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ABSTRACT 
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The steadily increasing volume of biological data with decisive phylogenetic 

relationship provides unparalleled opportunities in bioinformatics. Phylogenetics 

based on a large amount of datasets handling an evolutionary history and assigning 

the placement of taxa in a phylogeny establishes the tree of life. Constructing a 

phylogeny involving a phylogenetic analysis is implemented in most branches of 

biology and emphasizing the evolutionary history elucidates the phylogenetical 

background as a prerequisite interpreting a specific biological system, which is a  

biologically indispensable process. Due to the advent of computing and sequencing 

techniques as the phylogenetic approach, phyloinformatics has rapidly advanced at 

the technical and methodological levels along with phylogenetic reconstruction 

algorithm and evolutionary models. Unlike the classic approach using morphological 

data, modern phylogenetic analysis reconstructs a phylogeny using genetic 

information following the inference of phylogenetic tree from molecular data. 

Therefore, phylogeneticists have naturally dealt with questions concerning the 
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accuracy of phylogenetic estimation and carried out studies on the reliability of 

phylogenies. In terms of molecular systematics, the concerns regarding the  

assessment of phylogenetic accuracy considering specific evolutionary conditions 

and the amount of molecular data implemented can now be divided into two types:  

how phylogenetic method works and how reliable it is under certain circumstances. 

Moreover, in terms of data quality, assessment for suitability of nuclear marker is 

required before the phylogenetic inference is performed for confident phylogeny. 

Recently, the probability of stochastic errors in phylogenetic estimation dealing with 

a large-scale datasets has decreased, while the probability of systematic errors has 

increased. Thus, before the implementation of phylogenetic reconstruction, the 

assessment of sources of systematic errors is indispensable for the improvement and 

estimation of phylogenetic accuracy. Assessment Program for Systematic Error 

(APSE) developed by this study will plays a key role in assessment between user 

datasets and phylogenies for improving the results of phylogenetic reconstruction in 

systematics and will be able to implement an analysis of the effect on data bearing 

systematic errors in a phylogeny after the misleading phylogenetic results are 

produced. This study with APSE will serve as the inference of phylogenetic accuracy 

and the assessment of systematic errors using an unresolved example showing the 

contradicting topologies between different gene markers in the same diversity group. 

Furthermore, by selectively grouping the properties of the existing systematic biases 

provided by the APSE, it proceeds in the direction of proposing a new protocol that 

can provide the best gene marker among candidate markers for a specific taxon. 

·············································································································· 

Keywords: systematic error, bioinformatics, standalone, phylogenetic reliability, 

multiple sequence alignment, phylogenetic analysis, data quality  
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CHAPTER I. 
 

INTRODUCTION 

 

 

1.1 Background of research 

1.1.1 Overview of phylogenetics in bioinformatics 

Phylogenetics is the study of acquiring the information of evolutionary relationships 

within species or groups of organisms and discovering these relationships using a 

variety of computational phylogenetic methods. The advent of the high-throughput 

sequencing technique was desirable for biologists and bioinformaticians. Therefore, 

the utilization of phylogenetic approaches has increased with the progress of 

computing techniques. As the amount of usable molecular data has steadily increased, 

phylogenetic study has extends from the single-gene analysis to the phylogenomics 

using multigene datasets, and this analysis cannot be performed without an automatic 

computational pipeline. Therefore, evolutionary biologists and phylogeneticists 

must consider the selection of the bioinformatics program and the sampling of 

biological data for reliable phylogenetic inferences leading to true phylogenies. 

Bioinformatics is a science that answers biological questions by using methods of 

mathematics, statistics, and computer science and interpreting the biological data 

(Thampi, 2009). Bioinformatics started as a way to build a database to store 

biological data and to develop algorithms for analyzing molecular data (Dayhoff, 

Doolittle, Fitch, McLachlan, 1960). The current meaning of bioinformatics, has been 

extended to the study of all biological information in various biological systems, and 
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thus, it processes the raw data to derive meaningful results. Furthermore, the results 

derived from bioinformatics research are being applied in various fields, including 

phylogenetics, and the bioinformatics programs for these applications are software 

programs that helps to understand life phenomena by analyzing biological data and 

the corresponding mechanisms with computer algorithms. Therefore, computational 

phylogenetics in bioinformatics is a method of performing phylogenetic analysis 

(Fitch, Margoliash, 1967) by approaching computing or statistical problems such as 

using computational algorithms and programs. In particular, with the advancement 

of computing technology and algorithms, the questions regarding biological lineages 

can be answered with computational phylogenetics, and specifically, it encompasses 

all problems such as multilocus or large-scale phylogenetic estimation, supertree 

methods, and multiple sequence alignment (MSA) (Corpet, 1988) techniques. Early 

phylogenetics was a method of analysis based on the morphology of a species, and 

evolutionary relationships were inferred by phenotypic traits, such as the body size 

of an organism, the length of a specific bone, or a specific behavioral sign. Moreover,  

phylogenetics based on biochemical properties identified the relationships between 

organisms with clues such as the components of cells, the sequence of synthesis of 

end products from the metabolic process, and attributes of enzymes. Current 

phylogenetics selects an appropriate mathematical model to define the evolutionary 

relationship and at this time, phylogenetic estimation is performed with a 

computational phylogenetics program in order to efficiently analyze a large amount 

of sequence data. Thus, the problem that researchers are facing now in phylogenetic 

analysis is finding a method that can accurately and efficiently handle large amounts 

of sequence data and define the evolutionary relationship of structures and functions 

between organisms. On the other hand, the result of the analysis mentioned above is 

the output of a phylogenetic tree, and the evolutionary tree drawn in this way 
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becomes a prerequisite for interpreting biological systems and grasping evolutionary 

patterns by presenting how molecular sequences have evolved from common 

ancestors. Therefore, in the phylogenetic analysis results, a reliable evolutionary tree 

must be drawn by the researcher to avoid the fundamental problem of variation in 

the historical path of the taxonomic species or group of species, and the problem of 

evaluating the accuracy of the drawn tree has evolved into an important issue. 

 

1.1.2 Assessment of the credibility and accuracy of phylogenies 

Since phylogenetics focuses on constructing an accurate phylogenetic tree for 

estimating evolutionary relationships, it is natural for relevant researchers to question 

the accuracy of phylogenetic trees and correctly infer that phylogenies are essential 

to the study of the evolutionary history of living things. Historically, the process of 

building a phylogenetic tree has valued knowing the evolutionary relationship or the 

pattern of tree topology itself, and the phenomenon of drawing a phylogenetic tree 

has emerged in order to know information about the process leading to the observed 

evolutionary pattern. In this regard, phylogenetic reconstruction facilitated the 

analysis of gene duplication, evolution rate, polymorphism, recombination, lineage 

divergence, and population demographics, and the accurate estimation of 

evolutionary parameters supports the validity of phylogenetic reconstruction. The 

process of phylogenetic inference is generally divided into two parts. The first part 

is identifying homologous characters within datasets to be studied (i.e., sampling of 

sequences from species). The second part of the process is inferring the evolutionary 

history of organisms through comparison of these characters using tree 

reconstruction methods. Phylogenetic trees helps biologists to make evolutionary 

inferences by providing information on expected features (i.e., when or where 
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various structures, molecules, and behaviors of living organisms evolve in a 

taxonomic group). Accordingly, it is possible to predict the entire biological system, 

and when a phylogenetic analysis across various levels of biological organization 

(i.e., gene, genome, individual, population, species, or clade) is performed, it 

facilitates the interpretation of comparative observations by explaining the historical 

non-independence of organisms. In particular, the first reason that the evolutionary 

history provided by phylogenetic inference is important is that it enables the study 

of evolutionary relationships for the levels of classification of organisms (i.e., 

kingdom, phylum, class, family, genus, species, intraspecific population). The 

second reason is that it not only allows the evolutionary pattern of multigene families 

to be clearly understood, but also explains the evolution of adaptive traits at the 

molecular level, ancestral character states, the timing of species divergences and 

variation in evolutionary rates. Currently used major methods for phylogenetic 

inference including distance-based methods such as neighbor-joining (NJ), 

character-based methods such as maximum likelihood (ML), maximum parsimony 

(MP), Bayesian inference, and minimum evolution, can draw valid phylogenies 

when performing phylogenetic estimation of enough nucleotides or amino acids but  

may not provide a true topology when certain situations with different evolutionary 

rates between branches occur. Inaccurate estimation of phylogenetic trees leads to 

biased results, that is, erroneous estimation of evolutionary mechanisms, and the 

complexity of DNA sequence evolution and the molecular force acting on the 

sequence make phylogenetic inference a complex problem. As a huge number of 

biological sequences have recently been produced, phylogenetic analysis has 

become a sequence analysis technique that is meaningfully used in evolutionary 

studies. Moreover, the number of phylogenetic inference techniques has led to the 
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complex problem of judging the accuracy of phylogenetic reconstruction and to 

relevant studies being conducted. 

 

1.1.2.1 Approaches to assessing phylogenetic accuracy 

There are actually several properties for phylogenetic estimation, which are used as 

criteria for statistically evaluating the performance of both character-based and 

distance-based phylogenetic reconstruction methods. The first property is 

consistency; that is, a statistically consistent estimator approaches a true value as the 

amount of data increases. In other words, as the biological sequence becomes longer, 

a larger amount of data is analyzed, and the likelihood of drawing a true phylogenetic 

tree increases. According to the property of efficiency, the phylogenetic method 

outputs accurate results when the amount of data is limited. If the phylogenetic result 

converges quickly on the true tree, the estimator can be considered efficient. 

Although computing techniques have accelerated the speed of computers, it remains 

a practical criterion because several phylogenetic methods are computationally 

burdensome. The following criterion is robustness, which evaluates whether the 

phylogenetic methods can derive a true tree under conditions facing violations such 

as branch length variation and substitution frequencies. Finally, the property of 

computational speed refers to the speed at which the reconstruction methods reach 

the best tree. For example, the NJ method draws an optimal phylogenetic tree using 

the cluster algorithm; thus its computational speed is faster compared to those of 

other methods, and this speed using the Bayesian method that depends on the length 

of the chain generated by the Markov Chain Monte Carlo (MCMC) algorithm varies 

with the sample data. In order to judge phylogenetic accuracy and evaluate the 

reliability according to the results, several approaches such as computer simulation, 

experimental phylogenetics, statistical analysis, and congruence analysis, have been 
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studied, and widely used so far as a method to evaluate phylogenetic performance. 

First, the simulation study is one of the most important approaches dealing with 

general questions about phylogenetic accuracy. For example, it is a technique to 

judge phylogenetic accuracy by comparing the performance of phylogenetic 

inference methods such as ML, MP, and Bayesian inference. It is also evaluated by 

analyzing the effects of parameters affecting the performance of the phylogenetic 

method, tree topologies, and relative or absolute rates of evolution. Numerous 

simulation studies have already been conducted on the phylogenetic inference 

method (Felsenstein, 1988), and with the development of computers and algorithms, 

it is now possible to provide a performance evaluation of more diverse phylogenetic 

methods analyzing or simulating thousands of datasets. However, many systematists 

do not accept the results of simulation studies as phylogenetic assessment. Existing 

studies show that many reconstruction methods that implement phylogenetic 

inference perform well or do not perform well under specific conditions, and it is 

easy to check the optimal condition for the phylogenetic inference method that the 

researcher prefers. Thus, the various factors that affect phylogenetics can limit the 

evaluation, which can lead to a reliability problem. In addition, the simulation study 

is affected by several biases such as branching order, branch lengths, and number of 

terminal taxa, which make the interpretation of simulation results difficult or 

contradictory. In particular, the evolutionary model in phylogenetic analysis can be 

regarded as a representative bias of simulation studies, and most simulations studies 

use this as a method of estimating an evolutionary model consistent with the result 

of the phylogenetic inference. Nevertheless, many researchers have relied on 

simulation methods to evaluate their results because evolutionary history in 

phylogenetic estimation is generally difficult to observe directly, and this approach 

has provided a high level of insight into various phylogenetic algorithms. Despite 
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the usefulness of simulation studies, since it is difficult to vaguely manipulate and 

evaluate phylogenetic estimation and molecular evolution, an experimental approach 

considering the actual case of evolutionary events was devised to avoid estimating 

the approximate value of biological evolution. This approach creates the 

evolutionary history of biological entities (i.e., clades of organisms) in a laboratory 

based on known history and evaluates the performance of the phylogenetic method 

for phylogenetic reconstruction. In other words, researchers can determine whether 

phylogenetic results are accurate, because experimental phylogenetics can reveal 

evolutionary history a priori in the laboratory. In addition, the accuracy evaluation 

using the statistical approach mainly deals with phylogenetic accuracy within a 

particular case rather than general conditions in which the phylogenetic method 

performs well or poorly. Additionally, the most well-known method of evaluating 

the performance of the phylogenetic tree using statistical analysis is the bootstrap 

test. The statistical approach usually maximizes the statistical reliability of the 

bootstrap tree when the sequence group in the dataset is monophyletic, and 

evaluating a group that spans multiple regions or the entire phylogenetic tree is less 

accurate because bootstrap values for unclear relationships are assigned to various 

groups. Therefore, the bootstrap test can be regarded as suitable for evaluating a 

small part of the phylogenetic tree, and researchers should use a statistical analysis 

that fits the condition of the datasets in determining phylogenetic accuracy. The final 

evaluation method is the congruence study, which approaches the problem by 

finding a common pattern of the tree topologies within phylogenetic trees created 

from multiple independent datasets. If multiple phylogenetic trees estimated from 

independent datasets represent the same pattern of relationship, this is strong 

evidence of the accuracy of the phylogenetic method. When a historical taxonomic 

sample sequence is provided, it is the best evidence of evolutionary accuracy if the 



 

８ 

 

phylogeny based on morphological characteristics and the sequence-based 

phylogeny including orthologous genes show congruence (Jessica W. Leigh, 2011). 

Congruence justifies multigene phylogeny or phylogenomics and is a concept mainly 

applied to evolutionary biology as a basis for research on coevolution, lateral gene 

transfer, and evidence for common descent. However, two contradictory results 

arose from entering the current phylogenomic era, which considers multigene 

datasets (Kuck, Struck, 2013). First, congruence can be achieved as a result of 

phylogenetic analysis due to sufficient data (Gee, 2003). The other result began to 

occur due to the accumulation of systematic biases such as increased substitution 

rates, compositional saturation, and heterogeneity (Jeffroy et al., 2006). In other 

words, it has become indispensable to study the effect of systematic biases in the 

dataset to evaluate the congruence of phylogenetic analysis.   

 

1.1.2.2 Influences of phylogenetic tree accuracy 

The preparation and study of the factors affecting the accuracy of reconstructed trees 

through the above-mentioned approaches is a significant process. Tree uncertainty 

is expected inaccuracy, such as systematic error and random error, which is not 

expressed as a specific element but can be judged by using various parameters, such 

as the amount of input data (i.e., molecular sequence length for inference of 

evolutionary time and amount of change), divergence between sequences, model of 

evolution, and tree searching algorithm. First, in terms of the evaluation of 

phylogenetic accuracy, taxon sampling that considers the amount of input data 

includes the taxon informativeness problem for missing data and is the most 

significant factor affecting the accuracy. Phylogeneticists recognized that datasets 

containing a large number of taxa have created a more complex computational 

problem for phylogenetic analyses, and since then, numerous taxon sampling studies 
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have demonstrated that dense taxon sampling, as a way of introducing additional 

taxa improves the phylogenetic accuracy as the size of the dataset to be analyzed 

increases. In particular, dense taxon sampling affects the branch-estimation of the 

phylogeny, and this branch length not only provides information on the amount of 

genetic variation occurring across the phylogenetic tree but also plays an important 

role in direct inferences about evolution. Therefore, if the amount of available 

information in terms of dataset size is small, it is difficult to infer unobserved 

substitution, and a node-density effect (NDE) that misleads the relationship between 

rates of molecular evolution and biodiversity occurs (Webster et al., 2003; Venditti 

et al., 2006; Hugall, Lee, 2007). Additionally, taxon sampling in terms of the 

accuracy evaluation of phylogenetic performance in modern bioinformatics includes 

searching genetic databases to obtain sequences that are of interest or beneficial to 

the researcher, which means that the reliability of sampling can be biased by the 

availability of related sequences. The divergence between sequences is one of the 

main research fields of taxon sampling and evolutionary biology in terms of the 

relationship between sequence similarity and accurate phylogenetic reconstruction. 

Many phylogenomic studies rely on the large-scale alignment of nucleotide and 

amino acid sequences identified by a sequence similarity search as a previous step 

of phylogenetic tree reconstruction. A number of studies have been conducted on 

this, and as a group of species with statistically significant similarity between 

sequences represents lower sequence divergence, the accuracy of the multiple 

alignment which can be defined as the SOP score, increases (Brandi L. Cantarel et 

al., 2006). As a result, true alignment is the basis for increasing phylogenetic 

accuracy, and sequence similarity has a significant impact on phylogenetic accuracy. 

Therefore, evolutionary biologists and phylogeneticists should not only select an 

informative sequence that considers the size of the datasets including missing data 
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and the variation problem that may occur during the sampling process, but also 

perform a proper MSA to draw the expected performance of phylogenetic inference. 

Meanwhile, most phylogenetic analysis methods including distance-based and 

character-based methods in the model-based approach rely on explicit statistical 

evolution models to build phylogenetic tree, and the appropriate phylogenetic 

analysis depends on the suitability of the dataset. The specific statistical model 

selected for the dataset depends on the size of the dataset, the level of divergence 

between sequences, the pattern of variation resulting from the evolution of the 

sequence and the nucleotide frequency pattern and is distinguished according to the 

number of parameters used to represent the evolutionary change in terms of the 

complexity. Realistic model selection considering these parameters can avoid model 

overfitting and phylogenetic bias problems, thus yielding a more reliable and 

accurate phylogenetic tree. For example, one of the model parameters that has a 

strong influence on phylogenetic estimation is among-site variation, which is a 

problem when substitution rates between tree branches are differ, and when such 

variation exists, the use of the best-fit model is essential to obtain an accurate 

phylogenetic tree. Finally, the phylogenetic reconstruction methods selected for 

drawing the phylogeny can be reflected in the accuracy. The four methods of the 

parsimony, distance, likelihood, and Bayesian, divided based on their completely 

different schema, result in fundamentally distinct phylogenies, and each has both 

advantages and disadvantages. 

 

1.1.3 Application of phylogenetic evaluation 

Phylogeneticists and bioinformaticians enable phylogenetic reconstruction by 

rapidly incorporating these molecular parameters into phylogenetic analysis through 
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advanced sequencing and computing techniques to access the molecular 

characteristics of living organisms. Unlike traditional morphology-based 

phylogenies, where the number of phylogenetically reliable characters was not 

sufficient, the number of genes with their own complex history, such as speciation, 

is gradually increasing in molecular data, which is important to phylogenetic 

accuracy. Clearly, it is very difficult to obtain and estimate the accuracy of unique 

events that occurred in the distant past, which play a role in genome evolution, 

organism diversification, and new cell function expression. As the accuracy 

evaluation of the printed phylogeny is an indispensable process to objectively 

understand a biology, various evaluation methods are being studied. However, 

despite the recent significant advances in the methods for evaluating phylogenetic 

accuracy, a wide range of defined approaches has not been properly applied to 

systematics. The evaluation of phylogenetic accuracy from the perspective of 

systematics can be largely divided into two parts based on the method used for 

phylogenetic analysis. In general, researchers in phylogenetics, including 

evolutionary biologists, have used model selection software to find the best-fitting 

evolutionary model for datasets before the phylogenetic tree building process. They 

have also estimated the reliability and accuracy of the tree as a result of the 

assessment method using the built-in statistical component for obtaining a true 

phylogeny in phylogenetic reconstruction software. Most of the software currently 

used in computational phylogenetics is limited to the statistical approach and focuses 

on the process of building the most accurate phylogenetic tree, because the currently 

available methods can reconstruct a general consensus tree. Nevertheless, the major 

phylogenetic evaluation methods may not accurately reflect the distribution of 

underlying characters in the molecular data, and this may be difficult to overcome 

when systematic biases are introduced in the early stages of analysis. Moreover, if 



 

１２ 

 

the appropriateness of the datasets is not considered, an uninformative tree can be 

produced.  

As mentioned above, the use of a specific evolutionary model can change the results 

of phylogenetic analysis, and as these model-based approaches stand out in 

systematic biology, including phylogenetic estimation, the studies of selecting an 

evolutionary model for the distance-based, likelihood, and Bayesian methods have 

been the focus. Evolutionary models calculate the probability of change between the 

characters in the biological sequence underlying phylogenetic tree branches, and 

they affect phylogeny estimation, molecular clock tests, bootstrap values, posterior 

probabilities, and substitution rates. In fact, if the model is incorrectly estimated, 

branch lengths, the transition/transversion ratio, and sequence divergence are 

underestimated, while the rate variation strength is overestimated. The optimal 

evolutionary model for a specific dataset is rigorously selected through statistical 

testing, and it performs estimation to transform a complex problem into a 

computationally tractable problem. The degree of fit between various models and 

dataset (i.e., model selection between available evolutionary models) is determined 

by comparison through likelihood ratio tests (LRTs) or information criteria. In 

particular, care is required when selecting the best-fit model of heterogeneous data 

and combining other genes in the coding and noncoding regions. This is because 

different genomic regions have different selective pressures and evolutionary 

constraints, and as a result, one substitution model cannot be perfectly suited to all 

datasets. Given that any evolutionary model cannot be asserted as a true model for 

the data extracted by the researcher, model selection does not identify reality, but 

estimates it as closely as possible. Model suitability within phylogenetics is judged 

by comparative analysis using likelihood function (Felsenstein, 1981; Goldman, 

1990) and information criteria approaches, and is implemented by using a 
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JModelTest (Posada, 2008) as the most representative software among various 

programs that perform the statistical selection of models. This program provides 

access to model selection by adding more statistical theories than the ModelTest 

(Posada, Crandall, 1998), which was most widely used for model selection. Most of 

the programs, including jModelTest, evaluate model suitability through the 

likelihood function, which uses the existing ML estimation to find the maximized 

parameter of the likelihood for a given dataset and select a statistically significant 

model through hypothesis testing with multiple models. In addition, jModelTest 

provides a series of LRTs: hierarchical LRTs (Frati et al., 1997; Huelsenbeck, 

Crandall, 1977; Sullivan et al., 1997) that calculate the difference between models 

comparing the hypothesis test hierarchically based on the presence of base 

frequencies, transition and transversion bias, invariable sites, and rate homogeneity 

among sites, and a dynamic LRT (Posada, Crandall, 2001) that compares the current 

model and hypothetical model with LRTs. Several model selection methods such as 

the Akaike information criterion (Akaike, 1973), Bayesian information criterion 

(Schwarz, 1978), and decision-theoretic performance-based approach (Minin et al., 

2003) are also provided.  

On the other hand, phylogenetic reconstruction software, which many researchers 

mainly use for phylogenetic inference, provides accuracy assessment embedded in 

the program as a component with one function so that statistically significant 

phylogenetic results can be printed (Table 1.1). The method for evaluating the 

reliability of phylogenetic trees most commonly used so far is the bootstrap test 

(Efron, 1982; Felsenstein, 1985), which judges the accuracy of statistical estimation. 

Standard bootstrap (SBS) is useful in complex nonparametric estimations, and it 

operates by randomly restoring and extracting bootstrap replicates of the same size 

as the original datasets. As the bootstrap test is applied to the estimation of the 
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phylogenetic tree, it is possible to create bootstrap replicates by sampling the restored 

and extracted sites from observed molecular data; thus, a psudo sequence of the same 

size as the original molecular data can be produced. Each bootstrap sample is 

inferred using a specific phylogenetic reconstruction method, and the sampling 

distribution of the phylogeny estimated above can be known by the empirical 

distribution of bootstrap estimates. SBS is performed in most phylogenetic tree-

making software programs including PAUP* (Swofford, 1993) and Mesquite 

(Wayne P. Maddison, David R. Maddison, 2001), and these programs provide a 

reliability evaluation for the observed clades of the tree based on the ratio of 

bootstrap trees extracting the same clade. Specifically, programs such as RAxML8 

(Stamatakis A, 2014) and MOLPHY (Adachi, Hasegawa, 1992), which perform 

phylogenetic estimation under the ML method, implement the resampling estimated 

log-likelihood (RELL) method (Kishino et al., 1990) or rapid bootstrap search 

algorithm (Stamatakis A, 2008), which estimate the bootstrap probability of a tree 

without repetition of bootstrap resampling, because a computational burden is 

required for ML estimation for bootstrap samples. Meanwhile, as Bayesian inference 

was applied to computational phylogenetics, an uncertain phylogeny was inferred as 

the probability distribution. The Bayesian approach based on Bayes’s theorem 

calculates the posterior probability (PP) P(A|B) for the tree by combining the prior 

probability P(A) of the tree and the likelihood P(B|A) of the data, and it operates by 

estimating the best phylogeny with the maximum PP representing the probability of 

the true tree. As various phylogenetics software use bayesian inference, the number 

of molecular phylogenetic parameters that need to be estimated has rapidly increased, 

and thus, the problem of computational complexity has been solved. The newly 

designed MCMC approach (Yang, Rannala, 1997) is a method of extracting the 

sample of the desired stationary distribution reaching the known target distribution 
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from the probability distribution based on the composition of the Markov chain. At 

this time, the Metropolis-Hasting algorithm is used to perform the step of the MCMC 

method. After n generations, which randomly propose a new tree topology or a new 

value for a model parameter, if the Markov chain converges to the stationary 

distribution, the state generated by the Markov chain can be considered as a sample 

of the target density and can be repeatedly sampled. For example, MrBayes, which 

performs Bayesian inference for phylogenetic estimation uses the standard MCMC 

method to calculate the PP of a tree, and many programs, including a BATWING 

(Wilson et al., 2003) and BEAST (Drummond et al., 2012), estimate the reliability 

of a phylogeny using the MCMC approach connected to the Metropolis algorithm. 

 

1.1.4 Source of systematic biases affecting a phylogenetic 

accuracy and phylogenetic example 

The use of the large multigene datasets has been successfully applied to solve the 

evolutionary question that defines the evolutionary relationship between specific 

species, leading to the quite accurate estimation of phylogenetic inferences. However, 

as the size of the datasets increases and the growth of phylogenetically informative 

positions intensifies as a result of large-scale bioinformatics studies, the potential of 

systematic errors also rises. Therefore, the phylogenetic inference through expansion 

to such a large dataset does not necessarily lead to more accurate results. The 

following factors mainly depending on the accuracy of phylogenetic reconstruction 

can be classified into five terms: the quality of the sequence, the identification of 

exact homologous sites by sequence alignment, the regularity of the substitution 

process, biases such as consistency and efficiency of phylogenetic estimation 

methods, and sequence divergence. If the existing phylogenetic assessment methods 
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relied on the accuracy of a series of continuous processes that secure and align 

sequences and perform phylogenetic inference, the recent evaluation methods focus 

on understanding the characteristics of genetic markers to analyze the sequence 

quality caused by systematic biases affecting phylogenetic inference. This means 

that large-scale datasets provide benefits to phylogeneticists, but when an 

unexpected evolutionary relationship occurs, it reflects a violation of phylogenetic 

assumptions due to systematic errors. If the estimated phylogenetic result is violated 

by a specific evolutionary phenomenon, this result begins to represent a systematic 

error and leads to an inaccurate phylogenetic relationship (Figure 1.1). Systematic 

biases refer to inaccuracies that occur as a result of inappropriate modeling of 

biological phenomena (Romiguier et al., 2016) or methodological issues (Hosner et 

al., 2016), and these are represented in datasets as non-phylogenetic issues, such as 

saturation, missing data, compositional heterogeneity among species, and rate 

variation across lineages. 

 

1.1.4.1 Compositional heterogeneity 

Compositional heterogeneity is said to occur when the equilibrium state of 

nucleotide or amino acid frequencies varies across the phylogenetic tree. It is not 

defined in the stationarity state where the transition probability does not change, and 

it occurs as a result of non-stationarity evolution where the substitution pattern of the 

evolutionary tree is not uniform over time. Therefore, compositional heterogeneity 

has bias in branch length and topology, and the characteristic of non-stationarity 

means that compositional attraction occurs, which means that taxa with similar 

nucleotide compositions are grouped together even though the evolutionary distance 

between them is great. In fact, compositional biases are more prominent in 

nucleotide sequences than amino acid sequences, because the third codon positions, 
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which are rapidly evolving sites, accumulate mutational biases as a result of 

degeneracy of the genetic code. In terms of systematics, the evaluation of 

compositional heterogeneity is implemented by analyzing simulated data with 

different nucleotide compositions, AT-biased or GC-biased compositions, using the 

P4 phylogenetics library (Foster, 2004). Such quantitative characteristics can be 

expressed as one of the following skew values representing compositional 

heterogeneity: AT skew, GC skew, purine skew (G and A), pyrimidine skew (C and 

T), and keto skew (GT). For example, GC skew indicates that guanine and cytosine 

are overabundant or underabundant in specific regions of DNA or RNA, because 

nucleotides randomly distributed within the gene are in a state of nonequilibrium 

with different mutational and selective pressures. The combination of nucleotide 

frequencies (i.e., the base composition itself) is a standard as a marker that indicates 

an unambiguous phylogenetic signal, and GC content, which is the average GC% of 

one sequence of an alignment, and GC heterogeneity, which is the variance of GC% 

among sequences of an alignment, function as biases for phylogenetic reconstruction 

(Romiguier et al., 2013). 
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1.1.4.2 Saturation 

When multiple substitutions occur, where the actual genetic distance of the 

sequences is underestimated within the multiple alignment, it is said to be saturated. 

In other words, a single nucleotide undergoing multiple changes before reaching the 

final nucleotide identity is called multiple substitution, and saturation characteristics 

are represented by mutations acting on nucleotide changes. Assuming there are no 

model violations, saturation results in a decrease in phylogenetic accuracy and 

random sequences leading to poorly resolved trees. Conversely, if there is a model 

violation, a systematic error emerges, and due to the fast evolution rate or long time 

span, long branches accumulate multiple substitutions, which is affected by long 

branch attraction (LBA). When phylogenetic reconstruction is performed without 

considering saturation in alignment, the probability of multiple substitutions makes 

the distance between taxa smaller than the true distance, and thus, genetic saturation 

hinders MSA as an essential process for phylogenetic analyses that relies on the 

comparison of homologous sequences. The number of substitutions of one 

nucleotide in each sequence is not indicated in the loci, and substitutions 

consequently reduce the amount of phylogenetic information contained in the 

sequence. Saturation can be evaluated by measuring the substitution rate of the 

biological sequence and the time that has passed since the divergence, and the 

divergence rate can be estimated from sources including ancestral DNA, fossil 

records, and biographical events. 

 

1.1.4.3 Missing data 

The issue of missing data, which reduce phylogenetic accuracy, has been an 

important one from the early studies of taxon sampling (1990-1999) to modern 

phylogenetics, and this problem is considered a significant obstacle to reconstructing 
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the phylogenetic relationship between fossil taxa and extant taxa. In general, missing 

data are used for phylogenetic analysis in the form of incomplete taxa or characters, 

and thus, shared missing data are not distributed randomly among taxa. Specifically, 

the missing data are expressed as empty cells and the special character “?” of the 

character-by-taxon data matrix in the nexus file format used in phylogenetic analysis 

(Figure 1.2). In molecular phylogenetics, the issue of missing data is a complex one 

that determines the phylogenetic study design, and it is one of the important 

problems in many molecular data matrices or it is deliberately excluded to avoid 

missing data. Research on the effect of missing data on phylogenetic analysis has 

been conducted, yielding two main results. The first is the result that the missing data 

appearing in the sequence have a deleterious impact on the phylogenetic accuracy 

(Huelsenbeck, 1991; Lemmon et al., 2009). Although the missing data does not 

directly affect phylogenetic estimation, using a small number of characters may lead 

to phylogenetic inaccuracy due to the lack of phylogenetic signal (Wiens, 2003; 

Philippe et al., 2004). In addition, although many previous studies have demonstrated 

that an increase in the amount of missing data decreases the phylogenetic accuracy 

(Wiens, Reeder, 1995), recent results have proven that a more accurate phylogeny 

can be drawn depending on the number of characters regardless of whether or not 

the missing data are included (Wei Jiang et al., 2014). However, the result may be 

significantly different depending on various parameters used to determine the 

accuracy of the phylogenetic inference, such as incomplete genes, number of 

characters, and phylogenetic analysis method. Since the amount of missing data has 

increased considerably compared to the previous one, the comparison of missing 

data between taxa can provide a more significant phylogenetic estimation than the 

existing evaluation. 
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1.2  Necessity of research 

The molecular phylogenetics studied today basically involve the comparison of 

macromolecular sequences to estimate genealogical and evolutionary relationships, 

and this concept was first proposed by Francis Crick in 1958 (Table 1.2). As the 

protein sequence is determined with protocols developed by Fred Sanger and access 

to the sequences increases, many protein biochemists have constructed phylogenetic 

relatedness maps and phylogenetic trees based on amino acid sequences derived 

from various organisms. With the expansion of molecular phylogenetics, the next-

generation sequencing (NGS) technologies and advanced computing techniques 

have led to the accumulation of a large number of biological sequences from various 

living organisms, but the activation of phylogenetics studies estimating the 

evolutionary relationships has also resulted in a variety of phylogenetic conflicts. In 

spite of the increased amount of available biological information, dependence on 

tree-making methods without consideration of data quality is resulting in inaccurate,  

contradictory results. In addition, the phylogenetic reliability issue is considered one 

of the important problems to be addressed in phylogenetic reconstruction studies. 

Phylogenetic inference is an inductive science that relies on sampling empirical data 

such as nucleotide sequences. In the natural sciences, it is essential to assess the 

quality of empirical data to detect differences in the quality of sampling data before 

and after generating results. When various factors that may cause phylogenetic 

conflicts such as homologous characters, sensitivity of tree-making methods to 

unequal evolutionary rates, biases of species sampling, unrecognized paralogs, and 

functional differentiation, are considered, more accurate and reliable phylogenetic 

reconstruction can be achieved. Evaluating phylogenetic reliability ultimately means 

inferring a more accurate evolutionary history by generating better phylogenetic 
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results through assessing the quality of the data to be employed in a study. On the 

other hand, bootstrap methods, which evaluate the credibility of existing phylogenies 

from the perspective of computational phylogenetics, are embedded in most 

phylogenetic reconstruction software programs and directly contribute to the shape 

and topology of the tree. There are also various model selection programs aimed at 

improving the accuracy of phylogenies by using different methods of estimating 

evolutionary models. Furthermore, studies on factors affecting the accuracy of the 

tree-making process have led to the development of phylogenetic software that 

evaluates and improves specific elements. However, the programs that developed so 

far do not perform analysis on molecular data including genetic markers at the 

beginning of the phylogenetic reconstruction stage. Since there is no program that 

evaluates the effect of phylogenetic signals that cause various conflicts other than 

model selection, evaluating the reliability of phylogenetic reconstruction with only 

existing pipelines of phylogenetic reliability can result in ambiguity problems. 

Therefore, analyzing nuclear markers used for phylogenetic analysis as well as 

sequence quality and accuracy of sequence alignment, is an important process to 

improve phylogenetic reliability. Basically, since the initial datasets of all 

researchers imply the possibility of containing noise, it is essential to derive true 

phylogenies by considering potential problems known as systematic biases or 

phylogenetic biases that cause phylogenetic inaccuracy. Phylogenetic incongruence, 

in which branch orders collide with different evolutionary mechanisms between 

phylogenetic trees by several candidate nuclear markers can occur. In addition, an 

apomorphy that exists in all descendants within a specific clade is estimated by the 

erroneous grouping by the characteristics shared by two or more taxa with the initial 

common ancestor (i.e., the symplesiomorphy, which is shared by descendants who 

diverged from the common ancestor). When this symplesiomorphy is introduced, a 
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data quality-based program is useful (Figure 1.3). Until now, sequence-based 

approaches, such as variation in taxon sampling, removal of fast-evolving species, 

genes, or sites, and efficient detection of multiple substitution, have been applied to 

continuous research to resolve these systematic errors. Thus, SeqVis (Ho, 2006), 

which visualizes the composition of biological sequences and detects compositional 

heterogeneity, and BaCoCa (Kuck, Struck, 2013), which evaluates phylogenetic 

reconstruction by visualizing and calculating potential biases causing various 

systematic errors have been developed as a programs that consider phylogenetic 

biases. However, this program requires the PERL interpreter and R package to be 

installed and it is complicated to use by entering the instructions, resulting in low 

usability and efficiency from the perspective of experimental biologists. At this point, 

phylogeneticists and associated researchers need not only the ability to evaluate and 

analyze reliability at the sequence-level, but also user-friendly phylogenetic 

evaluation software. Additionally, since the potential problem of systematic errors 

still remains, it is vital to develop a reliable program that improves the credibility of 

phylogenetic reconstruction through multigene datasets. 

 

1.3  Research objectives 

The ultimate goal of this study is to develop a software that estimates the reliability 

and accuracy of the phylogenetic tree as specific values, which is a statistical 

parameters for molecular characters in the nuclear marker files. Thus, it also aims to 

estimate the reliability of a specific clade by using phylogenies for evolutionary 

relationships of living organisms and parameters before the phylogenetic 

reconstruction through a congruence approach and a statistical approach. Using this 

program, the phylogenetic accuracy is inferred by finding the optimal combination 
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within the parameters of systematic biases for gene markers. The first objective of 

developing software is to design a component that contains the function of 

converting an multi-aligned dataset of gene markers into a file with tractable 

structure. In addition, it converts a multiple alignment file format (.fasta) into a 

simple structured file format and helps facilitate the next analysis using the processed 

data. Researchers use multigene datasets for phylogenetic estimation, and since the 

MSA file format is a structure that makes the mathematical approach of molecular 

characteristics difficult, it is necessary to convert the data for easy handling. The 

second objective is to calculate and estimate statistical properties, which indicate 

potential biases that infer phylogenetic accuracy using characteristics extracted from 

the raw data and provide the corresponding results in the form of an independent file. 

The last objective is to integrate the data processing logic, which implements parsing, 

and data analysis logic, which calculates specific properties into a single module 

program. The researcher estimates the reliability of phylogeny through the values 

provided as a result and can reconstruct phylogeny with improved accuracy using a 

program such as Phyutility that manipulates molecular data and alignment data 

(Smith, Dunn, 2008).  

Consequently, the program created by this study will serve as a part of the pipeline 

that can estimate and improve phylogenetic reliability within the phyloinformatics 

workflow and will be developed in a user-friendly standalone structure so that it does 

not use any other installer packages and libraries. In addition, this program will be a 

standalone software that is intuitively easy to understand from the perspective of 

experimental biologists who are not familiar with analytical methods using software 

packages and will be able to estimate phylogenetic accuracy for evolutionary 

problems as a single integrated program. Furthermore, this study will propose a 

combination of systematic biases that can distinguish the best gene markers within a 
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series of taxa and provide contradictory topologies when using this software. If 

related datasets are accumulated through this study in the future, it will serve as a 

phylogenetic reliability program that can estimate more accurate phylogeny using 

systematic biases. 
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Figure 1.1 Summary of negative factors causing systematic errors. Implication of careful 

taxon sampling for hypotheses supported by phylogenetic inference. 

 

 

 

Figure 1.2 Hypothetical example illustrating missing data in phylogenetic analysis. Taxa 

2, 3, 4, 7, and 9 lack data for Characters 3 and 4. If the researcher includes all of these data 

in a single analysis, there will be missing data cells (“?”). A researcher might choose to deal 

with this situation by deleting these taxa, deleting Characters 3 and 4, or simply including all 

the characters and taxa.  
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Figure 1.3 Dendrograms of real phylogeny and reconstructed phylogeny by 

symplesiomorphic trap. A-D are recent species; branch lengths symbolize the 

divergence time. The wrong grouping {A, B} in the reconstructed phylogeny is produced 

by analogies or symplesiomorphies shared by {B, C, D} eroded on the stem lineage of {C, 

D}.
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Table 1.1 Program for phylogenetic reconstruction and accuracy 

 

Software Discription Assessment 

PhyloBayes3 

A software package can be used for conducting Bayesian phylogenetic reconstruction and 

molecular dating analyses, using a large variety of amino acid replacement and nucleotide 

substitution models 

Markov Chain Monte Carlo 

(MCMC) 

RAxML 
A program for sequential and parallel Maximum Likelihood based inference of large 

phylogenetic trees 

Bootstrap 

(RELL method) 

BEAST 
A software architecture for Bayesian analysis of molecular sequences related by an 

evolutionary tree 

Modified MCMC 

(BF value) 

PAUP* 
A computational phylogenetics program for inferring evolutionary trees by implementing 

parsimony and other methods 
Bootstrap support 

MrBayes 
A program for Bayesian inference and model choice across a wide range of phylogenetic and 

evolutionary models 

Markov Chain Monte Carlo 

(MCMC) 

PHYLIP 
A computational phylogenetics package of programs for inferring evolutionary trees by using 

parsimony, distance matrix, and likelihood methods 
Bootstrap support 

BATWING 
A phylogenetic inference program about population histories, evolutionary processes, and 

forensic match probabilities from DNA sequence 

Markov Chain Monte Carlo 

(MCMC) 

Mesquite 
A modular, extendible software for phylogenetic analysis, designed to help biologists organize 

and analyze comparative data about organisms 
Bootstrap support 

MOLPHY A package of programs for molecular phylogenetics based on the ML method 
Bootstrap 

(RELL method) 

MEGA 
A program for estimating evolutionary distances, reconstructing phylogenetic trees and 

computing basic statistical quantities from molecular data 

Bootstrap, standard error 

(least-squares method) 

TREE-

PUZZLE 

A program package for quartet-based maximum likelihood phylogenetic analysis that provides 

methods for reconstruction, comparison, and testing of trees and models on DNA as well as 

protein sequences 

Bootstrap 

(quartet puzzling values) 
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Table 1.2 Basic phylogenetic glossary 

 

  

Molecular phylogenetics: the study of evolutionary relationships among organisms or genes by a 

combination of molecular biology and statistical techniques. 

Phylogenomics: reconstruction of phylogenies using a large number of genes or genomics regions. 

Two fundamentally different approaches are used for reconstructing phylogenies from multiple 

datasets. In one, the phylogenetic reconstruction is done after the gene sequences are concatenated 

head-to-tail to form a super-gene alignment – called ‘supermatrix’ approach. In the other, 

phylogenies are inferred separately for each gene and the resulting gene trees are used to generate a 

majority rule consensus phylogeny – called ‘supertree’ approach. The size of homologous to several 

thousand species or genes.  

Multiple sequence alignment (MSA): the process of aligning three or more biological sequences, 

generally protein, DNA, or RNA. In many cases, the input set of query sequences are assumed to 

have an evolutionary relationship by which they share a linkage and are descended from a common 

ancestor. From the resulting MSA, sequence homology can be inferred and phylogenetic analysis 

can be conducted to assess the sequence’s shared evolutionary origins. 

phylogenetic tree: A graph that represents the branching patterns of evolution and relationships 

among organisms. 

Tree topology: the particular branching pattern for a tree. A labeled topology represents the 

relationships among the taxa at the tips. An unlabeled topology has no taxa at the tips and thus 

consists only of the abstract tree shape.  

Polymorphism: the different form arise from the same genotype. According to the theory of 

evolution, polymorphism results from evolutionary processes, as does any aspect of a species. It is 

heritable and is modified by natural selection. In genetic polymorphism, the genetic makeup 

determines the morph. 

Recombination: the exchange of a segment of DNA between two homologous chromosomes during 

meiosis leading to a novel combination of genetic material in the offspring. 

Bootstrap: A procedure that involves resampling with replacement of the characters of the 

phylogenetic matrix to reproduce a number of matrices. Phylogenetic trees are then inferred from 

each resampled phylogenetic matrix. The number of times that a node appears in each of the 

resampled matrices is the ‘bootstrap value’ of the node. 

Phylogenetic incongruence: two or more phylogenetic trees are said to be incongruent when they 

exhibit conflicting branching orders (i.e. topologies) and cannot be superimposed. This implies that 

at least one node (bipartition) present in one tree is not found in the other(s), where it is replaced by 

alternative groupings of taxa.  

Model of sequence evolution: a statistical description of the process of substitution in nucleotide 

or amino acid sequences. Complex models better approximate the evolutionary process but at the 

expense of more parameters and computational time. 
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Table 1.2 Basic phylogenetic glossary (continued) 

Systematic error: the error in phylogenetic estimation that is due to the failure of the reconstruction 

method to account fully for the properties of the data. 

Stochastic error: the error in phylogenetic estimation caused by the finite length of the sequences 

used in the inference. As the size of the sequences increases, the magnitude of the error decreases 

(stochastic error ∝
1

√n
). 

Phylogenetic networks: a graph used to visualize evolutionary relationships between nucleotide 

sequences, genes, chromosomes, genomes or species. They are used when reticulate events such as 

hybridization, horizontal gene transfer, recombination or gene duplication and loss are believed to 

be involved. 

Monophyletic: monophyletic taxa include all the species that are derived from a single common 

ancestor. 

Polyphyletic: taxon is composed of unrelated organisms descended from more than one ancestor. 

Non-phylogenetic signal: The combination of different kinds of structured noise (e.g., undetected 

homoplasies) that compete with the genuine phylogenetic signal during tree reconstruction. Even if 

the non-phylogenetic content is partly a property of a multiple sequence alignment, the non-

phylogenetic signal actually inferred heavily depends on the method and the model of evolution 

selected. 
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CHAPTER II. 

MATERIALS AND METHODS 

 

 

2.1 Dataset definition and data collection 

Prior to designing the data collection, the topology of taxa in nuclear markers 

affected by systematic errors may be misplaced, and these biases also affect the 

placement of unbiased taxa. The datasets used in this study belong to the somewhat 

well-known Terebelliformia (Annelida), Daphniid (Arthoropoda) and Mammalia, 

and taxa with misplacement problem within each clade were included in the analysis. 

The first dataset used is a suborder, consisting of species belonging to Ampharetidae, 

Pectinariidae, Terebellidae, Trichobranchidae and Alvinellidae, which are the five 

family of terebelliformia (Zhong et al., 2011). Depending on the position of 

Trichobranchidae within this clade, it is divided into TriAA hypothesis forming a 

sister relationship with Alvinellidae and Ampharetidae, and TriTer hypothesis 

forming a sister group with Terebellidae. In this study, the two hypotheses caused 

by gene markers representing incongruent topologies as one dataset were assessed 

using systematic biases to select more accurate gene marker and to evaluate 

phylogenetic reliability. Specifically, Sipuncula was added as an outgroup taxon in 

addition to the 5 families mentioned above, and four gene markers including EF1𝛼 

(1163 positions, 6 species), 18S rDNA (1897 positions, 7 species), mtDNA (16580 

positions, 7 species), and 28S rDNA (4387 positions, 7 species) were collected 

(Zhong et al., 2011). First, elongation factor 1𝛼 (EF1𝛼) is a highly conserved protein 
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involved in translation and has been significantly used as a phylogenetic marker 

(Roger et al., 1999). 18S ribosomal DNA (18S rDNA) is one of the most frequently 

used marker in phylogenetic studies and is particularly widely used to reconstruct 

the relationships between vertbrates due to slow evolutionary rates. Mitochondrial 

DNA (mtDNA) is also one of the well-known markers, and its molecular content is 

highly conserved among organisms, and has no introns, very few duplications, and 

very short intergenic regions (Gissi et al., 2008). 28S ribosomal DNA (28S rDNA), 

together with 18S rDNA, constitutes a subunit of the eukaryotic cytoplasm 

ribosomes and functions as a marker responsible for phylogenetic reconstruction of 

various organisms such as protists, fungi, and vertbrates. The second dataset consists 

of species belonging to Daphniid (Crustacea), and divided into two controversial 

topologies with generally expected clade closely related to Daphnia laevis and 

Daphnia dentifera and a clade containing systematic error closely related to Daphnia 

laevis and Daphnia occidentalis. 16S rDNA (502 positions, 9 species), 28S rDNA 

(4702 positions, 10 species) were used to estimate more accurate phylogeny between 

gene markers that cause controversial clades. The last dataset used in this study 

focused on taxa to identify Glire hypothesis, which belongs to the Mammalia class 

but has been controversial in misplacement between the Lagomorpha (rabbits) and 

the Rodentia (mice, rats and guinea pigs). Lagomorphs and Rodents forming a clade 

of Glires in Mammals have been strongly supported as sister group by specific gene 

markers, whereas other markers do not support their monophyletic group. First, 

Lagomorpha consists of two recognized families: Ochotonidae (pikas) and 

Leporidae (hares and rabbits), which consists of 29 species in 1 genus and 58 species 

in 11 genera. On the other hand, Rodentia contains 2055 living species in 27 families 

that comprise 454 genera and accounts for about 40% of the total mammal species. 

The lack of diversity in Lagomorpha as described above represents a remarkable 
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contrast with evolutionary radiation occurring in Rodentia, and as a member of 

Glires, Lagomorpha increased the need for research on the evolutionary mechanism 

that influences the diversification of Lagomorphs (Halanych, 1998). Reflecting this 

controversial clades, the dataset was based on the utilization of candidate genetic 

markers including nuclear gene and mitochondrial gene of the Lagomorphs, Rodents, 

Primates and tried to reveal whether the phylogenetic position is effective in Glires 

through a molecular systematics approach. Since a limited amount of data in taxon 

sampling prior to phylogenetic analysis can lead to stochastic errors, 18 phyla of 

Mammalia including 52 lineages were collected (Madsen et al., 2001). The marker 

alpha-2B adrenergic receptor (A2AB) gene (2391 positions, 30 species), marker 

interphotoreceptor retinoid binding protein (IRBP) gene (9719 positions, 27 species), 

marker von Willebrand factor (vWF) gene (8663 positions, 30 species) and a 

concatenation of three marker mitochondrial genes (2789 positions, 26 species), 

which are 12s ribosomal RNA, tRNA valine (MT-TV), and 16s ribosomal RNA, 

were collected to infer the Glires hypothesis (Table 2.1). A2AB is a G-protein 

coupled receptor and a sub-type of the adrenergic receptor family that regulates 

neurotransmitter release from sympathetic nerves and adrenergic neurons. IRBP is a 

gene identified in most eutherians and is involved in the visual process that transports 

retinoids between the retinal pigment epithelium and photoreceptors of organisms. 

vWF is a blood glycoprotein involved in hemostasis and plays an important role in 

platelet adhesion of wound sites by binding to specific proteins such as factor VIII. 

The primary reason for collecting the A2AB, IRBP, and vWF gene markers in this 

study is that all three genes have successfully performed phylogenetic reconstruction 

of Eutherians at various taxonomic levels. Second, the sizes of the three genes and 

the number of variable sites are similar, and this feature is useful for comparison of 

phylogenetic performance. Finally, each gene is not genetically linked and does not 
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exhibit any biological interactions. In addition to the three nuclear genes, a 

mitochondrial gene marker that could be compared and analyzed was prepared to 

carry out a congruence approach. For mitochondrial genes to be used for this study, 

concatenated regions of 12S rRNA, tRNA valine and 16S rRNA were sampled, and 

this dataset used in the clade study of the Placental mammals, which is included all 

living mammals except marsupials and monotremes, was referenced (Madsen et al., 

2001). First, 16S ribosomal RNA is the most useful macromolecule that performs 

phylogenetic analysis. Due to its high information content, conservative nature, and 

universal distribution, it is possible to explore distant relationships between 

organisms, and it has been used to analyze the Mammalia class and Glires clade. The 

12S ribosomal RNA can be used to trace the history of more recent evolutionary 

events and can perform phylogenetic analysis at different levels of taxa such as 

families, genera, and species. 

The data used in this study were collected from the National Center for 

Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov). Corresponding 

fasta-formatted data was collected using a ncbi-acc-download version 0.2.6 Python 

tool. It has a mechanism to download sequences from GenBank, which is accessible 

through the NCBI entrez retrieval system, and execute them with Mac operation 

system terminal-based instruction such as ncbi-acc-download --format fasta 

“accession number” to collect all raw data to be used in the study. 

 

2.2 Data processing and bioinformatics software used 

Before defining raw data collected from the GenBank database as a dataset, an MSA 

that analyzes the homology of sequences is required. Many tree reconstruction 

methods and the current state-of-the-art phylogenetic approaches use the two-step 

https://www.ncbi.nlm.nih.gov/
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process of MSA to perform phylogenetic inference. The goal of the first step is to 

identify homologous characters between sequences to make a heuristic estimate of 

homologies for MSA, and the second step is to calculate the best-fit tree of observed 

sequences using the fixed MSA and probabilistic substitution model chosen by the 

researcher. Therefore, MSA is the fundamental approach of this study to evaluate 

systematic biases of multi-aligned sequences, and the true alignment of multiple 

sequences is very important because it directly affects the output of accurate 

phylogenetic trees. Multiple sequence comparision by log-expectation (MUSCLE) 

(Edgar, 2004), ClustalW (Thompson et al., 2002), multiple alignment using fast 

Fourier transform (MAFFT) (Katoh et al., 2002), Kalign (Lassmann et al., 2005), T-

Coffee (Notredame et al., 2000) and so on are widely used as the software for 

sequence alignment, identifies similarities between query sequences, and MSA is 

performed with a bioinformatics algorithm that is distinct from each other. In this 

study, the ClustalW was used in the MSA software list, and MSA was performed by 

a setting gap open penalty of 15, a gap extension penalty of 6.66, and an IUB scoring 

matrix including a match score of 1.9 and a mismatch score of 0 as the alignment 

parameters. Before performing phylogenetic analysis, which estimates the 

evolutionary relationships among groups of organisms based on the dataset created 

through MSA, the MSA-associated format files such as the fasta format file (.fasta) 

and the ClustalW format file (.aln) were converted to a nexus format file (.nex) and 

a meg format file (.meg). A seqmagick version 0.6.2 (Matsen Group, 2016) was used 

in the conversion of file format by command-line instruction such as seqmagick 

convert fasta format file nex format file –alphabet DNA. Currently, as computer 

programs for phylogenetic reconstruction such as PAUP*4.0 (Wilgenbusch, 

Swofford, 2003), MrBayes (Huelsenbeck et al., 2001), Mesquite (Wayne P. 

Maddison, David R. Maddison, 2001), PHYLIP (Felsenstein J, 1989), and molecular 
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evolutionary genetics analysis (MEGA) (Kumar et al., 1994; Kumar et al., 2001) are 

widely used, PAUP*4.0, MEGA X, and MrBayes were used in this study. On the 

other hand, heterogeneous sequence divergence causes taxa misplacement along 

with strong biases in tree reconstruction. To improve this part with the Assessment 

Program for Systematic Error (APSE) developed through this study, the relationship 

between the results of the parameters for each gene and each phylogeny was 

analyzed and evaluated. An AliGROOVE version 1.07 (Meid et al., 2013) was used 

to calculate a random similarity score for heterogeneity in dataset. At this time, a 

pairwise sequence comparison analysis of nucleotide data was performed using 

Monte Carlo resampling with a simple match/mismatch score provided by 

AliGROOVE. Thus, the level of taxonomically heterogeneous alignment ambiguity 

was evaluated through the resulting scoring values. Additionally, the saturation level 

was evaluated using the substitution saturation test of DAMBE version 7.2.43 (Xia, 

2018) to represent the validity of the convergence factor (C factor) as saturation 

potential biases by APSE in four datasets including three nuclear genes and a 

concatenated mitochondrial gene. This level was interpreted using the entropy-based 

index approach of substitution saturation (Xia et al, 2003). The substitution 

saturation approach is a method to test whether observed entropy has a significantly 

smaller value than full substitution saturation in a biological sequence. The ratio of 

entropy of observed substitution saturation to entropy of full substitution saturation 

was calculated by index of substitution saturation (Iss) value, and Iss.c value was 

defined as a critical index of substitution saturation. If Iss is greater than Iss.c, the 

dataset is in severe substitution saturation, and the opposite is evaluated as it 

experiencing little substitution saturation. 
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2.3 Phylogenetic reconstruction and accuracy 

assessment 

For the character of the clade that can be confirmed in this study, three datasets 

such as Terebelliformia, Daphniid and Mammalia were constructed through taxon 

sampling, multiple sequence alignment, and data format conversion, and the 

optimal sequence evolutionary model for datasets was explored prior to 

phylogenetic analysis. These substitutional models represent a process in which 

one nucleotide of the DNA sequence is replaced with another character during 

evolution, and the use of a specific model changes the outcome of phylogenetic 

analyses. The statistical approaches that determine the appropriate model for true 

phylogeny are well-established through various computer programs, and in this 

study, statistical model selection was performed using the jModelTest version 

2.1.7. For the phylogenetic analysis of all three aligned datasets, the maximum 

likelihood (ML) (Felsenstein, 1981; Kishino et al., 1990) was used by MEGA X. 

As the ML analysis in this study, the results of model selection for each modified 

dataset were selected differently according to the dataset. In addition, bootstrap 

values can be used to evaluate the accuracy of the tree generated, and the ML tree 

was performed with 100 bootstrap replicates. The Bayesian approach, based on 

Bayes theorem, is a method of calculating the PP distribution P(A|B) for the tree 

by combining the prior probability P(A) of the phylogenetic tree and the 

likelihood P(B|A) of the data. The PP of the tree indicates the probability that the 

tree is correct, and the tree with the highest PP is selected as the best phylogeny. 

Bayesian analysis in this study was performed using MrBayes version 3.2.7 and 

a Metropolis-coupled MCMC (𝑀𝐶3) sampling approach to calculate the PP of 

phylogenetic trees from the posterior distribution. The prior probabilities of all 
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trees were given the default parameters including the flat Dirichlet probability 

density, and tree sampling was assigned every 20 generations with starting trees 

being randomly assigned. Finally, to check the consistency of phylogenetic results, 

Markov chains were performed for 200000 and 500000 generations, and the 

phylogenetic trees were printed by giving a burn-in value of 25% of the sampling. 

 

2.4 Software development environment and 

allowable data  

The APSE computer program constructed in this study was written in a high-level, 

general-purpose C++ programming language and was developed using the C++ 

standard template library (STL). Additionally, it was compiled using the g++ 

compiler based on Windows, Mac, and Linux operation systems. The program 

was built with specifications of a 2.3 GHz octa-core Intel i9 processor (CPU) and 

used 32 GB 2667 MHZ DDR4 RAM. The input logic (console class) with 

included parsing logic (parse class), the output logic (spread class), and the 

calculation logic (calvalue class) were separated into each component. A console 

class was placed between the I/O processing logic and the logic in charge of the 

central calculation of the program, and this program was designed to efficiently 

access the desired function through the menu linking system (Figure 2.1). Since 

the APSE has a stand-alone architecture, it does not require an additional external 

module or library program, and it is written to facilitate reusability and 

maintenance. 

The phylogenetic reconstruction is generally analyzed in a collective unit such as 

collection of genes, and accordingly, the MSA file is used to prepare the initial 

dataset for phylogenetic analysis and has a significant effect on the result of 
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phylogeny. Multi-aligned files consist of the alignment of three or more biological 

sequences, and homology and relatedness between sequences can be inferred 

from the characters including nucleotides, amino acids, indel events, and gaps of 

the file. The fast-all (FASTA) file contains various alignment characters, and the 

multi-aligned file is a simple structure in which each sequence is separated by a 

description line through concatenates of multiple single FASTA files. The APSE 

reads a FASTA file and provides the calculated parameters as an output file 

through text format file (.txt), as it is in a one-dimensional or two-dimensional 

vector structure. In the case of filtering gap-rich taxa with high gap frequencies 

by user-defined threshold, a modified multi-aligned file is provided as a new 

dataset and a reasonable tree can be reconstructed by entering this newly designed 

file. 

 

2.5 Assessment of systematic errors 

The data quality was evaluated by calculating systematic errors of the entered 

dataset before the phylogenetic reconstruction process. First, the taxon-specific 

base composition, GC/AT content, and gap frequency were calculated and 

provided to confirm the nonstationarity of the base composition, which may cause 

erroneous phylogenetic inference. In addition to studying the effect on the 

phylogenetic accuracy represented by GC-rich or AT-rich genes, it has been 

found that the GC-rich region has a higher recombination rate than the AT-rich 

region, which can result in phylogenetic error. In the relationships between the 

number of gapped sites and phylogeny, a large number of gap was considered to 

have a strong influence on the phylogenetic accuracy, and the gaps resulting from 

deletions could contribute to the phylogenetic inaccuracy (Dwivedi et al, 2009). 
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The divergence and change of the base frequency in the DNA sequence represent 

unrelated clades as similar groups with strong statistical support due to 

evolutionarily unrelated similarities. Therefore, the convergence of nucleotide 

composition (CNC) among unrelated lineages can play a role as a factor affecting 

the performance of accurate phylogenetic reconstruction. Second, the 

compositional heterogeneity or compositional biases were calculated using the 

formula for relative composition frequency variability (RCFV) value (Zhong et 

al., 2011). RCFV is derived from relative composition variability (RCV), which 

defines the average composition variability between dataset separating taxa and 

is a method of calculating the result using base frequencies in addition to the RCV. 

                          RCFV = ∑
|μAi − μ̃A|+ |μCi− μ̃C|+ |μGi− μ̃G|+ |μTi− μ̃T|

n

n
i=1                        (1) 

𝜇𝐴𝑖 means the base frequency of adenosine for the ith taxon, and 𝜇̃𝐴 defines the 

average base frequency of A in the entire n taxa. Additionally, from the 

perspective of statistics, since the heterogeneity is related to the validity of the 

difference in statistical properties between any one part and any other part of the 

entire dataset, compositional biases can be evaluated by calculating the skewness 

change and skew value of the base composition. Various skew values can be 

defined to determine whether base composition biases exist between two 

nucleotides frequencies, and GC skew and AT skew are mainly used to describe 

the overall pattern of nucleotides. In particular, since major mutational biases in 

the mitochondrial genome exist at purine and pyrimidine frequencies respectively, 

AG skew and CT skew have been newly defined (Zhong et al., 2011). 

AT skew = 
μA− μT

μA+ μT
;  GC skew = 

μG− μC

μG+ μC
;  AG skew = 

μA− μG

μA+ μG
; 
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CT skew = 
μC− μT

μC+ μT
                                                                                         (2) 

The compositional heterogeneity in the sequences between taxa causes a 

systematic error of phylogenetic inference, and researchers use strategies to 

reduce the potential impact of this compositional heterogeneity in datasets or tree-

building methods to calculate this bias. As a result, researchers can calculate the 

taxon-specific RCFV or specific skew to understand the compositional 

heterogeneity of datasets and evaluate the accuracy of the phylogenetic tree. 

Whether some or all of the sequences in the datasets have lost phylogenetic 

information due to substitution saturation is an important factor. Saturation as a 

statistical property can be defined as the result of multiple substitutions occurring 

at the same position in a sequence or identical substitutions in different sequences. 

In this case, the assessment of saturation is defined as the C factor, and the C 

factor can evaluate the degree of convergence of transition-transversion ratios as 

the genetic p distance increases. 

                                                          C = 
σ(

Ti

Tv
)

σ(p)
                                                

(3)          

By calculating this formula, the degree of saturation of the DNA sequence can be 

determined. Saturation occurs when the transition no longer increases despite an 

increase in the genetic distance, because it indicates that multiple substitutions 

have occurred in the nucleotide position. Finally, the proportion of shared missing 

data was defined as the indel and gap event “-”, with ambiguity state “N” and 

missing data “?” representing the uninformative state at the same position 

between two taxa as a pair. The uninformative state is a statistical property that 
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evaluates data quality by calculating the ratio of the region of an ambiguous state 

where the character state is not defined. It is important to understand the influence 

of the statistical parameters as deciding factors of biological sequences 

representing specific evolutionary phenomena, which shows phylogenetic 

conflicts in order to determine the reliable nuclear marker for the accuracy of tree 

reconstruction by overcoming systematic errors. 
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Figure 2.1 Console class for linking system between I/O logic and main function of 

program. The console class links the main function and component class. The program 

implements the calculation of potential bias for systematic errors depending on the user 

input. 
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 Table 2.1 Mammalia taxa used in phylogenetic analysis 

 

 

Order Species A2AB IRBP vWF 

Carnivora Cat, Felis catus AJ251174 Z11811 U31613 

Dog, Canis familiaris   L76227 

Fox, Vulpes velox  AF179293  

Harbor seal, Phoca vitulina AJ251176   
Cetartiodactyla Cow, Bos taurus Y15944  AF004285 

Fin whale, Balaenoptera physalus AJ251175   

Hippo, Hippopotamus amphibius AJ251178 AF108837 AF108832 

Humpback whale,  
Megaptera novaeangliae 

  AF226849 

Minke whale,  
Balaenoptera acutorostrata 

 U50820  

Pig, Sus scrofa AJ251177 U48588 S78431 

Chiroptera Big eared bat,  
Macrotus californicus 

AJ251180   

Flying fox, Pteropus hypomelanus  Z11809  

Fruit bat, Dobsonia moluccensis   U31609 

Round eared bat, Tonatia bidens  Z11810 U31622 
Dermoptera Flying lemur,  

Cynocephalus variegatus 
AJ251182 Z11807 U31606 

Didelphimorphia Large American Opossum, 
Didelphis virginiana 

 Z11814 AF226848 

Large American Opossum, 

Didelphis marsupialis 
Y15943   

Diprotodontia Kangaroo, Macropus rufus AJ251183   

Kangaroo, Macropus gaganteus   AJ224670 
Hyracoidea Rock Hyrax, Procavia capensis Y12523 U48586 U31619 
Insectivora Eastern mole, Scalopus aquaticus   AF076479 
 European mole, Talpa europaea Y12520   
 Golden mole,  

Amblysomus hottentotus 
Y12526  U97534 

 Hedgehog, Erinaceus europaeus Y12521 AF025390 U97536 
 Madagascar hedgehog, 

Echinops telfairi 
Y17692  AF076478 

 Shrew, Sorex palustris  U48587  
Lagomorpha Rabbit, Oryctolagus cuniculus Y15946 Z11812 U31618 

Macroscelidea Long-eared Elephant shrew, 
Macroscelides proboscideus 

Y12524   

Perissodactyla Black Rhino, Diceros bicornis AJ251184   

Donkey, Equus asinus   U31604 

Horse, Equus caballus Y15945 U48710  

Tapir, Tapirus pinchaque  AF179294  

White Rhino,  
Ceratotherium simum 

  U31604 

Pholidota Pangolin, Manis sp AJ251185 AF025389 U97535 
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Table 2.1 (continued) Mammalia taxa used in phylogenetic analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Order Species A2AB IRBP vWF 

Primates Galago, Otolemur crassicaudatus  Z11805 AF061064 

Human, Homo sapiens M34041 J05253 M25851 

Slow loris, Nycticebus coucang AJ251186   
Proboscidea African elephant,  

Loxodonta africana 
 U48711 U31615 

Asian elephant, Elephas maximus Y12525   
Rodentia Agouti, Dasyprocta agouti   U31607 

Guinea pig, Cavia porcellus AJ271336   

Mouse, Mus musculus  Z11813  

North American Porcupine, 
Erethizon dorsatum 

 AF179292  

Rat, Rattus norvegicus M32061  U50044 
Scandentia Tree shrew, Tupaia glis  Z11808 AF061063 

Tree shrew, Tupaia tana AJ251187   

Sirenia Dugong, Dugong dugon Y15947 U48583 U31608 
Tubulidentata Aardvark, Orycteropus afer Y12522 U48712 U31617 
Xenarthra Three toed sloth,  

Bradypus tridactylus 
AJ251179 U48708 U31603 
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CHAPTER III. 

RESULTS 

 

 

3.1 Phylogenetic analysis for incongruence between 

gene markers 

Phylogenetic tree reconstruction is preceded by data quality assessment using 

posteriori criteria, which represents the suitability between the phylogeny and the 

nuclear marker. In this study, analyses of three datasets including Terebelliformia, 

Daphniid, and Glires clade, which has been a phylogenetic issue due to 

inconsistency between different genetic markers, was performed. First, through 

the ML method, Terebelliformia phylogenies were reconstructed to represent the 

controversial question of this clade, and a significant difference was shown 

between the gene marker EF1 𝛼  and 28S rDNA, indicating each specific 

hypothesis. In addition, the interior bootstrap proportion provided by ML analysis 

was basically judged by ML-BP (Maximum Likelihood Bootstrap Proportion, 

𝐵𝑃𝑀𝐿) resampling 100 replicates. The results of the phylogenetic analysis for each 

gene marker are as follows. The tree of ML analysis for EF1𝛼 supported the 

TriAA hypothesis by indicating that Trichobranchidae (Terebellides sp.) had a 

closely related relationship with the group of Ampharetidae (Auchenoplax crinite) 

and Alvinellidae (Paralvinella hessleri). On the other hand, the phylogeny of 28S 

rDNA supported the TriTer hypothesis as the position of Trichobranchidae 

(Terebellides stroemi) forms a sister relationship with Terebellidae (pista cristata). 
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Unlike the phylogenies for the above two gene markers, 18S rDNA and mtDNA 

showed topologies that did not support a specific hypothesis generally accepted 

by researchers, and it was estimated that phylogenetic reliabilities were lowered 

compared to other markers due to the position of Alvinellidae (Paralvinella 

sulfincola) and Pectinariidae (Pectinaria gouldi) (figure 3.1). Second, The 

Daphniid phylogenies were reconstructed by ML method for two gene markers 

including 16S rDNA and 28S rDNA, and it was distinguished by specific 

association between the following three species such as Daphnia laevis, Daphnia 

dentifera, Daphnia occidentalis. As one of the two simulated marker data, 16S 

rDNA phylogeny represented an expected clade that has been recognized by 

existing studies as Daphnia laevis and Daphnia dentifera forming a monophyly 

(Angela R. Omilian et al., 2001). As for the phylogeny of 28S rDNA, Daphnia 

laevis builds a closer relationship with Daphnia occidentalis than Daphnia 

dentifera, and this topology is a result of the misleading clade caused by long 

branch attraction due to saturation as one of the systematic errors (figure 3.2). 

Finally, Glires phylogenies showed a significant difference, which is a distinct 

incongruence, between nuclear gene IRBP and mitochondrial gene 12S rRNA-

tRNA val-16S rRNA, and it is particularly important to understand the 

information biases and quality parameters of the sample when poorly supported 

relationships appear in clades including controversial phylogenies. The 

phylogenies that posed questions about the Glires hypothesis were reconstructed 

through the ML analysis and Bayesian inference to confirm the difference in 

support of clade for the hypothesis. Each tree building method provided the same 

results for each gene, while different topologies were resulted depending on the 

gene. For the comparative purpose of statistical confidence of interior branches 

provided as a result of Bayesian inference, the results were basically measured by 
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BMCMC-PP (Bayesian Posterior Probabilities calculated via MCMC sampling, 

𝑃𝑃𝐵𝑎𝑦). In general, the PP of Bayesian analysis prints a higher value than the ML 

bootstrap, and the PP, which determines the node reliability of mammal 

phylogenies constructed in this study, was also higher than the ML bootstrap 

frequency, which means that the PP strongly support these phylogenies. Therefore, 

the conflict between ML and Bayesian analyses can be considered to be caused 

by the overconfidence of statistical support shown by PP, whereas the result of 

the ML bootstrap was underestimated compared to PP. In other words, since the 

ML bootstrap support is relatively more conservative than the Bayesian inference 

support, the PPs are greater than the bootstrap proportion, and accordingly, since 

the two values indicate an inequivalent tendency in the measurement of 

confidence, the result is that type I error rates, which frequently reject true 

phylogeny, are higher in ML-BP than in BMCMC-PP. In addition, in the case of 

short internodes shown in the mammal clade of the ML method, the underestimate 

of the bootstrap can be estimated, and when analyzing the same number of 

characters, the result was more sensitive than that of the Bayesian method. 

The results of phylogenetic tree analysis for each gene are as follows. The 

phylogeny of the ML method in which the first, second, and third codon positions 

for the A2AB were selected is the Lagomorphs (rabbits), which have been 

supported as a Glires member, forms more closely related relationships with 

Primates (humans, slow lorises, galagos), Scandentia (tree shrews), and 

Dermoptera (flying lemurs) than Rodents (guinea pigs, rats, mice). Lagomorphs 

showed a sister relationship with Scandentia ( 𝐵𝑃𝑀𝐿 = 29), and supported a 

monophyly with Primates, Dermoptera, Scandentia, and Lagomorphs. The 

Bayesian phylogeny also represented monophyly in Primates, Dermoptera, 
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Scandentia, and Lagomorphs (𝑃𝑃𝐵𝑎𝑦= 0.78), and the same result as those of the 

ML phylogeny were printed (Figure 3.3). The A2AB for mammals analyzed by 

the two tree-making methods showed that the position of the Lagomorphs was 

more closely related to Euarchonta, which is mammals containing the Scandentia, 

Dermoptera, and Primates, than Glires. It has been shown that this result does not 

support the EuarchontoGlires, which contains the Euarchonta and Glires and has 

been accepted in molecular studies based on branch lengths. Unlike the A2AB, 

which does not support the Glires hypothesis, the ML tree of IRBP has a closer 

distance to Rodents than Primates and Dermoptera (𝐵𝑃𝑀𝐿= 25), and the Bayesian 

tree is also more closely related to Rodents than Euarchonta (𝑃𝑃𝐵𝑎𝑦= 1.0). The 

IRBP-represented Glires tree was supported by morphological synapomorphy, 

and monophyly of the Boreoeutheria clade including Euarchontoglires and 

Laurasiatheria was supported (𝑃𝑃𝐵𝑎𝑦= 1.0) (Figure 3.4). In terms of the two gene 

markers, the ML method did not guarantee sufficient reliability compared to the 

Bayesian method (𝐵𝑃𝑀𝐿< 50, 𝑃𝑃𝐵𝑎𝑦< 0.9), and IRBP was found to be the basis 

for supporting the Glires hypothesis and supports Euarchontoglires together. The 

vWF tree using two tree-making methods also showed a clade that did not support 

the monophyly of Lagomorphs and Rodents like the A2AB and formed a 

paraphyly with both Primates and Rodents from the viewpoint of Lagomorphs 

(Figure 3.5). However, the vWF phylogeny shown by ML analysis was not 

guaranteed to be accurate as it indicated a weakly supported node. In particular, 

the branch where the Lagomorphs is located acts as a cause of collapse of the 

cluster of the Lagomorphs, Rodents, Primates, and Scandentia (𝑃𝑃𝐵𝑎𝑦= 0.56). As 

can be seen, all phylogenies generated by the ML method other than the IRBP 

strongly or weakly support that the evolutionary distance shown by the topology 
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of Lagomorphs is closer to Scandentia, Dermoptera, and Primates than Rodents, 

and since the Glires tree was not constructed, this result does not support the 

Glires hypothesis. In the phylogenies analyzed by Bayesian inference, A2AB and 

vWF excluding IRBP also represented a topology similar to the ML method in 

terms of the position of Lagomorph. Next, to conduct a congruence study on the 

Glires hypothesis with the three gene markers used previously, the phylogenies 

analyzed by ML and Bayesian method were constructed as mitochondrial gene 

markers including the genomic regions of 12S rRNA-tRNA valine-16S rRNA. 

First, the The position of Lagomorphs formed a sister relationship with Primates 

( 𝐵𝑃𝑀𝐿 = 35), and formed monophyly with several Primates and Scandentia 

(𝐵𝑃𝑀𝐿= 13) in the phylogeny by ML method. This is similar to the phylogeny of 

concatenated three nuclear genes, which indicates that Lagomorphs are closer in 

evolutionary distance to Primates than to Rodents. The concatenated 

mitochondrial gene tree analyzed by Bayesian inference also represented similar 

results to the ML method. A sister relationship was found between Lagomorphs 

and Primates (𝑃𝑃𝐵𝑎𝑦= 0.96), and the position of Lagomorphs was more closely 

related to Primates, Dermoptera, and Bradypodidae (three-toed sloths) than 

Rodents (Figure 3.6). As a result, it can be concluded that the phylogenies of 

mitochondrial genes represented a well-supported clade compared to the nuclear 

genes, and do not support the Glires hypothesis because the Glires tree was not 

generated. 

 

3.2 Data-quality analysis using systematic errors 

In general, phylogenies constructed from large datasets tend to detect 

nonphylogenetic signals proving false results of phylogenetic analysis due to the 



 

５０ 

 

potential for weakly supported branches. Therefore, the systematic biases as 

potential errors of phylogenies were analyzed using APSE. First, by calculating 

the Convergence factor (C factor), which is the statistical property that 

compresses the information for the saturation level, for the taxa of Terebelliformia, 

the gene marker estimated to be the most accurate among the four markers was 

analyzed (Table 3.1). Within the Terebelliformia group, the min/max values of 

the C factor in EF1𝛼 supporting the TriAA hypothesis were 3.1534/4.2051 and 

2.3844/16.4249 in 28S rDNA supporting the TriTer hypothesis were calculated. 

Therefore, it can be estimated that EF1𝛼 is a more accurate marker because the 

biases for the C factor of EF1𝛼 that satisfies the TriAA hypothesis, which is 

currently accepted among researchers, were significantly lower than that of 28S 

rDNA. However, it was confirmed that the biases for C factor of mtDNA were 

the lowest among the four gene markers, and C factor as a parameter reflecting 

systematic error did not select EF1𝛼 in Terebelliformia. Next, the validity of 

Terebelliformia phylogeny was confirmed through the difference in RCFV 

potential biases between gene markers reflecting base compositional 

heterogeneity. The average RCFV of EF1𝛼 for each taxon was 0.1639, which was 

significantly higher than 0.1131 of 28S rDNA and was the most heterogeneous 

among all markers. Similarly for RCFV, 0.0975 calculated by mtDNA is the 

lowest among markers, and as a result, it is estimated that the average of RCFV 

cannot accurately select gene marker within Terebelliformia. As a remarkable 

result from the viewpoint of taxon-specific RCFV, when the RCFV of taxa for all 

markers was compared, the more closely related relationship was formed between 

the taxa of three gene markers except for 28S rDNA, the more similar the RCFV 

was. In addition, nucleotide frequencies for the purpose of base composition 

analysis represented significant fluctuations across organisms, and such 
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divergence of nucleotide frequencies results in an erroneous phylogenetic 

inference. In particular, the analysis was performed focusing on the GC content 

and gap proportion, which could affect the selection of accurate markers by casing 

phylogenetic errors as biases for base frequencies. In terms of GC content, the 

average of EF1𝛼  was 51.10%, which was lower than 57.10% of 28S rDNA. 

However, as the average of mtDNA was 35.15%, the GC content could not select 

EF1𝛼 as a parameter reflecting systematic error. Interpreting the results for GC 

content, it can be concluded that 28S rDNA with a relatively high GC content will 

mutate faster than mtDNA or EF1𝛼  with a high AT content ratio due to the 

methylation tendancy of cytosine nucleotides, which will result in stronger 

saturation. On the other hand, when comparing the gap proportion, the average of  

EF1𝛼 was 3.39%, which was significantly lower than 24.54% of 28S rDNA. In 

addition, the average gap of EF1𝛼 showed the lowest value among all markers, 

and the result of selecting EF1𝛼, which is estimated to have the most accurate, 

was represented by gap proportion. As a result of calculating shared missing data 

as a parameter for comparative analysis, there was a significant difference 

between gene markers. The average of shared missing data among the taxa of the 

Terebelliformia was 1.99% in EF1𝛼 , which was the lowest value among all 

markers, and the average of 28S rDNA was 16.57%. Consequentially, shared 

missing data discriminated EF1𝛼, which has been accepted as accurate among 

other markers that build relationships in the taxa of the Terebelliformia. As the 

second dataset, systematic biases were analyzed for two gene markers including 

16S rDNA and 28S rDNA that build Daphniid phylogenies (Table 3.2). First of 

all, the C factor of 16S rDNA was significantly higher than the value indicated by 

the 28S rDNA in all species except two species, and the average min/max was 
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also 6.1322/18.3071, indicating a relatively higher value than that of 28S rDNA. 

Therefore, it was estimated that C factor is a parameter that cannot select the 

correct gene marker 16S rDNA that has been accepted as Daphniid phylognies. 

In addition, to confirm the potential of compositional heterogeneity, RCFV 

between the two markers was comparatively analyzed. The average RCFV of 16S 

rDNA was 0.0876, which was significantly lower than that of 28S rDNA, and 

furthermore, it was confirmed that RCFV acts as a parameter for selecting 

accurate marker of the taxa of Daphniid. However, the more closely related within 

the Daphniid divided into the excepted clade or the misleading clade according to 

the position of Daphnia laevis, Daphnia dentifera, and Daphnia occidentalis, the 

taxon-specific RCFV was not similar. Next, the average GC content of 16S rDNA 

and 28S rDNA was 35.25% and 55.96%, respectively, and the difference in these 

ratios was significantly lower in 16S rDNA. The gap proportion also represented 

a significant difference when compared with 1.89% of 16S rDNA and 9.90% of 

28S rDNA. As biases belonging to the base frequencies, the GC content and gap 

proportion were analyzed as parameters for selecting the gene marker 16S rDNA, 

which has been recognized to reconstruct the correct Daphniid phylogeny. In 

addition, when the proportion of the shared missing data of the taxa of the 

Daphniid was analyzed, 16S rDNA showed a ratio of less than 1.0% in the 

remaining species except Daphnia dentifera, and the average of 28S rDNA was 

6.41%. Through the previous results, it was estimated that the proportion of 

shared missing data can select 16S rDNA with low biases, and it was analyzed 

that it funtions as a parameter of systematic error responsible for phylogenetic 

reliability. 

Finally, for the purpose of identifying the best phylogeny in the controversial 

Glires clade, systematic biases were analyzed for the four gene markers in the 
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mammal dataset including the taxa of the Glires (Table 3.3). Since the Glires 

phylogeny has not been clearly identified for the position of the Lagomorphs so 

far, the corresponding phylogenetic accuracy was estimated through the 

parameters reflecting the systematic biases. In particular, the gene marker IRBP, 

which reconstructed the phylogeny supporting the Glires hypothesis of 

Lagomorphs having a morphologically closer evolutionary relationship with 

Rodents, and the concatenated mitochondrial gene marker 12S rDNA-tRNA 

valine-16S rDNA, which supported the phylogeny that Lagomorphs were closer 

to Primates than Rodents, were comparatively analyzed. First, from the 

perspective of the C factor, IRBP shows a large deviation such as 2.4641/82.9405 

as a min/max value, and also represents high biases compared to 2.1348/6.0840 

of the mitochondrial marker. In addition, the average C factor of IRBP was 

50.6555, which is high compared to 3.2704 of the mitochondrial marker, and the 

saturation caused in this way reduces the accuracy of the phylogenetic signal. 

Therefore, through this analysis, it is estimated that the C factor functions as a 

parameter for selecting the mitochondrial markers that reconstruct the phylogeny, 

which is recognized as more appropriate in modern research. Next, the taxon-

specific RCFV calculated as a property to evaluate the compositional biases of 

gene markers also shows a significant difference between the two markers, 

thereby reflecting each hypothesis. The average RCFV of mitochondrial markers 

was 0.0347, which had IRBP biases higher than 0.0061, thereby indicating rather 

large compositional heterogeneity. In the case of IRBP, the RCFV of 0.0041 of 

rabbits (Lagomorpha), 0.0053 of mice and 0.0052 of porcupines (Rodentia), and 

0.0051 of tree shrews (Scandentia), were similar to those of 0.0390 of humans 

(Primates). Therefore, similar RCFV appears as each node is closely related 

within the clusters of Lagomorphs, Rodents, and Scandentia, which supports the 
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Glires clade in IRBP, and the topology for phylogenies is significantly affected 

by RCFV. On the other hand, in the mitochondrial markers that do not support 

the Glires tree, it can be estimated that correlations between the topology of the 

mitochondrial gene tree and the RCFV were insignificant through RCFV of the 

sister relationship between Lagomorphs and Primates and RCFV of neighbor taxa, 

including Rodentia and Scandentia. Therefore, mitochondrial markers through 

RCFV showed that the substitution pattern was not uniform across lineages of 

phylogenies, and that RCFV-selected IRBP as an accurate marker in the Glires 

clade. In addition, when comparing the biases of nucleotide frequencies between 

gene markers, the GC content and gap proportion showed significant differences 

and were thus important biases that could produce contradicting topologies. The 

average GC content and gap proportion of IRBP were 61.36% and 85.11%, 

respectively, which were significantly higher than the values of 39.69% and 8.37% 

of the mitochondrial markers, respectively, and they are thus the two biases of the  

selected mitochondrial markers that do not support the Glires hypothesis as the 

best marker. As the last biases, when comparing the character proportion with 

ambiguity state among taxa, which refers to shared missing data, the average 

values of 81.34% in IRBP and 4.81% in mitochondrial markers were seen. As a 

result of this analysis, the biases of the shared missing data of the mitochondrial 

marker were smaller than those of the IRBP, and the mitochondrial marker was 

distinguished as the best marker by the shared missing data. Additionally, 

although the criterion is different for each phylogenetic inference method, all 

methods treat gapped positions as missing data, and most phylogenetic software 

including MrBayes also includes gaps as ambiguity data for analysis. Since the 

result of the missing data proportion by APSE also treated the gap in alignment 

as missing data, this may estimate less accurate phylogenies when compared to 
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the probabilistic methods for phylogenetic analysis that deal with the gap as a 

phylogenetic signal (Dwivedi et al., 2009). As a result, it is estimated that the 

phylogenetic reliability of mitochondrial markers was higher when analyzing the 

relationship between parameters for the remaining genes that do not support the 

Glires hypothesis and IRBP that supports the Glires hypothesis.  

When all systematic biases of the datasets for the three clades were summarized, 

the same single gene marker was not selected through all parameters provided by 

APSE (Table 3.4). First, combining all systematic biases on the EF1𝛼 and 28S 

rDNA, which draw a controversial topologies for Terebelliformia phylogenies, 

the max value of C factor, gap proportion, and shared missing data were a 

combination of parameters that are reflected in selecting the correct gene marker. 

Second, in the case of Daphniid, the gene marker 16S rDNA, which has been 

accepted as the best marker was selected through a combination of RCFV, GC 

content, gap proportion, and shared missing data. Finally, within the unresolved 

controversial problem among the Glires phylogenies, the reliability of phylogeny 

using the concatenated 12S rDNA-tRNA valine-16S rDNA marker was highly 

estimated by the combination of C factor, GC content, gap proportion, and shared 

missing data. Through this result, it was confirmed that phylogenetic reliability 

based on data quality can be estimated with the parameters provided by APSE, 

which evaluates systematic biases. 
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Figure 3.1 Phylogenetic trees based on four gene markers of Terebelliformia taxa. 

(a) The result of the ML method is visualized for interpreting the TriAA hypothesis based 

on EF1𝛼 . (b) The phylogeny of 28S rDNA is visualized for interpreting the TriTer 

hypothesis. (c) (d) The results of the phylogenetic tree of 18S rDNA and mtDNA are 

visualized. 
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Figure 3.2 Phylogenetic trees based on two gene markers of Daphniid taxa. (a) The 

result of the phylogenetic tree based on 28S rDNA is visualized for interpreting the 

misleading clade that is grouped with Daphnia laevis and Daphnia occidentalis. (b) The 

result of the phylogenetic tree based on 16S rDNA is visualized for interpreting the 

expected clade that is grouped with Daphnia laevis and Daphnia dentifera. 

(a) 

(b) 
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Figure 3.3 Phylogenetic trees based on A2AB of 30 mammal taxa. The result of the 
Bayesian inference method is visualized for interpreting the Glires hypothesis based on 

A2AB genes. It demonstrates that the evolutionary relationship between Lagomorph 

(rabbit) and Scandentia (tree shrew) is closer than that between Primates (human, slow 

loris).  
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Figure 3.4 Phylogenetic trees based on IRBP of 27 mammal taxa. The result of the 

Bayesian inference method is constructed based on IRBP genes. It demonstrates that the 

evolutionary relationship between Lagomorph (rabbit) and Rodents (mouse, porcupine) 

is closer than that between Primates (human, galago). Although the phylogram visualizes 
a Glires tree, it is not a reliable tree because of its low values of PP.  
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Figure 3.5 Phylogenetic trees based on vWF of 30 mammal taxa. The result of the 
Bayesian inference method demonstrates that the evolutionary relationship between 

Lagomorph (rabbit) and Rodents (rat) is closer than that between Primates (human, 

galago). Unlike the A2AB and IRBP genes, the branch of the red box (position of 

Lagomorph) leading to the Lagomorph, Primates, Rodents, and Scandentia is collapsed.  
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Figure 3.6 Phylogenetic tree based on mitochondrial data from 26 mammal taxa. 

Result of phylogenetic tree using Bayesian inference based on 12s rRNA-tRNA valine-

16s rRNA concatenated gene. Unlike phylogenies from nuclear data, it cannot support the 
Glires hypothesis because the position of Lagomorph (rabbit) is more closely related with 

Primates (human, galago) than with Rodents (rat) and Scandentia (tree shrew).
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Table 3.1 Four systematic biases for all taxa within Terebelliformia. 

 

(a) C factor

 

 

 

 (b) RCFV

Taxon Species EF1𝜶  

(accepted) 

18S 

rDNA 

mtDNA 28S 

rDNA 

Terebellidae Pista cristata 4.2051 9.3189 0.9761 4.0405 

Trichobranchidae 

Terebellides stroemi 
 
Terebellides sp. 

 
 
4.1171 

6.7234 0.9948 
 

3.9428 

Ampharetidae 

Auchenoplax crinita 
 
Eclysippe vanelli 

4.2242 7.8458 
 
6.7568 

1.0801 
 
1.0854 

7.9911 
 
16.4249 

Alvinellidae 

Paralvinella 

sulfinacola 
 
Paralvinella 
palmiformis 
 
Paralvinella hessleri 

 
 
 
 
3.6998 

6.9538 
 
 
 
 

1.1768 
 
 
 
 

5.1764 

Pectinariidae 

Pectinaria gouldi 
 

Pectinaria koreni 

 
 

3.9005 

5.3702 
 

 

1.1801 
 

 

3.5787 
 

 

Sipuncula Phascolopsis gouldi 3.1534 5.3119 2.2059 2.3844 

Taxon Species EF1𝜶  

(accepted) 

18S 

rDNA 

mtDNA 28S 

rDNA 

Terebellidae Pista cristata 0.1656 0.1257 0.1130 0.1164 

Trichobranchida

e 

Terebellides stroemi 
 
Terebellides sp. 

 
 
0.1611 

0.1349 0.1159 0.1199 

Ampharetidae 

Auchenoplax crinita 
 
Eclysippe vanelli 

0.1578 0.1338 
 
0.1348 

0.0867 
 
0.0840 

0.1196 
 
0.0763 

Alvinellidae 

Paralvinella sulfinacola 
 
Paralvinella 
palmiformis 

 
Paralvinella hessleri 

 
 
 
 
0.1614 

0.1390 
 
 
 
 

0.1177 
 
 
 
 

0.1024 

Pectinariidae 

Pectinaria gouldi 
 
Pectinaria koreni 

 
 
0.1734 

0.1318 
 
 

0.1073 
 
 

0.1080 
 
 

Sipuncula Phascolopsis gouldi 0.1639 0.1336 0.0581 0.1493 
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(c) Nucleotide frequencies (GC content / gap proportions) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxon Species EF1𝜶  

(accepted) 

18S rDNA mtDNA 28S rDNA 

Terebellidae Pista cristata 53.77 / 6.03 50.30 / 10.72 31.88 / 2.55 55.01 / 20.64 

Trichobranchidae 

Terebellides stroemi 
 

Terebellides sp. 

 
 

51.19 / 4.90 

50.33 / 3.00 32.85 / 3.40 58.79 / 21.29 

Ampharetidae 

Auchenoplax crinita 
 
Eclysippe vanelli 

49.95 / 4.28 51.56 / 5.52 
 
49.13 / 1.71 

31.54 / 15.64 
 
30.92 / 15.70 

57.80 / 21.27 
 
57.10 / 49.24 

Alvinellidae 

Paralvinella sulfinacola 
 
Paralvinella palmiformis 
 
Paralvinella hessleri 

 
 
 
 
48.14 / 1.40 

51.89 / 2.30 
 
 
 
 

42.22 / 16.37 
 
 
 
 

56.90 / 30.65 

Pectinariidae 

Pectinaria gouldi 

 
Pectinaria koreni 

 
 
56.16 / 3.50 

49.44 / 4.72 
 
 

39.74 / 17.62 
 
 

53.33 / 24.93 
 
 

Sipuncula Phascolopsis gouldi 47.41 / 0.26 51.13 / 5.47 36.89 / 54.21 60.75 / 3.78 
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(d) Shared missing data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Taxon Species EF1𝜶  

(accepted) 

18S 

rDNA 

mtDNA 28S 

rDNA 

Terebellidae Pista cristata 3.04 4.01 1.43 16.82 

Trichobranchida

e 

Terebellides stroemi 
 
Terebellides sp. 

 
 
2.94 

2.10 1.83 17.29 

Ampharetidae 

Auchenoplax crinita 
 
Eclysippe vanelli 

2.65 3.12 
 
1.24 

9.76 
 
9.80 

17.43 
 
23.75 

Alvinellidae 

Paralvinella sulfinacola 
 
Paralvinella 
palmiformis 
 
Paralvinella hessleri 

 
 
 

 
0.92 

1.65 
 
 

 
 

9.72 
 
 

 
 

20.49 

Pectinariidae 

Pectinaria gouldi 

 
Pectinaria koreni 

 

 
2.14 

2.83 

 
 

9.93 

 
 

17.69 

 
 

Sipuncula Phascolopsis gouldi 0.22 3.33 15.18 2.56 
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Table 3.2 Four systematic biases for all taxa in Daphniid. 

 

(a) C factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) RCFV 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxon Species 16S rDNA  

(accepted) 

28S rDNA 

Daphnia 

(Ctenodaphnia) 

Daphnia longicephala 
 
Daphnia magna 

18.3071 
 
15.4636 

7.3941 
 
7.1191 

Daphnia 

(Daphnia) 

Daphnia ambigua 
 

Daphnia dubia 
 
Daphnia laevis 
 
Daphnia occidentalis 
 
Daphnia pulicaria 
 

Daphnia dentifera 

6.7592 
 

6.1322 
 
6.7254 
 
6.4375 
 
 
 

15.4189 

4.6620 
 

7.2332 
 
6.8424 
 
5.2300 
 
4.3785 
 

5.2714 

Daphniopsis 

Daphniopsis ephemeralis 
 
Daphniopsis truncata 

10.1942 
 
7.4402 

7.2658 
 
5.0012 

Taxon Species 16S rDNA  

(accepted) 

28S rDNA 

Daphnia 

(Ctenodaphnia) 

Daphnia longicephala 
 
Daphnia magna 

0.0864 
 
0.0891 

0.0913 
 
0.0930 

Daphnia 

(Daphnia) 

Daphnia ambigua 
 

Daphnia dubia 
 
Daphnia laevis 
 
Daphnia occidentalis 
 
Daphnia pulicaria 
 

Daphnia dentifera 

0.0904 
 

0.0882 
 
0.0877 
 
0.0888 
 
 
 

0.0794 

0.0942 
 

0.0818 
 
0.0932 
 
0.0948 
 
0.0958 
 

0.0930 

Daphniopsis 

Daphniopsis ephemeralis 
 
Daphniopsis truncata 

0.0868 
 
0.0920 

0.0905 
 
0.0958 
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(c) Nucleotide frequencies (GC content / gap proportions) 

 

 

 

 

 

 

 

 

 

 

 

(d) Shared missing data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxon Species 16S rDNA  

(accepted) 

28S rDNA 

Daphnia 

(Ctenodaphnia) 

Daphnia longicephala 
 
Daphnia magna 

32.58 / 1.82 
 
35.03 / 0.61 

56.89 / 12.13 
 
56.41 / 9.77 

Daphnia 

(Daphnia) 

Daphnia ambigua 
 

Daphnia dubia 
 
Daphnia laevis 
 
Daphnia occidentalis 
 
Daphnia pulicaria 
 

Daphnia dentifera 

36.20 / 1.01 
 

35.17 / 1.01 
 
34.36 / 1.01 
 
33.95 / 1.01 
 
 
 

37.33 / 8.91 

55.28 / 7.42 
 

55.33 / 20.04 
 
55.70 / 8.63 
 
56.48 / 7.55 
 
54.94 / 5.38 
 

55.81 / 8.76 

Daphniopsis 

Daphniopsis ephemeralis 
 
Daphniopsis truncata 

35.17 / 1.01 
 
37.47 / 0.61 

56.64 / 12.69 
 
56.11 / 6.59 

Taxon Species 16S rDNA  

(accepted) 

28S rDNA 

Daphnia 

(Ctenodaphnia) 

Daphnia longicephala 
 

Daphnia magna 

0.85 
 

0.43 

8.27 
 

7.13 

Daphnia 

(Daphnia) 

Daphnia ambigua 
 
Daphnia dubia 
 
Daphnia laevis 
 
Daphnia occidentalis 

 
Daphnia pulicaria 
 
Daphnia dentifera 

0.58 
 
0.79 
 
0.79 
 
0.67 

 
 
 
1.66 

5.79 
 
7.90 
 
6.20 
 
4.98 

 
4.14 
 
6.44 

Daphniopsis 

Daphniopsis ephemeralis 
 
Daphniopsis truncata 

0.76 
 
0.52 

8.39 
 
4.85 
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Table 3.3 Four systematic biases for all taxa in Mammals. 

(a) C factor 

Taxon Species A2AB IRBP vWF 12S rRNA-

tRNA valine-

16S rRNA 

Carnivora 

Cat 

 
Harbor seal 
 
Fox 
 
Dog 

14.6902 

 
16.8912 
 
 
 
 

52.6945 

 
 
 
35.3954 
 
 

28.0348 

 
 
 
 
 
3.2423 

3.2503 

 
 
 
 
 
3.2906 

Pholidota Pangoline 17.2971 55.7803 24.2531 3.2021 

Chiroptera 

Big eared bat 
 
Flying fox 
 
Round eared bat 
 

Fruit bat 

15.8131 
 
16.4732 

 
 
82.9405 
 
70.5909 

 
 
 
 
20.9106 
 

29.5074 

 
 
3.6334 

Insectivora 

European mole 
 
Hedgehog 
 
Golden mole 
 
Madagascar hedgehog 

 
Shrew 
 
Eastern mole 

16.3491 
 
16.0289 
 
21.7271 
 
11.8678 

 
 
 
 

77.4798 
 
 
 
 

 
37.3290 

 
 
13.5697 
 
27.1668 
 
24.1904 

 
 
 
20.1551 

 
 
2.6240 
 
 
 
 

 
 
 
2.7316 

Cetartiodactyla 

Fin whale 
 
Hippo 

 
Cow 
 
Pig 
 
Minke whale 
 
Humpback whale 

14.4141 
 
16.0234 

 
13.1500 
 
17.3147 
 
 
 
 

46.7625 

 
 
 
40.8732 
 
53.8989 

 
 
23.0741 

 
62.3413 
 
18.6526 
 
 
 
25.9979 

3.7529 
 
 

 
3.7287 
 
3.3611 
 
 
 
 

Perissodactyla 

Black Rhino 
 
Horse 
 
Tapir 
 
Donkey 
 

White Rhino 

17.3501 
 
14.9789 
 
 
 
 
 

 

 
 
30.5147 
 
57.3463 

 
 
 
 
 
 
25.6294 
 

30.32 

 
 
4.7453 
 
 
 
 
 

5.0860 
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(a) (continued) C factor 

 

 

Taxon Species A2AB IRBP 

 

vWF 12S rRNA-

tRNA valine-

16S rRNA 

Proboscidea 

Asian elephant 
 
African elephant 

20.1080 
 
 

 
 
63.6684 

 
 
30.8007 

/ 25.8594 

 
 
4.1349 

Sirenia Dugong 18.0068 48.7893 26.7521 3.7836 

Hyracoidea Rock Hyrax 18.1559 67.4240 27.5626 3.5100 

Tubuildentata Aardvark 20.2226 47.6981 27.8578 2.5217 

Macroscelidea 

Rond-eared  
Elephant shrew 
 
Long-eared  

Elephant shrew 

18.7290 
 
 
 

 

 
 
63.7776 

 
 
 
2.4849 

Primates 

Human 
 
Slow loris 
 
Galago 

4.1977 
 
18.1236 
 
 

2.4641 
 
 
 
50.6555 

20.3764 
 
 
 
22.5251 

2.7564 
 
 
 
2.5550 

Dermoptera Flying lemur 19.3250 54.0463 26.1241 6.0840 

Scandentia Tree shrew 15.7635 47.0846 26.5827 3.3137 

Lagomorpha Rabbit 12.9820 73.4257 18.2164 3.0197 

Xenarthra Three toed sloth 12.5853 56.1495 17.9196 3.0042 

Rodentia 

Guinea pig 
 
Rat 
 
Mouse 
 
North American 
Porcupine 

 
Agouti 

10.4813 
 
3.4258 
 
 
 
 
 

 
 

 
 
25.8104 
 
30.4650 
 

 
 
10.3902 
 
 
 
 
 

 
23.1679 

2.1352 
 
 
 
 
 

Didelphimorphia 
Large American 

Opossum 
12.7522 22.0719 19.8941 2.1348 

Diprotodontia 

Kangaroo 
 

Wombat 

12.7789 
 

 

 
 

21.1917 

16.7634 
 

 

2.1392 
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(b) RCFV 

 

Taxon Species A2AB IRBP vWF 12S rRNA-

tRNA valine-

16S rRNA 

Carnivora 

Cat 
 
Harbor seal 
 
Fox 
 
Dog 

0.0184 
 
0.0186 
 
 
 
 

0.0050 
 
 
 
0.0056 
 
 

0.0049 
 
 
 
 
 
0.0357 

0.0356 
 
 
 
 
 
0.0347 

Pholidota Pangoline 0.0182 0.0046 0.0054 0.0336 

Chiroptera 

Big eared bat 
 
Flying fox 
 

Round eared bat 
 
Fruit bat 

0.0185 
 
0.0182 

 
 
0.0046 
 

0.0047 

 
 
 
 

0.0049 
 
0.0053 

 
 
0.0361 

Insectivora 

European mole 
 
Hedgehog 
 

Golden mole 
 
Madagascar hedgehog 
 
Shrew 
 
Eastern mole 

0.0184 
 
0.0184 
 

0.0178 
 
0.0183 
 
 
 
 

0.0038 
 

 
 
 
 
0.0050 

 
 
0.0049 
 

0.0052 
 
0.0055 
 
 
 
0.0056 

 
 
0.0328 
 

 
 
 
 
 
 
0.0348 

Cetartiodactyla 

Fin whale 

 
Hippo 
 
Cow 
 
Pig 
 
Minke whale 

 
Humpback whale 

0.0190 

 
0.0189 
 
0.0187 
 
0.0180 
 
 

 
 

0.0047 
 
 
 
0.0052 
 
0.0046 

 

 
0.0055 
 
0.0019 
 
0.0055 
 
 

 
0.0055 

0.0358 

 
 
 
0.0351 
 
0.0353 
 
 

 
 

Perissodactyla 

Black Rhino 
 
Horse 
 
Tapir 

 
Donkey 
 
White Rhino 

0.0185 
 
0.0188 
 
 

 
 
 
 

 
 
0.0051 
 
0.0054 

 
 
 
 
 

 
0.0047 
 
0.0047 

 
 
0.0357 
 
 

 
 
 
0.0361 
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(b) (continued) RCFV 

Taxon Species A2AB IRBP 

 

vWF 12S rRNA-

tRNA valine-

16S rRNA 

Proboscidea 

Asian elephant 
 

African elephant 

0.0182 
 

 

 
 

0.0046 

 
 
0.0047 
/ 0.0046 

 
 

0.0323 

Sirenia Dugong 0.0184 0.0046 0.0054 0.0359 

Hyracoidea Rock Hyrax 0.0176 0.0042 0.0053 0.0359 

Tubuildentata Aardvark 0.0181 0.0050 0.0051 0.0341 

Macroscelidea 

Rond-eared  
Elephant shrew 
 
Long-eared  
Elephant shrew 

0.0184 
 
 
 
 

 
 
0.0040 

 
 
 
0.0344 

Primates 

Human 
 

Slow loris 
 
Galago 

0.0333 
 

0.0182 
 
 

0.0390 
 

 
 
0.0051 

0.0073 
 

 
 
0.0051 

0.0370 
 

 
 
0.0366 

Dermoptera Flying lemur 0.0184 0.0052 0.0056 0.0237 

Scandentia Tree shrew 0.0187 0.0051 0.0047 0.0353 

Lagomorpha Rabbit 0.0190 0.0041 0.0049 0.0345 

Xenarthra Three toed sloth 0.0194 0.0044 0.0056 0.0385 

Rodentia 

Guinea pig 
 
Rat 

 
Mouse 
 
North American 
Porcupine 
 
Agouti 

0.0186 
 
0.0342 

 
 
 
 
 
 
 

 

 
0.0053 
 
0.0052 
 

 
 
0.0078 

 
 
 
 
 
 
0.0051 

0.0346 

 
 
 
 
 

Didelphimorphia 
Large American 
Opossum 

0.0172 0.0050 0.0043 0.0332 

Diprotodontia 

Kangaroo 
 
Wombat 

0.0168 
 
 

 
 
0.0052 

0.0049 
 
 

0.0348 
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 (c) Nucleotide frequencies (GC content / gap proportions) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxon Species A2AB IRBP vWF 12S rRNA-tRNA 

valine-16S rRNA 

Carnivora 

Cat 

 
Harbor seal 
 
Fox 
 
Dog 

63.68 / 51.40 

 
64.13 / 51.15 
 
 
 
 

63.74 / 88.17 

 
 
 
67.47 / 87.25 
 
 

58.43 / 86.59 

 
 
 
 
 
57.60 / 0.100 

40.28 / 6.70 

 
 
 
 
 
38.99 / 6.74 

Pholidota Pangoline 62.14 / 50.40 61.17 / 88.90 63.25 / 85.80 36.85 / 7.57 

Chiroptera 

Big eared bat 
 
Flying fox 

 
Round eared bat 
 
Fruit bat 

62.80 / 50.65 
 
63.65 / 51.90 

 
 
60.35 / 88.76 

 
58.37 / 88.14 

 
 
 

 
63.05 / 87.22 
 
62.10 / 85.93 

 
 
41.27 / 6.60 

Insectivora 

European mole 
 
Hedgehog 
 

Golden mole 
 
Madagascar  
hedgehog 
 
Shrew 
 
Eastern mole 

60.40 / 50.15 
 
61.93 / 50.90 
 

60.31 / 51.53 
 
64.12 / 52.32 
 
 
 
 
 

59.87 / 90.62 
 

 
 
 
 
 
60.39 / 87.87 

 
 
65.68 / 87.52 
 

56.75 / 85.56 
 
63.87 / 85.85 
 
 
 
 
67.77 / 86.00 

 
 
35.74 / 6.70 
 

 
 
 
 
 
 
 
39.36 / 6.63 
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(c) (continued) Nucleotide frequencies (GC content / gap proportions) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxon Species A2AB IRBP 

 

vWF 12S rRNA-tRNA 

valine-16S rRNA 

Proboscidea 

Asian elephant 
 
African elephant 

63.37 / 51.82 
 
 

 
 
62.24 / 88.91 

 
 

59.05 / 87.12 
/ 55.56 / 87.22 

 
 
38.86 / 12.62 

Sirenia Dugong 62.74 / 51.07 62.91 / 89.24 58.10 / 85.18 42.24 / 7.14 

Hyracoidea Rock Hyrax 59.93 / 51.15 59.68 / 89.64 56.18 / 85.25 40.29 / 6.92 

Tubuildentata Aardvark 61.17 / 51.32 56.74 / 87.32 56.64 / 85.84 37.37 / 6.74 

Macroscelidea 

Rond-eared  
Elephant shrew 

 
Long-eared  
Elephant shrew 

62.74 / 51.40 
 

 
 
 

 

 
57.70 / 89.91 

 

 

 
39.36 / 7.46 

Primates 

Human 
 
Slow loris 
 
Galago 

65.88 / 13.34 
 
61.44 / 50.65 
 
 

54.71 / 0.080 
 
 
 
63.92 / 87.77 

58.82 / 79.40 
 
 
 
59.02 / 85.92 

43.78 / 7.46 
 
 
 
41.80 / 6.17 

Dermoptera Flying lemur 64.65 / 51.02 62.88 / 87.78 62.54 / 85.18 43.47 / 41.52 

Scandentia Tree shrew 64.73 / 51.15 66.20 / 88.25 62.29 / 87.60 40.85 / 7.57 

Lagomorpha Rabbit 65.68 / 50.52 65.67 / 90.38 63.31 / 87.29 39.05 / 6.70 

Xenarthra Three toed sloth 69.65 / 51.90 63.70 / 89.60 64.62 / 85.32 43.79 / 6.24 
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(c) (continued) Nucleotide frequencies (GC content / gap proportions) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxon Species A2AB IRBP 

 
vWF 12S rRNA-tRNA 

valine-16S rRNA 

Cetartiodactyla 

Fin whale 
 
Hippo 
 

Cow 
 
Pig 
 
Minke whale 
 
Humpback whale 

65.34 / 50.77 
 
64.75 / 50.65 
 

63.38 / 50.77 
 
61.50 / 50.90 
 
 
 
 

63.11 / 88.90 
 

 
 
60.73 / 87.24 
 
63.04 / 88.95 

 
 
63.88 / 85.78 
 

64.04 / 95.02 
 
63.61 / 85.66 
 
 
 
66.40 / 85.78 

40.35 / 6.17 
 
 
 

39.22 / 7.03 
 
38.61 / 6.85 
 
 
 
 

Perissodactyla 

Black Rhino 

 
Horse 
 
Tapir 
 
Donkey 
 
White Rhino 

64.03 / 51.28 

 
63.61 / 49.90 
 
 
 
 
 
 

 

 
62.36 / 87.89 
 
63.68 / 87.25 

 

 
 
 
 
 
58.64 / 87.24 
 
59.71 / 87.22 

 

 
39.34 / 5.95 
 
 
 
 
 
39.66 / 6.24 

Rodentia 

Guinea pig 
 
Rat 
 
Mouse 
 
North American 
porcupine 

 
Agouti 

63.39 / 50.65 
 
56.83 / 3.01 
 
 

 
 
 
 
60.34 / 87.16 
 
64.21 / 87.84 

 
 
50.86 / 76.62 
 
 
 
 
 

 
56.86 / 85.52 

 
 
37.99 / 7.31 
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(c) (continued) Nucleotide frequencies (GC content / gap proportions) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxon Species A2AB IRBP 

 

vWF 12S rRNA-tRNA 

valine-16S rRNA 

Didelphimorphia 
Large American 
Opossum 

56.06 / 52.03 54.95 / 87.21 49.47 / 87.05 35.31 / 6.99 

Diprotodontia 

Kangaroo 
 

Wombat 

55.81 / 52.49 
 

 

 
 

56.71 / 86.88 

50.83 / 85.47 
 

 

38.10 / 7.03 
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(d) Shared missing data 

Taxon Species A2AB IRBP vWF 12S rRNA-

tRNA valine-

16S rRNA 

Carnivora 

Cat 
 
Harbor seal 
 
Fox 
 

Dog 

47.88 
 
47.68 
 
 
 

 

84.45 
 
 
 
84.00 
 

 

82.27 
 
 
 
 
 

0.100 

5.02 
 
 
 
 
 

4.93 

Pholidota Pangoline 47.20 84.78 82.22 4.80 

Chiroptera 

Big eared bat 
 
Flying fox 

 
Round eared bat 
 
Fruit bat 

47.42 
 
47.81 

 
 
84.73 

 
84.50 

 
 
 

 
82.64 
 
82.21 

 
 
4.83 

Insectivora 

European mole 
 
Hedgehog 

 
Golden mole 
 
Madagascar hedgehog 
 
Shrew 
 
Eastern mole 

47.25 
 
47.61 

 
47.98 
 
48.02 
 
 
 
 

85.07 

 
 
 
 
 
84.20 

 
 
82.36 

 
82.08 
 
82.22 
 
 
 
82.27 

 
 
4.29 

 
 
 
 
 
 
 
4.80 

Cetartiodactyla 

Fin whale 
 
Hippo 
 
Cow 
 
Pig 
 

Minke whale 
 
Humpback whale 

47.64 
 
47.51 
 
47.58 
 
47.71 
 

 
 
 

84.78 
 
 
 
83.99 
 

84.79 

 
 
82.20 
 
82.63 
 
82.11 
 

 
 
82.21 

4.49 
 
 
 
4.98 
 
4.90 
 

 
 
 

Perissodactyla 

Black Rhino 
 
Horse 
 

Tapir 
 
Donkey 
 
White Rhino 

47.76 
 
46.95 
 

 
 
 
 
 

 
 
84.19 
 

84.00 

 
 
 
 

 
 
82.63 
 
82.64 

 
 
4.44 
 

 
 
 
 
4.61 
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(d) (continued) Shared missing data 

 

  

 

 

Taxon Species A2AB IRBP 

 

vWF 12S rRNA-

tRNA valine-

16S rRNA 

Proboscidea 

Asian elephant 
 

African elephant 

48.00 
 

 

 
 

84.78 

 
 
82.61 
/ 82.62 

 
 

5.23 

Sirenia Dugong 47.82 84.89 81.79 4.84 

Hyracoidea Rock Hyrax 47.88 85.00 81.80 4.74 

Tubuildentata Aardvark 47.89 84.05 82.24 4.81 

Macroscelidea 

Rond-eared  
Elephant shrew 
 
Long-eared  
Elephant shrew 

47.83 
 
 
 
 

 
 
85.03 

 
 
 
4.87 

Primates 

Human 
 

Slow loris 
 
Galago 

12.66 
 

47.60 
 
 

0.080 
 

 
 
84.28 

76.48 
 

 
 
82.24 

5.11 
 

 
 
4.22 

Dermoptera Flying lemur 47.84 84.32 81.79 6.73 

Scandentia Tree shrew 47.88 84.53 82.70 4.77 

Lagomorpha Rabbit 47.49 85.06 82.61 4.92 

Xenarthra Three toed sloth 47.93 84.83 81.86 4.43 

Rodentia 

Guinea pig 
 
Rat 

 
Mouse 
 
North American 
Porcupine 
 
Agouti 

47.63 
 
2.76 

 
 
 
 
 
 
 

 

 
83.92 
 
84.35 
 

 
 
72.62 

 
 
 
 
 
 
82.05 

4.20 

 
 
 
 
 

Didelphimorphia 
Large American 
Opossum 

47.88 83.96 82.53 4.72 

Diprotodontia 

Kangaroo 
 
Wombat 

47.94 
 
 

 
 
83.65 

81.95 
 
 

4.85 
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Table 3.4 Summary of systematic biases for gene markers. 

 

(a) Average of systematic biases for each gene marker in Terebelliformia 

 

 

(b) Average of systematic biases for each gene marker in Daphniid 

 

 

 

(c) Average of systematic biases for each gene marker in Glires 

 

 

 

 

Marker gene C factor 

(min / max) 
RCFV 

Base Frequencies 

(GC / GAP) (%) 

Shared missing 

data (%) 

EF1𝜶 (accepted) 3.1534 / 4.2051 0.1639 51.10 / 3.39 1.99 

18S rDNA 5.3119 / 9.3189 0.1334 50.54 / 4.78 2.61 

mtDNA 0.9761 / 2.2059 0.0975 35.15 / 17.92 8.23 

28S rDNA 2.3844 / 16.4249 0.1131 57.10 / 24.54 16.57 

Marker gene C factor 

(min / max) 
RCFV 

Base Frequencies 

(GC / GAP) (%) 

Shared missing 

data (%) 

28S rDNA 4.3785 / 7.3941 0.0923 55.96 / 9.90 6.41 

16S rDNA  

(accepted) 
6.1322 / 18.3071 0.0876 35.25 / 1.89 0.78 

Marker gene C factor 

(min / max) 
RCFV 

Base Frequencies 

(GC / GAP) (%) 

Shared missing 

data (%) 

A2AB 3.4258 / 21.7271 0.0194 62.66 / 48.27 45.04 

IRBP (past) 2.4641 / 82.9405 0.0061 61.36 / 85.11 81.34 

vWF 3.2423 / 62.3413 0.0062 59.96 / 83.11 79.02 

12S rRNA-tRNA 

valine-16S rRNA 

(modern) 

2.1348 / 6.0840 0.0347 39.69 / 8.37 4.82 
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CHAPTER IV. 

DISCUSSION 

 

 

4.1 Significance and implications of study 

In this study, within the three datasets including Terebelliformia, Daphniid, and 

Mammals where phylogenetic analysis was performed, the same gene marker was 

not selected for each systematic biases provided by the existing developed 

program. Accordingly, by analyzing the parameters of all taxa in the dataset, the 

optimal combination of systematic biases indicating the best marker was found 

using APSE. The performance of phylogenetic inference made on genetic 

markers can be misled by systematic errors, and the analytical results derived 

from the evaluation of phylogenetic accuracy are based on the potential biases 

such as heterogeneity through RCFV, saturation level through C factor, base 

frequencies, and shared missing data. It is possible to estimate systematic errors 

that evaluate the results of the each controversial dataset. All parameters that 

cause systematic errors were calculated by the APSE developed through this 

study, and a large size of each factor indicates that it is likely that phylogenies 

were reconstructed with datasets with the potential to cause systematic errors. The 

result of the analysis in this paper is that it is not right to indiscriminately use the 

integreated systematic biases previously presented for phylogenetic reliability, 

and it is important to analyze the combination of parameters to find the optimal 

marker. In addition, if the inflow of molecular data for gene markers of a specific 
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clade is made in the APSE, it will be possible to provide a more sophisticated 

combination of parameters for reflecting an accurate gene marker. 

 

4.2 Application to bioinformatics research 

The direction of phylogenetic studies is changing from that of previous studies, 

which caused incongruence of phylogenetic reconstruction by using limited loci 

with single or few genes, to phylogenomic analyses using hundreds to thousands 

of loci. As described above, this trend solved stochastic errors for dataset in terms 

of phylogenetic reliability and accelerated the probability of systematic errors at 

the same time. As the size of the dataset increases and the support of phylogenetic 

relationship increases, it is important for researchers to understand systematic 

biases, and the effect they have on phylogenetic analysis. 

In addition, it has become meaningful to analyze biological phenomena that are 

evidence of systematic errors, and accordingly, various software programs that 

help calculate and estimate biases that cause nonphylogenetic signals are being 

developed. From a technical point of view, an automatic pipeline of phylogenetic 

reconstruction is also required to handle the sequence data of multiple genes. 

After phylogenetic analyses using probabilistic inferences, evaluating the effect 

of systematic biases on phylogenetic accuracy is part of the analytical pipeline 

and plays a crucial role in the entire phylogenetic reconstruction protocol for the 

datasets to be analyzed. 

The APSE developed through this study suggests that it can serve as part of the 

pipeline in phylogenetic reconstruction by providing numeric information on 

systematic errors that affect phylogenetic accuracy. Until now, when a strong 

incongruence problem has been caused by the accumulation of systematic biases, 



 

８１ 

 

software programs that calculate systematic biases to improve this problem have 

been released. However, parameters that become indicators of various systematic 

errors are not provided by the execution of the single process, and some programs 

have a problem that requires additionally installing the corresponding interpreter, 

and thus, it was difficult for experimental researchers to use the programs. For 

example, multi-purpose packages for phylogenetic analysis such as Mesquite, 

DAMBE, and DRUIDS (Fedrigo et al., 2005) do not provide all known systematic 

biases, so there is a hassle of installing another program to obtain the necessary 

parameters. In addition, PERL programs such as BaCoCa have disadvantages of 

not only focusing researchers to install an interpreter themselves, but also having 

poor accessibility in terms of instructions and usage methods. In comparison, the 

APSE proposed as a result of this study can perform parallel assessment on 

various parameters to estimate systematic errors such as base composition biases, 

nucleotide frequencies, skew value, saturation, and shared missing data. In this 

case, the phylogenetic reliability is estimated by suggesting a combination of 

systematic biases that selects the gene marker that provides the best phylogeny. 

Ultimately, this program can be used as software that becomes a part of the 

pipeline to improve the reliability of phylogenetic reconstruction in various 

studies. In addition to this, time-consuming issues can be avoided by simplifying 

and providing a comprehensive analysis of various systematic biases in a single 

process in technical aspects, and extensibility in program application can be 

achieved by allowing the output file to be used as secondary data for a specific 

study. 

 

4.3 Improvement and achievement 
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Through the APSE, which provides useful information on various phylogenetic 

biases, biological researchers will be able to evaluate phylogenetic accuracy and 

reliability by focusing on datasets. However, there are some drawbacks to the 

APSE that require improvement. First, since APSE receives multi-aligned format 

files as input, it does not provide a quality assessment for raw data before 

sequence alignment. In general, it is assumed that the phylogenetic relationship is 

estimated based on orthologous sequences, and if this assumption is violated, a 

phylogenetic error may occur. Therefore, it is necessary to use various orthology 

assessment software programs previously developed for identification of 

orthologs for the datasets to be analyzed. Second, since APSE does not perform 

cluster analysis of output for systematic biases, a correlation assessment with 

properties such as node support or branch length of phylogenies must be manually 

implemented. For example, the correlation between similar values can be 

identified by analyzing the calculated systematic biases by hierarchical clustering. 

If a component is added to receive the phylogenetic tree format file as an input, it 

is thought that the correlations assessment between datasets and phylogenies can 

be provided more efficiently. Finally, since thresholds for RCFV and C factor are 

not defined in the APSE, objective assessment for base composition biases and 

saturation level is not possible. For more elaborate analysis, relative assessment 

should be performed according to each taxon or dataset, and in this process, 

researchers should carefully evaluate the results at their own discretion. As a 

result, if the improvements suggested above are implemented, it is expected that 

there will be a beneficial outcome for the assessment of systematic errors by the 

APSE. 
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CHAPTER V. 

CONCLUSION AND SUMMARY 

 

 

5.1 Conclusion 

The APSE developed through this study and the entire process of the study are 

largely divided into two specific implications. One is the construction of a 

specialized standalone program for phylogenetic reliability, and the other is on 

the reliability, which is the effect that systematic biases give to the evolutionary 

relationship of the controversial group in different genetic markers. First, the 

APSE structured the information system into a single module that combines data 

and processes it based on an objective-oriented approach. In addition, 

phylogenetic information containing parameters for systematic errors of aligned 

dataset can be provided with only a simple keyword without the use of complex 

or cumbersome instructions. The APSE was constructed to be able to 

independently estimate the reliability of phylogenies for the choice of species and 

phylogenetic reconstruction program and to be flexibly introduced into the entire 

phylogenetic analyses pipeline. Critical analysis of systematic biases using APSE 

will accelerate tree reconstruction and provide empirical evaluation for the 

reliability of phylogenies. Second, extensive evolutionary analyses were 

performed on Terebelliformia, Daphniid, and Mammals including Lagomorphs, 

Rodents, Primates and their allies with APSE, and incongruent phylogenies were 

constructed according to each gene marker. In order to estimate the reliability of 
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phylogenies representing controversial topologies in three datasets, gene markers 

for all taxa were analyzed in systematic bias units. Among the parameters 

corresponding to the systematic biases provided by APSE, EF1𝛼, which has been 

accepted as reconstructing the best phylogeny in Terebelliformia, was selected by 

combining the max value of C factor, gap proportion, and shared missing data. In 

the case of Daphniid, the 16S rDNA marker, which has been recognized to build 

more accurate phylogeny than 28S rDNA, was selected by combining RCFV, GC 

content, gap proportion, and shared missing data. Finally, the combination of C 

factor, GC content, gap proportion, and shared missing data between the 

incongruent four gene markers representing the Glires hypothesis indicates that 

the systematic biases of the mitochondrial marker were low, and this result does 

not support the Glires hypothesis. As a result, it can be judged that the phylogeny 

of the mitochondrial marker with a low probability of systematic errors among 

four gene markers was the most reliable, and with this study, since the position of 

Lagomorphs is shown to be more related to Primates than Rodents, it is estimated 

that Lagomorphs do not belong to the Glires monophyly, and therefore, the Glires 

clade is not established. 

 

5.2 Summary 

In this study, a program was developed and applied research on the concept of 

systematic errors that can cause unresolved phylogenies and how these biases can 

affect phylogenetic reliability was implemented. The steps performed in the overall 

process were data collection, data preprocessing, phylogenetic analyses, software 

development, and systematic errors analysis. First, for three datasets of the study, 

gene markers used in the paper “Detecting the symplesiomorphy trap: a multigene 
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phylogenetic analysis of terebelliform annelids” (Zhing et al., 2011), “Rate 

acceleration and long-branch attraction in a conserved gene of cryptic Daphniid 

(Crustacea) species” (Omilian et al., 2001), and “Parallel adaptive radiations in two 

major clades of placental mammals” (Madsen et al., 2001) were collected and 

modified. Second, multiple alignment of each dataset was performed using ClustalW, 

and file conversion for phylogenetic analyses was implemented with the seqmagick 

tool. Third, ML analysis was performed with MEGA for phylogenetic reconstruction, 

and quartet puzzling analysis was carried out for fully resolved assessment with 

TREE-PUZZLE. Additionally, Bayesian inference using MrBayes and PP was 

visualized using the Figtree program. Finally, bioinformatics software was 

developed to evaluate the effect of systematic errors on incongruent and unresolved 

phylogenies. The phylogenetic reliability was evaluated by performing a 

heterogeneity test and relationship analysis using AliGROOVE based on the 

potential sources of systematic biases from the APSE.  

As an applied study utilizing the developed program, a bioinformatics analytical 

pipeline was used to examine three datasets that have created controversial issues for 

a long time. Phylogenetic reconstruction was implemented using maximum 

likelihood and Bayesian inference approach, and incongruent result was printed 

according to the gene markers for each dataset. Therefore, an approach was carried 

out to select the best gene marker to evaluate the phylogenetic reliability in 

consideration of the probabilities of systematic error. Systematic errors are a problem 

that misleads a true evolutionary relationship in a phylogenomic context based on a 

large dataset. Although identifying or evaluating these potential sources is generally 

quite a complex and difficult task, it is crucial process for defining phylogenetic 

reliability and its accuracy. The APSE developed for this task helps estimate 

potential biases that can lead to systematic errors, such as base compositional biases, 
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nucleotide frequencies, skew value, substitution saturation level, and shared missing 

data. Unlike software that provides systematic biases that are currently being 

developed, the APSE is specialized in systematic errors and has been developed to 

operate flexibly within the existing phylogenetic analysis pipeline. Furthermore, 

using this constructed program, combinations of parameters were found for each 

dataset to select the best gene marker among controversial phylogenies. In terms of 

academic value, the APSE selects gene markers by considering various combinations 

of each parameter, rather than simply calculating systematic biases or performing 

comprehensive analysis. As more molecular data flows in the future, these 

combinations calculated by the program are automatically provided to verify gene 

markers.  

This study focused on proposing a new protocol that uses a combination of 

systematic biases in validating accurate gene markers rather than focusing on the 

development of the software program. When the systematic biases of 

Terebelliformia and Daphniid were analyzed, the gene marker that have recognized 

as the best was selected. Since the Glires phylogenies, which contain the 

controversial Glires hypothesis, were not clearly accepted among researchers, it was 

estimated that the phylogenetic reliability of mitochondrial marker was high through 

the combination of parameters with low biases.  
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ABSTRACT (Korean) 

 

 

바이오인포매틱스 프로그램을 이용한 유전자 

마커 선별 및 계통수 오류 평가 연구 

 

이   정   환 

서울대학교 자연과학대학 생물정보협동과정 

바이오인포매틱스 전공 

 

 

지속적으로 산출되는 엄청난 양의 생물학적 서열 데이터는 유기체 사이의 

진화적 역사와 계통학적 관계(phylogenetic relationship)를 유추할 수 있는 

기회를 제공한다. 이제 계통수 구축은 거의 모든 생물학 연구에서 수행되는 

과정의 하나가 되었다. 여기서 계통정보학(phyloinformatics)은 계통수 생성 

알고리즘과 진화적 모델 개발과 같은 기술적 또는 방법론적 연구를 중심으로 

발전되어 왔다. 현재의 계통수 분석은 서열 데이터, 즉 유전적 마커를 

이용하여 계통수를 생성함으로써 실제에 가까운 계통수를 추론하는 것을 

목표로 한다. 그러나 유전적 마커를 비롯한 데이터의 크기가 기하급수적으로 

증가하고 따라오는 계통수 분석의 정확성에 대한 의문이 점차 중요하게 

다루어 지기 시작하면서 계통수의 정확성 및 신뢰성을 평가하기 위한 연구가 

다수 이루어지고 있는 상황이다. 분자 시스템학 관점에서 계통수에 대한 

정확성 평가는 두 가지 갈래로 나누어 접근할 수 있는데, 하나는 진화 조건, 

분자데이터의 양과 같은 특정 환경 아래에서 계통 분석 알고리즘이 얼마나 

잘 작동하는지를 다루는 것이고, 또 다른 하나는 특정 계통수를 얼마나 



 

９７ 

 

신뢰할 수 있는지에 집중하는 것이다. 그리고 데이터셋의 퀄리티 관점에서 

신뢰할 만한 계통수를 획득하기 위해 계통수 분석을 수행한 후, 사용한 

데이터셋과의 적절성을 평가하는 것도 중요하다. 대규모 데이터를 기본으로 

취급하는 최근 계통수 분석에서 확률론적 오류의 가능성은 낮아졌지만, 

시스템 오류의 가능성은 오히려 높아졌으므로, 계통수 정확성을 평가 및 

개선하기 위해 계통 분석 결과 후에 데이터셋이 가지는 시스템 오류의 근원을 

평가하는 것이 매우 중요한 과정이 되었기 때문이다. 이에 본 연구에서는 

데이터 퀄리티 관점에서 계통수의 신뢰도 향상을 가져오기 위해 APSE 

(Assessment Program for Systematic Error, tentative)라는 프로그램을 

개발하였다. APSE를 활용하면 분류군 특이적 상대적 구성 빈도 

변이(RCFV)와 대칭적 왜곡값(skew)을 산출하여 염기서열의 구성적 

편향성에 대한 정보를 얻고, 이를 통해 연구하고자 하는 데이터의 유전적 

이질성(heterogeneity) 및 유전적 변이 편향성(mutational bias)을 추정할 

수 있다. 뿐만 아니라 다양한 염기 그룹의 빈도, 변이에 의한 다수 치환을 

의미하는 포화(saturation)와 공유 결측 데이터(shared missing data) 

변수를 통해 시스템 오류를 유발할 수 있는 편향성 정보들을 계산하는 것이 

가능하다. 또한, 시스템 성능을 평가하기 위해 다양한 유전자 마커 사이의 

모순되는 계통수를 출력하고 있는, 특이적 예시(Terebelliformia, Daphniid, 

Glires)를 APSE에 적용하여 마커 데이터셋의 시스템 오류 평가와 그에 따라 

선별된 마커 계통수의 정확성 추론에 대한 분석이 제대로 수행될 수 있음을 

확인하였다. 따라서 향후 APSE는 시스템학적 관점에서 데이터 퀄리티에 

집중하여 생성된 계통수가 보다 정확한 결과를 이끌어낼 수 있도록 사용자의 

데이터와 계통수 사이의 정확성을 평가하는 역할을 할 것이고, 유전적 



 

９８ 

 

마커에 따라 오해의 소지가 있는 계통수가 출력되었을 때, 시스템 오류의 

근원에 대한 철저한 분석과 해당 오류의 영향을 받은 데이터가 계통수에 주는 

효과를 파악하는 일을 수행할 수 있을 것이라 기대한다. 

 

·············································································································· 
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