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Contextual Bandit models utilize information of a Bandit game player to

optimize the player’s benefit. From the perspective of applications, it is pre-

ferred to adopt stochastic linear models in contextual Bandit problems for

simple implementations. Hence, stochastic contextual linear Bandit models

are widely used in real-world problems such as news article recommenda-

tions. Recently, mobile health problems are suggested as another applicable

area of contextual Bandit models. However, for real-world applications, we

must consider various aspects of the implementation of algorithms that are

run on mobile devices. In this thesis, we will briefly review stochastic contex-

tual linear Bandit algorithms, and discuss their applications to mobile health

problems. Especially, we will inspect thoroughly the aspects that must be

considered when we develop a mobile health application for real-world users.
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1 Introduction

Recent rapid developments in machine learning technologies attract interest from

both academic researchers and industrial engineers. One of such areas of research and

applications is sequential decision making problem over time, concerning a player learn-

ing optimal choices at each time point of action. Bandit problems consist of a part of

machine learning areas for handling this problem. Especially, stochastic linear Bandit

models with contexts have the advantage over other Bandit models in that they are not

only easy to implement in an application, but also enjoy good performances in terms of

benefit for players.

Almost PC-like mobile devices these days provide opportunities for Bandit models’

applications, some examples of which are mobile health problems. In an era when almost

every person has at least one mobile device at hand, a great portion of the population

in the world can play actions over time to improve their health, with help of mobile

devices. However, the real-world condition is not simple as it seems, and it requires

several serious considerations before transforming a Bandit model into actual services

for users.

In our text, we will briefly review essential concepts of Bandit problems. We will

especially emphasize stochastic contextual Bandit problems, which adopt linear models

for the sake of applications. There will also follow a discussion about how to implement

those Bandit algorithms for mobile health problems in the real-world.
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2 Overview of Stochastic Contextual Bandit Problems

2.1 Bandit Problems

As they are well-known, Bandit Problems deal with a situation where a person tries

to maximize one’s own profit in playing more than two slot machines. Since one’s own

money is scarce, the person had no choice but to make a strategy of figuring out which

machine gives the best result compared to other machines. Here one faces what is called

exploitation versus exploration trade-off, which means that one needs to try some other

machines that had not been played before(=exploration). Newly chosen machines may

bring better or worse results than the current machines the person is currently playing

with(=exploitation).

This is a brief introduction of what Bandit Problems are. Surely, in the real-world

problem, things come in much more sophisticated ways, thus we need to set up problems

in formalized ways. Here we introduce some terminologies and concepts which are com-

monly used in Bandit literatures. For this part, we will consult comprehensive Bandit

textbooks([6], [8]). First, from our brief introduction in the previous paragraph, there

are four key points that must be considered: slot machines, time points that choices

of machines are made, choices of optimal machines, and results from playing a chosen

machine that give him back some money. In the context of decision theory, we can think

of machines as possible actions that are to be chosen in each step, which are usually

called arms in Bandit literatures. Time points are called rounds at which those arms

are chosen. The behavior of choosing arms can be considered as a strategy or an algo-

rithm. The money we get from playing a machine at a given round is called ’reward’

from that machine at that round. In this text, we use the following notations for those

key concepts and can simply summarize basic multi-armed Bandit Problems:
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Algorithm 1: Protocol: Basic Multi-Armed Bandit Problem(adapted from [8])

Given finite arms i = 1, 2, ...,K and finite rounds t = 1, 2, ...T ,

for t = 1,2,...,T do

The player chooses an optimal arm at ∈ {1, 2, ...,K}

Observe a reward rt,at ≥ 0

end

As a typical example, we may think of a news website where daily headlines come

up at the very front page of the site(such as Li et al., 2010 [7]). As the business owner of

this website, one tries to maximize click rates of those headlines. Hence, the site must

choose articles that are expected to attract as many visitors as possible. We can see that

this case can be interpreted as another Bandit problem. Arms are news articles that

would be exposed in the main page, rounds are each visitors that may click the articles

or not, and rewards are actual clicking behaviors by the visitors.

Next, we will clarify what it means by ’optimal arm’ in the protocol introduced

above. Every Bandit problem aims at maximizing what is called regret. As we can read

from the word’s meaning, the regret of a Bandit algorithm is a quantity of how much a

player gain over a period of playing the Bandit game compared to the optimal decision

making. The exact definition is the following: For µ∗t = max
1≤i≤K

E(rr,i), regret R(T ) is

defined as

R(T ) =

T∑
t=1

(µ∗t − E(rt,at))

Hence, regret R(T ) compares the player’s actual action with the optimal action at

each round t. Every Bandit problem tries to minimize the expectation of this regret,
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since an action at may be chosen randomly by the algorithm at t. In Bandit literatures,

usually regret is expressed asymptotically with big-o notations. Of course, as we already

have mentioned earlier, we always face the exploitation versus exploration dilemma when

it comes to optimizing our regret. Here we introduce a simple Bandit algorithm ε-Greedy,

which explicitly describes this dilemma(see [8] for details):

Algorithm 2: ε−Greedy Algorithm

Given K and T,

for t = 1,2,...,T do

Observe X ∼ Bernoulli(εt)

if X = 1 then

exploration: choose an arm with probability of 1
K

else

exploitation: choose an arm with highest average reward by the round

t− 1

end

end

So far was a short introduction to Basic Bandit Problems. However, they can be

developed into more complicated forms depending on how we elaborate the key points:

arms, choice of arms, and rewards. Although in this text we assume that arms are finite

for practical reasons, we may consider a continuous set for the variable of arms. Decision

making at each round can consider external factors such as contexts, which may define

an optimal state at that round. Finally, we may consider situations in which rewards are

gained in randomized ways(Stochastic) or we assume that an adversarial nature already

had chosen the rewards for each of the arms at all rounds to come(Adversarial). All

these complicated considerations give birth to various Bandit problems and algorithms.

Typical examples of algorithms will be covered in the following sections.
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2.2 Stochastic versus Adversarial Bandit Problems

As we have seen above, Bandit problems can be classified into two categories: stochas-

tic and adversarial problems. This classification is based on different assumptions for

each of the problems. A stochastic model assumes that rewards are generated from prob-

ability distributions, varying in arms that the player chooses. This assumption usually

comes along with the parametric assumptions, such as, those distributions are of sub-

gaussian, etc. Parametric assumptions are for practical reasons(easy implementation)

as well as for theoretical simplification.

On the other hand, it can be suggested that these assumptions are too specific and

may cause lack of fit, which is an innate problem of model construction. Compared to

this model specification issue, adversarial models enjoy much freedom from their rather

robust assumption. In an adversarial model, rewards are already selected over time.

Hence, no randomized feature comes out of this branch except for the behavior of the

player: the player must make his decision of choosing arms randomized for the purpose

of safety against the adversarial player. However, this does not mean that choices of

arms are totally random. At each round, the player estimates future rewards for each of

the arms to make the best choices.

Let us see a few basic examples for each of these two branches. First, we here present

UCB1 (upper confidence bound) algorithm, which is suggested by Auer et al., 2002([2]).
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Algorithm 3: UCB1 Algorithm(adapted from [6])

Given K,T, and δ > 0 (hyperparameter),

for t = 1,2,...,T do

Let UCBi(t− 1) =
∞ if Ti(t− 1) = 0

µ̂i(t− 1) +

√
2log( 1

δ
)

Ti(t−1) otherwise

where Ti(t− 1) is the number of round that the arm i has been played by

the round t− 1, and µ̂i(t− 1) = 1
Ti(t−1)(

∑
t:at=i

rt,i)

Choose at = argmax
1≤i≤K

UCBi(t− 1)

Observe rt,at , and update UCBi for all arms i = 1, 2, ...,K

end

As the name of the algorithm implies, at each round UCB1 algorithm chooses an

arm which promises the highest reward in an optimistic sense. By optimistic here we

mean that the algorithm considers the upper confidence bounds of each of arms’ rewards

computed from the past history of the rewards. Also, what is essential here is that we are

computing confidence interval for each of the arms’ rewards, which implies this model

is obviously stochastic. Especially, the above algorithm assumes that the rewards follow

subgaussian distributions.

Next, let us move onto one of adversarial models, Exp3 algorithm, introduced by

Auer et al., 1995([3]). We can see that the algorithm estimates even the rewards of the

arms that the player did not select, for the future selection of the arms. Also, we can

say that this algorithm is more simple in terms of model assumptions compared to the

UCB1 above.
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Algorithm 4: Exp3 Algorithm(This is an adapted version by [6])

Given K,T, and η > 0 (hyperparameter),

Initialize Ŝ0,i = 0 for all arm i

for t = 1,2,...,T do

Let Pt,i =
exp(ηŜt−1,i)∑K
j=1 exp(ηŜt−1,j)

Pick at ∼ Pt = (Pt,1, ..., Pt,K)t

Observe rt,at

Update Ŝt,i from Ŝt−1,i and rt,at such that

Ŝt,i = Ŝt−1,i + 1− I(at = i)(1− rr,i)
Pt,i

where 1− I(at=i)(1−rr,i)
Pt,i

is an unbiased estimator of rt,i

end

2.3 Contextual Bandit Problems

By far, we have discussed possible conditions of the Bandit problems. Given K

arms, our algorithm chooses an optimal arm(either stochastic or adversarial), and the

player observes rewards rt,at . These rewards are used to update the parameters for the

future decision making. However, in the real-world, we need to consider some external

information which is relevant to our decision making. This information is usually called

context in Bandit literatures.

For example, let us recall the news article recommendation problem introduced in

the section 2.1. Clearly, what articles a reader choose are closely related to one’s own

age, gender, website log-on time, some special events occurring at that time(such as

natural disasters or political events), log-on location, local weather, and so on. Hence
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in a very hot summer, a news article would very likely to attract attention from the

readers if it deals with the global warming issue. In contrast, this topic would not be

much discussed in a mild and temperate whether.

Now our Bandit algorithm must consider these contexts. The same arm would may

give back different rewards in different contexts. Let C be the set of context vectors ct

at round t, which are available over the time period of our bandit problem. Thus, rather

than directly picking an optimal arm i at the round t, we need to estimate an optimal

function from C to the set of arms {1, 2, ...,K}, which also may be depend on t and the

history in the past(hence it may be dependent on c1, ..., ct−1, r1,a1 , ..., rt,at−1). One thing

to note is that context ct is considered as a deterministic input, by which we mean that

contexts are not variables affected by actions aτ or rewards rt,aτ (τ = 1, 2, ..., t− 1).

Therefore, either stochastic or adversarial, we extend the basic Bandit problem pro-

tocol in the section 2.1 to contextual ones as the following:

Algorithm 5: Protocol: Basic Contextual Bandit Problem(modified from [8])

Given K,T, and , C

for t = 1,2,...,T do

Observe the context ct ∈ C

The player chooses an optimal arm at, considering ct and the past history

cj , rj,aj (j = 1, 2, ..., t− 1)

Observe the reward rt,at ≥ 0

end
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3 Algorithms: Linear UCB and Linear Thompson Sam-

pling

3.1 From Application’s Perspective: Linear Models

In the previous chapter, we briefly reviewed the basic concepts of Bandit problems,

among which we emphasized what stochastic, adversarial, and contextual mean and why

they are important. In this chapter, we will be in a more practical point of view, and

narrow down our interests in Bandit Problems to a rather specific branch: Stochastic

Linear Bandit Problems with Contexts. First of all, we will discuss why we prefer this

stochastic linear models to other kinds of Bandit models. After then, we will intro-

duce two classical examples: Linear UCB(LinUCB) and Linear Thompson Sampling

model(Linear TS).

Why Stochastic? We know that a stochastic model assumes that a reward from

an arm at a certain round is obtained from a probability distribution. If an engineer

tries to choose a Bandit model, he would rather choose this stochastic model than an

adversarial model, because 1)it is easy for implementation. Since a stochastic model

is usually deployed as a parametric model, it can enjoy plenty of statistical or machine

learning related techniques. And 2)if it is a correct model, it shows a better performance

than adversarial models. This fact can be easily proved, using Jenson’s inequality and

the convexity of the max function(see [6]).

Why Linear? Similarly, a practitioner would definitely prefer linear models. Most of

linear models only involve the matrix algebra, and most of the matrix algebra algorithms

are well supported by high-performing modern computer programs(for example, we have

BLAS or LAPACK in C language which are also adopted by C - family languages such
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as C++’s Armadillo package or Swift’s Accelerate framework). Moreover, linear models

are simple in optimization, so that there is no need to implement complicated techniques

like Stochastic Gradient Descent in Deep Neural Network algorithms.

For these reasons, many of practical researches on Bandit problems make discussions

about stochastic linear models([5], [7]). However, what is exactly linear in a stochastic

model? Since we assume that a stochastic model adopts a parametric approach, a reward

rt,i follows a certain parametric distribution Da. We suppose this distribution has its

mean as linear, so that E(rt,i) = θTi b(ct, i), where b(ct, i) is called a feature vector(which

means it captures true feature from the arm i in the context ct), and θi is the weight

vector for our model, which keeps updated as the round t goes forward.

3.2 Linear UCB

As a next step, we introduce the Linear UCB(LinUCB) algorithm, first introduced

by Li et al., 2010([7]). Like UCB1, LinUCB calculates upper confidence bound, but

here linearity assumption involves so that the form of UCB contains matrix operations.

Practically, it was proposed as a recommendation system algorithm, which verifies our

argument that stochastic linear models are suitable for applications. Although there are

several developments afterwards, here we focus on the very basic algorithm that Li et

al., 2010([7]) introduced. Here, a reward rt,i is a bounded positive real-number, and d

is the dimension of the feature vector bct,i and the weight vector θi.

Algorithm The LinUCB algorithm is as follows:
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Algorithm 6: Linear UCB(Li et al., 2010([7]))

Given K,T, and α > 0,

Initialize Ai = Id, fi = 0d×1 for all i = 1, 2, ...,K

for t = 1,2,...,T do

Observe the context ct ∈ C

for i = 1,2,...,K do

Create the feature vector b(ct, i) ∈ Rd

Update θi ← A−1
i fi

Compute UCBt,i = θTi b(ct, i) + α
√
b(ct, i)TA

−1
i b(ct, i)

end

The algorithm chooses an optimal arm at = argmax
1≤i≤K

UCBt,i

Observe rt,at ≥ 0 and update:

Aat ← Aat + b(ct, at)b(ct, at)
T

fat ← fat + rt,atb(ct, at)

end

Essential Idea First, as the name shows, LinUCB shares the same idea with UCB1 in

the section 2.2. That is, for each round t, given context ct, with updated θi of each arm

i from the previous history(actions, rewards, and contexts by the round t− 1), LinUCB

chooses the arm at which has the greatest UCBt,i. However, the way the algorithm

calculates upper confidence bounds is where the linearity assumption is required. A

detailed proof can be found in such as Chu et al., 2011([12]). But the proofs do not

tell what motivation is underlying. Here we will see a simple case where rewards follow

gaussian distribution, so that we could get an idea of how to obtain such UCBs. Suppose

for fixed arm i, we have Ti(t) number of data that is obtained by the round t with d

features(that is, by the round t the arm i has been chosen Ti(t) times). Let Di(t) be
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the Ti(t) × d matrix, each of the row of which is the feature vector (1, b(cτ , i)
T )T (τ =

1, 2, ..., Ti(t)) augmented with 1 in the first element position(this is what is called design

matrix in Linear Regression problems). Also, let yi(t) = (r1,i, r2,i, ..., rTi(t),i)
T . In this

setting, a simple way to choose the best arm at the next round t + 1 is to predict

the reward. If we assume that the expected reward from the arm i is linear in the

feature vector b(ct, i), one of reasonable solutions is the Linear Regression, and we get

the following estimator of θi at the round t:

θ̂i = (Di(t)
TDi(t))

−1Di(t)
T yi(t)

Hence, if we here assume that the rewards rτ,i are i.i.d. gaussian with the mean

θTi b(cτ , i) and the standard deviation σ > 0, we obtain:

Ê(rτ,i) = θ̂Ti b(cτ , i) ∼ N(θTi b(cτ , i), σ
2b(cτ , i)

T (Di(t)
TDi(t))

−1b(cτ , i))

Here we can see how the linear assumption and the gaussian assumption merge, to

obtain the upper confidence bound of the reward rt,i. If we simply follow this argumen-

tation, then we will have our UCB as θ̂Ti b(cτ , i) + α
√
b(cτ , i)T (Di(t)TDi(t))−1b(cτ , i),

which has a similar form with what we see in the algorithm. If we follow the argumenta-

tion in Li et al., 2010([7]) that the algorithm adopts Ridge Regression, then we could not

obtain such a result above, due to the fact that Ridge Regression provides an unbiased

mean estimator. Therefore, a proof such as Chu et al., 2011([12]) starts without gaussian

assumption but uses other techniques such as Azuma’s inequality.

Exploitation versus Exploration The difference between UCB1 and LinUCB is

not only the ideas of linearity. The algorithm chooses an arm if and only if the UCB

of that arm is the optimal. Since UCB of an arm is subdivided into the mean part and

the confidence interval part, exploitation and exploration is not explicitly separated as
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UCB1, and may work together to bring the player the minimum regret(surely, it could

be also that two concepts are in trade-off relation).

Summary The LinUCB algorithm mainly adopts the ideas of linearity of the reward

distribution, which guarantees easy implementation in application. This algorithm also

shows a good performance, with the regret bound of Õ(
√
Td)([12]).

3.3 Linear Thompson Sampling

Compared to LinUCB, Linear Thompson Sampling(Linear TS) distinguishes itself

with its Bayesian setting, accumulating the information at each round in the weight

vector θi for each arm i. Each of weight vectors has its prior as gaussian distribution.

Moreover, this algorithm lucidly expose the gaussian assumption of rewards, so that by

conjugacy, computation of the posterior part is simply made. The name of the algorithm

comes from Thompson, 1933([10]), which suggested the basic idea of Bandit problems

with a Bayesian way of solution.

Algorithm In our text, we follow the setting of Agrawal and Goyal, 2013([1]), with

some modification consulting Greenwald et al., 2017([5]), allocating the weight vector

for each of the arms. We use the same notations for this Linear TS as in LinUCB.
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Algorithm 7: Linear Thompson Sampling(Agrawal and Goyal, 2013([1]))

Given K,T, and α > 0,

Initialize Ai = Id, fi = 0d×1, µ(θi) = 0d×1 for all i = 1, 2, ...,K

for t = 1,2,...,T do

Observe the context ct ∈ C

for i = 1,2,...,K do

Create the feature vector b(ct, i) ∈ Rd

Generate θi ∼ N(µ(θi), α
2A−1

i )

end

The algorithm chooses an optimal arm at = argmax
1≤i≤K

(θTi b(ct, i))

Observe rt,at ≥ 0 and update:

Aat ← Aat + b(ct, at)b(ct, at)
T

fat ← fat + rt,atb(ct, at)

µ(θat) = A−1
at f

end

Essential Idea The basic ideas of Linear TS are linearity, normality assumptions

and the Bayesian inference. The normality assumption of rewards affects the way the

variables are updated due to the conjugacy of gaussian distribution in the Bayesian in-

ference. In LinUCB, the Linear Regression idea underlies in the update of the variables,

which can be shown by a few matrix algebra concerning how to compute the matrix of

the form (I + abT )−1(a, b are vectors)(As a matter of fact, Li et al., 2010([7]) refers to

the Bayesian way of interpreting the result of the paper, which shows a close relation

between LinUCB and Linear TS).

As the round goes on, the weight vector θi is updated by the Bayesian inference,

storing the information from the history by the previous round. In this way, the algo-
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rithm can show which variables of the context vectors are more influential on the reward

of an arm. After observing a realized random value of the weighted vector of each of the

arms, the player chooses an optimal arm that shows the largest expected mean value of

the reward of that arm(conditioned by the weighted vector’s realized value). The reward

obtained is used for updating the weighted vector of each of the arms.

Exploitation versus Exploration We may view this algorithm as a sophisticated

version of ε-Greedy algorithm, in a sense that it requires randomization before making

the decision of whether to explore or exploit. However, contrary to ε-Greedy where

randomization’s result directly decides exploration without considering the past, Linear

TS’s exploration is largely affected by the history, the information of which is stored in

the weight vectors.

Summary Linear TS is a intuitive model in a sense that it accumulates information

from the past to make future decisions, by its Bayesian idea. Linear TS enjoys its regret

bound of Õ(d
2

ε

√
T 1+ε)(0 < ε < 1)([1]).

4 Applications: Mobile Health Problems

Now is the time to move onto the real-world. By now, we have briefly looked through

the basic concepts of Bandit problems, and especially focused on the Stochastic Linear

Bandit models with Contexts for applications. One of such applicable area of our con-

textual bandit models is mobile health. In the following sections, we will discuss overall

mobile health problems and the specific ways of how to apply the Bandit models to

them, considering many of discourses on this topic(such as [5], [9], [11]).
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4.1 Mobile Health Problems

Above of all, we need to clarify what exactly mobile health problems are. There could

be several versions of these, but here in our text, we will define them as developments

of suitable algorithms which are run on a person’s own mobile device such as a mobile

phone, such that the algorithms help to foster the person’s health-related activities like

walking, sleeping, taking medicine, etc.

In an age where the pace of development of technology is faster than ever, the im-

portance of mobile health problem gets bigger. There are at least four reasons for this.

First, the ubiquity of mobile devices means mobile health problem can affect such a

many individuals nowadays. Second, today’s high performing devices compared to the

past can run even heavy software programs such as online video games, which require

high level of CPU and GPU. If we can use such computing resources for our leisure, there

is no reason that we hesitate to use them for our own health. Third, from morning to

night, many of mobile device users are engaged in their own devices deeply. There are a

myriad of services such as financial support, schedule management, social entertainment

provided through the mobile devices. Hence, it could be our opportunity to deploy this

heavy engagement for the user’s health improvement. Finally, as Internet is commonly

used, the private information issue needs to be coped with very seriously. If we use

each of the individual’s health data within one’s own devices only, then the safety of the

information could be well guaranteed than the case in which we run a central server as

our database.

Of course, already there are some movements for this mobile health problems, and

the manufacturing companies like Apple provide iOS developers with their own software
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development kit such as Healthkit1, for easy implementation of health-related services

which may require users’ personal health data.

4.2 Stochastic Linear Bandit Model with Contexts for Mobile Health

Problems

There could be many of machine learning algorithms for application to mobile health

problems. In this section, we will discuss how stochastic linear Bandit models with con-

texts distinguish themselves from the others. There are at least three points to be

noticed. First of all, as we already have seen in the section 2.1 with an example([7]),

contextual Bandit models are quite suitable for recommendation system problems. Tak-

ing into account users’ contexts, contextual Bandit models choose optimal actions over

a period of time. As Tewari and Murphy, 2017([9]) points out, in terms of mobile health

problems, algorithms recommend the best actions for users at each time point of activity

engagement. Secondly, every Bandit model is basically a sequential decision making pro-

cess model over a certain period of time. Tracking users’ behaviors over time, it tries to

maximize the overall benefits of users throughout the whole period, balancing between

exploration and exploitation of the available actions. Finally, linear models are desir-

able than other machine learning models, due to the limit of the current mobile devices’

CPU and GPU performances. Hence it would be better to adopt parametric and simple

models for mobile applications. The algorithms such as Linear TS or LinUCB that we

have covered in the previous chapter can be examples for such applicable algorithms.

Now, we develop a possible protocol of stochastic linear Bandit model with contexts

for mobile health problems, from the basic contextual Bandit protocol shown in the

section 2.3.

1https://developer.apple.com/documentation/healthkit
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Algorithm 8: Protocol: Stochastic Linear Bandit Model with Contexts for

Mobile Health Problems
Given K,T ,

Initialize the parameters of the model, which is linear in these parameters

for t = 1,2,...,T do

Observe the context data ct, which could be the user’s personal, location,

time data, etc.

Based on the past history {(c1, a1, r1,a1), ..., (ct−1, at−1, rt−1,at−1)}, and the

current context data ct, the algorithm finds an optimal arm at, which is

recommended to the user

The user gives back the reward rt,at to the algorithm by executing the action

at

The algorithm updates the history and the parameter of the model.

end

It is important to note that the algorithm is run locally on the device, not on some

external server for computation. This is because in many cases it is not allowed to export

users’ personal data outside their own devices. For example, Apple confines the use of

personal data within one’s local device or personal cloud.2.

4.3 Problem Settings and Implementations in the Real-World

We have seen a possible protocol of how to run our Bandit algorithm in users’ local

devices. However, actually implementing algorithm for a development project requires

much more details for consideration. Suppose we are building a mobile application pro-

gram for health and fitness. How do we implement a stochastic linear Bandit algorithm

with contexts in order to provide a user a better choice for one’s health improvement?

2https://developer.apple.com/documentation/healthkit/protecting_user_privacy
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The followings are such considerations required when we face this kind of real-world

problems.

Contents Our project must start from this. We need to define what our goal of

creating this application is, how we can provide benefits to our users, what exact services

we can provide to them, and so on. These considerations are the core part of the project

for its blueprint. The goal should be narrowed down into specific health problems to

be dealt with. For instance, rather than a mere health improvement, it could be like

desirable fluid intake, medicine intake, avoiding sedentary behavior, or mental health

care. The actual action made by a user for this goal may be walking, running, or

other types of exercises. A typical one is walking, and there are active researches on

this specific action(like the HeartSteps data([4])). To measure how much a user walk,

we could simply measure the total count of one’s steps in a day, or only consider the

maximum stepcounts per hour in a day.

Data As we already have seen in the protocol, context data could be a user’s per-

sonal data such as one’s BMI, age, sex, race, or heartrate. Also, current weather, time,

location could affect the user’s behavior([4]). According to what the contents we have

decided at the beginning, required context data could be changed. However, since these

types of data are private, we need to obtain a consent from the user prior to running

the algorithm. If a type of data is expected not to obtain user’s consent easily, we may

have to consider omitting that type. On top of that, there are such types that could

not be measured physically by a typical mobile device, like blood pressure or body fat

percentage. We should be aware of what types of data are practically available for our

algorithm, which would be measured by devices of our targeted user. Suppose our ser-

vice is for seniors, who are not expected to have devices of top-notch technology like
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watch-like mobile devices. Then it would be nonsense to utilize a user’s heartrate data,

which would not be captured by one’s typical mobile devices.

The points made in the above paragraph can be applied to rewards of algorithm as

well. If we have set rewards for the algorithm like swimming hour, it would be fairly

difficult for an ordinary mobile device user to get this type of reward, unless one directly

input one’s own swimming hour by oneself. But this way of gathering one’s rewards

would be unstable, since it could be that one could not precisely remember his exact

exercise hour or might forget to input the hour. Even though the contents of our service

themselves are important, to make it realizable those practical issues must be taken into

account.

Implementation of Algorithm When it comes to the algorithm part, things get

more complicated to be considered. This part is a step which specify the contents

developed at the beginning into details, in order to create real-world services. There

are at least four points to be discussed: hyperparameters, arms, feature vectors, and

rounds. First, setting hyperparameters such as α in LinUCB or Linear TS depends on

how much regret bound with desirable probability we want from the algorithm, as the

theoretical proofs of the algorithm show(such as [1], [12]). However, if necessary, it could

be arbitrary chosen, after observing some experiments with real data. Next, setting arms

could be another big consideration. In our text, we assume them to be finite. However,

if the form of the arms is close to a continuous variable, we may need to discretize.

For example, in the case of recommending walking, we may set up some finite intervals

of stepcounts and recommend those intervals. On the other hand, we may designate

a few special arms, as Greenwald et al., 2017([5]) points out. In the stepcount case,

we may suggest an action where the user do nothing. For the matter of feature vectors
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b(ct, i), we may simply set them all equal to ct, regardless of arms. However, we may take

another approach to set them differently for each of the arms. Specific domain knowledge

could help this problem. Finally, designing rounds is also a matter of concern. Since a

mobile device does not have much big data storage capability, we cannot have T that big

enough. Of course, the rounds that are too far from the current round would be relatively

irrelevant, so they could be deleted(We do not have to take this into consideration if we

use LinUCB or Linear TS, since we keep updating the parameters, which present the past

history). Setting the rounds in terms of recommendation time points is also important.

This is what we call the matter of JITAI (Just-In-Time Adaptive Interventions)([9]). We

may set the recommendation time points as fixed, such as the algorithm runs at 7:00am

everyday. Conversely, we could set them dynamically, which means we push alarms for

the user when one’s own action is most desirable for oneself. This is the ideal one, but

then we may include these recommendation time points as another context variables,

which could burden the computation of the algorithm.

4.4 Further Considerations

If we have thoroughly checked the points discussed in the previous section, now we

are ready to develop a practical service. However, for the sake of the quality of our

service, we may need to think of the following issues additionally.

How to Set Initial Values? First, it would be better for the performance of the

algorithm to set its parameters’ initial values from the start. In the case of Linear TS

or LinUCB, we initialized the parameters as simple as zero vectors or identity matrices.

However, for the matter of convergence, proper initial values might bring in better

results. But since we are utilizing a person’s private information, we are not allowed to

accumulate several individuals’ data in a central server. Therefore, we could purchase
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sample personal data for the initial value setting, or may consult the domain experts’

advice.

Missing Data Problems One of the more serious issues is the missing data problem.

Sometimes a device could malfunction, so that a part of context data or reward data

may be missing. On the other hand, a user may change one’s mind and decide not to

provide one’s own health data to our service. If such events happen, we may stop the

algorithm running at a round until the missing data problem is resolved. However, we

may design more flexible and robust algorithms which also utilize such missing data for

better performance. This could be another important research topic for researchers and

engineers.

5 Conclusion

Throughout three chapters, we reviewed stochastic contextual Bandit models’ con-

cepts, basic examples of linear models such as LinUCB and Linear TS, and discussed

several points required in their practical applications to mobile health problems. We

anticipate further developments in hardware parts of mobile devices in the near future,

so that much more various and important types of data could be obtained from users.

For example, a sophisticated 3D computer vision technology could reconstruct one’s own

body pointcloud, so that a user can conveniently manage one’s own bodyshape visually.

Following such technological trends, we may propose more complicated contextual Ban-

dit algorithms rather than mere stochastic linear models introduced in this text, and

develop more various contents as services.
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국국국문문문초초초록록록

맥락적 밴딧 모형은 밴딧 게임에서 참여자의 정보를 이용하여 효용을 최적

화하려 한다. 응용의 관점에서 본다면, 확률적 선형 모형을 맥락적 밴딧 문

제에 적용하는 것이 선호된다. 때문에 확률 맥락적 선형 밴딧 모형은 뉴스

기사 추천 알고리즘과 같은 실생활의 문제에서 널리 활용되고 있다. 최근,

모바일 건강 문제가 맥락적 밴딧 모형의 또다른 활용 분야로 제시되고 있

다. 하지만 현실 세계에서의 응용을 위해서는, 모바일 기기에서 작동하는

알고리즘의 구현에 필요한 것들을 여러 관점에서 고려하는 것이 필수적이

다. 본 논문에서는 확률 맥락적 선형 밴딧 알고리즘을 간단히 복습하고, 이

후에 모바일 건강 문제에의 적용에 대하여 논의한다. 특히 모바일 건강 어

플리케이션을 개발할 때 고려해야할 측면들에 대하여 상세히 고찰한다.

주주주요요요어어어: 맥락적 다중선택 밴딧 모형, 강화학습, 모바일 건강 문제

학학학 번번번: 2019-29758
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