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Abstract 

The sources and fates of dissolved 

organic carbon in aerosols and seawater 

revealed by its isotopes and optical 

characteristics 
 

Heejun Han 

School of Earth and Environmental Sciences 

The Graduate School 

Seoul National University 
 

   Dissolved or water-soluble organic carbon (DOC/WSOC) in atmospheric 

aerosols and seawater plays a significant role in the radiative forcing of the global 

climate system and the global carbon cycle. DOC/WSOC is composed of a 

substantial portion with a light-absorbing fraction consisting of the humic matter, 

which absorbs in the range of ultraviolet to visible radiation, termed as brown 

carbon (BrC) in aerosols and colored dissolved organic matter (CDOM) in aquatic 

environments. Since this fraction is responsible for the optical properties, which is 

essential for all living organisms, and displays a conservative behavior, BrC and 

CDOM have been used as powerful DOM and DOC indicators in various 

environmental settings. Although it is crucial to study the light-absorbing organic 

matter to better understand the general behavior and cycling of organic carbon in 
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aerosols and seawater, current understandings of the production and degradation 

mechanisms of DOC/WSOC in the atmosphere and oceans still remain uncertain. 

Thus, in this study, a combination of various biogeochemical tools such as stable- 

and radio-carbon isotopes, optical properties of CDOM (absorbance and 

fluorescence), and radionuclide was used to investigate the sources, sinks, fluxes, 

and processes of DOC/WSOC in atmospheric aerosols and different aquatic 

environments.  

   In the atmosphere, the air mass back trajectory model combined with the fire 

burning activity maps found that biomass burning emission is a significant source 

of BrC in the urban city, Seoul, Korea. Based on yearlong monitoring, significant 

seasonal changes in optical and chemical properties of BrC and WSOC were found 

from the cold seasons (October–January) to the warm seasons (June–September). 

The laboratory experiment has also confirmed that photochemical degradation is 

an important removal mechanism of BrC in the atmosphere. Thus, photochemical 

degradation has a dominant role in controlling the quantity and quality of light-

absorbing organic carbon in different seasons. 

   In Sihwa Lake, different sources and distributions of high DOC concentrations 

occurring in two different seasons were found based on the DOC–δ13C values and 

spectral slope ratio. This study revealed that the higher DOC concentrations 

occurring in low-salinity water, which are generally believed to be from terrestrial 

sources, were actually from marine sediment source, while the excess DOC 

concentration occurring in high-salinity waters, which are generally believed to be 

from marine sources, were found to be from terrestrial DOM sources from the 
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reclaimed land area. This land-derived DOM source was likely associated with 

direct land-seawater interaction through the tidal inundation of seawater 

experiencing extended exposure to light and bacterial degradation.  

   The sources and fluxes of DOC over the East China Sea continental shelf were 

investigated based on its radiocarbon ages and δ13C values of DOC and its 

relationship to water age deduced from 228Ra. In this region, the Changjiang River 

appears to be the primary source of DOC in summer, while the potential source of 

additional DOC was found to be from the sedimentary organic matter produced in 

the shelf-water in winter and spring. The flux of the shelf-borne DOC was 

estimated to be 2.2±0.6 Tg C yr-1, which is almost comparable to that from the 

Changjiang River discharge (1.6 Tg C yr-1) to the East China Sea. This result 

suggests that the shelf-borne DOC may play a significant role in the global carbon 

cycle and budget.     

   In the East Sea, the distributions, sources, and sinks of fluorescent DOM 

(FDOM) were investigated. The humic-like FDOM (C and M peaks) was 

produced mainly by oxidation of sinking organic matter in the water column and 

by anaerobic processes in the bottom sediment. However, there was a large 

difference in the distributions of C peak (terrestrial humic-like) and M peak 

(marine humic-like) caused by two possible processes: (1) more effective UV 

degradation of C peak in the surface layer and/or (2) relatively ineffective 

production of M peak in the deep ocean. This result suggests that the vertical 

distributions of humic-like FDOM seem to be influenced by their production 

(water column) and photochemical degradation (surface layer) mechanisms in the 
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ocean.  

   This study has provided important implications for our understanding of and 

insight into the sources and fates of DOC/WSOC using multiple biogeochemical 

tracers in the atmosphere and various aquatic environments. Combining these tools 

can be further applied effectively in many different settings where the sources and 

nature of organic carbon are complex.  

   

 

Keywords: Dissolved organic matter, dissolved organic carbon, brown carbon, 

stable carbon isotope, radiocarbon, optical property 

Student Number: 2017-30218 
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1. Introduction 

 

1.1 Biogeochemistry of dissolved organic matter  

Dissolved organic matter (DOM) plays a critical role in the global 

biogeochemical cycle of bio-reactive elements such as carbon, a major 

component of biological compounds and minerals, among different 

reservoirs including atmosphere, land, and ocean in terms of source and sink 

through formation and degradation of organic matter (Hansell and Carlson, 

2015; Ward et al., 2017). In DOM, most of part is made up of dissolved 

organic carbon (DOC), which is a major compound of Earth’s organisms 

(Hansell and Carlson, 2015). Since carbon primarily exists as gases form 

(CO2) in the atmosphere and is immediately taken up by the ocean, DOC 

continuously flows through the Earth’s surface layer between the 

atmosphere and oceans (Lead, 2001). Thus, understanding of sources and 

characteristics of DOC in the Earth’s surface layer between the atmosphere 

and oceans is very important.  

 

1.2 Sources and sinks of DOC  

DOC sources and sinks are diverse depending on their reservoirs (Fig. 

1–1). In the atmosphere, organic aerosols occur in two different forms as 

primary and secondary aerosols. The primary organic aerosols are 

categorized into natural and anthropogenic sources (Gelencsér et al., 2007). 
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Natural sources are including mineral dust, soils, plants, wildfires, volcanic 

eruptions, and marine organics, while anthropogenic sources are involving 

fossil fuel combustion, biomass burning, motor vehicle emissions, industrial 

and agricultural particles (Gelencsér et al., 2007). On the other hand, the 

major sink of atmospheric particles is wet and dry deposition (Mladenov et 

al., 2010).  

DOC is the largest pool of reduced carbon (660 Pg C) in the oceans 

(Hopkinson and Vallino, 2005; Hansell et al., 2009). In coastal oceans, DOC 

sources include (1) in-situ biological production, (2) terrestrial sources such 

as soils and plant matters, and (3) anthropogenic sources such as industrial 

and agricultural wastewater (Opsahl and Benner, 1997; Tedetti et al., 2010; 

Bauer and Bianchi, 2011; Griffith and Raymond, 2011; Carlson and Hansell, 

2015). On the other hand, DOC is mainly produced by primary production 

and other sources including grazing processes, dissolution of sinking 

particles, and microbial production in the open ocean (Carlson and Hansell, 

2015), while microbial mineralization is known as the dominant sink of 

DOC (Hansell et al., 2009).  

Since these DOC fluxes from various reservoirs may significantly 

contribute to the global carbon budget, understanding these DOC sources 

and sinks is crucial in the global carbon budget and cycle.    
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Figure 1.1 Schematic overview of the DOC sources in the atmosphere and 

ocean. 
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1.3 Fluxes of DOC  

 In coastal oceans, terrestrial sources of DOC transported through the 

atmosphere, rivers, and groundwater contribute significantly to ocean 

carbon budgets (Kuhlbusch, 1998; Masiello and Druffel, 1998; Raymond 

and Bauer, 2001a; Raymond and Bauer, 2001b; Guo and Macdonald, 2006; 

Yan and Kim, 2012; Huang et al., 2012; Kim et al., 2013; Lee and Kim, 

2018). According to the previous studies, the global annual flux of DOC to 

the oceans through the river is 0.17 to 0.36 Pg C yr-1, while that via 

groundwater system is estimated to be 0.12 Pg C yr-1 (Maybeck, 1982; Dai 

et al., 2012; Bauer et al., 2013; Chen et al., 2018). The atmospheric 

deposition of total OC (dry and wet depositions) is estimated to be 0.30 to 

0.64 Pg C yr-1 (Willey et al., 2000; Goldstein and Galbally, 2007; Kanakidou 

et al., 2012; Iavorivska et al., 2016), and approximately 50% of total OC 

deposition occurs to the ocean surface. However, the potential role of the 

continental shelves where terrestrial and oceanic DOC are introduced and 

processes are poorly constrained.  

 

1.4 Aims of this study  

The objectives of this study are (Fig. 1–2):  

[1] To characterize the origins of organic carbon species in the 

atmosphere and oceans  

[2] To investigate the removal mechanism of light-absorbing 
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organic carbon, as known as BrC, in the atmosphere  

[3] To determine the sources of excess DOC occurring in the 

artificial seawater lake 

[4] To estimate the flux of shelf-borne DOC to the oceans  

[5] To investigate the distributions, sources, and sink of FDOM in 

the deep ocean 
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Figure 1.2 Schematic overview of the research scopes of this study. 
 
 
 
 
 
 
 
 
 
 
 

 

Open ocean

Continental shelf

Reclaimed land
Industrial complex

River

Atmospheric deposition

Topic 3

Topic 2

Topic 1

Topic 4



 

 17 

2. Materials and Methods 
 

2.1 Sampling methods 
 

For the analyses of BrC in aerosols, atmospheric suspending particles 

must be collected using an air sampler through a pre-combusted (450 °C for 

5 h) aerosol filter paper. For the BrC extraction, a portion of filter paper was 

cut into small pieces and placed in a pre-HCl-rinsed bottle. BrC components 

were extracted using a MeOH (HPLC grade; Fisher Chemical) and shaken 

at 125 rpm for 4 h (Wozniak et al., 2012). The extracts were filtered (pore 

size = 0.45 µm; Whatman) for further analyses (Fig. 2–1).  

 

For the seawater sampling, seawater samples were collected using a 

Niskin bottles mounted on a CTD rosette. During sampling, all bottles were 

thoroughly rinsed twice with seawater. Water samples were filtered through 

a pre-combusted (450°C for 5h) glass microfiber (GF/F) filter (pore size = 

0.7 µm; Whatman) and stored in an adequate container for each different 

analysis. Samples for DOC and DOC- δ13C analyses were acidified samples 

to a pH ~2 with 6M HCl to avoid any bacterial activities and stored in pre-

combusted glass ampoules at room temperature. Glass ampoules were fire-

sealed to prevent any contamination (Fig. 2–2). Samples for DOC-Δ14C 

analysis was stored in pre-combusted amber Boston round glass bottles at –

20°C (Fig. 2–2). Samples for CDOM analysis were stored in pre-combusted 
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amber glass vial in a refrigerator at 4°C (Fig. 2–2). Samples for nutrient 

analysis were stored frozen in a HDPE bottle until analysis (Fig. 2–2).  
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Figure 2.1 Schematic diagram of analytical procedure for the BrC 

extraction.  
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Figure 2.2 Schematic diagram of analytical procedure for the 

preconditioning processes of DOC, DOC- δ13C, DOC–Δ14C, CDOM, and 

nutrient samples.  
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2.2 Analysis of DOC  
 

DOC concentrations were measured by a high temperature catalytic 

oxidation (HTCO) method using a total organic carbon (TOC) analyzer 

(TOC-VCPH and TOC-L; Shimadzu, Japan) (Fig. 2–3). The analytical 

uncertainties were ±2 µM for a consensus reference material (CRM) of deep 

seawater (DSR; ~43 µM, University of Miami; Hansell Organic 

Biogeochemistry Lab) based on multiple analyses (approximately three 

times per each sample batch) (Hansell, 2005). Calibration curve was 

produced using a standard solution of potassium hydrogen phthalate (KHP) 

stock solutions.  
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Figure 2.3 Schematic diagram of analytical procedure for the measurement 

of DOC concentrations. 
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2.3 Analysis of CDOM and FDOM  
 

Fluorescence and absorbance optical properties of CDOM were 

determined using a spectrophotometer (Aqualog, Horiba) (Fig. 2–4). For 

FDOM analysis, emission-excitation matrix (EEM) data were measured 

using emission and excitation wavelength in the range of 240–700 and 250–

500 nm, respectively, with scanning intervals of 1 to 5 nm. In addition, the 

ranges of emission and excitation wavelengths and the scanning intervals 

depend on optical measurements used for each analysis. The blank 

subtraction, Raman, and Rayleigh scattering signals were corrected using 

Milli-Q water (18.2 MΩcm) daily. The parallel factor analysis (PARAFAC) 

model was applied to characterize the major fluorescent components using 

the Solo software. The inner-filter effect was corrected using the Solo 

software (Han et al., 2020). The model results were validated by split-half 

analysis and random initialization (Bro, 1997; Zepp et al., 2004; Stedmon 

and bro, 2008). Since the fluorescence intensity of DOM is highly 

instrument dependent, a simple method for standardization is required. The 

fluorescence intensity was normalized by Raman peak area of pure Milli-Q 

water and presented as Raman unit (RU), which is the integrated area of 

water Raman peak at an excitation wavelength of 350 nm (Lawaetz and 

Stedmon, 2009; Han et al., 2020).  

 

The absorption spectra of the samples were measured with a scanning 
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wavelength range of 240–700 nm. The optical indices and parameters were 

estimated using the absorbance measurement equations.  

 

The absorption coefficient was calculated using the following equation:  

aλ = 2.303 Aλ / l,                                           (1) 

where a is the absorption coefficient (m-1), Aλ is the absorbance, and l is the 

optical path length of the quartz cuvette (m). The spectral slope ratio (SR) 

was calculated with the ratio of spectral slope (S) of shorter wavelengths 

(S275–295) to longer wavelengths (S350–400) using the following equation:  

aλ = aλref e–S(λ–λref),                                          (2) 

where a is the Napierian absorption coefficient (m-1), λ is the wavelength, 

and λref is the reference wavelength (Twardowski et al., 2004; Helms et al., 

2008; Han et al., 2020).  
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Figure 2.4 Schematic diagram of analytical procedure for the measurement 

of CDOM. 
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2.4 Analysis of stable and radiocarbon isotopes  
 

Stable carbon isotope of DOC (DOC-δ13C) was measured using an 

isotope ratio mass spectrometer (IRMS) (Isoprime, Elementar) connected 

with a TOC analyzer (TOC–IRMS) (Fig. 2–5). After sample solution passed 

the combustion tube for the HTCO method, CO2 gases from the non-

dispersive infrared sensor (NDIR) in TOC analyzer was introduced to IRMS 

via an interface (isoTOCinterface, Elementar), which removes O2 gases and 

trap CO2 gases (Panetta et al., 2008; Troyer et al., 2010; Han et al., 2020). 

The δ13C values were determined using the following equation: 

𝛿!"𝐶 = (!"!/!"!)!"#$%&

(!"!/!"!)!"#$%#&%
− 1 ×1000‰                      (3) 

The isotopic composition δ13C is reported as Vienna Pee Dee Belemnite 

(VPDB) scale (Troyer et al., 2010). 

 

 Prior to the sample analysis, analytical test was conducted on certified 

IAEA-CH6 sucrose (δ13C= –10.45±0.03‰; International Atomic Energy 

Agency), reference material of deep seawater (DSR; δ13C= –21.5±0.1‰; 

University of Miami), and Suwannee River Fulvic Acid (SRFA) (δ13C= –

27.6±0.12‰; International Humic Substances Society) to evaluate the 

precision of the measurements (Hansell, 2005; Lang et al., 2007; Panetta et 

al., 2008; Troyer et al., 2010; Han et al., 2020). 
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Radiocarbon isotope ratio of DOC (DOC–Δ14C) sample was measured 

by UV oxidation method (Beaupre et al., 2007) (Fig. 2–6). DOC–Δ14C 

samples were acidified to ~pH 2 with 85% phosphoric acid, purged with 

ultra-high purity nitrogen gas to remove dissolved inorganic carbon, and 

oxidized by UV irradiation (Beaupre et al., 2007) (Fig. 2–6). After the 

irradiation, the resultant CO2 gas was analyzed for at the National Ocean 

Sciences Accelerator Mass Spectrometry Facility (NOSAMS) at the Woods 

Hole Oceanographic Institution.  
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Figure 2.5 Schematic diagram of analytical procedure for the measurement 

of DOC- δ13C values. 

 

 

 

 

 

 

Stable carbon isotope analysis 

 

Saprging with ultrapure O

Remove halogen gas & water 

Measure–δ  C

2

High temperature catalytic 
oxidation 

(DOC → CO  ) 2 

IRMS13 

 
Remove O  & trap CO 2 2 

}

Interface}

TOC}



 

 29 

 

 

 

 

 

 

 
 

Figure 2.6 Schematic diagram of analytical procedure for the ultraviolet 

oxidation and DOC vacuum line system (Beaupre et al., 2007). 
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2.5 Nutrients analysis  
 

Inorganic and organic nutrients were measured using a nutrient auto-

analyzer (QuAAtro39, SEAL analytical) (Fig. 2–7). Dissolved inorganic 

nitrogen (DIN) includes NO2, NO3, and NH4
+. Dissolved inorganic 

phosphate (DIP) includes PO4
2-. Dissolved inorganic silicate (DSi) includes 

SiO4. The analytical uncertainties were <5% for the reference materials 

(KANTO).     

 

For the analysis of cation (Na+, NH4
+, K+, and Ca+) and anion (Cl-, 

SO4
2-, NO3

-, and NO2
-) species, high-performance liquid chromatography 

(HPLC) (Waters 2695) equipped with a conductivity detector (Waters 432) 

was used (Fig. 2–8). Cations were analyzed using a 0.1 mmol L-1 

ethylenediaminetetraacetic acid (EDTA) and 3.0 mmol L-1 HNO3 as an 

eluent with a constant flow rate of 1.0 mL min-1 and a Waters IC-Pak C M/D 

column (3.9 mm × 150 mm) was used. Anions were analyzed using a 

borate/gluconate eluent with a constant flow rate of 2.0 mL min-1 and a 

Waters IC-Pak A HC column (4.6 mm × 150 mm) was used. The 

temperature of columns were maintained at 30°C and samples were at 4°C.  
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Figure 2.7 Schematic diagram of analytical procedure for the measurement 

of nutrient concentrations. 
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Figure 2.8 Schematic diagram of analytical procedure for the determination 

of major ion species using HPLC. 
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2.6 Analysis of radium isotope  
 

For 228Ra measurement, 100L of seawater samples were collected in 

polypropylene cubitainers. Then, the seawater sample was passed through a 

column of acrylic fiber impregnated with MnO2, as known as Mn-fiber, at 

<1 L min-1 by gravity (Moore, 1976). The Mn-fiber was brought to the 

laboratory for further analysis (Fig. 2–9). The Mn-fiber was rinsed with Ra-

free deionized water to wash out any salts or particles, then ashed at 820°C 

for 16 h. The ashed Mn-fiber was transferred to hermetically sealed vials 

and analyzed for 228Ra using a high-purity Germanium well-type detector 

(CANBERRA) (Fig. 2–10). 228Ra activities were determined by counting 

the gamma peaks at 911 keV from its daughter 228Ac (Kim et al, 2003). The 

geometry effect on the detection efficiency was corrected and applied to the 

final activity calculation. 

 

 

 

 

 

 

 

 

 



 

 34 

 

 

 
Figure 2.9 Schematic diagram of analytical procedure for the 

preconditioning process of radium isotope. 
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Figure 2.10 Schematic diagram of analytical procedure for the measurement 

of 228Ra activity concentrations. 
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2.7 Trace element analysis  
 

The trace element samples were analyzed using a high-resolution 

inductively coupled plasma mass spectrometer (HR-ICP-MS) (Thermo 

Element 2). In order to correct the instrumental instability for the mass 

spectrometer, rhodium (Rh) was included as an internal standard prior to 

analysis. The trace element samples were acidified to 2% ultra-pure HNO3.  

 

The non-crustal element fractions [X] were estimated using the 

following equation (Yan and Kim, 2012):  

𝑛𝑜𝑛 − 𝑐𝑟𝑢𝑠𝑡𝑎𝑙 𝑋 = 𝑋 − ([𝑋] [𝐴𝑙])!"#$%×[𝐴𝑙]!"#$%$&     (4) 

where the element compositions of the upper continental crust for potassium 

(K), aluminum (Al), and vanadium (V) are applied (Taylor and McLennan, 

1995).  
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3. Organic carbon in aerosols 
 

3.1 Study site and sampling 

Seoul (37.5°N, 127.0°E) is the capital city of South Korea and one of 

the largest metropolitan cities in the world (Fig. 3–1). South Korea has been 

significantly affected by severe dust storms called Asian dust or the Yellow 

dust mostly originated from the Chinese and Mongolian deserts during the 

spring (Mar–May) and often during the winter (Dec–Jan) (Lin et al., 2012). 

Recently, significant increases in fine aerosols associated with 

anthropogenic emissions are of great concern and a focus of major 

environmental studies in this region (Seinfeld et al., 2004; Park et al., 2007).  

 

Aerosol samples (n=78) were collected using a high–volume air 

sampler (HV-1000, SHIBATA) from March 2015 to January 2016 in Seoul 

city of South Korea (20 m above ground level) (Fig. 3–1). Aerosol samples 

were collected for 24 h at a constant flow rate of 1000 L min-1 using a pre-

combusted (450 °C for 5 h) glass microfiber filter paper (GF/F, 8 × 10 inch, 

2 µm pore size, Whatman). For the blank sample, a filter paper was exposed 

shortly at the study site and analyzed in the same manner as those for the 

collected samples.  
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Figure 3.1 Geographical map of the study site combined with the air mass 

transport pathways in different seasons: spring (green), summer (red), fall 

(blue), and winter (brown).  
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3.2 BrC composition  

Organic aerosols play an important role in air quality, atmospheric 

chemistry, and the global climate system (Ghan and Schwartz, 2007; Duarte 

and Duarte, 2013; Laskin et al., 2015). Organic aerosols are composed of a 

significant fraction with carbonaceous organic aerosols absorbing radiation, 

which is called the light-absorbing organic aerosols (Laskin et al., 2015). 

Recently, the light-absorbing organic aerosols, also known as brown carbon 

(BrC), have attracted great attention due to their significant roles in the 

radiative forcing affecting the global climate system by directly absorbing 

solar radiation and indirectly acting as cloud condensation nuclei (CCN) for 

cloud formation in the atmosphere (Kanakidou et al., 2005; Andreae and 

Gelencsér, 2006; Graber and Rudich, 2006; Ramanathan et al., 2007; 

Kirillova et al., 2014a; Saleh et al., 2014). The light-absorbing property of 

BrC is expected to be considerably weaker than that of the black carbon 

(BC), which is the best known light-absorbing carbonaceous aerosol, since 

BrC absorbs solar radiation in the range of ultraviolet (UV) to visible 

wavelengths, while BC absorbs over a wide spectral range from UV to near-

infrared radiation (Feng et al., 2013; Laskin et al., 2015). However, BrC 

contributions would be significant in the atmosphere due to its higher 

abundances over source regions (Hoffer et al., 2006; Gustafsson et al., 2009; 

Feng et al., 2013). In addition, BrC contributes approximately 19% of the 

total atmospheric radiative forcing (Feng et al., 2013).     
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The origin of BrC is predominantly attributed to atmospheric humic-

like substance (HULIS) due to their similar properties to terrestrial and 

aquatic humic and fulvic acids in aquatic environment (Andreae and 

Gelencsér, 2006; Graber and Rudich, 2006; Lukács et al., 2007; Laskin et 

al., 2015; Yan and Kim, 2017) (Fig. 3–2). The major source of HULIS 

includes both direct emission sources including biomass burning, marine 

aerosols, and soil re-suspension and indirect contribution from secondary 

formation in the atmosphere (Graber and Rudich, 2006; Hoffer et al., 2006; 

Lin et al., 2010; Yan and Kim, 2017). Recently, residential coal combustion 

was suggested as another important source of HULIS during cold seasons in 

many studies (Tan et al., 2016; Voliotis et al., 2017; Li et al., 2019). In 

addition, biological aerosols such as bacteria, algae, pollen, spores, fungi, 

plant debris, and animal tissue are another important sources of BrC in the 

atmosphere (Després et al., 2012; Pöhlker et al., 2012). Previous studies 

have suggested that the atmospheric HULIS contributes to ~70% of the 

water-soluble organic carbon (WSOC) (Laskin et al., 2015; Park and Son, 

2017), while the WSOC contributes to 10 to 80% of the total organic carbon 

contents in aerosols (Kirillova et al., 2014a; Kirillova et al., 2014b; Fu et al., 

2015) (Fig. 3–2). However, current understandings of the optical and 

chemical properties, and removal mechanism of light-absorbing organic 

aerosols are poorly understood. 
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The light-absorbing property of BrC was differentiated using its 

fluorescent property by the PARAFAC model. The PARAFAC model 

identified two humic-like fluorescent components in BrC samples, while the 

model identified two humic-like and one protein-like fluorescent component 

in HULIS samples (Figs. 3–3 and 3–4). In BrC samples, component 1 (C1; 

Ex/Em = 356/439 nm) and component 2 (C2; Ex/Em = 284/373 nm) are 

known to be highly associated with the atmospheric HULIS as well (Chen et 

al., 2016; Yan and Kim, 2017) (Table 3.1). In HULIS samples, component 1 

(C1; Ex/Em = 305/416 nm) and component 3 (C2; Ex/Em = 365/484 nm) 

are known to be associated with the atmospheric HULIS (Chen et al., 2016; 

Yan and Kim, 2017) (Table 3.2). Component 2 (C2; Ex/Em = 290/340 nm) 

represents a protein-like peak associated with a biological production 

(Coble, 2007; Murphy et al., 2014) (Table 3.2).  

 

In this study, C1 was used as a representative fluorescent component 

since C1 versus C2 (r2 = 0.9; p < 0.05) and C1 versus C3 (r2 = 0.8; p < 0.05) 

of HULIS and C1 versus C2 (r2 = 0.9; p < 0.05) of BrC exhibited good 

correlations each (Fig. 3–5). In HULIS sample, a good correlation between 

C1 and C2 was found in the HULIS samples, although, in general, these two 

components have different sources and sinks in the atmosphere (Yan and 

Kim, 2017) (Fig. 3–5a).  
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In addition, the HULIS component (C1) obtained by the PARAFAC 

model agreed very well with the extracted HULIS concentration obtained by 

using the DEAE column (r2 = 0.81; p < 0.05), indicating that the C1 

fluorescent component represents the actual HULIS (Fig. 3–6a). Also, the 

extraction efficiencies of HULIS (water-soluble BrC) to that of the MeOH-

soluble BrC were compared (Fig. 3–6b). Although the efficiency of the 

water-soluble BrC was approximately 20% lower than that of the MeOH-

soluble BrC, they exhibited a good correlation (r2 = 0.9; p < 0.05) (Fig. 3–

6b). Therefore, this result conclude that the HULIS is a good representative 

of BrC. 
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Figure 3.2 Schematic diagram illustrating of aerosol compositions.  
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Figure 3.3 Fluorescence EEM spectra and excitation-emission loadings of 

(a) terrestrial humic-like (C1) and (b) humic-like (C2) components 

identified from BrC samples collected from March 2015 to January 2016 in 

Seoul, Korea.  
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Figure 3.4 Fluorescence EEM spectra and excitation-emission loadings of 

(a) humic-like (C1), (b) protein-like (tryptophan) (C2), and (c) humic-like 

(C3) components identified from the HULIS samples collected from March 

2015 to January 2016 in Seoul, Korea.   
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Table 3.1 Spectral characteristics of the fluorescence components identified by the PARAFAC model for the BrC samples.  
Component Ex/Em wavelength [nm] Peak Description and origin 

C1 356/439 C 
Terrestrial humic-like component (Stedmon and 

Markager, 2005); HULIS (Xie et al., 2020) 

C2 284/373 M 
Marine humic-like component (Stedmon and 

Markager, 2005); HULIS (Pöhlker et al., 2012) 
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Table 3.2 Spectral characteristics of the fluorescence components identified by the PARAFAC model for the HULIS samples.  
Component Ex/Em wavelength [nm] Peak Description and origin 

C1 305/416 M 
Marine humic-like component (Stedmon and 

Markager, 2005); HULIS (Pöhlker et al., 2012) 

C2 290/340 T 

Protein-like (tryptophan-like) component derived from 

autochthonous processes (Stedmon and Markager, 

2005; Pöhlker et al., 2012) 

C3 365/484 C 
Terrestrial humic-like component (Stedmon and 

Markager, 2005); HULIS (Xie et al., 2020) 
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Figure 3.5 Correlations of the fluorescence intensity of (a) HULIS C1 
versus HULIS C2, (b) HULIS C1 versus HULIS C3, and (c) BrC C1 versus 
BrC C2.  
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Figure 3.6 Correlations of the (a) fluorescence intensity of HULIS versus 

DEAE column extracted HULIS concentration and the (b) fluorescence 

intensity of HULIS versus MeOH-BrC.  
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3.3 Seasonal variations in BrC  

 
The BrC concentrations showed seasonal variations in the range of 8–

554 RU (average = 130±107 RU) with higher values during the cold seasons 

(Oct–Jan) (average = 191±119 RU) and lower values during the warm 

seasons (Jun–Sep) (average = 44±23 RU) (Fig. 3–6). The concentrations of 

WSOC and HULIS showed similar seasonal variations from 3 to 40 µg m-3 

(average = 16±7 µg m-3) and from 13 to 294 RU (average = 108±77 RU), 

respectively (Fig. 3–6). The ratio of BrC to WSOC content showed similar 

seasonal trend with BrC and WSOC concentrations indicating that there was 

pronounced decrease in the average fraction of BrC relative to WSOC from 

the cold to the warm seasons (Fig. 3–6).  

 

The δ13CWSOC values were in the range of –21.0 to –27.5‰ (average = -

24.0±1.5 ‰), with no seasonal variation trend (Fig. 3–6). The levoglucosan 

concentration ranged from 0.5 to 2.2 µg m-3 (average = 1.1±0.5 µg m-3) with 

comparatively higher values during the cold seasons (Oct–Jan) and the 

lower values during Aug–Sep (Fig. 3–6). The temporal variations in major 

ion species’ concentrations did not show such seasonal variations 

throughout the year (Fig. 3–6). The temporal variation in Ca2+ concentration 

(average = 0.8±0.2 mg L-1) showed a relatively constant trend throughout 

the year (Fig. 3–6). The SO4
2- concentrations (average = 12.0±10.3 mg L-1) 

showed the highest values during the period of spring to summer and were 
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slightly decreased during the cold seasons (Fig. 3–6). The NOX 

concentrations (average = 11.7±8.7 mg L-1) were relatively high during the 

warm seasons (Jun–Oct) (Fig. 3–6). The concentration of non-crustal K 

(average = 0.4±0.2 mg L-1) also showed a relatively constant trend 

throughout the year (Fig. 3–6). The non-crustal V concentrations (average = 

0.01±0.01 mg L-1) showed no such seasonal variations throughout the year 

(Fig. 3–6). The sea-spray concentrations were in the range of 4.0–33.6 mg 

L-1 (average = 17.3±6.4 mg L-1), showing the highest concentration in July 

(Fig. 3–6). Both temperature and UV radiation rate were high during the 

warm seasons and low during the cold seasons, showing typical patterns of 

middle latitudes (Fig. 3–6). 

 

3.4 Sources and sink of BrC   
 

In order to identify the potential sources of BrC, the source of WSOC 

was investigated based on the δ13CWSOC values together with various 

chemical constituents. The annual average δ13CWSOC (–24.0±1.5‰) value 

suggests that the biomass burning activity of terrestrial C3 plant-origin 

materials including grassland, crop-residue, fuel-wood could be a dominant 

source in this region (Kelly et al., 2005; Das et al., 2010; Kawashima and 

Haneishi, 2012; Fu et al., 2015). The average δ13CWSOC was in good 

agreement with that of HULIS (–25.4±1.6‰) reported from the previous 

study on rainwater in Seoul, Korea (Yan and Kim, 2017).  
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The WSOC and WSON concentrations showed a good correlation (r2 = 

0.6; p > 0.05) indicating that these two variables are highly associated with a 

common organic source in this region (Yan and Kim, 2015) (Fig. 3–7). The 

WSOC and HULIS concentrations also showed a good correlation (r2 = 0.5; 

p < 0.05) indicating the WSOC is mostly consisting of HULIS in this region 

(Fig. 3–7). HULIS showed a good correlation with the levoglucosan 

concentrations (r2 = 0.5; p < 0.05), which is a biomarker tracing the biomass 

burning in the atmosphere, indicating that biomass burning is a significant 

source of HULIS in this region (Fu et al., 2015; Kuang et al., 2015) (Fig. 3–

7). This result is consistent with the previous study of BrC in Seoul, which 

has suggested that the BrC in the rainwater was primarily derived from 

biomass burning and terrestrial biogenic emissions (>70%) based on the 14C 

measurements in the HULIS (Yan and Kim, 2017). However, significant 

decreases (35±2%) in levoglucosan concentrations by the UV irradiation 

experiment were observed (Fig. 3–8). This is also consistent with the 

previous founding that levoglucosan could be easily oxidized by the 

hydroxyl radical in the atmosphere (Hennigan et al., 2010; Hoffmann et al., 

2010). Thus, the major source of HULIS was derived from biomass burning 

activity in this region. However, such low concentrations in WSOC and 

HULIS in summer could not be evaluated by using the levoglucosan 

biomarker in this case.   
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In order to evaluate the effect of biomass burning activity during the 

study period, we compiled the fire maps obtained from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) fire location data provided 

by NASA’s Fire Information for Resource Management System (FIRMS) in 

combination with the air mass back trajectory model provided by National 

Oceanic and Atmospheric Administration (NOAA) Air Resources 

Laboratory (Fig. 3–9). Such evidence of the biomass burning effect in this 

region can be found by the fire maps combined with the air mass back 

trajectory model (Fig. 3–9). The higher occurrences of fire spots correspond 

to the active agricultural burning practices in this region (Fig. 3–9). 

According to Fig. 3–9, the burning practices mostly occurred during spring 

and summer in the East Asia continents (Fig. 3–9). However, no significant 

influence of open burning activity was observed during winter (Fig. 3–9). 

These results suggest that the distinctive biomass burning was not directly 

linked to the seasonal variations in BrC (HULIS) and WSOC concentrations 

in this region.  

 

On the other hand, non-crustal K, an indicator of biomass burning or 

fossil fuel combustion, did not show such seasonal variation (Gabriel et al., 

2002; Baduel et al., 2010) (Fig. 3–6). The relationship between the 

concentrations of HULIS and non-crustal K was also insignificant (r2 = 0.3; 
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p < 0.05) (Fig. 3–7). In addition, the ratio of K to V (K/V) is often used to 

trace V-purified fossil fuels, since V in fossil fuel is mostly removed during 

the refining processes (Yan et al., 2012). The possible source of non-crustal 

V is use of raw materials such as crude oil and coal (Tsukuda et al., 2005; 

Yan and Kim, 2012). However, the correlation between HULIS and non-

crustal V was also insignificant in this region (r2 = 0.04; p < 0.05) (Fig. 3–7), 

with K/V ratios in the range of 17–673 (average = 124±154). This result is 

consistent with the previous study in precipitation that the use of V-purified 

fossil fuel was insignificant in this region (Yan et al., 2012). Also, no 

significant correlations were found between the HULIS versus Ca2+ (r2 = 

0.1; p < 0.05), NOX (r2 = 0.1; p > 0.05), SO4
2- (r2 = 0.02; p < 0.05), and sea-

spray (r2 = 0.02; p > 0.05) (Fig. 3–7). This indicates that the seasonal 

variations in BrC and HULIS concentrations were not influenced by crustal 

minerals, sea salts, and fossil fuels. All these tracers suggest that the summer 

decreases in BrC and WSOC concentrations were not associated with the 

changes in source inputs in this region.  

 

The HULIS concentration showed a significant negative correlation (r2 

= 0.5; p < 0.05) with the UV radiation (Fig. 3–7). The HULIS concentration 

was greatly reduced during the warm seasons (Jun–Sep) when the solar UV 

radiation and the temperature were annual maximum (Fig. 3–6). Many 

previous studies have found that photochemical degradation is an important 



 

 55 

process of the efficient removal or alteration of photo-resistivity and 

compositions of chromophoric dissolved organic matter (CDOM) in 

rainwaters and aerosols (Kieber et al., 2006; Mladenov et al., 2009; Forrister 

et al., 2015; Dasari et al., 2019; Healy et al., 2019). Significant seasonal 

changes in ratios of the BrC to WSOC concentration, although the BrC and 

WSOC concentrations showed similar seasonal variations, also suggest that 

BrC is more effectively removed by the UV radiation during the warm 

seasons (Fig. 3–6). These results were in good agreement with the following 

laboratory experiments.  

 

In order to quantify the UV-degradable BrC, the UV radiation 

experiments for short-term (12 h; 48 samples) and long-term (42 days; 2 

samples) were performed using the aerosol sample filters. Here, HULIS 

(water-soluble BrC) was measured instead of BrC to measure the WSOC 

concentration together with the HULIS concentration for the small portion 

of filter sample. After the 12 h of UV irradiation, the HULIS concentrations 

in the winter samples (characterized by high HULIS concentrations, N=35) 

were greatly reduced by ~13% (Fig. 3–10). Similar decreases were observed 

for the WSOC concentrations for the winter samples (Fig. 3–10). However, 

negligible changes (<2%) were observed for the summer samples 

(characterized by low HULIS concentrations, N=13) (Fig. 3–10). These 

results indicate that the summer samples might consist largely of a photo-
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refractory WSOC pool owing to the high UV irradiation, while the winter 

sample consisted largely of a photo-labile WSOC pool.   

 

The light-absorbing property of HULIS with the UV radiation 

experiment also showed a similar result with that of fluorescence property 

of HULIS (Fig. 3–11). The absorption coefficient of the summer sample was 

not changed after the UV irradiation, while that of the winter sample 

exhibited an approximately twofold change (Fig. 3–11). The photochemical 

degradation of HULIS was more considerably effective at shorter 

wavelengths (S275–295), while no significant change was observed at longer 

wavelengths (S350–400), as expected from the previous founding that the 

absorption losses are higher in shorter wavelengths than the longer 

wavelengths (Del Vecchio and Blough, 2002). In order to look at the 

changes in light absorption property of HULIS, the spectral slope ratios (SR), 

ratio of shorter wavelength (S275–295) to longer wavelength (S350–400), were 

compared for the summer and winter aerosol samples (Fig. 3–11). In 

general, the SR value increases on irradiation (Del Vecchio and Blough, 

2002; Helms et al., 2008). The SR values of non-irradiated samples were 

about 1.1 for the winter sample and 1.4 for the summer sample, and the 

irradiated samples were 1.4 for both winter and summer samples (Fig. 3–

11). The SR values of non-irradiated and irradiated samples collected in 

summer showed no measureable changes during the UV irradiation 
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experiment (Fig. 3–11). If the fresh HULIS input is constant throughout the 

year, the SR values should be constant throughout the season. However, SR 

values of non-irradiated samples were 1.1 for the winter sample and 1.4 for 

the summer sample (Fig. 3–11), while the SR value of the non-irradiated 

summer sample was similar to that of the irradiated winter sample (1.4) 

(Fig. 3–11). Thus, this result indicates that the lower summer BrC 

concentration was highly associated to the photochemical degradation rather 

than to the reduced source inputs.  
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Figure 3.7 Temporal variations in (a) WSOC concentration, (b) fluorescence 

intensity of BrC, (c) ratio of BrC to WSOC, (d) δ13CWSOC values, (e) 

levoglucosan, (f) Ca2+, (g) SO4
2-, (h) NOX, (i) non-crustal K, (j) non-crustal 

V, (k) sea-spray concentrations, (l) UV radiation rate, and temperature from 

March 2015 to January 2016 in Seoul, Korea.  
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Figure 3.8 Correlations of the concentrations of (a) WSOC concentration, 

(b) WSOC versus HULIS, (c) HULIS versus levoglucosan, (d) HULIS 

versus non-crustal K, (e) HULIS versus non-crustal V, (f) HULIS versus 

Ca2+, (g) HULIS versus NOX (closed circle; r2=0.1, p>0.05) and SO4
2- (open 

circle; r2=0.02, p<0.05), (h) HULIS versus sea-spray, (i) HULIS versus UV 

radiation rate. The dashed lines represent the regression line.  
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Figure 3.9 Changes of HULIS and levoglucosan concentrations for four 

different samples during the UV radiation (7-day) experiment.  
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Figure 3.10 Fire maps obtained by using the MODIS fire location data 

provided by NASA’s FIRMS combined with the air mass back trajectories 

around the study site from March 2015 to January 2016.  
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Figure 3.11 Correlations of the (a) HULIS versus UV-degradable HULIS 

and the (b) ratio of HULIS to WSOC versus UV-degradable HULIS in 

different seasons: spring (green), summer (red), fall (blue), and winter 

(brown). The dashed lines represent the regression lines.  
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Figure 3.12 Absorption coefficients of the aerosol samples collected in 

winter (Dec/15) (blue) and summer (Aug/15) (red). The solid lines represent 

the initial values for the non-irradiated samples, and the dashed lines 

represent the final values for the irradiated samples.  
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4. Sources of DOC in coastal ocean 
 

4.1 Study site and sampling   
 

Sihwa Lake (126.6 °E; 37.3 °N) is located on the western coast of South 

Korea, with an area of 57 km2 and average depth of 3.2 m (maximum depth 

= 18 m). This lake was originally constructed as a land reclamation project 

planned by the government to provide agricultural land and water for the 

nearby metropolitan area during the 1980s and 1990s (Bae et al., 2010) (Fig. 

4–1). Freshwater runs through the six small streams into the lake and four 

waterways connect the lake to the Banwol industrial complex (Fig. 4–1). 

Since the lake experienced serious deterioration of water quality owing to 

the wastewater discharge from the industrial complexes under the limited 

water circulation, the sluice gates were constructed and opened twice a day 

for the water exchange between the lake and the Yellow Sea since 2012. The 

dyke is currently used as a tidal power plant (Lee et al., 2017) (Fig. 4–1). 

The total volume of the Sihwa Lake water is ~3.3×108 m3. The discharge 

rate is approximately 3.4×108 m3 y-1, enough to replace the entire reservoir 

in a year (Lee et al., 2003; Lee et al., 2014).     

 

Water samples for the entire water column were collected onboard a 

boat (~1 ton) in two different seasons in March 2017 and September 2018. 

In 2018, only surface water samples were collected at shallow stations 
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(station number 1–6) since the water level of the reservoir was lower than in 

2017, and the full depth sampling was conducted at stations 12–14. In order 

to check the industrial wastewater effect from the Banwol industrial 

complex, an additional sampling was conducted in station B4 in 2018 only 

(Fig. 4–1). The temperature and salinity were measured using a 

conductivity-temperature-depth (CTD) instrument (Ocean Seven 304, 

INDONAUT Srl). 

 

4.2 Distributions of DOM in Sihwa Lake  

The PARAFAC model characterized total four different fluorescent 

components (one marine humic-like, one protein-like, and two terrestrial 

humic-like components) (Fig. 4–2). The spectral characteristics of 

component 1 (FDOMH; Ex/Em = 342/427 nm) and component 3 (FDOMH2; 

Ex/Em = 381/493 nm) are associated with the terrestrial humic-like 

component originating from terrestrial environment (Coble 2007). 

Component 2 (FDOMM; Ex/Em = 297/388 nm) is associated with the 

marine humic-like component originating from microbial remineralization 

(Coble, 2007; Jørgensen et al., 2011). Component 4 (FDOMP; Ex/Em = 

282/322 nm) is known as a protein-like (tryptophan-like) component, which 

originates mainly from biological production (Coble, 2007). In this study, 

FDOMC was used as a representative of humic FDOM (FDOMH) since all 

humic-like components showed a similar pattern. 
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The spectral shapes of fluorescent components were compared with 

other models from the OpenFluor database (https://openfluor.lablicate.com), 

which is an online database of fluorescence spectra published in earlier 

studies (Murphy et al., 2014). All components (C1–C4) were matched with 

the major components from 36, 39, 62, and 19 studies, respectively, with 

similarity scores of 95%.  

 

In 2017, the vertical distribution of salinity indicated a well-mixed 

water column (salinity = 28–32) (Fig. 4–3). Similarly, DO and NH4
+ 

concentrations were vertically uniform (Fig. 4–3). The concentrations of DO 

and NH4
+ were in the ranges of 7–13 mg L-1 (average = 10.1±2.4 mg L-1) 

and 0.1–25 µM (average = 8.7±8.1 µM), respectively. However, 

horizontally, the DO concentration gradually increased with increasing 

salinity from the innermost station to the outermost station, while the NH4
+ 

concentration decreased with increasing salinity (Fig. 4–3). The NH4
+ 

concentration showed the lowest values (< 1 µM) between station 10 and 

station 13 (Fig. 4–3).   

 

In 2017, the vertical distribution of DOC concentrations was quite 

different from those of salinity and DO concentrations observed in 2018 

(Fig. 4–3). The DOC concentrations were in the range of 97–349 µM 
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(average = 184±76 µM). The highest concentrations of DOC were observed 

in the surface waters at stations 3, 4, 5, 6, 7, 8, 9 and the bottom waters of 

stations 3, 4, and 5 (Fig. 4–3). The DOC-δ13C values ranged from –19.2‰ 

to –27.8‰ (average = –21.8±1.9‰) (Fig. 4–3). The most depleted DOC-

δ13C values were found in the surface waters at stations 5, 6, 7, 9, and 10 (–

22.6‰ to –27.8‰) (Fig. 4–3). The concentration of FDOMC (terrestrial 

humic-like component 1), FDOMA (terrestrial humic-like component 2), 

FDOMM (marine humic-like component), and FDOMP (protein-like 

component) were in the ranges of 1.6–4.1 RU (average = 2.3±0.8 RU), 0.6–

1.8 RU (average = 1.1±0.3 RU), 1.0–2.4 RU (average = 1.5±0.5 RU), and 

1.6–6.1 RU (average = 2.8±1.0 RU), respectively (Fig. 4–3). The 

concentrations of all FDOM components were generally higher in the 

upstream stations and decreased with salinity (Fig. 4–3). The FDOMP 

concentration was slightly higher in the bottom water at station 10 (Fig. 4–

3). The SR values, a proxy for DOM molecular weight, were in the range of 

0.70–1.76 (average = 1.21±0.20). Higher SR values were observed in the 

surface waters at stations 6, 8, 9, and 10 in 2017 (Fig. 4–3).  

 

In 2018, salinity was in a larger range (salinity = 18–30) compared with 

that of 2017 (Fig. 4–4). Especially, low salinity waters (salinity = 18–27) 

were observed from the innermost station to station 9 (Fig. 4–4). The 

concentrations of DO and NH4
+ were in the ranges of 6–11 mg L-1 (average 
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= 8.2±1.6 mg L-1) and 0.4–25 µM (average = 13.1±7.9 µM), respectively 

(Fig. 4–4). The relatively low salinity and DO concentrations were likely 

associated with the increased freshwater inputs (Fig. 4–4). The NH4
+ 

concentrations in the outermost stations were lower than the detection limit 

(Fig. 4–4). While the sharp gradients of DO and NH4
+ concentrations were 

observed at station 9 in 2017, the gradients occurred near station 14 in 2018, 

associated with the expansion of low-salinity water further to the outer 

stations (Fig. 4–4).  

 

In 2018, the concentrations of DOC were in the range of 101–195 µM 

(average = 130±32 µM). The DOC concentrations gradually decreased with 

increasing salinity (Fig. 4–4). The DOC-δ13C values ranged from –19.1‰ to 

–21.5‰ (average = –20.0±0.6‰) (Fig. 4–4). The concentrations of FDOMC, 

FDOMA, FDOMM, and FDOMP were in the ranges of 1.4–5.1 RU (average 

= 1.9±0.9 RU), 1.3–4.1 RU (average = 1.8±0.7 RU), 1.4–4.9 RU (average = 

2.1±0.9 RU), and 1.1–2.5 RU (average = 1.6±0.4 RU), respectively (Fig. 4–

4). All humic-like FDOM concentrations were higher in 2018 than in 2017 

(Fig. 4–4). The FDOMP concentrations were generally higher in the surface 

water and showed a slight increase at station 12 where the salinity is slightly 

lower (Fig. 4–4). The SR values were in the range of 0.72–1.08 (average = 

0.87±0.10) (Fig. 4–4). The SR values were relatively constant at all sampling 

stations (Fig. 4–4).  
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4.3 Origin of excess DOM   

In both sampling periods, low-salinity waters showed higher DOC, 

lower DO, higher NH4
+, and higher FDOMH concentrations (Figs. 4–3 and 

4–4). As such, the DOC and FDOMH concentrations exhibited significant 

negative correlations against salinity (Fig. 4–5), indicating low-salinity 

associated inputs of both DOM components. However, the patterns of DOC 

distributions were very different from those of FDOMH distributions (Figs. 

4–3 and 4–4), indicating decoupling of major sources for both DOM 

components.  

 

In both periods, the concentrations of FDOMH showed significant 

correlations against salinities and NH4
+ (Figs. 4–5 and 4–6), with two slopes 

against salinity and a single slope against NH4
+. This correlation trend 

suggests that the main source of FDOMH is dependent on the supply of 

NH4
+, rather than fresh water. In this lake, Kim and Kim (2018) 

hypothesized that FDOMH is produced by anaerobic decomposition of 

organic matter in bottom sediments in the freshwater-seawater mixing zone, 

based on good correlations among salinity, NH4
+, and FDOMH 

concentrations as well as low Eh values in higher FDOMH concentration 

samples, although possible terrestrial inputs could not be excluded. Such 

correlations could be observed if terrestrial fresh water, which has higher 

FDOMH and lower NH4
+, passes through the salinity mixing zone where 
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extremely higher amounts of NH4
+ and lower FDOMH are introduced from 

the bottom sediments. However, our DOC-δ13C values (–20.0±0.2‰) in low 

salinity (<28) waters exclude possible significant contributions of terrestrial 

sources, indicating effective degradation of terrestrial sources before 

reached the mixing zone. Thus, the large inputs (i.e., seepage) of FDOMH, 

together with NH4
+ could happen from marine sediments, without 

significant decreases in DO, as the shore water runs a wide range of tidal 

flat sediments over a tidal cycle. In this case, depending on salinity ranges 

of overlying water column, different slopes of FDOMH against salinities 

could be observed for different seasons as shown in this study. In addition, 

anthropogenic source was also insignificant since there was no anomalous 

increases in DOC and FDOMH concentrations in 2018 at station B4 where 

the waterway connects to the Banwol industrial complex (Fig. 4–4).  

 

In 2018, the distribution pattern of DOC concentrations was similar 

to that of FDOMH (Fig. 4–4). In this period, fresh water contribution was 

relatively larger compared to 2017, with the lowest salinity of 18. However, 

the DOC-δ13C values in all samples in this period ranged from –19.1‰ to –

21.5‰ (average = –20.0±0.6‰), falling within the range of marine 

phytoplankton values (–18‰ to –22‰) (Fig. 4–5c). The SR values were 

relatively low and constant (average = 0.86±0.1) at all stations in 2018, 

indicating no significant changes in input sources or effects of 
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photodegradation (Fig. 4–5d). Thus, we conclude that the main source of 

DOC in 2018 was mainly from marine sediments, together with FDOMH 

and NH4, as external terrestrial source of DOC was insignificant or 

effectively degraded on the tidal flat.  

 

In 2017, the sources of DOC were more complicated, showing 

significantly higher DOC concentrations and the excess DOC independent 

of salinity (Fig. 4–3). Here, the excess denotes the concentrations higher 

than the incoming seawater from the Yellow Sea (highest salinity and lowest 

DOC concentration) observed in 2018 (Fig. 4–5a). The excess DOC samples 

observed in 2017 were ~69% higher than the DOC values of incoming 

seawater (~110 µmol L-1) (Fig. 4–5a). Thus, the higher DOC samples 

observed in 2017 were separated into two major groups (Group 1 and Group 

2) based on their DOC concentrations, DOC-δ13C values, and salinities (Fig. 

4–3). Group 1 (n=3) includes excess DOC samples observed in stations 12 

and 13 (Fig. 4–3). Group 2 (n=11) includes excess DOC samples observed 

in the surface waters of stations 4, 5, 6, 7, 8, 9, and 10, and the bottom 

waters of stations 3, 4, 5, and 6 (Fig. 4–3).  

 

For Group 1 samples, the DOC concentrations ranged from 144 to 

223 µmol L-1 (average = 175±42 µmol L-1) (Fig. 4–3 and 4–5c). The DOC-

δ13C values ranged from –19.1‰ to –22.1‰ (average = –20.6±1.5‰), 



 

 72 

which are close to the δ13C values of marine organisms (–18‰ to –22‰) 

(Gearing, 1988) (Fig. 4–3 and 4–5c). The SR values (average = 1.07±0.03) in 

this group showed relatively lower and constant values than that of Group 2 

(Fig. 4–3 and 4–5d). The higher DOC concentrations observed in this group 

seem to be from in-situ biological production. Although high DOC was 

observed in the bottom waters near the sediments, the FDOMH 

concentrations showed no concurrent increases, indicating benthic inputs 

was negligible in this region. Thus, the main source of DOC in Group 1 

seems to be from in-situ biological production.    

 

For Group 2 samples, the DOC concentrations ranged from 103 to 

330 µmol L-1 (average = 213±69 µmol L-1) (Fig. 4–3 and 4–5a). The DOC-

δ13C values ranged from –21.5‰ to –27.8‰, which include the signature of 

terrestrial C3 plants (–23‰ to –32‰) (Gearing, 1988) (Fig. 4–3 and 4–5c). 

For this group, FDOMH concentrations showed no significant increases 

relative to NH4
+ or salinity, indicating this excess DOC concentration was 

not associated with the common FDOMH sources observed in both sampling 

periods (Fig. 4–3, 4–4, 4–5a). However, SR values (average = 1.26±0.2) 

were higher than the other stations likely due to the influence of low-

molecular weight DOM (Helms et al., 2008) (Fig. 4–5d). Thus, our results 

suggest that the excess DOC occurring in high-salinity waters in Group 2, 

which are characterized with non-fluorescent terrestrial sources, were 
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introduced by direct land-seawater interaction through the tidal inundation 

of seawater on the reclaimed land as this study site is constructed on the 

reclaimed land (Lee et al., 2020). This may happen if terrestrial DOM 

(based on DOC-δ13C values) went through intense light exposure 

(producing non-fluorescent DOM) and/or bacterial degradation on land.   

 

If only salinity and FDOMH were used to trace the source of the 

excess DOC occurring in Group 2, in-situ biological production of DOC can 

be simply regarded as a main source since there were no significant changes 

in these parameters. As such, terrestrial source could be regarded as a main 

source of the excess DOC occurring in low-salinity waters since there were 

good correlations between salinities and DOC or FDOMH. Therefore, our 

study suggests that the combination of stable carbon isotope, FDOMH, and 

SR values provides a critical tool to decipher the sources and characteristics 

of DOM in coastal waters where various DOM sources are present.  

 

The different sources and distributions of DOM were determined in 

different seasons using various tracers in the Sihwa Lake, South Korea. Our 

results revealed that the high DOC concentrations occurring in low-salinity 

water, which are previously believed to be from terrestrial sources, went 

from marine sediment sources based on DOC-δ13C values (–21.5‰ to –

19.1‰) together with significant correlations among DOC, FDOMH, and 
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NH4
+ concentrations. The high DOC concentrations occurring in high-

salinity waters, which are generally believed to be from marine sources, 

were found to be from non-fluorescent, low-molecular-weight, terrestrial 

DOM sources from the reclaimed land area based on depleted DOC-δ13C 

values (–21.5‰ to –27.8‰) and higher SR values (1.26±0.2), without 

concurrent increases in FDOMH and NH4
+ concentrations. Our results 

demonstrate possibility that the combination of these multiple DOM tracers 

can be used successfully in other coastal waters where the sources and 

characteristics of DOM are complicated.  
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Figure 4.1 Geographical map of sampling stations in Sihwa Lake, South 

Korea.  
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Figure 4.2 Fluorescence EEM spectra and excitation-emission loadings of 

terrestrial humic-like (C1 and C3), marine humic-like (C2), and protein-like 

(tryptophan; C3) components identified from the PAFARAC model in 

Sihwa Lake.  
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Figure 4.3 Vertical distributions of salinity, DO, NH4
+, DOC concentrations, 

DOC-δ13C values, FDOMC, FDOMA, FDOMM, FDOMP, and SR values in 

Sihwa Lake in March 2017. The dashed blocks represent stations belonging 

to Group 1 and 2.  
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Figure 4.4 Vertical distributions of salinity, DO, NH4
+, DOC concentrations, 

DOC-δ13C values, FDOMC, FDOMA, FDOMM, FDOMP, and SR values in 

Sihwa Lake in September 2018.  

 
 
 
 
 
 
 
 
 

13

D
ep

th
 [m

]

Section distance [km]
0 5 10 15

September 2018

H

MFDOM   (RU)

S

M

FDOM   (RU)C 

FDOM  (RU)A

FDOM   (RU)P

14 12 13-21    3    5 7    B4 9 

P

R

14 12 13-21    3    5 7    B4 9 

Section distance [km]
0 5 10 15

Salinity

DO (mg L  )

DOC (μmol L  )

4+NH    (μmol L  )

32

DOC-δ  C (‰)13

–1

–1

–1



 

 79 

 

Figure 4.5 Correlations of the salinity versus (a) DOC concentrations, (b) 

FDOMH concentrations, (c) DOC-δ13C values, and (d) SR values in Sihwa 

Lake in March 2017 (red square) and September 2018 (blue circle). The 

dashed lines represent the regression lines. 
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Figure 4.6 Correlations of the NH4

+ concentrations versus (a) DOC 

concentrations and (b) FDOMH concentrations in Sihwa Lake in March 

2017 (red square) and September 2018 (blue circle). The dashed lines 

represent the regression lines. 
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Figure 4.7 Schematic diagram of DOC cycling in Sihwa Lake.  
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5. Sources and fluxes of DOC in the continental shelf 
 

5.1 Study site and sampling  
 

This study is held in the East China Sea (area = 1×106 km2) located in 

the northwestern Pacific continental shelf. In this region, the Yellow Sea 

water (YSW), the Kuroshio Current water (KCW), and the Changjiang 

diluted water (CDW) are present with different seasonal contributions (Kim 

et al., 2018; Wang et al., 2000) (Fig. 5–1). In general, the YSW is originates 

from KCW and CDW, but its biogeochemical characteristics are 

significantly altered during its residence time (~5 years) in the Yellow Sea 

(Nozaki et al., 1991; Kim et al., 2005). In this region, the Changjiang River 

plays a dominant role in supplying about 80% of freshwater and delivering 

terrestrial organic matter to the YSW and ECS (Ichikawa and Beardsley, 

2002; Wang et al., 2012; Bauer et al., 2013). In summer, the Changjiang 

River flows northward upon entering the Yellow Sea and then turns 

clockwise by the current system, while in winter the river flows 

southeastward along the Chinese coast (Ichikawa and Beardsley, 2002; 

Chen, 2009; Lie and Cho, 2016) (Fig. 5–1). Thus, sampling campaign was 

designed to include the influence of CDW in summer and to exclude the 

influence of CDW in winter and spring (Ichikawa and Beardsley, 2002; 

Chen, 2009; Kim et al., 2018; Lie and Cho, 2016). 

 

In this region, five major water masses were distinguished based on the 
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temperature versus salinity (T-S) distributions: CDW, Kuroshio surface 

water (KSW), Kuroshio tropical water (KTW), Yellow Sea bottom water 

(YSBW), and YSW (Hur et al., 1999; Chen, 2009; Kim et al., 2018) (Fig. 5–

2). In addition, the KTW flows underneath the KSW, which are 

differentiated based on their differences in temperature and salinity (Chen, 

2009). In this study, the KCW includes both KSW and KTW. In summer, the 

water masses mainly consisted of CDW and KCW, while in winter and 

spring, salinity varied depending on the different contributions of the YSW, 

YSBW, and KTW (Fig. 5–2). The CDW characterized with high 

temperature and low salinity water was mainly observed in the central part 

of the Yellow Sea (Fig. 5–3). However, the CDW was observed only in 

summer 2012 (Fig. 5–2 and 5–3).   

 

Water sampling was conducted four times from August to September 

2012 for the summer sampling on R/Vs Tamgu 3 and Tamgu 8 of the 

National Fisheries Research and Development Institute (NRFDI) of Korea 

and on Badaro of a Korea Coast Guard vessel. Further sampling was 

conducted in February 2017 for the winter sampling and April 2018 for the 

spring sampling on R/V Onnuri of the Korea Institute of Ocean Science and 

Technology (KIOST). Samples were collected using 10 L Niskin bottles 

connected on a rosette system equipped with a conductivity temperature and 

depth (CTD) probe. In summer 2012, sampling was conducted for the 
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surface layers only at most stations except for four stations where the water 

column samples were collected. In winter 2017 and spring 2018, sampling 

was conducted for various depths at all stations.   

 
 

5.2 Distributions of DOC and FDOMH in the ECS  
 

The concentrations of DOC were ranged from 63 to 134 µM (average = 

94±14 µM) in summer, 51 to 108 µM (average = 62±10 µM) in winter, and 

55 to 143 µM (average = 69±11 µM) in spring. Relatively high DOC 

concentrations were mainly found near the CDW in summer 2012 (Fig. 5–

4). Spatially, DOC concentration in the surface water showed the highest 

values near the central Yellow Sea region and gradually decreased toward 

the ECS and the southern sea of Korea in all sampling periods (Fig. 5–3). In 

winter and spring, the DOC concentration was generally higher in YSW 

than in KTW (Fig. 5–3).  

 

The FDOMH concentrations were ranged from 0.5 to 2.7 RU 

(average=1.3±0.4 RU) in summer, 0.2 to 2.3 RU (average=0.8±0.4 RU) in 

winter, and 0.1 to 1.2 (average=0.5±0.3 RU) in spring (Fig. 5–2 and 5–3). 

The FDOMH in the surface water exhibited a similar spatial distribution 

with that of DOC in this region (Fig. 5–3). However, high FDOMH values, 

decoupled from DOC concentration, were also observed on sampling 

stations in line C in winter and spring (Fig. 5–3).  
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The 228Ra activity concentrations were ranged from 10 to 58 dpm 100 

L-1 (average = 29±10 dpm 100 L-1) in summer, 7 to 58 dpm 100 L-1 (average 

= 29±17 dpm 100 L-1) in winter, and 4 to 58 dpm 100 L-1 (average = 23±17 

dpm 100 L-1) in spring (Fig. 5–2). The 228Ra activity showed the highest 

values in YSBW and the lowest values in KTW (Fig. 5–2). However, the 

228Ra activity concentrations higher than 40 dpm 100 L-1 were also observed 

in CDW in summer 2012 due to the riverine input of 228Ra (Fig. 5–2). 

 

5.3 Source of DOC in the YSW  
 

For all sampling periods, both DOC and FDOMH concentrations 

showed significant correlations with salinity, indicating predominant 

influence of riverine source in this region (Figs. 5–4a and 5–4b). Especially 

in summer, DOC and FDOMH variations can be explained by the mixing 

between CDW and KSW (Fig. 5–2). However, significant deviation toward 

higher values over the mixing line in DOC concentrations was observed for 

some stations in the Yellow Sea water (Fig. 5–4a). In winter and spring, 

significant deviating increases over the two end-member mixing line 

between CDW and KTW were also observed, indicating additional DOC 

source in the YSW (Fig. 5–4a). These deviations in winter and spring were 

observed when the influence of CDW on the central Yellow Sea region was 

negligible based on the T-S diagram (Fig. 5–2).  
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In order to determine the main factor controlling the distributions of 

DOC and FDOMH in winter and spring, DOC and FDOMH concentrations 

were plotted against the 228Ra activity concentration, which is generally 

enriched in the YSW with about 5 years of residence time (Nozaki et al., 

1989). DOC and FDOMH showed good correlations with 228Ra activities, 

indicating that their source is associated with the water ages (~5 years) 

(Figs. 5–4c and 5–4d). The FDOMH and 228Ra data in August 2012 

(summer) and February 2017 (winter) were obtained from Lee et al. (2014) 

and Kim et al. (2018). Kim et al. (2018) showed that the FDOMH flux was 

found to be produced from anaerobic production in bottom sediments 

accounting for about 30–40% of the riverine source in the ECS continental 

shelf. In the Yellow Sea, 228Ra activity concentration increases toward the 

central area up to 73 dpm 100 L-1, which accounts for 9–66 times that in the 

KCW (Nozaki et al., 1991; Kim et al., 2005; Kawakami and Kusakabe, 

2008; Lee et al., 2014). Even rivers are known to be a major source of 228Ra 

in the oceans and there should be considerable inputs of 228Ra from the 

Changjiang River, only a small fraction of it goes into the Yellow Sea, 

which is <10% of the benthic inputs (Lee et al., 2014; Kim et al., 2015b).  

 

5.4 Water mixing ratios in the ECS continental shelf  
 

Mixing ratio among the major water masses, CDW, KCW, and the YSW, 
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was estimated based on the 228Ra–salinity relationship (Lee et al., 2014) 

(Fig. 5–5). The end-member values of 228Ra and salinity were assigned as 

7.6, 36.3, and 78.7 dpm 100 L-1 and 34.7, 27.8, and 31.5 for KCW, CDW, 

and the YSW, respectively, based on this study and the previous literature 

data (Nozaki et al., 1991; Gu et al., 2012; Lee et al., 2014). The data 

observed in this study and previous literature data were bracketed by three 

end-member values with symbols (Fig. 5–5). In summer, the major water 

masses were mainly composed of CDW and KCW, while winter and spring 

values were clearly on the mixing line between the YSW and KCW and the 

influence of CDW is negligible (Fig. 5–5). Based on this diagram (Fig. 5–5), 

the proportion of the YSW in the mixture of the YSW and KCW, f, was 

calculated for the winter and spring data. When the two end-member mixing 

model was applied, f value would be 1 if the water is composed of the YSW 

only.  

 

The relative proportions of the YSW in the mixture of the YSW and 

KCW, f value, showed a good correlation with DOC concentrations (Fig. 5–

6a). In Figure 6a, the outlier (f, DOC: 0.71, 143 µM) is excluded and 

enclosed in brackets in order to avoid large uncertainties. Based on the 

relationship between f value and DOC concentrations, the DOC 

concentration extrapolated to f=1, the end-member value of the YSW, was 

estimated to be 101±12 µM (the uncertainty was estimated with 95% 
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confidence interval of the linear regression; Fig. 5–6a). This end-member 

value is higher than the DOC value of KCW, which is the measured value 

(55 µM), by ~45±12 µM (Fig. 5–6a).  

 

The f value also exhibited good correlations with FDOMH and DOC-

Δ14C (Figs. 5–6b and 5–6c). In contrast, DOC-δ13C values remained 

constant (average = –21.1±1.1‰) regardless of the f values (Fig. 5–6d). 

Previous study has shown that the average δ13DOC value in the Changjiang 

River was reported to be –30.3±1.2‰ (Wang et al., 2012). Assuming 

conservative mixing between the marine end-member value of –20‰ 

(Gearing, 1988) and the Changjiang River value of –30‰, the observed 

DOC-δ13C values can be obtained by the inclusion of 0–20% of riverine 

DOC. However, the observed δ13DOC values between –18.8‰ and –22.8‰ 

(average = –21.1±1.1‰; Fig. 5–6d), with no correlation with f values 

indicating that there is only small contribution of riverine DOC to the YSW 

DOC pool at most. However, the average δ13C value in the surface 

sediments of the central Yellow Sea is reported to be –22.2±0.3‰ (Bao et 

al., 2016). Therefore, DOC from surface sediments can be the potential 

source of the additional DOC produced in this region. According to Kim et 

al. (2018), FDOMH is produced mainly from marine sediment and enriched 

over the water residence time in the ECS continental shelf and thus the 

positive correlation observed between the f value and FDOMH also supports 
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the notion of DOC flux from the surface sediments in the continental shelf.  

 

Potential sources of the additional DOC produced in the YSW were 

further investigated by DOC-Δ14C measurements. The average DOC-Δ14C 

values were –271±18‰ (2500±200 yr; n=9) along the sampling station in 

Line A where KCW was dominant (Fig. 5–6c). The average DOC-Δ14C 

values were slightly higher, –222±38‰ (2000±400 yr; n=14), along the 

sampling station in Line C where the YSW was dominant (Fig. 5–6c). These 

values fit within the range previously reported (–175‰ to –300‰) in the 

surface layer (<200 m) of the north central Pacific Ocean (Druffel and 

Griffin, 2015). The end-member value of DOC-Δ14C in the YSW was 

estimated to be –170±50‰ by extrapolation (when f=1) (Fig. 5–6c). Then, 

the Δ14C value of the additional DOC to the total DOC pool in the YSW is 

estimated as –49‰ based on a simple mass balance calculation. Also, 

previous studies have found that the Δ14C values of the surface sediments 

were relatively high (–174‰ to –280‰) in the central Yellow Sea compared 

with the outer shelf of the ECS (–274‰ to –682‰) (Bao et al., 2016). Thus, 

the additional DOC found in the YSW could be mainly produced from the 

combination of recently fixed organic matter and aged organic matter in the 

surface sediments.  

 

This result is consistent with previous suggestions that the benthic DOC 
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fluxes or cross-shelf DOC exports from the continental margins as an 

important source of DOC to the oceans (Bauer and Druffel, 1998; Burdige 

et al., 1999; Hung et al., 2003; Wang et al., 2004; Fichot et al., 2014). 

Although previous studies have investigated that the cross-shelf export of 

terrestrial DOC is significant in ocean margins (Hung et al., 2003; Wang et 

al., 2004; Fichot et al., 2014), those estimates are highly influenced by river 

discharge and riverine materials. Thus, our study seems to be the first report 

on the production of additional DOC in the continental shelf with minor 

influence of river waters using seawater data. 

 

5.5 Estimation of the shelf-borne DOC flux   
 

The shelf-borne DOC fluxes in the YSW to the ECS was estimated 

using the following equation:  

Flux = [(DOCYSW – DOCKCW) × VYSW]/ τYSW                (5) 

where DOCYSW is the end-member values of DOC in the YSW and 

DOCKCW is the end-member values of DOC in the KCW. The end-member 

value of DOCYSW was obtained by extrapolation of the correlation between f 

values and DOC concentrations (Fig. 5–6a), while the DOCKCW is the 

average of observed values at stations in line A, which is located on the 

main path of the Tsushima Warm Current, a branch of the Kuroshio Current. 

VYSW is the total water volume of the YSW (unit: km3) (4×105 km2 × 50 m); 

τ YSW is the water residence time in the Yellow Sea. Using this equation, the 
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annual flux of shelf-borne DOC from the Yellow Sea to the ECS was 

estimated to be 2.2±0.6 Tg C yr-1, which is at least comparable to the DOC 

flux from the Changjiang River discharge (1.6 Tg C yr-1) (Wang et al., 

2012). The uncertainty includes the scattering in the relationship between f 

values and DOC concentrations, although there are more uncertainties 

occurred from the water residence time, water volume, and spatiotemporal 

variations, which is hard to be considered quantitatively in this simple 

calculation. Nevertheless, we can only recognize the importance of 

continental shelf sources of DOC in the ocean from this rough estimation. 

   

The Changjiang River appears to be the main source of DOC and 

FDOMH over the northwestern Pacific continental shelf in summer when the 

riverine discharge is dominant in this region. However, in winter and spring, 

there was an additional supply of DOC in the YSW. The source of the 

additional DOC is from the sedimentary organic matter based on the 

analyses of carbon isotope ratios and FDOMH. We estimated that 

approximately 2.2±0.6 Tg C is additionally exported from the Yellow Sea 

continental shelf to the ECS per year, albeit with a large uncertainty. This 

shelf-borne DOC flux from the YSW forms another important source of 

DOC in the northwestern Pacific margin. Since the area of the continental 

shelf in the study region is about 0.25% of the world ocean (Tsunogai et al., 

1999), while the Changjiang River water discharge (900 km3 yr-1) (Yang et 
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al., 2015) is ~2.4% of the global river discharge (37,288±662 km3 yr-1) (Dai 

et al., 2012), if our results are scaled linearly up to the global scale, shelf-

borne DOC flux may rival the terrestrial DOC inputs. This aspect needs to 

be further studied in other important shelves in global oceans. Furthermore, 

the significant impacts of shelf-borne DOC flux should be considered in the 

marine carbon flux and cycle.  
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Figure 5.1 Maps of sampling stations, bottom topography, and schematic 

patterns of surface currents on the northwestern Pacific continental shelf 

during the sampling periods.  
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Figure 5.2 T–S diagrams for summer 2012, winter 2017, and spring 2018 (a, 

d, g) DOC concentrations, (b, e, h) FDOMH, and (c, f, i) 228Ra activities are 

presented in different color of the symbols.  
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Figure 5.3 Contour figures of (a, d, g) salinity, (b, f, j) temperature, (c, g, k) 

DOC, (d, h, l) FDOMH in the surface water of the ECS continental shelf in 

summer 2012, winter 2017, and spring 2018. The contour plots were created 

using Ocean Data View software version 4. 7. 6.  
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Figure 5.4 Correlations of the (a) DOC concentrations versus salinity, (b) 

FDOMH versus salinity, (c) DOC concentrations versus activities of 228Ra, 

and (d) FDOMH versus activities of 228Ra in the continental shelf waters 

during the sampling periods. FDOMH and 228Ra data are from Kim et al. 

(2018) and Lee et al. (2014). Solid lines represent regression lines, while the 

dashed lines represent end-member mixing lines.  
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Figure 5.5 A diagram between the activities of 228Ra versus salinity.  
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Figure 5.6 Correlations between the mixing fraction, f (f=1 for Yellow Sea 

water), against concentrations of (a) DOC, (b) FDOMH, (c) DOC–Δ14C, and 

(d) DOC–δ13C values. Dashed lines represent end-member mixing lines.   
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6. Distributions, sources, and sink of DOM in the 
marginal sea 

 

6.1 Study site  
The East Sea (Japan Sea) is a semi-enclosed marginal sea located in 

the northwestern Pacific Ocean, surrounded by Korean, Japanese, and 

Russian territories, with a maximum depth of 3,500 m and an average depth 

of 1,700 m (Fig. 6–1). The exchange of water within the Pacific Ocean 

occurs only through the shallow straits (<100 m) as Tsushima Warm Water 

(TWW) enters the East Sea and exit to the Pacific Ocean through Tsugaru, 

Soya, and Tatar Straits (Talley et al., 2003) (Fig. 6–1). Thus, the surface 

water includes the warm water in the south, the cold water in the north, 

fronts, and many mesoscale eddies (Fig. 6–2). In the East Sea, the warm 

eddies are frequently present near the Ulleung Island, which are elliptical 

with a mean diameter of about 130 km (An et al., 1994; Kim et al., 2012). 

These anti-cyclonic eddies are generally developed from the East Korean 

Warm Current originated from a northward branch of the TWW (Shin et al., 

2005; Kim et al., 2012). The eddy core areas are often extended through the 

mixed layer and penetrate the pycnocline, enhancing the diapycnal transport 

in the upper layer (Zhong et al., 2017). Meanwhile, the deep water is formed 

by thermohaline circulation and deep convection and is constantly cold 

(<1°C) below 1,000 m (Kim and Kim, 1996).  
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In the East Sea, the Changjiang River is known to be the major source 

of humic-like FDOM in the surface water, and approximately 10% of the 

surface humic-like FDOM originates from the deep layer (Kim and Kim, 

2016). In the deep ocean, humic-like FDOM is mainly produced by the 

degradation of sinking particles (Nelson and Siegel, 2013; Kim and Kim, 

2016). The major removal mechanisms are photochemical oxidation by UV 

radiation and/or microbial degradation (Nelson and Siegel, 2013). In this 

study, we further investigated the distributions, sources, and sinks of FDOM 

in the East Sea, a miniature of the global ocean, to determine the major 

processes occurring in the major global oceans. 

 

 
6.2 Distributions of DOC and FDOM in the East Sea   
 

In the East Sea, the PARAFAC model characterized three fluorescent 

components: terrestrial humic-like FDOM (FDOMH; Ex/Em = 315/478 nm; 

C peak), protein-like peak (tryptophan-like; FDOMP; Ex/Em = 275/313 nm; 

T peak), and marine humic-like peak (FDOMM; Ex/Em = 300/370 nm; M 

peak), which are consistent to previous results (Kim and Kim, 2015) (Fig. 

6–3). The spectral characteristic of FDOMH is usually derived from the 

terrestrial sources and autochthonous processes, while the FDOMM is 

derived from the biological and microbial processes (Coble, 2007; Kim and 

Kim, 2015). The FDOMP is derived from the autochthonous processes, 

which originates mainly from biological production (Coble, 2007; Kim and 



 

 101 

Kim, 2015).  

 

In the upper ocean (0–200 m), TWW brings saline (>34.3) and 

warmer (>10°C) water into the southern part relative to the cold water mass 

in the northern part of the East Sea (Kim et al., 2004). During the sampling 

period, the southern part of the front was fully occupied by oceanic eddies, 

and the sampling stations in the southern part were highly affected by anti-

cyclonic eddies (An et al., 1994) (Fig. 6–2). The distributions of salinity and 

temperature showed a mixed layer from 0 to 50 m, and the surface water 

penetrated deeper to 150 m in the southern part, which was associated with 

convergent warm eddies (Fig. 6–2, 6–4).  

 

 In the mixed layer, the concentrations of DIN and DIP ranged from 0 

to 11 µM (average = 2±3 µM) and 0 to 0.7 µM (average = 0.2±0.2 µM), 

respectively, and the ratios of DIN to DIP were ~12±7, indicating the 

limitation of DIN in biological production (Kim and Kim, 2013) (Fig. 6–4). 

The concentrations of DSi in the mixed layer ranged from 0 to 16 µM 

(average = 4±3 µM) (Fig. 6–4). The lower concentrations of nutrients were 

observed down to 150 m for some stations (M6, M7, M8, st41, st40, M12, 

and M17), depending on the physical mixing conditions (Fig. 6–4). The 

concentrations of DOC in the mixed layer ranged from 51 to 79 µM 

(average = 69±6 µM), and they were relatively low (<60 µM) in the 
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northernmost stations (M16 and M17) (Fig. 6–4).  

 

 The concentrations of C peak and M peak ranged from 0.14 to 0.32 

RU (average = 0.23±0.04 RU) and 0.10 to 0.17 RU (average = 0.13±0.02 

RU), respectively, in the mixed layer. The concentrations of both peaks were 

relatively low, but the patterns were irregular throughout the entire 0–200 m 

layer (Fig. 6–4). The concentrations of T peak ranged from 0.0 to 0.12 RU 

(average = 0.01±0.02 RU). Notably, T peak occurred only in the mixed layer 

of the southern part of the East Sea (Fig. 6–4). 

 

The salinity and temperature below 200 m ranged from 33.9 to 34.2 

and 0.1 to 6.8°C in the entire ocean, respectively (Fig. 6–5). Almost uniform 

salinity (~34.1) and temperature (0.2±0.1°C) were observed below 800 m in 

the deep East Sea (Fig. 6–5), although the deep water mass is divided into 

East Sea Intermediate Water, Central Water, Deep Water, and Bottom Water 

by physical oceanographers (Kim and Kim, 1996; Kim et al., 2004).  

 

The concentrations of DOC below 200 m were in the range of 46–65 

µM (average = 57±4 µM) (Fig. 6–5 and 6–6). The higher concentrations of 

DOC (70±4 µM) in the surface water affected down to 1,000 m (~60 µM) at 

some stations (M4, M6, M7, M8, and M9) near the Ulleung Basin (Fig. 6–

5). The vertical distribution patterns and ranges of DOC concentrations 
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observed in this study were consistent with those of a previous study in this 

sea (Kim et al., 2015) (Fig. 6–5 and 6–6). The DOC concentrations in the 

deep East Sea (54±2 µM, >800 m) were higher than those in the deep 

Pacific Ocean (34–43 µM, 1000–5000 m) (Hansell and Carlson, 1998), but 

similar to those observed in the deep Arctic Ocean (54±3 µM, ~4000 m) 

(Benner et al., 2005) and the deep Nordic Seas (50 µM, ~3500 m) (Amon et 

al., 2003), where the deep water is formed (Kim et al., 2015).  

 

The concentrations of C peak, M peak, and T peak below 200 m 

were in the range of 0.22–0.53 RU (average = 0.38±0.08 RU), 0.11–0.26 

RU (average = 0.15±0.02 RU), and 0.0–0.04 RU (average = 0.0003±0.04 

RU), respectively (Fig. 6–5 and 6–6). T peak below 400 m was lower than 

the detection limit (Fig. 6–6). The ratio of peak C to M (C/M ratio), 

indicating the extent of surface photobleaching, ranged from 1.0 to 3.4 

(average= 2.2±0.5) with relatively lower values in the surface layer and 

higher values in the deep layer (Fig. 6–6).  

 

 

6.3 Sources of DOM in the East Sea   
 

The distributions of nutrients and DOC in the upper ocean were 

largely dependent on hydrographic dynamics based on temperature and 

salinity (Fig. 6–4). The anti-cyclonic eddies seem to deepen the low-nutrient 

surface water down to 100 m as shown by Hyun et al. (2009) (Fig. 6–4). 
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This result suggests that the production and degradation had not been 

changed according to the eddy formation in this region, although significant 

changes in biogeochemical conditions were observed in many eddies in 

other study regions (McGillicuddy and Robinson, 1997; Kim et al., 2012; 

Kolansinski et al., 2012; Uchiyama et al., 2017). 

 

The concentrations of DOC and T peak were relatively higher in the 

southern region, perhaps due to the higher biological production in warmer 

water during this season (Fig. 6–4). However, these component did not 

show any significant correlations against chlorophyll a or nutrient 

concentrations, indicating that their production and degradation are not 

proportional to biological production in the euphotic zone (Fig. 6–4 and 6–

7). The concentrations of the labile FDOM component, T peak, were only 

observed in the surface mixed layer due to its rapid removal in the surface 

layer before reaching the deep ocean (Jørgensen et al., 2011) (Fig. 6–4 and 

6–6).  

 

In the deep ocean (>200 m), the average concentration of DOC in 

the northern part (57±3 µM) was slightly lower than that in the southern part 

(59±3 µM) although the hydrographic features of the deep East Sea were 

relatively uniform (Fig. 6–5). The average concentration of DOC in the deep 

sea of the northern part was similar to that reported in a previous study 
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(59±3 µM) (Kim et al., 2015). Kim et al. (2015) suggested that DOC 

degradation with age results in slightly higher DOC concentrations in the 

northern part of the East Sea. However, the average DOC concentration in 

the deep sea of the southern part was slightly higher than that reported by 

Kim et al. (2015) (55±2 µM). In this study, such higher DOC concentrations 

in the southern part could occur if the high DOC surface water invades 

directly into the deep sea (Fig. 6–5). For example, the combination of the 

oceanic eddies and internal waves (Polzin et al., 1997; MacKinnon et al., 

2017; Legg, 2020) developed by the complex structure of the Ulleung Basin 

topography could result in deep ocean mixing (Fig. 6–5). If this happened, 

the higher DOC concentrations in the deep sea of the southern part might 

include a larger proportion of semi-labile DOC during the sampling period 

than the northern part of the East Sea (Fig. 6–5). Moreover, relatively higher 

DOC concentration in the deep East Sea compared with the global ocean 

(>45 µM) (Hansell, 2005) could be due to the low degradation rate of DOC 

under the low water temperature (<1°C) (Hansell, 2005; Kim et al., 2015).  

 

Significant correlations between AOU and C peak (r2=0.85; p<0.05) 

or M peak (r2=0.19; p<0.05) in the East Sea indicate that the major 

production of both FDOM components in the interior of the East Sea (200 

m–intermediate layer) is due to the microbial remineralization of sinking 

organic matter as previously documented (Yamashita and Tanoue, 2008; 
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Jørgensen et al., 2011; Tanaka et al., 2014; Catalá et al., 2015; Kim and 

Kim, 2015) (Fig. 6–8). In addition, excess concentrations of C peak and M 

peak were observed in the deep East Sea (>750 m), which is independent on 

AOU, as previously reported by Kim and Kim (2016). Kim and Kim (2016) 

suggested that approximately 8–15% of humic-like FDOM was produced by 

anaerobic remineralization of organic matter in the subsurface bottom 

sediments. Our results also showed similar (~12–13%) inputs of humic-like 

FDOM by the anaerobic microbial production of C peak and M peak in 

bottom sediments (Fig. 6–9).  

 

In this study, C peak gradually increased with depth, while M peak 

remained almost constant level except for the surface layer (Fig. 6–6). As 

such, the C/M ratios showed the lowest value in the surface layer and 

gradually increased to 1,000 m (Fig. 6–6). However, our results were 

different from previous studies (Tanaka et al., 2014; Kim and Kim, 2015; 

Kim and Kim, 2016) that showed a similar trend for both C peak and M 

peak in the upper 1,000 m. This difference could be due to the use of 

different instruments, which have varying sensitivities for different 

wavelengths and peak locations.  

 

This uniform distribution of M peak in the entire water column could 

be due to the ineffective production of M peak relative to C peak as shown 
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by the different slopes of both components against AOU (Fig. 6–6, 6–8). 

The amount of M peak increase at a given level of AOU increase was 

significantly lower than that for C peak (Fig. 6–8). Previous studies also 

showed a relatively lower production rate of M peak relative to C peak in 

laboratory experiments (Nelson and Gauglitz, 2016) and field observations 

(Tanaka et al., 2014; Catalá et al., 2015; Kim et al., 2020).  

 

Alternatively, relatively higher concentrations of M peak found in 

the upper layer could be due to more rapid UV degradation of C peak 

relative to M peak (Fig. 6–6). In general, the changes in concentrations of C 

peak were known to be higher than those of M peak in the upper ocean due 

to more rapid UV degradation of C peak. This trend was also verified based 

on laboratory experiments (Cory et al., 2007; Moran et al., 2000; Helms et 

al., 2013) and field observations of absorption indices such as absorption 

coefficients and spectral slope ratios in other studies (Helms et al., 2013; 

Yamashita et al., 2013). Thus, the ratio of C peak to M peak (C/M ratio) is 

often used as an indicator of different photochemical histories of DOM in 

the surface layer (Helms et al., 2013; Hansen et al., 2016). This fractionation 

of C peak and M peak in the surface water of the East Sea could be further 

intensified with the contribution of the continental shelf water flowing into 

the East Sea, which has a long residence time in the Yellow Sea and the East 

China Sea (Nozaki et al., 1991; Kim et al., 2005; Kim and Kim, 2015; Kim 
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et al., 2018) (Fig. 6–6). The surface water with low C/M ratios could be 

effectively mixed downward up to 800 m as suggested by a previous study 

based on the rare earth element tracers (Seo and Kim, 2020) (Fig. 6–6). 

 

Overall, the distributions of humic-like FDOM (C peak and M peak) 

seem to be influenced by their production (water column) and 

photochemical degradation (surface layer) mechanisms in the East Sea. 

Therefore, further studies are needed to evaluate the dominant mechanisms 

(production versus degradation) controlling the FDOM distributions in the 

East Sea.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



 

 109 

 

 

 

Figure 6.1 Map showing the bottom topography and sampling stations in the

 East Sea (Japan Sea).    
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Figure 6.2 Map showing a sea surface temperature and sea surface height in 

the East Sea. 
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Figure 6.3 Fluorescence EEM spectra and excitation-emission loadings of 

terrestrial humic-like (C1), protein-like (tryptophan; C3), and marine humic-

like (C2) components identified from the PAFARAC model in the East Sea.   
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Figure 6.4 Vertical distributions of salinity, temperature, concentrations of 

DIN, DSi, DOC, C peak, M peak, and T peak in the upper ocean (0–200 m) 

in a SW–NE cross-section of the East Sea.  
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Figure 6.5 Vertical distributions of salinity, temperature, concentrations of 

DOC, C peak, and M peak in a SW–NE cross-section of the East Sea.  
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Figure 6.6 Vertical distributions of (a) DOC, (b) C peak, (c) M peak, (d) T 

peak, and (e) the ratio of C peak to M peak in the East Sea.  
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Figure 6.7 Map showing the concentration of chlorophyll-a in the surface 

layer of the East Sea.  
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Figure 6.8 Scatterplots of AOU against the C peak and M peak in the East 

Sea (200 m–bottom depth). Empty circles represent the intermediate water 

layer (200–750 m), and filled circles represent the deep water layer (750 m–

bottom depth).  
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Figure 6.9 Schematic diagram illustrating the fluorescence intensity of 

excess C peak.  
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7. Summary and conclusion 
 

 
The sources, sinks, processes, and biogeochemistry of DOM were 

determined using the multiple biogeochemical tracers including stable- and 

radio-carbon isotopes, optical properties of DOM (absorbance and 

fluorescence), radionuclide (228Ra), and other chemical constituents in the 

urban city atmosphere and various aquatic environments: (1) an artificial 

lake (Sihwa Lake), (2) the East China Sea continental shelf, and (3) the 

marginal sea (the East Sea). This study has provided important implications 

for our understanding of and insight into the sources and fates of 

DOC/WSOC in the atmosphere and various aquatic environments. Also, this 

study successfully demonstrated that combining these tools could be further 

applied effectively in many different environments where the sources and 

nature of the DOM are complex. 
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Abstract (Korean)  

 대기 및 해수 중 유기물의 기원과 순환을 이해하는 것은 전 지

구적 탄소 순환과 기후변화를 이해하는데 매우 중요하다. 대기와 해

수의 유기탄소 중에는 상당한 양으로 빛에 반응하는 과학적 특성을 

갖는 휴믹한 유기물이 존재하는데, 이러한 유기탄소는 대기에서는 갈

색탄소라 하며 해양환경에서는 용존유색유기물이라 부른다. 이러한 

대기와 해수 중 유기물의 대부분을 차지하고 있는 용존유기탄소의 기

원과 제거 기작, 공급량, 작용은 안정탄소와 방사성탄소의 동위원소, 

유색용존유기물과 용존유기탄소의 농도, 생물학적지표, 광학적 특성 

등을 조합하여 보다 효과적으로 알 수 있다. 본 연구에서 이러한 생지

화학적 추적자의 효과적인 조합을 이용하여 대기와 해수 중 유기탄소

의 기원과 공급량, 제거기작을 알아보고자 하였다. 본 연구를 위해 대

기 입자 시료는  

대기 중 많은 양으로 존재하고 있는 갈색탄소의 기원과 제거

기작은 대한민국 서울에서 1년여 기간동안 관찰연구를 통해 발견되

었다. 연구 지역에서 발생하는 갈색 탄소의 기원은 주로 바이오매스 

연소에 의한 것으로 알려졌고, 이렇게 발생한 갈색 탄소는 광분해로 

인해 대기에서 효과적으로 제거되는 것을 관찰 연구와 실험실 실험에

서 모두 증명하였다. 이는 광분해가 대기 갈색 탄소의 질과 양에 크게 

영향이 끼친다는 것을 의미하며, 광분해 요소는 이후 대기 연구 및 모
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델링에 중요하게 고려되야 한다는 점을 시사한다.  

해양과 육지가 연결되어있는 연안은 가장 활발한 탄소 순환이 

이루어지는 지역이다. 이러한 지역에서 용존유기탄소의 다양한 기원

을 구별하는 것은 해양 탄소 순환을 이해하는데 매우 중요하다. 본 연

구에서는 안정탄소동위원소와 유기물의 광학적 특성을 이용하여 연

안 매립지이며 인공호수인 시화호에서 과잉공급으로 관찰된 용존유

기탄소의 기원을 2017년관 2018년 두 계절동안 알아보았다. 연구 

지역에서 발생하는 용존유기탄소는 주로 해양 퇴적물에서 생성되는 

것으로 밝혀졌고, 2017년에 관찰된 과잉의 용존유기탄소는 육지 기

원의 것으로 안정탄소동위원소값과 광학적 특성을 이용하여 밝혔다. 

이 육지기원의 과잉의 용존유기탄소는 매립지와 해수의 직접적인 상

호작용에 의해 연안으로 공급된 것으로 보인다.  

최근, 강물 영향이 지배적인 연안지역에서 대륙붕 기원의 용

존유기탄소의 공급은 많은 관심을 받아왔다. 그러나, 강물의 영향이 

배제된 지역에서의 대륙붕 생성 유기물의 영향과 공급량에 대해서는 

연구가 진행되지 않았다. 본 연구에서는 전지구적으로 가장 큰 대륙

붕 중의 한 곳으로 알려진, 동중국해와 황해에 위치해 있는 대륙붕에

서 용존유기탄소의 기원과 공급량을 안정탄소동위원소, 방사성탄소

동위원소과 유색용존유기물의 농도를 이용하여 알아보았다. 여름철 

황해에서 관측되는 용존유기탄소의 경우 양자강 기원의 것으로 보이
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며, 더욱 높은 농도로 관측되는 겨울과 봄철 용존유기탄소는 주로 대

륙붕에서 생성된 것으로 보이며, 대륙붕 생성 용존유기탄소의 공급량

(2.2±0.6 Tg C yr-1)은 양자강에서 공급되는 탄소의 양(1.6 Tg C 

yr-1)과 거의 유사하거나 훨씬 많은 양이 동중국해로 공급되는 것으

로 보인다.  

동해는 북서태평양에 위치한 반폐쇄성 해역으로 전 대양의 축

소판으로도 불린다. 동해 남부 해역에서 발생하는 난수성 소용돌이에 

의한 표층 용존유기탄소의 심층으로의 유입이 발견되었으며, 휴믹한 

용존유색유기물의 경우 약 90% 가 수층에서 미생물 활동에 의해 생

성되고, 약 10%가 심층 퇴적물 내 무산소 기작에 의해 생성되는 것

으로 나타났다. 특히, 표층에서는 육지 기원의 휴믹한 유색용존유기

물과 해양기원의 휴믹한 유색용존유기물이 서로 다른 거동을 보였는

데, 이는 육지 기원의 휴믹한 유색용존유기물이 해양기원의 휴믹한 

유색용존유기물보다 광분해에 의해 빠르게 제거되거나 비교적 낮은 

해양기원의 휴믹한 유색용존유기물의 생산량 때문으로 보인다. 따라

서, 동해 유색용존유기물의 분포는 수직 혼합과 표층 광분해와 저층 

생산량의 영향을 받는것으로 보인다.  

본 연구는 대기 및 다양한 해양 환경에서 여러 생지화학적 추

적자를 사용하여 용존유기탄소의 기원과 거동에 대한 이해와 공부에 

중요한 의미를 알아냈다. 이러한 추적자의 조합은 이후 다양한 환경
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에서보다 보다 효과적으로 유기탄소의 기원과 거등을 아는데 사용될 

수 있다.  

 

주요어: 용존유기물, 용존유기탄소, 갈색탄소, 안정탄소동위원소, 방

사성탄소동위원소, 광학적특성 

학번: 2017–30218 
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