or measuring it from along-track interferometry (ATI) [58]. Instead of 

attempting the ascertainment of distance between the nadir and the target to 

reckon 𝑦 , line-of-sight velocity 𝑣  was introduced which could be elaborated as 

(25) [56]. 

𝑣  𝑣𝑦
𝑦0

𝑅0
         (25) 

In order to calibrate the offset between the interpolated position from the Kalman 

filter and practical location of the vessel in SAR image, (24) was implemented 

along with precise measurement of  𝑣 ,  𝑉    and    . Typical examples of the 

azimuth ship owing to the target motion are illustrated in Figure 3-4, describing the 
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focused vessel isolated from the corresponding AIS path.  
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Figure 3-4 Offset between vessels and their paths from dynamic AIS data. 
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3.2.2 Mitigation of Doppler Frequency Shift 

 

As the mitigation of Doppler frequency shift caused by the target motion is 

necessary, delineation of the three components of (24) ought to be accurately 

ascertained. This section describes the acquisition of 𝑣 , 𝑉    and    for each 

vessel.  

The outcome of the Kalman filter consists of the style of 2-dimensional state 

vector which consists of vessel position and velocity in pixel coordinates. The zonal 

and meridional velocity components were transformed into COG and SOG, 

following the form of dynamic AIS information. As the expected velocity 

configuration is the projected velocity towards the SAR satellite, the velocity of the 

vessel towards COG required an alteration. Figure 3-5 illustrates the transformation 

of the target motion from the arrangements of COG and SOG to range-projected 

velocity 𝑣𝑦. Satellite heading angle is additionally required, which was usually fixed 

as constant for each SAR satellite. The detailed equation is elaborated in (26), 

where the SAR satellite heading angle is expressed as   . The positive velocity 

of 𝑣𝑦  was assigned as velocity moving away from the SAR platform, which 

makes 𝑣𝑦 negative in Figure 3-5.  

𝑣𝑦  𝑆𝑂𝐺  𝑠𝑖𝑛 (𝐶𝑂𝐺 −   )          (26) 
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Figure 3-5 Transformation of target motion into range-projected velocity. 
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In contrast to the range-projected velocity which could be directly reckoned from 

the previously derived result, slant range and satellite velocity required additional 

calculation. Precise and accurate measurement of those two parameters required the 

geocentric 3-dimensional positions of both SAR satellite platform and interpolated 

AIS sensor. As AIS information contains the geocentric position of the object with 

respect to the target interpolation time, satellite position corresponding to the object 

was necessary. This study concluded that the satellite state vector in SAR ancillary 

data could be appropriate for accomplishing such an objective.  

The SAR ancillary data, or annotation file of each SAR image data, contains basic 

information regarding the SAR platform movement and image acquisition; it 

contains the precise span of SAR image acquisition, the number of range and 

azimuth samples, heading angle of the SAR platform, pixel spacing, radar 

frequency, sampling rate of analog-to-digital converter (ADC), chirp bandwidth, 

PRF, semi major and minor axis of the Earth ellipsoid, satellite state vectors and the 

constant interval between them. Application of the satellite state vector for 

measuring slant range and satellite velocity significantly focused on satellite state 

vector, denoting the discrete 3-dimensional position and velocity of the SAR 

platform in geocentric coordinate for 7-8 moments in the case of Sentinel-1 SAR.  

Given that each satellite state vector composed of six coordinates of position and 

velocity, each satellite state vector could be coordinated to an elliptic satellite path. 

For proper visualization, such an elliptic path was explained using six geometric 

parameters which were entitled as orbital elements or Kepler parameters [59, 60]. 
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These six parameters include eccentricity (𝑒), semi-major axis (𝑎), inclination (𝑖), 

longitude of the ascending node  ( ) , argument of periapsis  (𝑤)  and true 

anomaly ( ) at epoch (𝑡 ).  

Examinations and analyses on orbital elements were widely conducted in the fields 

of engineering and orbital mechanics [61, 62]. Eccentricity determines the 

appearance of an elliptic satellite path, quantifies the amount of the discrepancy 

between the path and optimal circle. Semi-major axis is the longer axis among the 

two ellipse axes. Inclination is the offset angle between the elliptic path and the 

reference plane, assessed at the ascending node of the satellite path. Longitude of 

the ascending node is measured counterclockwise with respect to the direction of 

the vernal equinox point. Argument of the periapsis is determined by the angle 

between the elliptic periapsis and the ascending node. True anomaly denotes the 

location of the satellite at the target time called epoch 𝑡 . 

Because each satellite state vector consists of a single elliptic satellite path, six 

orbital elements corresponding to it are designated. Provided that the SAR satellite 

maneuvers in an ideal elliptic path as the orbital elements demonstrate, each set of 

elements denotes the presumed satellite path with respect to the corresponding point. 

Mitigation of the minor differences between the satellite paths is achieved via 

averaging each component of the orbital elements. This research supposed that this 

single averaged set of orbital elements and the satellite path delineated by it. 

Because the SAR satellite orbit includes the acquisition time span of the target SAR 

image, the satellite path was decomposed with respect to every slow time, azimuth 
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resolution and PRF; the output format of this procedure followed that of the satellite 

state vector. The platform velocity 𝑉    could be derived from the summation of 

three velocity components of each yielded state vector. 

In order to measure slant range between the platform and the target, the 

interpolated position of each target vessel should be converted to the geocentric 

coordinate from radar coordinate. As the radiometric and geometric calibrations 

were implemented prior to the application to this study, it was possible to transform 

the position expressed as radar coordinates to geographic and geocentric 

coordinates. For such transformation, the World Geodetic System 1984 (WGS84) 

was implemented as a reference Earth ellipsoid system for global positioning. The 

slant range between the platform and the target     was calculated by measuring 

the distance between two coordinate points. The procedure presented in this chapter 

was completed by determining the azimuth shift for every ship from (24), and 

shifting the plotted location of the AIS sensor. 
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3.3  Retrieval of Training Data of Vessels 

 

Precise positions of vessels in the SAR image were derived after interpolation and 

calibration along with their velocities. This research chapter aims to directly extract 

the training data for such vessels. Conventional studies implementing AIS 

information matching the corresponding vessels in SAR image applied dynamic 

AIS information for evaluating the performance of the detector [23], or complex 

algorithm such as CFAR [4]. This study, instead, implemented static AIS 

information containing the interior allocation of AIS sensor with respect to the type 

of each ship.  

The training data for general CNN-based object detection often followed the style 

of rectangular bounding box. Each bounding box could be represented by four 

coordinate parameters delineating its position in image coordinates: ( ,  , ,𝐻). 

Locations   and   represent the left-upper point of the bounding box, containing 

the minimum longitude and maximum latitude. Extents   and 𝐻denote the width 

and height of the bounding box, describing the ship span in longitude and latitude 

respectively. The training data procurement was enabled by deriving the four 

parameters for each target vessel. 

For vessel-wise retrieval of training data, dimension information of each ship 

along with the interpolated and Doppler shift calibrated position of each AIS sensor 

and interpolated COG. The COG for each ship was introduced because the 

calculation varies by four cases, with respect to 0°, 90°, 180° and 270°. Correlation 
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between the dynamic AIS information including the position and COG, and the 

static AIS information including the dimension of each ship was fulfilled by the 

Maritime Mobile Service Identity (MMSI) number: an international ship 

identification number consisting of nine digits. 

For all of the cases where 0 ≤    <  0 ,  0 ≤    < 1 0 , 1 0 ≤    <

2 0  and 2 0 ≤    < 3 0  the equations implemented in order to derive the 

four coordinate parameters were presented as (27)-(30), (31)-(34), (35)-(38) and 

(39)-(42) respectively.  𝑜𝑛 and  𝑎𝑡 each describes the interpolated AIS position 

in longitude and latitude, where DimA-D denote the target ship dimensions. 

  −    𝑜𝑛 − 𝐷𝑖𝑚𝐶  cos(𝐶𝑂𝐺) − 𝐷𝑖𝑚𝐵  sin (𝐶𝑂𝐺)   (27) 

  −    𝑎𝑡  𝐷𝑖𝑚𝐴  cos(𝐶𝑂𝐺)  𝐷𝑖𝑚𝐶  sin (𝐶𝑂𝐺)  (28) 

  −   (𝐷𝑖𝑚𝐶  𝐷𝑖𝑚𝐷)  cos(𝐶𝑂𝐺)  (𝐷𝑖𝑚𝐴  𝐷𝑖𝑚𝐵)  𝑠𝑖𝑛 (𝐶𝑂𝐺) (29) 

𝐻 −   (𝐷𝑖𝑚𝐴  𝐷𝑖𝑚𝐵)  cos(𝐶𝑂𝐺)  (𝐷𝑖𝑚𝐶  𝐷𝑖𝑚𝐷)  𝑠𝑖𝑛 (𝐶𝑂𝐺) (30) 

   −1    𝑜𝑛 − 𝐷𝑖𝑚𝐵  𝑐𝑜𝑠 (𝐶𝑂𝐺 −
 

2
) − 𝐷𝑖𝑚𝐷  𝑠𝑖𝑛 (𝐶𝑂𝐺 −

 

2
)     (31) 

   −1    𝑎𝑡  𝐷𝑖𝑚𝐶  𝑐𝑜𝑠 (𝐶𝑂𝐺 −
 

2
)  𝐷𝑖𝑚𝐵  𝑠𝑖𝑛 (𝐶𝑂𝐺 −

 

2
)     (32) 

   −1   (𝐷𝑖𝑚𝐴  𝐷𝑖𝑚𝐵)  cos (𝐶𝑂𝐺 −
 

2
)  (𝐷𝑖𝑚𝐶  𝐷𝑖𝑚𝐷)  𝑠𝑖𝑛 (𝐶𝑂𝐺 −

 

2
) (33) 

𝐻  −1   (𝐷𝑖𝑚𝐶  𝐷𝑖𝑚𝐷)  cos (𝐶𝑂𝐺 −
 

2
)  (𝐷𝑖𝑚𝐴  𝐷𝑖𝑚𝐵)  𝑠𝑖𝑛 (𝐶𝑂𝐺 −

 

2
) (34) 

 1  −2    𝑜𝑛 − 𝐷𝑖𝑚𝐷  𝑐𝑜𝑠(𝐶𝑂𝐺 − 𝜋) − 𝐷𝑖𝑚𝐴  𝑠𝑖𝑛 (𝐶𝑂𝐺 − 𝜋)     (35) 
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 1  −2    𝑎𝑡  𝐷𝑖𝑚𝐵  𝑐𝑜𝑠(𝐶𝑂𝐺 − 𝜋)  𝐷𝑖𝑚𝐷  𝑠𝑖𝑛 (𝐶𝑂𝐺 − 𝜋)    (36) 

 1  −2   (𝐷𝑖𝑚𝐶  𝐷𝑖𝑚𝐷)  𝑐𝑜𝑠 (𝐶𝑂𝐺 − 𝜋)  (𝐷𝑖𝑚𝐴  𝐷𝑖𝑚𝐵)  𝑠𝑖𝑛(𝐶𝑂𝐺 − 𝜋)(37) 

𝐻1  −2   (𝐷𝑖𝑚𝐴  𝐷𝑖𝑚𝐵)  𝑐𝑜𝑠(𝐶𝑂𝐺 − 𝜋)  (𝐷𝑖𝑚𝐶  𝐷𝑖𝑚𝐷)  𝑠𝑖𝑛 (𝐶𝑂𝐺 − 𝜋)(38) 

 2  −3    𝑜𝑛 − 𝐷𝑖𝑚𝐴  𝑐𝑜𝑠 (𝐶𝑂𝐺 −
3 

2
) − 𝐷𝑖𝑚𝐶  𝑠𝑖𝑛 (𝐶𝑂𝐺 −

3 

2
)   (39) 

 2  −3    𝑎𝑡 − 𝐷𝑖𝑚𝐷  𝑐𝑜𝑠 (𝐶𝑂𝐺 −
3 

2
) − 𝐷𝑖𝑚𝐴  𝑠𝑖𝑛 (𝐶𝑂𝐺 −

3 

2
)   (40) 

 2  −3   (𝐷𝑖𝑚𝐴  𝐷𝑖𝑚𝐵)  𝑐𝑜𝑠 (𝐶𝑂𝐺 −
3 

2
)  (𝐷𝑖𝑚𝐶  𝐷𝑖𝑚𝐷)  𝑠𝑖𝑛 (𝐶𝑂𝐺 −

3 

2
)(41) 

𝐻2  −3   (𝐷𝑖𝑚𝐶  𝐷𝑖𝑚𝐷)  𝑐𝑜𝑠 (𝐶𝑂𝐺 −
3 

2
)  (𝐷𝑖𝑚𝐴  𝐷𝑖𝑚𝐵)  𝑠𝑖𝑛 (𝐶𝑂𝐺 −

3 

2
)(42) 

After the bounding box derivation for each target vessels, all bounding boxes were 

expanded by a single pixel in four directions with respect to both latitude and 

longitude to keep the bounding box reduction from being rounded by the spatial 

resolution. In the case of removing the false AIS signals from the ground station 

such as the case illustrated in Figure 3-6, the Shuttle Radar Topography Mission 

(SRTM) DEM was implemented, eradicating the bounding boxes within the DEM 

coverage. This study assumed that the regions of interest were scarecely influenced 

by massive subsidence and reclamation. Figures 3-7, 3-8, 3-9 and 3-10 describe the 

visualization of calculating the four coordinate parameters of the bounding box. 

Ships that do not follow the rectangular shape could also be fitted inside a 

rectangular-shaped envelope as presented in Figures 3-7 to 3-10.  
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Figure 3-6 Examples of false AIS signals from ground noted as green circle. 
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Figure 3-7 Training data retrieval for the case 𝟎 ≤ 𝐂𝐎𝐆 < 𝛑/𝟐. 
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Figure 3-8 Training data retrieval for the case 𝛑/𝟐 ≤ 𝐂𝐎𝐆 < 𝛑. 
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Figure 3-9 Training data retrieval for the case 𝛑 ≤ 𝐂𝐎𝐆 < 𝟑𝛑/𝟐. 
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Figure 3-10 Training data retrieval for the case 𝟑𝛑/𝟐 ≤ 𝐂𝐎𝐆 < 𝟐𝛑. 
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3.4  Algorithm on Vessel Training Data Acquisition from 

VPASS Information 

  

  In the case of employing VPASS information to render training data targeting 

small fishing boats, this study devised a different algorithm owing to insufficient 

information for static VPASS data. As mentioned in Chapter 2, static VPASS data 

offers length and width of each fishing boats instead of specified information on 

internal deployment of the VPASS sensor. Owing to this reason and given that the 

ships are often illuminated as high backscattering coefficients compared to 

background oceanic conditions [9, 63], training data from VPASS information was 

acquired from strong radiance points of SAR image.  

  The training data retrieval algorithm for fishing boat implementing VPASS data 

followed the first two stages of the proposed algorithm: Interpolation and Doppler 

Frequency Shift Correction. The algorithm of the two stages could be shared 

because both dynamic AIS and dynamic VPASS data share an identical format, 

including MMSI, real-time location of each ship in latitude and longitude, real-time 

COG and SOG of corresponding ships. The 3
rd

 stage, training data extraction from 

dimension of each ship should be replaced by alternative methodology owing to the 

lack of dimension information of static VPASS information. Devised from a 

previous threshold-based ship detection algorithm [64], a new algorithm was 

introduced based on a threshold, where each training data candidate was binarized 

by the threshold value of backscattering coefficient. 
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From interpolated, Doppler Shift calibrated position of each VPASS sensor, the 

bounding box candidate was derived with respect to the expansion coefficient of 

bounding box for all four directions, in this case 50 m. The derived interim 

bounding box was strongly expected to include the target fishing boat’s signal, but 

was also expected to contain the background scatterers. Following the intention of 

the AIS-acquired training data, the bounding box which included the largest portion 

of the target fishing boat while having the least portion of the background signal 

was preferred. Because the pixels with high backscattering coefficient values were 

regarded as a requisite condition for a candidate ship, it was necessary to sort low-

valued pixels from the interim bounding box. This operation was implemented by 

binarization, where the threshold value, empirically in this case 𝜎  −10𝑑𝐵, 

acted as a determinator; pixels higher than the threshold survived as a binarized 

value of 1, where those less than the threshold were eliminated as a binarized value 

of 0. The surviving pixels after binarization were treated as either target fishing boat 

signals, or ocean scattering features resembling the target ship.  

The additional procedure involving the elimination of such ship-like features was 

conducted by small object removal. Provided that the ship-like scatterers were 

smaller than the target ships, the scatterers with magnitudse less than the empirical 

threshold of 10 pixels were considered as oceanic scatterers and were excluded. As 

the output of this procedure demonstrated the binarized target ship inside the 

interim bounding box, the bounding box was reduced with respect to the size of the 

binarized target ship.  
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The result of the VPASS-based training data retrieval algorithm shared the 

identical framework of the AIS-based training data: (X, Y, W, H) coordinate marks. 

All the outputs underwent the DEM-making procedurein order to remove false 

VPASS signals from the ground.  

Although VPASS information elaborated the verified signals from fishing boats 

under a given time span and spatial coverage, the training data obtained from 

VPASS information was reduced compared to that from AIS information. The 

related legislation confirms that not all types of fishing boats are obliged to install a 

VPASS sensor and their sensors could be silenced when inside harbors [40]. Such 

regulation conditions reduce the number of fishing boats marked in the desired 

region compared to the actual number of fishing boats. In this section of the 

manuscript, it was speculated that a number of fishing boats existed outside of the 

VPASS surveillance. Figure 3-11 illustrates the existence of a group of fishing boats 

aligned in an identical direction, but were mostly deprived of VPASS information 

where Figures 3-11 (a) and (c) covering identical regions of Yeosu. Figure 3-12 

illustrates the schematic flowchart of the training data acquisition algorithm for 

fishing boats implementing dynamic VPASS information.  
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Figure 3-11 Illustration on (a) VPASS information plotted to Cosmo-SkyMed SAR image, (b) group of non-fishing boats and (c) 

fishing boats in identical region in optical image from Google Earth.
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Figure 3-12 Flowchart of the training data procurement algorithm for VPASS 

information.



- 66 - 

 

Chapter 4.  

Methodology on Object Detection Architecture 

 

This section of the dissertation elaborates the explicit algorithm of the object 

detection architecture for current research, which was conventionally proposed in 

computer vision [65]. Instead of directly implementing the architecture to the 

detection architecture, the architecture was modified to acquire high detection 

performance because the major objective of this research was to demonstrate the 

ameliorated detection performance of the training data from the proposed algorithm 

in Chapter 3 over the conventional training data obtained via visual inspection. 

Given such a condition, this study implemented a CNN-based object detector, noted 

for its efficiency in image interpretation and classification. 

The CNN-based object detection algorithm implemented for ship detection is 

addressed as an Efficient and Accurate Scene Text Detector (EAST), originally 

proposed in 2017 [65]. As the title of the algorithm suggests, this architecture was 

originally constructed for detecting text regions inside photography. It was 

speculated however, that the text regions could also be regarded as objects inside 

image, which demonstrates a potential of detecting ships and small objects, inside 

full-sized SAR images. The supremacy of this algorithm over other object detectors 

claimed by the proposer is that EAST can detect objects of diverse sizes; it was 

designed as a detector for text regions, which have different sizes in an image 

depending on the perspective, obscurity and magnitude.  

The object detector EAST consists of two major stems of feature extraction and 
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feature merging. The feature extraction stem literally extracts the characteristic 

features in each input image. The CNN-based object detector was appreciated for 

this stage, owing to the calculation of convolution as described in (43),  

𝑓(𝑥)  𝑔(𝑥)  ∫ 𝑓( )  𝑔(𝑥 −  )𝑑 
 

− 
   (43) 

The convolution between two continuous functions could be demonstrated via 

multiplying the functions while moving one function over another. Performance of 

this calculation derives the correlation of two target functions; the regions in which 

the two functions are strongly linked with each other demonstrate high value of 

convolution, and vice versa. The application of (43) to a CNN-based neural network 

commences from the point where the convolution could be implemented to 

detecting similarities between two different functions. In a CNN-based neural 

network, the feature extraction can be conducted as demonstrated in Figure 4-1; 

when the image patch of which the characteristic feature was desired to be extracted 

was given as  𝑔(𝑥) or often addressed as a kernel, the target image from which the 

pattern was to be obtained could be designated as  𝑓(𝑥). After conducting the 

convolution, the convolution results where  𝑓(𝑥) demonstrated high value was 

regarded as the location demonstrating high similarity and correlation between 𝑓(𝑥) 

and 𝑔(𝑥). 
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Figure 4-1 Calculation of convolution in machine learning feature extraction. 
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The CNN-based neural network and object detector repeatedly conducts this 

calculation to extract and compress the desired pattern inside the target image. The 

convolution layer is often followed by an activation function, which determines 

whether or not the summation of the input data provokes the activation [66]. This 

architecture implemented the activation function frequently applied to the CNN-

based object detection algorithm: Rectified Linear Union (ReLU). Described as (44), 

it only activates the input data only when it is positive.  

 𝑒  (𝑥)  {
𝑥 (𝑥  0)
0 (𝑥 < 0)

        (44) 

The pooling layer where the objective is reducing the number of extracted features 

from the convolution and activation layers often follows the activation layer. An 

excessive number of features often indicates the hazard of overfitting, where the 

result of the extracted feature becomes image or case-dependent [67]. Such 

undesirable consequences could be avoided through reducing, or compressing the 

features. Reducing the features was mostly conducted through taking the maximum 

value inside the given window, or averaging the values inside the window; these are 

respectively addressed as maximum and average pooling. The convolution layer 

followed by activation and maximum pooling was repeated in order to accurately 

extract and acquire the features from the original image. Previous studies focusing 

on the generation of neural network architectures deliberated the combination and 

allocation of this convolution layer group [68, 69]. This algorithm implemented a 

feature extraction architecture regarded as obtaining high performance via residual 

learning architecture, is addressed as ResNet [27].  
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The accuracy and performance of the algorithm generally increased as the layer 

depth becomes deeper; however, the saturation of accuracy occurred after a certain 

depth and drastically decreased afterwards. This issue is referred to as degradation 

which hinders the optimization of the training architecture. It was claimed that the 

residual learning architecture of ResNet significantly mitigated such issues, where 

the layers directly connecting the input and output block labeled as short-cut 

connections reduce the influence of degradation [27].  

The ResNet algorithm contains different variations with respect to the number of 

layers each one contains: ResNet18, ResNet34, ResNet50 and ResNet101. Its 

primary constituent included a number of convolutional groups, with each of them 

composed of three successive convolution layers including a residual structure. 

With a certain number of layers containing a 1 × 1 kernel size followed respectively 

by a 3 × 3 kernel size containing an identical number of layers and identical size of 

kernel with the layers four times larger than if it was composed of a single 

convolution group. The initiation and termination of each group were connected by 

a shortcut, named as a residual learning structure. Among feature extractors with 

residual learning structure, ResNet50 was implemented. ResNet50 consisted of four 

convolution blocks, each composed of multiple convolution blocks mentioned in the 

above paragraph.  

The input layer of current feature extraction algorithm, ResNet50, was composed 

of an input layer which offers 256 × 256 × 3 or 512 × 512 × 3 as an input image, 

given that the algorithm was rendered for a 3-channel RGB image [70], slightly 

modified from the original ResNet50’s input of 224 × 224 × 3. After the algorithm 
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implemented a 64-layered convolution with a 7 × 7 kernel, followed by a max-

pooling layer and the 1
st
 convolutional block was initiated consisting of three 

identical convolution groups. Each group of the 1
st
 convolutional block was 

composed of convolution layers of 64, 64 and 256 classes, accompanied by a 

residual learning structure. When implementing the 512 × 512 × 3 image, the output 

magnitude of the 1
st
 convolutional block would be 128 × 128 with 256 channels.  

The other three convolutional blocks consisted of four, six and three convolutional 

blocks each, of which the depth of the 1
st
 layers was expanded to 128, 256 and 512 

respectively. The output of each layers consisted of 64 × 64 × 512, 32 × 32 × 1024 

and 16 × 16 × 2048, respectively; the magnitude of the output decreased but their 

depth become deeper as the feature extraction proceeded. It was implied that the 

algorithmic output extracted in the front convolutional block identified information 

of small objects and that from the final convolutional block implied information of 

large objects [65]. As the magnitude of ships inside each SAR image varied, it was 

speculated that the algorithm should contain another structure which could merge 

these outputs into a single output. 

The feature merging stage was therefore implemented, to merge those four 

features into a single algorithm. The EAST object detector contained such feature 

merging which concatenates the extracted output layers of each convolution blocks. 

However, because the output layers of the convolution box have different 

magnitude depending on which convolution box they were retrieved from, it would 

be necessary to unify the two desired output layer magnitudes for concatenation. 

This issue was mitigated via implementing the upsampling by a factor of two, 
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because the adjacent magnitudes of the output layers differed by a factor of two. 

The concatenation was followed by two convolution layers with 1 × 1 and 3 × 3 

kernels where the number of layers were designed to reduce the number of the 

merged layer for the next concatenation.   

After three concatenation procedures, the extracted features for both small and 

large ships were merged and reduced by the intended magnitude. The final layer 

including a bounding box and score map was separately demonstrated, following 

the expression of typical form of bounding box in ( ,  , ,𝐻) for the bounding 

box and score map determining the class of the detected object. With respect to the 

number of classes, the score map is consisted of several elements such as (45); the 

element corresponding to a certain class which has the highest score was selected as 

the predicted class of the subject. The number of classes is recognized as 𝑛 in (45), 

in case of single-classed ship detection, 𝑛  1, 

𝑥1  𝑥2    𝑥𝑛+1  𝑛      (45) 

The schematic overview of the EAST-based object detection architecture applied 

in this study is described in Figure 4-2, implementing ResNet50 as the feature 

extraction stem.  
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Figure 4-2 Schematic algorithm of EAST-based object detection architecture. 
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Chapter 5.  

Results 

 

This section of demonstrates the assessment of the methodology in three parts. 

Assessment on training data itself without the implementation of the CNN-based 

detector was first proposed, followed by the AIS-based ship detection assessment 

comparing the performance between training data from the proposed algorithm and 

from visual inspection. Finally, the presented results indicated the evaluation from 

ship detection based on VPASS information.  

 

5.1  Assessment on Training Data 

 

The accuracy assessment of the training data itself was conducted before 

elaborating the detection results implementing the automated training data retrieval 

algorithm. The training data retrieved by the currently proposed training data 

retrieval algorithm was to substitute the intervention of visual interpretation over 

obtaining training data. Therefore, ships whose shapes and forms were undeniable 

both by visual interpretation and by AIS information were selected to ascertain 

whether the training data obtained from the proposed algorithm could effectively 

substitute the conventional visual inspection.  

Ships that were clearly and visually observable were not contaminated by the ship-

like or terrestrial signals, because both ships and those structures emit high 

backscattering signals towards the SAR satellite [5]. Four ships from the SAR 
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images acquired on 26/06/2018, 08/07/2018 and 20/07/2018 in the vicinity of 

southern Korea were chosen; the four isolated ships were chosen far outside the 

harbor and the contrasts from the background ocean were large enough to be clearly 

observable via visual investigation.   

The algorithm from VPASS training data acquisition was modified to effectively 

and robustly obtain the visual inspected training data which were implemented as 

benchmark data. This procedure initiated from the training data obtained from the 

proposed automated algorithm. From the obtained training data, each bounding box 

was expanded by a factor of five with respect to each direction of dimension 

information: DimA-D. All of the four ships for the current algorithm were the ships 

in which the expanded bounding box included no other ships besides the target ship 

to remove ambiguity from visual inspection.  

Each expanded bounding box went through a binarization. Given that the ships in 

SAR images are illuminated by high backscattering coefficients [5, 10], it was 

supposed that the binarization procedure could sort out the pixels not regarded as 

ships. Binarization divides the entire image into two classes with respect to the 

given threshold; the pixels that are lower than the threshold were renumbered as 0, 

the other as 1. The threshold for this procedure was empirically given as 𝜎  

−10𝑑𝐵, which could effectively sort out the background signals. Signals from ships 

and bright ocean scatterers survived as pixel number 1 after this procedure. 

Additional removal of ocean clusters was conducted via cluster removal. Ocean 

clusters in this research were considered as the scatterers connected by less than 15 

pixels, because the selected ships in this procedure were clearly observable both in 
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size and brightness. As the surviving pixels only denote the signals from the target 

ship in each expanded bounding box, the median point on all of the surviving pixels 

was determined. From each median point, the bounding box with identical width 

and height identical to the original bounding box was constructed, referring the 

median point as its center.  

The coverage similarity between the original bounding box and the box from 

binarization was quantified by Intersection over Union (IoU), a parameter indicating 

the contrast between the intersection area of two bounding boxes over that of union 

as expressed in (46), where 𝐴𝑖𝑛    explains the intersected area and 𝐴 𝑛 explains 

the union, 

𝐼𝑜  
   𝑡 𝑟

 𝑢 
    (46) 

Figure 5-1 illustrates the IoU-driven evaluation results of the target vessels in 

offshore region; sub-figures (a) denote the expanded bounding boxes after 

binarization and cluster removal, where sub-figures (b) describe two bounding 

boxes, from the automated training data acquisition algorithm in green, and from 

evaluation algorithm in red. The IoU evaluation parameters for four target ships 

were reckoned as 0.7522, 0.8182, 0.6970 and 0.7143. Given that the conventional 

threshold for object detection determining the detection was often offered as 0.5 

[71], such evaluation values could be regarded as relatively low accuracy values. In 

contrast, in the case of the target ship of which the IoU parameter was 0.8182, the 

offset between two bounding boxes turned out to be two pixels horizontally, without 

any vertical offset. Such low evaluation was speculated to be caused by the spatial 

resolution of the Sentinel-1 SAR image. The low spatial resolution of Sentinel-1 IW 
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GRDH mode derived the small target size of the ship and susceptibility of IoU to 

offset between bounding boxes.  
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Figure 5-1 Illustration on training data assessment using bounding boxes from 

binarization and cluster removal. 
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5.2  Assessment on AIS-based Ship Detection 

 

The evaluation of the training data was once more conducted implementing the 

CNN-based ship detection architecture. Unlike the assessment from the previous 

section using binarization, this section focused on evaluating the detection accuracy 

of vessels in a full-sized SAR image. As the objective of the evaluation was to 

demonstrate the superiority and practicality of training data acquired from the 

automated training data procurement algorithm, a benchmark dataset obtained via 

visual interpretation was additionally constructed. 

From the dataset of Sentinel-1 SAR images presented in Table 2-1, this section 

implemented the portion of it as presented in Table 5-1. The SAR images for ship 

detection consisted of 21 SAR images covering the southeastern part of the Korean 

peninsula, including the major harbors of South Korea such as Busan, Ulsan and 

Pohang. Among those images, 18 images containing 7489 vessels with AIS sensors 

were implemented for training image data, images from which the training data of 

ships were obtained, and three images obtained at 26/06/2018, 08/07/2018 and 

20/07/2018 containing 1179 ships were selected as test image data, images 

implemented for testing the pre-trained detector.  
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Table 5-1 SAR Images selected for ship detection assessment. 

Satellite Path direction Type, Mode 
Acquisition time 

(UTC) 

Usage in 

detection 

Sentinel-1A Ascending GRDH, IW 
26/06/2018 

09:23:00~09:23:29 
Test 

Sentinel-1A Ascending GRDH, IW 
08/07/2018 

09:23:00~09:23:29 
Test 

Sentinel-1A Ascending GRDH, IW 
20/07/2018 

09:23:01~09:23:30 
Test 

Sentinel-1A Ascending GRDH, IW 
01/08/2018 

09:23:02~09:23:31 
Training 

Sentinel-1A Ascending GRDH, IW 
18/09/2018 

09:23:04~09:23:33 
Training 

Sentinel-1A Ascending GRDH, IW 
30/09/2018 

09:23:04~09:23:33 
Training 

Sentinel-1A Ascending GRDH, IW 
12/10/2018 

09:23:05~09:23:34 
Training 

Sentinel-1A Ascending GRDH, IW 
24/10/2018 

09:23:05~09:23:34 
Training 

Sentinel-1A Ascending GRDH, IW 
17/11/2018 

09:23:04~09:23:33 
Training 

Sentinel-1A Ascending GRDH, IW 
29/11/2018 

09:23:04~09:23:33 
Training 

Sentinel-1A Ascending GRDH, IW 
11/12/2018 

09:23:03~09:23:32 
Training 

Sentinel-1A Ascending GRDH, IW 
23/12/2018 

09:23:03~09:23:32 
Training 

Sentinel-1A Ascending GRDH, IW 
16/01/2019 

09:23:02~09:23:31 
Training 

Sentinel-1B Descending GRDH, IW 
12/09/2018 

21:23:52~21:24:26 
Training 

Sentinel-1B Descending GRDH, IW 
24/09/2018 

21:23:53~21:24:26 
Training 

Sentinel-1B Descending GRDH, IW 
18/10/2018 

21:23:53~21:24:27 
Training 

Sentinel-1B Descending GRDH, IW 
30/10/2018 

21:23:53~21:24:27 
Training 

Sentinel-1B Descending GRDH, IW 
11/11/2018 

21:23:53~21:24:26 
Training 
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Sentinel-1B Descending GRDH, IW 
23/11/2018 

21:23:53~21:24:26 
Training 

Sentinel-1B Descending GRDH, IW 
05/12/2018 

21:23:52~21:24:26 
Training 

Sentinel-1B Descending GRDH, IW 
17/12/2018 

21:23:52~21:24:25 
Training 
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Even though AIS information represents verified information on the location and 

velocity of each ship, the possibility lies that some ships do not contain AIS 

information especially those with clandestine objectives. Hence, additional 

annotation on three SAR images were considered beyond automated annotation 

from AIS information. An assumption was made that most of the ships in the SAR 

images contained AIS information; the non-automatic annotation was minimized 

because the incorrect annotation on ground truth data could severely depreciate the 

detection performance. Therefore, instead of capturing all of the ships in three SAR 

images without any exception, this study primarily focused on minimizing the 

imprecise enlargement of the ground truth dataset. Following the identical condition 

of the previous section, the object with high backscattering condition of which the 

threshold was defined as  𝜎  −10𝑑𝐵  was tentatively selected. From the 

candidates, the objects whose length was more than twice longer than width was 

sorted, which was considered as a typical ship appearance. For removing radar 

scatterer interferometer (RFI) collectivities which show quite similar characteristic 

with ships, more than five scatterers with the same heading within 50 pixels were 

considered as RFI and eliminated from the ground truth dataset. Moreover, highly 

illuminated scatterers in the SAR image render azimuth ambiguity signals in given 

distances as expressed in (47) [31]. More than two signals in identical pattern from 

a strong primary scatterer separated by a distance in (47) were regarded as 

ambiguous signals and were also removed from the ground truth dataset.  

∆  𝑏 
𝑛 𝑃𝑅𝐹 𝑅0 𝜆

2𝑉𝑠𝑎𝑡
     (47) 
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In (51), 𝑛 denotes the order of azimuth ambiguity and   denotes the wavelength 

of the SAR system. The examples of the azimuth ghost signals in a portion of the 

SAR image are illustrated in Figure 5-2, where the distances between the ship and 

its azimuth ghosts were calculated from (47). The circles in Figure 5-2 denote the 

ambiguity signals, where green boxes denote the original signals from ships. 
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Figure 5-2 (a) Original and (b) enlarged azimuth ambiguity signals and their distance from the original ship scatterers  
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Regardless of the object’s form, it was speculated that the V-shaped wake could 

only be generated from the movement of ship. The bright scatterer allocated near 

the converging point of the V-shaped wake was selected as a ship. 

In contrast to the additional annotation of AIS-deprived ships in ground truth 

dataset, benchmark dataset was manually constructed in somewhat different manner. 

Manual annotation of ship-like structures having high backscattering coefficients 

higher than  𝜎  −10𝑑𝐵  was conducted, in addition to those with V-shaped 

converging wakes behind them. This benchmark data however, did not consider the 

appearance of bright scatterer because ships with small magnitude may have a 

chance of being approximated into a few pixels. In littoral regions or in where 

artificial structures in the vicinity such as piers and jetties could contaminate the 

signal from ships, benchmark training data was not annotated. The number of 

benchmark training data was maintained similar to that of the automatically 

procured data to keep the number of training data from influencing the detection 

performance. 

The evaluation parameters implemented to quantify the detection performance 

were precision, recall and F1 score as denoted in (48), (49) and (50);     ,  𝑑   

and     each denotes the number of accurately detected vessels, total detection 

and total ground truth. These three parameters were frequently and conventionally 

applied parameters for the object detection algorithm, also including the ship 

detection [29, 65], 

  𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
 𝑎  

 𝑑 𝑡
     (48) 
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 𝑒𝑐𝑎𝑙𝑙  
 𝑎  

  𝑡
    (49) 

𝐹1 𝑠𝑐𝑜 𝑒  2  
𝑃   𝑖 𝑖𝑜𝑛 𝑅     

𝑃   𝑖 𝑖𝑜𝑛+𝑅     
   (50) 

The overall detection performance was represented by the F1 score, which could 

be driven by the harmonic mean of precision and recall. As precision and recall are 

in a trade-off relationship with each other [72], their harmonic mean has been 

applied as a representative detection score.  

The parameter to confirm the detection was identically selected as the parameter 

used in the previous IoU training data assessment chapter. In general, the threshold 

value for accurate detection was expressed as 0.5 [30]. However, given the low 

spatial resolution and the susceptibility of training data, it was contemplated that 

small vessels expressed as a few pixels in the SAR image could have a high 

possibility of plummeting in IoU even with a trivial discrepancy in the detection 

result. Therefore, the IoU threshold for deciding whether the detection results match 

the ground truth was resolved as 0.2. 

Training datasets were both trained by the model for 18 images and tested using 

three images corresponding to the usage of Figure 5-1. As described in Figure 5-2, 

the ship detection algorithm was trained from automatically retrieved training data 

demonstrating 80.28% of precision, 74.22% of recall and 77.13% of F1 score, 

accurately detecting 875 ships from the 1179 ground truth data and detection of 

1090 ships. The model trained via training data from visual inspection obtained 

59.03% of precision, 66.24% of recall and 62.43% F1 score, precisely detecting 781 

ships from 1323 predictions.  
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Figure 5-3 illustrates the distribution of bounding box in magnitude, demonstrating 

the width and height comparison. The minimum width and height of detected 

bounding box was 58.3057 m and 61.7230 m respectively, where the maximum 

width and height was 435.2393 m and 480.5878 m respectively. 

From the detection results marked in Figure 5-3, the length of each detected ship 

was inversely estimated, given that the detected bounding box was tightly confined 

to the actual magnitude of the target ship. After the heading angle estimation, the 

length of ship was determined by reflecting the heading angle to width of the target 

bounding box. Figure 5-4 describes a statistical distribution of the length of the ship, 

where the estimated minimum length of the detected ship was surmised as 

80.3056m. 
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Table 5-2 AIS-based ship detection performances on two different training datasets. 

 

Dataset Acquisition Precision (%) Recall (%) F1 score (%) 

Automated 

Overall 80.28 74.22 77.13 

26/06/2018 79.62 71.75 75.48 

08/07/2018 82.31 76.25 79.16 

20/07/2018 78.74 74.26 76.43 

Manual 

Overall 59.03 66.24 62.43 

26/06/2018 69.50 66.95 68.20 

08/07/2018 68.69 64.61 66.59 

20/07/2018 46.42 67.33 54.95 
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Figure 5-3 Distribution of width and heigth of detected bounding box from AIS-based 

ship detection. 
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Figure 5-4 Distribution of estimated length of the detected ships from Sentinel-1 SAR 

images. 
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5.3  Assessment on VPASS-based Fishing Boat Detection 

 

This section on VPASS-based fishing boat detection implemented the portion of 

SAR images in Table 2-1 as presented in Table 5-3. It includes the ports of Yeosu 

and Gwangyang, which face the southern coast of the Korean peninsula.  

As the operation of one of the real-time sensor was mandatory for vessels [39, 40], 

fishing boats of which the mass exceeds a certain value have the possibility of 

attaching an AIS system instead of the VPASS system; this implies that the number 

of vessel under control of the VPASS system is intrinsically smaller than that of  

the AIS system. Nevertheless, precise annotation of ground truth data was 

imperative in derving reliable and accurate detection performance. An algorithm 

was devised to define accurate ground truth data for fishing boats using the spectral 

character of fishing boats.  

Spectral comparison of fishing boats for ground truth annotation was initiated by 

launching a fishing boat database. Its components, signals of fishing boats, were 

collected from those containing VPASS signals, which could be completely verified 

as fishing boats. For precise statistical analysis of the fishing boat database, all 

fishing boats with VPASS information should be aligned into a unified direction. 

The collected VPASS-based signals were rotated with respect to the angle of 

interpolated COG, which was derived from the procedure proposed in Chapter 3. 

Figure 5-5 and 5-6 respectively illustrates the spectral energy ratio of fishing boats 

accompanied by VPASS information and ships accompanied by AIS information. 

The chips from Figures 5-5 and 5-6 were respectively obtained from 
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CSKS2_SCS_B_HI_04_HH_RA_SF_20180310210750_20180310210757 and 

S1A_IW_GRDH_1SDV_20180801T092302_20180801T092331_023051_0280A4

_0E2C SAR images. It is obvious that the energy ratio distribution of the fishing 

boats in Figure 5-5 is smaller and less broadly distributed than that of the ships in 

Figure 5-6. 
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Figure 5-5 Spectral distribution of training data on fishing boats from 

VPASS information. 
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Figure 5-6 Spectral distribution of training data on ships from AIS information. 
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For facile comparison, all signals of fishing boats in the database were resized into 

25 × 25 pixels. Whenever a fishing boat candidate is procured, spectral and 

statistical comparison was conducted after aligning the candidate chip with respect 

to its maneuvering angle. However, as the candidate was lacking any real-time 

information on its maneuvering fashion, Radon transform was implemented to 

estimate the target angle.  

Radon transform is the transform that converts images into image line-projection 

[73]. It selects the line of projection, a linear bin which records the accumulation of 

image pixels with respect to the orthogonal line of the linear bin. The domain of the 

initial imagery configured as 𝑓(𝑥, 𝑦) , the transformed projection could be 

demonstrated as  𝑓(𝑥𝑝,  ) , where  𝑥𝑝  denotes the projected linear bin and     

denotes the counterclockwise angle of orthogonal line of projection with respect to 

the y-axis of the initial imagery. As the projection bin rotates by its angle  , line 

integration is implemented to initial images by assembling the projected points to 

the 𝑥𝑝 domain. The exact description of the Radon transformation is described in 

(51) and Figure 5-7, where   stands for the Dirac delta function and a boundary 

condition of 0 ≤  < 2𝜋 [73, 74], 

 𝑓(𝑥𝑝,  )  ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥𝑝 − 𝑥𝑐𝑜𝑠 − 𝑦𝑠𝑖𝑛 )𝑑𝑥𝑑𝑦
 

− 

 

− 
     (51) 

As the output of (51) derives information of projection of the linear feature via 

peaks of the 𝑥𝑝 domain, Radon transform was frequently implemented in order to 

discriminate linear features inside the target image such as ship wake, road 
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centerline, or SAR signal processing [73-77]. In this section, Radon transform was 

applied to measure the heading angle of each ship owing to the substantial contrast 

of backscattering of the ship and ocean background. 

Provided that all fishing boats are longer in length than width, it was able to 

measure COG of ship directly from the cropped image via Radon transform. Unlike 

the previous study of wake detection where the wake was not significantly 

discernable from the background ocean, the edge detection conducted in advance of 

the Radon transform was omitted.  

After converting the cropped image of ship from the image domain of 𝑓(𝑥, 𝑦) to 

Radon domain of  𝑓(𝑥𝑝,  ), the angle   which was perpendicular to the heading 

angle of the vessel illustrated the highest value because the largest number of signal 

from the ship was accumulated. The angle   with the largest integration was 

selected for the estimated heading as the red mark of Figure 5-7 (c); this angle was 

estimated in the counterclockwise direction while COG was measured clockwise. In 

addition, it was uncertain whether the ship was facing front or backwards towards 

the COG. Both cases were considered therefore, rendering two cropped images for 

examination by rotating the image with respect to measured COG and COG + π 

respectively followed by resizing the image into 25 × 25 pixels in order to test the 

similarity against the fishing boat database.  
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Figure 5-7 Illustration of (a) schematic description of Radon transform, (b) cropped 

image of fishing boat candidate and (c) Radon transform of the cropped image. 
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The similarity between the two fishing boat candidate images and VPASS-based 

fishing boat database was evaluated by three parameters: structural similarity, root 

mean square error and correlation coefficient. The structural similarity index (SSIM) 

is an index to measure image resemblance by estimating luminance, contrast and 

structure [78]. Identical images would have maximum SSIM of one, dropping as the 

two images diversify. With simplification and presumption to a certain degree [78], 

the SSIM could be calculated as (52), where   addressing the mean intensity of 

image  𝑥  and 𝑦 , 𝜎  denoting the variance and 𝐶  denoting the constant which 

depends on the dynamic range of pixels, 

𝑆𝑆𝐼𝑀(𝑥, 𝑦)  
(2 𝑥 𝑦+  )(2 𝑥𝑦+ 2)

( 𝑥
2+ 𝑦

2+  )( 𝑥
2+ 𝑦

2+ 2)
   (52) 

The root mean square error (RMSE) estimates the average of pixel difference of 

two images as described in (53), where similar image pairs demonstrate lower 

square error values [79]. The total number of image pixels of images 𝑥 and 𝑦 is 

described as 𝑛, 

 𝑀𝑆𝐸(𝑥, 𝑦)  √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖 1           (53) 

The correlation coefficient evaluates the degree of relation between the image pair 

of 𝑥 and 𝑦, measuring similarity of the disposition of pixels implementing (54) 

[80]. The identical pair would have the correlation coefficient of 1, while the value 

decreases as the image pair patterns diversify. 

𝐶𝑜   
∑ ∑ ((𝑥  − 𝑥)(𝑦  − 𝑦))  

√∑ ∑ (𝑥  − 𝑥)
2

  √∑ ∑ (𝑦  − 𝑦)
2

  

    (54) 
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It was assumed that as the fishing boats have identical usage, they would 

demonstrate similar internal structures and scattering characteristics. According to 

such an assumption, the candidate chip should demonstrate high affinity in three 

evaluation parameters on more than a single fishing boat in the database. Hence, it 

was necessary to select the proper threshold value for three parameters to determine 

whether the candidate chip belonged to the fishing boat database.  

From inside the fishing boat database with VPASS information, three evaluation 

parameters were evaluated for each chip with the others. For each chip, the 

maximum value of SSIM and correlation, with a minimum value of RMSE was 

respectively selected and median values among all fishing boats in the database 

were estimated. The chips from nine Cosmo-SkyMed SAR images derived the 

critical value of SSIM as 0.73477, RMSE as 0.037782 and correlation coefficient as 

0.79. If the candidate chip exceeds all three evaluation parameters, the target ship 

was regarded as emitting comparable scattering signal to conventional fishing boats 

and selected as a fishing boat.  

Figure 5-8 illustrates the performance of the annotation algorithm from Cosmo-

SkyMed SAR image evaluated by the three parameters of (52), (53) and (54). The 

green bounding box represents the training data obtained from VPASS information, 

while the red circle illustrates the position of a chip in the SAR image. For the 

tested fishing boat having similar scattering characteristics with the other fishing 

boat in the database demonstrated high value for all three parameters comparable to 

the threshold value. In contrast, when the large non-fishing boat exhibiting 

distinctive internal structure and character was tested, it failed to surpass the 
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threshold by a large margin.  

Figure 5-9 describes the assessment of the annotation algorithm on artificial 

scatterers similar to fishing boats, acquired in the vicinity of the Yeosu airport. It 

includes 14 airplane landing lights aligned in the inshore ocean, as marked by 

yellow boxes in Figures 5-9 (a) and (b). According to the proposed annotation 

algorithm via comparison on scattering characteristics, it left two false annotation as 

fishing boats by a red circle, while accurate discrimination of 12 objects in blue 

cross marks. 
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Figure 5-8 Description of annotation assessment and database-based evaluation on a (a) 

fishing boat chip and (b) non-fishing boat chip. 
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Figure 5-9 Assessment on annotation algorithm on airplane landing lights (a) in Cosmo-SkyMed SAR image with (b) cropped image 

from Google Earth and (c) photographic road view on the identical region. 
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A major difference between the two detection cases of AIS-based ship detection 

and VPASS-based fishing boat detection was the magnitude of the bounding box. 

Owing to the diversity of the type of ship, the magnitude of AIS-driven training data 

is varied. However, as VPASS data contains exclusive information on fishing boats, 

the diversity of the bounding box scope is lower than that from AIS information. 

Under such conditions, the importance of training data rises because the object 

detector was required not only to discern ship-like scatterers as in Chapter 5.2, but 

also to discriminate ships with different objectives other than fishing.  

As the Cosmo-SkyMed SAR images in this study were single-banded, the HH-

polarized SAR image was duplicated as a mimic of the double-band SAR image of 

Sentinel-1 with incidence angle to match the desired form of the ship detector. This 

led the SAR images for VPASS-based fishing boat detection to have an identical 

format with that implemented for the AIS-based ship detection.  
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Table 5-3 SAR Images selected for fishing boat detection assessment. 

Satellite Path direction Type, Mode 
Acquisition time 

(UTC) 

Usage in 

detection 

CSK1 Ascending 
Stripmap, 

Himage 

08/07/2018 

21:08:08~21:08:15 
Training 

CSK2 Ascending 
Stripmap, 

Himage 

10/03/2018 

21:07:50~21:07:57 
Test 

CSK2 Ascending 
Stripmap, 

Himage 

13/05/2018 

21:07:59~21:08:06 
Test 

CSK2 Ascending 
Stripmap, 

Himage 

13/03/2019 

21:08:11~21:08:19 
Training 

CSK2 Ascending 
Stripmap, 

Himage 

16/05/2019 

21:08:20~21:08:27 
Training 

CSK4 Ascending 
Stripmap, 

Himage 

09/01/2018 

21:07:42~21:07:49 
Training 

CSK4 Ascending 
Stripmap, 

Himage 

06/09/2018 

21:08:08~21:08:15 
Training 

CSK4 Ascending 
Stripmap, 

Himage 

09/11/2018 

21:08:15~21:08:23 
Training 

CSK4 Ascending 
Stripmap, 

Himage 

12/01/2019 

21:08:12~21:08:20 
Training 
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The three evaluation parameters for AIS-based ship detection, precision, recall and 

F1 score, were additionally implemented to fishing boat detection as it was 

determined that both AIS-based ship detection and VPASS-based fishing boat 

detection were intrinsically regarded as object detection in SAR images. The object 

detector algorithm for fishing boat detection followed the identical algorithm as the 

AIS-based ship detection in order to determine the detection performance under 

similar equipment conditions.  

As previously mentioned in Chapter 3.4, the additional annotation for fishing boats 

was applied in order to construct the precise ground truth data for accuracy 

assessment. Implementing seven SAR images from Table 5-3 containing 2061 chips, 

the object detection algorithm ascertained its performance of fishing boat detection 

in two SAR images respectively containing 498 ships for the SAR image taken on 

10/03/2018 and 683 ships for that taken on 13/05/2018. The IoU constraint for 

accurate detection was diminished from 0.2 for AIS-based detection to 0.15, given 

the smaller magnitude of fishing boats. From the image obtained on 10/03/2018, the 

detector identified 687 objects as fishing boats where 334 of them were accurate 

and in the case of the image from 13/05/2018, 833 objects were identified where 

454 of them were regarded as precise detections. The precision, recall and F1 score 

from SAR images acquired in 10/03/2018 and 13/05/2018 respectively 

demonstrated 48.62%, 67.07%, 56.37% and 54.50%, 66.47%, 59.89% as seen in 

Table 5-4. 

Figure 5-10 demonstrates the bounding box distribution for fishing boats in 

magnitude, demonstrating the width and height comparison. The minimum width 
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and height of the detected bounding box was respectively 36.4950 m and 23.3954 m, 

where the maximum width and height was respectively 346.1446 m and 262.2244 

m.  

Figure 5-11 elaborates the distribution of length of the detected fishing boats, 

acquired from the identical procedure deriving Figure 5-4. The estimated  

minimum length of the detected fishing boat was measured as 37.5315 m. 
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Table 5-4 VPASS-based fishing boat detection performances. 

 Overall 10/03/2018 13/05/2018 

Precision (%) 51.84 48.62 54.50 

Recall (%) 66.72 67.07 66.47 

F1 score (%) 58.35 56.37 59.89 

Accurate 

Detection 
788 334 454 

Total 

 Detection 
1520 687 833 

Ground 

Truth 
1181 498 683 
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Figure 5-10 Distribution of width and height of detected bounding box from VPASS-

based fishing boat detection. 

 

 

 

 

 

 



- 109 - 

 

 

 

 

 

 

  

Figure 5-11 Distribution of estimated length of the detected fishing boats from  

Cosmo-SkyMed SAR images. 
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Chapter 6.  

Discussions 

 

This section was separately elaborated for ship detection high detection accuracy 

of automatically procured training data and fishing boat detection illustrating the 

possibility of application to monitoring unclassified vessels. 

 

6.1  Discussion on AIS-Based Ship Detection 

 

Owing to the difficulties in profoundly obtaining ships in SAR images, a 

substantial majority of studies on this issue focused on modifying the CNN-based 

object detection architecture [23, 29, 30, 81, 82]. In such conventional studies, 

training dataset of ships for ascertaining the performance of a recently developed 

model was obtained without scientific determination and through visual inspection. 

It was noted that complete reliance on visual interpretation could obstruct the 

application of such technique to practical purposes. This study attempted to 

fundamentally remedy such issue by procuring robust and verified training data that 

indicates the location and velocity of each ship: AIS information. It not only 

improves upon the previous attempt to construct the database of ships by cropping 

the SAR images containing them [38], but also robustly and precisely retrieves the 

scattering pixels of ships as described in Chapter 5, via the use of AIS information 

on ascertaining the detection performance. Previous studies regarding the projection 
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of AIS information on SAR images often used complex domain transfer [36] or 

statistical calculations [83] because the majority of them focused on dynamic AIS 

information. Here, implementing both dynamic and static information, this study 

managed to establish a simple and direct connection between AIS information and 

ship signals in SAR images. Additional discussion on exact interpolation time was 

conducted in order to ascertain the precise allocation of each ship. 

Table 5-2 presents the ship detection performance contrast between two different 

training databases. It is clear that the ship detection model trained from the database 

acquired from the proposed algorithm apparently exceeds that acquired from visual 

inspection: 77.13% overall and 79.16% in a typical image versus 62.43% overall 

and 68.20% in a typical image. Previous ship detections were conducted under 

much more hospitable conditions compared to those in this research: clear 

superstructure of vessels owing to advanced spatial resolution [82], sparse vessel 

allocation between one another owing to offshore coverage of SAR image [74] and 

minimal coverage containing fewer vessels [23]. Given those conditions, ship 

detection models achieved detection performances greater than 90% [23, 74, 82]. In 

contrast, as this research on ship detection intended to generate a robust algorithm 

which could operate without image-dependency, focused on rendering a verified 

training data and managed to obtained complementary detection performance with 

the study using Sentinel-1 SAR test images with 1348 ships and the newly proposed 

detection model [29]. Hence, it was deduced that the detection performance similar 

to [29] was from the training dataset using the proposed training data procurement 

algorithm.  
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The typical illustration of the ship detection result is shown in Figure 6-1. The 

specified region of interest was magnified to the inshore region and the post with 

azimuth ghost signals from ships around them. The originality of the training data 

procurement algorithm lies at these two regions in which the training architecture 

effectively detected the ships docked in port and evaded the ghost signals from 

detection, of which the detection result substantially exceeding that from visual 

inspection. Green, red and orange boxes in Figure 6-1 each denotes the ground truth, 

detection results and magnified regions respectivey, where sub-figures (a) and (b) 

respectively display the detection results from SAR images acquired in 08/07/2018 

and 20/07/2018. Sub-figures (d) and (g) display the results from training data 

obtained via proposed algorithm, where (e) and (h) display the results from training 

data obtained from visual interpretation. Yellow circles in sub-figure (f) identifythe 

azimuth ghost signals. 
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Figure 6-1 Typical illustration results of contrast between two different training 

datasets of AIS-based ship detection. 
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Analogous academic obstacles between previous studies related to ship detection 

could be categorized into four issues: monitoring of AIS deprived vessels, 

mitigating ship detection performance where ships were densely allocated, 

controlling the detector from detecting ship-like structure and acquiring massive 

and accurate training data for ship detection architecture. Monitoring ships without 

AIS information was successfully accomplished via AIS-annotated vessels. There 

were vessels with the positioning system turned off, regardless of the type, 

superstructure and magnitude; instead, this often depended upon the clandestine 

purpose of the vessel, illegal fishing and martial operations [84]. Therefore, it was 

concluded that models trained via AIS information could successfully detect the 

AIS-deprived ships. Detecting vessels in ship-compacted regions demonstrated high 

detection performance because AIS-annotated training data was procured in inshore 

regions, as briefly illustrated in Figure 6-1. Unlike the conventional training data via 

visual inspection, training data from the automated training data acquisition 

algorithm effectively trained the detector to discriminate the ships with each other. 

It also demonstrated the model’s competence in discerning the vessels’ sign from 

the artificial structures from littoral regions, such as harbor jetties, minor islands 

and sea clutters. As seen in Figures 6-1 (d) and (e), training data from AIS 

annotation demonstrated substantially high performance compared to that from 

visual interpretation. In addition, ambiguous signals in the vicinity of strong 

backscattering objects can cause performance to plummet in ship detection, as 

demonstrated in Figure 6-1 (h). The azimuth ambiguity ghost signals with similar 

but weaker signals than the main signal never included AIS information and were 
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disregarded by AIS-based annotation training database. As the detection results in 

Figure 6-1(g) suggest, the detector could effectively evade such signals from 

detection. Eventually, by implementing AIS information and SAR images with 

wide coverage, this study managed to construct a database both verified via 

referenced information and a significant quantity containing more than 7000 ship 

chips from SAR images. This study therefore could apply this database as a training 

data, unlike the conventional ship detection training data of which the number was 

often less than or approximately one hundred [23, 82, 85]. Owing to the quantity of 

training data, the results in Table 6-2 and Figure 6-1 were regarded as robust and 

image-independent. The ship detection study revealed that acquiring training data 

for CNN-based object detection algorithm could be achieved without any mediation 

of manual and artificial procedures.  
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6.2  Application on Determining Unclassified Vessels 

 

As transmittance of AIS and VPASS information to the ground station is 

compulsory for ships over 50 tons in the vicinity of littoral regions [39], ships 

whose AIS and VPASS data are not acquired from the station could be regarded as 

unclassified. This section is intended to propose a supplementary algorithm which 

could effectively discern unclassified vessels in the SAR coverage implementing 

the detection results introduced in Chapter 5. The preliminary pursuit of merging 

the two different datasets of AIS and satellite image data was previously conducted 

[86], which overlapped the ship detection results with AIS information. The 

conventional determination algorithm from [86] derived the detection results from 

CFAR detector and subsequently implemented a brief operation of AIS 

interpolation and matching. The dissertation proposed a sophisticated algorithm for 

matching ships in the SAR image with AIS information; it would be possible to 

derive an ameliorated algorithm for unclassified vessel determination for both AIS 

and VPASS information. In this section, it could be applied to sort out unclassified 

vessels, ships and fishing boats, from the detection results. 

Determination of each unclassified vessel could only be demonstrated on 

accurately detected vessels. In the case of AIS-based ship detection from Table 5-1, 

three SAR images of which the usages were testing, acquired on 26/06/2018, 

08/07/2018 and 20/07/2018 were implemented for such application. Respectively 

indicating 75.48%, 79.16% and 76.43% of overall detection in the F1 score, the 
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precisely detected ship was separately arranged from the gross prediction. 

Subsequently, dynamic AIS information corresponding to the temporal and spatial 

coverage of the target SAR image was referenced. It followed the identical 

procedure described in Figure 3-1; the specific procedure including AIS 

interpolation and Doppler frequency shift correction. As all AIS signals were 

arranged to appropriate position, bounding boxes were established from the AIS 

positions while assigning those positions as the center of the rectangular bounding 

box. Comparing the AIS-based bounding box with every accurate prediction of the 

ship, prediction without any superposition of AIS information could be regarded as 

ships that lack AIS transmittance to the ground station.  

The algorithm elaborating this section is described as Figure 6-2, indicating the 

comparison between real-time information of ship and prediction results. The 

proportion of unclassified vessels over the precise ship detection is presented in 

Table 6-1 for three SAR images, where Figure 6-3 demonstrates the typical 

determination indicating unclassified ships as red and the others as green. Among 

the three Sentinel-1 SAR images in Table 6-1, the proportion of unclassified ships 

reached 15%, regardless of their location in inshore and offshore. Given the 

regulation on AIS attachment on middle to large vessels [39], these 15% ships are 

unclassified and could be penalized by the respective legislations.  

An identical algorithm was implemented for the VPASS-based fishing boat 

detection by substituting the dynamic AIS information with dynamic VPASS 

information. Following the procedure conducted in Chapter 3, dynamic VPASS 

information was interpolated and Doppler shift-corrected, followed by the 
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construction of bounding box for comparison. After sorting out the defective 

detections, the remaining output would indicate the accurate detection results of 

fishing boats. Figure 6-4 and Table 6-1 additionally elaborates the determination of 

fishing boats from two Cosmo-SkyMed SAR images acquired on 10/03/2018 and 

13/05/2018; it revealed that the majority of fishing boats extinguished the VPASS 

signals while maneuvering in coatal regions. Given the large output difference 

output between the AIS-attached ship and VPASS-attached fishing boats, it could 

be assumed that the large-scaled vessels tended to strictly adhere to the attachment 

regulation. 
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Figure 6-2 Flowchart of discrimination of unclassified vessels from vessel detection results and dynamic AIS and VPASS information.  
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With the advent of machine learning applications on satellite imagery, this 

proposed technique could have considerable effects on real-time monitoring of 

ships in different aspect. Conventional usage of real-time ship surveillance highly 

relied on information from the target itself, including AIS and VPASS information. 

Surveillance of targets via information sent from those very targets could be 

challenging when facing the lack of information. Moreover, as AIS and VPASS 

information is transferred to the ground station in discrete, numerical manner, an 

intrinsic impediment keeping the user from intuitive comprehension on the 

distribution of the data exists. In contrast, ship detection on SAR imagery could be 

appropriate for long-term monitoring on trade or inaccessible harbors owing to its 

wide coverage and periodic acquisition. Implementing SAR images, especially 

satellite SAR however, could be regarded as improper for real-time and high-speed 

monitoring of ships because the SAR data is not procured by an hourly basis.  

The consecutive algorithms proposed in this dissertation could be practical in 

sorting out unclassified ships in both coastal and seaward regions when 

concurrently implemented with rapidly-obtained SAR imagery. On such SAR 

images, a machine learning based ship detection algorithm using the training data 

retrieved from the algorithm in Figures 3-1, 3-12 and 3-13 would effectively be able 

to detect and visualize the ships inside the image coverage. After the detections are 

completed, by comparing the output with AIS or VPASS information via the 

algorithm of Figure 6-2, unclassified vessels could be sorted out.  

The application would be applicable illegal fishing surveillance by expeditiously 

acquired airborne SAR image, where the targets are smaller than other vessel types 
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and demands an expeditious response. When accompanied by (i) rapidly acquired 

satellite or airborne SAR image data, (ii) vessel detection output with higher 

accuracy and (iii) precise information on position and velocity of each vessel, it 

would be possible to establish a real-time module for an illegal vessel monitoring 

system.  
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Table 6-1 Determination of unclassified vessels on SAR images for testing. 

 

Satellite 

Dataset 

Acquisition 

Date 

Accurate 

Detection 

Illegal 

Ships 

Proportion of 

Illegality (%) 

Sentinel-1 

Overall 977 140 14.33 

26/06/2018 319 35 12.87 

08/07/2018 341 54 15.84 

20/07/2018 317 51 16.09 

Cosmo- 

SkyMed 

Overall 803 675 84.06 

10/03/2018 346 310 89.60 

13/05/2018 457 365 79.87 
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Figure 6-3 Typical examples of determination of unclassified ships from  

Sentinel-1 SAR images.  
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Figure 6-4 Typical examples of determination of unclassified fishing boats from  

Cosmo-SkyMed SAR images.  
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Chapter 7.  

Conclusion 

 

Monitoring vessels in the ocean using different methods was regarded as essential 

for preservation of maritime resources; implementation of individual equipment 

presented several limitations. As a mitigation, this study proposed and implemented 

an automated algorithm for acquiring training data from SAR images using AIS and 

VPASS information to reduce the interference from artificial interpretation and 

appropriately applied the proposed algorithm to ship detection. This automated 

algorithm contains the methodology of (i) precise interpolation of AIS and VPASS 

information, including an explicit algorithm of target interpolation time 

determination and minimization of the measurement error via a Kalman filter, (ii) 

Doppler frequency shift calibration by an accurate measurement of the slant range 

between the target vessel and the satellite, and (iii) direct acquisition of training data 

from the interpolated position from static AIS information, which could be 

substituted by binarization in case of implementing VPASS information. Bounding 

box expansion and DEM-masking was conducted in order to remedy the rounding 

from each vessel and eradicate the false ground signals. Subsequent differentiation 

of fishing boats in ground truth images was conducted by comparing scattering 

characteristics between the fishing boat candidates and fishing boats from VPASS 

signals, which were categorized in the database. 

For AIS-based ship detection, applying the conventional CNN-based object 
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detection algorithm, 21 Sentinel-1 SAR images in the vicinity of the southeastern 

Korean peninsula were implemented. The model trained via 18 SAR images 

containing 7489 training data was tested with the other three images, obtaining  an 

overall detection performance of 77.13%, as harmonic mean of precision and recall. 

For VPASS-based fishing boat detection, identical architecture was implemented to 

seven Cosmo-SkyMed SAR images for training and the two SAR images for testing; 

an overall detection performance of 58.35% was obtained. 

Both detection results were applied to AIS and VPASS information for 

determination of unclassified ships and fishing boats given that the legal vessels 

were required to activate their respective sensors. Applying a superposition between 

the vessel detection output and AIS or VPASS information corresponding to the 

detection, the non-transmitting vessels were determined. This methodology 

determined that the fishing boats had significant chances of extinguishing the 

sensors while operating compared to that of ships. For robust and stable algorithmic 

construction of unclassified vessel discrimination, amelioration of detection 

accuracy and mitigation of efficiency of the determining unclassified ships and 

fishing boats is required. 

Nevertheless, this study has a few limitations with regard to constructing ground 

truth data for fishing boat detection. It would be necessary to render a logically 

undeniable procedure for additional ground truth annotation methodology based on 

each boat’s scattering characteristics. In the future, a study where the training data is 

directly procured from simulation of the target fishing boat could be pursued. If 

successfully implemented, it could fundamentally remove of the dependence on  
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both quantity and quality of training data in SAR image-based fishing boat 

detection. Last but not least, both AIS information and VPASS information could 

be implemented in a single SAR target image. A part of AIS data contains 

information from fishing ships; a combined vessel detection method based on two 

information datasets could be effective in advancing detection performance. 
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국문 요약문 

 

전천후 지구 관측 위성인 SAR를 통한 선박 탐지는 해양 자원의 확보와 

해상 안전 보장에 매우 중요한 역할을 한다. 기계 학습 기법의 도입으로 

인해 선박을 비롯한 사물 탐지의 정확도 및 효율성이 향상되었으나, 이와 

관련된 다수의 연구는 탐지 알고리즘의 개량에 집중되었다. 그러나, 탐지 

정확도의 근본적인 향상은 정밀하게 취득된 대량의 훈련자료 없이는 

불가능하기에, 본 연구에서는 선박의 실시간 위치, 속도 정보인 AIS 

자료를 이용하여 인공 지능 기반의 선박 탐지 알고리즘에 사용될 

훈련자료를 자동적으로 취득하는 알고리즘을 제안하였다.  

이를 위해 이산적인 AIS 자료를 SAR 영상의 취득시각에 맞추어 

정확하게 보간하고,  AIS 센서 자체가 가지는 오차를 최소화하였다. 또한, 

이동하는 산란체의 시선 속도로 인해 발생하는 도플러 편이 효과를 

보정하기 위해 SAR 위성의 상태 벡터를 이용하여 위성과 산란체 사이의 

거리를 정밀하게 계산하였다. 이렇게 계산된 AIS 센서의 영상 내의 

위치로부터 선박 내 AIS 센서의 배치를 고려하여 선박 탐지 알고리즘의 

훈련자료 형식에 맞추어 훈련자료를 취득하고, 어선에 대한 위치, 속도 

정보인 VPASS 자료 역시 유사한 방법으로 가공하여 훈련자료를 

취득하였다.  
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AIS 자료로부터 취득한 훈련자료는 기존 방법대로 수동 취득한 

훈련자료와 함께 인공 지능 기반 사물 탐지 알고리즘을 통해 정확도를 

평가하였다. 그 결과, 제시된 알고리즘으로 취득한 훈련 자료는 수동 

취득한 훈련 자료 대비 더 높은 탐지 정확도를 보였으며, 이는 기존의 

사물 탐지 알고리즘의 평가 지표인 정밀도, 재현율과 F1 score를 통해 

진행되었다. 본 연구에서 제안한 훈련자료 자동 취득 기법으로 얻은 

선박에 대한 훈련자료는 특히 기존의 선박 탐지 기법으로는 분별이 

어려웠던 항만에 인접한 선박과 산란체 주변의 신호에 대한 정확한 분별 

결과를 보였다. 본 연구에서는 이와 함께, 선박 탐지 결과와 해당 지역에 

대한 AIS 및 VPASS 자료를 이용하여 선박의 미식별성을 판정할 수 있는 

가능성 또한 제시하였다.  

 

주요어 : SAR, AIS, VPASS, Training data, Machine learning, Vessel detection 
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