

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사 학위논문

Language classification of
natural scene text image patches

(일반적인 문자 이미지의 언어분류)

2021년 2월

서울대학교 대학원

협동과정 계산과학전공

장 필 훈

Language classification of
natural scene text image patches

A dissertation
submitted in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Pilhoon Jang

Dissertation Director : Professor Myungjoo Kang

Department of Computational Science and Technology
Seoul National University

February 2021

©2021 Pilhoon Jang

All rights reserved.

Abstract

As other machine learning fields, there has been a lot of progress in text
detection and recognition to obtain text information contained in images
since the deep learning era. When multiple languages are mixed in the im-
age, the process of recognition typically goes through a detection, language
classification and recognition. This dissertation aims to classify languages of
image patches which are the results of text detection. As far as we know,
there are no prior research exactly targeting language classification of images.
So we started from basic backbone networks that are used commonly in many
other general object detection fields. With a ResNeSt-based network which
is based on Resnet and automated pre-processing of ground-truth data to
improve classification performance, we can achieve state of the art record of
this task with a public benchmark dataset.

Keywords: deep learning, optical character detection, character recogni-
tion, multi-language image patch, classification, image processing
Student Number: 2013-23012

Contents

Abstract i

1 Introduction 1
1.1 Optical Character Recognition 1
1.2 Deep Learning . 2

2 Backgrounds 4
2.1 Detection . 4
2.2 Recognition . 5
2.3 Language Classification . 6
2.4 Multi-lingual Text(MLT) . 7
2.5 Convolutional Neural Network(CNN) 7
2.6 Attention Mechanism . 8
2.7 Related Works . 9

2.7.1 Detectors . 9
2.7.2 Recognizers . 14
2.7.3 End-to-end methods (detector + recognizer) 14

2.8 Dataset . 15
2.8.1 ICDAR MLT . 15
2.8.2 Synthetic data : Gupta 17
2.8.3 COCO-Text . 17

3 Proposed Methods 18
3.1 Base Network Selection . 18

3.1.1 Googlenet . 18
3.1.2 Shufflenet V2 . 20
3.1.3 Resnet . 21
3.1.4 Wide Resnet . 23
3.1.5 ResNeXt . 24

ii

3.1.6 ResNeSt(Split-Attention network) 24
3.1.7 Densenet . 25
3.1.8 EfficientNet . 25
3.1.9 Automatic search : AutoSTR 27

3.2 Methods . 28
3.2.1 Ground truth cleansing 28
3.2.2 Divide-and-stack . 32
3.2.3 Using additional data 33
3.2.4 OHEM . 34
3.2.5 Network using the number of characters 35
3.2.6 Use of R-CNN structure 36
3.2.7 High resolution input 39
3.2.8 Handling outliers using variant of OHEM 39
3.2.9 Variable sized input images using the attention 41
3.2.10 Class balancing . 41
3.2.11 Fine tuning on specific classes 42
3.2.12 Optimizer selection . 42

3.3 Result . 42

4 Conclusion 44

Abstract (in Korean) 49

iii

Chapter 1

Introduction

1.1 Optical Character Recognition

Text recognition is one part of pattern recognition, which aims to recog-
nize characters on images automatically. Here, the images may not only
include easily readable texts like newspapers or books but also design let-
ters or handwritings printed on signs, advertisements, clothes, etc. They
also include changes in the light contained in the image with letters, cur-
vature of the surface, and partial occlusion. These various objects can be
captured by 2 or more(2 is for black and white, and 3 is for colored. Usu-
ally 3 colors(red, green, blue) compose a pixel, but 4 is possible(CMYK).
If transparency added, there are 4 channels.) dimensional digital image and
every pixel’s capacity can vary from 2 to 256 ordinarily. There can be infinite
methods to represent an image as a bunch of numbers, and numerous ways
are. In brief, the whole process of text recognition is to extract character
information from those various images and to accurately output the text it
contains.

In a variety of situations, humans do not have much difficulty in recog-
nizing characters, but the recognition ability of machine is largely inferior
to humans even recently. However, as with other fields of machine learning,
neural networks began to be applied to image analysis, showing remarkable
improvement in accuracy. As many networks have been released and applied
to many tasks in recent years, we could test and modify some well-known
nets like vgg[1], resnet[2], ResNeSt[3], ResNeXt[4] to this task.

1

1.2 Deep Learning

Perceptron(made of neurons) and the backpropagation technic, which ap-
peared in the 1960s, have made breakthrough performance in tandem with
the rapidly developing hardware in the 2000s. Before that, there was no
hardware capable of calculating the weights of tens of millions of neurons
quickly enough. From when it became possible, multilayered countless per-
ceptrons can be used in various combinations. We call the technic as deep
learning.

Multi-layer perceptron is a stack of several layers of perceptrons with
activation functions. Linear perceptron is just like a matrix transformation
(multiplication), it is the same as an arbitrary matrix that takes a certain
matrix A as an input and converts it into a matrix B. By applying the
activation function to this, non-linearity can be obtained and the multi-layer
perceptron can separate a data set that cannot be linearly separated. Let the
activation function is σ and the input matrix is A, the classifier consisting
of one layer can be formulated as follows.

B = σ(MA)

where M is a matrix. Transformation can be simply represented as a func-
tion. So, more generally the above can be expressed as follows.

B = σ(f(A))

When stacked in several layers, it becomes:

B′ = σ(· · ·σ(h(σ(g(σ(f(A)))))))

As for the activation function, nonlinear functions that can be differentiated
can be used. A tanh or sigmoid function is usually used. A sigmoid function
is as follows

y =
1

1 + e−x

By stacking layers very deeply, these whole transformation can learn abstrac-
tions that were previously thought to be almost impossible to be learned, and
the term ‘deep learning’ comes from this deep stacking.

2

Machine learning(especially, the pattern recognition) is substantially a
task to make computer to perform abstraction from various conditions au-
tomatically. The deep learning shows overwhelming performance in pattern
recognition, which is not different from the abstraction.

Until recently, deep learning has shown the best performance, and it will
continue for a while. So we used the technic for this task.

3

Chapter 2

Backgrounds

2.1 Detection

Detection refers to specifying the position of a character or a word on an
image. As a method of detection, drawing a bounding box is the most
widely used. The box is represented by four(x,y,w,h) or five(x,y,w,h,theta)
coordinates where x and y are Cartesian coordinates, w is width, h is height,
theta is an angle of rotation. The box may go out of the image, and the
part outside of the image is usually excluded from the evaluation. A more
detailed format than a rotated bounding box is a quadrilateral, represented
by four x,y coordinates. The main difference from the previous methods is
that they can be trapezoidal. Quadrilaterals, however, can’t represent texts
with severe rotation or deformation, such as design letters or trademark
letters(like Starbucks logo). Such forms are represented by a polygon. How
many points can be used depends on how the detector is designed. Usually
the detector gives 4, 8, 12, 14, 16 points.

There is an another form of output called mask which is more abundant
of information than the above methods. While polygons inevitably have the
disadvantage of including some non-letter areas, masks can accurately depict
only the letters’ area. Though this is not a perfect way because the boundary
between the text and the background is often ambiguous, but it provides
much more detailed information than polygons, rectangles, and bounding
boxes. Among the public datasets, Totaltext[5] provides this data(Figure
2.1). And many other detectors have improved performance remarkably by
processing ground truths in the form of bounding boxes into masks. For
example, by reducing the size of the bounding box or making a map according

4

Figure 2.1: Example of mask ground truth. In the image on the right, white
pixels represents text area of left raw image.

to the number of characters, ground truths can contain as much information
as possible like Figure 2.2

2.2 Recognition

Recognition is a process after detection, and it is a classifier to classify char-
acters that are detected by a detector. Therefore there are as many outputs
as classifiable characters. The input format of the recognizer is determined by
the way of the detector giving the input image. Concretely bounding boxes
remains as it is(because a bounding box can produce an image patch with-
out any modification), and rotated bounding boxes can be handled easily(just
like bounding boxes’ cases only with the rotation). In the case of rectangles
or quadrilaterals, there are various treatments and many researches how to
stretch or reform an arbitrary shaped polygon to a rectagle. One of the most
common ways is taking a bounding box or minarearect1 covering all vertexes
and treating it as a general rectangle. As far as we know, a method of putting
the mask output as the input of the recognizer with little modification has
not been studied.

After proper processing, due to the nature of the character notation, in-
put images are usually horizontally long or vertically(in the case of vertical
writing) long, which enters to the recognizer as an input. Because most recog-
nizers take images of fixed sized as an input, too much deformation decreases

1An OpenCV[7] function to get a rectangle coordinates that covers all input points.

5

Figure 2.2: An example showing the Craft[6]’s idea of processing a ground
truth. A bounding box is transformed to a pseudo heatmap(stretched 2
dimensional gaussian, not generated by a heat equation.)

recognition accuracy. So additional processing is required, such as cutting
the input image into several pieces of appropriate size and giving them mul-
tiple times to the recognizer. In this dissertation, we tried ‘divide and stack’
method and will explain it in Chapter 3.2.2 in detail. To compensate for
this shortcoming, recognizers that receives a variable sized image using re-
current neural networks(RNN) are becoming mainstream. The result passing
through the recognizer becomes the final texts of character recognition.

Recently, methods of binding both detection and recognition into one
have been attempted, and these end-to-end methods are showing good per-
formance. More details are in Chapter 2.7.3.

2.3 Language Classification

Language classification is placed between the detector and the recognizer. As
mentioned in 2.2, this classifier is not used for the end-to-end recognizer, and
is placed between the detector and the recognizer when they are separated
in traditional form.

When detection or recognition is for an image composed of only one
language, we do not need this process. But usually two or more languages
are mixed, and Latin characters exists regardless of the language. In addition,
even if only one language is targeted, it is necessary to determine whether
the detected character is recognizable or not, so at this time the language

6

classification should be used to prevent false positives. This research focuses
only on this process.

2.4 Multi-lingual Text(MLT)

As far as we know, no single study for the 2.3’s language classification has
been preceded. This study solves by applying the techniques well-known for
general object detection problem. For the comparison of performance, the
most recent version of ICDAR 2019[8] data, which is the most widely(and
maybe only) used data for this task, is used and the performance will be
compared with the records of the official leaderboard.

Rank Method Accuracy
1 Tencent-DPPR Team 94.03%
2 SOT: CNN-based Classifier 91.66%
3 GSPA HUST 91.02%
3 SCUT-DLVC-Lab 90.97%

Table 2.1: Highest accuracies of MLT19 task2 on the official leaderboard.
The same rank means there are meaningless difference in performance despite
the difference in records. This is due to the faulty ground truths, and was
decided by the task organizers(ICDAR committee). Note Reprinted from [8]
table II.

2.5 Convolutional Neural Network(CNN)

There are many ways to apply the perceptron described 1.2 to an image. In
the simplest case, perceptron can be arranged for each pixel and calculated
for every pixel, which is called a fully connected network(FCN). Since the
pixel number of an image is usually tens of millions, it is rare to use FCN
directly to the input. Instead, a method of creating a smaller filter than
the image size and sliding the entire image is used. In this case, since con-

7

volution operation2 is used as the basis, it is called a convolutional neural
network(CNN) and is the de facto standard for networks targeting images.
This method scans the entire image with a filter (usually 3 dimensions in the
case of an image. The convolution operation can be used not only for images,
but also for sounds.) and performs calculations. There is a design insight to
grasp the characteristics of the whole image as a single consistent criterion
among various input values by sharing the filters’ weights. The individual
numbers passing through the filter are gradually stepped up to form the
condensed and refined information. Although the number of parameters has
been drastically reduced compared to that of multi-layered perceptron, CNN
yet has a considerable amount of computation. So the research has been slow
until the hardware is sufficiently developed. In the past 20 years, the cost of
computation has been dropped dramatically(because of population of cheap
GPUs and improvement of performance), and the related researches began
to pour out.

2.6 Attention Mechanism

Attention mechanism is basically used on sequence to sequence learning. The
idea is to provide a context information to the decoder for every inference.
The attention weight which is emphasizing important parts is given to make
the network focus on more valuable information. It is known that Bah-
danau[9] first proposed the concept of attention, and it is being applied a
lot to the vision field, which is also called visual attention. The attention
mechanism can be applied to almost all network structures that emphasize
only a part rather than the entire input, and it gives good results.

Resnest[3] is an application of the attention to the Resnet[2]. This re-
search uses this network as one of backbone networks, and the Resnet and
Resnest will be explained at 3.1.3, 3.1.6.

2The convolution operation is a Cauchy product.(
inf∑
i=0

ai

)
·

 inf∑
j=0

bj

 =

inf∑
k=0

ck where ck =

k∑
l=0

albk−l

8

Figure 2.3: The graphical illustration of Bahdanau model. hi represents
latent vectors which are encoded outputs of input words. The output words
are generated sequentially according to the attention weights and preceding
word’s encoded vector. Attention weights let the network know where it
should focus when producing the next translated word. Right picture shows
the stacked attention weight used when every each word is translated. We
can see the relationship between the words which have the similar meanings.

2.7 Related Works

From this section, we will consider only studies since the emergence of deep
learning. Previous studies are currently rarely used. Since there are no
prior studies focusing only to MLT(Multi-lingual Text), OCR studies that
are necessary for understanding this study will be explained.

2.7.1 Detectors

Regression based methods

R-CNN(Regions with CNN features.[10]) has been applied to a wide range
of fields since the release. Above all, it performance is overwhelming and
it converges relatively well (It is common for some networks too hard to
converge). First, ROI(Region of interests)s which can be considered as a
kind of candidates are extracted by the RPN(Region Proposal Network).
ROIs come out in the form of bounding boxes. Classification is performed
for each of these boxes through the ROI pooling process to produce the final

9

result. ROI pooling means resizing regoins to a certain size and putting
them to the classifier. If the RPN is designed to output rotated boxes, the
outputs must be rotated before getting into the classifier to increase the
accuracy[11]. There are many ways to deal with overlapping boxes, but
traditionally NMS(Non-maximum Suppression) is used. The structure is as
Fig 2.4.

Figure 2.4: ROI pooling. A feature map is extracted for the whole image.
When the RPN network outputs ROIs, feature maps for each ROI are ex-
tracted from the shared feature map, and it is cut according to coordinates
of bounding boxes as if the shared feature map is an image. And then, each
feature maps are resized to a fixed size.

This is the same when applied to detection, except that the classification
is much simpler. In general object detection such as Imagenet[12], the num-
ber of classes is large. In the case of character detection, only two classes
are required(the positive and the negative. So this stage can be replaced
by the logistic regression.), so the number of parameters in the output layer
of the net is small. However, in the case of recognition, as the number of
characters increases. So thousands or more classes are possible. We can-
not get a high-performance detector just by adjusting the number of output
channels. Currently well-working detectors of R-CNN base are usually at-
tached together with a recognizer when training(this is called an ‘end-to-end’
method) or obtain a result with R-CNN first, then post-processing for higher

10

accuracy. As far as we know a high-performance detector made of pure R-
CNN only does not exist. Researches about end-to-end training is covered
in 2.7.3 below.

[13] and [14] are well-known detectors of R-CNN style. Both get boxes
and then refine them. In the case of the traditional R-CNN, only the over-
lapping boxes are filtered by NMS. But in the case of [13], segmentation is
also performed on the resulting bounding box, and the confidence value is
determined as a final result. If the segmentation result is not good, the box
is also removed. In the case of [14], the shape of a box is refined several times
using LSTM[15] to obtain an arbitrary shaped box. It decreases the distance
of the upper and lower points by moving little by little from left to right.
At this time, the coarse ROIs can be filtered in that refinement process even
they are obtained from a relatively inferior light-weight net. So the size of
RPN an be small. And moreover, unlike other detectors, it is possible to
obtain an arbitrary box without any masks.

Because of the similarity between structures, nets such as LOMO[16] that
apply the same principle to box regression can be classified into this category.
But the ROI pooling is also a key feature of the R-CNN family, so LOMO
should be classified as segmentation method. The difference between the
two is whether the anchor is partially used with the process like topk3 or
confidence scores or used without any drop of candidates. More specifically,
as shown in the rcnn figure(Fig. 2.4), ROIs are collected and resized to
a certain size, then filtered. Without this process, the number of filters
(channels) in CNN can be used to represent the coordinates of boxes, and
the rotation angle of them for every pixel in the image. For example, if there
are five channels, each channel represents x-coordinate, y-coordinate, width,
height, and a rotation angle. In this way, we do not need ROI pooling process
even with the principle of using anchors.

Segmentation based methods

Many detectors use the segmentation method, and most modifications for
performance improvement are made on how to get accurate box coordinates.
There are mostly two ways to obtain box coordinates, one is to configure the
output layer to produce coordinates itself, and the other is to classify into
two categories(internal and external of a box), and then process only the

3A function that returns largest(or smallest) k elements of the input. Almost all deep
learning libraries offer this function.

11

points inside the box appropriately to draw a box. The latter structure is to
obtain a kind of map using CNN, and the result is a mask. We can think of
it as performing pixel classification.

EAST[17] is maybe the simplest and best performing detector of former
type. As the first image passes through FCN(Fully Connected Network), the
box coordinates followed by NMS for filtering noise are produced. A peculiar
point is that the format of the coordinates is not only x,y,w,h, but also
four arbitrary points(8 numbers), so that the network can output arbitrary
rectangles even after NMS. YOLO[18] is similar, but consists only of the CNN
layers at the front and the fully connected layer of the output. The classes
and bounding boxes are predicted for each channel. After going through
the NMS, final results are obtained. The performance is not so good as the
fast(er) rcnn series, but it has a simple structure and on par performance,
so its application range is wide. Textboxes++[19] has the same structure,
but the output contains an additional channel for rotation angle. Therefore,
rotated bounding boxes can be obtained.

A representative case of the second kind is LOMO[16], which was de-
scribed earlier. And DB[20] is implemented with the idea of learning thresh-
olds that are indispensable in the process of segmentation. In most cases,
whether each pixel corresponds to text area or not will eventually decides us-
ing a scalar value, which is usually set to an intermediate value. But in order
to implement a high-performance detector, the best value is experimentally
found and fixed. However, in the case of DB, there is a mechanism that can
make the net learn the threshold itself. TextCohesion[21] determines whether
a pixel belongs to a text area by creating multiple segmentation maps and
voting them. In the case of PSEnet[22], the output layer gives the disk size
that can be drawn at that location for every pixels. The output has mul-
tiple channels and each channel represents the disk sizes of that point. For
example, the channel representing the smallest disk size make out the part
that crosses the center of the text, and the channel representing the largest
disk wraps the entire text region. This helps to solve the chronic and typical
problem that several lines are easily clustered together during the segmen-
tation process. This usually occurs when the text is small or when various
sized texts are attached. Considering that there is a detector as a prelimi-
nary step before the recognizer, the clumped text will hardly be recognized
and thus has no meaning of detection. However, in the case of PSEnet, the
region is expanded based on the channel predicting the center line of the text
area, so even if the boxes are clustered in the last channel(predicting largest

12

disks channel), they can be distinguished. Another form is Textsnake[23].
The Textsnake gets the disk radius and center point in the fully connected
network layer, and then cluster them to shape an arbitrary text area. It does
not use a box, but produces a lot of disks, so it’s essentially not a different
process with NMS in case of boxes. However, by obtaining the center point,
it is easier to separate text areas as in PSEnet above.

text region text center line

θc
r

 disk

Figure 2.5: The basic idea of Textsnake which is one of the segmentation
methods. The text region is constructed based on the text center line and
the predicted radius at that line. Note. Reprinted from Textsnake[23]

Another common way is to use links. The most representative one is
Seglink[24]. First, candidate boxes are obtained using several CNN layers.
It is characteristic that these candidate boxes do not appear by character,
word, or line units. This means that even 1.5 characters can exist in a box.
The idea is to detect a long box using the connection information between
the boxes regardless of character units in each boxes. This connection in-
formation is also obtained through the previous layers. Pixellink[25] also
uses the idea of links. However, as the name suggests, Pixellink obtains the
connection information between pixels, not between boxes. And it collects
pixels based on the connection information to perform segmentation. As

13

with all segmentation based methods, the backbone can be chosen from any
of the existing ones. The concept of link also appears in CRAFT[6], where it
represents the connection between characters(not pixels or boxes). Basically,
after character detection, the link information is used as a method of group-
ing each character in word units. The unique thing about CRAFT is that it
processes the ground truth to obtain the heatmap-like form.(Fig. 2.2)

Compounding methods

In rare cases, there are a methods of mixing both(segmentation and box re-
gression). In Corner-localization[26], the two branches perform segmentaion
and box regression respectively, and the results are combined to obtain the
last box. Using NMS in the process of refining the last box is the same as
segmentation based methods.

2.7.2 Recognizers

There are many researches that deal with recognition only, but we do not
describe them in detail as they are not closely related to this research. In [27]
and [28], there are concise explanations and anatomy of the studies dealing
with that theme. They handles detection studies as well.

2.7.3 End-to-end methods (detector + recognizer)

There are recognizers that perform both detection and recognition together.
Of course, if you connect the detector and the recognizer, it becomes a simple
net that performs both. But the criteria for judging a net is end-to-end is
whether its training is performed simultaneously with a common loss. Mask-
textspotter[29] is based on mask-rcnn[30]. Common features are drawn using
FPN, and the character’s position in a box as well. With these results from
FPN, recognition is performed using RNN(Recurrent Neural Nets). The key
feature is that the attention mechanism is applied to the RNN part, and
the same principle is applied to the Resnest which is one of used nets in
this study. The attention mechanism was originally a concept in natural
language processing and widely used. Concretely when predicting each word
one by one during the translation process, the attention mechanism was
put into the network structure to see which part of each sentence should
be more focused. It is known to work well for translation as well as object

14

detection. FOTS[11] has a structure similar to Mask-textspotter[29], but is
characterized by the introduction of a ROI rotation. Therefore, a rotated
box is possible for a detection result. [31] has a similar structure, but there
is an additional warping part before putting it into the recognizer. That is,
ROIs are obtained with the FPN, then after arbitrary ROI alignment, the
boundary point is finely adjusted to obtain an accurate box shape. After
that, the image is warped according to the boundary point and put into
the recognizer. The attention mechanism is also applied there. ASTS[32]
is based on the Mask-rcnn and is similar to Mask-textspotter, but it goes
through several branches in the segmentation stage and uses a large and
complex net in the recognition process to improve performance.

2.8 Dataset

We used MLT2019 data for this research. In order to set a record on IC-
DAR’s leaderboard, It is not necessary to use only the data provided by the
ICDAR, and moreover the dataset does not have to be public.(But it should
be specified when submitting.) So, for a fair comparison, teams using differ-
ent datasets should be evaluated separately. In Table 2.1, the top team used
their own private data and achieved the record, so the 2nd team recorded the
highest score(91.66%) among the teams that used only the dataset provided
by the organizer.

2.8.1 ICDAR MLT

There are a few published datasets for detection (MSRA-TD500[32], IC-
DAR[9], Total Text[33] etc). However, as far as we know, there are no mean-
ingful datasets other than the data provided by the ICDAR. There are two
datasets of 2017 competition and 2019 competition. The 2017’s data consists
of 68,613 training data and 16,255 validation data. All images consist of only
one word and may contain some margin, but basically it is a full image of
words. The language is divided into 7 classes as Table 2.2. The 2019’s data
is basically same format as 2017’s data and consists of 8 languages.

15

language
number of images

2017 2019

Arabic 3,711 1,784
Bangla 3,237 4,701
Chinese 2,702 3,935
Japanese 4,633 3,933
Korean 5,631 5,945
Latin 47,452 6,748

Symbols 1,247 58,541
Hindi N/A 3,289

Table 2.2: Language distribution of ICDAR 2017 and 2019 data. The effects
of unbalanced distribution will be discussed later.

year 2017 2019 2019 - 2017

Symbols 1.8% 65.9% 64.1%
Arabic 5.4% 2.0% -3.4%
Bangla 4.7% 5.3% 0.6%
Chinese 3.9% 4.4% 0.5%
Japanese 6.8% 4.4% -2.4%
Korean 8.2% 6.7% -1.5%
Latin 69.2% 7.6% -61.6%
Hindi 0% 3.7% 3.7%

Table 2.3: Changes in icdar data. We can see that the symbol and Latin
have been dramatically reversed.

16

2.8.2 Synthetic data : Gupta

Infinite number of images can created by only printing any texts on images
that does not contain texts. However, images generated like this is not very
helpful for learning because the fonts on that images are monotonous(in size
and typography), and the images does not reflect all various backgrounds,
occlusion which is always a main problem in image recognition. A number of
methods have been proposed to overcome these shortcomings, and the rep-
resentative one is Gupta[33]. Gupta first performs segmentation to identify
homogeneous parts on the target image which will be used as background.
Because texts that we can actually observe in nature is naturally are written
on a specific object even though many various objects can be on the image.
This is intended to reproduce this real environment. For example, in a per-
son’s picture against the sky, texts that spans the person and the sky hardly
can be observed. So synthetic texts must be generated on one object: the
sky or a person in this case. Moreover, various variations are applied when
synthesizing like changing sizes, modifying colors, various transformations
considering background, and warping according to background shapes.

2.8.3 COCO-Text

The COCO dataset is a dataset released by Microsoft, and has a vast amount
of images across various circumstances. In the dataset, there is a subset called
COCO-Text which is text annotated dataset of natural scene. Although the
amount is vast, natural scenes have a intrinsic limitation that annotations
cannot be accurate. There are a lot of blurred text and a lot of half-cut text,
and unrecognizable texts which are people can fully recognize based on the
surrounding context. A total of 239,506 text instances can be obtained. But
it is not used in this thesis.

17

Chapter 3

Proposed Methods

3.1 Base Network Selection

A backbone network is a core part of a big network. A backbone and
additional ancillary networks are put together to form the entire network.
Usually a backbone is repeated and stacked to a deeper and more complex
application network. Vgg[1] and Resnet[2] are the most widely used back-
bone networks(hereinafter ‘net’), and the nets pretrained with Imagenet[12]
which help the net get better performance are public. We tested some net-
works(Vgg, Resnet, ResNeXt[4], ResNeSt[3], Efficient net[34]) and finally
adopted ResNeSt. Clearly there are differences in performance depending
on the backbones, as expected. It showed the best performance with a skip
connection and the attention mechanism. The initial learning results of can-
didate networks when selecting the backbone are shown in the Fig. 3.1.

3.1.1 Googlenet

From the beginning of deep learning, it was widely known that increasing
the size of the network is advantageous, but since it cannot increase the
amount of computation infinitely, the problem of designing a network with
comparable performace with a small amount of computation by adjusting
the structure appropriately has emerged. This process is sometimes called to
‘the compression of a network’. It is reasonable to think that the numerous
parameters of the network will not all have the same degree of significance,
so it would be best if only the important parts could be picked and made
dense to a smaller network. Namely, the ultimate goal is to compress the

18

Figure 3.1: Some basic networks’ initial learning experiment results. As
other studies, we experimented with well-known feature extraction networks
to find out which network is more suitable for this research.

19

Figure 3.2: The network used as a basic block in Googlenet. Also called the
inception block.

original network. According to the authors of [35], many of the previously
studied backbone networks have already reached local optimum. Therefore,
they do not try to find the optimal network from scratch and try to find a
well-working backbone by the same way of former researches. A network can
have infinite combinations of small blocks, but not all can be tried, so many
researchers reassemble well-known small blocks to design a network. Because
a few blocks are known to work well and have reached a local optimimum,
so it makes sense to do so. In Googlenet, the basic blocks are 1×1, 3×3,
5×5 convolution blocks, and authors studied how to combine those blocks
to get maximum performance. Like other studies, they designed the entire
net by finding a local structure and repeating the structure (the authors
called this small structure ‘inception block’). Eventually, in the final stage of
network design, it was not automated, but handcrafted. Figure 3.2 depicts
the optimal block found by the authors.

3.1.2 Shufflenet V2

The goal of the Shufflenet[36] is to find an efficient(≈fast, lightweight) net-
work. While other studies are primarily aimed at finding a balanced network
between performance and efficiency, Shufflenet takes efficiency more seriously.
Therefore, a smaller network with the same performance is defined as good,

20

Figure 3.3: The network used as a basic block in Shufflenet. ‘DWConv’
represents ‘depthwise convolution’, and ‘GConv’ means ‘group convolution’.
Reprinted from [36].

and a network is better when the network size is remarkably small even if
the performance is somewhat insufficient. Since the language classification
task is aimed at highest accuracy, Shufflenet may not be suitable to our task,
but since the task itself is not that complicated, this net was not ruled out
because a small network could show good performance. Like other studies,
the authors tried to optimize a basic unit block, and there are several sub-
networks found in that way. All networks of Fig. 3.3 are selected based on
computational efficiency.

3.1.3 Resnet

The structure of Resnet50 is shown in the Figure 3.4. 3 channel image of
1000 output classes, 255×255(width×height) is assumed as input. Resnet18,
Resnet34, Resnet101 and others have more stacked layers of same structure
without a meaningful difference.

In the original paper, a block is expressed as Fig 3.5. In the figure, the skip
connection, which appears as ‘identity’, is to alleviate the phenomenon that
the training error becomes larger as the layer becomes deeper. Assuming
that the deeper the layer, the more accurately the original distribution is

21

Figure 3.4: A brief structure and data flow of Resnet50. Numbers in paren-
theses is the shape of the data. bn: batch normalization layer, fc: fully
connected layer, avgpool: average pooling layer, ‘s:2’ means ‘2 pixel stride’,
‘p:1’ means ‘1 pixel padding’. Middle layers on the left figure are composed
of some small blocks. Concretely, ‘layer 1 (3)’ means ‘this layer is composed
of 3 sequential small blocks’ (layer number is just for distinction with other
layers). The small block is as shown on right figure. Fig. 3.5 is exactly the
same with this.

22

Figure 3.5: A block of Resnet. Reprinted from [2]

expressed, it cannot be explained that the error of a light-weight net is smaller
even after training is sufficiently performed. Assuming you have added a
few layers after optimizing with fewer layers, the error of this new network
should be bounded to the existing network. In fact, empirically, the opposite
phenomenon is observed. In order to alleviate that, a connection that passes
the previous learning result as it is could be added to prevent increasing
training error. This idea works well and is still in use today because of its
good results.

3.1.4 Wide Resnet

The observation that network performance does not improve even if the net-
work is very enlarged with a huge amount of computation has become almost
meaningless since the advent of the ‘skip connection’, and extremely deep
networks of more than 1k layers can be implemented using the skip connec-
tion trick. Afterwards, researchers began to study how to adjust the order
of activation or to apply the drop-out technique to skip connections, and
they also focused on designing residual blocks (this trend is still dominant
now). On the other hand, there is a research to improve the performance by
making the network wider. Wide resnet[37] is a prime example. The idea
is to connect the same network structure in parallel to take an effect similar
to an ensemble network. It is known that this idea reduces the number of
parameters of a network and naturally speeds it up. Experiments have shown
that evan a thousand layers can be reduced to 16 while maintaining the per-
formance. Previous studies focused on depth, which means same structure
blocks stacked repeatedly. But Wide-resnet want to make the net wider in
parallel. The efficient net(3.1.8), which will come out later, integrate these

23

Figure 3.6: A block of ResNeXt. Reprinted from [4]

ideas and go in the direction of finding the optimal ratio between width and
depth.

3.1.5 ResNeXt

Resnext[4] is “modularized network architecture for image classification”.
This net, too, aims to organize properly designed building blocks. Specifi-
cally, 1) multi-branch 2) grouped convolution was used. Multi-branch, also
called cardinality or radix, is known to have the effect of ensemble. The
representative example of the grouped convolution is channel-wise convolu-
tion(this also called separable convolution or depth-wise convolution), which
omits part of the convolution operation. Since a vast amount of calculations
are performed, it is known that comparable performance can be obtained
even if part of the intermediate calculation is omitted and the operation is
simplified. Figure 3.6 shows the basic block of the Resnext.

3.1.6 ResNeSt(Split-Attention network)

The structure is almost the same as that of Resnet(Fig. 3.4). The differences
are that the conv-bn-relu layer(The convolution layer in the middle of left
side of Fig. 3.7 maintains the same number of channels.) which appears
first is more complicated then Resnet, and the attention branch applied to
the every bottleneck blocks. The right side of Fig. 3.7 shows when the

24

bottleneck’s radix is 2. Briefly, the ‘radix’ means how many branches are
split for the attention mechanism.

In this research, the output layer was limited to 8 classes except the third
layer in the ResNeSt presented in 3.1.6. Since the target problem is relatively
simple, the layers do not need to be too deep, and as expected, we could not
observe a significant difference according to depth of the backbones. We used
a model pretrained with ImageNet data.1

3.1.7 Densenet

This can be seen as an application of the skip connection. In the case of
resnet[2], only the input and output of a block is connected, but in the
case of densenet[38], inputs and ouputs of multiple blocks are connected
with multiple skip connections. Another major difference is that the identity
connection is not added but concatenated to form multiple channels.

3.1.8 EfficientNet

Efficient-net[34] is not the result of implementing a concrete idea, but it is
the result of efforts to find more general rules for designing the network.
Many studies using deep learning, including this one, implement a specific
idea to check the results with many trial and errors, but it does not form a
systematic knowledge, and each research merely explains its own. This is a
kind of art rather than an academic one, so in addition to too general theories
such as universal appoximation theorem, more technical aspects need to be
systematically organized. So, the efficient net made a simple hypothesis and
verified that idea about how the net should be further expanded, starting with
the basic network. The rule for extending the net from the basic structure is
as follows.

the network’s depth = αϕ

width = βϕ

resolution = γϕ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(3.1)

1Most deep learning libraries offer pretrained models. We used PyTorch. https://

pytorch.org. Pretrained models can be used by importing torchvision.models module
in PyTorch.

25

Figure 3.7: Left: The entry point of ResNeSt[3].
Right: A brief structure of ResNeSt when the radix is 2.

26

where α, β, γ are found by grid search and ϕ is a hyper parameter.(Refer to
Table 1 of the paper[34] for the basic structure.)

The experimental results showed an overwhelmingly fast convergence
speed.(We used version 8, namely Efficientnet-b8.) However, the limitation
of the efficient net is that it is an expansion from ‘the basic structure’. Even
if it is admitted that the best rule of designing a neural net is the suggested
way above(extending width, depth and resolution from a basic network), it
is not possible to integrate all the current research results that are composed
of complex nets such as ResNeSt and Resnext. Apart from the academic
limitations of the efficient net, the initial performance was sufficient to be
used in this study, we experimented this network as a backbone as well as
above two networks. So all three were basically tested as feature extraction
backbones for all experiments, and the best record was selected.

3.1.9 Automatic search : AutoSTR

There have been many attempts to automatically find the optimal network
structure(NAS: Neural Architecture Search). AutoSTR[39] is an application
of this works in relation to OCR field. More specifically, the study explores
possible backbones for the recognizer. Since the number of combinations
of neural connections is infinite, it is important to limit the search range
and conditions. Because, In the end, you should test all possible structures.
However, we can save time by experimenting only a little (1∼2 epoch) in
the beginning without the entire training process to the peak performance.
Empirically, we can considere this true.

AutoSTR process is divided into operation and downsampling. Down-
sampling is just a pooling, and operation is predefined several types of con-
volution. Of course, the search space is infinite, so with limitting it like this,
we may not be able to find the optimal network. However, it is more realistic
to limit the amount of calculations and find the net as close as possible to
the optimum. Still, there are a lot of possibilities. In this AutoSTR research,
since 7 operations are searched for 15 layers, 715 combinations are possible.
And the research says “Empirical observation that choices of the downsam-
pling path and the operations are almost orthogonal with each other”.

Observing the found net, the deeper is better, and the simpler the op-
eration at the rear end is better. This trend is consistent with the recently
hand-designed net like SCRN[40]. And this research noted that the architec-
ture found in other work was not very good to apply to another task. This

27

indirectly supports the intuition that the ideal network(if it exists) structure
will depend on the data of a particular task.

3.2 Methods

We propose methods not only applicable only to this task, but including
many known techniques. These listed methods are in the order of effective
ones, so even one method is very original and do not work, it is listed later.
Practically, most of the performance improvement was obtained from the
previous four methods, and from 3.2.5 there was little effect.

3.2.1 Ground truth cleansing

filename ground truth text

word 42191.png 02-803-8275
word 44983.png 6:30 24:00
word 45563.png No.1
word 45661.png A-m
word 47042.png Congratulations!!
word 48993.png 1F
word 49705.png paice
word 49761.png TEL:
word 52839.png 8:00 21:00
word 52844.png 8:00 21:00
word 52937.png 8:00 20:00
word 53783.png No.3
word 72963.png 055-21

Table 3.1: These are all labed as Japanese, but only composed with Latin
characters.

error correction

Examining the training data of MLT2019, we can find some errors. For
example, in the case of Fig. 3.8, the image is labeled as Latin(It should be

28

Figure 3.8: An example image that is labeled to Latin. word 88976.png

corrected to Hindi). It is an obvious error to be corrected. Typical errors are
shown in Table 3.2.

Latin filtering

And Latin tends to be included in all languages, so Latin is often classified in
any language. it’s certainly not an error, but it’s a bad data for the classifier
that needs definite ground truths for more better accuracy. In the Table 3.1,
images only includes Latin characters, but they are classified to Japanese.
Latins can be filtered across all languages, and it is a process that can be
easily automated without manual intervention.

CJK issue

In the Chinese-character culture(Korea, China, and Chinese), many Chinese
characters are used in common, so another problem arises. Here too, we
used a simple solution that could be automated. in the case of Japanese, we
filtered images that includes katakana and hiragana, and the rest was labeled
Latin or Chinese. It might be possible to classify images that includes Chi-
nese characters that are only used in Japan nowadays(for example, ancient
Chinese) as Japanese. But since it costs too much to process them separately,
we have not done so.) In the case of Korean, labels containing only Chinese
characters are revised from Korean to Chinese(Fig. 3.9). This can be easily
done because we can classify many languages according to the Unicode of a
character. If an image includes Hangul and Chinese characters as well, it’s
label was kept as it was(Korean).

The number of data that can be modified in these way is 162 totally,
which is only about 0.2% of the total. But as a result in experiment, the
accuracy is improved by more than 1%. It can be seen that several outliers
significantly influence the training results. After obtaining the motif from

29

File name Original annotation Modified to Text

word 34149.png Korean Latin Step3.
word 34162.png Korean Chinese 意

word 34163.png Korean Chinese 改善了

word 34178.png Korean Chinese 理

word 34179.png Korean Chinese 3分
word 34180.png Korean Chinese 性

word 34298.png Korean Chinese (憲宗)
word 34300.png Korean Chinese (金在
word 34301.png Korean Chinese (慶嬪)
word 34302.png Korean Chinese (和)
word 34498.png Korean Chinese 大

word 34500.png Korean Chinese 中

word 34501.png Korean Chinese 小

word 34504.png Korean Chinese 大

word 34505.png Korean Chinese 中

word 34506.png Korean Chinese 小

word 35253.png Latin Korean 12.000원
word 35283.png Korean Chinese 大

word 35393.png Korean Latin C
word 35836.png Japanese Korean 스팀

word 36101.png Korean Latin 5F
word 36387.png Korean Chinese 俊

word 36471.png Korean Latin 3.4F
word 36484.png Korean Latin 4F · 3F
word 36612.png Korean Chinese (蘭谷)
word 37642.png Korean Japanese 日本
word 38053.png Korean Chinese 悲

word 38277.png Korean Chinese 生

word 38756.png Korean Chinese 中

word 39201.png Latin Korean 현위치

word 39336.png Latin Korean 한국공에디자인

word 39337.png Latin Korean 아트샵

word 39338.png Latin Korean 공평아트

word 39746.png Latin Korean 료

word 39747.png Latin Korean 주차장

Table 3.2: Errors modified by character code value.

30

word 39906.png Korean Chinese 微信一

word 39907.png Korean Chinese 航
word 39908.png Korean Chinese 惠

word 39909.png Korean Chinese 海

word 39910.png Korean Chinese 限首
word 39911.png Korean Chinese 每惠

word 39912.png Korean Chinese 最多惠
word 39914.png Korean Chinese 入金
word 39915.png Korean Chinese 微信一

word 39916.png Korean Chinese 使用

word 39917.png Korean Chinese 最多直
word 39918.png Korean Chinese 元

word 39922.png Korean Chinese 暖游
word 39926.png Korean Chinese 夏威夷科
word 39928.png Korean Chinese 海洋深水

word 40210.png Korean Latin TEL:
word 40211.png Korean Latin FAX:
word 40212.png Korean Latin 823-5590/825-55
word 40389.png Latin Korean 총무과장

word 41010.png Korean Latin www.daeboro.co.kr
word 42849.png Korean Chinese 受理

word 43320.png Latin Korean 2월
word 43321.png Latin Korean 16일
word 44849.png Latin Japanese 15分∼¥1.000
word 44850.png Latin Japanese 30分∼¥2.000
word 44851.png Latin Japanese 45分∼¥3.000
word 44852.png Latin Japanese 60分∼¥4.000
word 46810.png Korean Japanese 駐車料金のお支い
word 49521.png Japanese Korean 시즈오카현청

word 51518.png Korean Japanese 丹魂反中越
word 54030.png Latin Chinese 新年音
word 54055.png Latin Chinese 之音院
word 88975.png Latin Hindi
word 88976.png Latin Hindi

Table 3.3: (cont.) Errors modified by character code value.

31

Figure 3.9: This is labeled as Korean. Surely, Korean uses Chinese charac-
ters, but images like this are better to be labeled as Chinese.

this, an experiment that exclude very hard items when training was designed
and tested. It will be covered in the 3.2.4.

3.2.2 Divide-and-stack

Before a training image is entered into the network, it should be resized to a
square. However, some of the training images are extremely long, and after
resizing, the original letters are distorted badly. Table 3.4 and Fig. 3.10 show
the ratio distribution of training data.

As you can see from the data distribution, the images that have the ratio
over 3 is more than 30%.(Of the 89,177 images in total, 27,124 images are in
this case, which is 30.42% of the total). In these cases, after resizing, it is very
difficult to recognize them as Fig. 3.12. In order to improve the accuracy,
those with a ratio of 3 or more were moderately cut and stacked and put as
input so that the ratio of the characters was not excessively distorted. As
a result, this method was successful to improve the performance, and there
was an improvement of 0.46% compared to the cases without ‘divide and
stack’(3.2.2, hereinafter DNS).

Algorithm 1: Divide and stack

Result: Moderately divided and stacked image
ratio = input image’s width per height;
if ratio is between 3 and 0.3 then

return input image as it is. // do nothing

end
if horizontally long image then

divide number = max(2,
√
ratio);

divide image(by divide number times);
concatenate them and return;

else
do almost same as horizontal case;

end

32

ratio
(width/height)

number percentage

∼1/6 298 0.334
1/6∼1/5 180 0.202
1/5∼1/4 341 0.382
1/4∼1/3 684 0.767
1/3∼1/2 1,432 1.601
1/2∼1 9,923 11.127
1∼2 27,754 31.123
2∼3 22,595 25.338
3∼4 12,943 14.514
4∼5 6,352 7.123
5∼6 3,132 3.512
6∼ 3,542 3.972

Table 3.4: The distribution of image patches of MLT2019 task 2 data.

3.2.3 Using additional data

Synthetic data

If synthetic data is added, it is expected to improve performance by 1 to 2%.
In this study, there was no significant performance difference. In the present
case, it is understood that there are no additional performance improvements
because there are already enough 89,000 training data. If more data that can
improve performance enough must be added, firstly we must figure out the
characteristics of the images that are not classified well and use similar data
for further learning. As of now, there seems to be no special solution other
than collecting new data.

Available public data

Besides the MLT, there are some other text datasets. However, most of
them are a small amount of data for text detection, and the data for language
classification is almost unique 2017MLT. The best results were obtained here.
The score is 93.25%(0.42% improvement over results obtained using only
MLT19 data), which is a great level, but we think it is not a meaningful
discovery because getting better result by adding more data is not considered

33

Figure 3.10: The data distribution of Table 3.4.
The more it goes to the right, the longer the image
is horizontally.

Figure 3.11: An example of a long image. The length-to-height ratio of this
image is over 30. (word 28177.png)

new.
The top team in Table 2.1 achieved the highest score(94.03%) in this

way. (In the description of submission, they say “We first recognize text
lines and their character-level language types using ensemble results of sev-
eral recognition models, which based on CTC/Seq2Seq and CNN with self-
attention/RNN. After that, we identify the language types of recognized
results based on statics of MLT-2019 and Wikipedia corpus”. And It is not
known how much more data was used.)

3.2.4 OHEM

OHEM(Online Hard Example Mining)[41] is a method to learn from only
‘hard examples’ after some epoches of training. Specifically, the network does
not learn from all the samples but the part of training data that have the

34

Figure 3.12: Comparison when ‘divide-and-stack’ is applied to Figure 3.11
and not.

larger loss compared to other samples.(The network calculates losses for all
samples, and the losses are ordered in descending order. Finally, the network
back-propagates only for samples with larger loss.) There is no clear rule
how to set the threshold, but it is known that it does not depend heavily on
the threshold, so it is usually set to about top 20%. We tested ResNeSt200
based network. (The number is proportional to the depth of the layers and
there are 50, 101, 200, and 269. It is possible to make it deeper by just
stacking more blocks like common Resnets.) Our target network have batch
norm and relu activation immediately before the last fully connected output
layer. And the DNS also applied. As a result, the accuracy is improved by
0.29% compared to OHEM not applied method(from 92.54% to 92.83%).

3.2.5 Network using the number of characters

We designed and tested a network using additional information. MLT19
provides text as well as script language, and this information can be used
to find out whether there is an improvement in performance when using a
network that predicts how many characters are contained or which characters
are contained as well as language classes. First, we take a feature with
length 1,000 from the backbone, and create two outputs that predict the
class and number of characters. The loss was the sum of the two outputs’
losses. Experiments were conducted using two types of character output,

35

one of which is the channel type that each channel represents the number of
characters(this uses crossentropy loss), and the other is the number itself(in
this case, the root mean square error is used). We tried to adjust the ratio
of the two losses from 3:1 to 0.3:1, but did not conduct further research
because the performance(accuracy below 65%) was inferior to the network
that does not use additional information. Secondly, We tried to predict the
letter itself like the recognizer (the number of output is 8392. It is after
the combining half-width or full-width characters, special symbols of similar
shape, etc. But it didn’t work as expected. We think it was because it was
difficult to converge to an appropriate point because the number of data was
small compared to the number of letters. It was the same even after applying
class balancing.

3.2.6 Use of R-CNN structure

Like many of the detectors mentioned in 2.7.1 above, it is possible to ap-
ply R-CNN. In order to check whether this method is suitable for this
study, we made a basic network and tested it(Figure. 3.13). We used
ResNeXt50 32x4d as the backbone network to extract features. In the
network name, ‘50’ represents the number of layers and ‘4d’ represents that
the radix is 4(‘radix’ is described in 3.1.6. The term has the same meaning
in both ResNeXt and ResNeSt. To put it roughly, applying attention to
ResNeXt is ResNeSt.). The reason for using the net as a feature network
is that when we experimented with ResNeXt101 32x8d its accuracy is
about 90% without RPN(Region Proposal Network). It is remarkable score
compared to other base networks(vgg, densenet, etc...).(See Fig. 3.1)

After extracting the feature of an input image, a network for extracting
coordinates was attached to extract the ROIs, and the size of an ROI was
fixed to 16 both horizontally and vertically to simplify the network(Fig. 3.13).
So this is more likely classifying a letters by picking up a character in some
part of the long image(The height of the 2D feature is 16), rather than
classifying a patch by taking an appropriate spot. The classifier part was also
designed as 3.13 and experimented. In the ROI pooling layer, unlike Faster
R-CNN[42], ROI align of Mask R-CNN[30] is used because it is known to
show better performance. The difference between the two is that ROI align
includes interpolation operations to minimize numerical errors during feature
extraction.

As a result, this method did not produce good results. At epoch 15,

36

Figure 3.13: The overall structure of the network used in the R-CNN ap-
plication experiment of 3.2.6 and subnetworks. The coordinate extraction
layer is the middle figure, and the classifying layer is the right rigure. In the
roi-pooling layer, ROI align is performed.

accuracy reaches around 85% and converges at that level. The highest was
87%. The confusion matrix is the same as 3.14, and as is commonly observed
in this research, Japanese is most confused with Latin.

To check whether picking a specific area has effect or not, we cropped
the center of all images into a maximum square shape regardless of the ratio
of the image. As the distribution of the image ratio is shown in Fig.3.10,
you can check that most of the data is square, so the number of case of
actually being the central crop is about 30% of the whole(27486/89177. Up
to ratio 2 the image is regarded as square because even if a 2:1 image is
pressed as a 1:1 image, there will be no difficulty in recognizing the text.
Reflecting this, DNS only cuts images that are 3:1 or higher). As a result
of this experiment, we can get an accuracy of 89.07% which is much better

37

Figure 3.14: A confusion matrix showing the results of a network using RPN
according to the language. The sum of each row is 100 or less(Since values
less than 1 are all truncated). It is common for all languages to be confused
with Latin, especially in Japanese.

value than the RPN using experiment. So we can conclude that RPN is not
very helpful in language classification task.

With DNS

We can consider the method to applying DNS while using RPN. Using ROI
method is a way of detecting an important part of an image and looking at
that part in detail(there is a similarity with the attention mechanism in this
respect). Since DNS maintains the original proportion of the image as much
as possible, we can expect that good ROIs from a divided-and-stacked image
can be a benefit to the classification.

As a result of experiments, the highest record was 87.59%, which proved
that DNS was helpful (+0.59%), but due to the limitations of the network

38

using RPN, best accuracy was not obtained.

3.2.7 High resolution input

When it is necessary to detect both large and small objects simultaneously,
designing the detector in multi-scale form or receiving a largely resized input
helps. However, in this task, inputs are relatively uniform and there are very
few exceptional cases, so the performance improvement expected by multi-
scaling is not significant. Of course, a multi-scale detector can improve the
performance when it comes with the extreme ratio cases even a little. But
since we decide to solve that problem by DNS(3.2.2), it is unlikely to expect
further improvement.

Surely after the DNS, the size of the letters may vary. But we use not
only DNS but also the Attention Mechanism by ResNeSt, It is not likely for
a high resolution to show more higher score.

As expected, even double sized input(512×512) was given, there was no
meaningful improvement in performance.

3.2.8 Handling outliers using variant of OHEM

It is already confirmed in 3.2.4 that OHEM works. And because the MLT19
data is not perfect as shown in 3.2.1, it is possible to learn by slightly modi-
fying OHEM to exclude not only easy examples, but also most hard data. In
other words, the most difficult(=largest loss) data is considered errorneous
and excluded from learning. The idea is to put a routine that takes only the
smaller losses after normal OHEM which takes only the larger losses. With-
out having to check every samples manually, we can assume a small number
of samples of the whole(like around 1% or 5%) to be false. As a result, the
experiment was unsuccessful. The accuracy did not exceed 82%. When se-
lecting a part of the sample, we experimented many cases by grid search to
find the working ratio such as the top x%∼y%, but most did not differ from
each other. This is consistent with what is known to be that OHEM is fairly
robust to thresholds. Eventually, unlike what we assume that the extremely
most difficult data is an error, we can see that a lot of difficult (=important
for learning) data is removed, not actually an error.

39

Figure 3.15: This shows the network’s structure used in 3.2.9. A long image
is divided into smaller patches and the features are extracted for each. As
shown in the image, the last patch that cannot be obtained with a designated
ratio will be padded. Note that you may not get exactly one letter for a patch.
This can be one of the critical reasons for not getting good results.

40

3.2.9 Variable sized input images using the attention

To use an image with an arbitrary length as an input without deforming, we
apply square patches of the image to the feature network one by one, and get
a weighted sum of features with weights that are taken from the attention
network. In this way, a constant length’s feature vector can be obtained
from an image having an arbitrary length. We used ResNeXt50 32x4d as
a backbone which showed good performance in other experiments.

As a result, this method achieved less than 50% of accuracy. The structure
of the network(Fig. 3.15) seems to have no reason to significantly degrade
performance regarding the steady decreasing of training loss during learning.
But it seems that the network fails to learn in general because the batch size
must be set to 1 when training. Due to the PyTorch’s limitation, the batch
size cannot be more than 1 if training data’s shape is variable. And as far as
we know, No library supports that feature. So the learning effect is greatly
reduced.

After the inputes patch passing through the feature network, we tried to
apply them to RNN one by one without obtaining a weighted sum. But in
that case, the accuracy was further reduced. Since this task is to classifying
all language included in the whole image to one class, it seems that the
method of classifying from the left side of the image one by one is more
disadvantageous than the method of classifying the whole as one.

3.2.10 Class balancing

When the number of samples is uneven in the multi-class problem, class
balancing is frequently used to improve performance. Since the distribution
of the current data is as shown in Table.2.2, it is natural to think that the
performance can be improved by balancing the data. However, as a result
of actual experiments, it did not help, but rather decreased the performance
by 5∼6%.

There can be many ways to balance data, and we have experimented
with two of them. One is to match the data count of all classes equally. The
number of images is then adjusted based on the class that contains the least
data. The second method is to give a constant buffer. It is a method to
adjust the number of the smallest data and the largest number of data so
that it does not exceed a certain ratio. In both experiments, class balancing
was found to decrease accuracy. Even when the number of images per class

41

in the test set was also reduced forcefully to the same ratio of the traing set,
the result was same.

As shown in 2.2, the image number of smallest class is 1,784 in Arabic.
But examining the confusion matrix in various experiments, as in 3.14, the
distinction between ‘Japanese and Latin’ is the poorest not between ‘Arabic
vs other’ or ‘Symbols vs other’. So it can be concluded that unbalance of
training data do not significantly affect to the accuracy in this task.

3.2.11 Fine tuning on specific classes

In almost all experiments the precision of Japanese and Latin is not good.
So after training for the whole, we tried fine tune the classifier by training a
little more for only two(Japanese, Latin) languages. If the learning rate was
not low(>0.001) or the number of epochs was over one or two, the classifying
ability for other classes was significantly reduced. Moreover, performance
improvement could not be observed even with a very little training. In con-
clusion, it is not meaningful to fine-tune with only those classes to increase
resolution between classes that cannot be distinguished.

3.2.12 Optimizer selection

As an optimizer, Adam[43] and SGD(Stochastic Gradient Descent) are most
common, and the learning rate can be reduced by a certain epoch, or a
scheduler can be applied like ‘warm up learning rate’[44], the ‘weight decay’
are also common as well. There is no standard method or correct answer, so
they are selected empirically and tried several times heuristically to produce
good results. In this research, we tried to change the learning rate for each
epoch, and used Adam/SGD with various settings. As shown in Fig. 3.1,
after reaching a certain degree of saturation, no significant difference was
found. Depending on the settings, convergence was a little faster or slower,
but the accuracy could not be increased significantly. Because the accuracy
has already reached mid-90%, further improvement seems to require a more
fundamental solution.

3.3 Result

With an accuracy of 92.83%, we achieved the highest score among currently
published[8] records which used only the given training data of MLT19. (2nd

42

place in total, 1st and 3rd are the same team. They used the data they col-
lected separately and privately. This ranking can be updated at any time,
and the most recent record can be found on the ICDAR Competition home-
page leaderboard.2) We used ResNeSt200 and all the methods from 3.2.
Before epoch 10 (about 2k iterations) the accuracy reaches around 90%. But
the effect of OHEM tends to appear slowly, so the network was fully trained
to the 100 epoches(about 20k iterations). For ResNeSt269, the results were
almost the same, and the other networks that are investigated in this research
all showed slightly inferior performance.

2https://rrc.cvc.uab.es/?ch=15&com=evaluation&task=2 [Accessed:23-Jul-2020]

43

Chapter 4

Conclusion

We performed the language classification with MLT2019 image data, and
were able to achieve state of the art record by ①appropriate selection of
suitable backbone, ②modification and refinement of ground truth, ③OHEM.
Additionally, it has been shown that a better record can be achieved by ④

adding data. And we have observed the results of OHEM’s variant. Through
experiments, we tried to modify and apply various well-known networks to
this task and recorded the result. Besides, we observed the effects of well-
known methods such as resizing the input image, class balancing, and fine
tuning. In the future, like 1st place of Table 2.1, there will be more trials
to process all steps(detection - language classification - recognition) at once
without dividing each steps because that method can cover more wide appli-
cable range. However, as the demand for OCR research increases, study in
various directions will be conducted. And we hope this research will be useful
for one of them, and will satisfy some practical needs as well as academic
needs.

44

Bibliography

[1] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[2] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[3] Hang Zhang et al. “Resnest: Split-attention networks”. In: arXiv preprint
arXiv:2004.08955 (2020).

[4] Saining Xie et al. “Aggregated residual transformations for deep neural
networks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 1492–1500.

[5] Chee Kheng Ch’ng and Chee Seng Chan. “Total-text: A comprehensive
dataset for scene text detection and recognition”. In: 2017 14th IAPR
International Conference on Document Analysis and Recognition (IC-
DAR). Vol. 1. IEEE. 2017, pp. 935–942.

[6] Youngmin Baek et al. “Character region awareness for text detection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2019, pp. 9365–9374.

[7] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[8] N. Nayef et al. “ICDAR2019 Robust Reading Challenge on Multi-
lingual Scene Text Detection and Recognition — RRC-MLT-2019”. In:
2019 International Conference on Document Analysis and Recognition
(ICDAR). 2019, pp. 1582–1587.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural ma-
chine translation by jointly learning to align and translate”. In: arXiv
preprint arXiv:1409.0473 (2014).

45

[10] Ross Girshick et al. “Rich feature hierarchies for accurate object de-
tection and semantic segmentation”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2014, pp. 580–587.

[11] Xuebo Liu et al. “Fots: Fast oriented text spotting with a unified net-
work”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 5676–5685.

[12] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”.
In: 2009 IEEE conference on computer vision and pattern recognition.
Ieee. 2009, pp. 248–255.

[13] Enze Xie et al. “Scene text detection with supervised pyramid con-
text network”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 2019, pp. 9038–9045.

[14] Xiaobing Wang et al. “Arbitrary shape scene text detection with adap-
tive text region representation”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2019, pp. 6449–
6458.

[15] Hasim Sak, Andrew W Senior, and Françoise Beaufays. “Long short-
term memory recurrent neural network architectures for large scale
acoustic modeling”. In: (2014).

[16] Chengquan Zhang et al. “Look more than once: An accurate detector
for text of arbitrary shapes”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2019, pp. 10552–10561.

[17] Xinyu Zhou et al. “East: an efficient and accurate scene text detec-
tor”. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. 2017, pp. 5551–5560.

[18] Joseph Redmon et al. “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 779–788.

[19] Minghui Liao, Baoguang Shi, and Xiang Bai. “Textboxes++: A single-
shot oriented scene text detector”. In: IEEE transactions on image
processing 27.8 (2018), pp. 3676–3690.

[20] Minghui Liao et al. “Real-Time Scene Text Detection with Differen-
tiable Binarization.” In: AAAI. 2020, pp. 11474–11481.

[21] Weijia Wu, Jici Xing, and Hong Zhou. “TextCohesion: Detecting Text
for Arbitrary Shapes”. In: arXiv preprint arXiv:1904.12640 (2019).

46

[22] Wenhai Wang et al. “Shape robust text detection with progressive scale
expansion network”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 9336–9345.

[23] Shangbang Long et al. “Textsnake: A flexible representation for detect-
ing text of arbitrary shapes”. In: Proceedings of the European confer-
ence on computer vision (ECCV). 2018, pp. 20–36.

[24] Baoguang Shi, Xiang Bai, and Serge Belongie. “Detecting oriented
text in natural images by linking segments”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017,
pp. 2550–2558.

[25] Dan Deng et al. “Pixellink: Detecting scene text via instance segmen-
tation”. In: Thirty-second AAAI conference on artificial intelligence.
2018.

[26] Pengyuan Lyu et al. “Multi-oriented scene text detection via corner lo-
calization and region segmentation”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2018, pp. 7553–
7563.

[27] Shangbang Long, Xin He, and Cong Yao. “Scene text detection and
recognition: The deep learning era”. In: arXiv preprint arXiv:1811.04256
(2018).

[28] Zobeir Raisi et al. “Text Detection and Recognition in the Wild: A
Review”. In: arXiv preprint arXiv:2006.04305 (2020).

[29] Minghui Liao et al. “Mask textspotter: An end-to-end trainable neural
network for spotting text with arbitrary shapes”. In: IEEE transactions
on pattern analysis and machine intelligence (2019).

[30] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017, pp. 2961–2969.

[31] Hao Wang et al. “All you need is boundary: Toward arbitrary-shaped
text spotting”. In: arXiv preprint arXiv:1911.09550 (2019).

[32] Juhua Liu et al. “ASTS: A Unified Framework for Arbitrary Shape
Text Spotting”. In: IEEE Transactions on Image Processing 29 (2020),
pp. 5924–5936.

47

[33] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. “Synthetic
data for text localisation in natural images”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016,
pp. 2315–2324.

[34] Mingxing Tan and Quoc V Le. “Efficientnet: Rethinking model scaling
for convolutional neural networks”. In: arXiv preprint arXiv:1905.11946
(2019).

[35] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 1–9.

[36] Ningning Ma et al. “Shufflenet v2: Practical guidelines for efficient cnn
architecture design”. In: Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 116–131.

[37] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”.
In: arXiv preprint arXiv:1605.07146 (2016).

[38] Gao Huang et al. “Densely connected convolutional networks”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition. 2017, pp. 4700–4708.

[39] Hui Zhang et al. “Efficient Backbone Search for Scene Text Recogni-
tion”. In: arXiv preprint arXiv:2003.06567 (2020).

[40] Mingkun Yang et al. “Symmetry-constrained rectification network for
scene text recognition”. In: Proceedings of the IEEE International Con-
ference on Computer Vision. 2019, pp. 9147–9156.

[41] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. “Training
region-based object detectors with online hard example mining”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 761–769.

[42] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection
with region proposal networks”. In: Advances in neural information
processing systems. 2015, pp. 91–99.

[43] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[44] Akhilesh Gotmare et al. “A closer look at deep learning heuristics:
Learning rate restarts, warmup and distillation”. In: arXiv preprint
arXiv:1810.13243 (2018).

48

국문초록

다른 기계학습분야와 마찬가지로, 이미지가 담고 있는 문자정보를 얻어

내려는 문자인식 분야에서도 딥러닝 이후 많은 진전이 있었다. 인식의 과정은

통상적으로 문자검출, 문자인식의 과정을 차례로 거치는데, 다수의 언어가

혼재할 경우 검출과 인식 사이에 언어분류 단계를 한번 더 거치는 것이 보통

이다. 본 연구는 문자 검출 이후의 단계에서 이미지 패치들을 각 언어에 따라

분류하는 것을 목표로 한다. 분류작업만을 전문적으로 다룬 선행연구가 없으

므로, 일반적인 객체검출에서 쓰이는 네트워크 중에서 적절한 것을 선택하고

응용하였다. ResNeSt를기반으로한네트워크와자동화된전처리과정을통해

공개된 벤치마크 데이터셋을 기준으로 가장 좋은 기록을 달성할 수 있었다.

주요어: 딥러닝, 문자인식, 문자검출, 다국어 이미지, 분류기, 영상처리

학 번: 2013-23012

	1 Introduction
	1.1 OpticalCharacterRecognition..................
	1.2 DeepLearning...........................

	2 Backgrounds
	2.1 Detection
	2.2 Recognition
	2.3 LanguageClassification......................
	2.4 Multi-lingualText(MLT).....................
	2.5 ConvolutionalNeuralNetwork(CNN)
	2.6 AttentionMechanism.......................
	2.7 RelatedWorks...........................
	2.7.1 Detectors
	2.7.2 Recognizers
	2.7.3 End-to-end methods (detector + recognizer)

	2.8 Dataset
	2.8.1 ICDARMLT
	2.8.2 Syntheticdata:Gupta..................
	2.8.3 COCO-Text........................

	3 Proposed Methods
	3.1 BaseNetworkSelection......................
	3.1.1 Googlenet
	3.1.2 ShufflenetV2
	3.1.3 Resnet...........................
	3.1.4 WideResnet........................
	3.1.5 ResNeXt..........................
	3.1.6 ResNeSt(Split-Attention network)
	3.1.7 Densenet..........................
	3.1.8 EfficientNet
	3.1.9 Automaticsearch:AutoSTR

	3.2 Methods..............................
	3.2.1 Groundtruthcleansing..................
	3.2.2 Divide-and-stack
	3.2.3 Usingadditionaldata...................
	3.2.4 OHEM...........................
	3.2.5 Network using the number of characters
	3.2.6 UseofR-CNNstructure
	3.2.7 Highresolutioninput...................
	3.2.8 Handling outliers using variant of OHEM
	3.2.9 Variable sized input images using the attention
	3.2.10 Classbalancing
	3.2.11 Finetuningonspecificclasses..............
	3.2.12 Optimizerselection....................

	3.3 Result

	4 Conclusion
	Abstract (in Korean)

<startpage>9
1 Introduction 1
 1.1 OpticalCharacterRecognition.................. 1
 1.2 DeepLearning........................... 2
2 Backgrounds 4
 2.1 Detection 4
 2.2 Recognition 5
 2.3 LanguageClassification...................... 6
 2.4 Multi-lingualText(MLT)..................... 7
 2.5 ConvolutionalNeuralNetwork(CNN) 7
 2.6 AttentionMechanism....................... 8
 2.7 RelatedWorks........................... 9
 2.7.1 Detectors 9
 2.7.2 Recognizers 14
 2.7.3 End-to-end methods (detector + recognizer) 14
 2.8 Dataset 15
 2.8.1 ICDARMLT 15
 2.8.2 Syntheticdata:Gupta.................. 17
 2.8.3 COCO-Text........................ 17
3 Proposed Methods 18
 3.1 BaseNetworkSelection...................... 18
 3.1.1 Googlenet 18
 3.1.2 ShufflenetV2 20
 3.1.3 Resnet........................... 21
 3.1.4 WideResnet........................ 23
 3.1.5 ResNeXt.......................... 24
 3.1.6 ResNeSt(Split-Attention network) 24
 3.1.7 Densenet.......................... 25
 3.1.8 EfficientNet 25
 3.1.9 Automaticsearch:AutoSTR 27
 3.2 Methods.............................. 28
 3.2.1 Groundtruthcleansing.................. 28
 3.2.2 Divide-and-stack 32
 3.2.3 Usingadditionaldata................... 33
 3.2.4 OHEM........................... 34
 3.2.5 Network using the number of characters 35
 3.2.6 UseofR-CNNstructure 36
 3.2.7 Highresolutioninput................... 39
 3.2.8 Handling outliers using variant of OHEM 39
 3.2.9 Variable sized input images using the attention 41
 3.2.10 Classbalancing 41
 3.2.11 Finetuningonspecificclasses.............. 42
 3.2.12 Optimizerselection.................... 42
 3.3 Result 42
4 Conclusion 44
Abstract (in Korean) 49
</body>

