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Abstract 

 
An Electroencephalogram-based 

Noninvasive Critical Care Monitoring 
for Emergency Patients 

 

Heejin Kim 

Interdisciplinary Program in Bioengineering 

The Graduate School 

Seoul National University  

 

 
Electroencephalogram (EEG) is a recording of the electrical activity of the 

brain, measured using electrodes attached to the cerebrum cortex or the scalp. 

As a diagnostic tool for brain disorders, EEG has been widely used for clinical 

purposes such as epilepsy- and dementia diagnosis. This study develops an 

EEG-based noninvasive critical care monitoring method for emergency patients. 

 

In the first two studies, ventricular fibrillation swine models were designed 

to develop EEG-based monitoring methods for evaluating the effectiveness of 

cardiopulmonary resuscitation (CPR). The CPR guidelines recommend 

measuring end-tidal carbon dioxide (ETCO2) via endotracheal intubation to 

assess systemic circulation. However, accurate insertion of the endotracheal 

tube might be difficult in an out-of-hospital setting (OOHS). Therefore, an 

easily measurable EEG, which has been used to predict resuscitated patients’ 

neurologic prognosis, was suggested as a surrogate indicator for CPR feedback. 

In the first experimental setup, the high- and low quality CPRs were altered 10 

times repeatedly, and the EEG parameters were analyzed. Linear regression of 

an EEG-based brain resuscitation index (EBRI) was used to estimate ETCO2 
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levels as a novel feedback indicator of systemic circulation during CPR. A 

positive correlation was found between the EBRI and the real ETCO2, which 

indicates the feasibility of EBRI in OOHSs. In the second experimental setup, 

two types of CPR mode were performed: basic life support and advanced 

cardiovascular life support. EEG signals that were measured between chest 

compressions and defibrillation shocks were analyzed to monitor the cerebral 

circulation with respect to the recovery of carotid blood flow (CaBF) during 

CPR. Significant EEG parameters were identified to represent the CaBF 

recovery, and machine learning (ML)-based classification models were 

established to differentiate between the higher (≥ 30%) and lower (< 30%) 

CaBF recovery. The prediction model based on the support vector machine 

(SVM) showed the best performance, with an accuracy of 0.853 and an area 

under the curve (AUC) of 0.909. The proposed models are expected to guide 

better cerebral resuscitation and enable early recovery of brain function.  

 

In the third study, a swine model of traumatic brain injury (TBI) was 

designed to develop an EEG-based prediction model of an elevated intracranial 

pressure (ICP). TBI is defined as the disruption of normal brain function due to 

physical impact. This can increase ICP, and the resulting hypoperfusion can 

affect the cerebral electrical activity. Thus, we developed EEG-based prediction 

models to monitor ICP levels. During the experiments, EEG was measured 

while the ICP was adjusted with the Foley balloon catheter. Significant EEG 

parameters were determined to differentiate between the normal (< 25 mmHg) 

and dangerous (≥ 25 mmHg) ICP levels and ML-based binary classifiers were 

established to distinguish between these two groups. The multilayer perceptron 

model showed the best performance with an accuracy of 0.686 and an AUC of 

0.754, which were improved to 0.760 and 0.834, respectively, when a 

noninvasive heart rate was also used as an input. The proposed prediction 

models are expected to instantly treat an elevated ICP (≥ 25 mmHg) in 

emergency settings.  
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This study presents a new EEG-based noninvasive monitoring method of 

the physiologic parameters of emergency patients, especially in an OOHS, and 

evaluates the performance of the proposed models. In this study, EEG was 

analyzed to predict immediate ETCO2, CaBF, and ICP. The prediction models 

demonstrate that a noninvasive EEG can yield clinically important predictive 

outcomes. Eventually, the EEG parameters should be investigated with regard 

to the long-term neurological and functional outcomes. Further clinical trials 

are warranted to improve and evaluate the feasibility of the proposed method 

with respect to the neurological evaluation scores, such as the cerebral 

performance category and modified Rankin scale.  
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Chapter 1. General Introduction 

 

1.1. Electroencephalogram 
 

Electroencephalogram (EEG) is a continuous recording of the brain’s 

spontaneous electrical activity, measured by using electrodes placed on the 

scalp or the cerebrum cortex [1−3]. Generally, an EEG is recorded 

noninvasively with multiple surface electrodes attached along the scalp [4, 5]. 

The locations of the electrodes are usually described by the International 10–

20 system [6]. 

An EEG is generated by the mechanisms of pyramidal neurons in the 

cerebral cortex [3, 7]. The neurons are electrically polarized while the 

membrane transports ions through a branch of channels that control signals in 

and out of the membrane. The most important channel is the sodium-potassium 

channel, which maintains the basal resting potential of the neuron by pumping 

three Na+ ions out of the cell while pumping two K+ ions into the cell. A resting 

intracellular potential of −70 mV is created (Figure 1.1 (A)). An action potential 

causes the signals to move through the neurons, and the Na+ ions enter the cell 

through the channel. Depolarization occurs and a positive intracellular potential 

at approximately 20 mV is created (Figure 1.1 (B)). Immediately after 

depolarization, the K+ ions move out of the cells and a negative intracellular 

potential of approximately −100 mV is created, which is defined as 
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hyperpolarization (Figure 1.1 (C)). While signals move in and out of the ion 

channels, neurons communicate with other neurons at their synapses. 

Excitatory neurotransmitters generate an excitatory postsynaptic potential to 

promote depolarization and signal propagation to the surrounding neurons. 

Inhibitory neurotransmitters generate an inhibitory postsynaptic potential to 

promote hyperpolarization and halt signal propagation. Extracellular potential, 

which creates a local electric field, during neuronal function is detected by scalp 

EEG electrodes. The potential of each neuron is too diminutive to be detected 

by electrodes, but detectable voltage can be created if millions of neurons are 

aligned perpendicular to the brain surface and depolarized simultaneously [8]. 

The polarity of the voltage on the electrodes is determined by the depolarization 

location. Negative voltage is detected when superficial neurons are depolarized 

(Figure 1.1 (D)), whereas a positive voltage is detected when deep neurons are 

depolarized (Figure 1.1 (E)). When scalp EEG electrodes are charged, the 

voltage fluctuation between the two electrodes is amplified to record an EEG 

[9]. The entire EEG generation mechanism is illustrated in Figure 1.1.  
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Figure 1.1 Generating mechanism of the EEG: (A) The resting state of neuronal 
function, (B) Depolarization, (C) Hyperpolarization, (D) Negatively charged 
electrode, (E) Positively charged electrode. 
 

A certain active electrode is connected to one input of a differential 

amplifier [10, 11]. Another input of the differential amplifier can differ 

depending on the montage, i.e. the representation of the EEG channels. The 

reference electrode is applied in the referential montage. However, another 

active electrode is applied in the sequential montage. After connecting the 

electrodes, the differential potentials between the two electrodes are usually 

amplified, band-pass filtered, and digitized, to be saved and further analyzed. 

Typically, the sampling rate of the analogue-to-digital converter (ADC) is 

above 250 Hz. Artifacts that can contaminate the original signal should be 

removed. Power-line interference with a fundamental frequency of 50 or 60 Hz 

can be eliminated by a band-reject filter [3, 9]. The basic measurement setup 

for scalp EEG is illustrated in Figure 1.2.  
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Figure 1.2 Basic measurement setup for scalp EEG. 

 

Conventionally, the EEG signal is analyzed in the time and frequency 

domain. Continuous suppressed periods or abrupt bursting patterns can pose 

clinical significances [12−15]. The rhythmic activity of the EEG signal is 

typically described with frequency bands [16, 17]. A Fourier transform is 

performed to represent the distribution of the frequency components of the 

signal. The bandwidth and characteristics of each band are presented in Figure 

1.3. Delta waves with low frequencies ranging up to 4 Hz are related to deep 

sleep or loss of awareness. Theta waves with frequencies ranging from 4 Hz to 

8 Hz are easily monitored in the states of drowsiness or meditation in adults. 

Alpha waves in a frequency range of 8–13 Hz represent relaxed and calm 

conditions. The alpha waves emerge when the eyes are closed and attenuate 

with mental activity or when the eyes open. Beta waves with a frequency range 

of 13–30 Hz can be easily monitored in subjects who are highly anxious or 

focused with their eyes opened. Gamma waves ranging above 30 Hz are 

associated with cognitive processes. The nonlinear characteristics of neural 
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activity can be analyzed to uncover complex dynamics of EEG signals. Several 

entropy indices have been introduced to reveal the complexity and randomness 

of the EEG signal [18−21]. Bispectral analysis is a technique for quantifying 

nonlinear subtle phase coupling [22].  
 

 
Figure 1.3 Comparison of each frequency band. 
 

 

1.2. Clinical use of spontaneous EEG 
 

As a diagnostic method for brain activity, EEG has been widely used for a 

variety of clinical purposes. Most of all, EEG signals are measured for 

diagnosing epilepsy [23, 24]. Multi-channel EEG signals are measured to detect 

epileptic activities and to localize the regions from which seizure activities 

originate. Different types of epileptic seizures can be identified using EEG. 

Several feature extraction methods have been developed to automatically detect 

epilepsy stages [25].  
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During post-resuscitation treatment, EEG bursting patterns, rate, peak, and 

duration, are investigated to evaluate the return of the neurological function in 

the resuscitated patients [26]. Early and increased EEG bursting patterns are 

related to favorable neurological outcomes. Furthermore, EEG activity is 

routinely monitored to diagnose dementia [27]. An increase in lower 

frequencies is a noticeable sign of the early stages of dementia. A reduced 

complexity of the EEG can be another physiological response of the disease.    

As a sensitive indicator of the effect of anesthetic administration, EEGs can 

be analyzed to monitor the depth of anesthesia [22, 28]. The BIS Vista Monitor 

(Aspect Medical Systems, Norwood, MA, USA) was developed to evaluate 

patient-specific effects of anesthesia and achieve the desired level of sedation 

by performing bispectral analysis on the EEG measured from the prefrontal 

cortex [29]. Sleep-related physiological responses are also monitored with scalp 

EEG oscillations [30]. With advances in machine learning (ML) methods and 

wearable sensors, processed EEG signals, such as power spectral density and a 

structural complexity, can be obtained from a portable EEG device to evaluate 

the sleep stages [31].  

EEG biomarkers, such as entropy indices, bispectral index score (BIS) and 

epileptic patterns, can be calculated or detected using diverse signal processing 

techniques and ML methods. They have shown the possibility of monitoring 

various brain-related disorders or diseases.  
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1.3. EEG and cerebral hemodynamics 
 

Previous studies have reported the relationship between cerebral blood flow 

(CBF) and EEG activity during cerebral ischemia. Patients with no neurological 

deficits underwent carotid endarterectomy under general anesthesia [32, 33]. A 

distinctive correlation between the levels of regional cerebral blood flow (rCBF) 

and the EEG activity was found. The EEG activity was not altered with the 

normal rCBF above 30 ml/100gm/min, and subtle changes were found with the 

rCBF in the range 18–30 ml/100gm/min. Apparent changes were observed 

when the rCBF dropped below 18 ml/100gm/min. The amplitude of the EEG 

decreased at first. Then, the power spectrum was re-distributed toward lower 

frequencies, and the total spectral power decreased. After the surgery, the rCBF 

returned to normal conditions, followed by recovery in the EEG activity. These 

results were supported by previous studies which stated that 30–40% of normal 

CBF could be the threshold for the recovery of normal brain function and EEG 

flattering [34−36]. Similar results were found in cardiac arrest (CA) situations. 

The EEG activity was lost in a few seconds after the CA occurred [37]. However, 

the EEG activity returned to the pre-CA state when return of spontaneous 

circulation (ROSC) was achieved. Recovery time was related to the duration of 

no- or low-flow and the ischemic episode [38]. The functional relationship 

between CBF and EEG activity is described in Figure 1.4.   
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Figure 1.4 Cerebral ischemic thresholds. 
 

The relationship between cerebral circulation and electrical activity is 

attributable to cerebral oxygenation levels [39, 40]. The relationship between 

neural activity and oxygenation has been poorly understood; however, the 

cerebral tissue oxygen metabolism, the rate of oxygen consumption for neural 

activity, is assumed to be affected by oxygen supply [41]. Cerebral hypoxia can 

restrain neuronal functions such as transmitting electrical signals to the 

surrounding neurons and generating action potentials. Previous findings 

indicate that low rCBF levels below 18 ml/100gm/min lead to an inactive EEG. 

A study by Losasso et al. showed sufficient brain perfusion and oxygen delivery 

can result in the return of the EEG activity in resuscitated patients after 

cardiopulmonary resuscitation (CPR) [38]. This result demonstrated the role of 

well-oxygenated blood flow in the electrical activity of the cerebral cortex, 

although the minimum oxygenation needed for normal brain function has not 

been clearly identified.  
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1.4. EEG use in emergency settings 
 

An emergency EEG was proposed primarily for the diagnosis and 

management of non-convulsive epileptic seizures [42−44], which can cause 

impaired consciousness and neurological injury. In such emergency settings, 

monitoring brain function is critical to prevent irreversible damage to the 

central nervous system (CNS). As a diagnostic tool for the integrity of CNS 

neurons, measuring a noninvasive EEG can enable early access to brain cell 

viability without additional diagnostic modalities, and advance treatments in 

certain situations [44, 45]. If a reliable noninvasive EEG can be obtained, 

physicians or EMTs using other diagnostic tools could evaluate and treat the 

patients more comprehensively. 

Typically, a minimum of 16 channels are recommended for EEG monitoring; 

however, a smaller number of channels can be allowed in special circumstances 

[46]. For instance, fewer channels can be adopted to capture seizure activity 

during an emergency procedure [47−49]. The CSM M3 (Cerebral State Monitor 

M3, Danmeter A/S, Odense, Denmark) [45] and the BIS Vista Monitor provide 

EEG-based measurements of an anesthetic depth, exploiting only one or two 

channels.  

These devices have been applied in an OOHS. A major obstacle for 

emergency EEG is the existence of artifacts, which can contaminate the raw 

EEG signals. Several factors, such as unintended visual or auditory stimulus, 
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extremely high electrode-skin impedance, and motion artifacts, could cause 

electroencephalographic alterations. These problems can worsen in CA or CPR 

situations. However, if secure installation with a low electrode-skin impedance 

and artifact prevention techniques is feasible, a reliable noninvasive 

measurement could be obtained. The CSM M3 could provide single-channel 

out-of-hospital EEG measurements with acceptable rates of artifacts [44]. The 

successful acquisition of high-quality EEG measurements creates new 

possibilities for real-time brain function monitoring using small portable EEG 

devices in emergency settings. 
 

1.5. Noninvasive CPR assessment 
 

CPR is the most effective method for supplying sufficient blood to critical 

organs in CA patients, and high-quality CPR should be performed to achieve 

improved survival rates and neurological outcomes [50, 51]. To perform high-

quality CPR, several monitoring methods have been suggested as indicators for 

CPR quality assessment. In the clinical field, certain rates and depth conditions 

of chest compressions (CCs) are targeted, and CPR feedback devices on CC 

rates and depth are widely used [52, 53]. However, following certain CC 

conditions does not always lead to the best performance owing to the different 

body conditions of patients. This problem has gained increasing interest in the 

monitoring methods using individual physiological responses [54, 55].  
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The feasibility of physiology-based CPR assessment methods has been 

evaluated, and end-tidal carbon dioxide (ETCO2) has been proposed as a 

reliable indicator for systemic circulation by the American Heart Association 

(AHA) [56]. An ETCO2-directed feedback method improved the chance of 

ROSC [57, 58]. However, placing endotracheal tube could be demanding and 

improper installation could generate low values. In addition, it mainly reflects 

the entire systemic circulation, rather than the cerebral circulation. The burden 

of CA can be demanding with regard to disability and neurological deficits, 

owing to prolonged hypoxia, because these factors can influence the survivors’ 

quality of life and their socioeconomic burden [59, 60]. Thus, achieving early 

neurological recovery by supplying sufficient CBF has been regarded as one of 

the major goals of CPR [61]. Thus, additional monitoring of the cerebral 

circulation is highly required.  

Recently, several noninvasive monitoring modalities have been applied 

during CPR. Quantitative infrared pupillometry (QIP), transcranial Doppler 

ultrasonography (TCD), cerebral oximetry, and electroencephalography have 

been used for noninvasive CPR quality assessments. The QIP measures pupil 

size and changes, such as dilation and constriction, with near-infrared light [62]. 

The pupillary light response (PLR) is a reflex that controls the diameter of the 

pupil in response to light intensity and is not affected by cognitive functions 

[63]. Specifically, a higher intensity of light causes pupillary constriction, 

which allows for reduced light adaptation. The PLR decreases when CBF 
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decreases [64], such as in CA or CPR situations. Therefore, the QIP can be used 

to monitor CBF changes during CPR [65]. Patients who experienced a short 

period of CA had a constricted pupil with a normal PLR during CPR [66], and 

achieving a positive PLR can be a sign of favorable neurological functions [62]. 

The continuous appearance of the PLR or a short absence of less than 5 min 

was related to early survival and favorable neurological outcomes, while no 

PLR or a longer absence for over 5 min was related to death or unfavorable 

outcomes [64, 66]. QIP can be useful in assessing cerebral resuscitation because 

it is not affected by epinephrine and neuromuscular blockade. However, the 

limitation of this method is that variations in pupil size and response exist owing 

to aging and the use of drugs (i.e., opioids and sedatives) [67]. TCD has also 

been applied to patients undergoing CPR. Real-time red cell flow velocity (FV) 

is measured noninvasively by using ultrasonic waves. TCD can be applied in 

the CPR setting because the blood FV is reduced to approximately 80% of the 

pre-CA condition at the beginning of CPR and can be altered according to 

changes in cerebral vascular resistance [68]. Improved blood FV after more 

effective CPR efforts can be quantified using the TCD method [69]. However, 

finding correct vessels could be difficult, and the signal measurements are 

operator dependent [70]. These problems significantly limit the use of TCD in 

CPR situations. Cerebral oximetry is the most widely used noninvasive CPR 

monitoring method. The regional cerebral oxygen saturation (rSO2) levels, 

measured by near-infrared spectroscopy (NIRS), are associated with the 
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occurrence of ROSC and favorable neurological outcomes [71, 72]. A 

significant difference in rSO2 levels was identified between resuscitated and 

deceased patients [73]. The rSO2 level correlated well with a conventional 

monitoring parameter for systemic circulation, ETCO2, allowing ROSC 

prediction with NIRS values [74]. Achieving higher rSO2 can improve 

systemic and cerebral circulation during CPR [73]. However, higher rSO2 is 

not always passed on to high-quality cerebral resuscitation. The rSO2 and EEG 

showed different changes after prolonged hypoxia-ischemia (HI) [75]. When 

the mean arterial blood pressure (MAP) was returned to baseline values after 

HI for 60 min, rSO2 returned to baseline values quickly; however, the EEG still 

showed HI-induced suppression activity. Because irreversible damage might 

occur in the brain owing to prolonged ischemic insults [38], EEG activity 

should also be monitored. EEG has a great advantage of continuous monitoring 

of brain neuronal activity over NIRS.  

EEG is closely associated with the cerebral circulation and physiologic 

responses of the brain [76, 77]. The relationship between EEG and cerebral 

circulation has been investigated over several decades [78]. Because EEG-

derived indices, such as BIS, were introduced, EEG has been used to monitor 

cerebral perfusion during CPR. However, the usefulness of EEG-derived 

indices during CPR remains controversial [79, 80]. In 2018, Reagan et al. 

reported the first human clinical trial that evaluated cerebral resuscitation by 

utilizing a portable EEG and NIRS device together [81]. Real-time rSO2 and 
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EEG were measured during CPR. Approximately 60% of the EEG data, 

measured during short pauses for an ECG rhythm check, were interpretable, 

which demonstrated the feasibility of measuring EEG using a portable device 

during CPR. Seven distinct EEG patterns were identified with regard to the 

rSO2 levels for the first time. This study emphasized the importance of EEG 

monitoring during CPR because EEG can represent the actual effect of oxygen 

delivery on brain cell viability. Therefore, new automated methods that quantify 

the EEG patterns with respect to hemodynamic parameters during CPR could 

help physicians to better understand the patient’s neurological condition and 

guide proper neuroprotective strategies during CPR. Several noninvasive 

monitoring methodologies applied during CPR are listed in Table 1.1. 

Recent advances in low-cost portable EEG devices have been reported [82, 

83]. These devices can improve the applicability of the noninvasive EEG as an 

indicator of CBF recovery in CA situations. The hypothetical EEG 

measurement during CPR is illustrated in Figure 1.5. 
 

 
Figure 1.5 Hypothetical EEG measurement and analysis during CPR: (A) 
Increased blood flow to the brain, (B) Possible EEG analysis in time- and 
frequency-domain. 
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Table 1.1 Noninvasive monitoring methodologies applied during CPR. 
Methodology Authors Year Research findings 
QIP Larson et al., 1995 Portable infrared pupillometry can reveal the presence of midbrain function [65]. 

Behrends et al., 2012 The presence of PLR during CPR was associated with early survival from CA. The absence of PLR for > 
5min during CPR was associated with death or poor neurological outcomes [64]. 

Lee et al., 2019 Patients with positive PLR during CPR had favorable outcomes [66]. 
TCD Lewis et al., 1990 Real-time red cell blood flow velocity was measured during CPR. The blood flow velocity was altered 

because of changes in cerebral vascular resistance and the use of epinephrine [68]. 
Blumenstein et al., 2010 Improved blood flow velocity after more effective CPR was evaluated [69]. 

NIRS Ioroi et al., 2002 The rSO2 and EEG showed different time profiles after prolonged perinatal asphyxia [75]. 
Parnia et al., 2014 The ROSC and non-ROSC patients showed a significant difference in rSO2 levels [73]. 
Xu et al., 2015 The amplitudes of rSO2 increased during CPR in CA animal models and were higher in the high-quality 

CPR group than in the low-quality group. They correlated well with ETCO2 [74]. 
Parnia et al., 2016 Higher rSO2 during CPR was associated with ROSC and neurologically favorable survival [71].  
Cournoyer et al., 2016 Patients who survived to discharge and who had good neurological outcome displayed superior combined 

initial and mean NIRS values than those of their counterparts [72]. 
EEG Ingvar et al., 1976 The dominant EEG frequency correlated with the blood flow to the brain [78]. 

Charlotte et al., 2009 The use of BIS to monitor cerebral function during ACLS was pointless [79]. 
Jung et al., 2013 As a basic monitoring device during CPR, BIS can help in deciding to continue CPR [80]. 
Reagan et al., 2018 Portable EEG monitoring during CPR was feasible and can provide information regarding the quality of 

cerebral resuscitation, in terms of brain functionality. Seven distinct EEG patterns were identified with 
regard to the different rSO2 levels [81]. 

Abbreviation: QIP, Quantitative infrared pupillometry; TCD, Transcranial Doppler ultrasonography; NIRS, Near-infrared spectroscopy; EEG, 
Electroencephalogram; PLR, Pupillary light response; CPR, Cardiopulmonary resuscitation; CA, Cardiac arrest; rSO2, Regional cerebral oxygen saturation; 
ETCO2, End-tidal carbon dioxide; BIS, Bispectral index score; ACLS, Advanced cardiovascular life support;
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1.6. Noninvasive traumatic brain injury 
assessment 
 

Traumatic brain injury (TBI) is defined as a disruption of normal brain 

function [84], and its long-term consequences are a major medical problem. 

Severe TBI causes immediate cognitive and physical disorders, but symptoms 

of mild TBI may be felt from several months after injury. Socioeconomic losses, 

including a financial burdens, might be substantial [85, 86] because TBI 

requires significant medical costs [87] and reduces the patients’ ability to work 

[88, 89]. These problems have raised the need for accurate prognostication of 

outcomes following TBI with various neuro-monitoring modalities. 

The consequences of TBI fall into two categories: primary injury caused 

directly by physical impact, and secondary damage resulting from the 

pathophysiologic responses of primary injury, including hypoperfusion due to 

cerebral edema and increased intracranial pressure (ICP). Thus, ICP should be 

monitored continuously in a timely fashion to minimize secondary damage and 

maintain cerebral perfusion [90−92]. At present, invasive methods containing 

an insertion of a pressure catheter into the intracranial region have been 

regarded as the standard. However, there are many associated complications 

such as nervous system injury, infection, occlusion of the catheter, or bleeding 

[93−95]. 

Multiple noninvasive techniques have been suggested to overcome these 

drawbacks. According to Zhang et al., noninvasive ICP monitoring methods 
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can be categorized into five groups: fluid dynamics, ophthalmic, otic, 

electrophysiologic, and others [94]. TCD, near-infrared spectroscopy (NIRS), 

and cerebral blood flow velocity (CBFV) measure dynamic fluid changes. ICP 

can be calculated from the TCD measurements, real-time red cell FV, because 

increased ICP can decrease the blood FV [96]. The TCD could be useful in 

estimating ICP; however, hand measurements by a skillful technician could 

generate inter-observer variability [70]. NIRS monitors continuous cerebral 

blood volume by measuring the concentration of deoxygenated and oxygenated 

hemoglobin in the blood [97]. Portable NIRS devices can be applied in 

emergency settings [81]. However, the relationship between cerebral 

oxygenation levels and ICP has rarely been investigated [98]. CBFV is 

determined by cerebral perfusion pressure (CEPP) and cerebrovascular 

resistance (CVR). CEPP is decreased and CVR is increased in case of increased 

ICP [94]. Based on these relationships, noninvasive ICP monitoring techniques 

were also developed [96, 99]. These methods have wide applicability in a 

clinical setting because they do not require any calibration or training. However, 

ABP measurement at the radial artery and computation process limits the use 

in emergency settings. The Ophthalmic method can accurately estimate ICP. 

The optic nerve sheath diameter (ONSD) assessment utilizes the physiologic 

response that the optic nerve sheath distends owing to increased ICP [100, 101]. 

A significant correlation between ONSD and ICP was found. In addition, the 

ONSD assessment could detect increased ICP above 20 mmHg accurately with 
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an AUC of 0.94 [102]. However, the drawbacks of this method are related to 

the effect of possible pathologies, such as atrophy and inter-subject variability, 

including different optic nerve sizes and age [94]. The QIP is also applied to 

estimate the ICP. Monitoring subtle changes in pupil size effectively diagnose 

TBI patients [103−105]. TBI patients with an ICP of over 20 mmHg showed 

reduced constriction compared to healthy people (TBI patients: 20% vs. healthy 

people: 34%) [106]. However, the QIP measurement can be disturbed by 

several factors, such as certain medical conditions, medications, and emotional 

status [107]. Venous ophthalmo-dynamometry (ODM) measures the pressure 

within the central retinal vein to quantify ICP [108]. An increase in ICP is 

followed by increased central retinal vein pressure [109, 110]. Portable venous 

ODM measurement is a validated method for estimating ICP in hospitalized 

patients. However, the ODM method cannot monitor continuous changes, and 

a physician skilled in eye examination is necessary [94]. Transcranial acoustic 

(TCA) signals mixed with head-generated sounds can be measured from the 

outer ear channel to estimate static and pulsatile ICP [111, 112]. However, the 

TCA method was mainly validated with low ICP ranges below 15 mmHg. 

Further research is needed to confirm the functionality of this method for 

estimating increased ICP. Skull vibration is also related to ICP changes. ICP 

changes produce a stress field over the skull and determine skull stiffness [113]. 

The natural frequency responses generated by the skull vibration and stiffness 

can be measured to estimate the ICP. This method can be developed with a 
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model for the complex anatomical structure of the human head [113, 114]. 

Electrophysiologic responses, such as visual evoked potential (VEP), can also 

be used to estimate ICP [115]. VEP latencies can be delayed owing to increased 

ICP. However, the existence of inter-subject variability in VEP latencies makes 

it difficult to differentiate between natural physiological long latencies and the 

pathophysiologic effects of increased ICP. In addition, continuous visual 

stimulation might be fatiguing for conscious patients [96, 116]. Spontaneous 

EEG can be a more convenient method [117, 118]. Previous observational 

studies examined the correlation between elevated ICP and EEG activity in 

patients with TBI and found that burst suppression patterns can be an indicator 

of elevated ICP [119−121]. Spontaneous EEG activity reflects ongoing ICP 

changes. With stable arterial blood pressure (ABP), an increased ICP could 

reduce CEPP and CBF. Consequently, ischemic insults and metabolic injury of 

the brain cells might occur, gradually deactivating cerebral electrical activity. 

Based on these relationships, EEG activity might have the potential to predict 

ICP changes [118]. The specific characteristics of the noninvasive ICP 

monitoring methods are listed in Table 1.2.  
 

 



 ２０

Table 1.2 Characteristics of noninvasive ICP monitoring methods. 
Methodology Accuracy 

(mmHg) 
Skill  
level 

Cost of 
technology 

Continuous 
monitoring 

Emergency 
setting① 

Properties 

Fluid 
dynamics 

TCD ± 10–15 Expert Moderate No Yes - Finding correct vessels is difficult. 
NIRS NV Low Moderate No Yes - Portable devices available. 
CBFV ± 1.5 Low Moderate No No - ABP measurement is needed②.  

Ophthalmic ONSD 
assessment 

± 5–10 Moderate  
/ High 

Moderate  
/ High 

No Yes - Can be used in emergency department 
with sonography. 

Pupillometry NV Low Low No Yes - Measurement can be affected by several 
factors. 

Venous  
ODM 

± 3–5 Expert Low No No - Repeated examinations can be 
cumbersome. 

Otic TCA signals ± 5 Moderate Moderate Yes No - 
Electro-
physiologic 

VEP NV Expert Low No No - Not suitable for many patients with 
retinal injuries or optic nerve pathologies 

EEG NV Low Low Yes Yes - Portable devices available. 
Others Skull vibrations NV Expert Low No No - Complex mathematical models for human 

head are needed. 
Abbreviation: TCD, Transcranial Doppler ultrasonography; NIRS, Near-infrared spectroscopy; CBFV, Cerebral blood flow velocity; ONSD, Optic nerve 
sheath diameter; ODM, Ophthalmodynamometry; TCA, Transcranial acoustic; VEP, Visual-evoked potential; EEG, Electroencephalogram; NV, Not validated; 
ABP, Arterial blood pressure;

                                            
① Hospital-level emergency settings (e.g., an emergency department and intensive care unit) 
② Invasive measurement from the radial artery 
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1.7. Thesis objectives 
 

The main objectives of this thesis are to investigate the relationships 

between EEG and physiological parameters such as ETCO2, carotid blood flow 

(CaBF), and ICP, and thus evaluate the feasibility of an EEG-based critical care 

monitoring system in CA and TBI situations. The main reason the CA and TBI 

situations were considered was because not only the patients’ life or death but 

also the degree of disability depends on the effectiveness of immediate 

emergency care in these situations [122−125]. Monitoring hemodynamic 

parameters can lead to better outcomes as hemodynamic data can reveal the 

consequences of the treatments. However, such monitoring could be difficult in 

patients with CA and TBI. Furthermore, cell viability of the brain should be 

obtained early to improve neurological outcomes in these situations; however, 

real-time brain activity has rarely been monitored to date. 

Cerebral circulation showed a positive correlation with systemic circulation 

during CPR [126], and EEG activity recovered when the cerebral circulation 

returned to the normal state [38]. Thus, it was assumed that both systemic and 

cerebral circulation could be evaluated through EEG monitoring. Several 

studies have attempted to evaluate the quality of CPR using the BIS Vista 

monitor, and the effectiveness of the BIS machine during CPR has been 

controversial, mainly because of CPR artifacts [79, 80]. However, in this study, 

Chapter 2 investigates the relationship between EEG and ETCO2—an indicator 
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of systemic circulation during CPR. CPR artifacts on the EEG signal were 

removed, and an EEG-based brain resuscitation index (EBRI) model was 

established with a self-developed four-channel EEG device and swine model of 

ventricular fibrillation (VF). The EBRI model was developed to estimate 

ETCO2 to evaluate the recovery of systemic circulation, as an alternative to 

ETCO2 measurement.  

In Chapter 3, the relationship between cerebral circulation and EEG was 

investigated using an improved swine model of VF and a single-channel EEG 

device. CaBF was measured to monitor cerebral circulation. The recovery of 

cerebral circulation can affect the early recovery of brain function in patients 

with CA. However, there is no means to monitor cerebral circulation during 

CPR. Thus, an EEG-based prediction model was developed to estimate the 

recovery rates of CaBF. 

In Chapter 4, the relationship between EEG and ICP in TBI situations is 

described. After severe head injury, increased ICP might impede cerebral 

circulation, resulting in attenuated EEG activity. Thus, we assumed that there 

are differences in EEG functionality between the normal and increased ICP. 

Several observational studies have reported a relationship between EEG and 

ICP changes. However, this study quantitatively analyzed EEG changes 

according to ICP changes in a single animal. A swine model of TBI and an 

improved single-channel EEG device were utilized to develop the first EEG-

based ICP prediction model.  
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Chapter 2. EEG-based Brain Resuscitation 
Index for Monitoring Systemic Circulation 
During CPR 
 

 

2.1. Introduction 

According to a 2017 report by the AHA, over 180000 out-of-hospital 

cardiac arrest (OHCA) patients are treated annually by emergency medical 

services (EMS), and the average survival to hospital discharge rate of EMS-

treated OHCA is approximately 10% in the United States. [127]. As a core 

component of the chain of survival, accurate and immediate CPR is critical to 

improve the survival rates and good neurological recovery of CA patients [59, 

128, 129].  

To perform high-quality CPR, applying a certain depth and rates of chest 

compressions (CCs), as directed by CPR guidelines, and monitoring the actual 

operation are of fundamental importance. A variety of CPR feedback devices 

have been introduced to assess the depth, speed, and chest recoil of CCs [52, 

53]. However, CC-oriented monitoring cannot evaluate the actual recovery of 

systemic circulation in patients. Therefore, additional methods based on 

physiological responses are required to evaluate the real effectiveness of CPR 

[54, 55].  

The AHA guidelines suggested three physiologic parameters as indicators 

of the systemic circulation during CPR— ETCO2, diastolic arterial pressure 
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(DBP), and coronary perfusion pressure (COPP) [130]. However, the COPP 

and DBP, which require central venous cannulation and an insertion of a 

pressure catheter, are not applicable in real CPR situations. ETCO2 can be 

measured through endotracheal intubation [131], and ETCO2-directed 

feedback methods can increase the likelihood of ROSC [57, 58]. However, it 

would be difficult for unskilled emergency medical technicians (EMTs) to 

install endotracheal tubes, especially in an OOHS, and improper placement 

might obstruct the airway and show low ETCO2 [130, 132].  

Therefore, in this study, we focused on EEG as a noninvasive surrogate 

indicator of ETCO2. EEG is easily measurable and reveals changes in the 

cerebral circulation. The EEG signals, including spontaneous activity and 

evoked potential, are monitored to investigate neurological recovery of 

resuscitated patients [26, 133]. Previous studies measured EEG during CPR and 

found relationships between EEG activity and cerebral hypoperfusion [37, 38]. 

We designed an experimental swine model of VF to develop an EEG-based 

Brain Resuscitation Index (EBRI) to estimate ETCO2. We hypothesized that an 

increased cardiac output during CPR leads to an increased systemic circulation. 

Concurrently, cerebral circulation and oxygenation are also recovered, which 

can lead to a more improved EEG activity.   
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2.2. Methods 

 

2.2.1 Ethical statement 

The animal test protocol was approved by the Institutional Animal Care and 

Use Committee of Seoul National University Hospital (IACUC number: 15-

0288). All animal care complied with the Laboratory Animal Act of the Korean 

Ministry of Food and Drug Safety (MFDS).  

 

2.2.2 Study design and setting 

A swine model of VF was designed to acquire EEG signals during CPR. 

After untreated VF for 1 min, 10 cycles of 2-min CPR were delivered manually. 

The physiological signals, including the frontal EEG, were measured 

throughout the experiments. Each CPR session consisted of a 50 s long high-

quality CPR (HQ-CPR), followed by a 10 s pause, then a 50 s long low-quality 

CPR (LQ-CPR), and last a 10 s pause. During HQ-CPR, an EMT performed 

the CCs at a rate of 100 times per minute with a depth of 5 cm. Contrarily, 

during LQ-CPR, the EMT performed the CCs at a rate of 60 times per minute 

with a depth of 3 cm. A 10 s hands-off time was used twice to change the CPR 

mode. During all CPR sessions, an X Series CPR Monitor (Zoll Medical 

Corporation, Chelmsford, MA, USA) was used to check the actual rates and 

depth. After all the CPR sessions, 1 mg of epinephrine was injected intra-

venously and biphasic defibrillation shock of 200 J was applied to restart the 
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heart. The ROSC was checked after a 2-min HQ-CPR. If the ROSC was not 

achieved, a second defibrillation and 2-min HQ-CPR were performed, and the 

ROSC was checked. Defibrillation procedures were attempted up to three times. 

If the ROSC was achieved, the animals were euthanized with an injection of 20 

mg potassium chloride (KCl). The entire test protocol is described in Figure 2.1.  
 

 
Figure 2.1 The complete test protocol with a timeline. 
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2.2.3 Experimental animals and housing 

Five domestic crossbred female pigs, approximately 3 months of age (44.6 

± 2.7 kg), were studied. The animals were obtained from the supplier of 

experimental animals (Cronex Co., Ltd., Cheongju, Korea), qualified by the 

Korean MFDS with a certificate from the Korea Excellent Laboratory Animal 

Supplying Facility (KELAS). The animals were maintained in an accredited 

Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) International (#001169) facility, in accordance with the guide for 

the care and use of laboratory animals [134]. A certified veterinarian adjudged 

the animals as healthy, and they were made to fast overnight.  
 

2.2.4 Surgical preparation and hemodynamic measurements 

The animals were initially sedated with intra-muscular injections of 5 

mg/kg tiletamine hydrochloride and zolazepam hydrochloride (Zoletil, Virbac, 

Carros, France) and 2 mg/kg xylazine (Rompun, Bayer, Seoul, Korea), 

followed by inhalation of isoflurane at a dose of 1–1.5%. Monitoring of 

anesthetic depth of the animals was started with the BIS Vista Monitor. The 

animals were orally intubated and a Capstar-100 CO2 analyzer (CWE Inc., 

Ardmore, PA, USA) was installed. Mechanical ventilation was initiated. A tidal 

volume (TV) of 12 ml/kg, respiratory rate (RR) of 12 breaths/min, partial 

pressure of arterial CO2 (PaCO2) at approximately 40 mmHg, and partial 

pressure of arterial oxygen (PaO2) over 80 mmHg were maintained to continue 
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the anesthesia. A perivascular probe (MA2PSB, Transonic Systems, Ithaca, NY, 

USA) and a perivascular flowmeter (T420, Transonic Systems, Ithaca, NY, 

USA) were installed to detect the CaBF from the surgically dissected internal 

carotid artery. A Mikro-tip pressure catheter (Millar, Houston, TX, USA) was 

inserted into the left femoral artery and placed in the descending thoracic aorta 

to measure the ABP. Another Mikro-tip pressure catheter was inserted into the 

right atrium to measure the right atrial pressure (RAP). An electrocardiogram 

(ECG) was taken, and the saturation of percutaneous oxygen (SpO2) was 

measured. All signals, except the EEG signals, were gathered and saved using 

the PowerLab 16/35 hardware with LabChart software (ADInstruments, 

Dunedin, New Zealand) at a rate of 1 kHz, simultaneously.  

A pace-making wire was inserted into the right ventricle via a central vein 

catheter. The isoflurane was stopped before VF induction to recover the EEG 

activity. When the EEG started to recover, the animals entered a light sedation 

status, with a BIS value of approximately 80. A direct-current shock was then 

applied to induce the VF. Mechanical ventilation was stopped, and the animals 

were left without assistance for one min. Thereafter, CPR and defibrillation 

were executed, and manual ventilation using the Ambu Resuscitators (Ambu 

A/S, Ballerup, Denmark) with 100% oxygen was provided to the animals at a 

rate of 10 times per minute.   
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2.2.5 EEG measurement 

A battery-powered EEG device with four channels was developed to 

measure scalp EEG under the referential montage. The device consisted of an 

analog front end (AFE), which amplified and filtered the raw EEG data; 

analogue-digital converter (ADC); micro-processor unit (MCU); and Bluetooth 

communication module. For the design of the input amplifier in the AFE, a 

large input impedance was considered to reduce the possibility of signal 

distortion owing to a mismatch of the electrode-skin impedance. Low noise 

levels, low offset voltage, high common mode rejection ratio (CMRR), and 

low-power consumption for battery-powered operation were also considered. 

To meet these requirements, an instrumentation amplifier (INA826, Texas 

Instruments, Dallas, TX, USA) was used for the input amplifier. The INA826 

has a CMRR of over 100 dB, maximum offset voltage of 150 µV, noise level 

under 0.2 µVp-p, and power consumption of 0.2 mA. For the filter stages in the 

AFE, second-order Butterworth filters using the Sallen-Key topology were 

applied as a high-pass filter (cutoff frequency: 0.5 Hz) and low-pass filter 

(cutoff frequency: 50 Hz). An operational amplifier, TSZ122 

(STMicroelectronics Inc., Geneva, Switzerland) was used in the filter stages. 

The TSZ122 has a CMRR of over 120 dB, maximum offset voltage of 5 µV, 

noise level under 0.2 µVp-p, and power consumption of 40 µA. In total, the raw 

EEG signals were band-pass filtered with a frequency range of 0.5–50 Hz and 

amplified with a gain of 100 V/V in the AFE. The resultant signals were 
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digitized by the ADC (ADS1299, Texas Instruments, Dallas, TX, USA), 

specialized for bio-potential measurement. The ADS1299 has a CMRR of 115 

dB and an input-referred noise of 0.98 µVp-p at a programmable gain of 24 

V/V and a sampling rate of 250 Hz. The digitized data were amplified with a 

gain of 24 V/V and transmitted to the MCU (ATmega168, Atmel Corporation, 

San Jose, CA, USA) through serial peripheral interface (SPI) communication. 

The ATmega168 transmitted the received data to the laptop through a Bluetooth 

communication module (FB155C, Firmtech, Seongnam, Korea). The data 

acquisition software based on the LabView2013 platform (National Instruments, 

Austin, TX, USA) was used to receive and save the EEG data. This device was 

compliant with the general requirements for the essential performance of 

electroencephalography, specified in the International Standard IEC 60601-2-

26: Accuracy of signal reproduction, input dynamic ranges and differential 

offset voltage, input noise, frequency response, and CMRR. Figure 2.2 shows 

the four-channel EEG device and electrode placement. EEG signals were 

measured with disposable surface electrodes (2223H, 3M Healthcare, Brackell, 

UK). Reference and ground electrodes were placed on the mastoid, and four 

active electrodes were placed around the forehead. We took steps to maintain a 

stable electrode contact. First, the animal’s skin was slightly peeled to flatten 

the forehead region where the EEG device and electrodes were placed. Then, 

the EEG device and electrodes were secured tightly with medical adhesive tape 

to prevent displacement during CPR. The technical specifications of the device 
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are listed in Table 2.1. 
 

Figure 2.2 Four-channel EEG device: (A) Printed circuit board, (B) Electrodes 
placement for scalp EEG measurement. 
 

 

 

Table 2.1 Technical specifications of the EEG device. 
Number of channels 4 

Sampling rate 250 Hz 

Bandwidth 0.5–50 Hz 

Resolution 24-bit 

Input range ±1,000 µV 

Gain control 2,400 V/V 

CMRR > 80 dB 

Noise (peak-to-peak) < 3 µV 

Interface USB, Bluetooth 2.0 

Power Li/Po Battery 3.7V/900mAh 
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2.2.6 Data analysis 

All data were processed using MATLAB R2017b (Mathworks, Natick, MA, 

USA). The EEG signal and hemodynamic data were synchronized. The EEG 

signals were processed to extract useful parameters. The entire EEG data were 

segmented into 4 s long epochs with 3.5 s overlaps with the neighboring epochs. 

First, CPR artifacts on the EEG signal were removed. Short-time Fourier 

transform was employed to investigate the frequency responses of the epoch. 

The frequency bin was 0.25 Hz. Fundamental noise and harmonics, due to CCs, 

were detected and compensated for by replacing it with the averages of the two 

neighboring frequency components. If 3.5 Hz is recognized as an artifact 

frequency, for example, the average amplitude of the 3.25 Hz and 3.75 Hz 

components was applied as a new 3.5 Hz component. The artifact removal 

process is described in Figure 2.3.  

The resulting signal was re-converted into the time domain to calculate the 

burst suppression ratio (BSR) [22]. Two frequency-domain parameters, the 

relative beta ratio (BetaR) [22, 135] and relative delta ratio (DeltaR), were 

determined from the power spectrum within certain frequency bands [136]. The 

relative synchrony of fast and slow waves (SynchFS) was determined from the 

bispectrum domain [22]. If all the calculations for the single epoch were 

completed, the same process was repeated for the next epoch. In total, four EEG 

parameters were obtained every half a second. The mean ETCO2 data were also 

obtained at the same time intervals. The EEG parameters are listed in Table 2.2. 
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Figure 2.3 Artifact-removal process: (A) The raw EEG signal contaminated by 
the CPR artifact, (B) Power spectrum of the raw EEG signal, (C) Before and 
after removing CPR artifacts on the frequency-domain, (D) Before and after 
removing CPR artifacts on the time-domain. 
 

 
Table 2.2 Four EEG parameters derived to establish the EBRI model. 
Parameters Definition 

BSR Percentage of continuous periods longer than a half a second 
during which EEG is suppressed under ±5 µV (unit: %) 

SynchFS log(B0.5-47 Hz / B40-47 Hz) 

BetaR log(P30-47 Hz / P11-20 Hz) 

DeltaR log(P8-20 Hz / P1-4 Hz) 

Abbreviation: Pa-b Hz, the sum of spectral power from a–b Hz; Ba-b Hz, the sum 
of bispectral activity from a–b Hz; 

 

2.2.7 EBRI calculation 

The EBRI model was established to construct the relationship between the 

four EEG parameters as an input and the mean ETCO2 as an output using linear 

regression methods. Five-fold cross validated regression models were derived 



 ３４

for each animal. For example, to obtain the EBRI model for animal #1, all EEG 

parameters and ETCO2 data from the other 4 animals were used to establish 

the EBRI model. Five different EBRI models were obtained. The final EBRI 

model was determined using all the data together.  

EBRI = a + b1 × BSR + b2 × BetaR + b3 × SynchFS + b4 × DeltaR (eq.1) 

 

2.2.8 Delta-EBRI calculation 

To distinguish between an increase- or decrease trend in the estimated 

ETCO2, the time differences of the EBRI, defined as delta-EBRI, were 

calculated. Because we assumed that the EBRI positively correlates with the 

actual ETCO2, it should theoretically increase with the increase in actual 

ETCO2 values, and decrease in the opposite situation. Therefore, the delta-

EBRI values at different time intervals were obtained from the changes in the 

actual ETCO2. The time intervals ranged from 0.5 s to 10 s.  

The performance of the delta-EBRI was evaluated using the confusion 

matrix. In the confusion matrix, the two groups were presented: Group 0 with 

decreased cases and Group 1 with increased cases. Four primary evaluation 

metrics were determined with the confusion matrix: true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). The positive and 

negative indices were considered for Group 0 and Group 1, respectively. TP is 

the proportion of correctly predicted positive indices, and TN is the proportion 

of correctly predicted negative indices. FP is the proportion of known negative 
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cases that was predicted positive, and FN is the proportion of known positive 

cases that was predicted negative. The accuracy, sensitivity, and specificity 

were calculated as follows [137]: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) (eq.2) 

Sensitivity = TP / (TP + FN) (eq.3) 

Specificity = TN / (TN + FP) (eq.4) 

 

The second metric was the F1 score, which is calculated from the harmonic 

mean of the precision (TP / (TP + FP)) and recall, also known as the sensitivity 

(eq.3) [138].  

F1 score = 2 × (precision × recall) / (precision + recall) (eq.5) 

 

In addition, a receiver operating characteristic (ROC) curve and the area 

under the curve (AUC) [139] were obtained using the IBM SPSS Statistics 25 

software (IBM SPSS Statistics, New York, NY, USA) to evaluate the 

classification ability. The ROC curve was determined from the combination of 

the true positive rate (TPR, eq.3) and the false positive rate (FPR, FP / (FP + 

TN), known as 1 – eq.4) at different threshold levels. The AUC is the area under 

the ROC curve.   
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2.3. Results 

 

2.3.1 Hemodynamic parameters 

Five experiments with 10 repetitions each for the two CPR modes were 

performed, and all physiologic parameters, including ETCO2 and EEG signals, 

were measured. The hemodynamic parameters after the 15th CPR segment in 

animal #4 were excluded from the analysis because the EEG was missed at that 

time.  

Table 2.3 presents the hemodynamic parameters during the baseline and 

CPR sessions. All the blood pressure parameters: systolic blood pressure (SBP), 

DBP, MAP, and COPP, showed higher values in the HQ-CPR sessions than in 

the LQ-CPR sessions. The ETCO2 and CaBF were also higher in the HQ-CPR 

sessions. The BIS values were monitored during the experiments, but they were 

not considered because the low-frequency CPR artifacts on the EEG were not 

removed.  
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Table 2.3 Hemodynamic parameters depending on the CPR modes. 
Parameters Baseline HQ-CPR LQ-CPR p value 

Median (IQR) Median (IQR) Median (IQR) 
SBP, mmHg 105 (101, 116) 89 (76, 104) 42 (34, 54) < 0.01 

DBP, mmHg 75 (74, 84) 24 (15, 30) 22 (17, 27) < 0.01 

MAP, mmHg 90 (87, 94) 38 (31, 48) 25 (19, 31) < 0.01 

ETCO2, mmHg 46 (43, 46) 23 (17, 26) 18 (14, 22) < 0.01 

CaBF, ml/min 323 (243, 374) 207 (160, 352) 53 (16, 119) < 0.01 

COPP, mmHg 80 (75, 84) 16 (8, 22) 13 (9, 17) < 0.01 

BIS 81 (78, 84) - - - 

Abbreviation: SBP, Systolic blood pressure; DBP, Diastolic blood pressure; 
MAP, Mean arterial pressure; ETCO2, End-tidal CO2 tension; CaBF, Carotid 
blood flow; COPP, Coronary perfusion pressure; BIS, Bispectral index score; 
IQR, Interquartile range; 
 
 
 

2.3.2 Changes in EEG parameters 

The four EEG parameters, introduced in Table 2.2, were investigated to 

determine whether the EEG signal can reveal the quality of a CPR session. After 

removing the artifacts due to CCs, the BSR, BetaR, DeltaR, and SynchFS were 

obtained at intervals of half a second, and they were compared with the mean 

ETCO2. Figure 2.4 shows the changes in the EEG parameters in animal #1. 

Distinct changes were found as the VF and CPR sessions proceeded. Once VF 

occurred, the EEG activity was lost in 10–15 s with the following increase in 

BSR. When the HQ-CPR was initiated, the BSR decreased, but increased after 

the CPR mode was switched to LQ-CPR. Similar patterns continued till the end 

of the experiment. The overall BIS values increased, indicating that the EEG 
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activity decreased gradually. Such apparent patterns were found for the other 

parameters. The degrees of non-linear phase coupling, SynchFS, increased 

during HQ-CPR and decreased during LQ-CPR. BetaR showed similar changes 

with regard to the BSR. The DeltaR also showed similar patterns with regard 

to the BSR. Scatter plots for each parameter and ETCO2 are illustrated in 

Figure 2.5.  
 

Figure 2.4 Changes in the four EEG parameters throughout the experiments. 
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Figure 2.5 Scatter plots between each EEG parameter and ETCO2: (A) BSR, 
(B) BetaR, (C) SynchFS, (D) DeltaR. 

 

2.3.3 EBRI calculation 

The EBRI model was established to formulate the relationship between the 

four EEG input parameters and the ETCO2, as an output, using the linear 

regression technique. Five different EBRI models were determined to estimate 

the ETCO2 of an individual experiment. Figure 2.6 demonstrates the actual 

ETCO2 and estimated ETCO2 using the EBRI models.  
 



 ４０

 
Figure 2.6 Comparison between the actual ETCO2 and estimated ETCO2 with 
the EBRI model.  
 
 

The final EBRI model was derived using all experimental data. The y-

intercept (a) and coefficients for each parameter (b1–b4) were determined as 

follows. 

EBRI = a + b1 × BSR + b2 × BetaR + b3 × SynchFS + b4 × DeltaR 

(a = 26.047, b1 = -0.141, b2 = 4.481, b3 = 2.821, b4 = 5.452) 
(eq.6) 

 

The performance of the EBRI model was evaluated using Pearson’s 

correlation coefficient as a metric of similarity. All CPR sessions, except the 

first HQ-CPR session, in which the actual ETCO2 increased rapidly at the 

beginning, were compared. The correlation coefficients between the two signals 

are presented in Table 2.4. The correlation coefficients were considered for each 

animal as well as the merged dataset. The correlation coefficients differed 
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between the experiments. Test 2 showed the highest value of 0.655. Tests 1 and 

5 showed correlation coefficients above 0.5. However, poor correlation 

coefficients less than 0.3 were found in Test 3 and 4. The overall correlation 

coefficient from the merged dataset was 0.513.  
 

Table 2.4 Correlation coefficients between the actual ETCO2 and EBRI. 
Test Correlation coefficient 

#1 0.520 

#2 0.655 

#3 0.411 

#4 0.464 

#5 0.560 

Merged data 0.513 

 

2.3.4 Delta-EBRI calculation 

The delta-EBRI for different time intervals ranging from 0.5 s to 10 s was 

obtained with respect to the changes in the actual ETCO2. The performance 

was evaluated using the confusion matrix and a ROC curve. The 10 s time 

interval showed the best performance. The accuracy of the confusion matrix 

was 0.716, and the AUC was 0.763. Figure 2.7 demonstrates the confusion 

matrix and the ROC curve, and Table 2.5 summarizes the overall performance 

metrics. 
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Figure 2.7 Performance of the delta-EBRI with 10 s time interval: (A) 
Confusion matrix, (B) The ROC curve. 
 

Table 2.5 Performance of the delta-EBRI. 
Performance Value 

Accuracy 0.716 

Sensitivity 0.687 

Specificity 0.757 

Precision 0.800 

F1 score 0.739 

AUC 0.765 

Abbreviation: AUC, Area under the curve; 
 
 

2.4. Discussion 

2.4.1 Accomplishment 

This swine model of VF was utilized to develop a noninvasive CPR 

feedback method using the frontal EEG, as an alternative to ETCO2 

measurement. To improve the survival rates of CA patients, certain levels of 

systemic circulation, which is normally assessed with an endotracheal tube and 

capnography, should be maintained. However, more easily measurable methods 
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are needed to increase the applicability in emergency settings. In this study, an 

EBRI model was established to estimate ETCO2 under the two different CPR 

modes. The EBRI model correlated with the actual ETCO2, with a Pearson 

correlation coefficient of 0.513. The performance of the delta-EBRI, as a 

classifier between an increase or decrease in ETCO2, was acceptable with an 

AUC value of over 0.7. These results suggest that the delta-EBRI, rather than 

the original EBRI, has a potential as a noninvasive physiologic feedback 

indicator for systemic circulation assessment during CPR. 

Four EEG parameters were considered for establishing the EBRI model. 

These parameters have been reported to reflect the consciousness level and 

measure anesthetic depth [140]. First, the BSR, defined as the percentage of 

continuous periods longer than half a second with an amplitude of less than ±5 

µV, reflects hypoperfusion caused by an overdose of the anesthetic agents [141, 

142]. Furthermore, it can be used as a predictor of neurological recovery of 

resuscitated patients [26, 133]. A relationship was found between the recovery 

of cerebral circulation and BSR. The BSR remained almost at zero during pre-

VF, but increased rapidly within 10-15 s after VF was induced, at which the 

cerebral perfusion disturbance occurred [141, 142]. The BSR decreased when 

CaBF was improved during the HQ-CPR, but increased when CaBF was 

reduced during LQ-CPR. The overall BSR increased as the CPR sessions were 

repeated, indicating that the effectiveness of cerebral resuscitation decreased 

despite the ceaseless CPR efforts. The apparent increase in the SynchFS was 
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observed under the improved CaBF condition [22]. Additionally, BetaR and 

DeltaR showed distinct patterns depending on the CPR modes. BetaR, defined 

as the ratio between the spectral power within 30–47 Hz range and that within 

11–20 Hz range, represents the degrees of neural activity with cognitive 

processing by calculating changes in beta and gamma bands [135]. During HQ-

CPR, the BetaR decreased because of improved cerebral circulation that might 

result in more activated mental activity and increase in the beta band power 

within the 10–20 Hz range. The DeltaR, defined as the ratio between the 

spectral power within 1–4 Hz range and that within 8–20 Hz range, was also 

considered because a sudden decrease in the delta band power is followed by 

consciousness recovery [136]. DeltaR decreased during HQ-CPR, which means 

that improved cerebral resuscitation caused a gradual reduction of the delta 

band power and the appearance of “being awake” EEG patterns. Converserly, 

during LQ-CPR, the compromised cerebral resuscitation resulted in the 

opposite changes: increase of the delta band power and isoelectric activity. The 

changes in the EEG parameters were newly applied to evaluate the real-time 

CPR quality. ETCO2 changes coincide with the changes in cardiac output [143], 

and can be correlated with CBF changes during CPR, with a correlation 

coefficient of 0.64 [126]. Consequently, the EEG signals affected by CA patient’ 

cerebral circulation could be closely related to ETCO2 during CPR, that 

provided validity for the EBRI modeling process. 

The current CPR guidelines recommend measuring ETCO2 under 
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endotracheal intubation for assessing systemic circulation [130]. Problems due 

to improper placement, such as kinking of the endotracheal tube or blocking 

water vapor, might generate incorrect ETCO2 measurements [130, 132]. More 

convenient methods, such as bag-valve mask ventilation, are available, but, 

there is limited evidence regarding these methods [144]. On the contrary, 

measuring scalp EEG signals is more convenient than ETCO2 measurement. A 

variety of portable low-cost EEG devices can be easily applied to OHCA 

patients. Once the EEG device is installed, it measures the EEG signals and 

computes the EBRI automatically without any human intervention. The delta-

EBRI derived from the frontal EEG can be a sensitive method for estimating 

ETCO2 noninvasively, while providing feedback signals to EMTs.  
 

2.4.2 Limitations 

This study had several limitations. First, this experiment was a pilot animal 

study with a limited number of animals; the EEG activity and cerebral anatomy 

of juvenile pigs might differ from those of humans. Second, the fixed untreated 

VF duration was short and caused no damage whereas prolonged no- or low-

flow periods could cause irreversible brain damage [38]. As a preliminary study, 

we applied a short untreated VF to obtain distinctly recovered EEG activity 

during CPR. However, if the untreated VF becomes longer, minimal or no 

recovery can be achieved. Further studies with a longer untreated VF are 

warranted to establish a more practical EBRI model for use in an emergency 
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setting. Lastly, the duration of each CPR session was short, because the current 

CPR guidelines recommend basic life support (BLS) for 2 min [145]. Therefore, 

each CC cycle was composed of 50 s long HQ-CPR and LQ-CPR with twice 

10 s hands-off time in between. Owing to such short CCs, no EBRI plateau was 

found.  

 

 

2.5. Conclusion  

 

We measured scalp EEG signals during CPR in an experimental swine 

model of VF and established an EBRI model as a surrogate indicator for 

systemic circulation assessment during CPR. The EBRI moderately correlated 

with the actual ETCO2 and the delta-EBRI showed potential as a real-time 

physiological classifier to distinguish between the increased or decreased 

ETCO2.  
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Chapter 3. EEG-based Prediction Model of 
the Recovery of Carotid Blood Flow for 
Monitoring Cerebral Circulation During 
CPR 
 

 

3.1. Introduction 

      

Approximately 395,000 adults experience OHCA each year in the United 

States [127] and their survival rate is low despite the development of the CPR 

protocol and various patient monitoring equipment for decades [146, 147]. In 

an OHCA situation, quick and high-quality CPR is the key to improving both 

the systemic and cerebral circulation of patients [50, 51]. To enable high-quality 

CPR, multiple feedback methods based on physiological responses have been 

introduced and their effectiveness has been evaluated [57, 58]. Monitoring 

ETCO2 under endotracheal intubation for systemic circulation assessment is a 

typical example. These techniques can help EMTs perform individualized 

optimal CPR, without having to solely adhere to the depth or rate conditions of 

CCs standardized through CPR guidelines. 

The primary goal of CPR is to achieve early ROSC. In addition, achieving 

favorable neurological recovery has been regarded as another goal because 

neurological recovery can affect survivors’ neurological deficits and their 

quality of life [59, 60]. However, monitoring neurological activity using 
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hemodynamic data during CPR is rarely possible. ETCO2 can monitor systemic 

circulation effectively, but it is not appropriate to reflect the cerebral circulation 

or physiological responses of the brain during CPR. 

    Several methodologies have been suggested to monitor cerebral 

circulation, such as Transcranial Doppler ultrasonography (TCD). TCD 

measures the velocity of red blood cells and has the potential to estimate CEPP 

[148, 149]. However, several drawbacks including its bulky size and the need 

for a skillful technician to find the arteries and place the probe on the patient’s 

head make TCD techniques unsuitable for an emergency setting. Measuring the 

CaBF in the ascending internal carotid artery can reflect cerebral circulation 

effectively; however, the CaBF measurement requires an additional flow meter 

and a skillful operator, which makes this method less feasible in an emergency 

setting. 

    Noninvasive EEG can be regarded as an alternative to overcome these 

drawbacks. Currently, as a powerful tool for monitoring brain activity, EEG is 

routinely measured to determine the prognosis of ischemic insults of 

resuscitated patients [26, 133]. Previous studies have shown the applicability 

of EEG activity in ongoing CPR situations. EEG activity is known to be 

sensitive to cerebral circulation during CPR [76, 77]. Once CA occurs, cerebral 

oxygenation levels decrease significantly, and isoelectric EEG gradually 

appears [37, 150]. If the cerebral circulation and oxygen delivery are recovered 

to the normal state after ROSC, the EEG also returns to the pre-CA state [38, 
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151], as evidenced by the BIS monitoring [152]. In addition, specific EEG 

patterns have been suggested as feasible indicators for the quality of cerebral 

circulation and oxygen delivery [81]. However, the direct relationship between 

CaBF and EEG during CPR has rarely been discussed.  

    In this study, we designed another experimental swine model of VF, 

that consisted of four consecutive BLS cycles and advanced cardiovascular life 

support (ACLS) cycles up to 10 times. Furthermore, we measured 

hemodynamic data such as CaBF and the frontal EEG using a single-channel 

EEG device [153]. The relationship between CaBF recovery and noninvasive 

EEG signals was analyzed. The topmost significant EEG parameters for 

predicting CaBF recovery were determined, and ML-based prediction models 

for CaBF recovery were established using the EEG parameters. We 

hypothesized that CaBF recovery could improve brain cell viability, which can 

change the EEG activity, even during brief intervals between defibrillation 

attempts. Conversely, such EEG changes were assumed to be able to predict 

CaBF recovery.  
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3.2. Methods 

 

3.2.1 Ethical statement 

The animal test protocol was approved by the Institutional Animal Care and 

Use Committee of Seoul National University Hospital (IACUC number: 17-

0106). All animal care complied with the Laboratory Animal Act of the Korean 

MFDS.  

 

3.2.2 Study design and setting 

An animal experiment was designed based on a VF swine model. The 

LUCAS mechanical CPR machine (LUCAS2 Chest Compression System, 

Jolife AB, Sweden) was used for mechanical CCs. The CPR machine 

compressed the chest at a fixed rate of 100 times per minute with a depth of 5 

cm. To prevent displacement of the piston, the animals were pinned on the table, 

and the back plate was positioned underneath the animals as a support for the 

CPR machine (Figure 3.1 (A)). The exact location of the heart was identified 

under ultrasonic guidance, and the piston was installed on site. One EMT held 

the CPR machine to prevent displacement during CPR.  

A witnessed OHCA was assumed in this study. The length of untreated VF 

of 1 min was determined by considering a CA-CALL time, the time of 

recognition of CA to call for emergency medical services by bystanders [154]. 
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In addition, it was estimated that four consecutive 2-min BLS cycles were 

performed by the bystanders, with the help of an emergency center by phone, 

while waiting for the dispatched EMTs to arrive. The EMTs were assumed to 

arrive at the site when the BLS cycles were completed. The ECG was checked, 

and the first defibrillation shock was applied. If the ECG rhythm was shockable, 

a biphasic defibrillation shock of 200 J was applied by the EMTs to restart the 

heart. Monitoring was initiated when a palpable pulse with organized QRS 

complexes and the recovery of SBP over 60 mmHg appeared [155]. Sustained 

ROSC was confirmed if spontaneous circulation continued for 20 min [81]. If 

a palpable pulse did not appear after the defibrillation, or VF occurred again 

during the monitoring session, one cycle of 2-min ACLS was immediately 

performed by EMTs. If the ECG was still shockable, an additional defibrillation 

shock was applied. However, in the case of pulseless electrical activity or 

asystole, the defibrillation shock was omitted and the next cycle of ACLS was 

immediately initiated. If a palpable pulse appeared after the last defibrillation, 

the monitoring session was initiated. Non-ROSC was confirmed if the sustained 

ROSC, lasting longer than 20 min, was not achieved after 10 cycles of ACLS. 

During ACLS sessions, 1 mg epinephrine was administered once every 3 min 

[156]. After the monitoring session or all 10 ACLS sessions, the animals were 

euthanized with an injection of 20 mg KCl. EEG, and hemodynamic data were 

measured continuously during the experiments. The entire test protocol with a 

timeline is shown in Figure 3.2.  
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Figure 3.1 Experimental setup: (A) LUCAS CPR machine installed on the chest, 
(B) A single-channel EEG device installed on the forehead. 
 

 

 

3.2.3 Experimental animals and housing 

Eight domestic crossbred female pigs, approximately 3 months of age (45.6 

± 2.4 kg), were studied. The animals were obtained from the supplier of 

experimental animals (Cronex Co., Ltd., Cheongju, Korea), qualified by the 

Korean MFDS with a certificate of KELAS. The animals were maintained in 

an accredited Association for AAALAC International (#001169) facility, in 

accordance with the guide for the care and use of laboratory animals [134]. A 

certified veterinarian adjudged the animals as healthy, and they were made to 

fast overnight. 
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Figure 3.2 The entire test protocol: (A) Flow chart in detail, (B) Simplified flow chart with a timeline.
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3.2.4 Surgical preparation and hemodynamic measurements 

The animals were initially sedated with intramuscular injections of 5 mg/kg 

Zoletil and 2 mg/kg Rompun, followed by inhalation of isoflurane at a dose of 

1–1.5%. The endotracheal tube was placed in the animals, and a Capstar-100 

CO2 analyzer was installed and mechanical ventilation was initiated. A TV of 

12 ml/kg, RR of 10 breaths/min, PaCO2 at approximately 40 mmHg, and PaO2 

over 80 mmHg were maintained to keep the anesthesia.  

A MA2PSB perivascular probe combined with a T420 perivascular 

flowmeter was placed on the internal carotid artery to detect the CaBF. A 

Mikro-tip pressure was inserted into the left femoral artery and placed in the 

descending thoracic aorta to measure the ABP. Another Mikro-tip pressure 

catheter was inserted into the right atrium to measure RAP. An ECG was taken, 

and the SpO2 were also measured. All signals, except EEG signals, were 

gathered and saved using the PowerLab 16/35 hardware with LabChart 

software at a rate of 1 kHz, simultaneously. 

A pace-making wire was inserted into the right ventricle through a central 

vein catheter. The isoflurane was stopped before VF induction to recover the 

EEG activity. When the EEG activity started to recover and appeared similar to 

the recording obtained before the injections, a direct-current shock was applied 

to induce VF. Mechanical ventilation was stopped, and the animals were left 

without assistance for 1 min. Thereafter, CPR and defibrillation were executed, 
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and manual ventilation using the Ambu Resuscitator was initiated to provide 

positive pressure ventilation to the animal a rate of 10 times per minute. 
 

 

3.2.5 EEG measurement 

An improved single-channel EEG device was prepared for this study. The 

new EEG device has a configuration similar to that of the previous four-channel 

device. It was designed to be installed on the forehead. Because the presence of 

hair can increase the electrode-skin impedance, hair should be avoided for a 

reliable measurement. In this respect, the large hairless scalp area is appropriate 

for acquiring high quality signals quickly in emergency settings, and prefrontal 

EEG activity can represent recovery of consciousness (Figure 3.1 (B)). The 

single-channel EEG device consisted of the AFE, ADC, MCU, and Bluetooth 

communication module. The AFE, consisting of the INA826 and TSA122, has 

a gain of 1,000 V/V and the same passband with a frequency range of 0.5–50 

Hz. The two-channel ADC (ADS1292, Texas Instruments, Dallas, TX, USA) 

was used to digitize the raw EEG signals. The ADS1292 has a CMRR of 120 

dB and an input-referred noise of 3.5 µVp-p at a programmable gain of 12 V/V 

and a sampling rate of 250 Hz. The digitized data were amplified with a gain 

of 12 V/V and transmitted to the MCU (ATmega168) through SPI 

communication, and the ATmega168 transmitted the received data to the laptop 

through a Bluetooth low-energy (BLE) module (BOT-CLE310, Chipsen, Seoul, 



 ５６

Korea). Data acquisition software was developed to receive and save the EEG 

data. This device was compliant with the general requirements for the essential 

performance of electroencephalography, specified in the International Standard 

IEC 60601-2-26. The electronic circuit and schematic block diagram of the 

single-channel EEG device are shown in Figure 3.3. The reference and ground 

electrodes were placed on either side of the mastoid. Active electrodes, at the 

bottom of the device, were placed on the forehead. The EEG device and 

electrodes were secured tightly with medical adhesive tape to prevent 

displacement during CPR. The technical specifications of the device are listed 

in Table 3.1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 A single-channel portable EEG device used in this study: (A) Printed 
circuit boards, (B) Schematic block diagram. 
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Table 3.1 Technical specifications of the EEG device. 
Number of channels 1 

Sampling rate 250 Hz 

Bandwidth 0.5–50 Hz 

Resolution 24-bit 

Input range ±200 µV 

Gain control 12,000 V/V 

CMRR > 80 dB 

Noise (peak-to-peak) < 3 µV 

Interface Bluetooth low-energy V4.1  

Power Li/Po Battery 3.7V/370mAh 

 

 

 

3.2.6 Data processing 

All data were processed using the MATLAB R2017b software. Data from 

approximately 3 s before the defibrillation shocks were selected for analysis. 

The selected EEG was segmented into three 2 s long sub-epochs with 1.5-s 

overlaps: 0–2 s, 0.5–2.5 s, and 1–3 s periods. The representative EEG 

parameters were obtained from the average of three sub-epochs. Segmenting 

the EEG data and calculating the parameters are similar to the signal processing 

techniques for the BIS calculation [22]. Time- and frequency domain 

parameters and entropy indices were determined in this manner. All EEG 

parameters considered are summarized in Table 3.2. 
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Table 3.2 EEG parameters considered in this study.  
EEG parameters Definition Domain 

Magnitude Maximal amplitude during the epoch Time 

SynchFS log(B0.5-47 Hz / B40-47 Hz) Frequency 

BetaR log(P30-47 Hz / P11-20 Hz) Frequency 

DeltaR log(P8-20 Hz / P1-4 Hz) Frequency 

AlphaPR P8-13 Hz / P0.5-47 Hz Frequency 

BetaPR P13-30 Hz / P0.5-47 Hz Frequency 

DeltaPR P0.5-4 Hz / P0.5-47 Hz Frequency 

ThetaPR P4-8 Hz / P0.5-47 Hz Frequency 

BG_Alpha P8-47 Hz / P0.5-47 Hz Frequency 

Log energy entropy log(())
  

Entropy 

Rényi entropy 1(1 − ) ∗ log(())
  

Entropy 

Abbreviation: Pa-b Hz, the sum of spectral power from a–b Hz; Ba-b Hz, the sum 
of bispectral activity from a–b Hz; (), probability distribution function of 
signal ; α of rényi entropy was 0.5; 
 

 

 

3.2.7 Data analysis 

First, the recovery rates of the hemodynamic parameters including CaBF 

were calculated as a relative scale with respect to the pre-VF state. Second, the 

EEG waveforms were examined according to the test protocol, described in 

Figure 3.2. The EEG activity was evaluated, along with the recovery rates of 

CaBF. 

Pearson correlation coefficients between the EEG parameters and the 

recovery rates of CaBF were obtained to evaluate the similarity between the 
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two datasets. In addition, the recovery rates of CaBF were categorized into four 

quartile groups: Group 1 (< 25%); Group 2 (25–50%); Group 3 (50–75%); and 

Group 4 (> 75%). Averages of each EEG parameter among groups were 

evaluated using one-way analysis of variance (ANOVA). Significance was 

considered at a level of p < 0.05. The ROC curve was used to measure the 

optimal cut-off values of each EEG parameter; to discriminate between the 

higher and lower groups of CaBF recovery based on the median value. These 

tests were performed using the IBM SPSS Statistics 25 software.  

 

 

3.2.8 Development of machine-learning based prediction model 

Based on the relationship between the EEG parameters and the CaBF 

recovery, ML-based prediction models were established. The recovery rates of 

CaBF were categorized into two groups according to the median value of 

around 30%: Group 0 (< 30%); and Group 1(≥ 30%). The criterion of 30% was 

chosen because 30–40% of the normal CaBF can be the threshold for the 

recovery of the brain function and the attenuated EEG activity [35, 36, 157].  

The 11 EEG parameters introduced in Table 3.2 and an additional 9 EEG 

parameters were considered as candidate inputs for the prediction models. The 

additional 9 EEG parameters are introduced in Table 3.3. 
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Table 3.3 Additional 9 EEG parameters considered for the prediction models. 
EEG parameters Definition Domain 

BSR Percentage of continuous periods 
longer than 0.5 s under ±5 µV 

Time 

Ratio05 Percentage of data whose amplitude is 
under ±5 µV 

Time 

DAR log(P1-4 Hz / P8-13 Hz) Frequency 

DTABR log(P1-8Hz / P8-30Hz) Frequency 

BcSEF BSR-compensated frequency below 
which 95% of the total spectral power 
is occupied 

Frequency 

ExtraR log(P40-47Hz / P0.5-47Hz) Frequency 

GammaPR P30-47Hz / P0.5-47Hz Frequency 

Shannon entropy (−1) ∗(p() ∗ log(p()))
  

Entropy 

Spectral entropy Shannon entropy applied to the 
normalized power spectrum 

Entropy 

Abbreviation: Pa-b Hz, the sum of spectral power from a–b Hz; () , 
probability distribution function of signal ;  
 

 

The final EEG parameters were selected in two stages. First, the optimal 

candidate parameters for binary classification were determined through 

neighborhood component analysis (NCA) [158]. As a supervised learning 

method, NCA finds a linear transformation of the input data and learns a 

distance metric. Such distance information classifies multivariate data into a 

certain class over the data to maximize classification ability. In this study, NCA 

was applied to select the most significant EEG parameters with their ranking 

[159]. Then, the EEG parameters that showed significant differences between 

the two CaBF recovery groups were identified using the Student’s t-test. 
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Significance was considered at a level of p < 0.05. 

The prediction models were established using three traditional classifiers: 

logistic regression (LR), support vector machine (SVM), and k-nearest 

neighbors (KNN), along with one graphical model, multilayer perceptron 

(MLP), and one ensemble model, random forest (RF), with EEG parameters as 

inputs and binary CaBF groups as an output. LR is a statistical model that 

estimates the probability of a certain class between binary groups using a 

logistic function [160, 161]. SVM is a supervised learning method that 

classifies multi-class data into a certain class with multi-dimensional 

hyperplanes [162], and it has been applied to several EEG applications such as 

seizure detection [163]. KNN is a non-parametric method that classifies the data 

into a certain class based on similarity measures based on the number of nearest 

neighbors [164]. KNN-based classification models have been widely used to 

categorize human emotion from EEG signals [165, 166]. RF is an ensemble 

learning method that adapts multiple learning methods to achieve better 

prediction performance. It establishes a multitude of decision trees and 

classifies the data into a certain class by voting or averaging the outputs of the 

decision tree forests [167, 168]. MLP is a feedforward artificial neural network 

with one or multiple layers of perceptron(s), that utilizes a supervised learning 

algorithm for binary classification, and a backpropagation technique for 

training [169]. MLP-based models can classify data that are not linearly 

separable [170, 171]. Probable bias issues due to imbalanced train data were 
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resolved using the synthetic minority oversampling technique (SMOTE). 

Classifications based on an imbalanced-class distribution can be biased to the 

majority class. The problem can be escalated if the size of the majority class 

considerably exceeds that of the minority classes. SMOTE generates new 

synthetic data along the lines between randomly selected instances in the 

minority class and the synthetic data are introduced to training data [172].  

The entire development process of the prediction models is shown in Figure 

3.4. Their performance was evaluated using the leave-one-out cross- validation 

method. Out of eight animals, only the data from seven animals were used to 

establish each classifier, whose performance was evaluated using the remaining 

data. This process was repeated eight times, and eight cross-validated classifiers 

were established. The performance of each classifier was averaged over the 

eight times. Performance measures were expressed using confusion matrices 

and the ROC curve.  
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Figure 3.4 The entire development process of the prediction model for the 
recovery of CaBF. 
 

 

 

 

3.3. Results 

3.3.1 Results of CPR process 

All eight experiments were performed successfully. During the untreated VF, 

the MAP decreased rapidly and almost 20% of the baseline MAP was measured 

as residual pressure. The CaBF dropped to almost 0% of the baseline values. 

When BLS sessions began, hemodynamic data started to recover. Recovery 

rates of each hemodynamic parameter over the BLS and ACLS sessions are 

presented in Table 3.4. Sustained ROSC was confirmed 5 times (Test #1, #3, 

#4, #6, #7). In total, BLS cycles were performed 32 times and ACLS cycles 

were performed 48 times.     
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Table 3.4 Recovery rates of each hemodynamic parameter throughout the experiments. 
Test Para- 

meter 
Pre-
VF 

VF BLS ACLS 
1 2 3 4 1 2 3 4 5 6 7 8 9 10 

#1 MAP 100 36.2 66.3 69.9 71.6 69.7 71.9 - - - - - - - - - 
COPP 100 15.2 51.4 54.9 56.5 54.7 57.0 - - - - - - - - - 
ETCO2 100 47.0 61.6 71.1 76.4 70.7 86.0 - - - - - - - - - 
CaBF 100 19.6 52.5 53.5 54.1 32.9 53.7 - - - - - - - - - 

#2 MAP 100 26.7 41.8 42.4 43.0 40.1 38.7 34.2 29.2 20.2 16.1 14.3 12.7 12.1 12.5 12.5 
COPP 100 26.9 42.0 40.7 42.3 39.1 37.9 32.9 28.9 19.4 15.7 13.4 11.9 14.0 12.9 12.9 
ETCO2 100 46.6 49.4 47.2 48.9 45.7 49.0 46.0 35.6 24.2 13.2 10.5 13.3 12.8 11.4 11.1 
CaBF 100 2.9 37.1 27.0 23.1 18.0 15.1 10.0 8.1 2.5 1.1 0.7 0.1 0.0 0.1 0.1 

#3 MAP 100 13.8 43.0 35.7 26.6 25.9 39.0 33.0 29.0 28.4 26.7 23.4 45.3 - - - 
COPP 100 11.4 30.6 49.9 67.7 26.6 36.3 31.8 28.6 28.1 26.8 24.3 40.9 - - - 
ETCO2 100 48.6 69.1 72.5 71.6 93.4 91.2 87.9 79.7 80.4 83.5 89.5 117.1 - - - 
CaBF 100 9.3 38.9 37.1 35.8 36.0 62.5 53.1 47.1 47.2 51.5 49.5 100.5 - - - 

#4 MAP 100 21.7 64.8 69.4 73.1 75.7 69.3 48.1 - - - - - - - - 
COPP 100 2.1 49.0 56.0 59.6 56.4 54.3 34.2 - - - - - - - - 
ETCO2 100 53.8 72.7 86.8 94.4 100.3 86.2 98.6 - - - - - - - - 
CaBF 100 17.8 59.8 77.0 109.2 113.4 71.5 59.5 - - - - - - - - 

Abbreviation: VF, Ventricular fibrillation; BLS, Basic life support; ACLS, Advanced cardiovascular life support; MAP, Mean arterial pressure; COPP, Coronary 
perfusion pressure; ETCO2, End-tidal carbon dioxide; CaBF, Carotid blood flow; 
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Test Para- 
meter 

Pre-
VF 

VF BLS ACLS 
1 2 3 4 1 2 3 4 5 6 7 8 9 10 

#5 MAP 100 25.5 34.4 35.3 34.7 35.4 32.3 28.7 26.1 23.1 18.0 14.1 10.2 7.7 7.3 7.3 
COPP 100 8.5 20.9 20.7 19.1 18.4 17.2 13.9 14.9 10.6 5.7 3.1 -1.3 -1.6 -1.2 -1.2 
ETCO2 100 54.6 72.6 91.0 102.5 124.5 119.6 98.9 93.0 98.3 70.9 72.4 57.4 55.5 46.5 46.5 
CaBF 100 21.6 34.3 18.6 10.4 0.1 4.3 4.7 4.1 3.3 2.1 0.2 -0.6 -0.5 -0.2 -0.2 

#6 MAP 100 25.3 27.1 31.3 36.2 39.8 - - - - - - - - - - 
COPP 100 17.0 18.2 21.2 21.2 24.1 - - - - - - - - - - 
ETCO2 100 44.9 90.5 98.8 106.4 115.0 - - - - - - - - - - 
CaBF 100 27.4 30.2 37.4 39.9 37.6 - - - - - - - - - - 

#7 MAP 100 29.9 46.3 59.6 57.9 60.0 69.1 69.3 64.9 67.4 64.4 62.3 66.0 64.9 - - 
COPP 100 25.6 49.6 62.1 56.6 61.1 66.1 69.4 66.4 67.6 68.0 65.6 66.4 66.8 - - 
ETCO2 100 50.3 64.0 80.4 82.9 90.5 83.4 80.8 75.6 83.2 95.7 101.4 103.7 112.5 - - 
CaBF 100 7.6 41.7 50.8 45.3 47.0 43.7 41.0 32.9 26.2 33.3 37.7 30.0 34.2 - - 

#8 MAP 100 27.0 54.5 51.8 56.7 54.4 49.1 50.4 48.7 44.8 35.1 29.6 26.3 26.3 25.0 25.0 
COPP 100 16.2 44.8 42.2 46.2 45.1 41.0 34.1 28.9 21.0 18.4 11.8 7.5 9.5 3.0 3.0 
ETCO2 100 52.8 58.3 66.5 95.2 66.5 66.0 79.1 90.2 84.9 90.4 72.3 83.6 100.5 114.9 114.9 
CaBF 100 6.5 28.3 27.8 11.3 29.2 25.2 21.5 15.3 17.7 17.1 16.3 17.0 18.1 20.1 20.1 
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3.3.2 EEG changes with the recovery of CaBF 

The EEG activity between ROSC and non-ROSC cases is compared in 

Figure 3.5. Before VF, the EEG showed irregular morphology, and its 

amplitude was above ±20 µV. After the cerebral oxygenation decreased during 

the untreated VF, the amplitude decreased within 10–15 s and the isoelectric 

activity appeared at the end of VF.  
 

 
Figure 3.5 Comparison of EEG over time between ROSC and non-ROSC cases. 
Dashed lines denote the level of ±5 µV, the limits of the isoelectric state: (A) 
EEG waveforms of the animal #6, resuscitated after BLS sessions, (B) EEG 
waveforms of the animal #5, a non-ROSC case. 

 

The recovery of the EEG varied depending on the recovery of the CaBF. For 

example, in animal #6, the recovery rate reached almost 40% during the last 

two BLS sessions. At that time, an EEG signal with higher amplitude and 

increased higher frequency components was observed. It showed that the EEG 

activity can return to a level similar to the pre-VF values if cerebral 

resuscitation is successful. In contrast, in animal #5, the recovery rate exceeded 

30% during the first LS session, but decreased consistently during the rest of 
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the CPR sessions. The EEG signal decreased in amplitude and entered the 

suppression status during the second BLS session. The recovery rates were 

below 10% and nearly flat patterns due to electrical inactivity appeared. The 

EEG did not recover until the end of the ACLS sessions.  

The Pearson correlation coefficients between the EEG parameters and the 

recovery rates of CaBF are presented in Table 3.5. Time-domain magnitude and 

two entropy indices, log energy entropy [18] and Rényi entropy, showed a 

correlation coefficient of approximately 0.78. 
 

Table 3.5 Pearson correlation coefficients between EEG parameters and the 
recovery rates of CaBF. 

EEG parameters Correlation coefficient p value 

Magnitude 0.778 < 0.001 

SynchFS 0.210 0.228 

BetaR -0.329 0.016 

DeltaR 0.196 0.032 

AlphaPR 0.189 0.048 

BetaPR 0.323 0.001 

DeltaPR 0.032 0.797 

ThetaPR -0.354 0.004 

BG_Alpha 0.262 0.006 

Log energy entropy 0.781 < 0.001 

Rényi entropy 0.784 < 0.001 
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3.3.3 Changes in EEG parameters depending on four CaBF 

groups 

The results of a one-way ANOVA for the three parameters are illustrated in 

Figure 3.6. For the magnitude, the lowest quartile (Group 1, < 25%) showed 

significant variations from the other groups, with p < 0.05. However, no 

significant differences were observed among the other three groups. Similar 

results were observed for the two entropy indices. Table 3.6 demonstrates the 

results of the post hoc test using the Dunnett T3 method. Differences were 

obtained by the first group minus the second group.  
 

 
Figure 3.6 Box plots of the means: (A) Magnitude, (B) Log energy entropy, (C) 
Rényi entropy. Asterisk denotes statistical significance at the p < 0.001. Error 
bars indicate the upper and lower extreme values of the data. 
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Table 3.6 Multiple comparisons between groups in three EEG parameters.  
 Magnitude Log energy entropy Rényi entropy 
Group MD / SD 

(p value) 
MD / SD 
(p value) 

MD / SD 
(p value) 

1 2 -10.39 / 1.24 
(< 0.001) 

-1375.15 / 164.65 
(< 0.001) 

-2.69 / 0.319 
(< 0.001) 

1 3 -13.34 / 1.37 
(< 0.001) 

-1590.42 / 164.87 
(< 0.001) 

-3.13 / 0.321 
(< 0.001) 

1 4 -15.15 / 2.39 
(0.012) 

-1720.80 / 190.02 
(< 0.001) 

-3.38 / 0.434 
(< 0.001) 

2 3 -2.95 / 1.30 
(0.169) 

-215.27 / 87.24 
(0.108) 

-0.442 / 0.171 
(0.084) 

2 4 -4.75 / 2.35 
(0.395) 

-345.65 / 128.60 
(0.180) 

-0.695 / 0.338 
(0.384) 

3 4 -1.80 / 2.41 
(0.958) 

-130.39 / 128.87 
(0.871) 

-0.253 / 0.340 
(0.957) 

Abbreviation: MD, Mean difference; SD, Standard deviation; 
 

 

3.3.4 EEG parameters depending on two CaBF recovery 

groups 

The ROC curves for the three parameters are illustrated in Figure 3.7. All 

possible cut-off values are plotted with a combination of the TPR and FPR. The 

optimal cutoff points are denoted in Figure 3.7. Table 3.7 summarizes the 

results of ROC curve analysis including AUC, TPR, FPR, and cut-off value. 

The AUC values of all three parameters were greater than 0.88. 
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Figure 3.7 ROC curves for three EEG parameters: (A) Magnitude, (B) Log 
energy entropy, (C) Rényi entropy. Red dots indicate the optimal cut-off values 
and the diagonal lines indicate random chance.  
 

 
Table 3.7 Results of the ROC curve analysis for the three EEG parameters. 

EEG parameter AUC SE TPR FPR Cutoff 

Magnitude 0.904 0.033 0.889 0.244 12.802 

Log energy entropy 0.896 0.035 0.833 0.211 739.54 

Rényi entropy 0.885 0.037 0.861 0.263 8.919 
Abbreviation: AUC, Area under the curve; SE, Standard error; TPR, True 
positive rate; FPR, False positive rate; 

 

3.3.5 EEG parameters for prediction models 

Among the 20 EEG parameters introduced in Table 3.2 and Table 3.3, 10 

EEG parameters were selected through NCA and the Student’s t-test. The NCA 

determined the feature ranking, but EEG parameters with p values > 0.05 were 

excluded after Student’s t-test, regardless of the ranking. Finally, the top 10 

significant parameters were selected. The three parameters, which showed a 

correlation coefficient of over 0.7 with the recovery rates of CaBF, were 

included. Table 3.8 summarizes the results of the feature selection process, and 

Table 3.9 presents the medians, IQRs, and p values of each parameter. In 

addition, EEG parameters from the normal brain and damaged brain were also 
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compared. The former data were obtained from the five resuscitated animals, 

and the latter data were obtained from the three deceased animals. Brain 

damage was assumed to occur under prolonged no- or low-flow longer than 20 

min, which corresponded to the 6th ACLS session. The mean differences of each 

parameter are listed in Table 3.10. 
 

Table 3.8 Results of feature selection process. 
EEG parameters Ranking p value Result Remark 

BSR 18 < 0.001 Excluded Low ranking 

Magnitude 11 < 0.001 Selected - 

SynchFS 17 0.264 Excluded Low ranking 

BetaR 4 0.864 Excluded High P-value 

DeltaR 5 < 0.001 Selected - 

DAR 7 < 0.001 Selected - 

DTABR 6 < 0.001 Selected - 

BcSEF 1 < 0.001 Selected - 

ExtraPR 19 0.675 Excluded Low ranking 

AlphaPR 12 0.439 Excluded Low ranking 

BetaPR 16 < 0.001 Excluded Low ranking 

DeltaPR 3 0.014 Selected - 

ThetaPR 15 < 0.001 Excluded Low ranking 

GammaPR 13 0.001 Excluded Low ranking 

Shannon entropy 14 0.607 Excluded Low ranking 

Log energy entropy 10 < 0.001 Selected - 

Spectral entropy 2 0.013 Selected - 

Rényi entropy 8 < 0.001 Selected - 

Ratio05 20 < 0.001 Excluded Low ranking 

BG_Alpha 9 < 0.001 Selected - 
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Table 3.9 Final 10 EEG parameters for the prediction models; their median, 
IQRs, and p value. 

EEG Parameters Median (IQR) p value 
Group 0 Group 1 

Magnitude 4.08  
(2.52, 14.28) 

18.55  
(15.72, 22.29) 

< 0.001 

DeltaR 0.00 
(-0.30, 0.31) 

0.25  
(-0.08, 0.72) 

< 0.001 

DAR 0.20  
(-0.10, 0.49) 

-0.07  
(-0.42, 0.36) 

< 0.001 

DeltaPR 0.28  
(0.17, 0.41) 

0.20  
(0.08, 0.41) 

0.014 

DTABR 0.18  
(-0.10, 0.45) 

-0.06  
(-0.31, 0.21) 

< 0.001 

BcSEF 0.00  
(0.00, 19.50) 

27.0  
(22.0, 30.0) 

< 0.001 

BG_Alpha+ 39.90 
(26.54, 55.94) 

54.53  
(39.07, 67.68) 

< 0.001 

Spectral entropy 0.78  
(0.76, 0.80) 

0.79  
(0.77, 0.81) 

0.013 

Rényi entropy 6.93  
(5.57, 9.06) 

9.83  
(9.20, 10.11) 

< 0.001 

Log energy entropy -241.2  
(-1014.8, 729.0) 

1122.30  
(836.8, 1304.1) 

< 0.001 
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Table 3.10 Comparison of EEG parameters from the normal brain and damaged 
brain. 

EEG Parameters Normal brain Damaged brain p value 

Magnitude 22.4 ± 8.4 2.2 ± 1.0 < 0.001 

DeltaR 0.78 ± 0.57 -0.66 ± 0.53 < 0.001 

DAR -0.50 ± 0.48 0.92 ± 0.57 < 0.001 

DeltaPR 0.11 ± 0.07  0.53 ± 0.22 < 0.001 

DTABR -0.46 ± 0.44 0.75 ± 0.42 < 0.001 

BcSEF 29.03 ± 4.0 0.00 ± 0.02 < 0.001 

BG_Alpha+ 0.70 ± 0.15 0.18 ± 0.12 < 0.001 

Spectral entropy 0.81 ± 0.03 0.77 ± 0.05 < 0.001 

Rényi entropy 9.92 ± 0.95 5.55 ± 1.06 < 0.001 

Log energy entropy 1111 ± 326.3 -1071 ± 488.0 < 0.001 

 
 
 

3.3.6 Performances of prediction models 

The prediction models, which represent binary classifiers for the recovery 

of CaBF, were established using different ML algorithms. SMOTE was applied 

to resolve the class-imbalance problem. New synthetic data were added to the 

minority class, which made the sample size of each group comparable. 

Prediction models were established based on the augmented dataset.  

The confusion matrices and ROC curves of the prediction models are given 

in Figure 3.8. The performance of each model was evaluated using six measures, 

as described in Table 3.10. The accuracy ranged from 0.813 to 0.853, while the 

sensitivity ranged from 0.689 to 0.807, and the specificity ranged from 0.877 

to 0.953. The precision ranged from 0.880 to 0.943, and the F1 score ranged 

from 0.796 to 0.853. In terms of accuracy, the 3-order polynomial kernel-based 
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SVM model showed the best performance. In addition, all five classifiers 

showed high AUC values of over 0.9. 

 
 
Table 3.11 Performance of prediction models for the recovery of CaBF. 

Performance LR SVM KNN RF MLP  

Accuracy 0.840 0.853 0.813 0.827 0.836  

Sensitivity 0.782 0.807 0.689 0.748 0.798  

Specificity 0.906 0.906 0.953 0.915 0.877  

Precision 0.903 0.906 0.943 0.908 0.880  

F1 score 0.838 0.853 0.796 0.820 0.837  

AUC 0.933 0.909 0.934 0.915 0.924  
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Figure 3.8 The confusion matrices and the ROC curve of the five prediction models: (A) LR, (B) SVM, (C) KNN, (D) RF, (E) MLP. 
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3.4. Discussion 

3.4.1 Accomplishment 

The relationships between EEG activity and CaBF were investigated to 

evaluate the feasibility of noninvasive EEG activity as reliable indicators of 

cerebral circulation, expressed as CaBF recovery, in the swine model of VF. 

The current CPR protocol mainly consists of an ECG rhythm check, CCs, 

defibrillations, and medication [156], while cerebral blood flow is rarely 

monitored. Newly suggested methods, such as TCD techniques, are not fully 

applicable for monitoring cerebral hemodynamics during CPR.  

Monitoring cerebral circulation during CPR could provide information 

about neuronal activity and help prevent prolonged ischemic insults and 

achieve early recovery of normal brain function by delivering improved CPR. 

EEG has been considered a possible indicator of cerebral circulation because it 

is heavily affected by the level of cerebral circulation and oxygen delivery [173]. 

If an easily measurable EEG can reflect the CaBF in an OHCA setting, a 

feedback method based on noninvasive EEG parameters could guide EMTs to 

achieve improved CaBF recovery, for example, by guiding the Trendelenburg 

position [174], that is expected to improve the CaBF and neurological outcomes 

of CA patients. It is noteworthy that this study used a single-channel EEG signal 

measured in the frontal region, where the installation of EEG sensors is 

convenient.  
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Previous studies have attempted to measure EEG signals during CPR using 

the BIS monitor and CSM M3 [45]. However, the EEG signal was severely 

contaminated by artifacts owing to CCs; therefore, unreliable outputs could be 

generated [79, 175, 176]. Even though short intervals without CCs or 

defibrillation shocks are prepared, these equipment cannot solely analyze the 

pauses because of the moving-average function over a certain period of time, 

such as 30 s [22]. This study focused on the very short pauses between CCs and 

defibrillation shocks and proved the feasibility of noninvasive EEG signals as 

an indicator for the recovery of CaBF. The EEG background activity increased 

and became more complex and irregular with increased CaBF. Concurrently, 

the higher frequency components including alpha (8–13 Hz) and beta (13–30 

Hz) increased, while the lower frequency components including delta (< 4 Hz) 

and theta (4–8 Hz) decreased. Striking differences were identified with delta-

related parameters. The frequency-domain parameters— DeltaR, DAR, 

DTABR, and DeltaPR— showed relatively high feature rankings and 

significant differences between the two groups, as presented in Table 3.7. In 

terms of the quality of cerebral resuscitation, changes in the delta band are 

important because a decrease in the delta band power coincides with 

consciousness recovery [136]. These changes in the amplitude and frequency 

responses affected the functional dynamics of the EEG [177], in terms of 

complexity, amount of energy, and randomness, which can be observed by the 

entropy indices. Entropy measures have been applied to EEG signals. Spectral 
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entropy reflects the rCBF status [178]. Log energy entropy and Rényi entropy 

have been reported to analyze epileptic events [20, 21]. In this study, log energy 

entropy and Rényi entropy showed a correlation coefficient above 0.78, with 

the recovery of CaBF. In addition, all three entropy measures showed a 

significant difference between the two groups. Thus, these EEG parameters 

have the potential to reflect spontaneous neuronal activity, and they can be 

analyzed to evaluate cerebral circulation and oxygen delivery to fulfill the 

metabolic requirements of brain cells during CPR. The SMV model based on 

the third-order polynomial kernel function showed the best performance with 

an accuracy of over 0.813 and an AUC of over 0.909. A polynomial kernel 

function is a nonlinear kernel function that is used when the class boundaries 

are non-linear or overlapping [179, 180]. The third-order polynomial kernel 

function appeared to construct the best class boundary, which resulted in the 

lowest classification errors within our experimental dataset. If a low CaBF 

recovery is diagnosed in OHCA patients, EMTs can alter CPR strategies to 

increase blood flow toward the brain, which makes early recovery of normal 

brain functions possible.    
 

 

3.4.2 Limitations  

This study had several limitations. First, the experimental model was 

finalized assuming a witnessed OHCA, wherein a CA-CALL time of 1 min was 
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presumed, which may differ from actual situations. The changes in the EEG 

parameters are feasible only with a very short untreated VF. If the duration of 

untreated VF increases, less prominent or no recovery might occur [38]. Further 

research should be conducted to investigate the EEG activity under a longer VF 

period over at least 5 min and establish a more practical prediction model for 

the recovery of CaBF. Second, this study was performed with a limited number 

of animals. EEG analysis with larger datasets should be performed to confirm 

our study. Third, changes in the EEG activity and the performance of the 

prediction models should be evaluated in real CPR situations. Lastly, the 

neurological outcomes of the resuscitated animals were not investigated. 

Sustained ROSC was confirmed with five animals, but they were sacrificed 

immediately after the monitoring session.  
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3.5. Conclusion 

 

We measured a single-channel frontal EEG noninvasively during CPR and 

evaluated the relationships between EEG parameters and the recovery rates of 

CaBF. Several EEG parameters correlated with CaBF recovery, with a 

correlation coefficient of approximately 0.78. The prediction models (binary 

classifiers) with a division criterion of 30% demonstrated competitive 

performance in discriminating between high- and low-CaBF recovery with an 

accuracy of over 0.8 and an AUC of over 0.9.  

 

 

Large sections of this chapter, including figures and tables, have been 

published previously in Sensors [153]. 
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Chapter 4. EEG-based Prediction Model of 
an Increased Intra-Cranial Pressure for TBI 
Patients 
 

 

4.1. Introduction 

Traumatic brain injury (TBI) is defined as any traumatically induced 

disruption of normal brain function [84], and its long-term consequences are a 

major problem [181]. Approximately 75% of TBI patients experience mild 

symptoms, such as a short-term loss of consciousness and concentration 

difficulty, and less than 20% of them suffer from persistent cognitive and 

physiological disorders, which can develop neurodegenerative diseases such as 

Alzheimer’s disease [182, 183]. TBI is closely associated with daily life. The 

occurrence of sports-related TBI and the resulting cognitive dysfunction is 

increasing [184]. In addition, over half of TBI patients struggle with sleeping 

disorders [185]. Other critical consequences of TBI include high medical costs 

[87] and lowering a patient’s ability to work [88, 89]. Over 5 million Americans 

have TBI-related disabilities with an annual expense of over 60 billion dollars 

[181]. These problems have raised the need for accurate prognostication of 

outcomes following TBI with various neuro-monitoring modalities. 

The primary consequences of TBI, directly caused by physical impact, can 

lead to secondary damage due to the pathophysiologic responses of the primary 

injury, such as increased ICP and hypoperfusion. To prevent secondary damage 
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and maintain cerebral perfusion, ICP should be monitored and lowered 

effectively [90−92]. The use of ICP monitoring is closely related to a low 

fatality rate [186]. Among several ICP monitoring techniques, invasive methods 

that involve the insertion of a pressure gauge into the intracranial compartment 

through burr hole trephination have been regarded as the standard for direct 

monitoring. However, these methods are vulnerable to several complications, 

such as nervous system injury and infection, and the procedures are challenging 

[93−95]. Multiple noninvasive techniques have been developed. TCD 

techniques are one among them, which measure the cerebral blood flow rate in 

real time and have shown competitive performance [94−96]. However, 

noninvasive methods, including TCD techniques, cannot readily replace 

invasive methods.  

 Noninvasive EEG can be considered to monitor the ICP because the EEG 

activity depends on the cerebral circulation [117, 118]. If ICP increases steadily, 

both the CEPP and CBF decrease, and brain tissue oxygenation also decreases 

[187]. When the cerebrovascular autoregulation mechanism is lost and ICP 

reaches the MAP level, the cerebral circulation might halt. Simultaneously, the 

EEG signal gradually enters the isoelectric state [188]. Prolonged no- or low-

flow periods can damage brain function and even result in brain death. 

Considering the relationships between the EEG activity and ICP, the processed 

EEG has the potential to reflect the ICP levels [118]. 

 In this study, the relationships between the processed EEG parameters and 
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ICP levels were investigated in an experimental swine model of TBI. We 

measured the noninvasive frontal EEG and hemodynamic data while changing 

the ICP every 6 min and established an EEG-based noninvasive ICP classifier. 

We hypothesized that the processed parameters derived from the noninvasive 

EEG signals can distinguish between higher and lower ICP levels.  
 

 

4.2. Methods 

 

4.2.1 Ethical statement 

The animal test protocol was approved by the Institutional Animal Care and 

Use Committee of Seoul National University Hospital (IACUC number: 19-

0097, 20-0115). All animal care complied with the Laboratory Animal Act of 

the Korean MFDS.  

 

4.2.2 Study design and setting 

An animal experiment was designed based on a swine model of TBI to 

acquire noninvasive EEG and hemodynamic data under diverse ICP levels. A 

two-way Foley catheter with a diameter of 4.6 mm and a balloon of 30 ml was 

used to manipulate the ICP. The experiments consisted of the following phases: 

baseline phase, brain injury phase, secondary interventions with following 
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monitoring, and a restoration phase. The baseline phase was prepared to acquire 

frontal EEG and hemodynamic data under normal ICP levels below 20 mmHg 

for 6 min. During the brain injury phase, the Foley catheter was inflated by 

injecting saline to increase the ICP. The ICP was raised by 10 mmHg on four 

occasions: 20–30 mmHg, 30–40 mmHg, 40–50 mmHg, and > 50 mmHg. Then, 

secondary interventions and monitoring were executed. One of these 

interventions— hypovolemia, hypoxia, hypothermia, or none— was applied to 

the animal. To induce hypovolemia, blood was drawn from the internal jugular 

vein until a MAP < 65 mmHg or a SBP < 90 mmHg was achieved. To induce 

hypoxia, a fraction of inspired oxygen of 25% and respiratory rate of 6–8 

breaths/min were applied until a SpO2 below 89% was achieved. To induce 

hypothermia, the body temperature above 38°C was lowered to 33–35°C by 

operating an esophageal cooling device and a surface cooling device. These 

changes had to be maintained during the subsequent monitoring for 20 min. If 

no intervention was applied, the restoration phase was initiated immediately. 

During the restoration phase, the Foley catheter was deflated by extracting 

saline to decrease the ICP. The ICP was decreased by 10 mmHg on four 

occasions: 40–50 mmHg, 30–40 mmHg, 20–30 mmHg, and < 20 mmHg. The 

baseline and each sub-session in both the injury and restoration phases lasted 

for 6 min. Thereafter, the animals were euthanized with an injection of KCl (20 

mg). If CA occurred during the brain injury or restore phase, the experiment 

was terminated without resuscitation attempts and the animal was excluded 
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from the analysis. During the experiments, mechanical ventilation was 

performed, and a single-channel frontal EEG along with hemodynamic data 

including ICP was continuously measured in the sphinx position. The entire test 

scenario is illustrated in Figure 4.1.  
 

 
Figure 4.1 The entire test protocol of TBI model with a timeline. 
 

 

4.2.3 Experimental animals and housing 

A total of 30 domestic crossbred female pigs, approximately 3 months of 

age (41.7 ± 2.3 kg), were studied. The animals were obtained from the supplier 
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of experimental animals (Cronex Co., Ltd., Cheongju, Korea), qualified by the 

Korean MFDS with a certificate of KELAS. The animals were maintained in 

an accredited Association for AAALAC International (#001169) facility, in 

accordance with the guide for the care and use of laboratory animals [134]. A 

certified veterinarian adjudged the animals as healthy, and they were made to 

fast overnight. 

 

 

4.2.4 Surgical preparation and hemodynamic measurements 

The animals were initially sedated with intramuscular injections of 2–4 

mg/kg Zoletil and 2 mg/kg Rompun, which was followed by inhalation of 

isoflurane at a dose at 2–5%. The animals were orally intubated before the 

initiation of mechanical ventilation. A portable respiratory monitor 

Capnostream35 (Medtronic, Minneapolis, MN, USA) was installed to monitor 

the ETCO2 and SpO2. To continue the anesthesia, a TV of 10–12 ml/kg, RR of 

14–18 breaths/min, PaCO2 at approximately 40 mmHg, and PaO2 above 80 

mmHg were maintained. Mikro-Tip pressure catheters were inserted into the 

femoral artery and internal jugular vein to measure ABP and RAP, respectively. 

The MA2PSB perivascular probe was placed on the internal carotid artery to 

detect the CaBF, and a T420 perivascular flowmeter was installed. After 

creating a burr hole on the cranium, a Mikro-Tip pressure catheter was inserted 

into the parietal lobe to measure the ICP. The appropriate depth of the catheter 
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was determined by lowering it until a consistent respiratory waveform was 

observed. An additional burr hole was perforated to insert the Foley balloon 

catheter into the parietal lobe to elevate the ICP and create the effects of 

traumatic intracranial hemorrhage (Figure 4.2 (A)). The EEG device was 

installed to measure the frontal EEG activity (Figure 4.2 (B)). ECG was 

measured to compute the heart rate (HR). All signals, except the EEG signals, 

were gathered and saved using the PowerLab 16/35 hardware with LabChart 

software at a rate of 1 kHz, simultaneously. 
 

 
Figure 4.2 Placement of the EEG device and catheters: (A) Schematic of swine 
head illustrating placement of the EEG device, a pressure catheter for the ICP 
monitoring, and a Foley catheter: L1, coronal suture; L2, sagittal suture; H1, 
burr hole for the ICP catheter; H2, burr hole for the Foley catheter; E1, active 
EEG electrode; E2, auxiliary EEG electrode; E3, reference electrode in the left 
mastoid; E4, ground electrode in the right mastoid; The gray area indicates the 
frontal area where the EEG device was placed, (B) Scene of installation of the 
EEG device and sensors. 
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4.2.5 EEG measurement 

An improved single-channel EEG device was prepared for this study. The 

new device has the same configuration as the previous single-channel EEG 

device. Only several connectors and external housing were changed, which did 

not affect the performance of the device. The external housing was designed 

assuming the use in emergency situations. To measure EEG in such situations, 

especially in an OOHS, the EEG device must be compact and light to be 

wearable. In addition, the setup process must be simple and minimally time-

consuming. To meet these requirements, the external housing consists of two 

rigid parts of the biocompatible polycarbonate and a flexible connecting part of 

the silicone in between. The flexible part and an adjustable strap hanging on 

both ends of the device enable good contact between the active electrodes and 

the scalp, and secure attachment of the device on a rounded forehead. The entire 

device has dimensions of 110 x 42 x 10 mm and weighs 72 g.  

The EEG device adopted the precise resistors with their tolerance of 1%, 

and capacitors with their tolerance of 10%. The improved electronic circuit of 

the EEG device and external housing are described in Figure 4.3. The technical 

specifications of the device are listed in Table 4.1.  

This device complied with the general requirements for the essential 

performance of electroencephalography, specified in the International Standard 

IEC 60601-2-26, which was tested and validated in an accredited testing 

laboratory (Korea Compliance Testing Laboratories, Yongin, Korea). 
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Figure 4.3 An improved single-channel portable EEG device: (A) Printed 
circuit boards, (B) External housing. 
  

Table 4.1 Technical specifications of the EEG device. 
Number of channels 1 

Sampling rate 250 Hz 

Bandwidth 0.5–50 Hz 

Resolution 24-bit 

Input range ±200 µV 

Gain control 12,000 V/V 

CMRR > 80 dB 

Noise (peak-to-peak) < 3 µV 

Interface Bluetooth low-energy V4.1  

Power Li/Po Battery 3.7V/370mAh 
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4.2.6 Data processing 

All data were processed using the MATLAB R2017b software. The EEG 

and hemodynamic data were synchronized first. The data from the first 1 min 

of each sub-session in the brain injury and restoration phase were discarded 

after considering the stabilization after changing the volumes of the Foley 

catheter. The EEG signal was processed to determine specific parameters. The 

original EEG was segmented into 2 s long epochs with 1.5 s overlaps with the 

next epoch. Time- and frequency-domain parameters and entropy indices were 

obtained every 0.5 s. The averages of hemodynamic data were computed at the 

same time intervals. 
 

 

4.2.7 Data analysis 

Because of the different interventions, the data only measured during the 

baseline and brain injury phases were considered in this study. Specifically, 

EEG parameters and mean values of hemodynamic data, including ICP data 

were determined in the baseline phase and all four sub-sessions in the brain 

injury phase. To assess the possibility of the EEG parameters identifying the 

different ICP levels, a one-way ANOVA was performed with the ICP levels 

categorized into four groups: Group 1 (< 20 mmHg), Group 2 (20–30 mmHg), 

Group 3 (30–40 mmHg), and Group 4 (≥ 40 mmHg). A significance level of p 

< 0.05 was applied.   
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4.2.8 Development of machine-learning based prediction model 

Based on the relationship between the EEG parameters and the ICP levels, 

ML-based prediction models were established. The ICP levels were categorized 

into two groups: Group 0 (< 25 mmHg), and Group 1 (≥ 25 mmHg). The 

criterion of 25 mmHg was chosen because ICP values in the 20–30 mmHg 

range are typically regarded as intracranial hypertension, but the cases with ICP 

values greater than 25 mmHg require timely treatment [189].  

The EEG parameters for the prediction models were determined in two 

stages. First, the optimal candidate parameters were determined through NCA. 

Next, the Student’s t-test was performed to identify EEG parameters that 

showed significant differences between the two ICP groups. A significance 

level of p < 0.05 was applied. The prediction models were established using 

three classifiers (LR, SVM, KNN), one graphical model (MLP), and one 

ensemble model (RF), with the selected EEG parameters as inputs and the 

binary ICP groups as output. With regard to noninvasive ICP monitoring, HR 

was also considered as an input. We tested whether the addition of HR improves 

classification ability.  

The first 75–80% of the experiments were used as train data, and the next 

20–25% of them were used as test data. If the classes were distributed unevenly 

and the minority class was rare in the training data, SMOTE was applied to 

resolve the bias problem by creating a synthetic minority class. When the binary 

classifiers were established, they were applied to the test data separately. The 
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performance of each classifier was averaged over the number of test data. 

Confusion matrices and the ROC curve were obtained to visualize the 

performance measures.   
 

 

4.3. Results 

4.3.1 Hemodynamic changes during brain injury phase 

The EEG activity and all hemodynamic parameters such as HR and ICP 

were successfully obtained for 24 out of the 30 experiments. Thus, six 

experiments were excluded from the analysis. Among the multiple 

hemodynamic data, MAP, ICP, and HR were considered as the primary 

parameters. Their averages and SDs during the experiments are presented in 

Table 4.2. The ICP showed normal ranges below 20 mmHg during the baseline 

phase. The ICP increased as the Foley catheter was inflated during the brain 

injury phase. Simultaneously, MAP and HR increased as well. The average ICP 

in each sub-session was lower than the intended values. This was because the 

ICP increased rapidly at first but gradually decreased owing to the cerebral 

autoregulation mechanism. Such stabilization periods were considered, and the 

hemodynamic data measured during the first minute of each sub-session were 

excluded from the analysis.   
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Table 4.2 Physiological data during baseline and brain injury phase. 
Phase MAP, mmHg ICP, mmHg HR, beats/min 

Baseline 81.1 ± 14.2 13.1 ± 5.6 95.3 ± 20.3 

Injury 20–30 87.5 ± 17.2 18.7 ± 4.8 99.1 ± 23.7 

Injury 30–40 93.4 ± 19.0 24.2 ± 7.1 102.4 ± 24.9 

Injury 40–50 97.2 ± 19.5 31.9 ± 9.9 101.7 ± 27.1 

Injury > 50 101.5 ± 19.3 38.5 ± 9.7 100.8 ± 31.9 

Abbreviation: MAP, Mean arterial pressure; ICP, Intracranial pressure; HR, 
Heart rate; 
 

4.3.2 EEG changes with an increase of ICP 

The ICP levels values were categorized into four groups: Group 1 (< 20 

mmHg), Group 2 (20–30 mmHg), Group 3 (30–40 mmHg), and Group 4 (≥ 40 

mmHg). The EEG parameters were compared among the groups using a one-

way ANOVA. Among the 20 EEG parameters, the results for three parameters 

(time-domain magnitude, frequency-domain DTABR, and spectral entropy) are 

described in Figure 4.4 and Table 4.3. For magnitude, Group 1 showed 

significant differences compared with the other groups, with p < 0.001. 

Differences among the other groups were also significant. For DTABR, Group 

1 and Group 2 showed significant differences towards the other groups, with p 

< 0.001. However, Group 3 and Group 4 did not show any significant 

differences. For spectral entropy, all groups demonstrated significant 

differences.  
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Figure 4.4 Box plots of the means: (A) Magnitude, (B) DTABR, (C) Spectral 
entropy. Asterisk denotes statistical significance at the p < 0.001. Error bars 
indicate the upper and lower extreme values of the data. 
 

 

Table 4.3 Multiple comparisons between groups in three EEG parameters. 
 Magnitude DTABR Spectral entropy 
Group MD / SD 

(p value) 
MD / SD 
(p value) 

MD / SD 
(p value) 

1 2 16.69 / 0.142 
(< 0.001) 

-0.151 / 0.005 
(< 0.001) 

0.011 / 0.0002 
(< 0.001) 

1 3 21.98 / 0.157 
(< 0.001) 

-0.205 / 0.005 
(< 0.001) 

0.016 / 0.0003 
(< 0.001) 

1 4 22.37 / 0.188 
(< 0.001) 

-0.201 / 0.008 
(< 0.001) 

0.014 / 0.0005 
(< 0.001) 

2 3 5.28 / 0.084 
(0.001) 

-0.054 / 0.005 
(< 0.001) 

0.005 / 0.003 
(< 0.001) 

2 4 5.68 / 0.132 
(< 0.001) 

-0.050 / 0.008 
(< 0.001) 

0.003 / 0.005 
(< 0.001) 

3 4 0.397 / 0.149 
(0.045) 

0.004 / 0.008 
(0.997) 

-0.002 / 0.005 
(0.001) 

Abbreviation: MD, Mean difference; SD, Standard deviation; 
 
 
 
 

4.3.3 EEG parameters for prediction models 

The EEG parameters were analyzed to establish which ones were suitable 

for the binary classifier for the two ICP groups: Group 0 (< 25 mmHg), and 

Group 1 (≥ 25 mmHg). The NCA and Student’s t-test were performed to select 
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the top 10 significant EEG parameters as inputs for the ICP prediction models. 

Table 4.4 presents the selected EEG parameters, and their medians, IQRs, and 

p values between the two ICP groups.  
 

Table 4.4 Final 10 EEG parameters for the ICP prediction models; their median, 
IQRs, and p value. 
EEG Parameters Median (IQR) p value 

Group 0 Group 1 

SynchFS 2.61 (2.42, 2.77) 2.44 (2.34, 2.56) < 0.001 

BetaR -0.62 (-0.75, -0.49) -0.60 (-0.70, -0.49) < 0.001 

DTABR 0.70 (0.47, 0.81) 0.90 (0.78, 1.00) < 0.001 

BcSEF 19.41 (16.44, 23.09) 14.85 (12.62, 17.32) < 0.001 

ExtraR -2.66 (-2.77, -2.56) -2.85 (-3.01, -2.69) < 0.001 

ThetaPR 0.12 (0.09, 0.16) 0.15 (0.11, 0.19) < 0.001 

GammaPR 0.02 (0.01, 0.03) 0.01 (0.01, 0.02) < 0.001 

Shannon entropy -19.4 (-169.1, 139.6) -15.4 (-146.9, 107.4) < 0.001 

Log energy entropy 1957 (1804, 2338) 1866 (1671, 1986) < 0.001 

Rényi entropy 11.36 (11.07, 12.13) 11.16 (10.76, 11.37) < 0.001 

 

 

4.3.4 Performances of prediction models 

The prediction models (binary classifiers) for the ICP groups, were derived 

using different ML methods. The potential bias problem was resolved by 

applying SMOTE. The newly augmented data instances were added to the 

minority class, and the sample size of each group became comparable.  

Figure 4.5 demonstrates the confusion matrices and the ROC curve of the 
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binary classifiers with the inputs of the EEG parameters alone. The 

performance of each model is presented in Table 4.5 with six measures. The 

accuracy ranged from 0.634 to 0.686, while the sensitivity ranged from 0.669 

to 0.873, and the specificity ranged from 0.194 to 0.629. The precision ranged 

from 0.701 to 0.796, and the F1 score ranged from 0.727 to 0.778. The MLP 

model with 10 hidden neurons and trained with the scaled conjugate gradient 

algorithm, a supervised learning method for feedforward neural networks [190], 

showed the highest accuracy of 0.686, and an AUC value of over 0.7. 

Figure 4.6 demonstrates the confusion matrices and the ROC curve of the 

binary classifiers with the inputs of the EEG parameters and the noninvasive 

HR data. The performance of each model is presented in Table 4.6 with six 

measures. The accuracy ranged from 0.645 to 0.781, while the sensitivity 

ranged from 0.722 to 0.863, and the specificity ranged from 0.173 to 0.738. The 

precision ranged from 0.693 to 0.852, and the F1 score ranged from 0.760 to 

0.837. The RF model showed the highest accuracy of 0.781. The RF and MLP 

models showed an AUC value of over 0.8. The overall classification 

performance of the models was improved when the HR data were included in 

the input.  
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Table 4.5 Performance of prediction models for the ICP groups with the EEG 
parameters alone. 

Performance LR SVM KNN RF MLP  

Accuracy 0.658 0.647 0.656 0.634 0.686  

Sensitivity 0.873 0.740 0.669 0.706 0.740  

Specificity 0.194 0.447 0.629 0.479 0.571  

Precision 0.701 0.743 0.796 0.745 0.788  

F1 score 0.778 0.742 0.727 0.725 0.763  

AUC 0.641 0.624 0.692 0.641 0.754  

 
 
 
Table 4.6 Performance of prediction models for the ICP groups with the EEG 
parameters and the HR data. 

Performance LR SVM KNN RF MLP  

Accuracy 0.645 0.713 0.689 0.781 0.760  

Sensitivity 0.863 0.834 0.722 0.823 0.771  

Specificity 0.173 0.452 0.616 0.690 0.738  

Precision 0.693 0.767 0.803 0.852 0.864  

F1 score 0.769 0.799 0.760 0.837 0.815  

AUC 0.599 0.719 0.722 0.814 0.834  
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Figure 4.5 Confusion matrices and ROC curves of the five prediction models with the EEG parameters alone as an input: (A) LR, (B) SVM, (C) 
KNN, (D) RF, (E) MLP. 
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Figure 4.6 Confusion matrices and ROC curves of the five prediction models with the EEG parameters and the HR data as inputs: (A) LR, (B) 
SVM, (C) KNN, (D) RF, (E) MLP.
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4.4. Discussion 

 

4.4.1 Accomplishment 

In this study, an EEG-based noninvasive ICP classifier using ML techniques 

was proposed. The binary classifier was established with the noninvasive EEG 

parameters and HR data to distinguish higher and lower ICP levels, while the 

ICP was adjusted with the Foley balloon catheter. Conventionally, bedside 

invasive ICP monitors, which involve trephination and an insertion of a 

pressure catheter, are utilized to measure ICP directly. However, despite a high 

agreement of over 98% with the actual ICP measured with a ventricular catheter 

[191], the invasive methods could not be adequate for emergency settings. 

Predicting the ICP in a noninvasive manner can be beneficial because it can be 

applied in a shorter period of time and complications imposed by invasive 

methods can be avoided. In particular, an EEG-based ICP classifier may be 

useful in an OOHS if the EEG can be measured from the injured patient’s head. 

The proposed classifier can be a surrogate indicator of a dangerous ICP level 

(> 25 mmHg). It is expected to enable earlier treatments for reducing ICP even 

before admission to the hospital. 

An EEG-based ICP classifier is developed with the hypothesis that an 

elevated ICP can prevent blood flow to the brain and suppress EEG activity. We 

tested the feasibility of the EEG signal as an indicator for elevated ICP levels. 

Under the four categories of ICP levels, the EEG parameters showed significant 
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differences among groups, which strengthens our hypothesis. This study is not 

the first attempt to investigate the relationship between EEG and ICP. An 

observational study demonstrated that a strong correlation between the EEG 

parameters and ICP levels, measured by lumbar puncture, was found in patients 

with CNS diseases [118]. More frequent burst-suppression patterns were 

related to increased ICP levels [119−121]. Contrary to previous studies, we 

performed an experimental intervention study using a TBI model to determine 

the relationship between EEG and invasive ICP. Several EEG parameters 

revealed the ongoing ICP changes. In addition, the field application of the 

noninvasive EEG-based ICP prediction was prepared using ML-based 

prediction models. Among the five prediction models, the MLP with 10 hidden 

layers showed the best results. After computing the loss with initial random 

weights, backpropagation is initiated to train the model by repeatedly sending 

the loss from the output layer to the hidden layers, and each weight parameter 

is optimized to minimize the loss. During this process, the MLP model could 

have more flexible decision boundaries in our experimental dataset.  

The overall performance of each prediction model was not comparable to 

those of the TCD, CBFV, and ONSD methods. For identifying ICP levels over 

20 mmHg, the TCD-based estimates have been reported to show a sensitivity 

of 68.0%, specificity of 84.3% and an AUC of 0.87 [192] while the CBFV-

based estimates have been reported to show a sensitivity of 90.0%, specificity 

of 80.0%, and an AUC of 0.83 [193]. The ONSD-based estimates, combined 



 １０２

with magnetic resonance imaging (MRI), showed a sensitivity of 90.0%, 

specificity of 92.0%, and an AUC of 0.94 with a cutoff of 5.82 mm. For 

identifying ICP levels over 25 mmHg, contrarily, the EEG-based prediction 

model using MLP algorithm showed a sensitivity of 74.0%, specificity of 57.1% 

and an AUC of 0.754 when the EEG parameters were used alone. However, the 

use of HR data showed the possibility for further development. When the HR 

data were also included, the MLP-based model showed a sensitivity of 77.1%, 

specificity of 73.8% and an AUC of 0.834 while the RF-based model showed a 

sensitivity of 82.3%, specificity of 69.0% and an AUC of 0.814. These results 

suggest that the use of other different noninvasive data can improve the 

prediction models. Furthermore, the EEG-based prediction model showed the 

AUC values similar to those of the TCD and CBFV methods.  

Although an EEG-based noninvasive ICP classifier is at an early stage of 

development, it has advantages over TCD, CBFV, and ONSD methods. TCD 

methods require skillful personnel to identify the correct vessels with an 

ultrasonic probe, and interpret the measurements, which may inevitably cause 

inter-observer variations [93, 194]. Another limitation is that ABP should be 

acquired invasively from the radial artery [193]. Similarly, CBFV methods also 

need to measure ABP to estimate ICP. Vascular access surgery is time-

consuming and might inappropriate in such situations that require urgent 

medical treatments or monitoring. Moreover, continuous monitoring is not 

possible with these methodologies. However, the proposed EEG-based ICP 
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classifier measures the frontal EEG activity with a light wearable device 

(readily applicable to patients), and computes the EEG parameters instantly. 

This is followed by determining the ICP levels automatically, without any 

human intervention or additional measurements. Of the various noninvasive 

ICP monitoring modalities, ONSE methods present the best performance to 

differentiate between the normal and dangerous ICP. With the help of MRI or 

ultrasonography, it would be possible to monitor patients with intracranial 

hypertension in the intensive care unit [195]. However, the EEG-based 

prediction has advantages of the skill level requirement, cost of technology, 

continuous monitoring, feasibility in hospital-level emergency settings (e.g., 

emergency department and intensive care unit), and portability over ONSE.  

The Association for the Advancement of Medical Instrumentation 

standardized the level of accuracy for a noninvasive ICP measurement [96, 196]. 

According to the guidelines, a difference of 2 mmHg is acceptable when the 

ICP is below 20 mmHg and differences below 10% are acceptable if the ICP 

ranges is 20–100 mmHg. To improve the performance, an EEG-based ICP 

classifier should be able to classify into more number of groups accompanied 

by further experiments and EEG analysis. Other noninvasive signals can be 

applied to improve the performance.  
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4.4.2 Limitations  

There are some limitations to this study. First, it is a preliminary study in 

which many animals have been used in the experimental design. Therefore, it 

is difficult to generalize the results to real TBI patients without conducting 

further clinical studies. Data acquisition from human subjects and model 

improvement should be guaranteed. Second, the use of anesthetic agents and 

creating two burr holes can affect the EEG activity. Lastly, it was not possible 

for us to investigate the long-term changes of the EEG owing to the elevated 

ICP levels.  

 

 

 

4.5. Conclusion 

We measured the EEG activity noninvasively with varied ICP levels and 

evaluated the relationships between the EEG parameters and ICP levels. ML-

based binary classifiers using the EEG parameters were established to 

distinguish between higher and lower ICP levels. The lower ICP levels were 

defined as < 25 mmHg, while higher ICP levels were defined as ≥ 25 mmHg. 

The prediction model could be an acceptable classifier with the EEG 

parameters as input. Furthermore, the performance was improved when another 

noninvasive parameter, HR, was also applied, resulting in an AUC of 0.834.   
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Chapter 5. Summary and Future works 
 

5.1 Thesis summary and contributions 

 

The primary objective of this dissertation is to develop an EEG-based 

noninvasive monitoring technique for critical care in emergency settings. Brain 

cells communicate with each other by generating electrical signals, even when 

they are sleeping. An EEG is a recording of the electrical activity generated by 

neuronal function, which is usually detected using electrodes attached to the 

scalp. EEG activity is closely related to brain disorders and cerebral 

hemodynamics. As a useful tool for monitoring brain activity, EEG has been 

widely used to diagnose brain-related disorders and several EEG-derived 

indices have been used in clinical practice. This study attempts to develop 

noninvasive diagnostic tools for physiologic parameters monitoring in CA and 

TBI situations, with easily obtainable EEG signals.  

In the first study, an EEG-based Brain Resuscitation Index (EBRI) was 

proposed to estimate ETCO2 to assess systemic circulation during CPR. 

Several EEG parameters, which are used to determine the depth of the 

anesthesia, were analyzed according to the different CPR modes. During higher 

quality CPR, the primary hemodynamic parameters, including MAP and CaBF, 

and the secondary parameter, ETCO2, increased. The opposite changes were 

found during lower-quality CPR. The linearly regressed EBRI correlated 
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positively with the actual ETCO2, and the delta-EBRI showed potential as a 

real-time indicator for notifying the increased or decreased ETCO2. Particularly, 

the delta-EBRI can be used to evaluate the recovery of systemic circulation 

during CPR. 

In the second study, the relationship between the EEG parameters and CaBF 

recovery were investigated. Previous studies have demonstrated that prolonged 

no- or low-flow can develop ischemic insults and deteriorate the EEG activity 

and presented seven distinct EEG patterns with regard to the different levels of 

rSO2 [81]. Several EEG parameters that were measured during the brief-period 

intervals showed a high correlation with the CaBF recovery. The EEG-based 

binary classifiers were established to distinguish the higher and lower CaBF 

groups. The prediction models showed excellent performance, with an accuracy 

of over 0.8 and an AUC of over 0.9. These models are expected to monitor the 

recovery of the cerebral resuscitation, which is rarely possible with ETCO2 

monitoring.  

In the third study, an EEG-based prediction model was established to 

estimate the elevated ICP levels. Because ICP values greater than 20–25 mmHg 

can cause neurological disorders and sustained ICP values of over 40 mmHg 

can result in brain death, accurate ICP monitoring is required for TBI patients. 

The proposed binary ICP classifiers using the noninvasive EEG and HR data 

could differentiate between the normal and dangerous ICP levels, with an 

accuracy of 0.78 and an AUC of over 0.8. Their performance cannot be 
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comparable to that of invasive methods, which are regarded as the standard for 

direct ICP monitoring. However, the EEG-based noninvasive monitoring 

techniques show performance similar to other noninvasive methodologies, such 

as TCD, CBFV, and have the potential to indicate the dangerous ICP levels, 

even in an OOHS, for which the invasive methods cannot be applied.  

Four EEG parameters were used to predict the CaBF and ICP levels, which 

could directly affect brain activity: DTABR, BcSEF, Log energy entropy, and 

Rényi entropy. DTABR and BcSEF are closely related to the shift in the spectral 

profile. When the EEG activity was more recovered with a higher CaBF 

recovery or lower ICP levels, the power spectrum shifted toward higher 

frequencies, leading to higher BcSEF and lower DTABR. The opposite changes 

were observed when the EEG became deactivated or entered isoelectric status 

with lower CaBF recovery or higher ICP levels. The increased complexity and 

randomness of the EEG coincided with the spectral shift toward higher 

frequencies. These changes were revealed in the Log energy entropy and Rényi 

entropy. Overall, these four EEG parameters have the potential to reflect 

changes in CaBF and ICP. Furthermore, the importance of delta-related 

parameters should also be highly investigated to monitor cerebral physiologic 

data. Especially, four delta-related parameters showed significant differences 

between high- and low-CaBF recovery with relatively high NCA feature 

rankings. Because changes in delta band power are related to consciousness 

recovery [136], the delta-related parameters can be used effectively in 
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evaluating the return of the normal EEG activity during CPR.    

These studies were performed to monitor physiologic data, which are 

primarily considered in CA and TBI situations, using a noninvasive EEG. 

Different EEG features and prediction models were achieved for specific 

purposes. However, all the studies demonstrate that a noninvasive EEG can 

yield clinically important predictive outcomes, which can be utilized with a 

combination of other diagnostic methods.  
 

 

5.2 Future direction 

 

This dissertation analyzes the relationships between the EEG activity and 

physiological parameters for immediate ETCO2, CaBF, and ICP levels to 

establish noninvasive prediction models. In CA and TBI situations, the 

effectiveness of treatments and recovery of patients are typically evaluated by 

measuring physiological responses such as hemodynamic profiles. The EEG, 

which reveals brain cell viability, has been suggested as a surrogate indicator 

of physiological data. In this study, the processed EEG signals were analyzed 

with ETCO2, CaBF, and ICP, and the performance of an EEG-based prediction 

model was also evaluated using these physiological data. However, in terms of 

brain functionality, EEG analysis relating to these physiological data may not 

be completely appropriate. By contrast, EEG should be solely investigated to 
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assess the neurological status of patients. In the long term, EEG could be 

utilized both immediately after injury and during inpatient treatments, without 

having to rely on other methodologies. If a reliable EEG is obtainable in an 

OOHS, it could guide optimal resuscitation efforts or ICP-lowering treatments. 

For example, favorable EEG changes could help EMTs advance further 

treatment. Otherwise, they might decide on early hospital transfers. During 

hospitalization, EEG can be monitored with evaluation scoring systems, such 

as the cerebral performance category (CPC) [197, 198] and modified Rankin 

scale (mRS) [199, 200]. 

In CA situations, the CPC is considered the standard evaluation method of 

resuscitated patients. The CPC scores on a 5-point scale are determined after 

reviewing medical records and physical examinations [201]. However, the CPC 

would be inadequate for evaluating different levels of brain injury [202]. Thus, 

the mRS on a 7-point scale can be applied because it is more focused on brain 

injury and neurological outcomes. To achieve an earlier recovery of brain 

function and produce better prognostication of resuscitated patients, these 

evaluation indices in conjunction with the EEG parameters should be 

investigated. In case of an OHCA, CA characteristics (e.g., the type and location 

of patient, time interval from emergency call to arrival of EMTs, initial heart 

rhythm, no-flow period, and witnessed status) can be considered together. 

Current guidelines recommend delaying neurological examinations and 

prognostication for at least 72 h after ROSC. Thus, new methods for earlier 
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neurological assessment could be advantageous. If the influence of the 

improved EEG signals during CPR on achieving favorable outcomes (CPC 

score 1–2 and mRS score 0–3) could be disclosed, the CA patients’ neurological 

and functional outcomes could be estimated. Besides, an EEG-based 

resuscitation scoring system could be established eventually, and prolonged 

failure to obtain improved EEG signals during CPR may be included in the 

decision-making process for termination of resuscitation or other treatments. 

The CPC and mRS can also be utilized with EEG signals to assess neurological 

status during TBI. These evaluation indices evaluate the levels of consciousness 

and effectiveness of treatments for TBI patients. Quantitative EEG in severe 

brain injury situations should be analyzed during the entire course of treatment. 

Then, the relationships among EEG, ICP, and standard evaluation indices could 

be identified. The capability of a noninvasive EEG to monitor ICP could be 

improved and an EEG-based noninvasive ICP evaluation method could also be 

improved, which can guide more effective treatment strategies, without having 

to use other ICP monitoring methodologies. 

The EEG acquisition system should also be improved in terms of artifact 

prevention techniques. The consistent placement of electrodes with low contact 

impedance is an essential prerequisite for reliable emergency EEG 

measurement. Mechanical flexibility and rigid attachment should be guaranteed 

for this purpose. Configurations of the electrodes also require improvement. 

EEG can be measured continuously for several hours with conductive wet 
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electrodes because the conductive gel on the electrodes dehydrates, and the 

electrodes need to be replaced regularly. Therefore, novel dry electrodes that 

can allow long-term high-fidelity EEG recordings without conductive gel or 

skin preparation should be utilized. When using dry electrodes, increased 

electrode-skin impedance might attenuate the raw EEG signals. Typically, 

stratum corneum, the outmost layer of skin with a dry dielectric property, can 

disturb electrical behavior in the skin-electrode interface [203]. Because the 

thickness of stratum corneum can increase the electrode-skin impedance, sharp 

tip microneedle structure, which penetrates the stratum corneum, could ensure 

the fixation of electrodes while reducing the electrode-skin impedance 

significantly [204]. Novel signal processing techniques for removing artifacts 

are also required. A recently developed CPR artifact removal technology, See-

Thru CPR (Zoll Medical Corporation, Chelmsford, MA, USA), eliminates 

compression artifacts on the ECG signal to visualize the underlying heart 

rhythm while minimizing the compression pauses [205]. Such signal processing 

techniques can be applied to achieve artifact-free EEG signals. 

With the future advances mentioned above, the feasibility of EEG-based 

prediction should be further investigated. Thus, several limitations in animal 

experiments should be resolved to establish more practical prediction models. 

In a swine model of VF, various untreated VF durations and CPR conditions 

should be considered. In a swine model of TBI, the effects of multiple 

interventions, including hypovolemia, hypothermia, and hypoxia, which TBI 
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patients might experience, should be reflected in the EEG-based noninvasive 

ICP prediction models. Moreover, clinical trials are required to verify and 

generalize results from animal experiments to the real patients.  
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초    록 

 
 

뇌파는 대뇌피질이나 두피의 전극을 통해서 뇌의 전기적 신호를 

기록한 것을 의미한다. 뇌 기능 관찰을 위한 진단도구로써 뇌파는 

뇌전증이나 치매 진단 등의 목적으로 활용되고 있다. 본 논문에서는 

비침습적 뇌파를 이용하여 응급환자의 주요 생리학적 지표를 

모니터링하는 기술을 개발하였다. 

 

처음 두 연구에서 심폐소생술의 효과를 평가하기 위한 심정지 

돼지실험모델을 고안하였다. 현재의 심폐소생술 지침은 체순환 

평가를 위해 기도삽관을 통한 호기말 이산화탄소 분압의 측정을 

권고한다. 하지만, 정확한 기도삽관이 특히 병원 밖 상황에서 

어려울 수 있다. 따라서, 간편히 측정할 수 있고 소생 환자의 

신경학적 예후를 진단하는데 사용되는 뇌파를 이용한 예측 기술이 

심폐소생술 품질평가지표의 대안으로 제안되었다. 첫 번째 

실험에서는 고품질과 저품질 기본심폐소생술을 10회 반복하면서 

측정된 뇌파를 분석하였다. 심폐소생술의 품질에 따른 뇌파의 

변화를 이용하여 체순환 평가를 위한 EEG-based Brain 

Resuscitation Index (EBRI) 모델을 도출하였다. EBRI 모델에서 

획득한 호기말 이산화탄소 분압 예측치는 실제 값과 양의 

상관관계를 보이며, 병원 밖 상황에서의 활용 가능성을 보였다. 두 
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번째 실험에서는 두 가지 심폐소생술(기본심폐소생술, 

전문심폐소생술)이 수행되었다. 제세동 직전에 수집된 뇌파는 

심폐소생술 도중 경동맥혈류의 회복률과 함께 분석되었다. 

심폐소생술 도중 경동맥혈류의 회복률을 반영하는 뇌파 변수를 

규명한 후, 이를 이용하여 높은 회복률(30% 이상)과 낮은 

회복률(30% 미만)을 구분하는 기계학습 기반 이진분류모델을 

도출하였다. 서포트 벡터 머신 기반의 예측모델이 0.853의 

정확도와 0.909의 곡선하면적을 보이며 가장 우수한 성능을 보였다. 

이러한 예측모델은 심정지 환자의 뇌 소생을 향상시켜 빠른 뇌 

기능 회복을 가능하게 할 것으로 기대된다. 

 

세 번째 연구에서 비침습적 뇌파를 이용하여 두개내압을 

예측하는 모델을 개발하기 위한 외상성 뇌손상 돼지실험모델이 

고안되었다. 외상성 뇌손상은 물리적 충격에 의해 정상적인 뇌 

기능이 중단된 상태를 의미하며, 이 때의 두개내압 상승과 

관류저하가 뇌파에 영향을 끼칠 수 있다. 따라서, 우리는 뇌파 기반 

두개내압 예측모델을 개발하였다. 폴리카테터로 실험동물의 

두개내압을 변경하면서 뇌파를 획득하였다. 두개내압의 정상구간(25 

mmHg 미만)과 위험구간(25 mmHg 이상)을 유의미하게 구분하는 

뇌파 변수를 규명한 후 기계학습 기반 이진분류모델을 도출하였다. 

다층 퍼셉트론 기반의 예측모델이 0.686의 정확도와 0.754의 

곡선하면적을 보이며 가장 우수한 성능을 보였다. 또다른 비침습 
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데이터인 심박수 정보와 함께 사용하였을 때 정확도와 

곡선하면적은 각각 0.760과 0.834로 향상되었다. 제안된 

예측모델은 응급상황에서 비침습적으로 두개내압을 관찰하여 정상 

수준의 두개내압을 유지하는데 도움을 줄 것으로 기대된다. 

 

본 논문은 응급환자의 주요 생리학적 지표를 비침습적 뇌파를 

이용하여 관찰하는 예측모델을 제안하고 성능을 검증하였다. 본 

연구에서는 뇌파를 이용하여 즉각적인 호기말 이산화탄소 분압, 

경동맥혈류, 두개내압을 추정하기 위한 예측모델을 수립하였다. 

하지만, 뇌파 데이터는 장기간의 신경학적, 기능적 회복과 함께 

평가되어야 한다. 본 논문에서 개발한 예측모델의 성능과 적용 

가능성은 향후 다양한 임상연구를 통해 cerebral performance 

category와 modified Rankin scale 등의 신경학적 평가지표와 함께 

분석, 개선되어야 할 것이다.  

 

 

주요어: 응급상황, 뇌파, 심폐소생술, 외상성 뇌손상, 생리학적 지표, 

       예측모델 

 

 

학  번: 2015-30263  

 

 


	Chapter 1 General Introduction
	1.1  Electroencephalogram
	1.2  Clinical use of spontaneous EEG
	1.3  EEG and cerebral hemodynamics
	1.4  EEG use in emergency settings
	1.5  Noninvasive CPR assessment
	1.6  Noninvasive traumatic brain injury assessment
	1.7  Thesis objectives

	Chapter 2 EEG-based Brain Resuscitation Index for Monitoring Systemic Circulation During CPR
	2.1 Introduction
	2.2 Methods
	2.2.1   Ethical statement
	2.2.2   Study design and setting
	2.2.3   Experimental animals and housing
	2.2.4   Surgical preparation and hemodynamic measurements
	2.2.5   EEG measurement
	2.2.6   Data analysis
	2.2.7   EBRI calculation
	2.2.8   Delta-EBRI calculation

	2.3 Results
	2.3.1   Hemodynamic parameters
	2.3.2   Changes in EEG parameters
	2.3.3   EBRI calculation
	2.3.4   Delta-EBRI calculation

	2.4 Discussion
	2.4.1   Accomplishment
	2.4.2   Limitations

	2.5 Conclusion

	Chapter 3 EEG-based Prediction Model of the Recovery of Carotid Blood Flow for Monitoring Cerebral Circulation During CPR
	3.1 Introduction
	3.2 Methods
	3.2.1   Ethical statement
	3.2.2   Study design and setting
	3.2.3   Experimental animals and housing
	3.2.4   Surgical preparation and hemodynamic measurements
	3.2.5   EEG measurement
	3.2.6   Data processing
	3.2.7   Data analysis
	3.2.8   Development of machine-learning based prediction model

	3.3 Results
	3.3.1   Results of CPR process
	3.3.2   EEG changes with the recovery of CaBF
	3.3.3   Changes in EEG parameters depending on four CaBF groups
	3.3.4   Changes in EEG parameters depending on two CaBF groups
	3.3.5   EEG parameters for prediction models
	3.3.6   Performances of prediction models

	3.4 Discussion
	3.4.1   Accomplishment
	3.4.2   Limitations

	3.5 Conclusion

	Chapter 4 EEG-based Prediction Model of an Increased Intra-Cranial Pressure for TBI patients
	4.1 Introduction
	4.2 Methods
	4.2.1   Ethical statement
	4.2.2   Study design and setting
	4.2.3   Experimental animals and housing
	4.2.4   Surgical preparation and hemodynamic measurements
	4.2.5   EEG measurement
	4.2.6   Data processing
	4.2.7   Data analysis
	4.2.8   Development of machine-learning based prediction model

	4.3 Results
	4.3.1   Hemodynamic changes during brain injury phase
	4.3.2   EEG changes with an increase of ICP
	4.3.3   EEG parameters for prediction models
	4.3.4   Performances for prediction models

	4.4 Discussion
	4.4.1   Accomplishment
	4.4.2   Limitations

	4.5 Conclusion

	Chapter 5 Summary and Future works
	5.1 Thesis summary and contributions
	5.2 Future direction

	Bibilography
	Abstract in Korean


<startpage>20
Chapter 1 General Introduction 1
 1.1  Electroencephalogram 1
 1.2  Clinical use of spontaneous EEG 5
 1.3  EEG and cerebral hemodynamics 7
 1.4  EEG use in emergency settings 9
 1.5  Noninvasive CPR assessment 10
 1.6  Noninvasive traumatic brain injury assessment 16
 1.7  Thesis objectives 21
Chapter 2 EEG-based Brain Resuscitation Index for Monitoring Systemic Circulation During CPR 23
 2.1 Introduction 23
 2.2 Methods 25
  2.2.1   Ethical statement 25
  2.2.2   Study design and setting 25
  2.2.3   Experimental animals and housing 27
  2.2.4   Surgical preparation and hemodynamic measurements 27
  2.2.5   EEG measurement 29
  2.2.6   Data analysis 32
  2.2.7   EBRI calculation 33
  2.2.8   Delta-EBRI calculation 34
 2.3 Results 36
  2.3.1   Hemodynamic parameters 36
  2.3.2   Changes in EEG parameters 37
  2.3.3   EBRI calculation 39
  2.3.4   Delta-EBRI calculation 41
 2.4 Discussion 42
  2.4.1   Accomplishment 42
  2.4.2   Limitations 45
 2.5 Conclusion 46
Chapter 3 EEG-based Prediction Model of the Recovery of Carotid Blood Flow for Monitoring Cerebral Circulation During CPR 47
 3.1 Introduction 47
 3.2 Methods 50
  3.2.1   Ethical statement 50
  3.2.2   Study design and setting 50
  3.2.3   Experimental animals and housing 52
  3.2.4   Surgical preparation and hemodynamic measurements 54
  3.2.5   EEG measurement 55
  3.2.6   Data processing 57
  3.2.7   Data analysis 58
  3.2.8   Development of machine-learning based prediction model 59
 3.3 Results 63
  3.3.1   Results of CPR process 63
  3.3.2   EEG changes with the recovery of CaBF 66
  3.3.3   Changes in EEG parameters depending on four CaBF groups 68
  3.3.4   Changes in EEG parameters depending on two CaBF groups 69
  3.3.5   EEG parameters for prediction models 70
  3.3.6   Performances of prediction models 73
 3.4 Discussion 76
  3.4.1   Accomplishment 76
  3.4.2   Limitations 78
 3.5 Conclusion 80
Chapter 4 EEG-based Prediction Model of an Increased Intra-Cranial Pressure for TBI patients 81
 4.1 Introduction 81
 4.2 Methods 83
  4.2.1   Ethical statement 83
  4.2.2   Study design and setting 83
  4.2.3   Experimental animals and housing 85
  4.2.4   Surgical preparation and hemodynamic measurements 86
  4.2.5   EEG measurement 88
  4.2.6   Data processing 90
  4.2.7   Data analysis 90
  4.2.8   Development of machine-learning based prediction model 91
 4.3 Results 92
  4.3.1   Hemodynamic changes during brain injury phase 92
  4.3.2   EEG changes with an increase of ICP 93
  4.3.3   EEG parameters for prediction models 94
  4.3.4   Performances for prediction models 95
 4.4 Discussion 100
  4.4.1   Accomplishment 100
  4.4.2   Limitations 104
 4.5 Conclusion 104
Chapter 5 Summary and Future works 105
 5.1 Thesis summary and contributions 105
 5.2 Future direction 108
Bibilography 113
Abstract in Korean 135
</body>

