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Abstract

The main purpose of this paper is to compare fourier transform, wavelet, and

lifting scheme, and to look at the recent studies of improving performances of

lifting scheme. Fourier transform, which started from spectral analysis, has been

studied and has several application. In recent times, studies on wavelet, which

using wavelet as basis function and multiresolution analysis, are highly pro-

gressing. Among them, the lifting scheme, which called the second-generation

wavelet, has the characteristic of generating a basis function without using a

fourier transform, unlike first-generation wavelets. In this paper, we compare

fourier transform, wavelet, and lifting scheme, and look at two papers that have

improved performance of lifting scheme by focusing on selective removal and

neighborhood selection. And we discuss further methods on improving perfor-

mances of lifting scheme.
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Chapter 1

Introduction

In signal processing, fourier transform is major method which uses frequency

information for analysis. However, fourier transform only consider frequency

resolution, cannot get any information for time. There are several methods

attempt to overcome this limitations, such as short time Fourier transform.

Wavelet was also proposed to overcome this limitations of fourier transform.

One major difference of wavelet and fourier transform is basis function, fourier

transform uses sine wave as basis function while Wavelet uses small function

called mother wavelet.

However, wavelet has also several limitations. First, data for wavelet must

have dyadic size. If data size is not dyadic, we need to set data size dyadic

by some process, for example, cutting out some data. Also data should be

identically distributed. Sweldens (1996) proposed lifting scheme, which is called

second-generation wavelet, to overcome this limitations.

Lifting scheme works by repeating three steps, split, prediction and update.

Lifting scheme does not depends on dyadic data size, not require conditions
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such as data should be identically distributed. In this paper, we discuss about

methods that improving performances of lifting scheme, and look at recent

studies aiming improvement of performances of lifting scheme. In chapter 2, we

introduce wavelet and lifting scheme. In chapter 3, we discuss several methods

improving performances of lifting scheme. In chapter 4, we review two recent

studies.
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Chapter 2

Overview

2.1 Fourier Transform and Wavelets

Fourier transform was proposed to analysis data on frequency domain. With

fourier transform, we can transform data from the time domain to the frequency

domain, and the fourier coefficient represents the degree of contribution of the

sine/cosine function for each frequency.

f̂(λ) =
1√
2π

∫ ∞

−∞
f(t)e−iλtdt

f(t) =
1√
2π

∫ ∞

−∞
f̂(λ)e−iλtdt

Fourier transform has some limitations. With fourier transform, we have per-

fect frequency resolution but cannot have any time information. Also fourier

transform cannot represent properties of non-stationary waves, since fourier

transform uses sine wave as basis function. One example is seismic wave, which
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is non-stationary wave and has sharp corner when seismic wave has arrived. To

overcome this limitations, several methods have been proposed. One is short

time fourier transform (STFT), which analyze function by split up the signal in

time domain, and take a fourier transform for each section. Short time fourier

transform can get some time resolution, but since short time frequency trans-

form constructs result by combining the resulting transforms for each split, it

has uniform time and frequency resolution for high and low frequency.

Wavelet transform uses wavelets, an orthonormal basis functions in L2(R)

generated by translations and dilations of functions which called the father

wavelet and mother wavelet. Two functions play a primary role in wavelet

analysis : the scaling function (ϕ), and the wavelet (ψ). They are also called

the father wavelet and mother wavelet, respectively. Significant difference be-

tween Wavelet and Fourier transform is basis function. Fourier transform uses

sine wave as basis function, while wavelet uses function called mother wavelet,

which have limited duration, as basis function.

2.2 Multiresoultion analysis

Multiresolution analysis is a method for L2-approximation of functions with ar-

bitrary precision. With multiresolution analysis, wavelet can be defined as MRA

of L2(R). The following definition is Mallat’s general notation of multiresolution

analysis.
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Definition 2.2.1 (Multiresolution analysis). Let Vj , j = · · · ,−2,−1, 0, 1, 2, · · ·

be a sequence of subspaces of functions in L2(R). The collection of spaces

{Vj , j ∈ Z} is called a multiresolution analysis with scaling function ϕ if the

following conditions hold.

1. (Nested) Vj ⊂ Vj+1.

2. (Density) ∪Vj = L2(R).

3. (Separation) ∩Vj = {0}.

4. (Scaling) The function f(x) belongs to Vj if and only if the function

f(2−jx) belongs to V0.

5. (Orthonormal basis) The function ϕ belongs to V0 and the set {ϕ(x −

k), k ∈ Z} is an orthonormal basis (using the L2 inner product) for V0.

The Vj ’s are called approximation spaces and different choice of ϕ results

different multiresolution analysis.

2.3 Lifting scheme

Lifting scheme, proposed by Sweldens (1996), is called second-generation wavelet.

Traditional wavelet has some limitations on data, such as size of data must be

dyadic, and data should be identically distributed. Lifting scheme was proposed

to overcome these limitations of wavelet. Lifting scheme consists 3 types of op-

eration : split, predict, and update.

1. Split : input data at each specific level of decomposition j is split into

prediction (Pj) and update (Uj) disjoint sets.

2. Predict : Pj set is predicted from the data of the Uj set using the prediction

pj filters, yielding the detail coefficients.

5



3. Update : data of the Uj set is filtered with detail coefficients of the Pj set

using the update uj filters, giving rise to the smooth coefficients.

4. Repeat : repeat above operations until we reach the expected resolution

level.

This process is called forward lifting transform.

Split

-

+

p u

Split
Dual Lifting

Primal Lifting

Differences

P

U

Figure 2.1 Forward lifting transform

In split stage, we first divide data into two sets, prediction set and update

set. Next, in predict stage, we predict value of data in predict set by data in

update set. In update stage, we update data in update set by predicted value

with update filter. Then we repeat these stages in next level of data.

One characteristics of lifting scheme is once forward lifting transform is con-

structed, then its reverse transform is also available. In wavelet case, we cannot

guarantee that inverse wavelet transform is that inverse of forward wavelet

transform. In lifting scheme, inverse lifting transform can be easily constructed,

by reverse order of processes and changing positive and negative sign.

1. undo update
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2. undo predict

3. undo split

4. repeat above operations until we reach the expected resolution level

Following figure shows the flow chart of the inverse lifting scheme.

-

+

up Merge

Primal Lifting

Dual Lifting

Figure 2.2 Inverse lifting transform
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Chapter 3

Important factors improving
lifting scheme on graph data

In this chapter, we first discuss the important factors improving lifting scheme,

and then briefly introduce notations and models used in paper of Mart́ınez-

Enŕıquez et al. (2018), which will be introduced in next chapter.

3.1 Important factors improving lifting scheme

While constructing lifting scheme, there are some important factors determines

performance of lifting scheme.

1. Size of prediction set : number of removal points at once

Before beginning the lifting transform, we need to predetermine some

conditions. Size of prediction set at one lifting step is one of major settings

that influences performance of lifting scheme. Most studies use similar

proportions as in wavelets. The LOCAAT method, proposed by Jansen

et al. (2009), lifts one coefficient at one time.
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2. Neighborhood selection

It is also important to determine the neighborhoods of each point. De-

pending on this neighborhood selection, the lifting results will vary a lot.

Too large neighborhoods will not represent the local nature of signals, and

too narrow neighborhoods could cause some bias to prediction.

3. Removal point selection

After determining the number of points to be removed at a time, we need

to select that number of points to remove. Removal order can be said

to be similar to the question that asking the priority of points in data.

We can predetermine specific measure for comparing priority of points

to solve this problem. In LOCAAT method, proposed by Jansen et al.

(2009), they used the integral of scaling function for selecting the removal

point.

4. Prediction filter

Choosing prediction filter is essential part in lifting transform. In several

studies, Haar (local constant), local linear methods are frequently used.

These factors greatly influences the performance of lifting scheme. In next chap-

ter, we will discuss about this factors and review some papers related to these

factors, especially neighborhood selection and removal point selection.
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3.2 Notations on graph data

In this section, we follow some notations of Mart́ınez-Enŕıquez(2018).

• Undirected graph G = (V, E ,W) where V = {1, · · · , N} is a set of nodes

between nodes, E ⊂ V ×V is a set of edges between nodes, W = [wmn] is

the weighted adjacency matrix, with wmn is a non-negative weight of the

edge, when mn ∈ E .

• The order of graph is the number of nodes, N = |V|.

• Nm = {n ∈ V : mn ∈ E} is the set of neighbors of node m, and N[m] is

its closed neighborhood set.

• For any partition of V into two disjoint sets, U refers the update set and

P refers the prediction set.

• The degree of a node m, Dm =
∑

n∈Nm
wmn.

• A graph signal x = [x1, x2, · · · , xm, · · · , xN ] is a signal defined on G =

(V, E ,W ), xm is the value associated to node m ∈ V .

3.3 Lifting scheme on graph data

Lifting scheme can be extended to graph, which means can provide general

solution for arbitrary undirected graph data. Lifting scheme on graph has also

split, predict, update stage. In split stage, we split input graph into two disjoint

set of nodes. In prediction stage, nodes in prediction set are predicted by nodes

in update set with appropriate prediction filter. In update stage, nodes in update

set are updated by details.
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Figure 3.1 Lifting scheme on graph-signal data

In next chapter, we will introduce greedy UPA (update-predict assignment)

algorithm proposed by Mart́ınez-Enŕıquez et al. (2018). Before moving on to

the next chapter, we will discuss about moving average model.

Definition 3.3.1 (General moving average model (MA model)). The moving

average model for observed signal x defined on G = (V, E ,W ) and for general

node m ∈ V is

xm = c+
∑

n∈N[m]

qm,nϵn + ηm

for some coefficients qm,n, constant c, zero mean independent random variables

ϵn and ηm, with respect to variances σ2ϵ and σ2η.

The vector form of this equation is,

x = c1+Qϵ+ η,

where Qm,n is qm,n for n ∈ N[m] and 0 otherwise.
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Chapter 4

Recent approaches improving
performances of lifting scheme

4.1 Previous approach

There are some traditional methods of lifting scheme, for example, max-lifting

scheme and median-lifting scheme using nonlinear filter. Max-lifting scheme uses

two coefficients for lifting so that makes the result of lifting which is sensitive

to update/predict set selection more robust. Median-lifting scheme is also used

for similar purpose.

LOCAAT algorithm is also well-known method for lifting scheme. LOCAAT

(lifting one coefficient at a time) algorithm was proposed by Jansen et al. (2009),

which removes one coefficients at a time with constructed removal order. At

first step, n, algorithm defines set of indices Un = {1, 2, · · · , n}, Pn = {∅}. At

next step, n − 1, algorithm choose the index which will be removed from the

current set. To choosing the index to be removed, Jansen et al. (2009) used the

minimal integral of scaling function for some appropriate measure. After we

12



choose index, say in, then new update set and prediction set for n − 1 level is

Un−1 = Un \ {in} and Pn−1 = Pn ∪ {in} = {in}.

Weighted maximum cut is one example of lifting scheme methods for graph

data, which provides split of graph which maximized the specified weighted

maximum sum of graph. However this method only reflects structure of graph,

does not reflect the signal of each nodes in graph. To overcome this limitation,

Mart́ınez-Enŕıquez et al. (2018) proposed greedy UPA algorithm using gener-

alized moving average model which minimized the predefined prediction error.

In addition, Park (2019) extended the idea, using piecewise generalized moving

average model instead the generalized moving average model and applied clus-

tering method for neighborhood selection. In this chapter, we will review these

two papers.

4.2 Greedy UPA algorithm

In this section, we will introduce about greedy UPA algorithm proposed by

Mart́ınez-Enŕıquez et al. (2018), and review his paper. In this paper, we will

only deal with a minimum preliminaries necessary for reviewing this paper. For

details, you may refer the original paper, Mart́ınez-Enŕıquez et al. (2018). This

paper focuses on the UPA problem, which is split step of lifting scheme on graph-

signal data. The main purpose of this paper is to analyze the UPA problem and

derive optimal UPA for given assumptions on signal model and filters. Before

introducing greedy UPA algorithm, we begin with some preliminaries.

We will use notations introduced in chapter 3. They define Etot is total pre-

diction error they defined as the sum of the expected value of squared prediction

error. The main goal of this paper is solving following problem.

13



Problem 1. UPA Problem: Find the UPA that minimizes the total prediction

error

Etot =
∑
i∈P

E{(xi − x̂i)2} =
∑
i∈P

E{d2i }

where |P| is given.

The model which we will assume affects solution for this UPA problem. In

this paper, he used general moving average model introduced in chapter 3. Also

they defined linear predictor as follows.

Definition 4.2.1. General linear predictor Under condition G = (V, E ,V), x,

and UPA,

x̂i =
∑

k∈Ni∩U
pi,kxk.

in vector form,

x̂ = Px

where Pi,j = pi,j for j ∈ Ni ∩ U , and zero otherwise.

They claimed that correlation between nodes of graph throughM = σ2ϵQQT

affects the UPA that minimizes Etot.

Back to the problem, it is not suitable to find the brute-force solution for

UPA problem. They proposed greedy UPA algorithm, which locally minimize

Etot in each iteration. Algorithm starts with the state that every nodes of graphs

are in P set, and for every iteration, chosen node c∗ that minimizes Etot is moved

to U set. Define Θ{t,c} = E
{t−1}
tot −E{t,c}

tot , the difference of Etot of iteration t and

t − 1 when node c is moved. Algorithm 1 shows summary of the greedy UPA

algorithm.
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Algorithm 1 UPA Greedy Algorithm proposed by Martinez-Enriquez et al.

(2018)

Require: G = (V, E) with predefined conditions, given |P|, U = {∅}, P = {E}

1: Calculate M = σ2ϵQQT and get two-hop neighbors for every node in V

2: while |P|{t} > |P| do for every c = 1 to c = |P|{t}, calculate Θ{t,c} in the

neighborhood of c

3: Calculate Θ{t,c} and select the node c∗ with maximum Θ{t,c}, c∗ =

argmaxc∈PΘ
{t,c}

4: Let U ← U ∪ {c∗}, P ← P \ {c∗}

5: end while

6: return UPA solution

In his paper, several experimental results are introduced. The main contri-

bution of this paper is that they prove the optimal depends on the correlation

between nodes on graph, and it is not equivalent to weight maximum-cut or

minimizing the discarded edges. Also proposed greedy UPA algorithm, and

experimentally validated his conclusion. For further study, they suggested to

using different model instead of generalized moving average model. Also setting

different |P| nodes are also suggested.

4.3 Enhancement of lifting scheme on graph-signal data

via clustering based network design

In Park (2019)’s paper, in chapter 3, he introduced extended version of greedy

UPA algorithm of Martinez-Enriquez et al. (2018), using piecewise generalized

moving average model instead generalized moving average model and adjusting

neighborhood selection by clustering based network design.

He expand the idea of Martinez-Enriquez et al. (2018) on more general set-

15



tings. First, we need to introduce piecewise generalized moving average model,

linear predictor, and prediction error. For details, you may refer Park (2019)’s

paper, chapter 3.

Definition 4.3.1. PGMA model (piecewise generalized moving average model)

Let cm be signal of nodem, and assume that the value of signals can be clustered

into some values.

xm = cm +
∑

n∈N[m]

qm,nϵn + ηm,

in vector form,

x = c+Qϵ+ η,

where Qm,n = qm,n for n ∈ N[m] and zero otherwise.

Definition 4.3.2. Linear predictors for the clustered version of piecewise gen-

eralized moving average model For given G = (V, E ,V), x, and UPA, linear

predictors for the clustered version of piecewise generalized moving average

model are defined as follows,

x̂i =
∑

k∈N ∗
i ∩U

pi,kxk.

in vector form,

x̂ = P∗x

where P∗
i,j = p∗i,j for j ∈ N ∗

i ∩ U , and zero otherwise.

Definition 4.3.3. Prediction error for piecewise generalized moving average

model Total prediction error is defined by

Etot =
∑
i∈P

E{(xi − x̂i)2} =
∑
i∈P

EPGMAi ,

16



where

EPGMAi = E{xi}2 − 2pT
i KUi,i + pT

i KUiUipi

= c2i + µi,i + σ2η − 2pT
i (MUiei + cUici)

+ pi(M)UiUi + σ2ηI+ cUic
T
Ui
)pi,

where Ui = Ni ∩ U , K = E{xxT }, pi is column vector, pi,k for k ∈ Ni ∩ U , and

M = σ2ϵQQT with µm,n = σ2ϵ
∑

l∈N[m]∩N[n]
qm,lqn,l.

Park (2019) expanded idea of Martinez-Enriquez et al. (2018), and extend

greedy UPA algorithm with different model assumption and clustering network-

design. Greedy UPA algorithm with clustering based network design is summer-

ized in algorithm 2. There are some updates in Park (2019)’s algorithm from

Martinez-Enriquez et al. (2018)’s algorithm, is that additional steps are added

such that computes clustering result and changes W matrix. Park (2019) also

introduced UPA problem under the piecewise homogeneous model, but we will

omit this part in this paper.
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Algorithm 2 UPA Greedy Algorithm with clustering based network design

proposed by Park (2019)

Require: G = (V, E ,W), clustering sets B = (B1, · · · , BR), weights ŵs, ŵt,

U = {∅}, P = {V} and optimal number |Popt|.

1: Define a new neighborhood of node i ∈ Br by clustering sets B, N ∗
i =

Ni ∩Br, r = 1, · · · , R, where i is in Br. It is equivalent to changing W into

W∗, where W∗ is the neighborhood corrected version.

2: while |P| ≤ |Popt| do

3: Set U ← U ∪ {v}, P ← P \ {v} and estimate ŷi =
∑

k∈N ∗
i
pi(yk).

4: Compute empirical version of the total prediction error Êtot, Êtot =∑
i∈P(yi − ŷi)2.

5: Find v∗ that minimizes Êtot.

6: Set U ← U ∪ {v∗} and P ← P \ {v∗}

7: end while

8: Return UPA

18



Figure 4.1 Segmentation-based edge addition called statistical region merging

(SRM) image. Number of segmentation are 34,30,14,9 respectively.

In Park (2019), there are several simulation study and real data analysis.

In this paper, we will review one of results, image data analysis. Image data

analysis used test image data from Li et al. (2016) and described in Figure

4.1. S.Park simulated this data by his proposed method (Proposed) and 2-hop

edges proposed by Martinez-Enriquez et al. (Enriquez) and compared result.

Park (2019) claims that proposed method gives better construction from Figure

4.2 and table 4.1. S.Park claims that in his proposed method, choosing several

nodes near edges that belongs into U set in the next level, has advantage in

finding edges.
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Ratio |U |/N = 0.05 0.2 0.4√
Êtot Enriquez (std.error)

89.92

(0.81)

38.02

(0.52)

35.20

(0.24)√
Êtot Enriquez (std.error)

87.81

(2.03)

31.75

(0.99)

27.83

(1.16)

Table 4.1 Blockwise image data simulation results of
√
Etot from Park (2019)

Figure 4.2 Graph image signal reconstruction results from Park (2019).

(a),(b),(c) uses 2-hop edges (Enriquez) and (d),(e),(f) uses 2-hop intercluster

edges (Proposed).
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The main contribution of Park (2019)’s chapter 3, is that extend the concept

of UPA algorithm with new models. As result, clustering method can be easily

applied. For further research, he emphasized that we need to focus on how to

constructing coarser graph-signal network.

He also focused on spatio-temporal data. Piecewise generalized moving aver-

age model can be reconsidered as space-time version, called piecewise constant

spatio-temporal model. However, refer to spatio-temporal distances, we cannot

apply this concept. For further study, the next step will be finding a way to

overcome this problem.
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Chapter 5

Conculsion

In this paper, we introduced the second-generation wavelet lifting scheme, re-

viewed the latest papers aiming at improving performance of lifting scheme, and

discussed how to improve the performance of the lifting scheme in the future.

Unlike conventional wavelets, the lifting scheme consists three types of op-

eration, split, predict, and update. Lifting scheme overcomes the conditions,

dyadic data size and identically distributed data, which are the limitations of

wavelets. Related studies on lifting schemes are ongoing, and among them, re-

searches aiming at improving the performance of the lifting scheme are actively

being continued. In this paper, we discussed the points can improve the perfor-

mance of the lifting scheme, and introduced two recent studies about improving

performance of lifting scheme by focusing on this points, removal point selection

and neighborhood selection.

22



References
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국문초록

본논문에서는푸리에변환과웨이블릿,그리고리프팅스킴을비교하고,리프팅의

성능을 개선하는 최신 연구 동향들을 살펴보는 것을 주 목적으로 한다. 파동분석

에서 시작된 푸리에 변환은 현대에 이르러 다양한 방향으로 강화되어 왔고 그 중

웨이블릿을이용한기저와다중해상도분석을사용한웨이블릿변환에관한연구가

활발히 진행되고 있다. 그 중 제 2세대 웨이블릿으로 불리는 리프팅 스킴은 1세대

웨이블릿과 다르게 푸리에 변환을 사용하지 않고 기저함수를 생성한다는 특징을

가지고 있다. 푸리에 변환과 웨이블릿, 그리고 리프팅 스킴을 비교하고, 리프팅 스

킴의 성능 향상에 관련한 최근 논문들 중 선택적 제거와 이웃 설정에 초점을 두어

성능 개선을 이루어낸 논문들을 살펴보고, 앞으로 이를 더 개선할 수 있을 거라

예상되는 방법을 논의한다.

주요어: 웨이블릿, 리프팅 스킴, 푸리에 변환

학번: 2017-20642
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