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Abstract

Background: Atrial fibrillation (AF) and brain volume loss are prevalent in older individuals. We aimed to assess the
causal effect of atrial fibrillation on brain volume phenotypes by Mendelian randomization (MR) analysis.

Methods: The genetic instrument for AF was constructed from a previous genome-wide association study (GWAS)
meta-analysis (15,993 AF patients and 113,719 controls of European ancestry). The outcome summary statistics for
head-size-normalized white or gray matter volume measured by magnetic resonance imaging were provided by a
previous GWAS of 33,224 white British participants in the UK Biobank. Two-sample MR by the inverse variance-
weighted method was performed, supported by pleiotropy-robust MR sensitivity analysis. The causal estimates for
the effect of AF on ischemic stroke were also investigated in a dataset that included the findings from the
MEGASTROKE study (34,217 stroke patients and 406,111 controls of European ancestry). The direct effects of AF on
brain volume phenotypes adjusted for the mediating effect of ischemic stroke were studied by multivariable MR.

Results: A higher genetic predisposition for AF was significantly associated with lower grey matter volume [beta
—0.040, standard error (SE) 0.017, P=0.017], supported by pleiotropy-robust MR sensitivity analysis. Significant causal
estimates were identified for the effect of AF on ischemic stroke (beta 0.188, SE 0.026, P=1.03E—12). The total effect
of AF on lower brain grey matter volume was attenuated by adjusting for the effect of ischemic stroke (direct
effects, beta —0.022, SE 0.033, P=0.528), suggesting that ischemic stroke is a mediator of the identified causal
pathway. The causal estimates were nonsignificant for effects on brain white matter volume as an outcome.

Conclusions: This study identified that genetic predisposition for AF is significantly associated with lower gray
matter volume but not white matter volume. The results indicated that the identified total effect of AF on gray
matter volume may be mediated by ischemic stroke.
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Background

Atrial fibrillation (AF) is the most common cardiac
arrhythmia associated with the risk of stroke, heart fail-
ure, dementia, and mortality [1] and further contributes
to a substantial socioeconomic burden [2]. The preva-
lence of AF is substantially increasing along with the
global aging trend [3, 4].

As AF is highly prevalent in elderly individuals, cogni-
tive dysfunction or functional brain disorders, which are
also common in elderly people, have been associated
with AF [5]. In addition, brain volume loss is related to
persistent AF, along with low cerebral blood flow in AF
patients [6—8]. However, demonstration of the causal ef-
fect of AF on structural brain volume changes has yet to
be performed. Because pathologic brain volume loss and
AF share risk factors and are both common in older in-
dividuals with multiple comorbidities, whether the ob-
served low brain volume is a consequence of AF could
hardly be answered by observational studies due to re-
sidual confounding effects. In addition, whether AF
alone can cause brain volume loss even without stroke
needs to be studied, as previous reports assessed the as-
sociation between AF and dementia in stroke-free indi-
viduals, and brain volume loss was present before the
identified first stroke event in AF patients [5, 9, 10].
Such evidence for the causal effect of AF on brain vol-
ume and its mechanistic association with stroke would
suggest whether accelerated brain volume loss in AF
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patients may be ameliorated through appropriate AF
management targeting the risk of ischemic stroke.

Mendelian randomization (MR) is an analytic method
that can identify causal estimates with epidemiologic
data [11]. MR utilizes a genetic instrument that is fixed
before birth; thus, instrumented genetic predisposition is
minimally affected by confounders or reverse causation.
The significant association between genetic predispos-
ition, which would result in a higher occurrence of the
exposure of interest, and the outcome would suggest the
presence of a causal effect of the exposure. MR has been
widely introduced in the medical literature and has iden-
tified an important causal linkage between complex ex-
posures and outcomes [12].

In this study, we performed a summary-level MR
analysis to demonstrate the causal effects of AF on brain
volume phenotypes. We also performed an MR analysis to
investigate the causal pathway between AF, stroke, and
brain white or gray matter volumes. We hypothesized that
AF would decrease a certain type of brain volume that
would be potentially mediated by ischemic stroke.

Methods

Study setting

The study was a summary-level MR analysis that mainly
consisted of two parts (Fig. 1). The causal estimates for
the effect of AF, genetically predicted by single-
nucleotide polymorphisms (SNPs) reported in a previous
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genome-wide association study (GWAS), on white or
gray matter volume, measured in the independent UK
Biobank data, were initially tested by two-sample MR.
Next, additional GWAS results for ischemic stroke
phenotype were utilized, and the causal effects of AF
on ischemic stroke awere investigated. Finally, to de-
termine whether the effects of AF on brain volume
are mediated by ischemic stroke, multivariable MR
analysis adjusted for the genetic effects of ischemic
stroke was performed.

Genetic instrument for AF

Data from a previous GWAS meta-analysis for AF were
used for this study [13, 14]. Unlike from our previous
study also investigating the causal estimates from AF
[12, 15], as the outcome data solely consisted of the UK
Biobank cohort, we intentionally used the previous
GWAS meta-analysis, which did not include the UK Bio-
bank data, to maintain the two-sample design [13]. Two-
sample MR has strength in a conservative sense over an
MR analysis with overlapping samples, as the potential
bias from weak instruments is toward false-negative re-
sults; thus, a positive finding from two-sample MR can
be more robust evidence for the presence of causality
[16]. In addition, considering the outcome sample size,
applying a MR design including sample overlap was con-
sidered to cause substantial bias towards confounding ef-
fects [17] and a bias by pleiotropic effect was suspected
when we used the most recent GWAS meta-analysis
data as the genetic instruments for AF (Additional File
1: Supplemental Methods and Additional File 1: Supple-
mental Table 1).

As the outcome summary statistics for brain volume
were limited to those with white British ancestry, we
downloaded the summary statistics for AF in individuals
of European ancestry, including 15,993 AF cases and
113,719 controls. Within the European ancestry-specific
analysis, 20 SNPs in different genetic loci were reported
to have a genome-wide significant (P < 5x10°®) associ-
ation with the AF trait (Additional File 1: Supplemental
Table 2). To ensure the independence of the instru-
ments, we disregarded rs10800507 and rs35176054 as
having weaker associations with AF but being in a link-
age disequilibrium state with other variants, leaving 18
independent SNPs (within a 1 Mb window, r* < 0.001).
As strand alignment is uncertain for palindromic SNPs,
we additionally disregarded 2 palindromic SNPs
(rs2921421 and rs651386) in the main genetic instru-
ments for AF. We also performed a sensitivity analysis
preserving the two palindromic SNPs or disregarding
only rs651386, which had intermediate allele frequency,
as the genetic instruments for AF. We inspected the
orientation of the genetic effects and secured that the
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direction was from exposure towards outcome variable
by using Steiger filtering [18].

MR assumptions

MR analysis requires three key assumptions to be
attained by the genetic instrument to demonstrate causal
effects [11]. First, the relevance assumption is that the
genetic instrument should be strongly associated with
the exposure of interest. A previous GWAS meta-
analysis already provided SNPs with strong association
strength with AF. We additionally tested the association
strength in the UK Biobank data in 337,138 unrelated
individuals of white British ancestry who passed the
sample quality control filter by calculating the explained
variance for AF by polygenic score analysis [12]. The AF
data were collected from the hospital admission records
or main causes of death, identified by an International
Classification of Diseases (ICD)-10 diagnostic code of
148 or ICD-9 diagnostic code of 4273 [12]. The ex-
plained variance for AF by polygenic score derived by
the instrumented SNPs was calculated by McFadden’s
pseudo-R square method. The F statistic, which should
be over 10 to avoid weak instrument bias [19], was cal-
culated to confirm the attainment of the relevance as-
sumption, by the below equation: [(n-k-1)/(K)]*[R*/(1-
R%)], where n represents sample size, k represents num-
ber of instruments, and R* represents explained variance
of the exposure phenotype [19]. Furthermore, we add-
itionally validated whether the genetically predicted AF
by the current instruments relevantly predicts kidney
function impairment as the positive control outcome.
The CKDGen GWAS meta-analysis for chronic kidney
disease traits (41,395 cases and 439,303 controls, URL:
https://ckdgen.imbi.uni-freiburg.de/) was assessed as the
outcome data by the summary-level MR method de-
scribed below [20, 21]. Chronic kidney disease was re-
ported to be causally affected by AF in our previous MR
analysis including two independent cohorts but with dif-
ferent genetic instruments for AF [12, 21].

Second, the independence assumption is that the gen-
etic instrument should not be associated with con-
founders. To attain this assumption, we investigated
whether a SNP had a strong (P < 1x107) association
with hypertension, obesity, diabetes mellitus, dyslipid-
emia, and thyroid disorder in the abovementioned
337,138 white British UK Biobank participants by per-
forming a GWAS adjusted for age, sex, agexsex, age’,
and the first 10 principal components (Additional File 1:
Supplemental Table 2). Furthermore, in summary-level
MR, we tested the presence of directional pleiotropy by
identifying MR-Egger intercepts [22]. In addition, we
performed multiple pleiotropy-robust MR sensitivity
analysis to derive the causal estimates with relaxation of
the assumption [23].


https://ckdgen.imbi.uni-freiburg.de/
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Third, the exclusion restriction assumption is that the
causal effect of interest should be through the studied
exposure. Although a formal test for this assumption is
not yet possible, the utilized median-based method can
relax this assumption for up to 50% of the instrumented
weights, providing sensitivity analysis for the attainment
of this assumption [24].

Outcome data for brain volume traits

A recent GWAS for brain imaging traits in the UK Bio-
bank was performed for 33,224 white British ancestry in-
dividuals aged 40 to 69 years [25]. The summary
statistics for white and gray matter volumes were down-
loaded and used as the outcome data (URL: https://
open.win.ox.ac.uk/ukbiobank/bigd0/) [26]. The study
identified that brain imaging phenotypes are mostly gen-
etically trackable and reported functionally relevant gen-
etic information associated with brain structures. The
brain volume was measured by magnetic resonance im-
aging, and the study provided summary statistics for
quantile-normalized brain volume phenotypes and for
the phenotypes adjusted for head size. Among the brain
volume phenotypes measured, we aimed to assess the
causal estimates toward composite brain gray or white
matter volume, which has been repetitively investigated
in previous observational studies [6, 7]. As total gray or
white matter volume would generally reflect the sum of
variance, this approach would secure the statistical
power of an MR analysis, which is particularly important
in two-sample MR, which may be biased toward false-
negative findings.

Summary-level MR analysis methods

The main MR method was the multiplicative random-
effect inverse variance—weighted method, which allows
balanced pleiotropy [27].

As unbalanced pleiotropic effects may still bias the
causal estimates by the inverse variance—weighted
method, additional pleiotropy-robust MR sensitivity ana-
lyses are commonly performed [16, 23]. First, MR-Egger
regression with bootstrapped standard error was per-
formed with the test for the presence of directional plei-
otropy or MR-Egger intercept [22]. The method has
strength in that the presence of a directional pleiotropic
effect can be statistically tested and that pleiotropy-
robust causal estimates can be yielded. However, MR-
Egger regression has weak statistical power, particularly
when the number of instrumented SNPs is low, and can
still be biased when the untestable Instrument Strength
Independent of Direct Effect assumption is violated by a
group of variants acting through the same pleiotropic
pathway [28]. Thus, additional sensitivity analysis by the
median-based method is recommended; thus, we per-
formed the weighted median method, which allows up
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to 50% invalid instrumented weights [24]. Next, the MR
pleiotropy residual sum and outlier test, which detects
and corrects the effects of outliers, was performed when
the test for global heterogeneity was significant [29]. We
also performed MR-robust adjusted profile score, which
provides robust causal estimates by modeling the pleio-
tropic effects, assuming the effects are normally distrib-
uted [30]. The summary-level MR analysis was
performed by the TwoSampleMR package in R (version
4.0.2, the R foundation) [31].

As we tested two outcome phenotypes, gray and white
matter volumes, a two-sided P value < 0.05/2 by the in-
verse variance—weighted method indicated significance
in the main causality analysis for the causal estimates of
AF on brain matter volume phenotypes. As other sensi-
tivity analyses were performed to support the main re-
sults, we used the conventional significance threshold (P
< 0.05) to characterize a sensitivity analysis result as sup-
portive of the main result. However, as MR-Egger re-
gression has weak statistical power, the causal estimates
by the MR-Egger method were interpreted by general ef-
fect sizes and whether a significant directional pleio-
tropic effect was identified by the MR-Egger intercept P
value [23, 32].

Post hoc power calculation for MR analysis was per-
formed by an online tool (URL: https://sb452.shinyapps.
io/power/), followed the method suggested by S. Burgess
(URL: http://mendelianrandomization.com/) [33, 34].
We calculated beta”2*2*MAF*(1-MAF), where MAF in-
dicates minor allele frequency, of each instrumented
SNP and summed the values for the coefficient neces-
sary for the power calculator. As information for preva-
lence ratio was unavailable, although beta should be
scaled to a prevalence increase of a unit of an exposure,
we used the odds ratios as the proximate of the preva-
lence ratio considering that the case proportion was not
high (12.6%) in the GWAS meta-analysis data which was
used to generate genetic instruments. The point causal
estimate towards normalized brain gray or white matter
volume by the inverse variance—weighted method was
used as the effect size of the causal effect.

Analysis with ischemic stroke as a mediator

Multivariable MR analysis with direct adjustment for the
effects of other phenotypes of the utilized genetic instru-
ment has been used to investigate whether the identified
total effect in univariable MR is mediated by a potential
phenotype [35-37]. Considering that AF is well known
to be associated with ischemic stroke, we performed
additional mediation analysis including the data from a
GWAS meta-analysis (34,217 ischemic stroke cases
406,111 controls) from individuals of European ancestry
by the MEGASTROKE consortium (URL: https://www.
megastroke.org/) [38, 39].
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To establish the causal pathways, we first tested the
causal estimates of AF on ischemic stroke by the
aforementioned summary-level MR methods. Finally,
we calculated the direct effect of AF, predicted by the
main instruments including 16 SNPs, on brain volume
phenotypes by multivariable MR adjusted for the gen-
etic effects of ischemic stroke (Additional File 1: Sup-
plemental Table 2). Indirect effects were not
calculated because linear relation between the tested
variables, which is required to calculate indirect ef-
fects, was not secured as binary exposure was being
tested [40]. The multivariable analysis was performed
by inverse-variance-weighted method and MR-Egger
regression, using the MVMR and MendelianRandomi-
zation package in R [41, 42]. Again, the Bonferroni-
corrected significance level (P < 0.05/2) was used to
indicate significant findings in the main causal esti-
mates, and the conventional threshold (P < 0.05) was
used in other sensitivity analyses.

The causal estimates from ischemic stroke on brain
volume phenotypes were not calculated because the
available genome-wide significant 32 SNPs identified by
the MEGASTROKE study explained limited variance of
ischemic stroke phenotype, leading to a F statistic of 9.4
indicating that a valid two-sample MR with sufficient
power was impossible with the available data.
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Results

Genetic instrument for AF

None of the lead SNPs associated with AF with genome-
wide significance showed a strong association with a po-
tential confounder in the UK Biobank data (Additional
File 1: Supplemental Table 2). Among the 337138 indi-
viduals of white British ancestry of the UK Biobank, the
median age was 58 years old, and 46.3% were males.
From this group, we identified 15,446 (4.6%) AF cases.
The polygenic score calculated by the genetic instrument
was strongly associated (P < 2x107™°), with phenotypical
AF explaining 1.6% of the variance; thus, the F statistic
of the 16 SNPs in the outcome data of 33,224 individuals
was 33.7. When we applied genetic instruments to the
positive control outcome, kidney function impairment,
genetically predicted AF was relevantly associated with a
higher risk of chronic kidney disease (Additional File 1:
Supplemental Table 3).

Causal estimates of AF on brain volume

The summary-level MR results indicated that genetic
predisposition for AF was significantly associated with
lower gray matter volume, both normalized and unnor-
malized (Figs. 2 and 3 and Table 1). The causal estimates
were also significant by all performed MR sensitivity
analysis methods, except for the MR-Egger regression

Total effect
IVW B -0.040 se 0.017
P=0.017

7\

P IVW B8 0.188 se 0.026
Atrial fibrillation P=1.03E-12

Ischemic stroke

Grey matter volume

Direct effect
adjusted for ischemic stroke
IVW  -0.022 se 0.033
P=0.528

Total effect
IVW B -0.016 se 0.022
P =0.465

i
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Direct effect
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Fig. 2 Schematic drawing for the mediation analysis. The causal estimates determined by the inverse variance-weighted (IVW) method are
presented. The causal estimates toward brain volume phenotypes are from the analysis assessing head-size-normalized outcomes. The total
effects were the causal estimates from two-sample MR with genetically predicted atrial fibrillation as exposure and brain volume phenotypes as
outcomes. The direct effects were the causal estimates from the two-sample MR, which were adjusted for the genetic effects from ischemic
stroke by multivariable MR analysis. MR Mendelian randomization
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analysis. However, the MR-Egger intercept P value indi-
cated the absence of a directional pleiotropic effect, and
the effect size of the causal estimates by MR-Egger re-
gression was generally similar to the other methods. On
the other hand, the causal estimates for white matter
volume did not show a significant association between
genetic predisposition for AF and normalized or unnor-
malized white matter volume by MR analysis.

When we additionally included 2 palindromic SNPs or
inferred strand information to genetically predict AF,
similar findings were replicated, as genetically predicted
AF was significantly associated with lower brain gray
matter volume (Additional File 1: Supplemental Table 4
and Additional File 1: Supplemental Table 5). The MR-
Egger regression again yielded marginal findings with
generally comparable effect sizes. Otherwise, the causal
estimates toward brain white matter volume remained
nonsignificant.

The power towards brain gray matter volume of the
summary-level MR analysis was 79.1% when the 16
SNPs and was 87.3% when 18 SNPs, including palin-
dromic ones, were used to genetically predict AF.

However, the power was weak towards brain white mat-
ter volume, as it was 23.6% by 18 SNPs and 19.7% by 16
SNPs, respectively.

AF, ischemic stroke, and brain volume

The causal estimates of AF on ischemic stroke indicated a
significant causal effect, and the causal estimates were sig-
nificant by all performed MR analysis methods (Table 2
and Fig. 2). Although a directional pleiotropic effect was
suspected by the MR-Egger intercept P value (directional
pleiotropy P = 0.028), MR-Egger regression correcting the
potential pleiotropic effect still provided significant causal
estimates.

Finally, when the abovementioned total effects from
AF on brain volume phenotypes were adjusted for the
genetic effects of ischemic stroke by multivariable MR,
the causal estimates on brain gray matter volume were
attenuated to the point of nonsignificance (Table 3 and
Fig. 2). Namely, the direct effects of AF on brain gray
matter volume were nonsignificant independent of the
effects of ischemic stroke. The causal estimates by the
multivariable MR analysis for white matter volume
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Table 1 Causal estimates of atrial fibrillation on brain gray or white matter volume in the UK Biobank participants by summary-level

Mendelian randomization

Genetically predicted Outcome phenotype MR-Egger Cochran’s Q statistic MR method Beta Standard P
exposure intercept P value P value for heterogeneity error value
Atrial fibrillation (16 Gray matter volume 0.984 0.547 VW -0.040 0.017 0.017
oNPs) (normalizec) MREgger 0044 0040 0147
(bootstrap)
Weighted —0.047 0.023 0.044
median
MR-RAPS -0.043 0017 0014
MR-PRESSO NA NA NA
Gray matter volume 0.817 0499 VW -0.041 0017 0.015
(unnormalized) MREgger 0052 0040 0.089
(bootstrap)
Weighted -0.050 0.023 0.033
median
MR-RAPS -0.044 0017 0.013
MR-PRESSO NA NA NA
White matter volume 0.549 0.041 VW -0016 0.022 0465
(normalized) MR-Egger ~0038 0042 0.186
(bootstrap)
Weighted -0.027 0.023 0.242
median
MR-RAPS -0.015 0022 0483
MR-PRESSO NA NA NA
White matter volume 0.553 0.053 VW -0.016 0.022 0464
(unnormalized) MR-Egger ~0038 0041 0181
(bootstrap)
Weighted —0.028 0.024 0.241
median
MR-RAPS -0.016 0.022 0470
MR-PRESSO NA NA NA

MR Mendelian randomization, VW inverse variance-weighted, RAPS robust adjusted profile score, PRESSO pleiotropy residual sum and outlier, SNP

single-nucleotide polymorphism

MR-PRESSO analysis was performed, but the MR-PRESSO global test for heterogeneity did not identify correctable effects of outliers
The units of the causal estimates were log odds ratio for the cause (atrial fibrillation) and standard deviation for the effect (brain volume)

Table 2 Causal estimates of atrial fibrillation on ischemic stroke

Genetically predicted Outcome MR-Egger intercept Cochran’s Q statistic MR method Beta Standard P
exposure phenotype P value P value for heterogeneity error value
Atrial fibrillation (16 SNPs)  Ischemic stroke 0.028 0.068 VW 0.188 0.026 1.03E
-12
MR-Egger 0.251 0.047 <
(bootstrap) 0.001
Weighted 0.240 0.030 483E
median -16
MR-RAPS 0201 0.025 557E
-16
MR-PRESSO NA  NA NA

MR Mendelian randomization, VW inverse variance-weighted, RAPS robust adjusted profile score, PRESSO pleiotropy residual sum and outlier, SNP

single-nucleotide polymorphism

MR-PRESSO analysis was performed, but as the MR-PRESSO global test for heterogeneity did not identify correctable effects of outliers, the causal estimates were

the same as those of the inverse variance-weighted method

The units of the causal estimates were log odds ratio for the cause (atrial fibrillation) and log odds ratio for the effect (stroke)
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Table 3 Direct effects of atrial fibrillation on brain volume phenotypes adjusted for genetic effects of ischemic stroke by

multivariable MR analysis.

Genetically predicted exposure Conditional Conditional Outcome Heterogeneity Method Beta Standard P
F statistics F statistics phenotype Q statistics error value
(atrial fibrillation) (stroke) P value
Atrial fibrillation, adjusted for genetic  1.734 1.406 Gray matter 0443 VW —-0.022 0033 0.528
effects of ischemic stroke (16 SNPs) volume
(normalized) MR- -0.001 0.065 0.992
Egger
Gray matter 0.397 VW -0.022 0.034 0.533
volume
(unnormalized) MR- -0.015 0.066 0.823
Egger
White matter 0.035 VW 0.014  0.045 0.758
volume
(normalized) MR- —0.003 0.088 0971
Egger
White matter 0.043 VW 0013 0045 0.777
volume
(unnormalized) MR- —0.005 0.087 0.958
Egger

MR Mendelian randomization, VW inverse variance-weighted, SNP single-nucleotide polymorphism
Multivariable inverse variance-weighted method and MR-Egger regression was performed to yield the causal estimates

remained nonsignificant as the total effects. However,
the overall conditioned F statistics indicated the possibil-
ity of weak instruments in the multivariable MR anlaysis,
suggesting that it was difficult to independently predict
the atrial fibrillation and ischemic stroke phenotypes.

Discussion

This study identified that genetic predisposition for AF is
significantly associated with lower gray matter volume but
not white matter volume. With our efforts to attain the
MR assumptions, our study supports that AF is a causative
factor for lower gray matter volume. The results further
suggest causal pathways from AF to low gray matter vol-
ume may be mediated by ischemic stroke.

An observational association between AF and func-
tional brain disorders, representatively dementia, has
been reported [5, 9]. Historically, loss in brain gray mat-
ter volume and increase in abnormal white matter vol-
ume were considered to be associated with dementia
severity [43]. As AF was associated with lower gray mat-
ter volume by observational findings [6, 7], structural
brain atrophy caused by AF was suspected to be one of
the mechanisms of cognitive impairment in AF patients.
In addition, as AF is a widely recognized risk factor for
ischemic stroke, either by cardioembolism or not [44],
and ischemic stroke has been reported to be associated
with accelerated brain atrophy [45], conceptional linkage
between AF, ischemic stroke, and brain volume loss has
been suggested. On the other hand, there have been de-
bates regarding whether AF may be associated with
brain volume loss or the risk of dementia independent
of stroke-related mechanisms [7, 9]. However, confirm-
ing the causal linkage between AF, ischemic stroke, and
brain volume loss was difficult by traditional study

designs, as observational findings are prone to residual
confounding effects or reverse causation [11]. Moreover,
as brain volume is a relatively unique phenotype available
in a large number of individuals and rarely sequentially
measured, an observational study investigating the causal
effect of AF on brain volume is difficult to perform. In this
study, we implemented MR analysis to test causal esti-
mates from exposure and predicted complex outcomes
using the genetic instrument. Finally, we identified that
AF may be causally linked to a lower gray matter volume.
The identified causal estimates were dependent on the ef-
fect of ischemic stroke; thus, the study suggests causal
pathways linking AF, ischemic stroke, and lower brain
gray matter volume.

Based on the study results, as AF is a causative fac-
tor for lower brain gray matter volume, appropriate
AF management might delay dementia-related brain
atrophy. Considering that the identified causal path-
way may be mediated by ischemic stroke, conven-
tional clinical interventions lowering the risk of
ischemic stroke in AF patients may be beneficial for
preventing accelerated loss of gray matter volume. Re-
cent studies reported that AF patients who received a
rhythm-control strategy exhibited a lower risk of cog-
nitive function impairment, supporting that the iden-
tified causal pathway may be extended toward
cognitive function outcome [46, 47]. A future study
would be needed to test our hypothesis that appropri-
ate anticoagulative therapy or rhythm-control inter-
vention in patients with AF would decrease the risk
of brain volume loss in patients with AF. In addition,
considering that subclinical AF and early brain disor-
ders are often underdiagnosed, AF screening in the
high-risk elderly population with brain atrophy or
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cognitive dysfunction would be considered to facilitate
early diagnosis of the suggested causal factor.

In this study, the multivariable MR analysis indicated
that it was difficult to independently predict the two
closely tight phenotypes, AF and ischemic stroke, by
genetic information considering the low conditioned F
statistics. However, if we allow the interpretation for the
results considering the effects from AF on brain volume
is hardly explained apart from the close bound between
AF and ischemic stroke, suggests that the stroke-
mediated pathway would be the prioritized biological
linkage rather than a stroke-independent effect of AF on
low brain gray matter volume. Previous observational
findings suggest that AF was associated with dementia
or brain volume independent of stroke might have been
potentially affected by confounding effects, as AF com-
monly occurs in individuals with multiple underlying
diseases [8, 9]. However, caution is necessary for such
interpretation, as the modest degree of direct effect of
AF on brain volume phenotypes, not mediated by ische-
mic stroke, could have been unrevealed because of the
potential false-negative bias in two-sample MR [16], par-
ticularly considering the low conditioned F statistics of
AF phenotype when adjusted for the genetic effects to-
wards ischemic stroke trait. As AF is linked to diverse
biological consequences, including subclinical brain
hemodynamic compromises or neurohormonal re-
sponses [8, 48, 49], a future study is still necessary to in-
vestigate whether ischemic stroke—independent effects
of AF on brain volume or cognitive function are present.

There are several limitations to this study. First, the
study assumes that the brain volumes of middle to eld-
erly UK Biobank participants were determined by degen-
erative processes later in life. Although this assumption
may be attained because brain volume changes are
largely affected by risk factors for degenerative diseases
[50], it is still possible that developmental, rather than
degenerative, determinants might have affected the brain
volume phenotypes. To overcome this issue, we also in-
vestigated the brain volume phenotypes adjusted for
head size, which may partially reflect some developmen-
tal differences. However, it should be noted that attain-
ment of the exclusion-restriction assumption, which is
untestable, is required to consider our MR analysis re-
sults valid. Second, we assessed binary AF exposure in
this MR analysis; however, AF has diverse severity and
status. Thus, whether the effects of AF are different ac-
cording to the subtypes (e.g., paroxysmal or persistent)
could not be studied herein. Third, the study is mainly
based on data from individuals of European ancestry;
thus, generalizability to other ethnic populations is not
guaranteed. MR results can also be affected by selection
bias; thus, future replication studies may be necessary to
confirm that the findings could be applied to the general
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population. Fourth, as the effect size of the causal esti-
mates from AF towards brain white matter volume was
modest than that towards brain gray matter volume,
statistical power was weak for the phenotype. As two-
sample MR can be biased towards false-negative finding,
a modest degree of causal effect from AF towards brain
white matter volume cannot be disregarded from this
study. Lastly, the multivariable MR analysis used instru-
ments with low conditioned F statistics. Also, the causal
estimates from stroke phenotypes on brain volume were
not calculated because of the limited availability of in-
struments. This limitation of the available dataset should
be overcome in future studies to clearly dissect the link-
age between AF, ischemic stroke, and brain volumes.

Conclusions

In conclusion, our MR results suggested that AF was
causally linked to a lower brain gray matter volume, pos-
sibly mediated by the effects of ischemic stroke. A future
study is warranted to investigate whether appropriate AF
management may result in delayed progression of gray
matter volume loss in AF patients.
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