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Abstract

The main purpose of this paper is to compare fourier transform, wavelet, and
lifting scheme, and to look at the recent studies of improving performances of
lifting scheme. Fourier transform, which started from spectral analysis, has been
studied and has several application. In recent times, studies on wavelet, which
using wavelet as basis function and multiresolution analysis, are highly pro-
gressing. Among them, the lifting scheme, which called the second-generation
wavelet, has the characteristic of generating a basis function without using a
fourier transform, unlike first-generation wavelets. In this paper, we compare
fourier transform, wavelet, and lifting scheme, and look at two papers that have
improved performance of lifting scheme by focusing on selective removal and
neighborhood selection. And we discuss further methods on improving perfor-

mances of lifting scheme.
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Chapter 1

Introduction

In signal processing, fourier transform is major method which uses frequency
information for analysis. However, fourier transform only consider frequency
resolution, cannot get any information for time. There are several methods
attempt to overcome this limitations, such as short time Fourier transform.
Wavelet was also proposed to overcome this limitations of fourier transform.
One major difference of wavelet and fourier transform is basis function, fourier
transform uses sine wave as basis function while Wavelet uses small function
called mother wavelet.

However, wavelet has also several limitations. First, data for wavelet must
have dyadic size. If data size is not dyadic, we need to set data size dyadic
by some process, for example, cutting out some data. Also data should be
identically distributed. Sweldens (1996) proposed lifting scheme, which is called
second-generation wavelet, to overcome this limitations.

Lifting scheme works by repeating three steps, split, prediction and update.

Lifting scheme does not depends on dyadic data size, not require conditions



such as data should be identically distributed. In this paper, we discuss about
methods that improving performances of lifting scheme, and look at recent
studies aiming improvement of performances of lifting scheme. In chapter 2, we
introduce wavelet and lifting scheme. In chapter 3, we discuss several methods
improving performances of lifting scheme. In chapter 4, we review two recent

studies.



Chapter 2

Overview

2.1 Fourier Transform and Wavelets

Fourier transform was proposed to analysis data on frequency domain. With
fourier transform, we can transform data from the time domain to the frequency
domain, and the fourier coefficient represents the degree of contribution of the

sine/cosine function for each frequency.

o = jﬂ / T f(eMat
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Fourier transform has some limitations. With fourier transform, we have per-
fect frequency resolution but cannot have any time information. Also fourier
transform cannot represent properties of non-stationary waves, since fourier

transform uses sine wave as basis function. One example is seismic wave, which



is non-stationary wave and has sharp corner when seismic wave has arrived. To
overcome this limitations, several methods have been proposed. One is short
time fourier transform (STFT), which analyze function by split up the signal in
time domain, and take a fourier transform for each section. Short time fourier
transform can get some time resolution, but since short time frequency trans-
form constructs result by combining the resulting transforms for each split, it
has uniform time and frequency resolution for high and low frequency.
Wavelet transform uses wavelets, an orthonormal basis functions in L?(R)
generated by translations and dilations of functions which called the father
wavelet and mother wavelet. Two functions play a primary role in wavelet
analysis : the scaling function (¢), and the wavelet (1). They are also called
the father wavelet and mother wavelet, respectively. Significant difference be-
tween Wavelet and Fourier transform is basis function. Fourier transform uses
sine wave as basis function, while wavelet uses function called mother wavelet,

which have limited duration, as basis function.

2.2 Multiresoultion analysis

Multiresolution analysis is a method for L?-approximation of functions with ar-
bitrary precision. With multiresolution analysis, wavelet can be defined as MRA
of L2(R). The following definition is Mallat’s general notation of multiresolution

analysis.



Definition 2.2.1 (Multiresolution analysis). Let Vj, j =---,—-2,-1,0,1,2,---

be a sequence of subspaces of functions in L?(R). The collection of spaces

{Vi,5 € Z} is called a multiresolution analysis with scaling function ¢ if the

following conditions hold.

1.

(Nested) V; C Vjq1.
(Density) UV; = L%(R).
(Separation) NV; = {0}.

(Scaling) The function f(x) belongs to V; if and only if the function
f(277x) belongs to V.

. (Orthonormal basis) The function ¢ belongs to Vp and the set {¢(x —

k),k € Z} is an orthonormal basis (using the L? inner product) for Vp.

The Vj’s are called approximation spaces and different choice of ¢ results

different multiresolution analysis.

2.3 Lifting scheme

Lifting scheme, proposed by Sweldens (1996), is called second-generation wavelet.

Traditional wavelet has some limitations on data, such as size of data must be

dyadic, and data should be identically distributed. Lifting scheme was proposed

to overcome these limitations of wavelet. Lifting scheme consists 3 types of op-

eration : split, predict, and update.

1.

2.

Split : input data at each specific level of decomposition j is split into

prediction (P;) and update (U;) disjoint sets.

Predict : P; set is predicted from the data of the {/; set using the prediction
p; filters, yielding the detail coefficients.



3. Update : data of the U set is filtered with detail coefficients of the P; set

using the update u; filters, giving rise to the smooth coefficients.

4. Repeat : repeat above operations until we reach the expected resolution

level.

This process is called forward lifting transform.
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Figure 2.1 Forward lifting transform

In split stage, we first divide data into two sets, prediction set and update
set. Next, in predict stage, we predict value of data in predict set by data in
update set. In update stage, we update data in update set by predicted value
with update filter. Then we repeat these stages in next level of data.

One characteristics of lifting scheme is once forward lifting transform is con-
structed, then its reverse transform is also available. In wavelet case, we cannot
guarantee that inverse wavelet transform is that inverse of forward wavelet
transform. In lifting scheme, inverse lifting transform can be easily constructed,

by reverse order of processes and changing positive and negative sign.

1. undo update



2. undo predict
3. undo split
4. repeat above operations until we reach the expected resolution level

Following figure shows the flow chart of the inverse lifting scheme.

Primal Lifting N

p u Me@—)
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Figure 2.2 Inverse lifting transform



Chapter 3

Important factors improving
lifting scheme on graph data

In this chapter, we first discuss the important factors improving lifting scheme,
and then briefly introduce notations and models used in paper of Martinez-

Enriquez et al. (2018), which will be introduced in next chapter.

3.1 Important factors improving lifting scheme

While constructing lifting scheme, there are some important factors determines

performance of lifting scheme.

1. Size of prediction set : number of removal points at once

Before beginning the lifting transform, we need to predetermine some
conditions. Size of prediction set at one lifting step is one of major settings
that influences performance of lifting scheme. Most studies use similar
proportions as in wavelets. The LOCAAT method, proposed by Jansen

et al. (2009), lifts one coefficient at one time.



2. Neighborhood selection

It is also important to determine the neighborhoods of each point. De-
pending on this neighborhood selection, the lifting results will vary a lot.
Too large neighborhoods will not represent the local nature of signals, and

too narrow neighborhoods could cause some bias to prediction.

3. Removal point selection

After determining the number of points to be removed at a time, we need
to select that number of points to remove. Removal order can be said
to be similar to the question that asking the priority of points in data.
We can predetermine specific measure for comparing priority of points
to solve this problem. In LOCAAT method, proposed by Jansen et al.
(2009), they used the integral of scaling function for selecting the removal

point.

4. Prediction filter

Choosing prediction filter is essential part in lifting transform. In several

studies, Haar (local constant), local linear methods are frequently used.

These factors greatly influences the performance of lifting scheme. In next chap-
ter, we will discuss about this factors and review some papers related to these

factors, especially neighborhood selection and removal point selection.



3.2 Notations on graph data

In this section, we follow some notations of Martinez-Enriquez(2018).

e Undirected graph G = (V,£, W) where V = {1,--- , N} is a set of nodes
between nodes, £ C V x V is a set of edges between nodes, W = [wy,,,] is
the weighted adjacency matrix, with wy,, is a non-negative weight of the

edge, when mn € £.
e The order of graph is the number of nodes, N = |V|.

¢ Niw ={n €V :mn € £} is the set of neighbors of node m, and N, is

its closed neighborhood set.

e For any partition of V into two disjoint sets, U refers the update set and

‘P refers the prediction set.

e The degree of a node m, D,,, = Zne/\fm Winm -

A graph signal x = [x1, 22, ,Zm, -+ ,xN] is a signal defined on G =

V,E, W), z, is the value associated to node m € V.

3.3 Lifting scheme on graph data

Lifting scheme can be extended to graph, which means can provide general
solution for arbitrary undirected graph data. Lifting scheme on graph has also
split, predict, update stage. In split stage, we split input graph into two disjoint
set of nodes. In prediction stage, nodes in prediction set are predicted by nodes
in update set with appropriate prediction filter. In update stage, nodes in update

set are updated by details.

-1] 3
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Prediction stage

Update stage Next level

Figure 3.1 Lifting scheme on graph-signal data

In next chapter, we will introduce greedy UPA (update-predict assignment)
algorithm proposed by Martinez-Enriquez et al. (2018). Before moving on to

the next chapter, we will discuss about moving average model.

Definition 3.3.1 (General moving average model (MA model)). The moving
average model for observed signal x defined on G = (V,&, W) and for general

node m €V is

Ty =C+ Z Amm€n + Mm
nEN[m]

for some coefficients gy, ,, constant ¢, zero mean independent random variables

€, and n,,, with respect to variances 062 and 072].
The vector form of this equation is,
x=cl+Qe+n,

where Q. n 18 g for n € N, and 0 otherwise.

1 S TH



Chapter 4

Recent approaches improving
performances of lifting scheme

4.1 Previous approach

There are some traditional methods of lifting scheme, for example, max-lifting
scheme and median-lifting scheme using nonlinear filter. Max-lifting scheme uses
two coefficients for lifting so that makes the result of lifting which is sensitive
to update/predict set selection more robust. Median-lifting scheme is also used
for similar purpose.

LOCAAT algorithm is also well-known method for lifting scheme. LOCAAT
(lifting one coefficient at a time) algorithm was proposed by Jansen et al. (2009),
which removes one coefficients at a time with constructed removal order. At
first step, n, algorithm defines set of indices U,, = {1,2,--- ,n}, P, = {0}. At
next step, n — 1, algorithm choose the index which will be removed from the
current set. To choosing the index to be removed, Jansen et al. (2009) used the

minimal integral of scaling function for some appropriate measure. After we

19 A 2



choose index, say i,, then new update set and prediction set for n — 1 level is
Upn—1 =Uy \ {in} and Pp_1 =P, U {in} = {in}.

Weighted maximum cut is one example of lifting scheme methods for graph
data, which provides split of graph which maximized the specified weighted
maximum sum of graph. However this method only reflects structure of graph,
does not reflect the signal of each nodes in graph. To overcome this limitation,
Martinez-Enriquez et al. (2018) proposed greedy UPA algorithm using gener-
alized moving average model which minimized the predefined prediction error.
In addition, Park (2019) extended the idea, using piecewise generalized moving
average model instead the generalized moving average model and applied clus-
tering method for neighborhood selection. In this chapter, we will review these

two papers.

4.2 Greedy UPA algorithm

In this section, we will introduce about greedy UPA algorithm proposed by
Martinez-Enriquez et al. (2018), and review his paper. In this paper, we will
only deal with a minimum preliminaries necessary for reviewing this paper. For
details, you may refer the original paper, Martinez-Enriquez et al. (2018). This
paper focuses on the UPA problem, which is split step of lifting scheme on graph-
signal data. The main purpose of this paper is to analyze the UPA problem and
derive optimal UPA for given assumptions on signal model and filters. Before
introducing greedy UPA algorithm, we begin with some preliminaries.

We will use notations introduced in chapter 3. They define Ey; is total pre-
diction error they defined as the sum of the expected value of squared prediction

error. The main goal of this paper is solving following problem.

]
13 =4



Problem 1. UPA Problem: Find the UPA that minimizes the total prediction

error

Eior = ZE{(% — &)%) = ZE{d’LQ}

iEP 1EP
where |P| is given.
The model which we will assume affects solution for this UPA problem. In

this paper, he used general moving average model introduced in chapter 3. Also

they defined linear predictor as follows.

Definition 4.2.1. General linear predictor Under condition G = (V,&,V), x,
and UPA,

T = E DikTk-

keN;NU

in vector form,

x=Px
where P; ; = p; ; for j € N; NU, and zero otherwise.

They claimed that correlation between nodes of graph through M = ¢2QQ”
affects the UPA that minimizes Fy;.

Back to the problem, it is not suitable to find the brute-force solution for
UPA problem. They proposed greedy UPA algorithm, which locally minimize
FEior in each iteration. Algorithm starts with the state that every nodes of graphs
are in P set, and for every iteration, chosen node ¢* that minimizes E,; is moved
to U set. Define 16t = Et{(f; U E,;{;;C}, the difference of Ej,; of iteration ¢ and
t — 1 when node ¢ is moved. Algorithm 1 shows summary of the greedy UPA
algorithm.

14 Sk



Algorithm 1 UPA Greedy Algorithm proposed by Martinez-Enriquez et al.
(2018)

Require: G = (V, &) with predefined conditions, given |P|, U = {@}, P = {£}

1:

2:

Calculate M = ¢2QQ” and get two-hop neighbors for every node in V
while |P|{8 > |P| do for every ¢ = 1 to ¢ = |P|{#}, calculate ©{4¢} in the
neighborhood of ¢

Calculate ©®{¢} and select the node ¢* with maximum O{:c}, ¢ =
argmax . p©{tc}

Let U <~ UU{c*}, P+ P\{c"}

. end while

: return UPA solution

In his paper, several experimental results are introduced. The main contri-

bution of this paper is that they prove the optimal depends on the correlation

between nodes on graph, and it is not equivalent to weight maximum-cut or

minimizing the discarded edges. Also proposed greedy UPA algorithm, and

experimentally validated his conclusion. For further study, they suggested to

using different model instead of generalized moving average model. Also setting

different |P| nodes are also suggested.

4.3 Enhancement of lifting scheme on graph-signal data

via clustering based network design

In Park (2019)’s paper, in chapter 3, he introduced extended version of greedy

UPA algorithm of Martinez-Enriquez et al. (2018), using piecewise generalized

moving average model instead generalized moving average model and adjusting

neighborhood selection by clustering based network design.

He expand the idea of Martinez-Enriquez et al. (2018) on more general set-

15 -"‘-u_i'l'll | &



tings. First, we need to introduce piecewise generalized moving average model,
linear predictor, and prediction error. For details, you may refer Park (2019)’s

paper, chapter 3.

Definition 4.3.1. PGMA model (piecewise generalized moving average model)
Let ¢, be signal of node m, and assume that the value of signals can be clustered

into some values.

Tm = Cm + Z Qm.n€n + Mm,
€N

in vector form,

x=c+ Qe+,

where Q.n = Gm,n for n € Ny, and zero otherwise.

Definition 4.3.2. Linear predictors for the clustered version of piecewise gen-
eralized moving average model For given G = (V,&£,V), x, and UPA, linear
predictors for the clustered version of piecewise generalized moving average
model are defined as follows,
Z; = Z DikTk-

keNFNU
in vector form,

x=P'x

where P}, = p;; for j € N;" NU, and zero otherwise.

Definition 4.3.3. Prediction error for piecewise generalized moving average

model Total prediction error is defined by

Bt =Y B{(zi — )’} = _ Epcua,

i€P i€P

16 -":er -I_I' 1_-“



where

Epcgua; = B{x;}* — 2p! Ky, i + Pl K, pi
_ 2 . 2 T . .
=Cj + Mii+ 0y — 2p; (Muiel + Cuicl>

+ pi(M)UU; + O'%I + cz,{icgi)pi,

where U; = N; NU, K = E{xx'}, p; is column vector, p;; for k € N; NU, and

M = U?QQT With fimn = 062 Zle./\/[m]mj\/[n] 4m,1qn,l-

Park (2019) expanded idea of Martinez-Enriquez et al. (2018), and extend
greedy UPA algorithm with different model assumption and clustering network-
design. Greedy UPA algorithm with clustering based network design is summer-
ized in algorithm 2. There are some updates in Park (2019)’s algorithm from
Martinez-Enriquez et al. (2018)’s algorithm, is that additional steps are added
such that computes clustering result and changes W matrix. Park (2019) also
introduced UPA problem under the piecewise homogeneous model, but we will

omit this part in this paper.

17 2 ‘_]l



Algorithm 2 UPA Greedy Algorithm with clustering based network design
proposed by Park (2019)

Require: G = (V,&, W), clustering sets B = (By,- -, Br), weights s, W,
U = {0}, P ={V} and optimal number |Pop|.

1: Define a new neighborhood of node i € B, by clustering sets B, N =
N;NB.,r=1,---, R, where i is in B,. It is equivalent to changing W into
W*, where W* is the neighborhood corrected version.

2: while |P| < [Pyp| do

3: Set U <~ UU{v}, P« P\ {v} and estimate g; = Zke/\/;‘ Pi(Yk)-

4: Compute empirical version of the total prediction error E‘wt, Etot =
Ziefp(?/i - Qz)Q
5: Find v* that minimizes Etot.

6: Set U + UU{v*} and P+ P\ {v*}
7: end while

8: Return UPA

18 -’x_i'l'll.-i L



Figure 4.1 Segmentation-based edge addition called statistical region merging

(SRM) image. Number of segmentation are 34,30,14,9 respectively.

In Park (2019), there are several simulation study and real data analysis.
In this paper, we will review one of results, image data analysis. Image data
analysis used test image data from Li et al. (2016) and described in Figure
4.1. S.Park simulated this data by his proposed method (Proposed) and 2-hop
edges proposed by Martinez-Enriquez et al. (Enriquez) and compared result.
Park (2019) claims that proposed method gives better construction from Figure
4.2 and table 4.1. S.Park claims that in his proposed method, choosing several
nodes near edges that belongs into U set in the next level, has advantage in

finding edges.

s 2 A & ) 8t



Ratio |U|/N = 0.05 |02 |04

89.92 | 38.02 | 35.20
(0.81) | (0.52) | (0.24)
87.81 | 31.75 | 27.83
(2.03) | (0.99) | (1.16)

vV Eior Enriquez (std.error)

v Eior Enriquez (std.error)

Table 4.1 Blockwise image data simulation results of \/Ey, from Park (2019)

(a) |U|=0.05N, Enriquez

(b) |U|=0.20N, Enriquez (c) |U|=0.40N, Enriquez

'

Figure 4.2 Graph image signal reconstruction results from Park (2019).

(a),(b),(c) uses 2-hop edges (Enriquez) and (d),(e),(f) uses 2-hop intercluster
edges (Proposed).

20 S Eas kg



The main contribution of Park (2019)’s chapter 3, is that extend the concept
of UPA algorithm with new models. As result, clustering method can be easily
applied. For further research, he emphasized that we need to focus on how to
constructing coarser graph-signal network.

He also focused on spatio-temporal data. Piecewise generalized moving aver-
age model can be reconsidered as space-time version, called piecewise constant
spatio-temporal model. However, refer to spatio-temporal distances, we cannot
apply this concept. For further study, the next step will be finding a way to

overcome this problem.
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Chapter 5

Conculsion

In this paper, we introduced the second-generation wavelet lifting scheme, re-
viewed the latest papers aiming at improving performance of lifting scheme, and
discussed how to improve the performance of the lifting scheme in the future.
Unlike conventional wavelets, the lifting scheme consists three types of op-
eration, split, predict, and update. Lifting scheme overcomes the conditions,
dyadic data size and identically distributed data, which are the limitations of
wavelets. Related studies on lifting schemes are ongoing, and among them, re-
searches aiming at improving the performance of the lifting scheme are actively
being continued. In this paper, we discussed the points can improve the perfor-
mance of the lifting scheme, and introduced two recent studies about improving
performance of lifting scheme by focusing on this points, removal point selection

and neighborhood selection.
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