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ABSTRACT 

 

A novel methodology  

for estimating methane emission from waste landfills  

using unmanned aerial vehicle 

 

Yeong Min Kim 

Department of Civil and Environmental Engineering 

The Graduate School 

Seoul National University 

 

Many methods have been applied to monitor fugitive methane gas from landfills. 

Recently, there have been suggestions to use a framework utilizing an unmanned 

aerial vehicle (UAV) for landfill gas monitoring, and several field campaigns have 

proved that a rotary UAV-based measurement has advantages of ease of control and 

high-resolution concentration mapping on the target planes. Research on the 

application of rotary UAVs for quantifying the whole-site methane emissions from 

waste landfills is limited so far. This study aimed to establish the methodology as an 

efficient and reliable method by developing field measurements and data processing 

procedure, evaluating errors by potential factors, and field applications.  

A measurement system composed of a lightweight methane detector and a 

rotary UAV, and a procedure from field measurements to data processing were 
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prepared. Potential error-inducing factors associated with the measurement system 

and the procedure were experimentally or theoretically assessed. In the detector 

reliability test, the methane detector had sufficient resolution for field application, 

and the critical UAV velocity required was obtained to ensure the credibility of the 

proposed measurement system. When spatial interpolators were applied to field data 

from the measurement system, the empirical Bayesian kriging demonstrated the best 

prediction of methane concentrations at unmeasured points. A wind estimation 

method using GPS/IMU data of UAV was also evaluated. Near-field experiments 

showed that the method produced wind vector estimates comparable to the wind 

parameters measured by a mechanical anemometer.  

Field campaigns and following analysis demonstrated that it was able to 

successfully estimate wind vectors at multiple heights in contrast to a fixed 

anemometer. Estimated parameters in reasonable ranges, and explicable correlations 

between parameters also supported the validity of the wind estimator. Some of the 

evaluation results provided representative errors that were used in the comprehensive 

uncertainty analysis, as well as the validation of components. Multiple field 

campaigns were conducted at the Dangjin-si Resource Circulation Center, Dangjin, 

Korea. The estimated methane emission rates from seven campaigns ranged from 

406.4 to 3,640 kg/ha/day, which was comparable to the emission rates modeled based 

on the IPCC guidelines. The total uncertainties combining effects of detection errors, 

interpolation errors, and wind variations were below 6 % for five cases, and below 

23 % for three cases. Although the largest contributor turned out to be interpolation 

errors in most cases, it would be detection errors to lead to a significant reduction in 

the uncertainties of this methodology in the near future. There were failures in field 
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campaigns due to misplacement of measurement planes or weak wind, which 

presented practical problems in the actual applications.  

This work contains a complete description of the methodology, its evaluation, 

and its showcases both of success and failure. Complementation by near-field, denser 

measurements allowed to utilize the gas analyzer of compromised performance 

without a great aggravation of uncertainties. We sought the improvement to the 

emission estimation accuracy by introducing UAV-based wind estimation method. 

Messages for the practical applications of the methodology could be drawn from 

multiple field campaigns. This study could be also useful for other UAV-based 

studies in the near future, especially in the current situation where UAVs are widely 

employed for airborne measurement or remote sensing regardless of field. 

 

Keywords : Greenhouse gas emission; Fugitive methane emission; Unmanned aerial 

vehicle; Wind estimation; Uncertainty analysis  

Student number : 2018-30709 
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Chapter 1. Introduction 

 

1.1 Background 

As it is now told 95 % certain that humans are the major contributor to the climate 

change (IPCC, 2014), the emission and accumulation of greenhouse gases (GHGs) 

in the atmosphere is of great concern, and there is increasing needs for monitoring 

GHG emissions created by a variety of human activities. As an international effort, 

many countries have been monitoring their GHG emissions and reporting the annual 

emissions, which was established by the Kyoto Protocol. In 2020, more than 40 

countries reported their national GHG inventories to the United Nations Framework 

Convention on Climate Change (UNFCCC). As a non-Annex Ⅰ country, Korea has 

been submitting the national communication and biennial update report to UNFCCC, 

and also publishing the national inventory every year for domestic report (GIR, 

2020). Monitoring emissions also helps improve existing emission estimating 

models, and encourage mitigation efforts. Current estimation methodologies often 

do not reflect results from mitigation strategies so that the mitigation efforts cannot 

get rewards for them.  

Methane is a critical GHG that accounts for 16 % of global warming effect 

(Myhre et al., 2014). Its high global warming potential (28 and 34 without and with 

including the climate-carbon feedback, respectively) and it short lifetime (12.4 yrs) 

(Myhre et al., 2014) give methane the priority to be thoroughly managed. As it is a 

short-lived GHG, it is anticipated that its reduction in emissions will decrease its 

concentrations in the atmosphere sooner.  
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An important source of anthropogenic methane is waste landfills. Landfills are 

the second largest (20%) source in Europe, and the third (20%) in the United States 

(EEA, 2016; EPA, 2016). GIR (2020) reported that waste landfilling was the largest 

contributor with 28 % contribution (7.8 million ton-CO2eq.) to the national emission 

of anthropogenic methane of Korea in 2018. In landfills, the decomposable organic 

fraction of disposed waste experience biochemical decomposition for years to 

centuries, resulting in the generation of methane and carbon dioxide. While gas 

recovery systems and methane-oxidizing cover materials are applied to prevent the 

gas release to the atmosphere at some landfill sites, there are still fugitive methane 

through the surface, wells, vents, cracks, and leaks, which has to be accurately 

quantified. Whereas methane generation in modern landfills receiving low-organic 

waste used to be believed negligible, recent studies have reported results that support 

the probability of significant methane production from low-organic waste disposed 

at landfills (Duan et al., 2021; Mou et al., 2015). 

The main obstacles that challenge the quantification of methane emissions have 

something to do with the scale and complexity of landfills. Waste landfills are 

inhomogeneous both spatially and temporally in terms of waste composition, 

operation, geotechnical properties, etc. Simulation models cannot fully reflect such 

variability using a finite number of model parameters, and it has been often told that 

they tend to overestimate emissions (Lee et al., 2020; Raco et al., 2010). From that 

reason, direct surface measurements like flux chamber can be employed to know 

more exact emissions. Then, there would be a high possibility of obtaining biased 

estimation of emissions with a limited number of sample survey (Jeong et al., 2019; 

Mønster et al., 2019). It is impractical to conduct complete survey because emissions 
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occur throughout the large area of a whole landfill site. Furthermore, flux chamber 

is capable of measurements only at flat areas, but not around ditch, uncovered area, 

and vent, and it is a disturbing method in that coverage by a chamber alters surface 

conditions that govern gas transport (Oonk, 2010). 

A promising alternative for emission quantifications is measuring plumes at 

downwind of the landfill assisted by mobile platforms, which is a direct 

measurement method, and quick whole-site survey in contrast to the aforementioned 

methods. Among mobile platforms, rotary wing unmanned aerial vehicles (UAVs) 

are an appropriate option for the application for landfills considering the emitter 

height and the scale of target area. However, trials of methane emission measurement 

in landfills employing rotary wing UAVs have been scarce. Shah et al. (2019) 

showed the applicability of rotary UAV-based platform conveying air samples to a 

gas analyzer on the ground through a long tubing. In spite of the restriction in spatial 

coverage, this method was adopted because the gas analyzer with satisfying 

performance was too heavy for rotary UAVs. Very recently, Shah et al. (2020) could 

assess a lightweight prototype analyzer carried by a rotary UAV in exterior 

experiments with controlled methane emissions. 

In this work, a UAV-based procedure combining plume measurement and mass 

balance was proposed for quantifying fugitive methane from landfills. The procedure 

to propose in this study employed following options: (1) Mass balance approach is 

an option of plume measurement methods, which can take full advantages of aerial 

measurements, and still needs research and field trials for the establishment. (2) A 

rotary UAV is a type of UAV appropriate for landfill applications in that it is capable 

of planned flights and dense sampling. Variables to collect at site in this procedure 
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include methane concentrations and wind data. (3) An onboard methane sensor 

allows of collecting methane concentrations at a number of points without adding 

restrictions to flight. (4) As another input variable for the emission calculation, the 

average wind direction and vertical wind speed gradient are estimated using the GPS 

and IMU data of UAV flight logs, so that the accuracy in wind data can increase 

without additional instrument.  

To promote this relatively new method, there is a need for in-depth research 

addressing all potential error-inducing factors. The proposed procedure can be 

delved into by dividing into four elements: methane profile acquisition, wind 

estimation, measurement practice, and emission calculation. First, it is imperative to 

tackle questions involved in methane profile acquisition. For instance, the reluctance 

to adopt gas sensors onboard rotary UAVs are attributed to artefacts that may result 

from propeller downwash, but related research is limited to aerodynamics around the 

hovering fuselage (Guo et al., 2020). A new option for meteorological data needs to 

be introduced and tested in the setup around landfills. Although it was pointed out 

by several research teams that the accuracy of meteorological observation is a critical 

contributor to uncertainties of plume measurements (Mønster et al., 2019; Nathan et 

al., 2015), there have been scarce efforts to increase the accuracy of meteorological 

data. Last but not least, field applications would enable to evaluate the competence 

of the entire procedure, taking into account the actual practices and the uncertainty 

propagation in the emission calculation process, as well as delivering successful 

showcases. 
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1.2 Objectives 

This study aimed to establish a rotary UAV-assisted procedure as an efficient and 

reliable method for quantifying methane emission from waste landfills. The specific 

objectives to achieve the goal were as follows: 

1) To evaluate the reliability of rotary UAV-based measurement system in 

obtaining airborne methane profile; 

2) To examine the performance of rotary UAV-based wind estimator to measure 

wind changes with time and height; 

3) To assess the entire method for quantifying methane emission in terms of 

practicality and uncertainty. 
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1.3 Dissertation structure 

This dissertation consists of six chapters (Fig. 1.1). Chapter 1 describes the 

background and the outline of the proposed methodology. Chapter 2 reviews the 

previous studies related to this work. Chapters 3 and 4 present and evaluate methods 

for methane profile acquisition and wind vector estimation, respectively. Chapter 5 

reports methane emissions and uncertainties derived from multiple field applications. 

Chapter 7 provides the summary and conclusions of the entire study. 

 

 

Fig. 1.1. Dissertation structure. 
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Chapter 2. Literature review 

 

2.1 Gas transport model 

2.1.1 Gaussian dispersion model 

Gaussian dispersion model simulates three-dimensional gas concentrations under 

conditions of continuous emission and steady state. The key assumptions are the 

mass conservation and gaussian distributions of concentration in every direction. 

None of the material is removed or lost through reaction, gravitational settling or 

turbulent impaction. The pollutant dispersed close to the ground surface is again 

dispersed away, which is called eddy reflection (Turner, 1994). The plume appears 

as if it originated at an equivalent stack height due to the buoyancy of the hot gases 

and the vertical momentum of the gases (Wark and Warner, 1981) 

The concentration equation for an elevated source with reflection is as follows: 
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where C: volume concentration [-] or mass-volume concentration [ML-3], x: 

downwind distance from the source [L], y: distance from the plume centerline [L], z: 

height above ground level [L], Q: source emission rate [L3T-1 or MT-1], u: wind 

velocity [LT-1], σy: vertical standard deviation of the emission distribution [L], σz: 

horizontal standard deviation of the emission distribution [L], H: effective source 

height above ground level [L]. 
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Dispersion parameters (σy and σz) that appear in Eq. (2.1) are determined as 

functions of downwind distance and Pasquill stability class (Table 2.1). There are 

more than a few different methods suggested by researchers so far, one of which is 

provided in Table 2.2. 

 

Fig. 2.1. Schematic diagram illustrating the concept of Gaussian plume model 

(Turner, 1994). 
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Table 2.1. Pasquill stability categories (Pasquill, 1961). 

Surface 

wind speed 

at 10 m, m/s 

Insolation  Night 

Strong Moderate Slight  Thinly overcast or 

>4/8 low cloud 

<3/8 cloud 

< 2 A A – B B  - - 

2 – 3 A – B B C  E F 

3 – 5 B B – C D  D E 

5 – 6 C C – D D  D D 

> 6 C D D  D D 

Stability classes: strongly unstable, A; moderately unstable, B; slightly unstable, C; neutral, 

D; slightly stable, E; and moderately stable, F.  

 

Table 2.2. Coefficients for use in calculation of dispersion parameters. Equations for 

σy and σz are as follows: σy = exp[Iy + Jy ln x + Ky (ln x)2]; and σz = exp[Iz + Jz ln x + 

Kz (ln x)2] where σy, σz, and x in m (Seinfeld and Pandis, 2016). 

 A B C D E F 

Iy -1.1040 -1.6340 -2.0540 -2.5550 -2.7540 -3.1430 

Jy 0.9878 1.0350 1.0231 1.0423 1.0106 1.0148 

Ky -0.0076 -0.0096 -0.0076 -0.0087 -0.0064 -0.0070 

Iz 4.6790 -1.9990 -2.3410 -3.1860 -3.7830 -4.4900 

Jz -1.7172 0.8752 0.9477 1.1737 1.3010 1.4024 

Kz 0.2770 0.0136 -0.0020 -0.0316 -0.0450 -0.0540 

 

Plume rise occurs due to the momentum and the buoyancy. Among them, the 

effects of buoyant release are more likely to produce a greater effect, especially if 
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the exit temperature is about 10 to 15 degrees (K or C) higher than the air temperature 

(Turner, 1994). The effective height of the plume, H (m) is calculated by adding the 

physical height of the source, hs (m) and the plume rise, Δh (m) determined below 

(Briggs, 1984; Turner, 1994). 

Fb = g v d 2ΔT /(4Ts )           (2.2) 

Buoyant rise: 

Δh = 21.425 Fb 3/4/u  (Fb < 55)          (2.3) 

Δh = 38.71 Fb 3/5/u   (Fb > 55)          (2.4) 

Momentum rise: 

Δh = 3 d v/u            (2.5) 

where Fb: buoyancy flux (m4/s3), g: acceleration of gravity (9.8 m/s2), v: gas exit 

velocity (m/s), d: source diameter (m), ΔT: difference between gas temperature and 

air temperature (K), Ts: gas temperature (K), u: wind velocity (m/s). 

2.1.2 Advection-dispersion model 

2.1.2.1 Steady state with negligible longitudinal dispersion 

Supposed that gas is released at constant rate at x = 0, y = 0, and z = 0, and the gas 

transport in the x direction is dominated by advective flow with negligible dispersive 

flow, the governing equation, boundary conditions, and mass conservation at steady 

state is expressed as follows: 
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Governing equation: 𝑢
𝜕𝐶

𝜕𝑥
= 𝐷𝑦

𝜕2𝐶

𝜕𝑦2
+ 𝐷𝑧

𝜕2𝐶

𝜕𝑧2
        (2.6) 

Boundary conditions: C(0, y, z) = 0 (y ≠ 0 or z ≠ 0)       (2.7) 

   C → 0  (y → ∞ or z → ∞)       (2.8) 

   
𝜕𝐶

𝜕𝑦
|
𝑦=0

= 0         (2.9) 

   
𝜕𝐶

𝜕𝑧
|
𝑧=0

= 0        (2.10) 

Mass conservation: 𝑄𝐶𝑖𝑛 = 𝑢∫ ∫ 𝐶
∞

−∞
𝑑𝑦 𝑑𝑧

∞

−∞
  (x > 0)     (2.11) 

For the numerical solution, finite elements were defined as every xn (n = 0, 1, 2, …), 

has a matrix with concentrations at yi (i = 1, 2, 3, …, I) and zj (j = 1, 2, 3, …, J), 

spatial elements. 
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Fig. 2.2. Finite elements defined for deriving the numerical solution of advection-

dispersion model. 
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Under forward scheme for x, and central scheme for y and z, the model approximates 

to the following expressions in finite difference method: 

Governing equation:  𝑢
𝐶𝑖,𝑗
𝑛+1−𝐶𝑖,𝑗

𝑛

∆𝑥
= 𝐷𝑦

𝐶𝑖+1,𝑗
𝑛 −2𝐶𝑖,𝑗

𝑛+𝐶𝑖−1,𝑗
𝑛

(∆𝑦)2
+ 𝐷𝑧

𝐶𝑖,𝑗+1
𝑛 −2𝐶𝑖,𝑗

𝑛+𝐶𝑖,𝑗−1
𝑛

(∆𝑧)2
 

(2.12) 

Boundary conditions: 𝐶𝑖,𝑗
0 = 0  (i ≠ 1 or j ≠ 1)      (2.13) 

   𝐶1,𝑗
𝑛 = 𝐶2,𝑗

𝑛         (2.14) 

   𝐶𝑖,1
𝑛 = 𝐶𝑖,2

𝑛         (2.15) 

Mass conservation: 𝐶1,1
𝑛 =

𝑄𝐶𝑖𝑛

4𝑢 ∆𝑦 ∆𝑧
        (2.16) 

2.1.2.2 Non-steady state with longitudinal dispersion 

Supposed that gas is released at constant rate at x = 0, y = 0, and z = 0, and the 

governing equation, boundary conditions, and mass conservation at non-steady state 

is expressed as follows: 

Governing equation: 
𝜕𝐶

𝜕𝑡
= 𝐷𝑇 (

𝜕2𝐶

𝜕𝑟2
+
1

𝑟

𝜕𝐶

𝜕𝑟
) + 𝐷𝐿

𝜕2𝐶

𝜕𝑥2
− 𝑢

𝜕𝐶

𝜕𝑥
     (2.17) 

Initial condition:  C(0, x, r) = 0 (x ≠ 0 or r ≠ 0)      (2.18) 

Boundary conditions: C → 0  (x → ± ∞ or r → ∞)      (2.19) 

   
𝜕𝐶

𝜕𝑟
|
𝑟=0

= 0        (2.20) 

Mass conservation: 𝑄𝐶𝑖𝑛 = 2𝜋∫ ∫ 𝑟 
𝜕𝐶

𝜕𝑡
 

∞

0
𝑑𝑟 𝑑𝑥

∞

−∞
      (2.21) 
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For the numerical solution, finite elements were defined as every tn (n = 0, 1, 2, …), 

has a matrix with concentrations at xi (i = 1, 2, 3, …, 2I) and rj (j = 1, 2, 3, …, J), 

spatial elements.  

Under forward scheme for t, backward scheme for first-order derivative of x 

and r, and central scheme for second-order derivative of x and r, the model 

approximates to the following expressions in finite difference method: 

Governing equation:  
𝐶𝑖,𝑗
𝑛+1−𝐶𝑖,𝑗

𝑛

∆𝑡
 

= 𝐷𝑇 (
𝐶𝑖,𝑗+1
𝑛 −2𝐶𝑖,𝑗

𝑛+𝐶𝑖,𝑗−1
𝑛

(∆𝑟)2
+

1

𝑗 ∆𝑟

𝐶𝑖,𝑗
𝑛−𝐶𝑖,𝑗−1

𝑛

∆𝑟
) + 𝐷𝐿

𝐶𝑖+1,𝑗
𝑛 −2𝐶𝑖,𝑗

𝑛+𝐶𝑖−1,𝑗
𝑛

(∆𝑥)2
− 𝑢

𝐶𝑖,𝑗
𝑛−𝐶𝑖−1,𝑗

𝑛

∆𝑥
  (2.22) 

Initial condition:  𝐶𝑖,𝑗
0 = 0  (i ≠ I or j ≠ 1)      (2.23) 

Boundary conditions: 𝐶1,𝑗
𝑛 = 𝐶2,𝑗

𝑛         (2.24) 

𝐶2𝐼−1,𝑗
𝑛 = 𝐶2𝐼,𝑗

𝑛         (2.25) 

   𝐶𝑖,1
𝑛 = 𝐶𝑖,2

𝑛         (2.26) 

   𝐶𝑖,𝐽−1
𝑛 = 𝐶𝑖,𝐽

𝑛         (2.27) 

Mass conservation: 𝐶𝐼,1
𝑛 =

𝑄𝐶𝑖𝑛

4𝜋𝑢 ∆𝑟2
        (2.28) 

As equation 2.17 has not been analytically solved, to the author’s knowledge, it 

was impossible to verify the presented numerical solution through comparing it to 

the corresponding analytical solution. Instead, supposed steady state, the numerical 

solution can produce a concentration profile comparable to the Gaussian dispersion 

model, as shown in Fig. 2.3. The model parameters used for this comparison follow: 
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QCin = 3600 kg/d; u = 2 m/s; DT = 4 m2/s; DL = 2 m2/s; Δt = 0.01 s; Δx = 5 m; and 

Δr = 2 m. The scales of time and space elements were carefully chosen to avoid an 

oscilliation problem. 

 

 

Fig. 2.3. Concentration profile at 200 m downwind from the source predicted by the 

Gaussian dispersion model and a numerical solution of the advection-dispersion 

model. 

 

2.2 Variability in fugitive emission from waste landfills 

Fugitive methane emission through landfill surface is a complicated issue that 

involves multiple intertwined processes. Even within a single landfill cell, the 

inhomogeneous composition of waste and gas inside the cell results in the different 

rate and composition of landfill gas generation. A greater extent of diversification 
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often comes during penetration of the gas via cover materials. The flow rate and 

composition of landfill gas at discharge come to variate from those under cover again, 

after undergoing a complex combination of multiple processes. The divergency in 

texture and thickness of cover, gas and liquid permeability, availability of moist, 

oxygen, and nutrients, abundance of surface vegetation, etc., and consequently 

heterogeneous gas flow rate and methane oxidation rate lead to temporal and spatial 

variability in surface methane emission rates (Spokas et al., 2015).  

The variability has been reported in lots of literature (Fjelsted et al., 2019; 

Gonzalez-Valencia et al., 2021; Jeong et al., 2019; Rachor et al., 2013; Raco et al., 

2010). There is complete agreement about spatial inequality. A majority of surface 

emissions are released from just a small portion of surface area, so-called “hot spots,” 

which is supported by the observations that 20 % of the areas were responsible for 

67.7-99.8 % of total surface emissions of the ten landfills tested in Jeong et al. (2019), 

and only 3 % of the areas were for 80 % of emissions of the landfill investigated in 

Gonzalez-Valencia et al. (2021). Temporal variation in total methane emissions is 

considered large for many occasions, ranging from negative—possible with strong 

gas extraction or oxidation of atmospheric methane—to massive positive flux, even 

though there are some cases where emissions observed over a time interval fall in 

the same order of magnitude (Czepiel et al., 2003; Jeong et al., 2019). As for the 

cases where emissions always exceeded the detection limit, the difference in 

emissions between measurement times was by up to two orders of magnitude within 

a few days (Gonzalez-Valencia et al., 2021; Zhang et al., 2013). Moreover, Rachor 

et al. (2013) presented that the seasonal variability in emissions was greater than 

daily or diurnal one. 
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Fig. 2.4. Methane flux maps and mean flux observed over three days, which show 

both temporal and spatial variations in surface methane emissions of landfills 

(Gonzalez-Valencia et al., 2021). 

 

Due to the fugitive emissions fluctuating with time and location, sampling in 

terms of time or location may not provide adequate representativeness. More 

frequent and denser sampling is a solution for temporal and spatial 

representativeness, respectively, which usually adds labors and costs. Therefore, 

time- and cost-efficient methods need to be introduced for measuring the emission 

from a whole landfill. 
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2.3 Estimation methods for fugitive gas emission 

2.3.1 Simulation models for waste landfills 

As it is hard to quantify fugitive greenhouse gas emissions from waste landfills via 

direct measurements, reporting inventories about landfills has been depending on 

modeling with conservative parameterization. As a representative model, the current 

IPCC guidelines present the first order decay model to simulate biochemical 

decomposition of organic compounds and resulting methane emissions in waste 

landfills. The most recent refinement allows the model to simulate reactions in 

landfills in which aerobic decomposition dominates, using a specific correction 

factor (IPCC, 2006, 2019). 

The methane emissions can be estimated by excluding recovered and surface 

oxidized amounts from total generations. 

𝐶𝐻4 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  [∑ 𝐶𝐻4 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑥,𝑇 − 𝑅𝑇𝑥 ] ∙ (1 − 𝑂𝑋𝑇)     (2.29) 

where CH4 Emissions: methane emitted in year T (Gg); T: inventory year; x: waste 

category or type/material; RT: recovered methane in year T (Gg); and OXT: oxidation 

factor in year T (fraction). In IPCC (2000), methane generation is determined 

considering the decomposable portion of disposed waste, landfill condition, and the 

first order decay. 

𝐷𝐷𝑂𝐶𝑚 = 𝑊 ∙ 𝐷𝑂𝐶 ∙ 𝐷𝑂𝐶𝑓 ∙ 𝑀𝐶𝐹        (2.30) 

𝐿0 = 𝐷𝐷𝑂𝐶𝑚 ∙ 𝐹 ∙ 16/12         (2.31) 
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where DDOCm: mass of decomposable DOC deposited (Gg); L0: methane generation 

potential (Gg CH4); W: mass of waste deposited (Gg); DOC: degradable organic 

carbon (fraction, Gg C/Gg waste); DOCf: fraction of DOC that can decompose 

(fraction); MCF: methane correction factor for aerobic decomposition (fraction); F: 

fraction of methane in generated landfill gas (volume fraction); 16/12: molecular 

weight ratio of methane to carbon (ratio). 

𝐶𝐻4 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑇 = ∑ 𝐴 ∙ 𝑘 ∙ 𝐿0,𝑡 ∙ 𝑒
−𝑘(𝑇−𝑡)

𝑡        (2.32) 

where t: years for which input data should be added, A: normalization factor 

correcting the summation (= (1-e-k)/k); k: methane generation rate constant (yr-1). 

Equation (2.19) was written adjusted in this work so that it is compatible with other 

equations from the recent refinements. 

The refined IPCC guidelines recommend to substitute Equation (2.19), but the 

basic concept of first order decay model is consistent. While the former version 

requires the whole history of a site, the new version simplifies it to use the 

decomposable newly disposed in the year, and remained till the previous year (IPCC, 

2006, 2019). 

𝐷𝐷𝑂𝐶𝑚 𝑑𝑒𝑐𝑜𝑚𝑝𝑇 = {𝐷𝐷𝑂𝐶𝑚𝑑𝑇−1 + (𝐷𝐷𝑂𝐶𝑚𝑎𝑇−2 ∙ 𝑒
−𝑘)} ∙ (1 − 𝑒−𝑘)  

(2.33) 

𝐶𝐻4 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑇 = 𝐷𝐷𝑂𝐶𝑚 𝑑𝑒𝑐𝑜𝑚𝑝𝑇 ∙ 𝐹 ∙ 16/12      (2.34) 

where DDOCmaT-2: DDOCm accumulated at the end of year T-2 (Gg); DDOCmdT-1: 

DDOCm deposited in year T-1 (Gg); DDOCm decompT: DDOCm decomposed in 
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year T (Gg); k = ln2/t1/2; and t1/2: half-life time (yr). 

GIR (2020) reported the greenhouse gas emissions from landfills in Korea using 

the above model of IPCC (2000). The IPCC default values were mostly used as 

model parameters (MCF 1.0; DOC 0.09; DOCf 0.5; and OX 0.1), except for two 

country-specific parameters (k 0.05; and F 0.5629). 

Phenomena are extremely difficult to predict when they involve biological 

reactions, and waste landfills are inherently inhomogeneous in terms of waste 

composition, operation, geotechnical properties, etc. Therefore, it is questionable if 

a combination of model parameters picked from the given sets of values would 

sufficiently explain the variety of conditions. The Sudokwon Landfill, the largest 

well-managed landfill in Korea, has consistently maintained that modeling based on 

the IPCC guidelines overestimated its methane emissions compared to the results of 

extensive monitoring for years (Lee et al., 2020). They suggested that the reason 

would be the effects of constituents other than organic carbon in the waste, and high 

oxidation factor that are not found in the IPCC guidelines. The difference was more 

evident in cases of closed landfills with complete final cover, which means that 

various efforts for reducing emissions cannot be acknowledged using the IPCC 

model. Raco et al. (2010) provided another explicit evidence of the weak point of 

simulation models. They showed that a significant reduction in actual emissions 

followed remedial works on covers and gas recovery system in comparison with still 

increasing emissions estimated using several simulation models. 

2.3.2 Surface measurements of fugitive gas 

Flux chamber is the most common method to directly measure surface emissions. 
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With a chamber sealed on a surface, the surface emission can be estimated using 

changes in gas composition inside the chamber. Although it is the most verified 

method for direct measurement, it contains several disadvantages. Flux chamber is 

likely to underestimate emissions from waste landfills, because a limited number of 

point measurements cannot include all hotspots that dominate emission routes, and 

chambering is disable to measure emissions through wells and vents (Mønster et al., 

2019). According to the equation proposed by Jeong et al. (2019), a chambering for 

every 40 m2 is required to ensure < 20% error, which will be extremely labor-

intensive due to considerable time required for a single measurement—a few tens of 

minutes at least. Furthermore, flux chamber is surprisingly a disturbing method in 

that coverage by a chamber alters surface conditions, e.g. pressure, air flow, and 

concentration gradient, that govern gas transport (Oonk, 2010). 

Utilizing relationships between surface flux and easily detectable variables is 

an alternative that would be rapid and less disturbing. Park et al. (2016) and 

Gonzalez-Valencia et al. (2021) tried to correlate surface methane concentration and 

flux. Their results showed good linear relationships within a few days, but the 

relations were not universal over months or years even in the same landfill cell (Fig. 

2.5). Another type of trials involved surface temperature, which could be convincing 

in consideration that landfill gas usually has higher temperature than surroundings. 

Field studies testing the applicability showed weak or no relationships between 

surface temperature and methane flux (Fjelsted et al., 2019; Ishigaki et al., 2005). 

Those methods seem insufficient to be used for the estimation of methane emission, 

but can be useful as a complementary tool to the flux chamber.  
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Fig. 2.5. Correlation between surface methane flux and concentration (Park et al., 

2016). 

2.3.3 Plume measurements from fugitive sources 

Fugitive gas can be measured at the downstream of the sources. With a clear 

advantage that it can offer an integrated emission from the whole site, this strategy 

has been vigorously studied for the application for natural gas region and processing 

facilities, and waste landfills. Gas concentrations measured at the downstream are 

used to compute the gas release rates based on mass balance, inverse modeling, or 

tracer dispersion. Sharing the strong point of plume measurement method, the three 

approaches involve different challenges.  

Mass balance method considers integrated gas flux through downwind plane as 

the emission from a source, and subtracting gas flux through upwind plane would 
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add the estimation accuracy when available (Allen et al., 2016; Lavoie et al., 2015; 

Nathan et al., 2015). The largest challenge for applying the mass balance method is 

that the whole plume should be covered, which is achievable not by ground-based 

measurements, but only by aerial measurements. Gas flux estimated by mass balance 

is highly sensitive to wind data, therefore, the method requires the good 

measurements of wind as well as gas of interest.  

Inverse modeling of concentrations at downwind plane also allows of 

computing the emission rates. Gaussian model (Shah et al., 2020; Yacovitch et al., 

2015), Lagrangian model (Zhu et al., 2013), and EPA AERMOD (Lan et al., 2015) 

were used in inverse modeling in literature. Extensive data works are required during 

modeling with multiple unknown parameters. This method also requires accurate 

wind data, like mass balance method.  

In tracer dispersion method, tracer gas, e.g. C2H2, N2O, SF6., is released at a 

known flow rate near an emission source, and the target gas and the tracer gas are 

measured at downwind. The emission rate of the target gas is then estimated using 

the reduction rate of tracer gas (Mitchell et al., 2015; Mønster et al., 2015). The last 

methodology is well proven among three kinds of plume measurement methods, but 

its shortcomings include a challenge in proper tracer placement and the requirement 

of potent greenhouse gas release. 
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Fig. 2.6. Concept of plume measurements and tracer dispersion method. 

 

Linear (or, open-path) gas analyzers and point gas analyzers are option to use 

to measure gas concentrations at downwind. Linear analyzers are widely used to 

achieve rapid, accurate gas detection on ground. Depending on occasions, point 

analyzers can be preferred for higher dimensional information. Employment of 

mobile platforms is required to operate point analyzers throughout downwind 

measurement planes. Currently available mobile platforms include vehicle (Mitchell 

et al., 2015; Mønster et al., 2015), manned aircraft (Lavoie et al., 2015; Mays et al., 

2009), and UAV (Allen et al., 2016; Nathan et al., 2015; Shah et al., 2020), which 

should be selected depending on the emitter type, flight speed, practical restrictions, 

and cost (Shah et al., 2019). 
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Fig. 2.7. Plume measurement by manned aircraft in shale region (Lavoie et al., 2015). 

 

2.4 Gas analyzer 

2.4.1 Principles of gas analyzers 

Gas detectors can be classified according to the operation principles, e.g., 

electrochemical, catalytic combustible, solid-state (semiconductor), infrared, 

photoionization, etc. 

A.  Electrochemical sensors 

Gas first passes through a small capillary-type opening and then diffuses through a 

hydrophobic barrier (membrane), and eventually reaches the electrode surface. The 

barrier allows the proper amount of gas to react at the electrode, and sometimes 

filters out unwanted gases, while preventing the electrolyte from leaking out of the 

sensor. Then, the gas either oxidizes or reduces at the surface of the sensing electrode 

with specific catalysis by the electrode materials. The current generated in the 

process is measured to determine the gas concentration, which is proportional to the 
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gas concentration.  

 

 

 

Fig. 2.8. Typical electrochemical sensor setup (Chou, 2000).  

 

The characteristics of electrochemical sensors are as follows: 

1) Typical detectable gases: NH3, CO, H2, H2S, NO, NO2, O2, SO2 (from ppm 

levels up to 2-10 times permissible exposure limit). 

2) Some sensors that require an external voltage cannot be removed from power 

for an appreciable time. 

3) Most of the toxic gas sensors require oxygen. 

4) Humidity: For the sensors with high sensitivity, high humidity can cause the 

electrolyte to leak out and low humidity can dry it out. Relatively stable 

operation is possible at relative humidity 15-95 %. 

5) Pressure: Electrochemical sensors are minimally affected by pressure. 

6) Temperature: Electrochemical sensors quite sensitive to temperature and 

therefore are typically internally temperature-compensated, resulting in the 
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operation temperature from -40 to +45 ˚C. In general, when the temperature 

is above 25 ˚C, the sensor will read higher; when it is below 25 ˚C, it will 

read lower. 

7) Selectivity: Electrochemical sensors are generally fairly selective to the target 

gas because they are specifically designed by selecting the membranes and the 

sensing electrode materials. But the sensors other than O2 sensor are subject to 

interference from other gases. 

8) Life expectancy: Generally, the sensors have a one- to three-year life 

expectancy with susceptibility for corrosive elements and contamination. 

9) Power consumption: The power consumption is the lowest among all gas 

sensors available. 

10) Response time: T80 < 50 s. 

B. Catalytic combustible (catalytic beads) sensors 

When gas oxidizes at a much lower temperature than its normal ignition temperature 

on the active sensor surface that consists of catalysts (e.g., platinum), the heat of 

combustion causes the temperature to rise, which in turn changes the resistance of 

the sensor. As the reference (passive) bead maintains a constant resistance, the offset 

voltage is measured as the signal. The sensor’s output is directly in proportion to the 

rate of oxidation. 
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Fig. 2.9. A typical circuit of a catalytic beads sensor (Chou, 2000). 

 

The characteristics of catalytic beads sensors are as follows: 

1) Detectable gases: combustible gases (from a few hundred ppm to a few volume 

percent). 

2) The sensors require oxygen for combustion. 

3) There are chemicals that will poison the catalyst (e.g., silicon compounds, sulfur 

compounds, chlorine, heavy metals, etc.) or temporarily inhibit the sensor (e.g., 

halogen compounds, Freon). 

4) Selectivity: Catalytic combustible sensors cannot provide selective detection 

among combustible gases. The users can measure different hydrocarbons by 

using correction factors that the manufacturers provide or by directly calibrating 

the sensor to the gas of interest. 

5) Operation temperature: -40 to +60 ˚C. 

6) Response time: T90 10–15 s. 
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7) Life expectancy: < 3 years. 

C. Solid-state (semiconductor) sensors 

The absorption or desorption of gas on a metal oxide surface alters the free electron 

density of the surface of metal oxides and results in the conductivity change. A pair 

of biased electrodes are imbedded into the metal oxide to measure this change, which 

is a linear relationship with the gas concentration. In addition, a heating element is 

used to heat the sensor to an optimal temperature so that the chemical processes are 

selectively hastened and the effects of fluctuating external temperatures is minimized. 

 

(a)        (b)  

 

 

Fig. 2.10. Typical solid-state gas sensors: (a) bead-type; and (b) chip-type (Chou, 

2000). 

 

The characteristics of solid-state gas sensors are as follows: 

1) Solid-state sensors are the most versatile among gas sensors in terms of 

detectable gas types and ranges (from low ppm levels to high combustible 

levels). 
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2) Life span: The main strength of the solid-state sensor is its long life expectancy, 

as the sensor typically lasts 10 years or more in clean applications. 

3) Drift: One of the important drawbacks of semiconductor sensors is a baseline 

drift caused by the alteration of the microstructure and by irreversibly adsorbed 

gases. 

4) Interference: The sensors are more susceptible to interference gases than the 

other types of sensors. In certain instances, the interferences are minimized by 

using appropriate filtering materials. 

5) Response time: T80 20–90 s. 

D. Infrared sensors 

Among electromagnetic waves from gamma rays to radio waves, the infrared (IR) 

region that has wavelength in microns is most useful for gas analysis because 

absorption by gas molecules is unique and selective in this region. Gas molecules 

are made up of a number of atoms bonded to one another and the bonding vibrates 

with a fixed frequency called the natural frequency. When infrared radiation interacts 

with gas molecules, part of the energy that has the same frequency as the 

molecule’s natural frequency is absorbed while the rest of the radiation is 

transmitted. Then, the temperature rise resulted from increased vibration of the 

molecule or the radiation decrease from the light absorption is detected as a signal. 

There are two types of IR gas analyzers, namely dispersive and nondispersive, 

depending on the way in which the specific wavelength of interest is extracted from 

the infrared source. Dispersive types utilized grating or prism to spread the light 

spectrum and nondispersive types (nondispersive infrared, NDIR) use discrete 
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optical bandpass filters. Almost all commercial IR instruments are of the 

nondispersive type. 

 

 

Fig. 2.11. A basic infrared gas detector layout (Chou, 2000). 

 

The characteristics of infrared gas sensors are as follows: 

1) Detectable gases include hydrocarbons, water vapor, CO2, etc. (ppm levels to 

100 %) 

2) Selectivity: IR sensors are highly selective. Optical filters determine the 

selectivity of the instruments. 

3) Temperature: An IR detector is essentially a temperature sensor and is, therefore, 

potentially very sensitive to changes in the ambient temperature. However, a 

properly designed detector can be operated between -40 and 60 ˚C. 

4) Humidity: Normal environmental humidity has very little effect. However, high 

humidity could promote corrosion and contamination. 

5) Life span: It has a long life expectancy mainly because it does not directly 

interact with the gas to be detected. The IR light source typically has a life 

expectancy on the order of 3 to 5 years. 
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6) Additional advantages over the other sensor types: a) Poisoning by some 

compounds and burn out by high gas concentrations are the main problems with 

catalytic sensors, from which IR detectors do not suffer. b) IR units are assured 

a good response and accuracy as long as the zero is maintained. c) IR 

instruments can be used to monitor a gas stream continuously over a long period 

of time whereas constant exposure to gas will shorten life spans of catalytic and 

solid-state sensors. 

E. Photoionization sensors 

Excited molecules of inert gas, such as argon, krypton and xenon, in a lamp emit 

ultraviolet (UV) light, returning to the ground state. A pair of electrode plates are 

placed in close proximity to the lamp window where the light comes out. As gas 

molecules of interest move into the radiated filed, they are ionized and the free 

electrons are collected at the electrodes resulting in a current flow whose magnitude 

is directly proportional to the gas concentration. 

 

 

Fig. 2.12. A typical photoionization detector configuration (Chou, 2000). 
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Photoionization detectors have the following characteristics: 

1) Detectable gases: aromatic hydrocarbons, alkyl iodides, sulfur compounds, 

amines, etc. (a few ppb to a few thousand ppm) 

2) Response time: T90 3 s. 

3) Selectivity: Photoionization detectors (PIDs) respond to all gases that have 

ionization potentials equal to or less than the eV output of their lamps. They are 

typically calibrated with isobutylene and readings for other gases are obtained 

by multiplying the reading by a correction factor. 

4) Humidity: High humidity decreases the response by up to 30% compared to dry 

air. 

5) Quenching effect: Some gases that are ionizable but not ionized can scatter and 

absorb the UV rays, resulting in a lower output reading. Such quenching gases 

are water vapor, carbon dioxide, methane, carbon monoxide, etc. 

6) Response characteristics: The output of the PID sensor is relatively linear below 

200 ppm and the output becomes saturated above 2,000 ppm. 

7) Maintenance: The major shortcoming of the instruments is that the PID lamp 

requires frequent cleaning. Because the lamp window is directly exposed to the 

sample stream and a dirty window will produce much different results than a 

clean window. 

8) Life span: Due to periodic cleaning required, PID sensors have limited life 

expectancies and therefore they are not practical choices for use in stationary 

monitors. 

9) Sensitivity: 0.1 ppm isobutylene. 
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10) Temperature: -20 to +50˚C. 

11) Humidity: 0-95% relative humidity. 

 

Table 2.3. Comparisons between types of gas analyzers. 

Sensor type Electrochemical Catalytic 

combustible 

Solid-state Infrared Photoionization 

Detectable 

gases 

NH3, CO, H2, 

NO, O2, etc. 

Combustible 

gases 

A wide 

variety of 

gases 

HCs, 

water, 

CO2, etc. 

VOCs, etc. 

Detectable 

ranges 

ppm to 2-10 

times PEL 

Hundreds of 

ppm to a 

few % 

ppm to 

combustible 

level 

ppm to 

100% 

ppb to 

thousands of 

ppm 

Selectivity Fair 

Interference 

Poor Poor 

Susceptible 

to 

interference 

High Poor 

Response 

time 

T80 50 s T90 10-15 s T90 20-90 s Slow 

response 

T90 3 s 

Humidity 15-95% 

Caution needed 

for high 

sensitivity 

sensor 

   0-95% 

High humidity 

decreases 

output 

Temperature -40 to +45˚C 

Higher reading 

at higher T 

-40 to +60˚C Minimal 

effect 

-40 to 

+60˚C 

-20 to +50˚C 

Pressure Minimal effect   Minimal 

effect 

 

Longevity 1-3 yrs 3 yrs 10 yrs 3-5 yrs  

Notes Oxygen required 

for toxic gas 

detection 

Susceptible to 

corrosive 

elements and 

contamination 

Oxygen 

required 

Poisoning 

and 

inhibition 

problems 

  Quenching 

effect 

Nonlinear 

response 

curves 

Frequent lamp 

cleaning 

required 
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F. Sensor selectivity improvement by filters (Ryzhikov et al., 2009) 

The selectivity of gas sensors can be enhanced by several different approaches. In 

sensing with semiconductor detectors, a choice of optimal detection temperature, the 

doping of the sensing material with catalytic and electroactive admixtures and the 

use of multiple sensors having different responses to each gas allow significant 

improvements of the sensor selectivity. The placement of gas filters before the 

sensing material is another manner that can be used not only in semiconductor 

sensors but also with other types of gas sensor. 

There are two main types of filters: passive (physical) and active (chemical) 

filters. Passive filters can separate the gases by the different adsorption affinity of 

the gas molecules on the sieve material or by the size fractionation using the size of 

the gas molecules and the diameter of the filter pores. The working principle of active 

filters is based on selective chemical interactions of the gas molecules with the filter 

material or on catalytic decomposition of the interfering gases on the filter surface 

with formation of low active products. 

One example of selectivity improvement by using filters is the use of a platinum 

filter for methane detection by semiconductor gas sensor that was proposed by 

Logothetis et al. (1986). It was suggested that, at 400°C, the platinum should hardly 

activate the combustion of methane, whereas other reducing gases, less stable than 

methane would be completely oxidized on the platinum filter. 

2.4.2 Considerations based on principles 

For the application around waste landfills in this study, continuous measurement of 
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atmospheric concentrations of CH4 (2–100 ppm) is required. In terms of detectable 

gases and ranges, electrochemical, semiconductor and infrared sensors are 

applicable. In terms of selectivity, electrochemical and infrared sensors seem a better 

choice. If a sensor’s selectivity is limited, the minimum requirement is the capability 

of differentiate CH4 from the major components of the air and landfill gas, i.e., N2, 

O2, Ar, CO2, Ne, and He. Effects of humidity, temperature and pressure may not be 

an issue because sensors will work under normal weather conditions. For continuous 

measurements, an infrared detector is the best choice since constant exposure to 

gases and extended chemical reactions involved in gas sensing by electrochemical 

and semiconductor sensors shorten their life span. 

2.4.3 Commercially available methane analyzers 

Literature that has reported direct measurements of fugitive methane commonly told 

that the required detection limit is < 2 ppmv. However, the instruments with 

sufficiently low detection ranges were too heavy, while portable one had a high 

detection range (Table 2.4).  

Commercially available, light-weight (< 1 kg) methane detectors were 

summarized in Table 2.5. Among them, Testo Gas Detector was the best choice in 

terms of the detection range, response time, and sampling rate. 

  



 

 38 

Table 2.4. Instruments for methane detection in literature. 

Reference Analyzer Principle Range 

(ppmv) 

 

Allen et al. 

(2019) 

Los Gatos Research 

ultraportable greenhouse 

gas analyzer 

Spectroscopy < 30 15 kg 

CH4, CO2, H2O 

Mønster et al. 

(2015) 

Picarro G2203 analyzer Spectroscopy 0.1-20 27.4 kg 

C2H2, CH4, H2O 

Xu et al. (2014) LI-COR Biosciences LI-

7700 

Spectroscopy < 60 (looks heavy) 

Lavoie et al. 

(2015) 

Picarro G2401-m Spectroscopy 2-3 31.75 kg 

CH4, CO2, CO, 

H2O 

Nathan et al. 

(2015) 

Customized methane 

sensor 

Spectroscopy 2-5 3.1 kg 

Yacovitch et al. 

(2015) 

Picarro CRDS Spectroscopy 2-3 CH4, CO2, H2O 

Johnson et al. 

(2015) 

Eagle Ⅱ methane 

detector (RKI 

Instruments) 

Catalytic, 

spectroscopy, thermal 

conductivity 

-4,000 1.72 kg 

Monitor up to 6 

gases 

Rella et al. 

(2015) 

Picarro G2301 Spectroscopy 2-3 25.4 kg 

CH4, CO2, H2O 

Lan et al. 

(2015) 

Picarro G2201-i and 

G2132-i 

Spectroscopy 2-15  

Zhu et al. 

(2013) 

GasFinder2.0 Spectroscopy 2-700 5 kg 

6 gases STD and 

4 gases custom 
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Table 2.5. Specifications of commercial methane analyzers that weigh < 1 kg. 

Model Testo Gas 

Detector 

SKT-9300 Aeroqual Series 

500 

Gas Tiger 2000 

Manufacturer Testo (Germany) Testauction 

(China) 

Aeroqual 

(New Zealand) 

 

Principle Semiconductor Electrochemical Semiconductor Infrared 

Gas type CH4, C3H8, H2 CH4 CH4, CO2 etc. 

(Interchangeable 

sensor head) 

CH4, CO2, etc. 

(Multigas) 

Range (ppm) 1-999 

1,000-44,000 

5-50,000 0-10,000 0-10,000 

0-50,000 

LDL (ppm) 10 
 

10 50 

Resolution 

(ppm) 

1 5 1 1 

Response time 

(s) 

2–3 20 60 30 

Battery time 

(hr) 

8 
 

8 30 

Weight (kg) 0.32 0.3 0.46 0.52 

Data logging X O O O 

Pump X O X O 

Continuous 

measurement 

O (1 s) 
 

O (40 s) O (1 s) 

Protection 
 

IP66 IP20 IP66 

Stability 
  

T/H effects 

Vibration can 

affect durability 

T/H effects 

Vibration can 

affect durability 
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2.5 Uncertainty propagation 

With nonlinear transformation involved, it is difficult or impossible to find the 

probability density function of the derived quantities. In this case, approximations 

based on Taylor series expansion can be adopted to expect the mean and variance. 

The approximations are exact only for linear transformations. When x = f(x1, x2, …, 

xn), 

𝜇 = 𝑓(𝜇1, 𝜇2, ⋯ , 𝜇𝑛) + 
1

2
∑ ∑

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
𝜎𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1        (2.35) 

𝜎 =  √∑ ∑
𝜕𝑓

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗
𝜎𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1          (2.36) 

If x1, x2, …, xn are independent variables to one another, Equations (2.35) and (2.36) 

reduce to Equations (2.37) and (2.38), respectively (Ku, 1966): 

𝜇 = 𝑓(𝜇1, 𝜇2, ⋯ , 𝜇𝑛) + 
1

2
∑

𝜕2𝑓

𝜕𝑥𝑖
2 𝜎𝑖

2𝑛
𝑖=1         (2.37) 

𝜎 =  √∑ (
𝜕𝑓

𝜕𝑥𝑖
)
2

𝑛
𝑖=1 𝜎𝑖

2          (2.38) 
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Chapter 3. Credibility of rotary UAV-based methane profile 

acquisition  system 

 

3.1 Introduction 

Solid waste landfills are considered major sources of anthropogenic methane 

emission (Scheehle and Kruger, 2006), and methane is a major greenhouse gas (GHG) 

with a global warming potential 28 times that of carbon dioxide (Stocker et al., 2013). 

Landfill gas (LFG) is usually comprised of 45–60 % methane and 40–60 % carbon 

dioxide as a result of anaerobic degradation of organic matter (Theisen and Vigil, 

1993). A large proportion of methane allows for LFG to be used as a clean energy 

source (Boyle, 1977), with an estimated fuel value of 18–22 MJ m-3 (Spokas et al., 

2006). A major challenge in LFG management and utilization is the uncertainty in 

estimating LFG loss from a large area that may span hundreds of hectares (Amini et 

al., 2012; Amini and Reinhart, 2011). Without accurate quantification, it is not 

possible to develop appropriate policies and plans for LFG recovery. In addition, an 

international collaboration for GHG mitigation such as an emissions trading system 

will become ineffective under uncertainty (Rypdal and Winiwarter, 2001). However, 

current methods to quantify methane emissions from landfills are limited in terms of 

their accuracies (Allen et al., 2019). 

Various methods have been used to estimate fugitive methane from landfills. 

                                                           

A significant portion of this chapter were published in the following article: Kim, Y.M., Park, 

M.H., Jeong, S., Lee, K.H., Kim, J.Y., 2021. Evaluation of error inducing factors in 

unmanned aerial vehicle mounted detector to measure fugitive methane from solid waste 

landfill, Waste Management, 124, 368–376. 
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The flux chamber method is the most popular as it does not require high-level of 

technology in practice compared to other methods such as micrometeorological 

method, or tracer plume measurement (Di Trapani et al., 2013; Klenbusch, 1986; 

Oonk, 2010). However, as the area coverage by the unit chamber is small, the flux 

chamber method requires labor and time-intensive efforts to cover the entire area. 

This limits the effectiveness of the method in field applications. The 

representativeness of the chamber method has also been criticized as the results are 

significantly affected by slight differences in chamber network design and operation 

(BÖrjesson et al., 2000). To deal with spatial heterogeneity, mobile measurement 

systems have been introduced. LFG sampling and measurement by automobiles has 

been investigated as an alternative method (Mønster et al., 2014; Mønster et al., 2015; 

Yacovitch et al., 2015). As automobiles require roads for operation, accessibility 

restriction was a major limitation. Methane detection using aircraft could be 

conceived for another alternative as this method has demonstrated successful 

methane detection in areas larger than a city (Lavoie et al., 2015; Mays et al., 2009); 

however, landfills are too small of an area to conduct aircraft-based measurements. 

With the development of technology in unmanned aerial vehicles (UAVs), the 

use of UAVs in gas monitoring has recently been proposed as an up-shooting 

technology (Kersnovski et al., 2017; Rossi and Brunelli, 2015). Allen et al. reported 

examples of successful LFG measurement employing UAVs (Allen et al., 2014, 2016, 

2019), where they measured carbon dioxide concentrations using a fixed-wing UAV. 

Then, these concentrations were converted to methane concentrations based on an 

empirical relationship between the compositions of the two gases. A potential to use 

the rotary wing UAV in LFG emissions monitoring was tested by Fjelsted et al. (2019) 
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and Shah et al. (2019). Fjelsted et al. (2019) conducted a field study to screen LFG 

emission hotspot using a thermal infrared camera mounted on a rotary UAV. Shah et 

al. (2019) showed the applicability of rotary UAV-based platform conveying air 

samples from 24 ± 3 m above the ground to a gas analyzer on the ground through the 

150 m long tubing. The sampling method using tubing connected with a UAV was 

restricted to a space scale due to the connected tubing length. The limited spatial 

coverage for a single flight leads to temporal discontinuity between flight missions. 

A UAV-mounted detector is able to extend the area of coverage for methane 

measurements in a single flight; this may enhance the degree of freedom in data 

acquisition. However, the applicability of direct methane measurement in the air 

using a UAV-mounted detector has not been fully assessed despite this potential. 

Recently, Shah et al. (2020) tested a prototype analyzer carried by a UAV in exterior 

experiments with controlled methane emissions. They calibrated the analyzer in the 

laboratory and reported that the tested instrument yielded successful results in 

estimating emission. To promote this relatively new method, there is a need for in-

depth research addressing all potential error-inducing factors, as well as a successful 

showcase. The primary aim of this study is to propose and validate a fugitive 

methane measurement framework using a rotary UAV-mounted detector. The first 

specific objective of this study is to examine the impacts of error-inducing factors 

during measurement including the errors relating to the detector and flight condition. 

The second objective is determining means to minimize error originating from data 

handling. Concentration mapping supported by spatial interpolation is the most 

widely applied technique for data obtained from UAV field campaigns; thus, we 

defined the most preferable spatial interpolation method to assimilate UAV-derived 
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field data. 

3.2 Materials and methods 

3.2.1 Apparatus 

Methane concentration was measured using a semiconductor-type real-time gas 

detector (Testo Gas Detector, Testo SE & Co. KGaA, Germany), and the Matrice 600 

Pro (SZ DJI Technology Co., Ltd, People’s Republic of China) was used for airborne 

methane monitoring. The specifications of the detector and UAV are summarized in 

Table 3.1. During flight missions, the detector was attached to the UAV, and detector 

readings were recorded by an installed camera. Readings from flights were corrected 

to account for response time. 

The detector was placed at the center, 340 mm below the aircraft. There are a 

couple of options for the detector placement to minimize the effects of rotor 

turbulence. To place a detector or an air inlet outside the range of the rotor turbulence 

could be ideal options, but those options require compromises in terms of flight 

instability or response time. Another option is the center above or below the aircraft. 

Guo et al. (2020) showed through CFD analysis and experimental verification that 

air turbulence is insignificant at the centerline just above and below an aircraft in 

hover. 
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Table 3.1. Specification of the UAV and methane detector. 

UAV: Matrice 600 Pro 

Rotor diameter 540 mm 

Overall diameter with rotors 1,668 mm 

Weight with the measurement system 11.5 kg 

Maximum takeoff weight recommended 15.5 kg 

Maximum velocity 18 m/s 

Wind speed limit* 12 m/s 

Maximum connection range 3 km 

Detector: Testo Gas Detector 

Weight 0.32 kg 

Concentration range 10–40,000 ppmv 

Resolution 1 ppmv 

Response time 2–3 s 

* A rule of thumb says that a drone can be flown in wind speed up to two-thirds of 

its maximum speed. 

 

3.2.2 Methane detector reliability test 

The methane detector used in this study was not originally intended for outdoor 

atmospheric monitoring, rather for indoor gas leakage monitoring. As such, it was 

necessary to verify the performance of the detector for its given use. The device 

resolution was examined by conducting a laboratory-scale gas contact experiment. 

A standard gas with 44.05 vol% of methane was injected using a (micro)syringe into 

a cylindrical chamber equipped with the gas detector. When the chamber was opened, 

two valves allowed for gas injection, and when closed, these valves ensured the 

airtight sealing of the chamber. The volume of the chamber was approximately 20 L, 

and the volumes of the injected standard gas varied from 0.1 to 10 mL. Following 

gas injection, methane concentrations measured using the detector were recorded for 

10 min. The test duration was determined based on a numerical simulation via 
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MATLAB 2017a in which the free diffusion of methane was assumed within a 

spherical space with an equivalent volume. When the molecular diffusivity of 

methane was set to 0.1942 cm2 s-1 (Massman, 1998), the variation in methane 

concentration fell below 0.5 parts per million by volume (ppmv) at an elapsed time 

between 8 and 9 min (Fig. 3.1). Measured values during the final 1 min were 

averaged and compared with the intended concentrations. 

 

 

Fig. 3.1. Numerically simulated methane concentrations in a container, supposed 

that methane is introduced at the distance zero and the time zero. 

 

3.2.3 Site specification of field measurement 

Field measurements were conducted around a cell with an area of approximately 9 

ha located near the center of the second landfill site in Landfill S, South Korea; this 

is a major engineered landfill in South Korea. The whole area of the second landfill 

site spans 262 ha (Sudokwon Landfill Site Management Corporation, 2019). The site 
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received municipal solid waste from a large metropolitan area including Seoul, 

Incheon, and Gyeonggi-Province from October 2000 to October 2018, and is 

currently in after-care status. The overall landfill configuration was a mountain with 

a vast leveled top area and side slopes. 

3.2.4 Flight mission for field measurement 

Flight missions were conducted for approximately 40 min on November 22nd, 2018. 

The wind characteristics during the flight time were approximately 3 m/s from the 

west. Further meteorological data is provided in Table 3.2. Fig. 3.2 shows trajectories 

of two flight missions plotted by ArcGIS Pro 2.0 based on the global positioning 

system (GPS) data in automatically saved flight logs. Black and white points with 

gradation demonstrate the first mission, and red points with gradation demonstrate 

the second mission. The first mission was aimed at the horizontal mapping of the 

target cell approximately 10 m above the surface (Fig. 3.2b). The second mission 

was aimed at mapping the western vertical plane of the cell (Fig. 3.2c). The length 

and maximum height of the vertical plane in the second mission were 400 m and 20 

m, respectively. 
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Table 3.2. Summary of meteorological data during the field measurement. 

 

  

Average temperature 6.1 °C 

Average wind direction 261.6° (W) 

Average wind speed 3.0 m/s 

Wind rose 

 

Relative humidity 43.8 % 

Pressure 1025.2 hPa 
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Fig. 3.2. Summary of flight mission and detected methane concentration ranges: (a) 

the whole flight mission, (b) horizontal mapping mission, and (c) vertical mapping 

mission. The deeper color indicates the higher concentration. Actual concentrations 

were not reported here as they are confidential data of Landfill S, South Korea. 

  



 

５６ 

3.2.5 Assessment of spatial interpolation 

To estimate methane concentrations at locations other than sample points, spatial 

interpolation was conducted with methane concentrations obtained from field 

measurements. Six methods provided by ArcGIS Pro 2.0 were applied, and their 

interpolated results were compared. The six methods include diffusion interpolation 

with barriers (DIB), empirical Bayesian kriging (EBK), global polynomial 

interpolation (GPI), inverse distance weighted (IDW), local polynomial interpolation 

(LPI), and radial basis functions (RBF).  

The best predictive model was determined based on measures of accurate 

prediction in cross-validation and visual inspection of the contour graphs. It has 

previously been reported that screening an appropriate spatial interpolation model 

based only on statistical measures cannot verify the optimal choice. As such, a visual 

inspection of the modeling results should be followed (Mitas and Mitasova, 1999). 

Cross-validation was conducted against spatial interpolation techniques using the 

methane concentration at position k, Xk (e.g., k = 1, 2, 3, …, 100), acquired by the 

field measurements in Section 3.2.4. The total Xk was divided into two subsets by 

random sampling, resulting in 80 % of the data as a modeling set and 20 % as a 

testing set: xj (e.g., j = 1, 2, 3, …, 80) and yi (e.g., i = 1, 2, 3, …, 20). The dataset, xj 

was interpolated to predict methane concentrations at positions i, and predicted 

values were represented by fi. To quantitatively assess prediction accuracy, four 

accuracy measures, including the coefficient of determination (R2), mean absolute 

error (MAE), root mean square error (RMSE), and normalized root mean square 

error (NRMSE) were calculated as follows: 
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𝑅2 = 1 −
∑ (𝑦𝑖−𝑓𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

           (3.1) 

MAE =
∑ |𝑦𝑖−𝑓𝑖|
𝑛
𝑖=1

𝑛
           (3.2) 

RMSE = √
∑ (𝑦𝑖−𝑓𝑖)

2𝑛
𝑖=1

𝑛
          (3.3) 

NRMSE = √
∑ (𝑦𝑖−𝑓𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖)
2𝑛

𝑖=1

          (3.4) 

where n is the size of the testing dataset. Better prediction performance is indicated 

by an R2 closer to 1, and other indices with smaller values. 

3.3 Results and Discussion 

3.3.1 Reliability of measurement system 

The reliability of the measurement system is dependent on two factors; the reliability 

of the detector and stability of measured values during the flight. The first term is 

related to the calibration credibility and sensitivity of the detector, whilst the second 

term is associated with the effect of air advection due to the propellers. If air 

advection is significant, a temporary pressure change induces the measurement bias. 

This means that the measured value would not be able to represent the concentration 

at the measured location. 

3.3.1.1 Credibility of methane detector 

Fig. 3.3 shows the detector readings depending on the time and target methane 

concentration in a cylindrical chamber. The reading values changed with time and 

stabilized after approximately 9 min. Fluctuations over this protracted period of time 
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may be observed due to the slow diffusion of concentrated methane in the chamber 

and gradual response of the detector, the effects of which could not be separated in 

Fig. 3.3. Based on the theoretical diffusion time of 8–9 min (Fig. 3.1) and 

instrumental response time of 2–3 sec, it may be inferred that the time for gas 

homogenization accounts for the majority time. The readings observed from 9 to 10 

min during each experiment were averaged as representative values. Fig. 3.4 presents 

plots of the target methane concentration and 1-min-averaged readings after 

stabilization. The calibration curve was divided into two plots to eliminate concerns 

associated with leverage due to points in the higher range (Cuadros-Rodríguez et al., 

2007). The calibrations were conducted by weighting the dividing point to ensure 

the two calibration curves were continuous. Based on the linear regression, the 

methane detector showed credible methane readings with high coefficients of 

determination (R2) for both low and high concentration ranges as follows: 

y = 7.44 + 0.49 x (x ≤ 24 ppmv, R2 = 0.96)        (3.5) 

y = 9.52 + 0.40 x (x ≥ 24 ppmv, R2 = 0.98)        (3.6) 

where x is the actual methane concentration (ppmv), and y is the detector response 

(ppmv). The high correlation between these variables serves as evidence of the 

credibility of the methane detector. 
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Fig. 3.3. Changes in detector response for 10 min following the injection of methane 

into the cylindrical chamber. The relative response indicates the detector reading 

relative to the average readings for the final one min. 

 

 

Fig. 3.4. Detector response to (a) low and (b) high concentrations of methane in the 

cylindrical chamber. 
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3.3.1.2 Critical velocity of UAV 

The problem related to air advection driven by propeller rotation was verified based 

on classic fluid dynamics. Fig. 3.5 demonstrates the state of the UAV-based methane 

measurement system at times, t and t + Δt, where Δt is the time elapsed from time t. 

Let the displacement of a methane molecule near the propeller and that of the 

methane detector during Δt be Δh and Δl, respectively. The vertical motion of the 

UAV and the effect of natural wind were considered negligible. Then, the effect of 

advection from the propeller on the measurement system may be neglected when the 

following inequality is satisfied: 

Δl > L, when Δh = H           (3.7) 

where L (m) is the horizontal distance between the detector and the end of the 

propeller; and H (m) is the vertical distance between the detector and the propeller.  

If Δl is shorter than L, the dense air layer formed by advection will come into 

contact with the methane detector. In this case, the measured methane concentration 

will be affected by the variation in density, and the credibility of the measurement 

will be compromised. If Δl is longer than L, the detector will surpass the reach of air 

advection, and the effect of air advection on the measurement will be insignificant. 

This means there is a critical velocity of the UAV that ensures the reliability of the 

measurement system. 
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Fig. 3.5. Conceptual diagram of UAV-based methane measurement system at times, 

t and t + Δt (UAV movement direction: x-axis). 

 

Applying va (m/s) and vd (m/s) as air and UAV velocities during the flight to 

Equation (3.7) yields the following condition: 

vd > va L H-1            (3.8) 

As such, the velocity of the UAV required to prevent the effect of advection by the 

propeller may be calculated using the aforementioned relationship.  

To complete the formula, va needs to be defined; the control volume near a 

propeller was defined as shown in Fig. 3.6. According to impulse-momentum 

theorem (Street et al., 1996), the required net force, F, for the levitating UAV is 

summarized as follows: 

F = ∑downside Q ρ v - ∑upper side Q ρ v         (3.9) 

where Q (m3/s), ρ (kg/m3), and v (m/s) are the flow rate, density, and velocity of air, 
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respectively. As the velocity of air around the upper side of the propeller is assumed 

to be zero based on CFD simulation reported by Guo et al. (2020), and the required 

net force is equivalent to the weight of the UAV itself, Equation (3.9) may be 

converted to Equation (3.10): 

m g = ∑downside Q ρ va          (3.10) 

where m (kg) is the mass of the UAV; and g (m/s2) is the gravitational acceleration 

(9.81 m/s2). The application of the continuity equation and the N-propeller condition 

yields Equation (3.11): 

m g = N ρ A va2          (3.11) 

where A (m2) is the area of the circle formed by the propeller during rotation. As 

such, the air velocity downside the propeller is expressed as follows: 

𝑣𝑎 = √
𝑚𝑔

𝑁𝜌𝐴
           (3.12) 

Combining Equations (3.8) and (3.12) gives Equation (3.13): 

𝑣𝑑 >
𝐿

𝐻
√
𝑚𝑔

𝑁𝜌𝐴
          (3.13) 

Applying all specifications of the UAV and air density (1.293 kg/m3 at 0 °C) shows 

that the UAV velocity required to ignore the wind effect was larger than 8.46 m/s at 

0 °C. If the temperature effect is considered, the required velocity follows the 

inequality, as expressed by Equation (3.14): 

𝑣𝑑 >
𝐿

𝐻
√
𝑚𝑔(𝑇+273)

273𝑁𝜌𝐴
          (3.14) 
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where T indicates the temperature in degrees Celsius. It may be practical to ignore 

the effect of humidity as vd was observed to be relatively insensitive to humidity. The 

vd distribution due to changes in temperature and humidity was calculated and 

depicted in Fig. 3.7. An increase in temperature and decrease in humidity makes the 

air lighter, leading to a larger vd. The effect of humidity on critical velocity is much 

less significant. This is because 100 % of relative humidity is equal to the water 

saturation pressure (4.245 kPa at 30 °C (Wexler, 1976)), this is small compared to 

the atmospheric pressure. 

 

 

Fig. 3.6. Cylindrical control volume of air near a propeller. 
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Fig. 3.7. UAV velocity required to ensure the measurement credibility depending on 

atmospheric temperature and humidity. 

 

If the critical velocity is properly derived by Equation (3.14) and the UAV 

moves faster than the limit, the credibility of the methane detector reading is ensured. 

This indicates the elimination of the uncertainty associated with the potential that 

downwash air flow by rotary UAV influences the detector readings. When the rotary 

UAV moves forward, the front propellers rotate slower than the rear propellers to 

ensure thrust in the forward direction. The slower rotation of the front propellers 

creates weaker winds than va calculated using Equation (3.12). In addition, two 

studies in CFD simulation of downwash flow by a UAV showed that the downwash 

current slows after leaving the propeller due to the friction caused by mixing (Guo 

et al., 2020; Zheng et al., 2018). Therefore, the average velocity of the downwash 

airflow along with its streamline would be lower than va in Equation (3.12). This 
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means that vd suggested by equation (3.14) was considered a conservative value. 

3.3.1.3 Pressure on gas sensor by flight velocity 

A semiconductor type gas sensor measures partial pressure using conductivity 

change of metal oxide caused by adsorption of gas molecules on the surface of the 

metal oxide (Chou, 2000; Ryzhikov et al., 2009). Such principle implies that a 

volumetric gas concentration would be overestimated with elevated pressure. Thus, 

pressure increase during flight needs to be estimated. 

Pressure elevation relative to the atmospheric pressure was expected on the 

basis of the Bernoulli’s equation. Supposed that a sensor is horizontally moving in 

the velocity of v and the air velocity at the surface of the sensor is zero, the 

Bernoulli’s equation gives equation (3.15): 

ΔP = (γv2)/(2g)          (3.15) 

where ΔP is the pressure elevation relative to the atmospheric pressure, and γ is the 

specific density of the air. Applying the flight velocity of 10 m/s, the additional 

pressure is expected to be 64.65 Pa, which is less than 0.1 % of the typical 

atmospheric pressure. Flying at approximately 90 m/s will make a significant 

pressure difference by 5 %, but that high flight velocity cannot be achieved by a 

current rotary UAV. Therefore, additional pressure on a gas sensor caused by flight 

velocity would have negligible effects on the sensor response. 

3.3.2 Performance of the spatial interpolation models 

The performance of the six spatial interpolation models, (i.e., DIB, EBK, GPI, IDW, 

LPI, and RBF), was evaluated using cross-validation and visual inspection. Table 3.3 
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shows the measures of predictive ability from the cross-validation in the horizontal 

and vertical mappings. In the case of horizontal mapping, LPI was the most optimum 

model, and EBK was the second-most optimum in terms of the accuracy indices, 

with the exception of MAE. For vertical mapping, EBK and LPI were the first and 

second-best interpolators, respectively, in terms of all the indices. To summarize, LPI 

and EBK were ranked as high priorities for the horizontal and vertical mappings in 

cross-validation. 

Figs. 3.8 and 3.9 show the horizontal and vertical methane concentration 

profiles, respectively, estimated using the six spatial interpolation methods. These 

figures also include the standard error maps of EBK and LPI. The error maps were 

presented by these two methods only because the remaining methods were 

deterministic interpolators. In horizontal and vertical mappings, EBK, IDW, and 

RBF produced similar graphical expressions, while the DIB, GPI, and LPI 

predictions appeared discrete from the others. The poor fitness (Table 3.3) and the 

typical prediction surface (Figs. 3.8c and 3.9c) of GPI are apprehensible considering 

that GPI captures a large-scale pattern (ESRI, 2020c). This interpolator may be a 

good option to understand and remove global trends prior to spatial interpolation. 

The methane profiles produced by DIB appeared to be plausible. Although DIB 

refers to a heat equation analogous to molecular diffusion (ESRI, 2020b), it 

demonstrated relatively poor performance in cross-validation. IDW and RBF were 

other interpolators that produced plausible contour graphs, although they were not 

suitable for this application because of their exact interpolation (ESRI, 2020a). 

Generally, exact interpolators are not recommended for values involving 

measurement errors (Mitas and Mitasova, 1999).  
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Among the two best interpolators in cross-validation, LPI provided an 

unrealistic prediction surface (Figs. 3.8e and 3.9e). The predicted concentrations at 

some unmeasured locations far exceeded the range actually measured by the detector 

in the horizontal plane, and were six times higher than the highest one of measured 

values. Such extreme peaks led to steep slopes; this rarely occurs in gaseous matter 

that consistently experiences dispersion in the air. The interpolation results by LPI 

were associated with substantial uncertainty, comparable to the entire range of the 

estimated values (Figs. 3.8h and 3.9h). Due to such spurious discontinuities in 

concentration profiles and the huge uncertainty, it is inappropriate to employ LPI to 

estimate methane profiles and use the resulting information for further analysis or 

decision making. EBK displayed reasonable features with a close reproduction of 

the observed concentration range. Therefore, it was concluded that the most 

appropriate model to estimate methane concentration profiles was EBK for both 

horizontal and vertical planes. 

Many researchers have utilized kriging to predict the spatial distribution of 

methane (Ishigaki et al., 2005; Mays et al., 2009; Nathan et al., 2015). However, the 

sound justification for the use of kriging has not yet been provided. An important 

feature of kriging is that it is a stochastic method distinct from the other deterministic 

methods tested in this study (Williams, 1998). It seems that the probabilistic motion 

of gas molecules may be better explained by a stochastic method opposed to a 

deterministic method. In addition to stochastic characteristics, the concept of spatial 

covariance that governs kriging (Matheron, 1963) is also parallel to the spatial 

continuity of gaseous matter distribution. 
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Table 3.3. Predictive performance of spatial interpolation methods in five times 

repeated cross-validation (mean ± standard deviation). 

 Horizontal methane distribution 

R2 MAE RMSE NRMSE 

DIB 0.51 ± 0.05 2.95 ± 0.10 3.79 ± 0.19 0.58 ± 0.02 

EBK 0.78 ± 0.06 1.30 ± 0.20 2.45 ± 0.36 0.37 ± 0.05 

GPI 0.02 ± 0.00 4.39 ± 0.12 5.17 ± 0.21 0.79 ± 0.01 

IDW 0.71 ± 0.07 1.56 ± 0.22 2.80 ± 0.38 0.43 ± 0.05 

LPI 0.81 ± 0.04 1.32 ± 0.16 2.28 ± 0.21 0.35 ± 0.03 

RBF 0.74 ± 0.06 1.61 ± 0.18 2.66 ± 0.35 0.41 ± 0.05 

 Vertical methane distribution 

R2 MAE RMSE NRMSE 

DIB 0.40 ± 0.22 3.27 ± 0.83 4.53 ± 1.13 0.41 ± 0.10 

EBK 0.80 ± 0.07 1.75 ± 0.25 2.63 ± 0.42 0.24 ± 0.04 

GPI 0.01 ± 0.02 4.51 ± 0.30 5.90 ± 0.33 0.53 ± 0.03 

IDW 0.58 ± 0.07 2.65 ± 0.13 3.92 ± 0.17 0.35 ± 0.02 

LPI 0.73 ± 0.07 1.97 ± 0.21 3.00 ± 0.36 0.27 ± 0.04 

RBF 0.58 ± 0.09 2.63 ± 0.15 3.85 ± 0.40 0.35 ± 0.03 
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Fig. 3.8. Methane concentration profiles in a horizontal plane of 300 m × 300 m 

depending on spatial interpolation methods: (a) DIB; (b) EBK; (c) GPI; (d) IDW; (e) 

LPI; (f) RBF; (g) EBK-standard error; and (h) LPI-standard error. The colors indicate 

methane concentrations. The concentrations are presented in relative values as they 

are the confidential data of Landfill S, South Korea. 
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Fig. 3.9. Methane concentration profiles in a vertical plane that was 50 m high and 

800 m long depending on spatial interpolation methods: (a) DIB; (b) EBK; (c) GPI; 

(d) IDW; (e) LPI; (f) RBF; (g) EBK-standard error; and (h) LPI-standard error. The 

colors indicate methane concentrations. The concentrations are presented in relative 

values as they are the confidential data of Landfill S, South Korea. 
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3.3.3 Methane distribution above landfill surface 

It was observed from field measurements that the atmosphere near the landfill 

surface contained methane from < 3 ppmv to a few tens of ppmv. Sample points with 

methane concentrations indistinguishable from the background were 56.2 % and 

85.7 % of the observations in the horizontal and vertical planes, respectively. 

Elevated concentrations (> 10 ppmv) were recorded at a small number of sample 

points (17.5 %) in the horizontal plane and at roughly half of the sample points 

(45.9 %) in the vertical plane. 

Given the model selection (Section 3.3.2), the estimated concentration profiles 

by EBK were analyzed in detail to investigate the methane distribution 

characteristics. In the case of the horizontal plane (Fig. 3.8b), some regions showed 

relatively high methane concentrations compared to other areas. The appearances of 

dense methane regions suggest that the proposed methane measurement system may 

successfully discriminate spatial heterogeneity in gas emissions. This supports the 

applicability of the system for hotspot identification. The detection of hotspots is a 

key issue for accurate LFG estimation, efficient LFG recovery, and utilization. 

Traditional approaches such as the flux chamber method impose heavy burdens on 

labor and budget for hotspot identification. The use of a rotary UAV may be a cost-

effective alternative. Locations of hotspots may possibly be identified by the 

proposed measurement system and reverse modeling, although the full description 

of the procedure is beyond the scope of this study. 

For the vertical concentration profile (Fig. 3.9b), intense methane regions were 

located at low elevations, potentially indicating methane plumes moving near the 
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ground. A plume centerline rises due to the buoyancy driven by the temperature 

difference and the momentum driven by the gas exit velocity (Briggs, 1984; Turner, 

1994). Assuming the relevant surface LFG flux and temperature for controlled 

landfills, the height of the rise is predicted to be approximately 1 m regardless of the 

downwind distance based on an equation by Turner (1994), and approximately 7 m 

at 150 m downwind based on an equation by Briggs (1984). Although the equations 

used are empirical and designed for a smoke plume from a stack, their comparisons 

provide meaningful outcomes. The prediction agrees with those observed in this 

study that the plume rise from the landfill surface was insignificant, emphasizing the 

importance of near-ground measurement. The next dense methane at a higher level 

may be attributed to the methane transported from upstream located sources. One of 

the commonly employed methods to estimate the total amount of fugitive gas is the 

downwind plume method. This method assumes that gas would largely transport 

along with the wind; as such the total gas emitted would pass through a vertical plane 

downstream of the landfill. To reduce uncertainties in this approach, the 

concentration variation should be measured upstream and downstream. Similar to 

the findings for the hotspot, a detailed description of the estimation of gas emission 

was not presented in this work but will be explored in our prospective study. 

3.4 Summary 

Many methods have been applied to monitor fugitive methane gas from landfills. 

Recently, there have been suggestions to use a framework utilizing an unmanned 

aerial vehicle (UAV) for landfill gas monitoring, and several field campaigns have 

proved that a rotary UAV-based measurement has advantages of ease of control and 
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high-resolution concentration mapping on the target planes. However, research on 

the evaluation of error-inducing factors in the suggested system is limited so far. This 

study prepared a measurement system with a lightweight methane detector and a 

rotary UAV to support the applicability of rotary UAV in landfill gas monitoring. 

Then, the validity of the system was tested experimentally and theoretically. In the 

detector reliability test, the methane detector had sufficient resolution for field 

application, and the critical UAV velocity required was obtained to ensure the 

credibility of the proposed measurement system. When spatial interpolators were 

applied to field data from the measurement system, the empirical Bayesian kriging 

demonstrated the best prediction of methane concentrations at unmeasured points. 

With the verifications provided in this study, this proposed method may contribute 

to reducing uncertainty in estimating fugitive landfill gas emission. 
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Chapter 4. Assessment of wind estimation using GPS/IMU 

data of a rotary UAV 

 

4.1 Introduction 

Information on wind is essential in quantifying gas emissions by mass balance 

approach. A common option is the tentative installation of an anemometer on a mast, 

in which the anemometer has to be portable and therefore there have to be some 

compromises in measurement accuracies. The accuracies can be aggravated in the 

course of a temporary installation because it can be hardly guaranteed that the 

sensors are placed at a certain height, in a certain direction. Another option is to refer 

to the wind data from verified weather stations, for example, a national 

meteorological monitoring station. Those data are highly reliable because their 

instruments are subject to be periodically examined and calibrated, but there is not 

always such a station near the site of interest. Besides, a common limitation of the 

two methods above is that they can measure wind only at a fixed height. 

Wind speed varies with height because of the surface friction that is often 

enhanced by buildings or vegetation. As typical gradient heights—which mean the 

heights above ground where surface friction has a negligible effect on wind speed—

are 457, 366, 274, and 213 m for a large city, suburb, open terrain, and open sea, 

respectively (Chen and Lui, 2005), there should be significant wind gradient below 

50 m heights regardless of the type of terrain. 

Ground-based remote sensing and weather balloons have been used to monitor 

meteorological variables over height. The employment of unmanned aerial vehicles 
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(UAVs) is an option to enable to effectively measure the changes with height. 

Although the development of UAVs technology has led to growth in meteorological 

sensors for UAVs mounting, wind sensors for UAVs are not as advanced as other 

meteorological sensors like temperature and pressure (Barbieri et al., 2019). That is 

because wind sensing adds a relative complexity in that it requires correcting the 

fuselage movement. UAV-based wind sensing techniques are classified into two 

types: direct and indirect methods. While wind sensors are mounted to a UAV in 

direct methods, indirect methods use the aircraft dynamics to estimate wind vectors. 

There is no consensus on which method is better. Donnell et al. (2018) showed that 

indirect methods provide better wind measurements in terms of error and bias 

whereas Barbieri et al. (2019) reported more consistent results with a direct approach. 

This work tried estimating wind vectors using GPS and IMU data of UAV 

flights, and compared them to the wind data recorded by ground-based mechanical 

anemometers, to refine the estimation procedure and determine which methods to 

choose depending on the purpose. 

4.2 Materials and Methods 

4.2.1 Wind estimation using GPS/IMU of UAV  

4.3.1.1 Apparatus 

GPS and IMU of a UAV leave records as a log file including the operator’s 

manipulation and the aircraft movement every 0.1 sec during flight. Records on the 

position, orientation, posture, and velocity of the aircraft were used to estimate wind 

speed and direction. Matrice 600 Pro (DJI, China) with the attachment for methane 
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measurement was used in this study.  

4.3.1.2 Theory 

The detailed estimation procedure was obtained by modifying the procedure 

suggested in Neumann et al. (2012). Throughout the procedure, directions are 

expressed as an angle between the direction of interest and the north, and the 

clockwise counts as the positive angle and vice versa. The method of wind estimation 

using GPS/IMU of UAV is based on the wind triangle (Fig. 4.1), in which an aircraft 

movement is determined by a driving force of the aircraft and a flow of the 

surrounding air:  

w = v + u            (4.1) 

where w is the ground vector, or the actual velocity; v is the flight vector, that is, the 

velocity expected with the airframe posture and no external airflow assumed, and u 

is the wind vector. 
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Fig. 4.1. The relationship between ground, flight, and wind vectors. 

 

w is known in forms of the northward speed, wx and eastward speed, wy in the flight 

log, and v is inferred from the aircraft posture, i.e. pitch, roll and heading direction. 

The pitch, θ stands for the longitudinal tilt that is positive with the aircraft tilted 

backward (Fig. 4.2a). The roll, φ stands for the lateral tilt that is positive with the 

aircraft tilted to the right (Fig. 4.2b). 

 

 

Fig. 4.2. The concept of pitch, θ (a) and roll, φ (b) of a UAV. The hexagon represents 
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a UAV advancing in the direction of the red arrow. 

 

In mathematical expressions, |v| is related to the extent of the total tilt, ψ while the 

direction of v, vdir is related to the upward normal vector to the rotors plane and the heading 

direction. The detailed procedure is described below: 

epitch = (cosθ, 0 -sinθ)           (4.2) 

eroll = (0, cosφ, -sinφ)           (4.3) 

𝒏 =
𝒆pitch×𝒆roll

|𝒆pitch×𝒆roll|
          (4.4) 

ψ = arccos(z · n)           (4.5) 

where n is the unit normal vector against the plane with propellers, and z is the unit 

vector in the direction of height or the z-axis. 

𝒏𝒙𝒚 =
(𝒆pitch×𝒆roll)𝑥𝑦

|(𝒆pitch×𝒆roll)𝑥𝑦|
          (4.6) 

𝜆 =  {
arccos(−𝒙 ∙ 𝒏𝑥𝑦)              (𝑛𝑦 > 0)

−arccos (−𝒙 ∙ 𝒏𝑥𝑦)          (𝑛𝑦 < 0)
        (4.7) 

where nxy is the unit vector of n onto the xy plane, ny is the y component of n, λ is the 

direction of total tilt, or the angular position of n on the xy plane, and x is the unit 

vector in the direction of the x-axis. 
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Fig. 4.3. The concept of total tilt, ψ (a) and direction of total tilt, λ (b) of a UAV. The 

hexagon represents a UAV advancing in the direction of the red arrow. 

 

vdir = δ + λ            (4.8) 

vx = |v| cos vdir           (4.9) 

vy = |v| sin vdir          (4.10) 

where δ is the heading direction, and vx and vy are the x and y component of v, 

respectively. Then, u can be obtained via the subtraction of the two vectors: 

u = w – v           (4.11) 

𝑢dir =

{
 
 

 
 
 90° − arctan (𝑢𝑥/𝑢𝑦)                  (𝑢𝑦 > 0)

 270° − arctan (𝑢𝑥/𝑢𝑦)                (𝑢𝑦 < 0)

 90°                                      (𝑢𝑥 > 0, 𝑢𝑦 = 0)

 270°                                    (𝑢𝑥 < 0, 𝑢𝑦 = 0)

      (4.12) 
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where udir is the direction of the wind vector. Practically, the wind direction at a 

moment is exactly opposite to udir as the wind direction commonly refers to the 

direction from which the wind blows.  

The unknown is the relationship between |v| and ψ, for which real experiments 

are required with a certain UAV. Theoretically, three types of forces are imposed on 

a flying UAV: gravitational force, thrust by propellers, and drag force.  

 

Fig. 4.4. Three types of forces imposed on a UAV flying to the left. 

 

Gravitational force = W         (4.13) 

Thrust = N ρ A va
2          (4.14) 

Drag force = C Ad sinψ ρ v2 / 2         (4.15) 

where W is the weight of the aircraft, N is the number of rotors, ρ is the air density, 

A is the area that a propeller covers, va is the downward airspeed driven by rotors, C 

is the drag coefficient, and Ad is the cross-sectional area perpendicular to the flying 
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direction. If a UAV moves forward at a constant speed, the net force would equal to 

zero in both vertical and horizontal axis:  

m g = N ρ A va
2 cosψ          (4.16) 

C Ad (sinψ + k cosψ) ρ v2 / 2 = N ρ A va
2 sinψ       (4.17) 

By considering most parameters constant with a certain instrument and a short time-

step, relationship between vd and ψ can be found as follows: 

𝑣 ∝ √
tan𝜓

sin𝜓+𝑘 cos𝜓
          (4.18) 

As more simplification, the thrust and the area under drag force could be additionally 

assumed as constant. Then, equation (4.18) comes into equation (4.19): 

𝑣 ∝ √tan𝜓           (4.19) 

As presented in Fig. 4.5, both equations (4.18) and (4.19) produce curves with 

minimal disagreement. It is readily expected from the curve form that a UAV would 

move faster with a higher tilt, but to varying extents. Neumann et al. (2012) showed 

a similar curve that was obtained by experiments—without any theoretical 

consideration. Their curve had less curvature than the theoretical result and was fitted 

to the increasing part of a convex quadratic function. It was also showed that the 

head orientation and payload do not make a significant difference in the curve. 
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Fig. 4.5. Theoretically expected relation between horizontal speed and tilt of a UAV. 

 

4.3.1.3 Data pretreatment 

As a constant flight velocity is assumed in Section 4.3.1.2, datapoints at moments 

with significant acceleration or direction change were excluded in wind estimation. 

When wind vectors were estimated without the data screening, there appeared 

extremely large vectors. Also, most of them showed abnormal directions, which 

accorded with the direction of inertia expected with acceleration or deceleration. 

Positioning and attitude data for each 0.1 s are available in a flight log, and their 

five-second averages were used for wind estimation to avoid excessive data load and 

to obscure the effects of immediate reactions of aircraft. Averaging directions like 

heading and flight directions requires cautions. For example, the arithmetic mean of 

10° and 350° is 180° that is just opposite of the given two directions. To avoid that 
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kind of failure in averaging directions, angle wrapping into an appropriate range, or 

conversion between polar and Cartesian coordinate systems was employed.  

 

 

Fig. 4.6. Excerpt of the MATLAB code run for data pretreatment in advance to wind 

vectors calculation. 
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Fig. 4.7. Excerpt of the MATLAB code for wind vectors calculation. 

 

4.2.2 Mechanical anemometers 

Meteorological data were obtained from two different sources using mechanical 

anemometers. Vantage Pro2 (Davis, USA) was temporarily installed on a three-

meter-high mast at target sites. Major instrumental specifications are known as 

follows: threshold, 0.4 m/s; resolutions, 0.1 m/s and 22.5°; and data display every 
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one minute. Another dataset was provided by Korea Meteorological Administration 

(KMA). Most specifications are very similar to those of our temporary anemometer, 

except for higher resolution (0.1°) in wind direction. 

4.2.3 Vertical wind gradient model 

The power law is known to have been firstly proposed by Hellmann (1919). It is the 

most commonly used model to describe vertical wind speed gradient owing to its 

simplicity. The log-linear law by Monin and Obukhov (1954) is a more theory-based 

one that is expressed as a function of the friction velocity, the roughness length, and 

the air stability. Because much information required to determine the parameters in 

the log-linear equation is not always available, we employed the power law when 

needed. The power law is expressed as follows: 

u = u0 (z/z0)
α               (4.20) 

where u and u0 are the wind speeds at z and z0 above ground, respectively, and α is 

the Hellman exponent.  

4.2.4 Comparative experiments 

4.2.4.1 Near-field comparison 

The temporary anemometer was installed at the edge of a roof at the Seoul National 

University (Seoul, Republic of Korea) and the UAV was flown at the same height 

and the distance < 150 m in December 2020 for a near-field comparison. During the 

experiments, the air temperature and pressure were 9.0–12 °C and 1,008.4–1,008.8 

bar. 
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Fig. 4.8. UAV flight trajectory (yellow line) and Davis installation position (red 

circle) for preliminary experiments on the Google satellite image. 

 

4.2.4.2 Field campaigns 

During field campaigns at a coastal area in Dangjin, the Republic of Korea, in May 

and October 2020, wind data were collected simultaneously from UAV, Davis, and 

KMA. A coastal area with sparse buildings was chosen where there would be a 

relatively consistent wind field. The topography of the site adjacent to the sea in the 

Northwest says that there would be a high possibility of a northwest wind, parallel 

to the sea breeze, during the day (Abbs and William, 1992). Davis was installed at 

the edge of a roof at approximately 10 m height when available, otherwise, on the 

top of a three-meter mast on the ground. UAV was flown at heights from 5 to 120 m 
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at distances < 500 m from the location of Davis. KMA provides meteorological data 

measured at 10 m height at the weather station approximately 10 km away from the 

site. 

 

 

Fig. 4.9. Wind measurement locations in the satellite image of the field campaign 

site. Yellow solid lines include flight trajectories of UAV, and red arrows on vertical 

sticks indicate the locations for Davis. 
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4.3 Results and Discussion 

4.3.1 Relationship between flight speed and tilt of UAV 

We tried to find out the relationship between the flight speed (|v|) and total tilt (ψ) of 

the aircraft using data collected by simultaneously operating the anemometer and 

UAV. The plot of |v| versus ψ confirmed an obvious trend in which |v| increases with 

larger ψ (Fig. 4.10). However, it was unexpected that the trend best follows a simple 

proportional relationship among the types of curves tested. The proportional, linear, 

power, and tangential equations were fitted to the data with adjusted R2 of 0.64, 0.52, 

0.17, and 0.40, respectively. The proportional form looked most suitable in Fig. 4.10 

as well.  

Theoretically expected upward convexity could not be found mainly due to the 

highly scattered data points. Difference in the sampling rate between the UAV and 

the anemometer is the principal contributor to the deviation. While wind and the 

airframe attitude constantly change, Davis can provide wind data only at one-minute 

interval. Additional factors include the reaction time delayed by the heavy airframe 

relative to rapidly changing wind. Neumann et al. (2012) presented the flight speed-

tilt curve with slight convexity and small deviations. It would have been possible 

because they conducted experiments with a much smaller UAV and air speed 

controlled in a wind tunnel. 
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Fig. 4.10. Flight velocity at varying tilt of the UAV resulted from near-field 

experiments with the UAV and Davis. 

 

4.3.2 Comparison of wind determined by UAV and anemometer 

Average wind speeds and directions determined by UAV and Davis in near-field 

experiments were summarized in Table 4.1. The average directions did not show a 

significant difference (p = 0.36). Average speeds differ with significance (p = 0.0016), 

which is contributed to the starting threshold of Davis. To be detected by a 

mechanical anemometer, wind need to be stronger than its threshold to overcome the 

physical friction. The first half of the experimental duration with wind not detected 

by Davis would be long enough to lower the average speed (Fig. 4.11a). This 
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speculation appears to make sense in that the average speeds were not statistically 

different (p = 0.21), when excluding the duration when wind was not detected by 

Davis. Therefore, it could be concluded that the two wind determination methods 

produce consistent results. Fig. 4.11 shows that trends in wind speed variation with 

time follow each other as well, which was also supported by the result of paired t-

test that the difference was statistically insignificant (p = 0.77). 

 

Table 4.1. Average wind determined by different determination methods in near-

field experiments. 

 For whole duration Excluding duration with zero wind by Davis 

Speed (m/s) Direction Speed (m/s) Direction 

Davis 0.5 239° (WSW) 1.0 239° (WSW) 

UAV 0.8 223° (SW) 1.1 251° (WSW) 

 

 (a)                               (b) 

  

Fig. 4.11. Time variance in wind speed (a) and wind direction (b) determined by 

UAV-based estimation and Davis anemometer. 
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It was observed that UAV-estimated wind vectors more strongly deviate (Figs. 

4.11 and 4.12). A hypothesis explaining the larger variation is that, despite of data 

screening against significant acceleration, acceleration in flight directions still could 

contribute to the estimated wind vectors. The UAV wind rose shows that the aspect 

of its spread out is consistent with the dominant flight direction (Figs 4.12b and. 4.8). 

This effect may be more noticeable due to weak wind field during the experiments. 

The hypothesis will be supported in the following section by comparing wind roses 

in different cases. Nevertheless, because acceleration took place to both directions 

during round-trip flight, the false components by acceleration would be cancelled 

out in averaging wind vectors to result in agreement in the average speed and 

direction. 

 

(a)                             (b) 

 

Fig. 4.12. Wind rose measured by Davis (a) and estimated by UAV-based method 

(b) in near-field experiments. 
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From the concurrent operations of the UAV and mechanical anemometer in near 

field, we achieved coherent average values, time variations, and distributions in both 

wind speed and direction. This says that the method of wind estimation using 

GPS/IMU data of UAV can replace a ground-based anemometer with a satisfying 

capability. 

4.3.3 Vertical wind gradient by UAV-assisted wind estimation 

Using the UAV-based wind estimation method, five-second-averaged wind speeds 

and directions were calculated from field campaigns. To explore vertical wind 

gradient, the wind estimates were grouped by heights at five- or ten-meter intervals. 

Box plots of wind speeds in Fig. 4.13 clearly evidence wind speed increasing with 

height. An exception is the case of 2020 0219 am (Fig. 4.13a), in which there is no 

statistical difference in mean wind speeds of different heights (one-way ANOVA, p 

= 0.080). In the whole field campaigns, 13 of 16 cases present significant wind 

gradient in terms of speed (Table 4.3).  
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Fig. 4.13. Wind speed at different heights and Hellman exponent, α: (a) 2020 0219 

am; (b) 2020 1021 am; (c) 2020 1021 pm; (d) 2020 1020 pm; (e) 2019 0416 pm; and 

(f) 2020 0218 pm. 

 

Hellman exponents range from a negative value up to 0.65 (Table 4.3). 

Compared to the typical values of Hellman exponent (Table 4.2), the exponents of 
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11 cases fall in a probable range for the coastal area with sparse habitation (0.09–

0.54). The values estimated in this study have comparatively wide range possibly 

because the typical Hellman exponents were suggested generally on the basis of long 

term average. Donnou et al. (2019) investigated month-averaged wind gradient at a 

coastal area by operating radiosonde at heights from 10 to 60 m for four years, and 

obtained Hellman exponent in a range of 0.10-0.25. Such a variability of Hellman 

exponent values that were acquired through16 measurements at the identical site also 

emphasize the importance of timely observing wind gradient. It would not be a good 

option to pick a typical parameter to simulate vertical wind gradient. 

 

Table 4.2. Typical values of the Hellman exponent depending on the location and 

air stability (Kaltschmitt et al., 2007). 

 

Unlike wind speeds, there was no difference in wind directions between 

heights in 10 of 16 cases (Table 4.3). Even when there was statistically significant 

difference, the deviation from the overall average direction rarely exceed 15°. 

 

Air stability Unstable Neutral Stable 

Open water 0.06 0.10 0.27 

Flat open coast 0.11 0.16 0.40 

Human inhabited area 0.27 0.34 0.60 
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Fig. 4.14. Wind direction at different heights: (a) 2020 0219 am; (b) 2020 1021 am; 

(c) 2020 1021 pm; (d) 2020 1020 pm; (e) 2019 0416 pm; and (f) 2020 0218 pm. 
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Table 4.3. Summary of wind estimation from field campaigns. 

Area Case T 

(°C) 

P 

(hPa) 

Cloud 

cover 

Average wind α p-value in ANOVA** 

  Speed* 

(m/s) 

Direction  Speed Direction 

Flat open 

coast 

2020 

0218 am 

0.5  1028.3  0.16  2.3  328.4° 

(NNW) 

0.12  2.26e-02* 1.01e-01 

2020 

0511 am 

18.6  1010.4  0.50  2.1  337.1° 

(NNW) 

0.07  2.37e-01 7.18e-03* 

2020 

1020 am 

19.6  1028.0  0.40  2.7  325.3° 

(NW) 

0.09  5.97e-01 2.93e-01 

Sparse 

buildings 

2019 

0416 pm 

20.0  1015.1  0.44  1.4  322.9° 

(NW) 

0.44  1.62e-05* 1.49e-01 

2019 

0830 am 

24.6  1009.6  0.35  2.2  306.2° 

(NW) 

0.65  2.58e-04* 5.24e-01 

2020 

0218 pm 

1.4  1028.0  0.16  1.0  314.2° 

(NW) 

0.54  1.92e-11* 5.64e-01 

2020 

0219 am 

4.5  1030.9  0.66  3.8  150.4° 

(SSE) 

0.05  7.97e-02 4.24e-01 

2020 

0219 pm 

7.6  1029.3  0.66  2.6  23.5° 

(NNE) 

0.01  2.38e-02* 2.97e-02* 

2020 

0220 am 

7.8  1034.8  0.40  2.1  355.7° 

(N) 

-0.26  6.02e-05* 1.75e-03* 

2020 

0220 pm 

9.8  1033.2  0.40  1.5  340.2° 

(NNW) 

0.25  8.59e-22* 4.81e-01 

2020 

0511 pm 

19.2  1007.9  0.50  1.6  280.5° 

(W) 

0.26  9.43e-05* 1.62e-02* 

2020 

0512 am 

16.9  1004.1  0.23  5.7  228.4° 

(SW) 

0.21  1.77e-07* 8.09e-01 

2020 

0512 pm 

17.6  1004.8  0.23  4.8  260.4° 

(W) 

0.18  3.36e-14* 2.36e-03* 

2020 

1020 pm 

18.4  1026.0  0.40  1.4  323.7° 

(NW) 

0.32  8.71e-05* 8.13e-01 

2020 

1021 am 

15.5  1021.1  0.84  2.3  154.4° 

(SSE) 

0.17  2.07e-11* 1.35e-02* 

2020 

1021 pm 

17.1  1017.3  0.84  2.6  146.5° 

(SSE) 

0.27  5.77e-18* 7.75e-02 
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* At 10 m height. 

** The null hypothesis, “all means are equal throughout heights,” was rejected at a significance level of 

0.05. 

4.3.4 Correlation analysis 

Relationships between multiple variables from the field campaigns were 

investigated to acquire some insights (Fig. 4.15). A strong correlation was found in 

cloud coverage versus wind direction. The day with low to moderate cloud coverage 

tended to have wind blown from the Northwest, which is understandable based on 

the terrain and the principle of sea breeze. Weak correlations involving cloud 

coverage may support that with less cloud or northwest wind, there would be higher 

probability of larger Hellman exponent, and significant height-dependency in wind 

speed but not in wind direction, which altogether agree with conditions of stable 

atmosphere with less turbulence. In that these correlations are in line with the well-

known theories pertaining to atmospheric dynamics, they add an indirect evidence 

to validate the wind estimation method. 

As another strong correlation, the positive correlation between two p values of 

ANOVA testing time variability in wind speed and direction would imply that both 

speed and direction are likely to vary with time when there is significant time 

variability in wind field. In the light of a weak but meaningful correlation between p 

values of ANOVA testing wind speed difference relative to time and height, it could 

be said that a change in wind speed over time would have contributed to the speed 

difference by height in some cases. In other words, the wind estimation method 

cannot distinguish time effects and position effects, which may be a limitation of the 

method. Still, the influence of the limitation can be minimized through the short 

duration of a single measurement. 
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Fig. 4.15. Correlation plots and coefficients between variables from field campaigns. 

 

4.4 Summary 

A wind estimation procedure using GPS and IMU data of UAV flights was evaluated 

in near-field comparative experiments and a series of field campaigns. The near-field 

experiments showed that the procedure produced wind estimates comparable to the 
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wind parameters measured by a mechanical anemometer. Field campaigns and 

following analysis demonstrated advantages and a disadvantage of the method. It 

was able to offer wind estimates at multiple heights in contrast to a fixed anemometer. 

Estimated parameters accounting for vertical wind gradient in terms of speed and 

direction fell in reasonable ranges, and correlations between estimates made sense 

in view of air dynamics. Also, the observation that the extent of wind gradient varied 

by cases suggests that direct observations of wind at multiple heights is essential for 

identifying a vertical wind profile It is a limitation that the method is vulnerable to 

time variance, but it can be lessened by taking a minimal time for a single 

measurement. When wind record, especially including vertical profile, is required 

but there is no appropriate condition for an anemometer installation, UAV-based 

wind estimation will be a good alternative. This opinion is reinforced in the current 

situation where UAVs are widely employed for airborne measurement or remote 

sensing. 
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Chapter 5. Quantification of methane emission: Field 

applications and uncertainty analysis 

 

5.1 Introduction 

With the development of technology in unmanned aerial vehicles (UAVs), the use of 

UAVs in gas monitoring has recently been proposed as an up-shooting technology 

(Kersnovski et al., 2017; Rossi and Brunelli, 2015). Allen et al. reported examples 

of successful LFG measurement employing UAVs (Allen et al., 2014; Allen et al., 

2019; Allen et al., 2016), where they measured carbon dioxide concentrations using 

a fixed-wing UAV. Then, these concentrations were converted to methane 

concentrations based on an empirical relationship between the compositions of the 

two gases. A potential to use the rotary wing UAV in LFG emissions monitoring was 

tested by Fjelsted et al. (2019) and Shah et al. (2019). Fjelsted et al. (2019) conducted 

a field study to screen LFG emission hotspot using a thermal infrared camera 

mounted on a rotary UAV. Shah et al. (2019) showed the applicability of rotary UAV-

based platform conveying air samples from 24 ± 3 m above the ground to a gas 

analyzer on the ground through the 150 m long tubing. The sampling method using 

tubing connected with a UAV was restricted to a space scale due to the connected 

tubing length. The limited spatial coverage for a single flight leads to temporal 

discontinuity between flight missions. 

A UAV-mounted detector is able to extend the area of coverage for methane 

measurements in a single flight; this may enhance the degree of freedom in data 

acquisition. However, the applicability of direct methane measurement in the air 
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using a UAV-mounted detector has not been fully assessed despite this potential. 

Recently, (Shah et al., 2020) tested a prototype analyzer carried by a UAV in exterior 

experiments with controlled methane emissions. They calibrated the analyzer in the 

laboratory and reported that the tested instrument yielded successful results in 

estimating emission. To promote this relatively new method, there is a need for 

successful showcases. We had multiple field trials in which the rotary UAV-based 

measurement system and wind estimation method evaluated in Chapters 3 and 4 

were deployed around a landfill site to quantify the methane emission rates. 

Uncertainty analysis was accompanied to assess the accuracy inherent to this 

methodology, and the results will demonstrate the advantages and challenges of 

applying the methodology. 

5.2 Materials and methods 

5.2.1 Apparatus 

5.2.1.1 Methane measurement system 

Methane concentration was measured using a semiconductor-type real-time gas 

detector (Testo Gas Detector, Testo SE & Co. KGaA, Germany), and the Matrice 600 

Pro (SZ DJI Technology Co., Ltd, People’s Republic of China) was used for airborne 

methane monitoring. The specifications of the detector and UAV are summarized in 

Table 3.1. During flight missions, the detector was attached to the UAV, and detector 

readings were recorded by an installed camera. Readings from flights were corrected 

to account for response time. 

The detector was placed at the center, 340 mm below the aircraft. There are a 
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couple of options for the detector placement to minimize the effects of rotor 

turbulence. To place a detector or an air inlet outside the range of the rotor turbulence 

could be ideal options, but those options require compromises in terms of flight 

instability or response time. Another option is the center above or below the aircraft. 

Guo et al. (2020) showed through CFD analysis and experimental verification that 

air turbulence is insignificant at the centerline just above and below an aircraft in 

hover. 

5.2.1.2 Weather data acquisition 

Weather data were obtained from the opened database of the Korea 

Meteorological Administration for the early field campaigns. For the rest campaigns, 

a weather station (Vantage Pro2, Davis, USA) was temporarily installed within the 

site. Wind speeds and directions were estimated using GPS and IMU data of UAV 

flight logs. The estimation method takes advantage of the difference between the 

velocity expected from aircraft thrust and the actual velocity at a moment. The details 

were discussed in Chapter 4. 

5.2.2 Field campaigns 

5.2.2.1 Site description 

Field campaigns were conducted around the Dangjin-si Resource Circulation Center, 

Dangjin, Republic of Korea. It has multiple potential methane sources in and around 

it: the first landfill cell (Fig. 5.1a), landfill leachate reservoirs (Fig. 5.1b), the second 

landfill cell which is roof-covered (Fig. 5.1c), a food waste treatment facility (Fig. 

5.1d), and a manure treatment facility (Fig. 5.1e) inside the center, and paddy fields 

around it. Among them, the first landfill cell and the leachate reservoirs were the 
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methane sources to quantify the emissions. The second landfill cell was not 

considered, because it has not been received wastes for landfilling. The food waste 

facility and the manure facility were also excluded. It is expected that emissions from 

adjacent paddy fields are insignificant relative to those from the landfill, considering 

their emission rates of 2-6 kg/ha/day estimated using the IPCC guideline and 

country-specific factors of Korea. The overall topography is a flatland adjacent to 

the sea in the Northwest. The first landfill cell is a four-hectare managed landfill with 

passive vents and leachate collection system. It had received municipal solid waste 

from 2000 to 2014, and afterwards, it has been used for disposal of minimal amounts 

of some incombustible waste.  

 

 

Fig. 5.1. Satellite image of the site. A first landfill cell (a) and leachate reservoirs (b) 
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were the methane source of interest. Another landfill cell (c), food waste treatment 

facility (d), and manure treatment facility (e) were excluded. 

5.2.2.2 Measurement missions 

We conducted 13 field campaigns at the site: once each in April and August, 2019; 

five times in February, 2020; and three times each in May and October, 2020. 

Methane concentrations were collected throughout virtual, vertical measurement 

planes at the upstream and downstream of the target sources. Configurations of the 

planes, measuring platforms, height spacings, and other practical details were 

adjusted at the site depending on wind direction, physical obstacles, and UAV battery 

time. When possible, the measurement planes were placed normal to the wind 

direction, and methane was measured at heights from 5 to 100 m with UAV systems, 

and on ground with the same detector on a vehicle. The UAV was driven faster than 

10 m/s to avoid influences of rotor downwash according to the recommendation in 

Chapter 3. Height spacings were 5 m at low heights and increased up to 20 m near 

the upper boundary. The intention of such arrangements was not to lose plumes that 

were expected to pass lower heights rather than elevated heights. 

5.2.3 Computational methods 

5.2.3.1 Methane emission 

Methane emission rates were computed on the basis of the mass balance.  

Emission  = Outflow – Inflow         (5.1) 

Out/inflow  = ∫ ∫ 𝑢(ℎ) 𝐶(𝑥, ℎ) 𝑑𝑥 𝑑ℎ
𝑥2
𝑥1

𝐻

0
        (5.2) 
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Out/inflow ≈ ∑ 𝑢𝑖𝐶𝑖∆𝑥∆ℎ 
𝑛
𝑖=1          (5.3) 

where h is the height above ground (L), H is h at the upper boundary of a 

measurement plane (L), x is the distance in the direction perpendicular to the wind 

direction (L), x1 and x2 are x at the both boundaries (L), u(h) is the wind speed at the 

height h (LT-1), C(x, h) is the methane concentration enhancement at the distance x 

and the height h, n is the number of area elements with the width x and the height 

h in a measurement plane, and ui and Ci are the wind speed and the methane 

concentration enhancement in the ith element, respectively. The unit of computed 

emission and out/inflow is L3T-1 or MT-1 depending on the unit of C(x, h) and Ci 

(unitless or ML-3). 

5.2.3.2 Uncertainty analysis 

An error propagation model was used to compute uncertainties in estimated methane 

emissions. For the ith area element with the lateral length x and the vertical length 

h, the uncertainty σi was defined as follows: 

σi = (σu,i
2 Ci

2 + ui
2 σC,i

2)1/2 x h          (5.4) 

σi = (σu1,i
2 Ci

2 x1
2 + σu2,i

2 Ci
2 x2

2)1/2 h + (ui
2 σC1,i

2 + ui
2 σC2,i

2)1/2 x h    (5.5) 

where σu,i and σC,i are wind variation and error in methane enhancement, respectively, 

σu1,i and σu2,i are wind variations in south-north direction and east-west direction, 

respectively, x1 and x2 are the lengths projected from x to east-west and south-

north planes, respectively, and σC1 and σC2 are errors in methane detection and 

interpolation of measured concentrations, respectively. As the amount of total 

methane flow through a vertical measurement plane equals to the sum of all elements, 
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the total uncertainty σ is expressed as follows: 

𝜎 = (∑ 𝜎𝑖
𝑛
𝑖=1 )1/2           (5.6) 

5.3 Results and discussion 

5.3.1 Methane captured on the measurement planes 

Of 13 field campaigns at the Dangjin-si Resource Circulation Center, nine campaigns 

were analyzed to compute methane emissions and uncertainties. In the rest four cases, 

it turned out that the measurement configurations were not properly selected, given 

the wind direction, and the measurement planes seem unlikely to have included the 

plume to measure. It can occur when wind direction alters with time, or when wind 

is so weak that it is difficult to find average wind direction. Statistical tests evidence 

that there were significant variations in wind direction during measurements in four 

of the five exclusions (ANOVA, p < 0.05). 

Fig. 5.4 shows the measurement configuration, wind direction, and methane 

flux computed on the downstream plane from the eight field campaigns. As the site 

is adjacent to the sea on its northwest side, northwest wind was dominant at most 

days. Methane flux through the measurement planes was computed and analyzed 

first, and Fig. 5.2 shows the flux on the downstream planes. Methane plumes were 

generally detected near ground (h < 20 m). Only in the case of 2020 0512am, there 

was a plume at approximately 50 m height (Fig. 5.2(e)), which was attributed to a 

plume rise with moving distance from the suspected emitter. Although it is 

theoretically expected considering the emission rate and gas temperature (Briggs, 

1984; Turner, 1994) that the plume rise would not exceed 1 m above the passive 
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vents in landfills, our results evidenced that the plume ascended with the moving 

distance. Looking at patterns in multiple campaigns, it is likely that the plumes 

detected at higher heights would originated from exterior sources. 

There was detectable methane also on the upstream measurement planes, 

usually near ground (data not shown). However, analogous plumes were never found 

on the downstream planes, therefore, the methane flux on the upstream planes was 

not considered in computing emissions, dislike described in Equation 5.1. It may be 

a possible explanation that the plumes captured at upstream ascended over the upper 

boundary of the downstream planes, or dispersed when they reached to the 

downstream planes so that the resulting enhancement was not detectable by the given 

instruments. This does not suggest that it is not necessary to conduct missions at 

upstream. Fig. 5.3 shows an example of preliminary measurements in which a large 

plume in the middle appeared both at the upstream and downstream. The plume 

would have been lifted by over 20 m so that the downstream measurement could 

capture no more than half of it. A comparison of flux computed for the plume showed 

that 44 % of the plume were captured by the downstream plane. In such a case, it is 

crucial to subtract the inflow from the outflow, otherwise, exterior methane flux 

would account for a significant portion of the computed emission estimate, resulting 

in overestimation. 
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Fig. 5.2. Methane flux at downstream measurement plane at (a) 2019 0416 pm; (b) 

2019 0830 am; (c) 2020 0218 pm; (d) 2020 0220 pm; (e) 2020 0512 am; (f) 2020 

1020 pm; (g) 2020 1021 am; and (f) 2020 1021 pm. 
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Fig. 5.3. Methane flux from preliminary flights where a single plume appeared at 

both the upstream (a) and downstream (b) measurement planes. 

 

Overlaying a graph of height-integrated methane flux on the map with the wind 

direction marked helped to guess where detected methane plumes would have flowed 

out from (Fig. 5.4). It appears that the food waste treatment facility often emitted 

considerable amounts of methane. Because the emitter is located right next to the 

landfill (the distance between borders ~20 m), it was difficult to decompose the 

plumes from the two sources. Still, it was possible, which would not have been 

possible with advanced but heavy (> 10 kg) gas analyzer. The ability to approximate 

the source of each distinct plume partly justifies our choice to have compromised the 

accuracy of the gas detector to obtain two-dimensional flux mapping through a 

virtual vertical plane.  
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(a) 

 

(b) 

 

Fig. 5.4. Flight trajectory (yellow lines), wind direction (cyan broken lines), and 

integrated methane flux on the downstream measurement plane at (a) 2019 0416 pm; 

(b) 2019 0830 am; (c) 2020 0218 pm; (d) 2020 0220 pm; (e) 2020 0512 am; (f) 2020 

0512 pm; (g) 2020 1020 pm; (h) 2020 1021 am; and (i) 2020 1021 pm. 
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(c) 

 

(d) 

 

Fig. 5.4. Flight trajectory (yellow lines), wind direction (cyan broken lines), and 

integrated methane flux on the downstream measurement plane at (a) 2019 0416 pm; 

(b) 2019 0830 am; (c) 2020 0218 pm; (d) 2020 0220 pm; (e) 2020 0512 am; (f) 2020 

0512 pm; (g) 2020 1020 pm; (h) 2020 1021 am; and (i) 2020 1021 pm. (continued) 
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(e) 

 

(f) 

 

Fig. 5.4. Flight trajectory (yellow lines), wind direction (cyan broken lines), and 

integrated methane flux on the downstream measurement plane at (a) 2019 0416 pm; 

(b) 2019 0830 am; (c) 2020 0218 pm; (d) 2020 0220 pm; (e) 2020 0512 am; (f) 2020 

0512 pm; (g) 2020 1020 pm; (h) 2020 1021 am; and (i) 2020 1021 pm. (continued) 
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(g) 

 

(h) 

 

Fig. 5.4. Flight trajectory (yellow lines), wind direction (cyan broken lines), and 

integrated methane flux on the downstream measurement plane at (a) 2019 0416 pm; 

(b) 2019 0830 am; (c) 2020 0218 pm; (d) 2020 0220 pm; (e) 2020 0512 am; (f) 2020 

0512 pm; (g) 2020 1020 pm; (h) 2020 1021 am; and (i) 2020 1021 pm. (continued) 
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(i) 

 

Fig. 5.4. Flight trajectory (yellow lines), wind direction (cyan broken lines), and 

integrated methane flux on the downstream measurement plane at (a) 2019 0416 pm; 

(b) 2019 0830 am; (c) 2020 0218 pm; (d) 2020 0220 pm; (e) 2020 0512 am; (f) 2020 

0512 pm; (g) 2020 1020 pm; (h) 2020 1021 am; and (i) 2020 1021 pm. (continued) 

 

5.3.2 Methane emission rates 

In spite of difficulties in decomposing plumes, the methane emission rates from the 

landfill cell were determined by integrating methane flux in the carefully selected 

ranges of x and h. As presented in Table 5.2, the estimated methane emissions range 

in 406.4–3,640 kg/ha/day, except for the case of 2020 0218pm. The exception will 

be discussed further in the following section, not in this section. It should be noted 

that in the case of 2020 0512 pm, only a third of area was included by the downstream 

measurement plane (Fig. 5.4f). With a correction factor explaining the ratio of 
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covered area, the estimated emission rate fell in the range of the rest estimates. 

However, such correction is not recommended, because it assumes homogeneous 

emission—which is hardly true for landfills. 

Modeling with the first order decay model in IPCC guidelines (IPCC, 2006, 

2019) gave the estimated methane emission of 1,515 and 1,442 kg/ha/day for the 

year 2019 and 2020, respectively. The amounts of waste disposed in the landfill were 

mostly obtained from the Statistics Korea. IPCC default values of model parameters 

were mostly adopted while two parameters were chosen considering the condition 

of the landfill: k = 0.05 (country-specific) (Korea Ministry of Environment, 2014); 

F = 0.5; MCF = 0.5 (IPCC value for managed well, semi-aerobic site); DOC = 0.09; 

DOCF = 0.5; OX = 0.1. Another estimate is 845 kg/ha/day, which is based on 

monitoring data reported in Sudokwon Landfill Site Management Corporation 

(2019). It should be noted that this estimate was obtained by averaging all methane 

flows through surface emission, passive vents, and gas recovery system. It seems 

reasonable to include gas flows through passive vents and gas recovery system to 

compare to the estimates in this study, because our method would measure all 

fugitive methane regardless of the pathway, and the landfill in the Dangjin-si 

Resource Circulation Center does not have gas recovery system. 

The methane emission rates computed in this study vary within but an order of 

magnitude, and are comparable to the emission rates acquired from other methods. 

Except for 2020 0218pm, our estimates equal to 0.3–2.4 times of the value from the 

IPCC modeling, and 0.5–4.3 times of the average of the Sudokwon Landfill. 

Considering that the extensive temporal variability of fugitive emission from 

landfills—up to two orders of magnitude difference—is very common (Gonzalez-
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Valencia et al., 2021; Zhang et al., 2013), and that the IPCC model is used to compute 

year-round emission, not the value at a certain point of time, the difference between 

our estimates, and that between our estimates and estimates by other methods is 

highly likely to originate from the actual variation with time. In other words, our 

results provided another piece of evidence for temporal variability of methane 

emissions from landfills, which again emphasizes the importance of frequent field 

measurements to get closer to the true values. 

Methane concentrations at the plume center were calculated by means of the 

Gaussian dispersion model with parameters chosen based on the estimated emission 

rates and record on the meteorological conditions. As a result, Fig. 5.5 shows that 

the differences between measured and Gaussian-simulated concentrations at the 

plume center did not exceed twice. Exact comparisons may be inappropriate, because 

gas transport from an area source or a combination of several hotspots cannot be 

approximated to that from a point source that the dispersion model used here assumes. 

The difference between a point and non-point sources explains the results that the 

measured concentrations were lower than the modeled concentrations in most cases, 

and that there was a relatively small plume observed at downstream planes—which 

could be attributed to a single hotspot—in the two cases with the smallest difference 

between measured and modeled values. It is believed that a little weak but clear 

agreement in this comparison supports the validity of the measurement method.  
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Fig. 5.5. Maximum CH4 concentrations at downstream measurement planes: 

measured at site and simulated by the Gaussian dispersion model. 

 

5.3.3 Uncertainties in emission estimates 

Uncertainty was calculated for each value of emission estimate. Standard errors from 

calibration curves of methane detector were used as σC1,i, thereby, computed 

uncertainties can account for errors produced by the randomness in instrumental 

response, and the limited resolution. For σC2,i, standard errors from krigging were 

adopted to count uncertainties created by spatial interpolation. Wind variations are 

also a critical uncertainty. Wind variations include time- and height-dependency, 

which the use of standard error from vertical wind profile could encompass. Dealing 

separately with northward and eastward components of wind vectors allowed of 

explaining changes in both speed and direction. 

Computed uncertainties were 3.5–17.3 % of estimated methane emissions, still 

with an exception of 2020 2018pm (Table 5.2). There was not a common 
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predominant factor of uncertainty. Even though interpolation was the most powerful 

contributor in most cases (1.8–9.5 %), wind and detection uncertainties were 

dominant factors for 2019 0416 pm and 2020 0512 am, respectively. Such a 

difference may be brought about by weather and gas transport varying every event. 

The case of 2019 0416 pm had the largest wind variation among all the cases in 

uncertainty analysis, providing an explanation for the large uncertainty related to 

wind. In the case of 2020 0512 am, methane enhancements were very low (< 5 ppmv) 

throughout the downstream measurement plane due to high wind speed. With low 

concentrations, errors in methane detection is bound to be high relative to the 

concentration range.  

Large detection uncertainty of 2020 0512 am arising from strong wind is the 

opposite case, demonstrating that there would be an upper limit of wind speeds as 

well as the lower limit. An upper limit of wind speeds in this respect would be 

determined by methane emission rate from the source, the extent of gas mixing in 

the atmosphere, and the detection limit of gas analyzer. Applying the Gaussian 

dispersion model for our cases, the downstream measurement plane has to be located 

no further than 200 m downwind with 5 m/s wind in unstable atmosphere. Also, there 

is the maximum wind speed to secure UAV operation, and therefore, the lower value 

of two maximum speeds will be the practical upper limit of wind speeds.  
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Table 5.1. Maximum downwind distance of a measurement plane from the source, 

which was simulated by the Gaussian dispersion model supposed 3,600 kg/day 

emission rate and the given measurement unit. 

Wind speed 

(m/s) 

Pasquill stability 

A B C D 

1.5 250 370 - - 

2.0 220 320 > 500 - 

3.0 180 260 410 > 500 

4.0 - 220 350 > 500 

5.0 - 200 310 > 500 

 

Large uncertainty by overall low methane also explains the results of 2020 

0218pm. Here, the uncertainty exceeded the estimated emission rate, which, in fact, 

means that our methodology could not detect the emission. It was speculated, at first, 

that wind was too weak to bring sufficient amounts of methane to the downstream 

plane, because there was the weakest wind among all the series of field campaigns. 

This is an example that showed the most critical limitation of downwind plume 

methods. Downwind plume methods are valid only when advective gas transport 

overwhelms diffusive transport, in other words, they require wind stronger than a 

certain speed. Bourn et al. (2017) recommended wind speeds greater thane around 2 

m/s as a consideration for the UAV mass balance method.  

Mathematical simulations with different wind speeds implied that there would 

be the lower limit of wind speed. A term explaining longitudinal dispersion—parallel 

to the wind direction—was added to the typical three-dimensional advection-

dispersion model, and dispersion coefficients were selected based on the coefficients 

of the successful campaigns. Looking at the shape of plumes in Fig. 5.6, it is evident 
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that it is hard to neglect the longitudinal dispersion with the wind of 1 m/s. Especially, 

near-field measurements are sensitive to the longitudinal dispersion, which is the 

case of our measurement condition as well as the simulation. Although most 

dispersion models neglect the longitudinal dispersion, there has been assertion 

forward its importance (Arya, 1995).  

Nevertheless, the failure and large uncertainty could not be attributed to weak 

wind, because the simulation showed that, even with such weak wind, methane 

should have been detected in dozens of ppmv at downstream (Fig. 5.6). Instead, it 

was found that there was a considerably large area without samplings at the 

downstream plane. As the area was direct downwind of the emitter of interest, and 

at low heights that was highly likely to include the plume, it seems that we missed 

the plume between the sampling grid. Experiencing this case left another practical 

message: Similar circumstances may occur depending on physical obstacles, piloting 

proficiency, wind direction, arrangement of measurement planes, etc., thus, results 

should be scrutinized step by step, out of the routine data processing, to ensure proper 

quantification of emissions. 
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Fig. 5.6. Methane concentrations at steady state simulated by advection-dispersion 

model with different wind speeds. 

 

This study could not completely consider the following potential error-inducing 

factors in the computation of uncertainties: detector response rate, GPS positioning, 

and peaks deconvolution. The methane detector used in this study presented quick 
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responses with a gradual change in methane concentrations, and the response time 

was corrected as mentioned in Section 5.2.1.1. However, it was observed that the 

responses were delayed to a greater extent when it encountered rapid changes. 

Response time depending on the rate of change needs to be quantified and corrected, 

which could not be achieved in this study. GPS positioning can involve a systematic 

error of GPS sensors, and errors occurring in the process of synchronizing 

positioning data and methane records. Those errors associate with detector response 

rate and GPS positioning are expected to have little impact on the overall uncertainty. 

That is because they would be largely compensated or eclipsed by means of denser 

measurement grids and appropriate spatial interpolation, and will definitely be 

lessened with the application of improved sensors in the future. It is peaks 

deconvolution that is thought would significantly add uncertainty. As the study site 

has multiple methane sources besides a landfill, we tried decomposing plumes 

manually based on suspected sources. It could not be suggested for now how much 

difference other options for peaks deconvolution would make in the estimated 

methane emissions. 
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Table 5.2. Weather data and estimated methane emissions from successful field campaigns. 

 
Weather Emission rate 

(kg/ha/day) 

Uncertainty in emission rate (%) 
 

T (°C) P (hPa) Cloud Wind speed* 

(m/s) 

Wind 

direction 

Total Detection Interpolation Wind 

2019 0416 pm 20.0 1,015.1 0.44 1.40 NW 3,560.0    3.51 0.76 1.81 2.91 

2019 0830 am 24.6 1,009.6 0.35 2.24 NW 3,640.0  3.85 0.89 2.91 2.35 

2020 0218 pm  1.4 1,028.0 0.16 1.00 NW 1.4  850.00 847.00 60.57 32.36 

2020 0220 pm  9.8 1,033.2 0.40 1.46 NNW 457.0  10.38 2.90 9.54 2.89 

2020 0512 am 16.9 1,004.1 0.23 5.73 SW 406.4  17.27 16.76 4.10 0.75 

2020 0512 pm 17.6 1,004.8 0.23 4.80 W 1,685.2 22.73 13.23 13.24 12.90 

2020 1020 pm 18.4 1,026.0 0.40 1.38 NW 905.5  4.74 1.81 4.19 1.28 

2020 1021 am 15.5 1,021.1 0.84 2.28 SSE 705.3  5.64 3.32 4.36 1.30 

2020 1021 pm 17.1 1,017.3 0.84 2.56 SSE 934.8  5.74 3.00 4.83 0.78 

* At 10 m height. 
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5.4 Summary 

We tried 13 field campaigns to collect actual data of wind and methane concentration 

around a waste landfill. Except for five cases in which vertical measurement planes 

were placed in the wrong way relative to the average wind direction, data from eight 

campaigns were analyzed to estimate methane emission rates based on downwind 

plume method and mass balance. The estimates fall in a reasonable range compared 

to the estimate by the IPCC guidelines and the reported emissions of a larger well-

managed landfill in Korea. Only a campaign failed to provide a reliable estimate, 

which was attributed to weak wind. Uncertainty analysis was accompanied to 

quantify uncertainties caused by detection errors, interpolation errors, and wind 

variations. The total uncertainties were below 6 % for five cases, and below 18 % 

for two cases. It is expected that introduction of improved gas analyzer will be able 

to greatly lessen the uncertainties of this methodology in the near future. Plumes 

deconvolution that could not be reflected in the uncertainty analysis in this study is 

an important challenge for follow-up studies. 
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Chapter 6. Conclusions 

 

As an efficient and reliable method is required to quantify methane emissions from 

waste landfills, this work proposed and assessed the methodology using UAV-based 

plume measurement and mass balance.  

A measurement system was composed of a lightweight methane detector and a 

rotary UAV, and the validity of the system was tested experimentally and 

theoretically. In the detector reliability test, the methane detector showed sufficient 

resolution for field application, and the detection error was evaluated to compute the 

uncertainty in emission estimates propagated from detection error. While a 

theoretical examination told that the impact of air flow on the detection is negligible, 

the stability against vibration during flight, and response rate of the detector are the 

potential error-inducing factors that this work has not completely tackled. However, 

their entailing uncertainty is to be lessen with the rapid development of light, high 

performance sensors in the near future.  

Positioning accuracy of the UAV is thought to be a comparatively minor 

contributor to uncertainty, because the UAV uses three sensors simultaneously, and 

the great number of sampling points helps reduce the uncertainty. The turbulence 

induced by the rotors has an insignificant influence on overall concentration fields 

due to its small scale in terms of time and space. Instead, the turbulence can make a 

noticeable change in concentration fields close to the airframe. In this regard, the 

critical UAV velocity and the detector placement were determined to ensure the 

credibility of the proposed measurement system.  
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When spatial interpolators were applied to field data from the measurement 

system, the empirical Bayesian kriging demonstrated the best prediction of methane 

concentrations at unmeasured points. A tight grid design was applied to reduce 

uncertainty, but the error resulting from the inevitable discontinuity was included in 

the interpolation uncertainty. 

A wind estimation procedure using GPS and IMU data of UAV flights was 

evaluated in near-field comparative experiments and a series of field campaigns. The 

near-field experiments showed that the procedure produced wind estimates 

comparable to the wind parameters measured by a mechanical anemometer. Field 

campaigns and following analysis demonstrated advantages and a disadvantage of 

the method. It was able to offer wind estimates at multiple heights in contrast to a 

fixed anemometer. Estimated parameters accounting for vertical wind gradient in 

terms of speed and direction fell in reasonable ranges, and correlations between 

estimates made sense in view of air dynamics. Also, the observation that the extent 

of wind gradient varied by cases suggests that direct observations of wind at multiple 

heights is essential for identifying a vertical wind profile It is a limitation that the 

method is vulnerable to time variance, but it can be lessened by taking a minimal 

time for a single measurement. The UAV-based wind estimation can be a good option 

in our application that employs a UAV for airborne measurements and requires 

vertical wind profiles. Furthermore, by fully tracking the wind variability with both 

time and height with the wind estimator, we were able to quantify the resulting wind 

uncertainty. 

We tried 13 field campaigns to collect actual data of wind and methane 

concentration around a waste landfill. Except for four cases in which vertical 
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measurement planes were placed in the wrong way relative to the average wind 

direction, data from nine campaigns were analyzed to estimate methane emission 

rates based on downwind plume method and mass balance. The estimates fall in a 

reasonable range compared to the estimate by the IPCC guidelines and the reported 

emissions of a larger well-managed landfill in Korea. Only a campaign failed to 

provide a reliable estimate, which was attributed to weak wind. Uncertainty analysis 

was accompanied to quantify uncertainties caused by detection errors, interpolation 

errors, and wind variations. The total uncertainties were below 6 % for five cases, 

and below 23 % for three cases. It is expected that introduction of improved gas 

analyzer will be able to greatly lessen the uncertainties of this methodology in the 

near future. Plumes deconvolution, which could not be reflected in the uncertainty 

analysis in this study, is an important challenge for follow-up studies. 

The strategies for properly applying the proposed methodology were 

summarized as follows: 

1) The wind speed must be above the lower limit to satisfy the assumption that 

the advection is predominant. The limit could not be specified in this study, 

but is estimated to be between 1.0-1.4 m/s. 

2) The downstream measurement plane should be carefully determined 

considering the wind direction as well as the maximum distance determined 

by mathematical simulation. 

3) The airspeed should exceed 10 m/s, which is specific for the equipment used 

here. 
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4) It is necessary to consider the vertical wind gradient. 

5) The existence of other methane sources nearby requires source 

apportionments of the measured plumes. 

6) Denser samplings at lower altitudes are preferable not to miss the plumes of 

interest. 

7) It is a good option to operate multiple UAVs simultaneously. 

The first five strategies are the essential cautions, while the rest two messages are 

recommendations to further reduce uncertainty. 
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국문 초록 

 

폐기물 매립지에서 탈루 메탄 배출량을 산정하기 위해 사용되는 여러 

방법들 중, 최근 무인항공기(unmanned aerial vehicle, UAV)를 

활용하는 방법이 제안되었다. 회전익 UAV가 조종이 쉽고 고해상도 

측정이 가능하다는 장점이 있어 매립지에서 측정을 수행하기에 적합해 

보이나, 폐기물 매립지에서 발생하는 메탄 배출량을 산정하기 위해 

회전익 UAV의 활용하기에는 아직까지 연구가 부족한 상황이다. 이에 

본 연구는 현장 측정 및 데이터 처리 절차를 개발하고, 잠재적 오류 

요인을 평가하고, 현장에 직접 적용해 봄으로써 효율적이고 신뢰할 수 

있는 산정 방법론을 확립하는 것을 목표로 하였다. 

경량 메탄 측정기와 회전익 UAV로 측정 시스템을 구축하고 현장 

측정부터 데이터 처리를 포함하는 배출량 산정 절차를 설계하고, 각 

과정에 관련된 잠재적 오류 요인을 실험 또는 이론적으로 평가하였다. 

측정기 신뢰성 실험에서 측정기가 현장 적용에 충분한 성능을 보임을 

확인하였으며, 동역학적으로 검토하여 측정 시스템의 신뢰성을 보장하기 

위한 임계 비행속도를 도출하였다. 측정 시스템으로 매립지 현장에서 

수집한 메탄 농도에 여러 공간보간법을 적용한 결과, empirical 

Bayesian kriging이 미측정 지점의 메탄 농도를 가장 잘 예측하는 

것으로 나타났다. 바람 측정 방법으로는 UAV의 GPS와 IMU 자료를 

이용한 추정 방법을 평가하였다. 근거리 대조 실험에 따르면, 이 
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방법으로 추정한 풍향, 풍속은 기계식 풍향풍속계로 측정한 풍향, 

풍속과 매우 유사하게 나타났다. 현장 측정에서는 이 방법이 고정식 

풍향풍속계와 달리 여러 높이에서 바람을 측정할 수 있다는 장점을 

확인하였다. 또한, 추정된 매개변수들이 타당한 범위와 상관관계를 

보였으므로 현장 측정 결과를 통해 바람 추정 방법의 유효성을 입증할 

수 있었다. 오류 요인의 평가 결과 중 일부는 해당 요소의 유효성 

확인뿐만 아니라 추후 배출량 산정의 불확도 분석에도 사용되었다. 

배출량 산정을 위한 현장 캠페인은 당진시 자원순환센터에서 

진행되었다. 일곱 차례의 캠페인을 통해 산정된 메탄 배출량은 406.4-

3,640 kg/ha/day로 나타났으며, 이는 IPCC 지침에 따른 모델링 결과와 

유사한 수준이었다. 측정 오류, 공간보간 오류 및 바람 변동성을 결합한 

총 불확도는 5회에서 6 % 미만, 2회에서 18 % 미만이었다. 대부분 

공간보간에 의한 오류가 가장 크게 나타났으나, 근시일 내에 이 

방법론의 불확도를 크게 낮출 가능성이 있는 부분은 측정기의 개선일 

것이다. 측정면을 잘못 선정하거나 바람이 너무 약해 배출량을 제대로 

산정할 수 없었던 경우도 있었다. 

본 연구에서는 근거리에서 고해상도 측정을 수행함으로써 성능이 

약간 부족한 메탄 측정기를 사용하면서도 산정 불확도를 크게 높이지 

않을 수 있었다. UAV에 기반한 바람 추정 방법을 도입해 산정 정확도를 

개선하고자 하였다. 여러 차례의 현장 캠페인에서는 방법론의 실제 

적용에 필요한 교훈을 얻을 수 있었다. 본 논문에는 방법론, 방법론의 

평가, 현장 적용 성공과 실패 사례를 모두 기술하였다. 이 연구는 
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UAV가 분야를 막론하고 대기 중 측정이나 원격 모니터링에 두루 

활용되는 현재 상황에서 UAV를 활용하는 다른 연구자들에게 유용한 

정보를 제공할 것으로 기대된다. 

 

주요어 : 온실가스, 탈루 메탄 배출, 무인항공기, 바람 추정방법, 불확도 
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