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Abstract 

Background: The whole brain is often covered in  [18F]Fluorodeoxyglucose positron 
emission tomography  ([18F]FDG-PET) in oncology patients, but the covered brain 
abnormality is typically screened by visual interpretation without quantitative analysis 
in clinical practice. In this study, we aimed to develop a fully automated quantitative 
interpretation pipeline of brain volume from an oncology PET image.

Method: We retrospectively collected 500 oncologic  [18F]FDG-PET scans for training 
and validation of the automated brain extractor. We trained the model for extracting 
brain volume with two manually drawn bounding boxes on maximal intensity projec-
tion images. ResNet-50, a 2-D convolutional neural network (CNN), was used for the 
model training. The brain volume was automatically extracted using the CNN model 
and spatially normalized. For validation of the trained model and an application of this 
automated analytic method, we enrolled 24 subjects with small cell lung cancer (SCLC) 
and performed voxel-wise two-sample T test for automatic detection of metastatic 
lesions.

Result: The deep learning-based brain extractor successfully identified the existence 
of whole-brain volume, with an accuracy of 98% for the validation set. The perfor-
mance of extracting the brain measured by the intersection-over-union of 3-D bound-
ing boxes was 72.9 ± 12.5% for the validation set. As an example of the application 
to automatically identify brain abnormality, this approach successfully identified the 
metastatic lesions in three of the four cases of SCLC patients with brain metastasis.

Conclusion: Based on the deep learning-based model, extraction of the brain volume 
from whole-body PET was successfully performed. We suggest this fully automated 
approach could be used for the quantitative analysis of brain metabolic patterns to 
identify abnormalities during clinical interpretation of oncologic PET studies.
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Background
[18F]fluorodeoxyglucose positron emission tomography  ([18F]FDG-PET) has been playing a 
crucial role in tumor imaging [1, 2]. The clinical implications include diagnosis of unknown 
tumor, staging, monitoring for recurrence, and clinical assessment of therapy [3]. The rou-
tine protocol for oncologic 18F-FDG-PET is so-called torso imaging, covering from skull 
base to mid-thigh in most of the PET centers [4]. However, in practice, covering the whole 
level of skull is often clinically useful, for example, assessment of brain metastasis in the 
high-prevalence type of tumor, such as lung cancer [5–7]. The covered brain volume is 
typically analyzed by visual inspection in clinical practice due to low sensitivity in meta-
static lesions compared with magnetic resonance (MR) imaging. Thus, in the clinical prac-
tice, roles of oncologic 18F-FDG-PET for detection of brain lesions is underestimated [8]. 
However, incidental brain metastasis is important for clinical decisions. Furthermore, brain 
metabolism reflecting functional activity is affected by chemotherapy as well as tumors 
themselves—e.g., paraneoplastic encephalitis, which could affect outcome [9, 10]. As func-
tional image assesses the metabolism of the whole body as well as tumors, quantitative 
information of covered brain extracted from the oncology FDG-PET study could be utilized 
to identify brain abnormality as well as unexpected metastasis. More specifically, with the 
aid of automated analytic methods, such as statistical parametric mapping (SPM) [11, 12], 
the information from brain PET images might improve sensitivity for detecting incidental 
brain disorders by measuring regional metabolic abnormalities [13], such as local-onset sei-
zures [14], or Alzheimer’s disease (AD) [15], as well as brain metastasis [16].

Some studies have implemented deep learning-based approaches for automatic analysis 
of brain images, especially targeting MR imaging. Since MR image typically covers head 
region only, these studies target segmenting anatomic structures [17] or anatomically 
apparent lesions [18, 19]. Other studies based on PET images also target segmenting meta-
bolically active tumor lesions [20, 21]. However, no study, as far as we know, has targeted 
extracting the brain itself from the images covering the whole body.

To achieve this goal, we implemented a convolutional neural network (CNN)-based deep 
learning model, which has been successful in solving a variety of problems in the field of 
image processing, including image classification, object detection, and segmentation [22, 
23]. A vast portion of this success includes medical image processing [24, 25], including 
anatomical segmentation of the brain [26] or detection of the tumorous lesion [27] of MR 
images.

In this study, we aimed to develop a fully automatic quantitative analysis pipeline of brain 
volume from a given oncology PET image. To achieve this goal, deep learning models were 
exploited to detect the location of the brain and to identify whether a given PET study 
included the whole brain. The detected brain was cropped and spatially normalized to the 
template brain. The automatically extracted and normalized brain volume could be used to 
perform statistical analysis, including SPM. As an example, we applied this model to iden-
tify brain metastasis from whole-body FDG-PET imaging.

Methods
Subjects

For the training and validation data of the automatic brain extractor, 500 whole-body 
 [18F]FDG-PET scans were retrospectively collected. These PET scans were performed 
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from June to July 2020 in a single center (Age = 66.7 ± 3.4, M: F = 194: 306). The scans 
which were explicitly prescribed to include the brain (by the oncologic clinicians) were 
excluded from analysis, to remove the bias in the evaluation of detecting accuracy of 
brain existence. Among the 500 cases, the primary site of malignancy was breast (19.8%), 
lung (18.6%), hematologic (14.2%), colorectal (9.4%), biliary (6.8%), ovary (5.4%), pan-
creas (5.2%), liver (5.0%), stomach (4.2%), thymus (3.6%), urinary tract (3.4%), soft tissue 
(3.0%), thyroid (0.6%), or unknown (0.8%).

For the validation of our trained model and the quantitative assessment of the 
extracted brain as an independent test, FDG-PET images acquired from small-cell lung 
cancer (SCLC) patients were retrospectively collected. The scans were acquired from 
January 2014 to December 2017 in the same institute. To test whether our automated 
brain analysis pipeline identifies brain metastasis in SCLC patients, groups were defined 
according to the presence of brain metastasis. Four patients had brain metastasis con-
firmed by brain MRI at baseline and follow-up (age: 66.8 ± 6.5, M: F = 4: 0). Twenty PET 
scans without brain metastasis, according to the baseline brain MRI were regarded as 
controls (age: 71.2 ± 6.1; M: F = 17:3).

Image acquisition

As a routine protocol of FDG-PET, after fasting more than 4 h, patients were intrave-
nously injected with 5.18 MBq/kg of FDG. After 1 h, PET image was acquired from the 
skull base to the proximal thigh using dedicated PET/CT scanners (Biograph mCT 40 
or mCT 64, Siemens, Erlangen, Germany) for 1 min per bed. A Gaussian filter (FWHM 
5 mm) was applied to reduce noise, and images were reconstructed using an ordered-
subset expectation maximization algorithm (2 iterations and 21 subsets).

Deep learning model and training data for the brain extraction

We devised an automatic brain extractor based on the following two objectives: (1) the 
evaluation of whether a scan included the entire brain and (2) the establishment of a 3-D 
bounding box which included brain volume. The brief outline of the study is shown in 
Fig. 1.

For training of the model, the maximum intensity projection (MIP) image for each 
of the PET scans was generated. For each of the 500 MIP images, 2-D bounding boxes 
were manually drawn on the anterior and lateral views of the MIP image. We used VGG 
Image Annotator (VIA) [28] to manually create bounding boxes on the MIP images and 
acquire coordinates of them. Coordinates from the two bounding boxes were merged 
to obtain coordinates of a 3-D bounding box for each PET image. Images that did not 
contain full range of the brain were classified elsewhere, as “not containing entire brain”.

Two MIP images, anterior and lateral views, were changed to square matrices by zero-
padding. The matrices were changed to 224 × 224 using bilinear interpolation. The pixel 
values represented the standardized uptake value (SUV). To be inputs of a CNN model, 
pixel values were divided by 30, as most voxel values of PET volume have less than SUV 
30 except urine, and then multiplied by 255 to have a range approximately 0 to 255.

We utilized ResNet-50 [29, 30] for the learning model, a 2-D CNN pre-trained with 
images from the ImageNet database [31]. The module used the Python front end of the 
open-source library TensorFlow [32], which runs on Graphical Processing Unit (GPU, 
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NVIDIA GeForce RTX 2080Ti). ResNet-50 was implemented for preprocessing the 
input data and predicting the coordinates of 3-D bounding boxes from the MIP images. 
The pre-trained ResNet-50 respectively extracted feature vectors from the two views of 
MIP images. The extracted features were concatenated. An additional fully connected 
layer with 4096 dimensions was connected to the concatenated feature vectors and then 
finally connected to different outputs. An output represented coordinates of the bound-
ing box of the brain consisting of 6-D vectors (coordinates for three axes and width, 
length, and depth of the bounding box for three axes). Another output with a 1-D vector 
represented whether a given PET volume included the entire brain. Image augmentation 
was applied to the training dataset. MIP images were randomly augmented by multiply-
ing voxel values, changing contrast, scaling, and translating images. For the optimizer, 
we implemented Adam [33] with a learning rate of 0.00001, 150 epochs, and batch size 
of 8.

We performed the internal validation by randomly selecting 10% of the data (n = 50) as 
a validation set. The loss function was defined by two terms:

where Yi indicates the true existence of the brain (equal to 1 when the whole brain 
exists, 0 when not), p

(
y
)
 denotes the predicted existence, and vectors y and ŷ denote 

the predicted and true coordinates of the bounding box, respectively. Therefore, two 
terms of the loss function, La and Lb represent (1) binary cross-entropy of an output 
that represented whether a given PET volume included the entire brain and (2) mean 
squared error estimated by the 6-D vector representing coordinates of the bounding 
box, respectively (Fig.  1). The weight for the loss was empirically determined for the 
training: we set to alpha = 10 and beta = 1 for sum of the loss function. We measured 

La = Yi log
(
p
(
y
))

+ (1− Yi) log
(
1− p

(
y
))

Lb = Yi
∑

j=x,y,z,wx ,wy,wz
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2

Lall = αLa + βLb

Fig. 1 Brief outline of the automatic brain extraction. We trained the model with two manually drawn 
bounding boxes on maximal intensity projection (MIP) images. ResNet-50, a convolutional neural network 
(CNN) was used for learning model. Internal validation of model was performed. Finally, the brain volume was 
extracted and spatially normalized to the template space
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intersection-over-union (IOU) for the predicted and labeled bounding boxes. From the 
predicted coordinates of bounding boxes, we extracted brain images from whole-body 
PET and spatially normalized them to the template space, as mentioned later.

Processing of the extracted brain

The trained model was applied to whole-body PET images to extract brain if the model 
predicted that the image contains the whole-brain volume. FDG-PET volumes were res-
liced to have a voxel size of 2 × 2 × 2  mm3. We segmented the brain with the coordi-
nates of the 3-D bounding boxes predicted by the model. Padding of 10 voxels is applied 
for each axis to determine the brain volume. The extracted brain volumes were spatially 
normalized onto Montreal Neurological Institute (McGill University, Montreal, Que-
bec, Canada) standard templates. The spatial normalization was performed by symmet-
ric normalization (SyN) with the cross-correlation loss function implanted in the DIPY 
package [34]. More specifically, a given extracted brain volume was linearly transformed 
to the template PET image with affine transform. The warping was performed by the 
symmetric diffeomorphic registration algorithm. The spatially normalized PET volume 
was saved for further quantitative imaging analysis.

Quantitative analysis of the extracted brain

The extracted and spatially normalized brain volume was analyzed by a quantitative 
software, SPM12 (Institute of Neurology, University College of London, London, U K) 
implemented in MATLAB 2019b (The MathWorks, Inc., Natick, MA, U SA). The nor-
malized brain images were smoothed by convolution with an isotropic Gaussian kernel 
having a 10 mm full width at half maximum to increase the signal-to-noise ratio.

For the 24 subjects with SCLC, we performed the voxel-wise two-sample T test for 
each of the normalized brain volumes from the four scans with metastatic lesions, with 
the whole images from the 20 control group subjects. Uncorrected P < 0.001 was applied 
to identify patient-wise metabolically abnormal regions.

For each of the four comparisons, we also constructed a map of T-statistics and 
extracted the peak T values. As a proof-of-concept study, we investigated whether the 
statistical analysis successfully revealed the metastatic lesions confirmed by the brain 
MRI previously.

Results
Extraction of the brain volume

The deep learning-based brain extractor successfully identified the existence of whole-
brain volume, with an accuracy of 98% for the internal validation set. The performance 
of extracting the brain measured by the IOU of 3-D bounding boxes was 72.9 ± 12.5% for 
the validation set. Using the predicted coordinates, all brains were successfully cropped 
and automatically normalized into the template space.

We show some representative images we applied for interval validation of the model 
in Fig. 2. In both of the “torso” PET covering up to mid-thigh and “total-body” PET cov-
ering whole heights of the body the extractor successfully located the brain (Fig. 2a, b). 
The extractor was also capable of identification of the brain when the artifact caused 
by radiopharmaceutical injection was projected to the brain at the MIP image (Fig. 2c). 
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When the brain volume was not fully included, the extractor classified the image as “not 
containing entire brain” (Fig. 2d).

Identification of brain metastasis from whole‑body FDG‑PET using the fully automated 

brain analysis pipeline

The fully automated brain extraction and quantitative analysis were applied to the 
patients with SCLC as a proof-of-concept study. In the 24 whole-body PET images, the 
automatic brain extractor has identified the existence of the whole brain with an accu-
racy of 100%, and the IOU of 3-D bounding boxes was 75.8 ± 7.2%. The voxel-wise T 
test successfully identified the metastatic lesions in the brain at three of four subjects 
in the case group (P < 0.001). In all of the three successful cases, the analysis revealed 
hypometabolic lesions due to edematous change around the lesion (Fig. 3). In the other 
case with the unsuccessful result, the statistical analysis showed diffuse hypometabolism 
in the frontoparietal lobe, instead of focal metabolic defect at the metastatic site (Fig. 3).

Discussion
Since the increased utilization of FDG-PET in neurologic disorders, many kinds of liter-
ature suggest methods for quantitative analysis for FDG-PET images of the brain [12, 35, 
36]. However, most of the subjects with FDG-PET scans, especially oncologic patients, 

Fig. 2 Representative results of the automatic brain extractor. a, b In both of the “torso”, PET covering up to 
mid-thigh and “total-body” PET covering whole heights of body the extractor successfully located the brain. c 
The extractor was also capable of identifying brain when the artifact caused by radiopharmaceutical injection 
was projected to the brain at the MIP image. d When the brain volume was not fully included, the extractor 
classified the image as “not containing entire brain”
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are not benefited from this kind of progress, for the lack of a handy and automated 
method of quantification. This work aims to achieve the first step of this automatization 
by deep learning-based extraction of brain volume from the oncologic PET scan, which 
is followed by a scout quantitative analysis of the extracted brains. Fully automated brain 
extraction and providing quantitative information in oncologic PET can be integrated 
into a system that warns of metastatic lesions or major brain diseases that can be over-
looked in visual reading.

The key step of automated quantitative brain imaging analysis from the oncologic PET 
images was the extraction of brain volumes. In most of the scans of internal validation, 
the automatic brain extractor based on ResNet-50 successfully identified the coverage 
of full brain in the whole-body scan and located and extracted the brain volume, even in 
the presence of artifact projected to the MIP image.

The extracted brain PET volume can be analyzed by many conventional quantita-
tive analysis approaches. In this study, for the fully automated process, we employed a 
spatial normalization process based on SyN algorithm implemented in the DIPY pack-
age. Notably, the spatial normalization process after the brain extraction was fully auto-
mated. The spatially normalized brain can be further analyzed by quantitative software, 
including SPM and 3-D stereotactic surface projection (3-D SSP) [37]. In this work, as a 
proof-of-concept study, we implemented SPM to identify metastatic lesions. This reveals 
the implication of the automatic brain extraction we performed, which could potentially 
extend to aid in the identification of unexpected metastasis during visual interpretation 
of oncologic PET study. Moreover, this method could be used to identify overlooked 
brain abnormalities such as dementia as well as tumorous lesions in the brain.

In the process of the quantitative analysis, as a proof-of-concept study, age match-
ing was not performed between the metastatic subject and control group to yield 

Fig. 3 Quantitative analysis of the extracted brain. The voxel-wise T test successfully identified the metastatic 
lesions in the brain at three of four subjects in the case group (uncorrected P < 0.001). The graphics on the 
left side show the brain regions that show hypometabolism compared to the control group. The image on 
the right side shows the corresponding FDG-PET image. a, b, c In all of the three successful cases, the analysis 
revealed hypometabolic lesions due to edematous change around the lesion. d In the other case with 
unsuccessful result, the statistical analysis showed diffuse hypometabolism in frontoparietal lobe, instead of 
focal metabolic defect at the metastatic site
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rather non-specific decreased metabolism along the cerebral cortex in an elderly sub-
ject. This might have resulted from the physiologic decrease in gray matter volume 
accompanied by a normal aging process [38, 39]. Adjustment of patient factors (e.g., 
age and underlying disease) would be crucial to detect a localized metabolic disorder, 
apart from the diffuse change of metabolism resulted from the systemic condition. In 
addition, although the brain extraction model showed good results, there is room for 
optimization such as hyperparameter tuning and revising model architecture. None-
theless, considering that the purpose of the model was ‘spatially normalized brain’, 
which could be obtained from the extracted brain even with small errors in the brain 
coordinates. As a proof-of-concept study, our suggested model has proved the final 
purpose of identifying brain abnormality from the automatically spatially normalized 
brain.

Conclusions
Based on the deep learning-based model, we successfully developed a fully automated 
brain analysis method from oncologic FDG-PET. The model could identify the existence 
of the brain volume, locate the contour of brain from the PET image, and perform the 
spatial normalization to the template. The quantitative analysis showed the feasibility 
of the identification of the metastatic brain lesion. We suggested that the model could 
be used to support FDG-PET interpretation and analysis by finding unexpected brain 
abnormalities, including metastasis as well as brain disorders.
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