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이이이학학학석석석사사사학학학위위위논논논문문문
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굵굵굵은은은펜펜펜변변변환환환을을을이이이용용용한한한걸걸걸음음음 수수수자자자료료료군군군집집집화화화
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서서서울울울대대대학학학교교교 대대대학학학원원원

통통통계계계학학학과과과

김김김민민민지지지
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This thesis studies clustering time-series data by suggesting a new similar-

ity measure and an optimization algorithm. To illustrate, we propose a new

time-series clustering method based on the Thick Pen Transformation (TPT)

of Fryzlewicz and Oh (2011), whose basic idea is to draw along the data with

a pen of given thicknesses. The main contribution of this research is that we

suggest a new similarity measure for time-series data based on the overlap or

gap between the two thick lines after transformation and smoothing. This

method of applying TPT to measure the association exploits the strengths

of the transformation; it is a multi-scale visualization technique that can be

defined to provide some information on neighborhood values’ temporal trends.

Moreover, we further suggest an efficient iterative clustering optimization al-

gorithm appropriate for the proposed measure. Our main motivation is to

cluster a large number of physical step count data obtained from a wearable

device. Moreover, a numerical simulation is performed to compare our method

to some existing methods, suggesting that the proposed scheme can be adapted

to more general cases.

Keywords: Time-series data, clustering, multi-scale method, dynamic time

warping, thick pen transform
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Chapter 1

Introduction

Clustering is an unsupervised classification problem where data objects

with similar features are grouped together. In this thesis, our main focus is

to cluster time-series data, which is intrinsically high-dimensional, and values

tend to co-vary and thus are dependent on their neighborhoods. To cluster

such high-dimensional data, much work has been done on suggesting new data

representation method ([1]), or distance measure ([2],[3]). Moreover, func-

tional data clustering approach which assumes that curves can be represented

by a set belonging to an infinite dimensional space can be applied to time-series

data ([4], [5], [6]). Numerical works in the literature are motivated by such

data as gene expression data ([7],[8]), bike sharing systems data [9], power load

supply data ([10]), and so on. Another example is Lim et al.’s ([11]) functional

clustering of accelerometer data after transforming input variables based on

the rank-based transform and the thick-pen transform, which is highly related

to our motivating example.

Our main concern is to suggest new time-series similarity measure. Choos-

ing an adequate distance measure is a controversial and important matter in

time-series clustering domain. Euclidean distance and Dynamic Time Warp-

ing (DTW) are the most common methods for similarity measure in the time-

series clustering ([12]). However, Euclidean distance considers each component
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as a part of a long vector of independent values, which fails to take into ac-

count temporal trends and similarities in shape in time-series data sets. While

dynamic time warping allows a non-linear mapping between two temporal se-

quences and provides a way to measure the similarity of sequences of different

lengths, it is unsuitable when intending to reflect the time gap. Also, since the

DTW matching can be applied to various distance measures or cost matrices,

we note that proposing a new component-wise measure can employ the DTW

algorithm as well.

The motivation of this study is to cluster a large set of step count data

measured every minute from a wearable device. Each data is 1440-dimensional

count data per day per individual recorded from 00:00 a.m. to 11:59 p.m. We

aim to identify different step patterns of 19604 days over 79 people. Figure

1.1 shows three example plots of step data. As we can see, the data possess

unique and interesting characteristics: it is high-dimensional, zero-inflated,

and steps tend to occur discontinuously, that is, there are numerous moments

when people take a break between each step. Our goal is to present a com-

putationally efficient clustering method that can identify different trends of

movements regarding their amounts and patterns.

Figure 1.1: Three different step count data

In this study, we propose a novel time-series clustering scheme after trans-

formation and smoothing, inspired by the Thick Pen Transform (TPT) of

Fryzlewicz and Oh ([13]). TPT is a novel way of viewing time series at mul-

tiple scales using a range of pens with various thicknesses. The effectiveness
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of applying TPT to measure the association lies in its flexibility. To be spe-

cific, the shape of a pen can vary; and, we define a new shape based on the

mean of bounds of simple square pens so that the boundaries could encompass

time-series trends of neighboring data points. The thickness of a pen can vary,

enabling us to explore the multi-scale nature of TPT with larger thicknesses

of pens bringing out coarser scale features of the data, which may diminish

noise effects. We propose a new similarity measure for time-series clustering

based on the overlap of the areas under the upper boundaries after applying

thick pen transformation and smoothing. One of the main characteristics of

the measure is that it is defined for between components of vectors, so that we

can apply the DTW algorithm to find an optimal path between two vectors.

Finally, we show that applying the k−medians algorithm for the logarithms

of upper boundaries is appropriate for the clustering optimization problem for

the suggested similarity measure.

The rest of this thesis is organized as follows. Chapter 2 introduces Thick

Pen Transform and Thick Pen Measure of Association of Fryzlewicz and Oh

(2011) as a background concept needed for our method. Chapter 3 suggests

our clustering scheme, including data representation methods, a new similarity

measure, and an appropriate clustering algorithm. Chapter 4 deals with a real

data analysis of accelerometer data, and chapter 5 presents results on simu-

lation data to compare our results with other methods. Chapter 6 concludes

the thesis with some remarks.
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Chapter 2

Background

2.0.1 Thick Pen Transform

The TPT of Fryzlewicz and Oh (2011) is based on the idea of drawing along

the time series data points with a pen with its own shape and thickness. Let

T = {τi : i = 1, . . . , |T |} denote the set of thickness parameters. The formal

definition of the thick pen transform TPT (Xt) of a real valued univariate

process (Xt)
n
t=1 is the following sequence of pairs of boundaries,

TPT (Xt) = {(Lτit , U
τi
t )}i=1,...,|T |,

where Lτit and U τit respectively represent the lower and the upper boundary

of the area covered by a pen of thickness τi at time t.

The TPT plays three important roles in reflecting the time series data

characteristics. To be specific, different shapes of a pen can be defined to

manage how the transformed values are affected by the temporal trends of

neighborhood values. For example, Fryzlewicz and Oh proposed the square

and the round pen as follows.

(a) Square pen :

U τt = max{Xt− τ
2
, . . . , Xt+ τ

2
}+

τ

2
γ
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Lτt = min{Xt− τ
2
, . . . , Xt+ τ

2
} − τ

2
γ

(b) Round pen :

U τt = max
k∈[− τ

2
, τ
2
]∩Z
{Xt+k + γ

√
τ2\4− k2}

Lτt = min
k∈[− τ

2
, τ
2
]∩Z
{Xt+k − γ

√
τ2\4− k2}

In the above definition, Z denotes the set of integers and γ is the scaling

factor defined for adjusting the difference between the thickness of the pen

and the variability of the data. Second, it has a multi-scale nature of viewing

data at a different distance according to the thickness of a pen. To be specific,

applying large τ values corresponds to zoom out and see trends of the data in

a coarse way, while small τ values sensitively catch original features. Finally,

the transformation is visually intuitive and informative. Figure 2.1 shows

round pen boundaries with thickness 30 and 60 applied to a step count data.

Different pen shapes are further addressed in the next chapter, shown in Figure

3.1.

2.0.2 Thick Pen Measure of Association

Fryzlewicz and Oh (2011) also proposed a way to measure the association

between two time-series data based on the TPT. Let Lτt (Z) and U τt (Z) be the

lower and upper boundary for a generic process Z at time t ∈ T and thickness

τ . The thick pen measure of association (TPMA) between X and Y is defined

as

ρτt (X,Y ) =
min{U τt (X), U τt (Y )} −max{Lτt (X), Lτt (Y )}
max{U τt (X), U τt (Y )} −min{Lτt (X), Lτt (Y )}

.

Some remarks can be made here.
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Figure 2.1: (top) Round pen bound with thickness 30, (bottom) round pen
bound with thickness 60.

• The measure satisfies that ρτt (X,Y ) ∈ (−1, 1]. Note that ρτt (X,Y ) > 0

holds when there exists an overlap between the two thick boundaries, while

ρτt (X,Y ) < 0 with a gap between them. This idea of measuring time-series

dependence based on the overlap or gap of pen areas is intuitively perceived

when we visualize the transform.

• The association is defined at each time t, preserving the dimension of the

original process, n = |T |. This allows various applications to be attempted.

For example, we can define a summary measure between two series in a

various way; an overall mean, i.e. ρ̄τ1,n(X,Y ) = 1
n

∑n
t=1 ρ

τ
t (X,Y ), mean

of the first half, i.e. ρ̄τ1,n/2(X,Y ) = 2
n

∑n/2
t=1 ρ

τ
t (X,Y ), or product, i.e.

1
n

∏n
t=1 ρ

τ
t (X,Y ), can be used as summarized similarity measures.

• In addition, the similarity measure is computed coordinate-wise so that

the dynamic time warping algorithm is applicable on the TPMA to find

an optimal match between two long vectors. This characteristic is also

addressed in the next chapter, see Figure 3.4.
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In this study, we work on defining a new similarity measure for clustering

time-series data based on an application of the TPMA.
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Chapter 3

Methodology

3.0.1 Transformation and smoothing

When we decide extra smoothness is advantageous, we first apply simple

moving average to the data with a chosen window size. When applied to step

count data, this smoothing process weakens the effect of a short momentary

step generated between consecutive zeros. It can be observed in Figure 3.1

by comparing (a) and (b). Then, we apply TPT to get transformed pairs

of boundaries. As previously stated, through this transformation, we can

employ useful features of the TPT that is multi-scale and visually enlightening,

embracing time-series local dependence structure. In this study, we define a

variation of the square pen to get a smoothed version of thick pen boundaries.

To illustrate, we define “Ensemble square pen” as ensemble means of bounds

of simple square pens with different starting points.

The definition is as follows. Suppose that we have a real-valued uni-variate

process (Xt)
n
t=1. Let T = {τi : i = 1, . . . , |T |} be the set of thickness parame-

ters, γ be the scaling factor and τ be the thickness of a pen.

(a) Ensemble square pen :

U τt =
1

τ + 1

τ∑
i=0

max{Xt−i, . . . , Xt+τ−i}+
τ

2
γ
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Figure 3.1: (a) Original step data. (b) smoothed data by simple moving
average with window size 5, and (c)-(f) smooth the data and apply the TPT: (c)
square pen with thickness 30; (d) square pen with thickness 100; (e) ensemble
square pen with thickness 30; (f) ensemble square pen with thickness 100

Lτt =
1

τ + 1

τ∑
i=0

min{Xt−i, . . . , Xt+τ−i} −
τ

2
γ

Figure 3.1 shows examples of transformed and smoothed results. In the

chapter 4, we use the TPT with the ensemble square pen with thicknesses 30

and 100 to cluster step data and compare the results.

3.0.2 Similarity Measure

To check if the TPMA in the previous chapter can be used as a similar-

ity measure for a time-series clustering problem, we performed a hierarchical

clustering using the measure to cluster synthetic data. Figure 3.2 shows six

groups of different trends of synthetic data used for the experiment. Each

group has five elements with different trends of (a) normal, (b) cyclic, (c) in-

creasing, (d) decreasing, (e) upward shift, and (f) downward shift. Since we

aim to differentiate the overall trends, it does not matter if shifts occur at a

different timing. Thus, we use the dynamic time warping (DTW) algorithm

based on the TPMA similarity measure to find an optimal match between two
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data ([2]). Figure 3.4 shows an example of an optimal match between two data

in group (e) obtained by the DTW algorithm. Table 3.1 shows the hierarchical

clustering result using the TPMA with DTW, together with results using the

Euclidean L2 distance and the Euclidean distance with DTW. The average-

linkage criteria is considered here. As we can see from Figure 3.3, using the

TPMA as a similarity measure not only correctly identifies all clusters, but

also groups Group (a) and (b), (c) and (e), (d) and (f) together when we tend

to cluster them into three groups.

Figure 3.2: Six groups of synthetic data with different trends: (a) normal,
(b) cyclic, (c) increasing, (d) decreasing, (e) upward shift, (f) downward shift.

Group 1 2 3 4 5 6

DTW + TPMA 5 5 5 5 5 5

DTW + Euclidean 5 4 1 8 10 2

Euclidean 5 3 1 1 10 10

Table 3.1: Hierarchical clustering results

Dynamic Time Warping has been shown to be powerful and computation-

ally efficient time-series measure widely-used in recent studies ([14]). There-

fore, the availability of applying the DTW to the TPMA is indeed a pow-

erful potential for the measure. However, there are computational limita-

tions to proceed clustering large-scale data set using the TPMA as a simi-

10



Figure 3.3: Hierarchical clustering
dendrogram for the TPMA result

Figure 3.4: Two data in group (e)
matched using the TPMA by the
DTW algorithm

larity measure, since iterative algorithms such as the k−means algorithm are

hardly guaranteed to converge to the local optimum. Instead, the pairwise

distance/similarity matrix should be computed to proceed PAM clustering or

other search methods. To solve this problem and employ an efficient clustering

algorithm, we consider a special form of the TPMA in this thesis.

As we can see from Figure 2.1 and Figure 3.1, lower bounds of step data

barely fluctuate. So it is natural to try setting lower bounds to zero when

applying TPMA. In essence, measuring a similarity between two data by ap-

plying TPMA with zero lower-bounds corresponds to measuring the ratio of

the overlapping areas under the upper boundaries obtained by the thick pen

transformation at each time t. In Figure 3.5, we visualize an example of two

step data with zero lower bounds and their TPMA measure values.

Figure 3.5: (a) Visualization of the overlapping areas between two data,
colored by blue and red respectively. (b) TPMA0 values of (a)
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We propose to use the TPMA measure after setting the lower bound of the

pen to 0, denoted by TPMA0, as a new similarity measure for the clustering

problem.

(ρ0)
τ
t (X,Y ) =

min{U τt (X), U τt (Y )}
max{U τt (X), U τt (Y )}

In practice, first calculate upper bounds of the data, U = {U1, . . . , UN},

where Ui = (ui(t))
1440
t=1 = (Ut(Xi))

1440
t=1 , and rewrite the similarity measure by

means of those upper boundaries. We suppress the dependence on thickness

τ to simplify the notation.

η(ui(t), uj(t)) = ρ0(Xi(t), Xj(t))

=
min{ui(t), uj(t)}
max{ui(t), uj(t)}

When using the measure η(x, y) =
min(x, y)

max(x, y)
, the center of the two real

values is their geometric mean. In other words, η(x, a) = η(a, y) holds when

a =
√
xy. In the next chapter, we use some features of this function to obtain

a simple and appropriate clustering algorithm.

3.0.3 Optimization Problem for Clustering

In this section, we view the clustering time-series data as an optimization

problem. The goal is to determine K optimal partitions of a set of observations

X = {X1, . . . , XN}. Let P = {P1, . . . , PK} be the set of K partitions of the

data which satisfies that

K⋃
c=1

Pc = X and Pi ∩ Pj = ∅ for i 6= j. Suppose that

each data Xi belongs to a domain set E. Then, find a set of cluster prototypes

M = {m1, . . . ,mK : mc ∈ E, c = 1, . . . ,K}. Given a distance function d, we

define the clustering problem as minimizing the cost function

W (P,M) =
K∑
c=1

∑
x∈Pc

d(x,mc).
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An iterative algorithm proceeds the optimization process in two steps:

Update P : Given a set of cluster prototypes M , update P with

Pc = {xi : argmin
m∈M

d(xi,m) = mc, i = 1, . . . , N} for each c ∈ {1, . . . ,K}.

Update M : Given a partition P , update M with

mc = argmin
m∈E

∑
x∈Pc

d(x,m) for each c ∈ {1, . . . ,K}.

Note that the cost function decreases for each iteration step. The well-known

k−means algorithm deals with L2 distance, which leads to the mean of each

components as a cluster prototype when E = Rn, n ∈ N. Also, L1 distance

function uses medians as cluster prototypes, leading to the k−medians algo-

rithm.

Going back to our similarity measure, note that

log {η(ui(t), uj(t))} = log
min{ui(t), uj(t)}
max{ui(t), uj(t)}

= −| log
ui(t)

uj(t)
|

holds for each time t. For i ∈ {1, . . . , N} and given partition P , let ci = c

such that c ∈ {1, . . . ,K} and Xi ∈ Pc. Assume that µ = {µc : 1 ≤ c ≤ K}

be a set of cluster representatives. Then, according to the following analogue,

maximizing the product of TPMA0’s for each time t and element i is equivalent

to minimizing the sum of L1 distance with respect to the logarithms of upper

boundaries.

maximize
P, µ

T∏
t=1

N∏
i=1

ητ (ui(t), µ(ci)(t))

⇐⇒ maximize
P, µ

T∑
t=1

N∑
i=1

log {ητ (ui(t), µ(ci)(t)))}

13



⇐⇒ minimize
P, µ

T∑
t=1

N∑
i=1

| log ui(t)− logµ(ci)(t))|

In other words, we define the cost function to be minimized given a parti-

tion as follows.

W (P, µ) =

T∑
t=1

N∑
i=1

| log ui(t)− logµ(ci)(t))|

Since it is the L1 optimization problem with respect to the logarithms of

upper bounds, applying the k-medians algorithm to {LUi : LUi = (log ui(t)), 1 ≤

i ≤ N} guarantees monotone decrease in the cost function. The algorithm de-

pends on the initialization, thus we repeat k-medians algorithm several times

and get the final cluster with the minimal cost function as the final cluster.

We have a remark on this idea of log transformation of upper boundaries.

0 < η(ui, uj) ≤ 1 holds with τ > 0, so it is problematic when η(ui, uj) goes

near zero and the logarithm diverges toward the negative infinity. This is

why the thick pen transformation matters in our setting. Under the zero-

bounded setting, data are non-negative and a thickness of a pen guarantees

the minimal value of upper boundaries sufficiently bigger than zero. Thus, we

can assume that there exists δ such that η(ui, uj) =
min{ui,uj}
max{ui,uj} > δ > 0 for

any i, j ∈ {1, . . . , N} as long as the upper boundaries of the transformed data

are bounded above. For instance, our step data with thickness 30 satisfies

−3.5 ≤ log η(ui, uj) ≤ 0.

3.0.4 Clustering Algorithm

Now we present the whole clustering scheme with the clustering objective

of maximizing products of TPMA0’s between each observation and its cluster

prototype.

14



Step 1: Smooth and Transform the data via moving average and the thick

pen transformation to obtain the upper boundaries {u1, . . . , uN}.

Step 2: Randomly initialize the cluster.

Step 3: For each cluster, obtain the cluster prototype as

mc := logµc = med{log u
(c)
1 , . . . , log u(c)nc }, c ∈ {1, 2, . . . ,K}

Step 4: Assign every curve to the cluster with the minimal L1 distance

between the logarithm of the upper bounds of the curve and cluster

prototypes.

Step 5: Iterate Step 3 - Step 4 until no more curves are regrouped.

Step 6: Repeat Step 2 - Step 5 for sufficiently many times and get the final

cluster with the minimum cost function.

To perform the analysis, observe the given data and choose a proper

smoothing window size, a thickness τ , and a shape of a pen appropriate for

the data and clustering objective. For instance, applying a thicker pen tends

to see the data at a distance, focusing on the big trends, while narrower thick-

ness values tend to catch the pattern sensitively. To determine the number of

clusters K, we use the gap statistics of Tibshirani et al. ([15]).

15



Chapter 4

Real data Analysis

We perform clustering of step data after smoothing and transforming the

data with the ensemble square pen. For this, we consider two different param-

eter settings as follows.

A. Smoothing window size 3, pen thickness τ = 30, and scaling parameter

γ = 0.2.

B. Window size 5, pen thickness τ = 100, and scaling parameter γ = 0.2.

The main difference between the settings is in τ values. As we can see from

Figure 3.1, with a large pen thickness, the pen boundary values tend to less

fluctuate than smaller thicknesses, keeping boundaries large when there exists

a movement in the nearby time. In other words, in the case with large τ

values, some changes in the amount of walking do not affect the upper bound-

aries much, and the boundaries instead mainly reflect the existence of the

movement.

Figure 4.1 and 4.2 plot the mean curves of the original step data and the

pen means for each resulted cluster respectively using the setting A and B. We

chose K = 6 for the both cases. Note that since each cluster consists of a large

number of step data where zero steps occur repeatedly, the mean curves might

tend to regress downward than the original trend that each group represents.
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Cluster ID 1 2 3 4 5 6

Number of Days thickness
30 1377 2689 3057 3065 4119 5297
100 1649 3315 2298 3074 4225 5043

Mean Step Count thickness
30 11600 7433 2683 7303 10665 10925
100 11112 5904 1833 7392 12444 10101

Weekend (%) thickness
30 9.9 29.7 38.9 47.1 33.3 9.1
100 11.3 44.3 39.8 48.9 23.5 7.1

Table 4.1: Summary of clustering results

Table 4.1 has information about the resulted cluster size the mean step counts,

and the percentage of weekend days. Figure 4.3 further maps the distribution

of individuals included in each group. In both cases, group 1 (red) represents

days with early wake-up, early sleep, and a lot of walks, where only a few

people, who may be early birds, are included according to Figure 4.3. Group

2 (yellow) represents days with late rising and less walks, which relatively

differs in the shape a lot between the τ = 30 and τ = 100 results. Group 3

(green) consists of the laziest days with the smallest total steps while group

4 (sky-blue) keeps late hours. Both groups have a large weekend proportion,

where group 4 shows the largest percentage of weekend days among six groups.

Finally, group 5 (blue) and 6 (pink) both show large amount of mean step

counts, with different average wake-up times. The distribution of individuals

between group 5 and 6 is quite different, which might represents two groups

of people sharing different office hours or morning routines.
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(a) Mean curves of step data for each cluster (b) Mean curves of step count data (—) and
the pen means (- - -) in each group

Figure 4.1: Clustering results by using the TPT with τ = 30

(a) Mean curves of step data for each cluster (b) Mean curves of step count data (—) and
the pen means (- - -) in each group

Figure 4.2: Clustering results by using the TPT with τ = 100
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Figure 4.3: Map of the distribution of individuals included in each group
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Chapter 5

Simulation study

In this chapter, we generate synthetic data to compare the proposed clus-

tering scheme with existing methods. The list of simulation sets used are as

follows. Figure 5.1, 5.2, and 5.3 represent each data from different groups of

respective simulation set.

• Sinusoidal data with different variability : we generate random sinusoidal

curves with several variances defined as Y (t) = |sin(5(t−1)T ) + ε(t)|, t ∈

{1, . . . , T}, where T = 1024 and ε ∼ N(0, σ2) with σ ∈ {0.01, 0.1, 0.7, 1}.

We consider clustering 200 random curves into 4 groups, 50 samples gen-

erated for each σ value.

• Block data with different patterns: we generate random block curves with

different patterns defined as Y (t) = |
∑5

j=1 hj{1 + sgn((t− 1)/T − ξj)}/2+

ε(t)|, t ∈ {1, . . . , T}, where T = 512 and ε ∼ N(0, 32). hj satisfies |hj | ∼

U(0, 20), h1, h3 < 0, h2, h4 > 0, and
∑5

j=1 hj = 0, whose values are related

to the height of each vertical jump. ξj is a randomly real number chosen

from a specified interval, which determines where the jump occurs. We

set four different intervals as (0, 25), (15 ,
3
5), (25 ,

4
5) and (35 , 1), where possible

jumps can occur. Here we generate 50 samples for each interval and cluster

the samples into 4 groups.

20



• Block data with different amount and patterns: we generate three different

groups of random block curves with different amount and patterns. Data

are generated in a similar way like above. Group 1 data have three jumps

in (0, 15) with |hj | ∼ U(0, 30) and five jumps jumps in (25 ,
3
5) with |hj | ∼

U(0, 20), with errors having σ = 5. Group 2 data have five jumps in (0, 25)

with |hj | ∼ U(0, 10) and three jumps jumps in (25 ,
4
5) with |hj | ∼ U(0, 5),

with errors having σ = 3. Finally, Group 3 data have four jumps in (15 ,
2
5)

with |hj | ∼ U(0, 20), three jumps in (25 ,
4
5) with |hj | ∼ U(0, 15) and three

jumps jumps in (45 , 1) with |hj | ∼ U(0, 20), with errors having σ = 5. 50

samples are generated per each group and groups show different amount

and patterns of jumps.

Figure 5.1: Four groups of sinusoidal data with different variabilities.

Figure 5.2: Four groups of block data with different patterns.

We compare the proposed method with different optimization settings and
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Figure 5.3: Three groups of block data with different amount and patterns.

some functional clustering methods. Figure 5.4 shows different optimization

schemes considered in this study. Our method using TPMA0 as a similar-

ity measure is depicted on the top, where we apply logarithms to the thick

pen upper boundaries and then apply the k−medians algorithm. In the other

settings, we use k−medians or k−means algorithm respectively for L1 or L2

optimization. For these simulation sets, we smooth the original data with win-

dow size 3 and then apply the ensemble square pen with thickness 30 to get

the transformed data. For the five settings depicted in Figure 5.4, we repeat

algorithms N = 20 times and choose the cluster result with the minimum

cost. For functional clustering methods, we use (a) funFEM: functional clus-

tering using discriminative functional mixture model by Bouveron, Come and

Jacques (2014, [9]), and (b) funHDDC: clustering functional data based on

modeling each group within a functional subspace by Bouveyron and Jacques

([16]).

The simulation results are in the Table 5.1 based on the correct classifica-

tion rate (CCR) criteria defined as

CCR =
the number of correctly classified curves

total number of curves
.

The average CCR rates and their standard deviations after simulated 100 times

using the seven different methods are listed in Table 5.1. We observe several

remarks: (a) Methods in Figure 5.4 have standard deviations close to zero.

This means that repeating clustering algorithm N = 20 times within those

methods yields stable outcomes. (b) Overall, the proposed method, TPMA0
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Figure 5.4: Different optimization settings used for the comparison.

Signal
Results for the following methods:

TPMA0 TP L1 TP L2 L1 L2 funFEM funHDDC

Sinusoidal
1.00
(0)

1.00
(0)

0.68
(0.09)

0.64
(0.09)

0.71
(0.05)

0.92
(0.14)

0.76
(0.16)

Block
(pattern)

0.94
(0)

0.92
(0)

0.88
(0.01)

0.77
(0.02)

0.78
(0.01)

0.83
(0.11)

0.83
(0.08)

Block
(pattern and amount)

1.00
(0)

0.99
(0)

0.97
(0)

0.74
(0.01)

0.80
(0.01)

0.91
(0)

0.91
(0.03)

Table 5.1: Means (standard deviations) of the correct classification rate
(CCR) for each method

outperforms other methods in our simulated data, suggesting that the measure

might be generally applied to cluster non-negative count data. (c) However,

applying L1 optimization to upper bounds worked as well as the proposed

method, which implies that taking logarithms to the upper boundaries is not

a critical choice for the performance. We might skip that step when it is not

appropriate to apply log transform to the data.
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Chapter 6

Conclusions

As shown by the hierarchical clustering example of the synthetic data,

the TPMA of Fryzlewicz and Oh is a good time-series similarity measure,

which can be further applied to clustering problems. However, measuring the

similarity of all pairs to proceed PAM clustering is computationally disadvan-

tageous. In this study, we have proposed a simple and effective algorithm

applicable to the new similarity measure, TPMA0, which is a special form of

the TPMA. We examine that the proposed method can be applied in general

for time series data distributed on the same side along the axis, whose similar-

ities are measurable in the form of a proportion of overlapping areas. Indeed,

we have shown that measuring time-series similarity using the TPMA0 and

optimizing their total products is equivalent to the Log L1 optimization of the

transformed upper boundaries.

The proposed measure has its strength in the use of the novel thick pen

transformation, which is visually inspiring multi-scale method, representing

time-series dependence structure. Moreover, since the measure is computed

coordinate-wise, we can also employ the dynamic time warping algorithm, one

of the most widely-used and effective time-series matching algorithm. Indeed,

these properties endow the measure a great potential for various applications.

For the further study, since the TPMA can be summarized in various ways and
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different choices of parameters yield different similarity distribution, compre-

hensive approaches such as ensemble clustering or fuzzy clustering can be fur-

ther applied for the measure. In general, we expect that the TPMA, together

with its special form called TPMA0. might become an overarching similarity

measure assessing the time-series association with its intuitive structure and

great flexibility.
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국국국문문문초초초록록록

본 학위 논문에서는 시계열 자료의 군집화 방법을 탐색하며 새로운 유사도

척도와 최적화 알고리즘을 제시한다. 보다 구체적으로 Fryzlewicz and Oh 가

2011년 제시한 굵은 펜 변환법에 기반하여 새로운 시계열 자료 군집화 방식

을 제안한다. 이 변환법의 기본 발상은 두께가 있는 굵은 펜을 이용하여 자

료를 따라 그리는 것이다. 우리 연구의 주된 기여는 변환과 평활화 작업을

진행한 후 얻어지는 두꺼운 선들 끼리의 겹침 혹은 격차를 기반으로 두 시계

열 자료의 유사성을 정의하는 것에 있다. 굵은 펜 변환의 강점은 이것이 다

중 척도의 성질을 띄는 시각화 기법이고, 인접한 값들의 추세를 반영하여 변

환이 정의될 수 있다는 것에 있다. 따라서 해당 변환을 이용해 연관성을 측

정하는 우리의 방식은 앞서 언급한 강점들을 적극 활용하게 된다. 나아가 우

리는 제안한 유사도 척도를 이용하여 군집화를 최적화 문제로 정의하고, 이

를 해결하는 효율적인 반복 알고리즘을 제시한다. 본 연구는 기기를 통해 측

정된 대용량의 걸음 수 자료를 군집화하여 비슷한 걸음 양상끼리 분류하는

것을 목표로 시작되었다. 나아가 합성 자료에 대해 군집화를 진행하며 기존

의 다른 방법들과 성능을 비교하고, 우리의 방법이 다른 자료에도 일반적으

로 적용 가능하다는 것을 확인한다.

주주주요요요어어어: 시계열 자료, 군집화, 다중 척도 방법, 동적 시간 워핑, 굵은 펜 변환

학학학 번번번: 2019-28751
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