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Abstract

Minji Kim
The Department of Statistics
The Graduate School

Seoul National University

This thesis studies clustering time-series data by suggesting a new similar-
ity measure and an optimization algorithm. To illustrate, we propose a new
time-series clustering method based on the Thick Pen Transformation (TPT)
of Fryzlewicz and Oh (2011), whose basic idea is to draw along the data with
a pen of given thicknesses. The main contribution of this research is that we
suggest a new similarity measure for time-series data based on the overlap or
gap between the two thick lines after transformation and smoothing. This
method of applying TPT to measure the association exploits the strengths
of the transformation; it is a multi-scale visualization technique that can be
defined to provide some information on neighborhood values’ temporal trends.
Moreover, we further suggest an efficient iterative clustering optimization al-
gorithm appropriate for the proposed measure. Our main motivation is to
cluster a large number of physical step count data obtained from a wearable
device. Moreover, a numerical simulation is performed to compare our method
to some existing methods, suggesting that the proposed scheme can be adapted

to more general cases.

Keywords: Time-series data, clustering, multi-scale method, dynamic time
warping, thick pen transform

Student Number: 2019-28751



Contents

1 Introduction

2 Background

2.0.1 Thick Pen Transform. . . . . . ..

2.0.2 Thick Pen Measure of Association

3 Methodology

3.0.1 Transformation and smoothing . .

3.0.2 Similarity Measure . . . . . .. ..

3.0.3 Optimization Problem for Clustering . . . . . . ... ..

3.0.4 Clustering Algorithm . . . . . . ..

4 Real data Analysis

5 Simulation study

6 Conclusions

References

16

20

24

25



List of Tables

3.1 Hierarchical clustering results

4.1 Summary of clustering results

5.1 Means (standard deviations) of the correct classification rate

(CCR) for each method

ii '



List of Figures

1.1

2.1

3.1

3.2

3.3
3.4

3.5

4.1
4.2
4.3

5.1

Three different step count data . . . . . . ... ... ... ...

(top) Round pen bound with thickness 30, (bottom) round pen
bound with thickness 60. . . . . . .. ... ...

(a) Original step data. (b) smoothed data by simple moving
average with window size 5, and (c)-(f) smooth the data and
apply the TPT: (c) square pen with thickness 30; (d) square
pen with thickness 100; (e) ensemble square pen with thickness
30; (f) ensemble square pen with thickness 100 . . . . ... ..
Six groups of synthetic data with different trends: (a) normal,
(b) cyclic, (c) increasing, (d) decreasing, (e) upward shift, (f)
downward shift. . . .. ... ...
Hierarchical clustering dendrogram for the TPMA result

Two data in group (e) matched using the TPMA by the DTW
algorithm . . . ... ...
(a) Visualization of the overlapping areas between two data,

colored by blue and red respectively. (b) TPMA( values of (a)

Clustering results by using the TPT with 7 =30 . . .. .. ..
Clustering results by using the TPT with 7 =100 . .. .. ..

Map of the distribution of individuals included in each group

Four groups of sinusoidal data with different variabilities.

iii '

11

11

18
18

21



5.2  Four groups of block data with different patterns. . . .. ... 21
5.3 Three groups of block data with different amount and patterns. 22

5.4 Different optimization settings used for the comparison. . . . . 23

5 A2 et



Chapter 1

Introduction

Clustering is an unsupervised classification problem where data objects
with similar features are grouped together. In this thesis, our main focus is
to cluster time-series data, which is intrinsically high-dimensional, and values
tend to co-vary and thus are dependent on their neighborhoods. To cluster
such high-dimensional data, much work has been done on suggesting new data
representation method ([1]), or distance measure ([2],[3]). Moreover, func-
tional data clustering approach which assumes that curves can be represented
by a set belonging to an infinite dimensional space can be applied to time-series
data ([4], [5], [6]). Numerical works in the literature are motivated by such
data as gene expression data ([7],[8]), bike sharing systems data [9], power load
supply data ([10]), and so on. Another example is Lim et al.’s ([11]) functional
clustering of accelerometer data after transforming input variables based on
the rank-based transform and the thick-pen transform, which is highly related
to our motivating example.

Our main concern is to suggest new time-series similarity measure. Choos-
ing an adequate distance measure is a controversial and important matter in
time-series clustering domain. Euclidean distance and Dynamic Time Warp-
ing (DTW) are the most common methods for similarity measure in the time-

series clustering ([12]). However, Euclidean distance considers each component



as a part of a long vector of independent values, which fails to take into ac-
count temporal trends and similarities in shape in time-series data sets. While
dynamic time warping allows a non-linear mapping between two temporal se-
quences and provides a way to measure the similarity of sequences of different
lengths, it is unsuitable when intending to reflect the time gap. Also, since the
DTW matching can be applied to various distance measures or cost matrices,
we note that proposing a new component-wise measure can employ the DTW
algorithm as well.

The motivation of this study is to cluster a large set of step count data
measured every minute from a wearable device. Each data is 1440-dimensional
count data per day per individual recorded from 00:00 a.m. to 11:59 p.m. We
aim to identify different step patterns of 19604 days over 79 people. Figure
1.1 shows three example plots of step data. As we can see, the data possess
unique and interesting characteristics: it is high-dimensional, zero-inflated,
and steps tend to occur discontinuously, that is, there are numerous moments
when people take a break between each step. Our goal is to present a com-
putationally efficient clustering method that can identify different trends of

movements regarding their amounts and patterns.
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Figure 1.1: Three different step count data

In this study, we propose a novel time-series clustering scheme after trans-
formation and smoothing, inspired by the Thick Pen Transform (TPT) of
Fryzlewicz and Oh ([13]). TPT is a novel way of viewing time series at mul-

tiple scales using a range of pens with various thicknesses. The effectiveness



of applying TPT to measure the association lies in its flexibility. To be spe-
cific, the shape of a pen can vary; and, we define a new shape based on the
mean of bounds of simple square pens so that the boundaries could encompass
time-series trends of neighboring data points. The thickness of a pen can vary,
enabling us to explore the multi-scale nature of TPT with larger thicknesses
of pens bringing out coarser scale features of the data, which may diminish
noise effects. We propose a new similarity measure for time-series clustering
based on the overlap of the areas under the upper boundaries after applying
thick pen transformation and smoothing. One of the main characteristics of
the measure is that it is defined for between components of vectors, so that we
can apply the DTW algorithm to find an optimal path between two vectors.
Finally, we show that applying the k—medians algorithm for the logarithms
of upper boundaries is appropriate for the clustering optimization problem for
the suggested similarity measure.

The rest of this thesis is organized as follows. Chapter 2 introduces Thick
Pen Transform and Thick Pen Measure of Association of Fryzlewicz and Oh
(2011) as a background concept needed for our method. Chapter 3 suggests
our clustering scheme, including data representation methods, a new similarity
measure, and an appropriate clustering algorithm. Chapter 4 deals with a real
data analysis of accelerometer data, and chapter 5 presents results on simu-
lation data to compare our results with other methods. Chapter 6 concludes

the thesis with some remarks.



Chapter 2

Background

2.0.1 Thick Pen Transform

The TPT of Fryzlewicz and Oh (2011) is based on the idea of drawing along
the time series data points with a pen with its own shape and thickness. Let
T ={r:i=1,...,|T|} denote the set of thickness parameters. The formal
definition of the thick pen transform TP (X;) of a real valued univariate

process (X;)i; is the following sequence of pairs of boundaries,

TP7(Xe) = {(L{" U) Yimr, 71

where L;" and U]" respectively represent the lower and the upper boundary
of the area covered by a pen of thickness 7; at time t.

The TPT plays three important roles in reflecting the time series data
characteristics. To be specific, different shapes of a pen can be defined to
manage how the transformed values are affected by the temporal trends of
neighborhood values. For example, Fryzlewicz and Oh proposed the square

and the round pen as follows.

(a) Square pen :
-
Ul =max{X;_z,..., X1z} + 57



T 3 T
Li = mln{Xt—g7 e ,Xt+§} 57

(b) Round pen :

UtT = maX] Z{Xt+k —+ Y 7'2\4 — kQ}
S5 “

kel
L] = min] Z{Xt+k — v/ 72\4 — k?}
T T m

In the above definition, Z denotes the set of integers and + is the scaling
factor defined for adjusting the difference between the thickness of the pen
and the variability of the data. Second, it has a multi-scale nature of viewing
data at a different distance according to the thickness of a pen. To be specific,
applying large 7 values corresponds to zoom out and see trends of the data in
a coarse way, while small 7 values sensitively catch original features. Finally,
the transformation is visually intuitive and informative. Figure 2.1 shows
round pen boundaries with thickness 30 and 60 applied to a step count data.
Different pen shapes are further addressed in the next chapter, shown in Figure

3.1.

2.0.2 Thick Pen Measure of Association

Fryzlewicz and Oh (2011) also proposed a way to measure the association
between two time-series data based on the TPT. Let L] (Z) and U/ (Z) be the
lower and upper boundary for a generic process Z at time t € T and thickness
7. The thick pen measure of association (TPMA) between X and Y is defined

as

min{U/ (X), U{ (Y)} — max{L{ (X), L{ (Y)}
max{U{ (X), U7 (Y)} — min{L] (X), L} (Y)}

pi(X,Y) =

Some remarks can be made here.
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Figure 2.1: (top) Round pen bound with thickness 30, (bottom) round pen
bound with thickness 60.

The measure satisfies that p](X,Y) € (—1,1]. Note that pf(X,Y) > 0
holds when there exists an overlap between the two thick boundaries, while
p7 (X,Y) < 0 with a gap between them. This idea of measuring time-series
dependence based on the overlap or gap of pen areas is intuitively perceived

when we visualize the transform.

The association is defined at each time ¢, preserving the dimension of the
original process, n = |T'|. This allows various applications to be attempted.
For example, we can define a summary measure between two series in a
various way; an overall mean, ie. p] ,(X,Y) = IS pF(X,Y), mean
of the first half, i.e. ﬁI,n/2<X7 Y) = %Z?ﬁ p7 (X,Y), or product, i.e.

1 n T . . . .
ST pf(X,Y), can be used as summarized similarity measures.

In addition, the similarity measure is computed coordinate-wise so that
the dynamic time warping algorithm is applicable on the TPMA to find
an optimal match between two long vectors. This characteristic is also

addressed in the next chapter, see Figure 3.4.

S— ]



In this study, we work on defining a new similarity measure for clustering

time-series data based on an application of the TPMA.

L=

-
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Chapter 3

Methodology

3.0.1 Transformation and smoothing

When we decide extra smoothness is advantageous, we first apply simple
moving average to the data with a chosen window size. When applied to step
count data, this smoothing process weakens the effect of a short momentary
step generated between consecutive zeros. It can be observed in Figure 3.1
by comparing (a) and (b). Then, we apply TPT to get transformed pairs
of boundaries. As previously stated, through this transformation, we can
employ useful features of the TPT that is multi-scale and visually enlightening,
embracing time-series local dependence structure. In this study, we define a
variation of the square pen to get a smoothed version of thick pen boundaries.
To illustrate, we define “Ensemble square pen” as ensemble means of bounds
of simple square pens with different starting points.

The definition is as follows. Suppose that we have a real-valued uni-variate
process (X;)i ;. Let T ={r; :i=1,...,|T|} be the set of thickness parame-

ters, v be the scaling factor and 7 be the thickness of a pen.

(a) Ensemble square pen :

1< T
UtT = ZO maX{thi, CRE 7Xt+7'*7:} + 5’7
1=

T+ 1%
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Figure 3.1: (a) Original step data. (b) smoothed data by simple moving
average with window size 5, and (c¢)-(f) smooth the data and apply the TPT: (c)
square pen with thickness 30; (d) square pen with thickness 100; (e) ensemble
square pen with thickness 30; (f) ensemble square pen with thickness 100

- T
L] =—— Zmin{Xt_i, ce. ,Xt—i—T—i} - 37
T+ 1 = 2

Figure 3.1 shows examples of transformed and smoothed results. In the
chapter 4, we use the TPT with the ensemble square pen with thicknesses 30

and 100 to cluster step data and compare the results.

3.0.2 Similarity Measure

To check if the TPMA in the previous chapter can be used as a similar-
ity measure for a time-series clustering problem, we performed a hierarchical
clustering using the measure to cluster synthetic data. Figure 3.2 shows six
groups of different trends of synthetic data used for the experiment. Each
group has five elements with different trends of (a) normal, (b) cyclic, (c) in-
creasing, (d) decreasing, (e) upward shift, and (f) downward shift. Since we
aim to differentiate the overall trends, it does not matter if shifts occur at a
different timing. Thus, we use the dynamic time warping (DTW) algorithm

based on the TPMA similarity measure to find an optimal match between two



data ([2]). Figure 3.4 shows an example of an optimal match between two data

in group (e) obtained by the DTW algorithm. Table 3.1 shows the hierarchical

clustering result using the TPMA with DTW, together with results using the

Fuclidean Lo distance and the Fuclidean distance with DTW. The average-

linkage criteria is considered here. As we can see from Figure 3.3, using the

TPMA as a similarity measure not only correctly identifies all clusters, but

also groups Group (a) and (b), (c) and (e), (d) and (f) together when we tend

to cluster them into three groups.

28 32 36
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40 50 60
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Figure 3.2: Six groups of synthetic data with different trends: (a) normal,
(b) cyclic, (c) increasing, (d) decreasing, (e) upward shift, (f) downward shift.

T T T
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(e)

T

30 40 50 &0

T T

0 10 20 30 40 50 &0

U]

Group 112|345 1|6
DTW + TPMA 5(5|5|5| 5|5
DTW + Euclidean || 5 |4 | 1| 8| 10| 2
FEuclidean 513 11]1]10] 10

Table 3.1: Hierarchical clustering results

Dynamic Time Warping has been shown to be powerful and computation-

ally efficient time-series measure widely-used in recent studies ([14]). There-

fore, the availability of applying the DTW to the TPMA is indeed a pow-

erful potential for the measure.

However, there are computational limita-

tions to proceed clustering large-scale data set using the TPMA as a simi-

10
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Figure 3.4: Two data in group (e)
matched using the TPMA by the
DTW algorithm
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Figure 3.3: Hierarchical clustering
dendrogram for the TPMA result

larity measure, since iterative algorithms such as the k—means algorithm are
hardly guaranteed to converge to the local optimum. Instead, the pairwise
distance/similarity matrix should be computed to proceed PAM clustering or
other search methods. To solve this problem and employ an efficient clustering
algorithm, we consider a special form of the TPMA in this thesis.

As we can see from Figure 2.1 and Figure 3.1, lower bounds of step data
barely fluctuate. So it is natural to try setting lower bounds to zero when
applying TPMA. In essence, measuring a similarity between two data by ap-
plying TPMA with zero lower-bounds corresponds to measuring the ratio of
the overlapping areas under the upper boundaries obtained by the thick pen

transformation at each time ¢t. In Figure 3.5, we visualize an example of two

step data with zero lower bounds and their TPMA measure values.
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Figure 3.5: (a) Visualization of the overlapping areas between two data,
colored by blue and red respectively. (b) TPMA, values of (a)

11 i

1”:,1

-

I

Tl



We propose to use the TPMA measure after setting the lower bound of the
pen to 0, denoted by TPMAy, as a new similarity measure for the clustering
problem.

min{U7 (X), U7 (Y)}
max{U] (X),U] (Y)}

(po)i (X,Y) =

In practice, first calculate upper bounds of the data, U = {U,...,Un},
where U; = (u; ()40 = (Ux(X;))121°, and rewrite the similarity measure by
means of those upper boundaries. We suppress the dependence on thickness

7 to simplify the notation.

n(ui(t), uj(t)) = po(Xi(t), X;(t))
min{w;(t), u;(t)}
max{u;(t), u;(t)}

min(x, y)

When using the measure n(z,y) = , the center of the two real

max(z, y)
values is their geometric mean. In other words, n(z,a) = n(a,y) holds when
a = y/7y. In the next chapter, we use some features of this function to obtain

a simple and appropriate clustering algorithm.

3.0.3 Optimization Problem for Clustering

In this section, we view the clustering time-series data as an optimization
problem. The goal is to determine K optimal partitions of a set of observations

X ={Xy,...,Xn}. Let P ={P,..., Pg} be the set of K partitions of the
K
data which satisfies that U P, = X and P;N P; = @ for i # j. Suppose that

c=1
each data X; belongs to a domain set F. Then, find a set of cluster prototypes
M ={my,...,mg :m. € E,c=1,...,K}. Given a distance function d, we

define the clustering problem as minimizing the cost function

W(P,M)=> Y d(z,m).

c=1 IEPC

12 '



An iterative algorithm proceeds the optimization process in two steps:

Update P: Given a set of cluster prototypes M, update P with

P, = {z; : argmin d(xz;,m) =mc,i=1,...,N} for each c € {1,...,K}.
meM

Update M: Given a partition P, update M with

me = argmin Z d(x,m) for each c € {1,..., K}.
mek xEP.

Note that the cost function decreases for each iteration step. The well-known
k—means algorithm deals with Lo distance, which leads to the mean of each
components as a cluster prototype when £ = R" n € N. Also, L; distance
function uses medians as cluster prototypes, leading to the k—medians algo-

rithm.

Going back to our similarity measure, note that

et S e

holds for each time ¢t. For ¢« € {1,..., N} and given partition P, let ¢; = ¢
such that ¢ € {1,..., K} and X; € P.. Assume that u = {p. : 1 < ¢ < K}
be a set of cluster representatives. Then, according to the following analogue,
maximizing the product of TPMA’s for each time ¢ and element ¢ is equivalent
to minimizing the sum of L distance with respect to the logarithms of upper

boundaries.

T N
= ma;)dnl}izez Z log {n" (uwi(t), pe;) (1))}
’ =1 i=1

13



= mmlmlzeZZ\loguZ — log 1(c;) (1))
t=1 i=1

In other words, we define the cost function to be minimized given a parti-

tion as follows.

N
P,u = Zz‘loguz logﬂ(ci)(t))‘

t=1 i=1

Since it is the L; optimization problem with respect to the logarithms of

upper bounds, applying the k-medians algorithm to { LU; : LU; = (logu;(t)),1 <

i < N} guarantees monotone decrease in the cost function. The algorithm de-
pends on the initialization, thus we repeat k-medians algorithm several times
and get the final cluster with the minimal cost function as the final cluster.
We have a remark on this idea of log transformation of upper boundaries.
0 < n(us, u;) < 1 holds with 7 > 0, so it is problematic when 7(u;,u;) goes
near zero and the logarithm diverges toward the negative infinity. This is
why the thick pen transformation matters in our setting. Under the zero-
bounded setting, data are non-negative and a thickness of a pen guarantees
the minimal value of upper boundaries sufficiently bigger than zero. Thus, we

min{u;,u;}
max{u;,u;}

can assume that there exists 6 such that n(u;, u;) = >4 > 0 for
any 7,7 € {1,..., N} as long as the upper boundaries of the transformed data
are bounded above. For instance, our step data with thickness 30 satisfies

—3.5 <logn(uj,uj) <0.

3.0.4 Clustering Algorithm

Now we present the whole clustering scheme with the clustering objective
of maximizing products of TPMAg’s between each observation and its cluster

prototype.

14 '



Step 1: Smooth and Transform the data via moving average and the thick

pen transformation to obtain the upper boundaries {uq,...,un}.
Step 2: Randomly initialize the cluster.

Step 3: For each cluster, obtain the cluster prototype as

Me = 1og e = med{logugc), . .,logugfc)},c e{1,2,....,K}

Step 4: Assign every curve to the cluster with the minimal L; distance
between the logarithm of the upper bounds of the curve and cluster

prototypes.
Step 5: Iterate Step 3 - Step 4 until no more curves are regrouped.

Step 6: Repeat Step 2 - Step 5 for sufficiently many times and get the final

cluster with the minimum cost function.

To perform the analysis, observe the given data and choose a proper
smoothing window size, a thickness 7, and a shape of a pen appropriate for
the data and clustering objective. For instance, applying a thicker pen tends
to see the data at a distance, focusing on the big trends, while narrower thick-
ness values tend to catch the pattern sensitively. To determine the number of

clusters K, we use the gap statistics of Tibshirani et al. ([15]).

15



Chapter 4

Real data Analysis

We perform clustering of step data after smoothing and transforming the
data with the ensemble square pen. For this, we consider two different param-

eter settings as follows.

A. Smoothing window size 3, pen thickness 7 = 30, and scaling parameter

v =0.2.
B. Window size 5, pen thickness 7 = 100, and scaling parameter v = 0.2.

The main difference between the settings is in 7 values. As we can see from
Figure 3.1, with a large pen thickness, the pen boundary values tend to less
fluctuate than smaller thicknesses, keeping boundaries large when there exists
a movement in the nearby time. In other words, in the case with large 7
values, some changes in the amount of walking do not affect the upper bound-
aries much, and the boundaries instead mainly reflect the existence of the
movement.

Figure 4.1 and 4.2 plot the mean curves of the original step data and the
pen means for each resulted cluster respectively using the setting A and B. We
chose K = 6 for the both cases. Note that since each cluster consists of a large
number of step data where zero steps occur repeatedly, the mean curves might

tend to regress downward than the original trend that each group represents.

16 .



Cluster ID 1 2 3 4 5 6
30 | 1377 | 2689 | 3057 | 3065 | 4119 | 5297
100 | 1649 | 3315 | 2298 | 3074 | 4225 | 5043
30 | 11600 | 7433 | 2683 | 7303 | 10665 | 10925
100 | 11112 | 5904 | 1833 | 7392 | 12444 | 10101
30 9.9 29.7 | 38.9 | 47.1 | 33.3 9.1
100 | 11.3 | 44.3 | 39.8 | 48.9 | 23.5 7.1

Number of Days | thickness

Mean Step Count | thickness

Weekend (%) thickness

Table 4.1: Summary of clustering results

Table 4.1 has information about the resulted cluster size the mean step counts,
and the percentage of weekend days. Figure 4.3 further maps the distribution
of individuals included in each group. In both cases, group 1 (red) represents
days with early wake-up, early sleep, and a lot of walks, where only a few
people, who may be early birds, are included according to Figure 4.3. Group
2 (yellow) represents days with late rising and less walks, which relatively
differs in the shape a lot between the 7 = 30 and 7 = 100 results. Group 3
(green) consists of the laziest days with the smallest total steps while group
4 (sky-blue) keeps late hours. Both groups have a large weekend proportion,
where group 4 shows the largest percentage of weekend days among six groups.
Finally, group 5 (blue) and 6 (pink) both show large amount of mean step
counts, with different average wake-up times. The distribution of individuals
between group 5 and 6 is quite different, which might represents two groups

of people sharing different office hours or morning routines.

17 .
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Figure 4.2: Clustering results by using the TPT with 7 = 100
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Chapter 5

Simulation study

In this chapter, we generate synthetic data to compare the proposed clus-
tering scheme with existing methods. The list of simulation sets used are as
follows. Figure 5.1, 5.2, and 5.3 represent each data from different groups of

respective simulation set.

e Sinusoidal data with different variability: we generate random sinusoidal
curves with several variances defined as Y (t) = ]sm(@) +e®)], t €
{1,...,T}, where T = 1024 and ¢ ~ N(0,02) with o € {0.01,0.1,0.7,1}.
We consider clustering 200 random curves into 4 groups, 50 samples gen-

erated for each o value.

e Block data with different patterns: we generate random block curves with
different patterns defined as Y (t) = | Z?:l hi{l+sgn((t —1)/T —&;)}/2+
e(t)], t € {1,...,T}, where T = 512 and € ~ N(0,3%). h; satisfies |h;| ~
U(0,20), hy,h3 < 0, ha, hy > 0, and Z?Zl h; = 0, whose values are related
to the height of each vertical jump. ¢; is a randomly real number chosen
from a specified interval, which determines where the jump occurs. We
set four different intervals as (0, 2), (£, 2), (2, %) and (2,1), where possible
jumps can occur. Here we generate 50 samples for each interval and cluster

the samples into 4 groups.
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e Block data with different amount and patterns: we generate three different
groups of random block curves with different amount and patterns. Data
are generated in a similar way like above. Group 1 data have three jumps
in (0, %) with |h;| ~ U(0,30) and five jumps jumps in (2, %) with |hj;| ~
U(0,20), with errors having o = 5. Group 2 data have five jumps in (0, %)
with |hj| ~ U(0,10) and three jumps jumps in (%, %) with |hj| ~ U(0,5),
with errors having o = 3. Finally, Group 3 data have four jumps in (%, %)
with |h;| ~ U(0,20), three jumps in (%, %) with |hj| ~ U(0,15) and three
jumps jumps in (3,1) with |h;| ~ U(0,20), with errors having o = 5. 50
samples are generated per each group and groups show different amount

and patterns of jumps.

T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 5.1: Four groups of sinusoidal data with different variabilities.
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Figure 5.2: Four groups of block data with different patterns.

We compare the proposed method with different optimization settings and
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Figure 5.3: Three groups of block data with different amount and patterns.

some functional clustering methods. Figure 5.4 shows different optimization
schemes considered in this study. Our method using TPMA( as a similar-
ity measure is depicted on the top, where we apply logarithms to the thick
pen upper boundaries and then apply the k—medians algorithm. In the other
settings, we use k—medians or k—means algorithm respectively for L; or Lo
optimization. For these simulation sets, we smooth the original data with win-
dow size 3 and then apply the ensemble square pen with thickness 30 to get
the transformed data. For the five settings depicted in Figure 5.4, we repeat
algorithms N = 20 times and choose the cluster result with the minimum
cost. For functional clustering methods, we use (a) funFEM: functional clus-
tering using discriminative functional mixture model by Bouveron, Come and
Jacques (2014, [9]), and (b) funHDDC: clustering functional data based on
modeling each group within a functional subspace by Bouveyron and Jacques
(l16)).

The simulation results are in the Table 5.1 based on the correct classifica-

tion rate (CCR) criteria defined as

CCR — the number of correctly classified curves

total number of curves

The average CCR rates and their standard deviations after simulated 100 times
using the seven different methods are listed in Table 5.1. We observe several
remarks: (a) Methods in Figure 5.4 have standard deviations close to zero.
This means that repeating clustering algorithm N = 20 times within those

methods yields stable outcomes. (b) Overall, the proposed method, TPMA,
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Figure 5.4: Different optimization settings used for the comparison.

Signal Results for the following methods:
TPMA, | TP L1 | TP L2 L1 L2 funFEM | funHDDC

Sinusoidal 1.00 1.00 0.68 0.64 | 0.71 0.92 0.76
(0) (0) (0.09) | (0.09) | (0.05) | (0.14) (0.16)
Block 0.94 0.92 0.88 0.77 | 0.78 0.83 0.83
(pattern) (0) (0) (0.01) | (0.02) | (0.01) | (0.11) (0.08)
Block 1.00 0.99 0.97 0.74 | 0.80 0.91 0.91
(pattern and amount) (0) (0) (0) (0.01) | (0.01) (0) (0.03)

Table 5.1: Means (standard deviations) of the correct classification rate
(CCR) for each method

outperforms other methods in our simulated data, suggesting that the measure
might be generally applied to cluster non-negative count data. (c) However,
applying L; optimization to upper bounds worked as well as the proposed
method, which implies that taking logarithms to the upper boundaries is not
a critical choice for the performance. We might skip that step when it is not

appropriate to apply log transform to the data.
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Chapter 6

Conclusions

As shown by the hierarchical clustering example of the synthetic data,
the TPMA of Fryzlewicz and Oh is a good time-series similarity measure,
which can be further applied to clustering problems. However, measuring the
similarity of all pairs to proceed PAM clustering is computationally disadvan-
tageous. In this study, we have proposed a simple and effective algorithm
applicable to the new similarity measure, TPMA(, which is a special form of
the TPMA. We examine that the proposed method can be applied in general
for time series data distributed on the same side along the axis, whose similar-
ities are measurable in the form of a proportion of overlapping areas. Indeed,
we have shown that measuring time-series similarity using the TPMA( and
optimizing their total products is equivalent to the Log L optimization of the
transformed upper boundaries.

The proposed measure has its strength in the use of the novel thick pen
transformation, which is visually inspiring multi-scale method, representing
time-series dependence structure. Moreover, since the measure is computed
coordinate-wise, we can also employ the dynamic time warping algorithm, one
of the most widely-used and effective time-series matching algorithm. Indeed,
these properties endow the measure a great potential for various applications.

For the further study, since the TPMA can be summarized in various ways and
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different choices of parameters yield different similarity distribution, compre-
hensive approaches such as ensemble clustering or fuzzy clustering can be fur-
ther applied for the measure. In general, we expect that the TPMA, together
with its special form called TPMAg. might become an overarching similarity
measure assessing the time-series association with its intuitive structure and

great flexibility.
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