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Abstract 

Artificial Intelligence applied to 
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processing units installation 
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E-waste generation has been a growing problem globally, as e-waste 

management and its recycling unit capacity are not capable of giving proper 

disposal to that volume. The Smart Cities Index (SCI) can contribute to e-waste 

disposal and the resolution of the problems by using economic, social, 

sustainable, technological, and legislation data. The research proposes a data 

analysis of the relation between the Smart City features and the e-waste related 

indicators by using the approach of Artificial Intelligence unsupervised 

algorithm of K-means clustering, and the Generalized Linear Model of 

prediction, comparing the models and extracting the Smart City key features, 

to the determine the installation of a new e-waste recycling processing unit, the 

results and its implication, where it was observed the high correlation between 

the e-waste management and the Smart City characteristics. 
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Chapter 1 Introduction 

 

1.1 Smart cities and E-waste management 

 

Smart cities are considered potential solutions for global impacts such as global 

warming, resource scarcity, health, and population growth. The “smartness” can 

be defined from a set of indicators, e.g., technological, interconnected, 

sustainable, comfortable, safe (Grossi & Trunova, 2021). Although, these 

authors emphasize the complexity and ambiguity of smart city definition, the 

importance of Information, Communication and Technology (ICT) tools 

applied to sustainability is highlighted as prevalent in the literature (Benites & 

Simões, 2021; Hoang, Pham, & Nguyen, 2021; Shamsuzzoha, Nieminen, Piya, 

& Rutledge, 2021). 

Solid waste management (SWM) is one of the main challenges of smart cities 

(Benites & Simões, 2021; Cheela, Ranjan, Goel, John, & Dubey, 2021) as a 

result of urbanization, resources demand and products consumption. Sharma et 

al. (2020) highlight the importance of proposing a sustainable ecosystem to 

minimize the impacts of urbanization, such as providing better infrastructure 
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and transportation for waste management. Esmaeilian et al. (2018) highlight the 

importance of waste management inside the environmental and sustainable 

focus of smart cities and propose tracking and data sharing technologies to 

reduce waste generation and enhance waste recovery. Other authors took the 

same road and presented technological solutions for waste management in 

different countries. 

The circular economy concept emerges as an interdisciplinary approach that 

aims to promote the recovery of value from restorative and regenerative 

systems. Thus, the encouragement of reuse and the recovery of materials and 

products from post-consumption, are prioritized. According to Arora, Paterok, 

Banerjee, and Saluja (2017), the circular economy has, among its tools, urban 

mining, consisting of resources recovering from anthropogenic mines, such as 

landfill, sewage, ash from incineration and e-waste. Thus, the transition from a 

model based on primary mining moves towards incorporating urban mining, 

also known as secondary mining. 

The technological innovations improvement has allowed important benefits but 

also created a problem of global scale, the generation of waste electrical and 

electronic equipment (WEEE or e-waste), that rises 3 to 5% each day, more 
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than other usual waste (Forti, Baldé, Kuehr, & Bel, 2020). 

According to the Global E-waste Monitor, in 2019 53.6 million metric tons of 

e-waste were generated, with a 7.3kg average per capita, an increase of 19% 

from 2016. The global generation of e-waste in 2014 was 44.4 million metric 

tons, and the expected volume is 74.7 million metric tons of e-waste to be 

generated in 2030; this represents almost double the of e-waste generated in 16 

years (Forti et al., 2020). 

Due to the potential for recovering valuable materials, e-waste management 

represents an important source of secondary resources such as copper, gold, 

platinum, and silver. Forti et al. (2020) estimate a recovery potential of about 

57 billion dollars to recover valuable materials from e-waste. However, the 

recycling market has a high degree of uncertainty, especially related to the 

supply chain and the availability of secondary materials. 

One of the challenges faced by e-waste management is the location of material 

recycling facilities (Cheela et al., 2021; Dutta & Goel, 2021; Song et al., 2019). 

The location of e-waste processing units can result in human and environmental 

health impacts, as it can solve logistics and optimize routes. Good waste 

management practices must always be prioritized to guarantee the balance 
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between sustainability and profitability. 

The dispersed locations of recycling centers are also a problem that makes the 

recycling market doubt its potential value and capacity. Most developing 

countries and cities with big areas of land need to understand and invest in more 

recycling units, especially for e-waste, considering its growth and toxicity 

(Abbondanza & Souza, 2019). 

To Veiga (2013), the increased industry cost of using recycling material put the 

recycling market down. It needs to be improved to acquire competitiveness and 

increase its value as a product. To do so , it is needed to improve and expand 

the recycling industry. 

Achieving that would not be easy, but once it is reached, it would bring 

innovation, working almost disassociated from the legislation, with a growth 

rate of capability increasing without effort, like the aluminum market, where 

“the value of the material recycled is economically viable” (Veiga, 2013).  

Usually, the households are located in larger cities, which can make the price 

of e-waste material higher, decreasing and impacting its market. The 

transportation and the lack of a proper infrastructure near collection points also 

drive the value of the e-waste to decrease its competitiveness (Shevchenko et 
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al., 2021). 

An efficient and proper installation of a recycling center brings innovation to 

its city, decreasing the e-waste recycling value and bringing more 

competitiveness to its local market. To decrease the value of the e-waste to be 

processed, the industry must be efficient, with a high rate of recycling and lower 

impact on the environment, for that, the city must have a proper infrastructure 

to receive the recycling center, offering characteristics to support and improve 

the innovation through efficiency, as a smart city can provide. 

Considering the smart management approach of smart cities and the need for 

an advanced location to improve the value of the e-waste market, the analysis 

of the installation of an e-waste recycling unit based on Smart City 

characteristics can help to archive that goal faster, increasing the rate of 

recycling products, with lower environmental impact, and improving the e-

waste recycling market with driven innovation. 

Thus, in the next topics, the aspects that underlie e-waste management and 

aspects of the consolidation of smart cities will be presented as elements for 

discussion. 
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1.2 Background 

 

According to Arora et al. (2017), different materials can be recovered from 

waste landfills and dumps, building stock, end-of-life vehicles, municipal solid 

waste (MSW) and electronic waste (E-waste) through urban mining techniques. 

While landfills and dumps streams are more fitted to waste-to-energy 

approaches, end-of-life vehicles (ELV) and e-waste are important sources of 

valuable materials. 

The Global E-waste Monitor also reveals that only 17% of all the 2019 e-waste 

was properly treated; from all the e-waste, it could be retrieved up to $ 57 billion 

USD, considering that all e-waste contains valuable material, such as copper, 

iron, gold, and even aluminum (Forti et al., 2020). 

This 17%, around 9.3 metric tons, represents around $10 billion recovered in 

raw material, generating 4 million metric tons. Another benefit is the energy 

saving from not producing or extracting the same amount of raw material, 

decreasing the CO2 emission by 15 million tons, only by using the secondary 

raw materials of copper, aluminum, and iron, recovered in 2019 (Forti et al., 

2020). 
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The e-waste lifespan is also decreasing, not because it stops working, but 

because of the rapid innovation and consumer tendency to update the 

technology for a brand-new one, especially in developed countries. 

E-waste contains hazardous substances that can cause pollution to the 

environment; if the e-waste disposal and treatment are not done properly, it can 

produce a huge impact on the land, decreasing the value of the recycling 

industry and market. 

To avoid this, the level of innovation and readiness of the city must be advanced, 

placing the recycling market into another level of maturity, acquiring all its 

potential by the right selection of the location of the e-waste recycling unit. 

E-waste must be handled and treated properly, where its management will help 

improve the local market and prevent the contamination of the landfill and 

citizens. Many procedures and methodologies of treatments exist and can be 

applied to handle this kind of e-waste. 

For many years, the Life Cycle Assessment (LCA) has been studied and used 

by countries to define and manage e-waste, but this does not cover the Circular 

Economy aspect of it. The main goal of LCA is to describe in detail the 

production life cycle of a product, measuring the impact of the process on the 



 

 

 

8 

environment, register all the material and services used and the emissions 

caused by it. 

E-waste management is not related to the product as a unit like LCA, but it 

covers all the processes of managing the generated e-waste by implementing 

legislation and responsibilities to ensure that it will have a proper final disposal. 

Unfortunately, e-waste management is still deficient in most countries, 

especially developing countries (de Oliveira, Bernardes, & Gerbase, 2012). 

The differences are based on proper infrastructure, legislation, and technology; 

while the developed countries are already working with extended producer 

responsibility (EPR) and/or with the reverse logistic system, most developing 

countries did not establish the e-waste legislation that covers those 

responsibilities in their full aspect. 

It is important to consider that developed countries have more capable e-waste 

recycling processing units installed in their cities, especially in smart cities with 

efficient waste management, and can invest much more in Research and 

Development (R&D). 
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1.2.1 Global panorama 

 

Countries like Japan and Switzerland implemented the LCA combined to 

proper regulations to develop an optimal model to manage the e-waste (Doan, 

Amer, Lee, & Phuc, 2019). 

China also developed, since 2009, regulations to improve its e-waste 

management, promoting enterprises by giving subsidies to the public on 

purchases of new products by the policy “Old for New.” This regulation 

enhanced the e-waste management of China, increasing the recycling rate up to 

84.5% of all e-waste produced in 2011 (Cao et al., 2016), which was possible 

because of the presence of advanced e-waste recycling centers, proper city 

infrastructure, and the proper legislation.  

The Bloomberg Innovation Index 2021 index (Figure 1) shows South Korea in 

the 1st place among the Most Innovative Economies of the world; one of the 

main reasons is the Smart City investments and innovation throw a greener 

environment, highlighting the importance of the relationship between 

environmental sustainability and the establishment of criteria that define 

sustainable cities. 
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Figure 1. Bloomberg Innovation Index 2021 map (Bloomberg 2021) 

 

This greener environment is taking place from actions like the Korea New Deal, 

which contains the National Strategy for a Great Transformation, including 

projects such as the Green New Deal, with the Circular Economy plan, that 

intends to solve the problem of the recycling rate of 12%, with the perspective 

to increase it, and apply the innovation and smart infrastructure, promoting the 

interconnection of waste recycling between companies, stimulating the use of 

raw material and energy by other companies (Lee & Woo, 2020). 

This project focuses on the green transition of infrastructure, low-carb and 

decentralized energy and Innovation in the Green Industry, putting South Korea 

in the leading for High-end digital & IT technology that can be integrated into 
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the green industry, including e-waste management (Korea, 2020). 

Brazil is the biggest country in South America, with and most promising 

emerging economy that has already taken some action in the direction of the e-

waste management, with regulations for the Extend Producer Responsibility 

(EPR) legislation released in the form of a Presidential Decree, published in 

February of 2020, that regulates the reverse logistics of electronics products, 

following the sectoral agreement with entities representing the main electronics 

companies in the country as a way to enforce the reverse logistics (Brasil, 2020). 

This Presidential Decree is based on the law that instituted the Brazilian Solid 

Waste Policy (Law No. 12,305/2010 and Decree No 7,404/2010), created to 

pursue the sustainability and circular economy of the country, but this alone did 

not promote the e-waste management in Brazil; one of the motives of the 

Presidential Decree, the increase of certified recycling unit is needed, but with 

the budget limited, the selection of the right city will help to faster increase the 

recycling rate (Xavier, Ottoni, & Lepawsky, 2021). 

Like many cities in Brazil, Rio de Janeiro is one of the most advanced cities in 

the direction of proper e-waste management, producing approximately 127 tons 

of e-waste every day. It has 251 collections points and 24 e-waste recycling 
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industries capable of proper recycling (Ottoni, Dias, & Xavier, 2020). 

Rio de Janeiro and São Paulo are the two cities in Brazil that are listed in the 

Smart City Index, even having deficiency on information about the individual 

production, proper treatment, disposal, reuse, and collection of the e-waste, 

they are model, considering the e-waste recycling rates, and when selecting a 

location to install a recycling unit. 

The Smart City Index is a “Holistic attempt to capture the various dimensions 

of how citizens could consider that their respective cities are becoming better 

cities by becoming smarter ones” (Center, 2020). 

The report is also the result of surveys applied to the citizens of the 109 cities 

mentioned on it, where they expressed their perception of the smartness of their 

cities.  

This report contains aspects such as education, safety, health, economic, life 

expectation, environmental respect, mobility, and technology. E-waste 

management can be found inside many of those aspects and creates the 

perception of a strong relationship between the Smart City and successful e-

waste management. 

This relationship can be more understandable when considering that circular 
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economy, as a maximized efficient use of resources and waste, is present in 

both concepts, not only being a core of the e-waste management, but also as 

part of the philosophy of Smart City implementation.  

There is no Smart City without maximized efficiency, and e-waste management 

helps to achieve that. Therefore, there will not be improvements without the 

implementation of TIC technology, such as the e-waste processing units. 

Having an E-waste processing unit installed on the city can improve the green 

goals by reducing the CO2 emissions and saving energy, as much as improving 

the innovation. One example is the study case of Ukraine of the implementation 

of smart e-waste reverse system for cost minimization, the study shows “a solid 

rationale for involving local e-waste operators as key stakeholders of the smart 

e-waste reverse system” (Shevchenko et al., 2021). 

 

1.3 Purpose of Research 

 

Legal requirements mostly drive e-waste management. The main aspects of e-

waste hazardousness, impacts, amount generation, and collection rates were 

established from the initial international documents, e.g., Basel Convention 

(Choksi, 2001) and the first version of the European Directives. 
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Nevertheless, despite the European Directives, these aspects are not 

harmonized from country to country, and in some cases, as in the United States, 

even from city to city.  

To mitigate the impact resulting from the intensive growth of e-waste 

generation based on a metric common to countries, it is proposed to evaluate 

smart cities in terms of their potential to contribute to efficient and sustainable 

management of e-waste, and therefore helping to predict a better place to 

implement the recycling units, improving the recycling market and promoting 

the decrease of the e-waste as a product of purchase. 

Both collection and processing are the bottlenecks of e-waste treatment (Ottoni 

et al., 2020); while collection requires an efficient reverse logistics system, the 

treatment requires specific processes. However, either collection and treatment 

have a feedback relation, and as long as material is inputted in the system, the 

more efficient and cost-effective the entire system is. The efficiency reinforces 

the sustainability parameters and endorses the material input, as well. 

To acquire a better e-waste treatment, the installation of an e-waste processing 

unit, in a smart city context, can contribute to the circular economy of cities, 

providing resources to be analyzed. 
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Therefore, to understand the relation between the smart city index and the e-

waste management, this research has the proposal of clarifying “What are the 

key indicators of smart cities that makes them satisfactory location of e-waste 

management facilities?” and if “Is there any similarity between the 

classification and prediction models that helps to identify the correlations 

between the e-waste management and the Smart City Index?” 
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Chapter 2 Literature review 

 

As the key factor, the technologies of smart cities have an important role in 

decreasing greenhouse gas emissions and improving the energy efficiency of 

the city (Ahvenniemi, Huovila, Pinto-Seppä, & Airaksinen, 2017). 

These characteristics are embedded in innovation and improvement of the way 

the citizens perceive life and the surroundings. In that direction, to select which 

smart city factor can contribute to determining the optimal location of an e-

waste recycling unit, it is important to understand and know the main factors. 

With this in mind, to build a literature review to answer the research questions, 

some key expressions and keywords were used. The first searches were based 

on the terms “e-waste management” and “smart city index” in all available 

fields and for the period of the last 10 years. From the SNU Library website1, 

the search resulted in 126 articles that were refined and selected by their 

relevance to the research topic. 

Another search for the related topic was the use of terms “smart city,” “key 

 
1The SNU library website (https://library.snu.ac.kr/) contains access to more than 300 
databases, including Web of Science, OCDE, Scopus, and many others. 
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indicators,” and “e-waste recycling center,” to understand if the question was 

answered in previous literature. The result from the SNU Library website 

considering the last 10 years, showed 68 articles that were refined and selected 

by their relevance to the research, showing that the topic was not yet discussed. 

At last, the search on the SNU library website was made with the terms: Smart 

city; E-waste recycling unit; Key indicators; Artificial Intelligence; Prediction; 

and Clustering; the results showed only one article, “Methodological Proposals 

for the Development of Services in a Smart City: A Literature Review” by Serey 

et al. (2020). 

Serey et al. (2020) divided the Smart Cities trend into Domains, such as 

Government, Environment, Urban Settlement, Social Service, and Economy, 

describing and listing the AI applications areas on the smart city technologies, 

giving keys indicators for all domains, where we can highlight Waste 

management, Environmental road infrastructure, Environmental control, City 

monitoring and City management as items with key indicators. 

The Serey et al. (2020) literature review reinforces the Smart City’s concept of 

innovation and efficiency by demonstrating the technologies that increase the 

capability of administration and manageability, not only that but also 
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demonstrate that “The circular economy of interconnected areas allows positive 

business results to be intensified,” for example. 

Once again, the literature shows some aspects to be considered in the study, the 

economic situation, the circular economy, the e-waste management regulations, 

system, framework, and technology, the Smart City Index, and its parameters, 

as well as the presence of resources to receive and transport the e-waste in a 

more efficient way. 

The fact that Smart Cities uses innovative solutions to manage the waste makes 

it be the perfect standard to determine the location of one more efficient e-waste 

recycling unit; for example, by using Internet of Things (IoT) sensors, one 

smart city can have smart collection services, that optimize the process, 

allowing it to create more efficient and economic collections routes (Gutierrez, 

Jensen, Henius, & Riaz, 2015), highlighting the economic and technological 

indicators as indispensable key factors. 

By defining the scope of the search, the findings on previous studies made clear 

that the topic of creating a prediction model, based on specifics criteria of smart 

city and e-waste management relation led to broader aspects. 

Those aspects were organized in indicators to facilitate the understanding the 
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behavior of the last ten years researchers approaching the themes of e-waste 

management, smart city and prediction using secondary data.  

Ultimately, the key factors of a Smart City towards e-waste management are 

inside its own concept, where the role of the ICT use on it demonstrates the 

goal of acquiring prosperity, effectiveness and competitiveness, while reaching 

an innovative, better and greener environment, with a higher quality of life 

(Ahvenniemi et al., 2017). 

 

2.1 Social and economic indicators 

 

Most of the literature about the social and economic indicators has a strong 

relation to the Circular Economy (CE), due to the direct relation with e-waste 

management. According to Fatimah, Govindan, Murniningsih, and Setiawan 

(2020), the use of resources from the 4th industrial revolution, such as IoT, 

information and communication technology (ICT), improves global waste 

management, creating value from resources, materials and energy to the 

circular economy of the city or country within it. 

CE is a system of production and consumption. By that, it has the goal of 

efficiently maximizing the use of resources and waste (Chiappetta Jabbour et 
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al., 2020), reducing the environmental impact, and increasing society's well-

being. 

As a global practice, urban mining offers the implementation of the CE with 

potential towards environmental savings (Arora et al., 2017), where e-waste is 

the object of work and the resource to be collected and treated to archive a 

greener and sustainable society, and therefore, a better economic status. 

Urban mining saves energy and raw material, decreasing the CO2 emissions 

that create indicators to social and economic aspect for a greener city, by 

retrieving raw material from the e-waste, for example, by recycling 10kg of 

aluminum can save 90% of energy and prevents 20kg of CO2 emissions, when 

compared to the traditional mining (Kumar, Holuszko, & Espinosa, 2017). 

Saving energy and reducing emissions and retrieving material such as gold, 

copper, aluminum, and steel also generates economic benefits for the region 

where a recycling unit is installed. 

The adoption of innovative tools, such as an e-waste processing unit, can 

contribute to the CE and improve a region, especially when used at an optimal 

level. Adopting waste management practices has an impact on the social aspect 

of the city, generating jobs, improving the economy, and promoting new 
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legislation that improves waste management, not considering that the social 

context of the waste is costly to policy goals and social effects (Gutberlet, 2018). 

It is known that in most countries, the selection, classification, and treatment of 

the waste is made by informal collectors, those units generate jobs through 

associations and cooperatives, transforming the waste management goals in 

benefit to the city economy, showing the importance of the presence of a 

recycling processing unit.  

 

2.2 Sustainability indicators 

 

The Smart City Index (SCI) generates a ranking of the most sustainable cities, 

considering three major areas, where the citizens' perception of a need to 

improve and current well-being is measured by the survey. They indicate 

Priority areas to be improved, by selecting the status of 15 indicators in a survey, 

that measures the five most important facts to be solved in their city. 

The indicators measure the level and presence of affordable housing, fulfilling 

employment, unemployment, health services, basic amenities, school education, 

air pollution, road congestion, green space, public transport, recycling, security, 

city engagement, social mobility and corruption (Institute for Management 



 

 

 

22 

Development, 2020). 

The SCI also measure the willingness of the citizens to participate in the growth 

of the city, as their attitude, where they allow the use of personal data to improve 

traffic congestion, increase the non-cash transaction on a daily basis, allowing 

the facial mapping to improve safety, lowering the crimes, and finally, it is 

measured the perception of trust on the government by the availability of 

information online. 

The third area is based on perception and level of satisfaction with the structure 

and technologies available in the city regarding health & safety, mobility, and 

social activities, like green spaces and culture, opportunities, and governance. 

The waste management is included on health & safety criteria by the item of 

“recycling services are satisfactory,” this shows the recycling in overall waste, 

not only for e-waste. 

Other aspects should be included for the e-waste management, like mobility 

and opportunities, considering the traffic quality and the availability of service 

of collection and treatment of e-waste. The quality of the traffic shows the flow 

of waste to optimize the collection and reduction of CO2 emission by the trucks 

that transport it. 
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2.3 Technological indicators 

 

The Global E-waste Monitor 2020 is a report that discusses and presents the 

quantities flow and the circular economy potential for the field. It represents a 

study to aggregate data from the countries’ e-waste generation, collection, and 

production of electronic equipment added to the country market (Forti et al., 

2020). 

The Global e-waste monitor database allows the understanding of the actual 

status of the WEEE, presenting information and technology that enable the 

analysis in many contexts.  

The importance of adopting efficient e-waste management and the 

representativity of the technology needed to retrieve as much raw material as 

possible from the e-waste is part of the actions to improve the ecosystem for 

futures action, listed on The Global e-waste monitor 2020. 

It covers the electrical and electronic equipment (EEE) in a group of 

organizations, temperature exchange equipment, screens and monitors, lamps, 

large equipment, small equipment and small it and telecommunication 

equipment, this last one representing the majority in the potential of retrieving 
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raw material and rare metals. 

The waste and recyclable materials often travel long distances, causing an issue 

due to energy use, increasing air pollution, traffic, and noise (Gutberlet, 2018). 

In fact, not only the transportation but the exportation of waste, especially e-

waste via transcontinental shipment, to developing countries from the 

developed ones, turns the need for a processing unit installation in a city into 

an urgent matter of need; it is a technology to fight the harmful actions against 

the environment. 

Usually, the exported e-waste sent to developing countries are poor in rare 

metals, those rare metals are extracted from efficient recycling e-waste units 

installed in developed countries, the exportation is a crime but “has become an 

institutionalized practice among certain corporations that pollute, dump toxic 

waste and make environmental crime victims of various global minorities” 

(Simon, 2016), to prevent this, it is important to understand the need of 

innovative technologies installation withing the recycling e-waste processing 

units as part of critical investments. 

One example of innovation and technology applied to the e-waste management 

is the South Korean Eco-Assurance System that has the goal to minimize the 
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load of the waste by implementing systematic management (Rhee, 2016), from 

a network system, the three responsible for the collection in Korea, the 

government, producers and recycling companies can exchange data about the 

collections made by them, determining the numbers of collectors nationally 

wide to implement the reverse route system. 

It must be considered that technologies used in Smart Cities will become e-

waste in the near future, and acting now can prevent the accumulation of 

increasing e-waste generation. The main part of technology and the related 

waste generation must be listed and analyzed to help decision-making. 

 

2.4 Legal indicators 

 

Legislation is one of the most important indicators to understand efficient e-

waste management and its potentials. Nowadays many countries have specific 

e-waste policies to respect the Basel Convention and reach the desired 

Sustainable Development Goals. 

Unfortunately, the installation of a high-tech e-waste processing unit in 

developing countries is very difficult. To properly manage e-waste (collecting, 

storage, recycling, disposing), many developing countries must develop low-
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cost recycling procedures and should implement laws and regulation, nowadays, 

the developing countries legislation are not very effective (Hossain, Al-

Hamadani, & Rahman, 2015), but represents the intention to improve the 

overall system. 

More effective legislation applied globally is usually related to the Extended 

Producer Responsibility (EPR) principles, showing efficiency to prevent 

pollution and waste generation, being implemented in most industrialized 

countries. 

EPR is defined as “is a policy approach under which producers are given a 

significant responsibility – financial and/or physical – for the treatment or 

disposal of post-consumer products” (OECD). It requires the manufacturer to 

take responsibility for its production until the final disposal, especially disposal, 

dismantling, and reuse (Cao et al., 2016), being the base for many directives, 

national policies, and presidential decrees around the world. 

The power of legislation is represented by the e-waste collection status of a 

country; for example, Japan created the Home Appliance Recycling Law in 

2001 and promoted a new framework, creating a new paradigm in waste 

management, producing technological innovation (Ogushi & Kandlikar, 2007). 
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Ogushi and Kandlikar (2007) show that the recovery rate for e-waste, after 

regulation reached around 69.5%, putting Japan as one model to be followed in 

terms of e-waste management, by making explicit the responsibility for taking 

back and recovering for different stakeholders and lowing the cost of recycling 

by adding the final consumer the fee for the recycling. 

Legislation has many other examples to enforce its importance. The Europe 

WEEE directive in 2002 improved the collection and efficiency of recycling; 

in 2016, the targeting rate of recycling changed and improved the expected level 

to 45% of all electronic products put on the market, increased to 65% (Kumar 

et al., 2017) of all electronic products put on the market, as expected from the 

literature.  

In Australia, the legislation in 2009, National Waste Policy, and in 2011, 

National Television and Computer Scheme, focused on increasing the recycling 

rate using international best practices (Kumar et al., 2017). 

Many other countries used the legislation to improve the recycling rate, using 

the EPR as a base and implementing international best practices and its variants. 

China, for example, implemented the “Old for New” policy to provide subsides 

for consumers, it improved to 84.5% of the recycling rate (Cao et al., 2016), it 
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was possible because the takeback system would give a financial advantage to 

the final consumer that was willing to dispose of the electronic device in formal 

recycling units, “the “Old for New” policy motivated the generation of a more 

standardized and large-scale e-waste recycling industry in China” (Cao et al., 

2016). 

China implemented many other legislations over time, improving and keeping 

the standards to other countries, such as Japan and countries in European Union.  

The Reverse Supply Chain and the Reverse logistics are not legislation but the 

standardized process of recovery, reuse, and disposal of the e-waste, that is used 

as a best practice in the world, sometimes considered as wider than the Reverse 

Logistics, the Reverse Supply Chain needs more investment and has a higher 

impact on the economic benefits and strategies to the companies (Doan, Amer, 

Lee, Phuc, & Dat, 2019). 

All legislation found in the literature indicates that the investment in 

innovations and infrastructure was needed, leading to the interpretation that it 

is important to have focused legislation to predict the installation of an e-waste 

recycling unit.  
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Chapter 3 Methodology 

 

3.1 Definition 

 

The research proposed a two-level analysis regarding smart cities ranking 

position and cities´ e-waste management data. These levels are connected using 

artificial intelligence (A.I.) techniques for unsupervised data to find similarities 

within the data of the cities and the prediction outcome of a potential installation 

of an e-waste recycling processing unit in a city based on the same model. 

To study this potential, highly certified and well-documented technologies 

frameworks were selected. To define the variables to be collected, previous 

literature shows indicators to economic, social, technological, sustainable, and 

legislative aspects. 

To define the procedure, it was considered the Artificial Intelligence capability 

to analyze data similarities and potential of predictability to a given factor. To 

that, the designed framework adopted for that approach was clustering and 

prediction by artificial intelligence script written in R language. 

The K-means clustering is an unsupervised machine learning algorithm with 

simple application and popular use; it makes inferences from inputted datasets 
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using the vectors, not considering the known or labeled outcomes (Garbade, 

2018). 

 The K-means is a partitioning-based algorithm that uses Euclidean distance 

between the points to determine the k-centroid of the clusters, defining the area 

of similar points by the given number of clusters to be plotted because its low 

need of computer resources and simplicity it is used largely from the 

community (Mehta, Bawa, & Singh, 2020). 

The A.I. prediction model selected was the Generalized Liner Model due to 

regression and classification capability and its adhesion to the defined data. 

After the definition, the methodology proposed flow was designed, resulting in 

the image, as shown in Figure 2. In general, after the definition of the scope and 

the literature review, the variables were determined, the data was acquired and 

prepared to be inputted on the K-means and Generalized Linear Model (GLM) 

algorithms to be compared, making it possible to reach a conclusion according 
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to the hypotheses created. 

Figure 2. Methodology framework 

The clustering process and the GLM process were defined to have a 

composition as a workflow to the framework, being adherent to the 

methodology, as shown in Figure 3 and Figure 4, respectively. 

Figure 3. Cluster process framework 
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Figure 4. Generalized Linear Model process 

 

3.2 Method analysis 

 

To apply the method, it was needed to select the variables related to the 

literature review and defined scope; in that case, the variables chosen were 

related to the social and economic, sustainable, technological and legislation 

indicators from the databases available related to e-waste management and the 

smart cities. 

The economic and social indicators selected were the Gross Domestic Product 

(GDP), population, the human development index, the size of the city, the 

quantity of (EEE) put on the city’s market and the traffic quality. 

For the sustainable indicators, it was selected the e-waste generated, the e-waste 

collected, and the smart city index of the city, to cover the relationship between 

the indicators and to allow the prediction. 
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The technical indicators led the research to select information related to the 

presence of seaports and the presence of e-waste recycling processing units, as 

described in the literature review its importance to the ICT level to an 

innovative status. 

To the last indicators, the legislation available selected was the e-waste policy 

existence, an important item of analysis, also covered by the literature review. 

The methodology variables availability was verified and adjusted, as shown in 

Tble 1, to the idea of Smart Cities' correlational numbers and standardized as 

quantitative values to get an easier analysis. 

Table 1. Variables defined for the analysis 

VARIABLES 

Smart City Index 

Population 

Human Develop Index 

Size in Km2 

GDP in thousand USD 

E-waste generated by kg 

E-waster collected by kg 

EEE put on the Market 

Traffic quality 
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Existence of e-waste policy nationally 

Quantity of seaports present on the city 

Existence of e-waste recycling processing units 

 

With the definition of the variables and aiming the answers to the research 

questions, a hypothesis was defined. It was based on the assumption that “The 

e-waste processing unit brings innovation and circularity from the ICT to cities.” 

Hypothesis: The city will be considered suitable for the installation of an e-

waste recycling processing unit when: 

• Smart City Index is high (1st, 2nd,…); 

• GDP and HDI are high; 

• E-waste generated and e-waste collected is high; 

• E-waste policy is present. 

 

3.3 Data gathering 

 

The data gathering was possible after the variables definition, the Smart City 

Index and the Economic, from World Bank database, indicators were the first 

to be gathered, followed by the data of Global E-waste Monitor 2020, Our 

World in Data website, Global City Data, Google maps city area and the 
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SeaRates database for the Sea Port location. 

Smart City Index 2020 Report has information from the smart cities, generated 

by applying a survey in 2019 for 109 cities defined as sustainable. The IMD 

World Competitiveness Center “assesses the perceptions of residents on issues 

related to structures and technology applications available to them in their city” 

(Center, 2020). The variables retrieved from the Smart City Index were the 

name of the cities, the city rank from 1st to 109th place, and the quality of the 

traffic, which is given from 0.0 to 1.0, depending on the citizens' evaluation of 

its perception, represented by a fraction, such as 0.921, for example. The traffic 

quality was selected by its high relevance demonstrated in the literature review. 

In the SCI Report, the cities are divided into groups by its Human Development 

Index (HDI), retrieved by country and associated with its cities from the United 

Nations Development Programme (UNDP). The HDI “was created to 

emphasize that people and their capabilities should be the ultimate criteria for 

assessing the development of a country, not economic growth alone” 

(Programme, 2020). Therefore, the economic and HDI growth will promote 

pollution up to the point that it will demand a higher sustainable city, decreasing 

the pollution, with an inverted U-shape form from the HDI and domestic waste 
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treatment relationship. A higher level of sustainability will promote economic 

and HDI growth (Li & Xu, 2021). 

The Global E-waste Monitor 2020 is a report collaborative from the Sustainable 

Cycles (SCYCLE) Programme, the United Nation University (UNU), the 

United Nations Institute for Training and Research (UNITAR), the International 

Telecommunication Union (ITU), and the International Solid Waste 

Association (ISWA) to monitor the quantities and flow of the e-waste globally, 

helping the decision-making towards a better society and to amplify the circular 

economy adoption. 

Form The Global E-waste Monitor 2020 information was retrieved by country 

for the year of 2019, including the E-waste generated, the E-waste collected, 

the e-waste generated per capita, and the EEE put on the market. 

The data from The Global E-waste Monitor 2020 is organized by country, the 

quantity of e-waste generated and EEE put on the market were gathered by 

kilogram (kg) per capita, then they were multiplied by the city's population to 

acquire the result in kg for each city. 

The e-waste collected information is present as the rate of collection, based on 

the generation, also by country, to standardize to kg of e-waste, the rate of 
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collection was multiplied by the population of the city, resulting in the final data 

of the quantity of kg of e-waste collected for each city. 

The World Bank database is an open data platform that contains many aspects 

of countries in the world, especially about economic variables, the 2019 GDP 

and GDP per capita for each country was retrieved by accessing it. 

To the defined variable, the GDP per capita of each country was multiplied by 

its cities’ population; the result was the variable of GDP in thousands of dollars. 

In Our World in Data, it was retrieved each city’s population. The city's size 

was retrieved from other similar databases like Global City Data, published by 

the Greater London Authority (GLA), and many others like Google Earth, 

confirming the size in square kilometer. 

From SeaRates, by DP World, it was possible to retrieve the presence of ports 

by searching each one of the 109 cities listed on the SCI. It represents the 

capability and the opportunity to receive the e-waste via sea, measuring its 

importance while having an e-waste recycling processing unit installed. 

The data gathering procedure is summarized in Table 2, as follows. 
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Table 2. Data gathering 

Data type Source and weblink 

Smart Cities indicators Smart City Index 

https://www.imd.org/smart-city-

observatory/smart-city-index/ 

Population Our World in Data  

https://ourworldindata.org/ 

Human Develop Index Human Development Report 

http://hdr.undp.org/en/data 

Gross Domestic Product 

(GDP) 

World Bank 

https://data.worldbank.org/indicator 

Port location Sea Rates 

https://www.searates.com/pt/ 

E-waste generation Global E-waste Monitor 

http://ewastemonitor.info/ 

E-waster collected by kg Global E-waste Monitor 

http://ewastemonitor.info/ 

Traffic quality Smart City Index 

https://www.imd.org/smart-city-

observatory/smart-city-index/ 

E-waste policy 

nationally 

Global E-waste Monitor 

http://ewastemonitor.info/ 

Existence of e-waste Science Direct search 
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recycling processing 

units 

https://www.sciencedirect.com/ 

Open-source web references 

Equipment put on the 

market 

Global E-waste Monitor 

http://ewastemonitor.info/ 

City size Global City Data & Google Earth 

https://data.london.gov.uk/dataset/global-city-

data 

https://earth.google.com/web/ 

 

3.4 Data arrangement 

 

All the data gathered were related to 2019, inserted on a CVS, verified and 

double-checked by specialists, adjusted to be understood by the RStudio and 

saved with the standard format for numbers, with a point as decimal separator 

and a comma as a thousand separator. 

For the prediction on the artificial intelligence, it was configurated to receive 

the data as quantitative variables, with independent values, but with the 

prediction factor as the presence of the e-waste recycling processing unit. It 

became the dependable variable with a qualitative aspect. 

  

about:blank
about:blank
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Chapter 4 Analysis and Results 

 

4.1 Initial procedures and environment 

 

The dataset arranged was organized in the order of city name, SCI, city 

population, HDI, size in Km2, GDP of the city in thousand USD, E-waste 

generated on the city in Kg, e-waste collected on the city in Kg, EEE put on the 

market by kg, Level of traffic quality at the scale of 0.000 to 1.000, the existence 

of e-waste policy as 0 or 1, presence of seaport on the city, with the number of 

seaports in the city, 0, 1 or 2, and presence of e-waste recycling processing unit, 

identified and determined as 0 or 1, where 0 is not present, and 1 is considered 

present. 

The file was saved in CSV, encoding UTF8, separated by semicolon and comma 

as decimal separator. The hardware used for the analysis was an HP Pavilion 

Laptop 15-cc5xx series, composed of processor i5 7200U 2 physical and 4 

virtual cores, 16Gb RAM DDR4, SSD M.2 480Gb, Intel HD Graphic 620 

integrated with 1Gb being used. 

The software included Windows 10 pro, building 19042.985, RStudio 1.4.1106, 

using the R libraries dplyr, readr, e1071, caret, ggplot2 FactoMineR, factoextra, 
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tidyverse and cluster, with the latest version available for the current RStudio. 

 

4.2 K-means clustering analysis and results 

 

According to Nazeer and Sebastian (2009), “Clustering is the process of 

partitioning a given set of objects into disjoint clusters. This is done in such a 

way that objects in the same cluster are similar while objects belonging to 

different clusters differ considerably, with respect to their attributes.” 

The cluster analysis is a technique used to identify similarities and generate 

observations over the aggregated points providing insightful observations and 

considerations (Govender & Sivakumar, 2020). 

The K-means analysis needs scaled data from numeric values; in that case, the 

first variable, the name of the city, was set as the rows’ names, labeling the data 

in each row of the other variables. 

The K-means clustering approach tried to understand the logic applied to the 

algorithm since it would use many variables and not only two to determine the 

points in a 2D graphic to be clustered. 

To reduce the variables to two dimensions, the K-means uses the Principal 

Component Analysis (PCA), which is a statistical technique for unsupervised 



 

 

 

42 

dimension reduction, closely related to the unsupervised learning, creating the 

best low-dimensional linear approximation of the data (Ding & He, 2004). 

According to Lopes (2017), the PCA algorithm “use the concepts of variance 

matrix, covariance matrix, eigenvector and eigenvalues pairs to perform PCA, 

providing a set of eigenvectors and its respectively eigenvalues as a result.” 

To better analyze de data acquired, it was made two approaches, first one was 

the removal of the cities without all information, from that procedure, 87 cities 

were remaining, the main reason was that the variables e-waste collected and 

the EEE put on the market were missing on the 22 removed cities. 

The second approach considered the lack of information for the e-waste 

collected and EEE put on the market, once it is needed to test and check the 

centroids2, to improve the cluster accuracy by giving it more data, generating 

more data points (Nazeer & Sebastian, 2009). 

Only one city was removed from the study for the lack of e-waste management 

information. Taipei City does not have any data related to The Global E-waste 

Monitor 2020, and it was removed from the analysis. 

 
2A centroid is a data point (imaginary or real) at the center of a cluster (Söder, 2008). 
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After scaling the data, the PCA was generated to analyze the eigenvalue3 and 

the variance of each variable, the difference of the variance and the eigenvalue 

the lower bounds for K-means (Ding & He, 2004). 

 

4.2.1 Full set clustering analysis and results 

 

To analyze the data in its full variables selected, the 87 cities were applied to 

the nominated “Full set,” it is the first approach, where all cities have data in 

all variables. 

To generate the dimensions, the K-means clusters algorithm used the PCA 

technique. It is one of the most used dimension reduction techniques (Fodor, 

2002), and it generates the representations of the variance within the variables; 

the most representative distinguish features are more considered than the 

similarities, generating the data representation (Lopes, 2017). 

The higher variance creates the data representation, and for the Full set, the 

percentage of this variance created, as shown in Figure 5, two dimensions with 

36.9% and 20.5% of all data representation, the more the variable is distinct in 

 
3Eigenvalues are a special set of scalars associated with a linear system of equations 

(i.e., a matrix equation) that are sometimes also known as characteristic roots, 
characteristic values, proper values, or latent roots. (Weisstein, 2021) 
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data from other (Marsboom, Vrebos, Staes, & Meire, 2018), more it will 

represent the dimension on PCA. The variance on the variables creates 

dimensions 1 and 2 to be used on the graph and the cluster. 

 

Figure 5. Percentage of variances – 87 cities 

 

The quality of that variance is expressed on the representation graph, which 

demonstrates the influence of each variable to create each dimension, the bigger 

the blue circle, the bigger the representation, as can be seen in Figure 6. 
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Figure 6. Quality of representation – 87 cities 

 

From Figure 6, it is possible to understand that dimension 1 has a higher 

representation from the EEE put on the market (eee_market_city), followed by 

the e-waste generated (ew_gene_city_kg), the city population (city_population) 

and the GDP of the city (gdp_city_usd_thousand). 

Dimension 2 is mainly represented by the variance of the variables HDI, SCI 

(sci_2020), and the presence of e-waste recycling processing units (stations), 
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in that order. 

To understand the position of each point represented on the cluster by the two 

newly created dimensions, it is important to observe the directional 

representation of each variable, where dimension 1 is plotted on the X-axis and 

dimension 2 on the Y-axis, as shown in Figure 7. 

 

Figure 7. Variable in PCA representation – 87 cities 

 

Each value of the variable “pulls” the point in its direction, creating the 

approximation by similarity desired on the study, and therefore generating the 
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cluster by the proximity of each point to the centroid defined by the selected 

number of clusters. 

Confirming the quality of the representation, the variable in PCA representation 

will force the coordinates X and Y for each city in the cluster to be plotted. After 

the PCA analysis, it is needed to generate the cluster from the data with the 

same aspects. 

For the Full set, the optimal number of clusters was calculated to generate the 

graphical observation. In Figure 8, it is possible to see the result of the function 

that calculates the optimal number of the cluster as 2, given the dataset and the 

method of the silhouette of it. 

 

Figure 8. Optimal number of clusters – 87 cities 
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To compare the optimal number of clusters of 2, it was also generated a graph 

with 3 clusters; this can help to understand the difference from both images and 

increases the insight on the analysis, the technique of observing different cluster 

numbers from the same data is vastly used as can be observed by the study of 

Ünlü and Xanthopoulos (2019). 

 

Figure 9. 2 Clusters – 87 cities 

 

The Figure 9 graph shows the representation of 2 clusters of similar cities, 

considering the variables reduced to two dimensions. On cluster number 2, are 

cities mostly from Asia countries like Chongqing, Shanghai, Hong Kong, Seoul, 

Tokyo, Shenzhen, Guangzhou, Chengdu, Beijing, Tianjin, and Nanjing with 

similarities with other world cities, such as New Delhi, Moscow, London, New 
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York, Sydney, Melbourne and Buenos Aires, considering the similarities on 

values of the GDP, E-waste generation, EEE put on the market and city 

population. 

Cluster number 1 has the other cities with similar variables, showing more cities 

with the same characteristics but on different continents. 

The green and orange arrows marking the point 0 of scaled variables, on the 

upper side of the green arrows are the cities with higher HDI, lower SCI (Higher 

ranking 1o, 2o, etc.), and presence of e-waste recycling processing units, and on 

the right side of the orange arrows are the cities with a higher quantity of EEE 

put on the market, e-waste generated, city population and GDP. 

The representation of the clusters indicates that for cities with higher economic 

power, e-waste generated and collected, as much as population and spatial size 

would be more likely to be an optimal place of an e-waste recycling unit. 

The clusters are divided mainly by Dimension 1, putting cities with higher EEE 

put on the market, the e-waste generation, the city population, and the GDP into 

cluster 2 and with lower levels of those into cluster 1. 
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Figure 10. 3 Clusters – 87 cities 

Using the same data but generating a graph with 3 clusters defined, it is showed 

a division on the previous cluster number 1 of Figure 9. The new cluster number 

2, represented in Figure 10, but the similarity on many cities with higher rank 

of SCI and higher HDI, but still on the group of lower economic power, e-waste 

generation and collection, and city population and size. 

To consider that cluster 1, in Figure 10, is now represented by fewer cities than 

before, we can relate this result to the same higher quantity of EEE put on the 

market, e-waste generated, city population and GDP, but with a higher level of 

difficulty to analyzing, ensuring that the K-means with 2 clusters is really the 

optimal value, as it is more classificatory. 
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4.2.2 Full cities dataset clustering analysis and results 

 

One main concern of the previous analysis was that the 109 smart cities were 

reduced to 87, representing ~79.82% of the data on the dataset, caused by the 

lack of data of some cities on the variables of e-waste collection and quantity 

of EEE put on the market, as already explained previously on this study. 

It is clear on the PCA analysis that both variables are highly representatives, 

especially the EEE put on market. Still, to compare the results, those two 

variables were removed from the dataset, keeping the e-waste generation and 

e-waste policy as representations of the e-waste management. It was again 

analyzed, considering the possibility of getting more points to increase the 

accuracy. 

The first result is the percentage of the variance of variables reduction; the two 

dimensions changed to 29.1% and 24% of the overall variables, decreasing the 

data representativeness from the previous model, as shown in Figure 11. 
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Figure 11. Percentage of variance - 108 cities 

The removal of the variables and the increase of the numbers of the city 

decreased the variance to dimension 1. They increased it to dimension 2, 

denoting that the sum of all data variance representation is now 53.1%. In 

comparison, in the first variance, it was 57.4%; in other words, the two 

dimensions representation for 10 variables is 53.1% of all data (Nistrup, 2019). 
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Figure 12. Quality of representation - 108 cities 

 

The quality of representation with 108 cities, presented in figure 12, shows that 

now, the city population, the e-waste generated, the GDP and the size of the city 

are the determining dimension 1, without the EEE put on the market, the 

population is the most variant variable, the e-waste generation keeps as second, 

as the GDP the third, but now the size of the city is shown. 

The SCI, the HDI, and the e-waste recycling processing unit (stations) continue 

defining dimension 2, but with the switch of importance between the SCI and 

the HDI. 
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Figure 13. Variable in PCA representation - 108 cities 

 

The variables in PCA representation, presented in figure 13, represented some 

loss of the force for seaports and traffic quality, shifting the second one to force 

the points over the two dimensions upwards instead of downwards. 

Another observation is that for the presence of an e-waste recycling unit 

(stations), its representation increased, creating the perspective that this would 

be a better model for prediction than the first one. 
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Figure 14. Optimal number of clusters - 108 cities 

 

The optimal number of clusters continues 2, Figure 14, representing the same 

similarity as before. 

 

Figure 15. 2 Clusters - 108 cities 

 

In Figure 15, the shapes of the clusters are similar. Still, the proximity of them 
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on the second model is higher; in fact, the group of cities did not vary; the 

observation for that second approach is the inclusion of São Paulo, Los Angeles 

and Singapore at the cluster number 2, at the first model, those cities were 

excluded. 

From the first and second approach, they are valid and similar, which allows 

the use of both for the prediction model, but the second approach can be 

considered less precise since the data variance representation is lower (Lopes, 

2017). 

 

4.3 Generalized Linear Model analysis and results 

 

The Generalized Linear Model (GLM) is a statistical analysis with broad use, 

it generalizes the multiple correlation coefficient, is numerically simpler to 

interpret (Zheng & Agresti, 2000), doesn’t need to scale the data, and can be 

used in unnormalized data, which represents the use of all possible data 

acquired for the Smart Cities, and the dataset available, arranged to the study. 

The procedure for prediction was developed in RStudio, all data models of the 

K-means clustering analysis were used to keep the base of comparison, but for 

the prediction, it is mandatory to select an outcome, the presence of an e-waste 
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recycling processing unit (stations) was selected as the factor to predict the 

installation or not of it in a city. 

Additionally to the clustering procedure, the acquired data was divided into two 

sets, the training, and the test, using the createDataPartition function that “can 

be used to create stratified random splits of a data set” (Kuhn, 2008), with a 

division of 75% and 25% of the data, respectively. This function determines the 

training, and the test sets, creating a partition from the acquired data; it permits 

to create sets with data similarity, ensuring the reproducibility of the prediction. 

The use of GLM allows the analysis “to tackle a wider range of data with 

different types of response variables” (Faraway, 2016), which contributes to the 

dataset arranged and improves the possibility of success. 

 

4.3.1 Full set prediction 

 

The first approach, with 87 smart cities, was also used to the prediction 

algorithm. It generated 66 samples of linearity and 11 predictors for analyzing 

the outcome of the classes 0 and 1, where 0 is the absence of stations and 1 is 

the presence. 

The first approach, with 12 variables, returned an accuracy of 90.48% for the 
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prediction of presence or not of the stations, as shown in figure 15. 

 

Figure 16. Prediction result - 87 cities 

The prediction also shows the linearity of the data distribution for the cities in 

some graphics, as shown in Figure 17, they provide more validity to the 

approach by the observation of the prediction algorithm (red line) and the actual 

data (black dots) of the smart cities. 

 

Figure 17. Prediction graphs – 87 cities 
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The model also outputted the importance of each variable for the prediction, the 

most important variables to predict were the GPD, E-waste collected, city 

population, EEE put on the market and the SCI, all of them weighing above 1.0, 

as shown in Figure 18. 

 

Figure 18. Variable importance to the prediction – 87 cities 

 

According to Figure 18, the city size, traffic quality, HDI, e-waste generation, 

seaports, and e-waste policy are also presented and under-qualified indicators 

(< 1.0). 

 

4.3.2 Full cities prediction 

 

For the second approach, the same procedure was applied. The data was divided, 
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trained, and tested. It generated 81 samples with 9 predictors to the same classes 

0 or 1, into the presence of an e-waste recycling processing unit (stations) or 

not. 

The prediction of the approach, without the e-waste collected and the EEE put 

on the market, generated an accuracy of 92.31% when determining the e-waste 

recycling processing unit (stations) presence, as shown in Figure 19. 

 

Figure 19. Prediction result - 108 cities 

That accuracy can denote a better approach for predicting the installation of the 

considering more cities and removing the collection and EEE production. 

The linear graphics of the prediction, shown in Figure 20, shows lines as the 

previous one, but with some level of degradation of the linearity, with more 

outlines, but with the validity of the approach by the prediction (red line) and 

the actual data (black dots) of the smart cities, in the same way of the previous 

dataset. 
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Figure 20. Prediction graphs - 108 cities 

 

The variable importance of the prediction in the second approach, with 108 

cities, showed that only the traffic quality and the SCI were higher than 1.0 for 

the weight shown in Figure 21. It shows the tendency to consider smart cities 

as more suitable for an e-waste recycling processing unit installation when the 

traffic quality is higher. 
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Figure 21. Variable importance to the prediction - 108 cities 

 

4.3.3 Comparison from models results 

 

One of the most important results for the GLM used is the observation of the 

response of the prediction instead of the possible applied rank (Zheng & Agresti, 

2000). It is driven to the accuracy of the prediction, on Table 3, and it is possible 

to see the relationship between approach 1, with all data, and approach 2, where 

the e-waste collection and EEE put on the market data are not considered. 
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Table 3. Confusion Matrix and Statistics comparison 

Confusion Matrix and Statistics 

 

Prediction test 

  0 1     0 1  

0 17 2   0 21 1  

1 0 2   1 1 3  

                 

Prediction factors All Data   
No EW Collected 

No EEE no Market 

 

Accuracy 90.48%   92.31%  

95% CI (0.6962, 0.9883)   (0.7487, 0.9905)  

No Information Rate 80.95%   84.62%  

P-Value [ACC > NIR] 20.77%   21.40%  

Kappa 61.82%   70.45%  

Mcnemar's Test P-Value 47.95%   100.00%  

Sensitivity 100.00%   95.45%  

Specificity 50.00%   75.00%  

Pos Pred Value 89.47%   95.45%  

Neg Pred Value 100.00%   75.00%  

Prevalence 80.95%   84.62%  

Detection Rate 80.95%   80.77%  

Detection Prevalence 90.48%   84.62%  

Balanced Accuracy 75.00%   85.23%  

Positive' Class 0   0  

 

Table 3 shows some relevant factors to be explained, not only the accuracy but 
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the No Information Rate, Sensitivity, Specificity, the Positive prediction value 

(Pos Pred Value), the Negative prediction Value (Neg Pred Value), Detection 

Rate, Detection Prevalence and the Balanced Accuracy has some insightful 

meaning. 

First, the No Information Rate shows the rate of values “No” represents on the 

prediction, showing a lower “No,” where there is NO e-waste recycling unit 

installed, intends to be denoting a distribution with more perspective of E-waste 

recycling unit installation, and therefore, a better approach to the study 

(HRanalytics, 2017). 

Considering that the prediction algorithm recognized the 0 as positive cases, 

the data from approach 1 showed a higher negative prediction value, which is 

more relevant to the installation of the E-waste recycling processing unit, and a 

higher Specificity that denotes the also the higher prediction of negative values, 

class 1, to the installation of the stations (HRanalytics, 2017). 

The Detection Rate shows a higher value for approach 1; it represents the rate 

of detection at all data, while the Detection Prevalence is all actual positives 

rate in the whole data, also higher for approach 1. 

One more fact is that the Balanced Accuracy is higher for approach 2, without 
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the E-waste Collection, the quantity of EEE on the market, and with 108 Smart 

Cities data (HRanalytics, 2017). 

The other variables have some representation, such as the McNemar’s Test P-

Value, that “In statistics, McNemar’s test is a non-parametric method used on 

nominal data to determine whether the row and column marginal frequencies 

are equal” (Sun & Yang, 2008) shows the marginal frequency of the data, 

representing the variables independency. 
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Chapter 5 Conclusion 

 

E-waste generation is a global problem that has increased exponentially from 

the last years due to the 4th industrial revolution and all technology’s 

development, innovation, and consumption. Adding more ICT into the e-waste 

management has the power of implementing the capacity of treating it, giving 

a proper disposal, and allowing the implementation of Circle Economy with 

higher effectiveness. 

In that direction, one possible action is the installation of E-waste Recycling 

Processing Unit in a City; this understanding led the research to propose the 

modeling of data from Smart City Index, E-waste management features, 

economic, social, legislation, and technological aspects to analyze that 

possibility and create a viable model to predict the optimal city for installation. 

By using two approaches as methodology, the classification by clustering using 

K-means algorithm and prediction by using the Caret algorithm and the 

Generalized Linear Model, the research acquired some interesting result that 

gives some highlights and insightful perception of the data used. 

By questioning “What are the key indicators of smart cities that makes them 
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satisfactory location of e-waste management facilities?” and if “Is there any 

similarity between the classification and prediction models that helps to identify 

the correlations between the e-waste management and the Smart City Index?”, 

the research was modeled based on the Smart City Index, the GDP of the city, 

the size, the generation and collection of e-waste on the city, the population, the 

HDI, the traffic quality, and the existence of policies related specifically to e-

waste management, the presence of seaports of the city and the presence of e-

waste recycling facilities. 

From that data, it was possible to generate the K-means cluster analysis and to 

create a prediction model using the Generalized Linear Model as a method; the 

first approach showed that to use all variables, the numbers of 109 cities would 

drop to 87, mostly because of the lack of information for E-waste Collection 

and EEE put on the market, what led the research to analyze the data with two 

possibilities, the 87 cities with all variables and 108 cities without considering 

the E-waste Collection and EEE put on the market. 

The first analysis results showed that 87 cities, divided into two clusters, as 

indicated on optimal cluster number, are separated by Dimension 1, with 36.9% 

representation of the data, and with the quantity of EEE put on the market, e-
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waste generated, city population and GDP as determinant variables to the 

cluster. 

The variance on that analysis showed a higher representativity of what is more 

distinguished inside the data, increasing the similarity by that data variance 

(Lopes, 2017). 

Comparing to the second analysis, the 108 cities on two clusters showed that 

the distribution was similar, but dimension 1 was created with a 29.1% 

representation of the data, with the city population, the e-waste generated, the 

GDP and the size of the city as the variables to difference them. It is important 

to consider that Dimension 2 on both datasets was mostly represented by the 

SCI, HDI and traffic quality. 

In fact, looking at those aspects represented by the variables, the set of cities 

did not have much difference, but the representation of the first analysis shows 

two variables related to e-waste management, while the second one only one, 

and not listed as the most representative characteristics, it reached the second 

most representative. 

That difference led us to conclude that the first cluster would represent much 

more the groups of smart cities related to the e-waste management and 
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capability than the second one, denoting those cities with higher GDP, e-waste 

generation and collection, population, and size would be more likely to be 

prepared to evolute on the next step of the e-waste management, increasing, or 

installing a new one, e-waste recycling unit. 

The research’s question can be solved with the indication of the variables in 

order of importance: Quantity of EEE put on the market; E-waste generated; 

City Population; and GDP, putting them as the key indicators to reach that of 

what needs to improve, to increase the e-waste recycling rate, by the adoption 

and implementation of the e-waste recycling unit. 

The quantity of EEE put on the market and e-waste generated are related to the 

size of population and its GDP, characterizing one cluster as cities richer, more 

populated with the capacity to produce EEE and generate e-waste to be 

considered the optimal place to install one E-waste recycling processing unit, 

by this method. 

The second method was the prediction, using the same two variances of the 

data, with 87 cities and all data on the variables, and 108 cities cutting out the 

collection and the quantity of EEE put on the city's market. 

Despite the higher accuracy of 92.31%, the approach with 108 cities, without 
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the collection and EEE put on to the market, showed that it considers the traffic 

quality and the SCI more important than all other variables; the analysis 

highlighted that more information could be considered better for the prediction. 

In comparison to the dataset with 87 cities and all the variables, the 

characteristic represents the higher impact from GPD, E-waste collected, city 

population, EEE put on the market and the SCI, which have more relations with 

the representation of e-waste management than the first one. 

The implications of adopting a prediction model for a city, such as the one 

presented here, considering the SCI as a standard, can drive the creation of a 

framework to improve the city aspects to reach the goal of installing an e-waste 

recycling unit. 

The decision-making on investment for the city e-waste management, 

observing the results discussed, should consider the key indicators as steps of 

evolution towards a smarter and cleaner city. 

The EEE market, the control and collection of the e-waste production 

emphasize the need for investment in the local industry of EEE and the need 

for policies to increase the GDP by implementing and supporting the Circular 

Economy. 
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One conclusion to the prediction method, looking at the explained Detection 

Rate, the Detection Prevalence, and ultimately by the No Information Rate, is 

that more variables, more data, with more relation to the e-waste management 

would be more precise to determine the city characteristics of the optimal place 

of installing one E-waste recycling processing unit, with possibility prediction 

in many other aspects, like policy, prediction of collection, and et. 

Both methods, the cluster and the prediction, converge in the same direction; 

more variables related to the e-waste is more precise and more representative, 

showing that: Quantity of EEE put on the market, Population, GDP, E-waste 

collection, and SCI are the most important index to reach a more appropriated 

e-waste management, while determining the E-waste recycling processing unit 

installation. 

The research hypothesis of considering one city more suitable for the 

installation of an e-waste recycling processing unit can be confirmed to SCI, 

GDP, HDI, E-waste generated and collected, but need more discussion when 

approaching the presence of E-waste related policies. The variables confirmed 

on the hypothesis need to be put on a rank, as shown by the results. 

The limitations found in the research were the quantity of data for the e-waste 
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management. More data would be needed to compare the variables for all Smart 

City, and more Smart Cities Index would also contribute to a better result. 

The contribution of the research is the discussion of the model with the SCI and 

its characteristics to be valid as a standard goal to the e-waste management-

related subjects. 

Smart Cities can also contribute more to the E-waste management and 

collaborate to solve the E-waste generation problem faster by its features of 

innovation and efficiency, represented by the data correlation. 

The following research could approach other aspects of the prediction to the 

same amount of data, also, it is needed more research and discussion about the 

quantity of Smart Cities on the Smart City Index, as well as the data from the 

E-waste, to understand better the World Demand to be a cleaner place. 

Finally, research on the direction of the impact of the policies and its features, 

contextualized as numerical factors, would help the next steps of the e-waste 

management, not only discussing the observation of regional impact but also 

creating a possible standard globally that can be applied to future Smart Cities 

development. 
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초    록 

 

본 연구에서는 스마트시티의 특징과 전자폐기물 관련 지표 간 

관계에 대한 데이터 분석을 진행하고자 하며, K-평균 군집의 

비교사(unsupervised) 인공지능 알고리즘과 예측의 일반화된 선형 

모델을 사용하여 모델 간의 비교를 통해 스마트시티 주요 특징을 

파악하고자 한다. 분석 결과를 통해 전자폐기물 관리와 스마트시티 

특성 간에 높은 상관관계가 관찰되었으며, 새로운 전자폐기물 

재활용 처리장치 설치의 필요성을 확인하였다. 

 

 

주요어: 전자 폐기물 관리, 스마트 시티, 인공지능, 클러스터링, 예측, 

스마트 시티 지수, 지속 가능성입니다 
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