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Abstract

In this dissertation, we propose the Lévy Adaptive B-Spline regression (LABS)

model, an extension of the LARK models, to estimate functions with varying

degrees of smoothness. LABS model is a LARK with B-spline bases as gener-

ating kernels. By changing the degrees of the B-spline basis, LABS can sys-

tematically adapt the smoothness of functions, i.e., jump discontinuities, sharp

peaks, etc. Results of simulation studies and real data examples support that

this model catches not only smooth areas but also jumps and sharp peaks of

functions. The LABS model has the best performance in almost all examples.

We also provide theoretical results that the mean function for the LABS model

belongs to the specific Besov spaces based on the degrees of the B-spline basis

and that the prior of the model has the full support on the Besov spaces.

Furthermore, we develop a multivariate version of the LABS model by in-

troducing tensor product of B-spline bases named Multivariate Lévy Adap-

tive B-Spline regression (MLABS). MLABS model has comparable perfor-

mance on both regression and classification problems. Especially, empirical

results demonstrate that MLABS has more stable and accurate predictive

abilities than state-of-the-art nonparametric regression models in relatively

low-dimensional data.

Keywords: Lévy Random Measure; Besov Space; Tensor Product B-spline

Basis; Reversible Jump Markov Chain Monte Carlo.
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Chapter 1

Introduction

1.1 Nonparametric regression model

Suppose we have a random sample of size n, x1, . . . ,xn, xi ∈ X and response

variables Y = (Y1, . . . , Yn)T ∈ Rn satisfying the following relationship,

Yi = f(xi) + εi, εi ∼ N (0, σ2), i = 1, . . . , n, (1.1)

where f is an unknown nonparametric regression function which maps X to

R. Here, we consider X = Rp. The nonparametric regression function is de-

termined by only data without taking a prespecified structure. The nonpara-

metric regression aims to identify the relationships between the predictors and

responses and then to make further predictions on a new data set x? based

on relationships as mentioned above. If p is one, the purpose is to locally

approximate a target function referred to as the nonparametric function esti-

mation. Moreover, when the responses takes discrete values (e.g, Y ∈ {0, 1}),
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the function f is estimated using classification algorithms. A common way

of estimating an unknown mean function f is to express it as a sum of the

functions

f(x) ≈
∑
j∈J

φj(x),

where the functions φj is specified nonparametrically. The most widely used

form of φj is φj(x) := g(x;θj) · βj, where {βj}j∈J , βj ∈ R denote unknown

coefficients, {φ}j∈J is a basis set on X whose parameters is {θj}j∈J . For recov-

ering a regression function f , it is crucial which a basis set {φ}j∈J is selected

and then how to estimate βjs. There exist other basis sets like decision trees,

and splines. Some nonparametric regression estimators for either univariate or

multivariate data will be reviewed in the next section.

1.2 Literature Review

1.2.1 Literature review of nonparametric function esti-

mation

In nonparametric function estimation, we often face smooth curves except for

a finite number of jump discontinuities and sharp peaks, common in many cli-

mate and economic datasets. Heavy rainfalls cause a sudden rise in the water

level of a river. The COVID-19 epidemic brought about a sharp drop in unem-

ployment rates. Policymakers’ decisions can give rise to abrupt changes. For

instance, the United States Congress passed the National Minimum Drinking

Age Act in 1984, which has been debated over several decades in the United

States, establishing 21 as the minimum legal alcohol purchase age. This act
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caused a sudden rise in mortality for young Americans around 21. The abrupt

changes can provide us with meaningful information on these issues, and it is

vital to grasp the changes. There has been much research into the estimation

of the local smoothness of the functions. The first approach minimizes the

penalized sum of squares based on a locally varying smoothing parameter or

penalty function across the whole domain. Pintore et al. (2006), Liu and Guo

(2010), and Wang et al. (2013) modeled the smoothing parameter of smooth-

ing spline to vary over the domain. Ruppert and Carroll (2000), Crainiceanu

et al. (2007), Krivobokova et al. (2008), and Yang and Hong (2017) suggested

the penalized splines based on the local penalty that adapts to spatial hetero-

geneity in the regression function. The second approach is the adaptive free-

knot splines that choose the number and location of the knots from the data.

Friedman (1991) and Luo and Wahba (1997) determined a set of knots using

stepwise forward/backward knot selection procedures. Zhou and Shen (2001)

avoided the problems of stepwise schemes and proposed optimal knot selection

schemes introducing the knot relocation step. Smith and Kohn (1996), Deni-

son et al. (1998a), Denison et al. (1998b), and DiMatteo et al. (2001) studied

Bayesian estimation of free knot splines using MCMC techniques. The third

approach is to use wavelet shrinkage estimators, including VisuShrink based

on the universal threshold (Donoho and Johnstone, 1994), SureShrink based

on Stein’s unbiased risk estimator (SURE) function (Donoho and Johnstone,

1995), Bayesian thresholding rules by utilizing a mixture prior (Abramovich

et al., 1998), and empirical Bayes methods for level-dependent threshold selec-

tion (Johnstone and Silverman, 2005). The fourth approach is to detect jump

discontinuities in the regression curve. Koo (1997), Lee (2002), and Yang and

3



Song (2014) dealt with the estimation of discontinuous function using B-spline

basis functions. Qiu and Yandell (1998), Qiu (2003), Gijbels et al. (2007), and

Xia and Qiu (2015) identified jumps based on local polynomial kernel estima-

tion.

In this thesis, we consider a function estimation method using overcomplete

systems. A subset of the vectors {φ}j∈J of Banach space F is called a complete

system if

‖η −
∑
j∈J

βjφj‖ < ε, ∀η ∈ F ,∀ε > 0,

where βj ∈ R and J ∈ N∪∞. Such a complete system is overcomplete if removal

of a vector φj from the system does not alter the completeness. In other words,

an overcomplete system is constructed by adding basis functions to a complete

basis (Lewicki and Sejnowski, 2000). Coefficients βj in the expansion of η

with an overcomplete system are not unique owing to the redundancy intrinsic

in the overcomplete system. The non-uniqueness property can provide more

parsimonious representations than those with a complete system (Simoncelli

et al., 1992).

The Lévy Adaptive Regression Kernels (LARK) model, first proposed by

Tu (2006), is a Bayesian regression model utilizing overcomplete systems with

Lévy process priors. Tu (2006) showed the LARK model had sparse representa-

tions for η from an overcomplete system and improvements in nonparametric

function estimation. Pillai et al. (2007) found out the relationship between

the LARK model and a reproducing kernel Hilbert space (RKHS), and Pillai

(2008) proved the posterior consistency of the LARK model. Chu et al. (2009)

used continuous wavelets as the elements of an overcomplete system. Wolpert

et al. (2011) obtained sufficient conditions for LARK models to lie in the some

4



Besov space or Sobolev space. Lee et al. (2020) devised an extended LARK

model with multiple kernels instead of only one type of kernel.

1.2.2 Literature review of multivariate nonparametric

regression

There has been much research on constructing the functions φj or selecting

both basis elements and estimation techniques for multivariate data. The first

approach is kernel-based methods are connected to the reproducing kernel

Hilbert space (RKHS). By the representer theorem (Kimeldorf and Wahba,

1971), a regression function f over the RKHS can be expressed as

f̂(x) =
n∑
i=1

k(xi,x)βi,

where k is a positive-definite real-valued kernel on X×X (See Wahba (1990) for

details). A solution to regularization problems in a reproducing kernel Hilbert

space (RKHS) is the well-known Support Vector Machine (SVM) (Boser et al.,

1992; Cortes and Vapnik, 1995) with the kernel trick, which leads to computa-

tionally efficiency. Tipping (2000) developed a probabilistic SVM by putting a

Gaussian prior for βj, which obtained a sparser representation than the SVM.

Moreover, another approach for kernel-based methods is to take advantage

of overcomplete bases, as mentioned above. In the Bayesian framework, an

example of methods using the overcomplete system is the Bayesian additive

regression kernels (BARK), proposed by Ouyang (2008). He proposed sparse

additive models using a multivariate Gaussian kernel with the diagonal co-

variance function as an extension of the LARK method for multi-dimensional

5



cases.

The second approach is to use the spline functions. The most representative

spline-based model is the multivariate adaptive regression splines (MARS)

introduced by Friedman (1991). The MARS has a form of a weighted sum of

spline functions as

f̂(x) =
J∑
j=1

Bj(x;θj)βj,

where θj is the parameter vector of the jth tensor product of univariate linear

spline functions Bj(x;θ). It has the advantages of capturing the nonlinear rela-

tionships and interactions between variables and simplifying high-dimensional

problems into low-dimensional settings. Denison et al. (1998b) and Francom

et al. (2018) proposed Bayesian approaches to the MARS and improved predic-

tive performance compared to the original model. The neural network (NN)

with two layers of hidden units can also be represented as a sum of spline

functions as

h(1) = g(1)
(

(β(1))Tx + a(1)
)
,

h(2) = g(2)
(

(β(2))Th(2) + a(2)
)
,

f̂(x) =
∑
j

h
(2)
j β

(3)
j + a(3),

where g(i) is the ReLU (Rectified Linear Unit) activation function, β(i) is the

weights, and a(i) is the bias for the ith hidden layer. The ReLU activation is

max(x, 0) which equals the linear spline function in the tensor product bases

of the MARS.

The third approach is ensemble methods, which combine several decision

6



trees. That is, φj is a single tree model. These are divided into two main cate-

gories: bagging (Breiman, 1996) and boosting (Freund et al., 1999; Friedman,

2001). The bagging builds many trees based on different bootstrapped sam-

ples and averages the results of them. As an improved bagging model, random

forest (Breiman, 2001) constructs many independent trees based on a random

subset of the features and combines them. The boosted trees sequentially es-

timate regression trees and aggregate them to form a strong tree model. Chen

and Guestrin (2016) developed the scalable and enhanced version of the gra-

dient boosting algorithm named extreme gradient boosting. In the Bayesain

framework, Chipman et al. (2010) proposed the Bayesian additive regression

trees (BART) that constructs the function as

f̂(x) =
J∑
j=1

Tj(x;Mj),

where Tj is a jth tree structure, and Mj is a set of parameters at the jth

terminal nodes (also called leaves). The BART has become quite popular owing

to theoretical results and outstanding empirical performance. Linero (2018)

and Linero and Yang (2018) enhanced the BART model placing a sparsity

inducing Dirichlet prior in high-dimensional problems.

1.3 Outline

In Chapter 2, we propose the Bayesian nonparametric method for function

estimation via a Lévy process prior, which remedies the disadvantage for the

LARK using a variety of B-spline bases as elements of an overcomplete system.
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We show that the mean functions of the proposed model lie almost surely in

the specific Besov space, and the prior has sufficiently large support on the

same Besov space.

In Chapter 3, for the multi-dimensional data, we develop the multivariate

nonparametric regression based on the LABS’s framework by bringing in ten-

sor products of the MARS. Numerical results illustrate the prorperties of the

proposed model. A summary and future work are given in Chapter 4. Proofs

for the main theorems in Chapter 2 are provided in Appendix A.1.
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Chapter 2

Bayesian nonparametric

function estimation using

overcomplete systems with

B-spline bases

2.1 Introduction

In this chapter, we develop a fully Bayesian approach with B-spline basis func-

tions as the elements of an overcomplete system and call it the Lévy Adaptive

B-Spline regression (LABS). Our main contributions to this work can be sum-

marized as follows. First, The LABS model can systematically represent the

smoothness of functions varying locally by changing the degrees of the B-spline

basis. The form of a B-spline basis depends on the locations of knots and can

be symmetrical or asymmetrical. The varying degree of B-spline basis enables
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the LABS model to adapt to the smoothness of functions. Second, We inves-

tigate two theoretical properties of the LABS model. First, the mean function

of the LABS model exists in specific Besov spaces based on the types of de-

grees of B-spline basis. Second, the prior of the LABS model has full support

on some Besov spaces. Thus, the proposed LABS model extends the range of

smoothness classes of the mean function. Third, e e provide empirical results

demonstrating that our model performs well in the spatially inhomogeneous

functions, such as the functions with both jump discontinuities, sharp peaks,

and smooth parts. The LABS model achieved the best results in almost ev-

ery experiment compared to the popular nonparametric function estimation

methods. In particular, the LABS model showed remarkable performance in

estimating functions with jump discontinuities and outperformed other com-

peting models.

The rest of the chapter is organized as follows. In section 2.2, we intro-

duce the Lévy Adaptive Regression Kernels and discuss its properties. In sec-

tion 2.3, we propose the LABS model and present an equivalent model with

latent variables that make the posterior computation tractable. We present

three theorems that the function spaces for the proposed model depend upon

the degree of B-spline basis and that the prior has large support in some func-

tion spaces. We describe the detailed algorithm of posterior sampling using

reversible jump Markov chain Monte Carlo in section 2.4. In section 2.5, the

LABS model is compared with other methods in two simulation studies, and

in section 2.6, three real-world data sets are analyzed using the LABS model.

In the last section, we discuss some improvements and possible extensions of

the proposed model.

10



2.2 Lévy adaptive regression kernels

In this section, we give a brief introduction to the LARK model. Let Ω be a

complete separable metric space, and ν be a positive measure on R × Ω with

ν({0},Ω) = 0 satisfying L1 integrability condition,

∫ ∫
R×A

(1 ∧ |β|)ν(dβ, dω) <∞, (2.1)

for each compact set A ⊂ Ω. The Lévy random measure L with Lévy measure

ν is defined as

L(dω) =

∫
R
βN(dβ, dω),

where N is a Poisson random measure with intensity measure ν. We denote

L ∼ Lévy(ν). For any t ∈ R, the characteristic function of L(A) is

E
[
eitL(A)

]
= exp

{∫ ∫
R×A

(eitβ − 1)ν(dβ, dω)

}
, for all A ⊂ Ω. (2.2)

Let g(x, ω) be a real-valued function defined on X ×Ω where X is another

set. By integrating g with respect to a Lévy random measure L, we define a

real-valued function on X :

η(x) ≡ L[g(x)] =

∫
Ω

g(x, ω)L(dω) =

∫
Ω

∫
R
g(x, ω)βN(dβ, dω),∀x ∈ X . (2.3)

We call g a generating function of η.

When ν(R×Ω) = M is finite, a Lévy random measure can be represented

as L(dω) =
∑

j≤J βjδωj , where J has a Poisson distribution with mean M > 0

and {(βj, ωj)}
iid∼ π(dβj, dωj) := ν/M, j = 1, 2, . . . , J . In this case, equation

11



(2.3) can be expressed as

η(x) =
J∑
j=1

g(x, ωj)βj, (2.4)

where {(βj, ωj)} is the random set of finite support points of a Poisson random

measure. If g is bounded, L1 integrability condition (2.1) implies the existence

of (2.3) for all x. See Lee et al. (2020).

If a Lévy measure satisfying (2.1) is infinite, the number of the support

points of N(R,Ω) is infinite almost surely. Tu (2006) proved that the truncated

Lévy random field Lε[g] converges in distribution to L[g] as ε→ 0, where

Lε[g] =

∫ ∫
[−ε,ε]c×Ω

g(x, ω)βN(dβ, dω) =

∫ ∫
R×Ω

g(x, ω)βNε(dβ, dω),

and Nε is a Poisson measure on R with mean measure

νε(dβ, dω) := ν(dβ, dω)I|β|>ε.

This truncation was often used as an approximation of the posterior. For poste-

rior computation methods for the Poisson random measure without truncation,

see Lee (2007) and Lee and Kim (2004).

Together with data generating mechanism (1.1), the LARK model is defined

as follows:

E[Y |L, θ] = η(x) ≡
∫

Ω

g(x, ω)L(dω)

L|θ ∼ Lèvy(ν)

θ ∼ πθ(dθ),

12



where Lèvy(ν) denotes the Lèvy process which has the characteristic function

and ν is a Lèvy measure satisfying (2.1). Tu (2006) used gamma, symmetric

gamma, and symmetric α-stable (SαS) (0 < α < 2) Lèvy random fields. The

conditional distribution for Y has a hyperparameter θ and πθ denotes the

prior distribution of θ. The generating function g(x, ω) is used as elements of

an overcomplete system. Tu (2006) and Lee et al. (2020) used the Gaussian

kernel, the Laplace kernel, and Haar wavelet as generating functions:

• Haar kernel: g(x, ω) := I
(
|x−χ
λ
| ≤ 1

)
• Gaussian kernel: g(x, ω) = exp

{
− (x−χ)2

2λ2

}
• Laplacian Kernel: g(x, ω) = exp

{
− |x−χ|

λ

}
with ω := (χ, λ) ∈ R × R+ := Ω. All of the above generating functions are

bounded.

This LARK model can be represented in a hierarchical structure as follows:

Yi| η(xi)
ind∼ N (η(xi), σ

2)

η(xi) =
J∑
j=1

g(xi,ωj)βj

J | ε ∼ Pois(νε(R,Ω))

(βj,ωj)|J, ε
i.i.d∼ π(dβj, dωj) :=

νε(dβj, dωj)

νε(R,Ω)

for j = 1, . . . , J . J is the random number that is stochastically determined

by Lèvy random measure, (β1, . . . , βJ) is the unknown coefficients of a mean

function and (ω1, . . . ,ωJ) is the parameters of the generating functions. To

obtain samples from the posterior distribution under the LARK model, the
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reversible jump Markov chain Monte Carlo (RJMCMC) proposed by Green

(1995) is used because some parameters have varying dimensions.

The LARK model stochastically extracts features and finds a compact rep-

resentation for η(·) based on an overcomplete system. That is, it enables func-

tions to be represented by the small number of elements from an overcomplete

system. However, both the LARK model and most methods for function es-

timation use only one type of kernel or basis and can find out the restricted

smoothness of the target function. These models cannot afford to capture all

parts of the function with various degrees of smoothness. For example, we con-

sider a noisy modified Heavisine function sampled at n = 512 equally spaced

points on [0, 1] in Figure 2.1. The data contains both smooth and non-smooth

regions such as peaks and jumps. As shown in panel (a) of Figure 2.1, it is

difficult for the LARK model with a finite Lèvy measure using Gaussian ker-

nels to estimate jump parts of the data. We, therefore, propose a new model

which can adapt the smoothness of function systematically by using a variety

of B-spline bases as the generating elements of an overcomplete system.

2.3 Lévy adaptive B-spline regression

We consider a general type of basis function as the generating elements of an

overcomplete system instead of specific kernel functions such as Haar, Lapla-

cian, and Gaussian. The LABS model uses B-spline basis functions, which can

systematically express jumps, sharp peaks, and smooth parts of the function.
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Figure 2.1: Comparison of curve fitting functions with (a) LARK and (b)
LABS model for the modified Heavisine dataset. The solid lines are estimated
functions and the dashed line represents the true function.

2.3.1 B-spline basis

The B-spline basis function consists of piecewise k degree polynomials with

k − 1 continuous derivatives. In general, the B-spline basis of degree k can be

derived utilizing the Cox-de Boor recursion formula:

B∗0,i(x) :=

1 if ti ≤ x < ti+1

0 otherwise

B∗k,i(x) :=
x− ti
ti+k − ti

B∗k−1,i(x) +
ti+k+1 − x
ti+k+1 − ti+1

B∗k−1,i+1(x),

(2.5)

where ti are called knots which must be in non-descending order ti ≤ ti+1

(De Boor, 1972), (Cox, 1972). The B-spline basis of degree k, B∗k,i(x) then

needs (k + 2) knots, (ti, . . . , ti+k+1). For convenience of notation, we redefine

the B-spline basis of degree k with a knot sequence ξk := (ξk,1, . . . , ξk,k+2) as
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follows.

B0(x; ξ0) :=

1 if ξ0,1 ≤ x < ξ0,2

0 otherwise

Bk(x; ξk) :=
x− ξk,1

ξk,(k+1) − ξk,1
Bk−1(x; ξ?k) +

ξk,(k+2) − x
ξk,(k+2) − ξk,2

Bk−1(x; ξ??),

(2.6)

where ξ?k := (ξk,1, ξk,2, . . . , ξk,(k+1)) and ξ??k := (ξk,2, ξk,3, . . . , ξk,(k+2)).

The B-spline basis functions can have a variety of shapes and smooth-

ness determined by knot locations and its degree. For example, a B-spline

basis function can be a piecewise constant (k = 0), linear (k = 1), quadratic

(k = 2) , and cubic (k = 3) functions. Furthermore, the B-spline basis with

equally spaced knots has a symmetric form. These bases are called Uniform

B-splines. Examples of the B-spline basis functions of different degrees with

equally spaced knots are shown in Figure 2.2.

Figure 2.2: Different shapes of the B-spline basis function by increasing the
degree k
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2.3.2 Model specification

The LARK model with one kernel type can’t estimate well functions with both

continuous and discontinuous parts. To improve this, we consider various B-

spline basis functions simultaneously for estimating all parts of the unknown

function. The proposed model uses a B-spline basis to generate an overcomplete

system with varying degrees of smoothness systematically. For example, the

B-spline basis functions of degrees 0, 1, and 2 or more are for jumps, sharp

peaks, and smooth parts of the function, respectively.

We consider the mean function can be expressed as a random finite sum:

η(x) =
∑
k∈S

∑
1≤l≤Jk

Bk(x; ξk,l)βk,l, (2.7)

where S denotes the subset of degree numbers of B-spline basis and Bk(x; ξk)

is a B-spline basis of degree k with knots, ξk ∈ X (k+2) := Ω. Generating

functions of the LARK model are replaced by the B-spline basis functions. Jk

has a Poisson distribution with Mk > 0 and {(βk,l, ξk,l)}
iid∼ πk(dβk, dξk) :=

νk(dβk, dξk)/νk(R× Ω). In this chapter, we assume

πk(dβk, dξk) = N (βk; 0, φ2
k) dβk · U(ξk;X (k+2))dξk.

The mean function can be also defined as

η(x) ≡
∑
k∈S

∫
Ω

Bk(x; ξk)Lk(dξk). (2.8)
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The stochastic integral representation of the mean function is determined by

Lk ∼ Lévy(νk(dβk, dξk)), ∀k ∈ S,

where νk(dβk, dξk) is a finite Lévy measure satisfying Mk ≡ νk(R × Ω) < ∞.

Although the Lévy measure νk satisfying (2.1) may be infinite, the Poisson in-

tegrals and sums above are well defined for all bounded measurable compactly-

supported Bk(·, ·) for which for all k ∈ S,

∫ ∫
R×Ω

(1 ∧ |βkBk(·; ξk)|)νk(dβk, dξk) <∞. (2.9)

In this chapter, we consider only finite Lévy measures in the proposed model.

In other words, we restrict our attention to the Lévy measure of a compound

Poisson process. The proposed model is more complex than the LARK model

with one kernel and is expected to give a more accurate estimate of the regres-

sion function. It can estimate a mean function having both smooth and peak

shapes. The proposed model can write in hierarchical form as

Yi|xi
ind∼ N (η(xi), σ

2), i = 1, 2, · · · , n,

η(x) = β0 +
∑
k∈S

∑
1≤l≤Jk

Bk(x; ξk,l)βk,l,

σ2 ∼ IG

(
r

2
,
rR

2

)
,

Jk ∼ Poi(Mk),

Mk ∼ Ga(aγk , bγk),

βk,l
iid∼ N (0, φ2

k), l = 1, 2, · · · , Jk,

ξk,l
iid∼ U(X (k+2)), l = 1, 2, · · · , Jk,

(2.10)
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for k ∈ S. We set β0 = Y and φk = 0.5× (maxi{Yi} −mini{Yi}).

2.3.3 Support of LABS model

In this section, we present three theorems on the support of the LABS model.

We first define the modulus of smoothness and Besov spaces.

Definition 2.3.1. Let 0 < p ≤ ∞ and h > 0. For f ∈ Lp(X ), the rth order

modulus of smoothness of f is defined by

ωr(f, t)p := sup
h≤t
‖∆r

hf‖p,

where ∆r
hf(x) =

∑r
k=0

(
r
k

)
(−1)r−kf(x+ kh) for x ∈ X and x+ kh ∈ X .

If r = 1, ω1(f, t)p is the modulus of continuity. There exist equivalent

definitions in defining Besov spaces. We follow DeVore and Lorentz (1993)[2.10,

page 54].

Definition 2.3.2. Let α > 0 be given and let r be the smallest integer such

that r > α. For 0 < p, q < ∞, the Besov space Bαp,q is the collection of all

functions f ∈ Lp(X ) such that

|f |Bαp,q =

(∫ ∞
0

[t−αωr(f, t)p]
q dt

t

)1/q

is finite. The norm on Bαp,q is defined as

‖f‖Bαp,q = ‖f‖p + |f |Bαp,q .

The Besov space is a general function space depending on the smoothness
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of functions in Lp(X ) and especially can allow smoothness of spatially inho-

mogeneous functions, including spikes and jumps. The Besov space has three

parameters, α, p, and q, where α is the degree of smoothness, p represents

that Lp(Ω) is the function space where smoothness is measured, and q is a

parameter for a finer tuning on the degree of smoothness.

Theorem 2.3.1. For fixed k ∈ S and ξk ∈ X (k+2), the B-spline basis Bk(x; ξk)

falls in Bαp,q(X ) for all 1 ≤ p, q <∞ and α < k + 1/p.

The proof is given in Appendix A.1. For instance, the B-spline basis with

degree 0 satisfies Bk(·, ξk) ∈ Bαp,q for α < 1/p, the B-spline basis with degree

1 is in Bαp,q for 1 + 1/p and the B-spline basis with degree 2 falls in Bsp,q for

2 + 1/p.

The following theorem describes the mean function of the LABS model,

η, is in a Besov space with smoothness corresponding to degrees of B-spline

bases used in the LABS model. The proof of the theorem closely follows that

of Wolpert et al. (2011). The proof of Theorem 2.3.2 is given in Appendix A.1.

Theorem 2.3.2. Suppose X is a compact subset of R. Let νk be a Lévy measure

on R×X (k+2) that satisfies the following integrability condition,

∫ ∫
R×X (k+2)

(1 ∧ |βk|)νk(dβk, dξk) <∞. (2.11)

and Lk ∼ Lévy(νk) for all k ∈ S. Define the mean function of the LABS model,

η(·) =
∑

k∈S
∫
X (k+2) Bk(x; ξk)Lk(dξk) on X where Bk(x; ξk) satisfies (2.11) for

each fixed x ∈ X . Then, η has the convergent series

η(x) =
∑
k∈S

∑
l

Bk(x; ξk,l)βk,l (2.12)
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where S is a finite set including degree numbers of B-spline basis. Furthermore,

η lies in the Besov space Bαp,q(X ) with α < min(S) + 1
p

almost surely.

For example, if a zero element is included in S then the mean function of

the LABS, η falls in Bαp,q with α < 1
p

almost surely, which consists of functions

no longer continuous. If S = {3, 5, 8}, then, η belongs to Bαp,q with α < 3 + 1
p

almost surely. Moreover, it is highly possible that the function spaces for the

LABS model may be larger than those of the LARK model using one type

of kernel function. Specifically, the mean function for the LABS model with

S = {0, 1} falls in Bαp,p with α < 1
p

almost surely. If that of the LARK model

using only one Laplacian kernel falls in Bαp,p with α < 1 + 1
p

, then the function

spaces of the LABS model with given α < 1
p

are larger than those of the LARK

model for the range of smoothness parameter, 1
p
< α < 1 + 1

p
by the properties

of the Besov space.

The next theorem shows that the prior distribution of our LABS model

has sufficiently large support on the Besov space Bαp,q with 1 ≤ p, q < ∞ and

α > 0. For η0 ∈ Bαp,q(X ), denote the ball around η0 of radius δ,

b̄δ(η0) = {η : ‖η − η0‖p < δ}

where ‖ · ‖p is a Lp norm. The proof of Theorem 2.3.3 is given in Appendix

A.1.

Theorem 2.3.3. Let X be a bounded domain in R. Let νk be a finite measure

on R× X (k+2) and Lk ∼ Levy(νk) for all k ∈ S. Suppose η has a prior Π for

the LABS model (2.10). Then, Π(b̄δ(η0)) > 0 for every η0 ∈ Bαp,q(X ) and all

δ > 0.
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2.4 Algorithm

Based on the prior specifications and the likelihood function, the joint posterior

distribution of the LABS model (2.10) is

[β, ξ,J ,M , σ2 |Y ] ∝ [Y | η, σ2]× [β, ξ |J ]× [J |M ]× [M ]× [σ2]

∝

[
(σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(Yi − β0 −
∑
k∈S

Jk∑
l=1

Bk(xi; ξk,l)βk,l)
2

}]

×
∏
k∈S

[
exp

{
− 1

2σ2
k

Jk∑
l=1

β2
k,l

}]
×
∏
k∈S

[
1

|X (k+2)|Jk

Jk∏
l=1

I(ξk,l ∈ X (k+2))

]

×
∏
k∈S

[
MJk
k

Jk!
exp{−Mk}

]
×
∏
k∈S

[
M

aγk−1

k exp{−bγkMk}
]

×
[
(σ2)−

r
2

+1 exp

{
− rR

2σ2

}]
. (2.13)

The parameters β and ξ of the LABS model have varying dimensions as Jk is

a random variable. We use the Reversible Jump Markov Chain Monte Carlo

(RJMCMC) algorithm (Green, 1995) for the posterior computation.

We consider three transitions in the generation of posterior samples: (a) the

addition of basis functions and coefficients; (b) the deletion of basis functions

and coefficients; (c) the relocation of knots which affects the shape of basis

functions and coefficients. Note that in step (c), the numbers of basis functions

and coefficients do not change. We call such move types birth step, death

step, and relocation step, respectively. A type of move is determined with

probabilities pb, pd and pw with pb + pd + pw = 1, where pb, pd and pw are

probabilities of choosing the birth, death, and relocation steps, respectively.

Let us denote θk,l = (βk,l, ξk,l) by an element of θk = {θk,1, θk,2, . . . , θk,j, . . . , θk,Jk},

where each ξk,l has the (k + 2) dimensions. In general, the acceptance ratio of
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the RJMCMC can be expressed as

A = min [1, (likelihood ratio)× (prior ratio)× (proposal ratio)× (Jacobian)] .

In our problem the acceptance ratio for each move types is given by

A = min

[
1,
L(Y|θ′k, J ′k) Π(θ′k|J ′k)Π(J ′k)q(θk|θ

′
k)

L(Y|θk, Jk) Π(θk|Jk)Π(Jk)q(θ
′
k|θk)

]
, (2.14)

where θk and Jk refer to the current model parameters and the number of basis

functions in the current state, θ′k and J ′k denote the proposed model parameters

and the number of basis functions of the new state. Here, the Jacobian is 1 in

all move types. q(θ′k|θk) is the jump proposal distribution that proposes a new

state θ′k given a current state θk. Specifically, we choose the following jump

proposal density proposed by Lee et al. (2020) for each move step:

qb(θ
′
k|θk) = pb × b(θk,Jk+1)× 1

Jk + 1
,

qb(θ
′
k|θk) = pd ×

1

Jk
,

qw(θ′k|θk) = pw × q(θ′k,r|θk,r),

where b(·) is a candidate distribution which proposes a new element. For death

and change steps, a randomly chosen rth element of θk is deleted and rear-

ranged, respectively. The details regarding updating schemes of each move step

are as follows.

(a) [Birth step] Assume that the current model is composed of Jk basis

functions. If the birth step is selected, a new basis function Bk,Jk+1
and
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θk,Jk+1
is accepted with the acceptance ratio

min

[
1,
L(Y|θ′k, J ′k)
L(Y|θk, Jk)

× π(θk,Jk+1)Mk

(Jk + 1)
× pd/(Jk + 1)

(pb × b(θk,Jk+1))/(Jk + 1)

]
.

Especially, a coefficient βk,Jk+1
and an ordered knot set ξk,Jk+1

are drawn

from their generating distributions and added at the end of (βk,1, . . . , βk,Jk)

and (ξk,1, . . . , ξk,Jk). When Jk = 0, the birth step must be exceptionally

selected until Jk becomes one.

(b) [Death step] If the death step is selected, an rth element, θk,r uniformly

chosen is removed from the existing set of basis functions, coefficients,

and ordered knot sets. We can find out the acceptance ratio for a death

step similarly. The acceptance ratio is given by

min

[
1,
L(Y|θ′k, J ′k)
L(Y|θk, Jk)

× Jk
π(θk,r)Mk

× (b(θk,r)× pb)/Jk
pd/Jk

]
.

(c) [Relocation step] Unlike the other steps, the relocation step keeps the

numbers of basis functions or coefficients or ordered knot sets fixed.

Therefore, the updating scheme of this step is a Metropolis-Hastings

within Gibbs sampler. If the relocation step is selected, a current loca-

tion θk,r is moved to a new location θ′k,r generated by proposal distribu-

tions with the acceptance ratio (2.15). Particularly, since knots of basis

function must be in non-descending order, ξk,r,i which is the ith element

of an ordered knot set is sequentially replaced with a new knot loca-

tion ξ′k,r,i generated by U(ξk,r,i−1, ξk,r,i+1), i = 1, . . . , (k + 2), where ξk,r,0

and ξk,r,k+1 are boundary points of X . That is, each element of a spe-
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cific knot set ξk,r = (ξk,r,1, . . . , ξk,r,k+2) is moved to new knot locations

ξ′k,r = (ξ′k,r,1, . . . , ξ
′
k,r,k+2) in turn. The corresponding acceptance ratio is

given by

min

[
1,
L(Y|θ′k, J ′k)
L(Y|θk, Jk)

×
π(θ′k,r)

π(θk,r)
×
qw(θk,r|θ′k,r)
qw(θ′k,r|θk,r)

]
. (2.15)

When using an independent proposal distribution (i.e. qw(θ′k,r|θk,r) =

π(θ′k,r)), the acceptance ratio can reduce to

min

[
1,
L(Y|θ′k, J ′k)
L(Y|θk, Jk)

]
.

Finally, β′k,r is sampled from its conditional posterior distribution by

using the Gibbs sampling.

The posterior samples of σ and Mk can be generated from their conditional

posterior distributions. See Appendix A.1. The pseudo-code for the proposed

strategy is given in Algorithm 1.

2.5 Simulation studies

In this section, we evaluate the performance of the LABS model (2.10) and

competing methods on simulated data sets. First, we apply the proposed

method to four standard examples: Bumps, Blocks, Doppler, and Heavisine

test functions introduced by Donoho and Johnstone (1994). Second, we con-

sider three functions that we created ourselves with jumps and peaks to assess

the practical performance of the proposed model.
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Algorithm 1 A reversible jump MCMC algorithm for LABS

1: procedure LABS(S) . S: set of degree numbers
2: Initialize parameters J ,β, ξ,M , σ2 from prior distributions.
3: for iteration i = 1 to N do
4: for k = 1 to |S| do . J := {J1, . . . ,Jk, . . . ,J |S|}
5: Update (Jk,βk, ξk) through a reversible jump MCMC.
6: Sample Mk from the full conditional π(Mk|others). . Gibbs

step
7: end for
8: Sample σ2 from the full conditional π(σ2|β, ξ,J ,M ,y). . Gibbs

step
9: Store ith MCMC samples.

10: end for
11: end procedure

The simulated data sets are generated from equally spaced x’s on X = [0, 1]

with sample sizes n = 128 and 512. Independent normally distributed noises

N (0, σ2) are added to the true function η(·). The root signal-to-noise ratio

(RSNR) is defined as

RSNR :=

√∫
X (f(x)− f̄)2 dx

σ2
,

where f̄ := 1
|X |

∫
X f(x) dx and set at 3, 5 and 10. We also run the LABS model

for 200,000 iterations, with the first 100,000 iterations discarded as burn-in and

retain every 10th sample. For comparison between the methods, we compute

the mean squared error of all methods using 100 replicate data sets for each

test function. The average of the posterior curves is used for the estimate of

the test function.

MSE =
1

n

n∑
i=1

(η(xi)− η̂(xi))
2.
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2.5.1 Simulation 1 : DJ test functions

We carry out a simulation study using the benchmark test functions suggested

by Donoho and Johnstone (1994), often used in the field of wavelet and non-

parametric function estimation. The Donoho and Johnstone test functions con-

sist of four functions called Bumps, Blocks, Doppler, and Heavisine. These test

functions are composed of various shapes such as sharp peaks (Bumps), jump

discontinuities (Blocks), oscillating behavior (Doppler), and jumps/peaks in

smooth functions (Heavisine) (See Figure 2.3).

Figure 2.3: The Donoho and Johnstone test functions: (a) Bumps, (b) Blocks,
(c) Doppler and (d) Heavisine

The hyperparameters and types of basis functions used in (2.10) are dis-

played in Table 2.1. For Bumps and Doppler, the parameter r of the prior
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distribution for σ2 is set to 100 to speed up convergence. We also take account

of the combinations of a B-spline basis based on the shapes of test functions.

S r R aγk bγk
Bumps {1} 100 0.01 1 1
Blocks {0} 0.01 0.01 1 1

Doppler {1,2} 100 0.01 1 1
Heavisine {0,2} 0.01 0.01 1 1

Table 2.1: The values of hyperparameters of proposed model for each test
function

We compare our model with a variety of methods such as B-spline curve of

degree 2 with 50 knots (denoted as BSP-2), Local polynomial regression with

automatic smoothing parameter selection (denoted by LOESS), Smoothing

spline with smoothing parameter selected by cross-validation (denoted by SS),

Nadaraya–Watson kernel regression using the Gaussian kernel with bandwidth

h which minimizes CV error (denoted by NWK), Empirical Bayes approach

for wavelet shrinkage using a Laplace prior with Daubechies “least asymmet-

ric” (la8) wavelets except for the Blocks example, where it uses the Haar

wavelet; Johnstone and Silverman (2005) (denoted by EBW), Trend filtering

with order # based on a optimal regularization parameter; Tibshirani et al.

(2014) (denoted by TF-#), Gaussian process regression with the Radial basis

or Laplacian kernel (denoted by GP-R or GP-L), Bayesian curve fitting using

piecewise polynomials with l = #1, l0 = #2; Denison et al. (1998a) (denoted

by BPP-#1-#2), Bayesian adaptive spline surfaces with degree #; Francom

et al. (2018) (denoted by BASS-#), and Lévy adaptive regression with multiple

kernels; Lee et al. (2020) (denoted by LARMuK). These competitive models
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are implemented in R (R Core Team, 2020) with various packages: LOESS

(Wang, 2010), Empirical Bayes thresholding (Silverman et al., 2005), Gaus-

sian process (Karatzoglou et al., 2004), Bayesian curve fitting using piecewise

polynomials (Feng, 2013), and Bayesian adaptive spline surfaces (Francom and

Sanso, 2016).

Figure 2.4: Boxplots of MSEs from the simulation study with n = 128 and
RSNR = (a) 3, (b) 5 and (c) 10

Both Figure 2.4 and Figure 2.5 show that the performance of our model is

generally more accurate than other methods. The models in the two figures are

selected by better outcomes from simulations. More detailed simulation results

can be seen in Appendix A.1. Figure 2.4 shows that the LABS model is supe-
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rior to others regardless of noise levels with n = 128. It also has the smallest

average mean square error for all test functions except the Heavisine example

with RSNR = 3. Similarly, for sample size n = 512, the LABS model comes

up with the best performance in Figure 2.5 except for the Doppler function,

where it is competitive. Our model removes high frequencies in the interval

[0, 0.1] and produces a smooth curve within the corresponding domain. On

the contrary, due to a small number of data points in the Doppler example

with n = 128, most models yield similar smooth curves in [0, 0.1]. As a result,

the LABS model has an excellent numerical performance. For Blocks exam-

ple, LABS, in particular, yields the lowest average and standard deviation

of the mean squared error in all scenarios. This suggests that our model has

an excellent ability to find jump points. Furthermore, LABS has consistently

better performance than B-spline regression using only one basis function for

four simulated data sets since its overcomplete systems can be constructed by

various combinations of B-spline basis functions. See Appendix A.1.

2.5.2 Simulation 2 : Smooth functions with jumps and

peaks

Our main interest lies in estimating smooth functions with either discontinuity

such as jumps, or sharp peaks or both. We design three test functions to

assess the practical performance of the proposed method for our concerns.

The first and second example is modified by adding some smooth parts, unlike

the original version of the Bumps and Blocks of DJ test functions. Each test
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Figure 2.5: Boxplots of MSEs from the simulation study with n = 512 and
RSNR = (a) 3, (b) 5 and (c) 10

function provided is given by

η1(x) =
0.6

0.92
[4ssgn(x− 0.1)− 5ssgn(x− 0.13) + 5ssgn(x− 0.25)− 4.2ssgn(x− 0.4)

+ 2.1ssgn(x− 0.44) + 4.3ssgn(x− 0.65)− 4.2ssgn(x− 0.81) + 2] + 0.2 + sin(8πx),

η2(x) =[7K0.005(x− 0.1) + 5K0.07(x− 0.25) + 4.2K0.03(x− 0.4) + 4.3K0.01(x− 0.65)

+ 5.1K0.008(x− 0.78) + 3.1K0.1(x− 0.9)] + cos (4πx),

where sgn(x) = I(0,∞)(x) − I(−∞,0)(x), ssgn(x) = 1 + sgn(x)/2 and Kw(x) :=

(1+ |x/w|)−4. Finally, we create a sum of jumps, peaks, and some smoothness.
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A formula for a final test function is

η3(x) = 6 sin(4πx) + 7(1 + sgn(x− 0.1)/2)− 7(1 + sgn(x− 0.18)/2)

− 2sgn(x− 0.37) + 17K0.01(x− 0.5)− 3sgn(x− 0.72) + 10K0.05(x− 0.89).

They are displayed in Figure 2.6. We call in turn them modified Blocks,

modified Bumps, and modified Heavisine, respectively.

Figure 2.6: Three test functions used in the second simulation: modified Blocks
(left), modified Bumps (center) and modified Heavisine (right)

In these experiments, we use two or more types of B-spline basis as el-

ements of overcomplete systems since three functions have different shapes,

unlike previous simulation studies. Hyperparameters are similar to the previ-

ous ones. All hyperparameters for the prior distributions are summarized in

Table 2.2. Again, we only compare our model with BPP, BASS, EBW, TF,

and LARMuK models, which have relatively good performance in some test

functions of Simulation 1.

Table 2.3 furnishes that the LABS model has the best outcomes when the

sample size is 128, difficult to estimate. Furthermore, when n = 512, we find out

from Table 2.4 that the LABS model performs well in most cases with either

the lowest or the second-lowest average MSE values across 100 replicates. In
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S r R aγk bγk
Modified Blocks {0,2,3} 0.01 0.01 1 1
Modified Bumps {1,2} 50 0.01 1 1

Modified Heavisine {0,1,2,3} 0.01 0.01 5 1

Table 2.2: Details of hyperparameters of the LABS used in second experiment

particular, the LABS outperforms competitors in modified Blocks, irrespective

of the sample size and noise levels as expected. Among all models, the worst-

performing method is the BASS-2 since it cannot estimate well many jumps or

peak points for given test functions. Figure 2.7 supports that the LABS model

has the ability to overcome the noise and adapt to smooth functions with

Figure 2.7: Comparisons of the estimates of a data set generated from the
modified Blocks with n = 128 and RSNR = 3 using (a) LABS, (b) BASS-
1, (c) BPP-10, and (d) EBW. Dashed lines represent true curves, solid lines
represent estimates of curve.
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either discontinuity such as jumps or sharp peaks, or both.

2.6 Real data applications

We now apply the LABS model (2.10) real-world datasets, including the min-

imum legal drinking age (MLDA) on mortality rate, the closing bitcoin price

index, and the maximum daily value of concentrations of fine particulate mat-

ter (PM2.5) in Seoul. All the real data examples exhibit wildly varying pat-

terns that may have jumps or peaks. These fluctuating patterns are expected

to further illustrate the features of the LABS model.

In the following applications we set the hyperparameter values of the pro-

posed model, LABS: aJ = 5 , bJ = 1, r = 0.01, and R = 0.01. In this analysis,

we practically choose S = {0, 1, 2} because the true curve of real data is un-

known, and it may have varying smoothness. We run it 200,000 times with a

burn-in of 100,000 and thin by 10 to achieve convergence of the MCMC algo-

rithm. Performance comparisons of our model and some rather good methods

in the simulated studies are also conducted.

2.6.1 Example 1: Minimum legal drinking age

The Minimum legal drinking age (MLDA) heavily affects youth alcohol con-

sumption, a sensitive issue worldwide for policymakers. In the past three

decades, there have been many studies on the effect of legal access age to

alcohol on death rates. The MLDA dataset collected from Angrist and Pis-

chke (2014) contains death rates, a measure of the total number of deaths per

100,000 young Americans per year.
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This data has been widely used to estimate the causal effect of policies on

the minimum legal drinking age in the area of Regression Discontinuity De-

sign (RDD). Figure 2.8 (a) highlights that the MLDA data might represent a

piecewise smooth function with a single jump discontinuity at minimum drink-

ing age of 21, referred to as cutoff in the RDD. Specifically, each observation

(or point) in Figure 2.8 corresponds to the death rate from all causes in the

monthly interval, and the number of all observations is 48.

Figure 2.8: (a) A piecewise curve fitting and (b) comparisons of the fitted
posterior mean using BASS-1, GP-R and LABS for Minimum legal drinking
age (MLDA) dataset

Using the MLDA data, we estimate unknown functions of death rates via

LABS and several competing models, including BPP-21, BASS-1, LARMuK,

and GP-R. Figure 2.8 (b) shows that three posterior mean estimates for an

unknown function. The solid curve denotes LABS, the dotted-dashed curve

indicates GP-R, and the dashed curve represents BASS-1.

In Figure 2.8 (b), both LABS and BASS-1 provide similar posterior curves

to the piecewise polynomial regression of Figure 2.8 (a). The estimated curves
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of them also have a jump point at 21. While the estimated function of GP-

R is smooth, the mean function for the LABS model has both smooth and

jump parts. We calculate the mean squared error with 10-fold cross-validation

for comparison between methods. The mean and standard deviation values of

cross-validation prediction errors are given in Table 2.5. The lower CV error

rate of LABS implies that LABS has a better performance of estimating a

smooth function with discontinuous points than the others.

LABS BASS-1 BPP-21 LARMuK GP-R
Mean 6.5851 6.7884 8.6643 8.35014 7.25693

Standard Deviation 5.1838 4.98241 6.66641 6.45711 5.23563

Table 2.5: Mean and standard deviation for the error rate of 10-fold cross-
validation on MLDA dataset.

2.6.2 Example 2: Bitcoin prices on Bitstamp

Bitcoin is the best-known cryptocurrency based on Blockchain technology.

The demands for bitcoin have increased globally because of offering a higher

yield and easy access. The primary characteristic of bitcoin is to enable fi-

nancial transactions from user to user on the peer-to-peer network configura-

tion without a central bank. Unlimited trading methods and smaller market

sizes than the stock market lead to high volatility in the bitcoin price. We

collected a daily bitcoin exchange rate (BTC vs. USD) on Bitstamp from

January 1, 2017, to December 31, 2018. Bitcoin data (sourced from http:

//www.bitcoincharts.com) has 730 observations and eight variables: date,

open price (in USD), high price, low price, closing price, volume in bitcoin,
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volume in currency, and weighted bitcoin price.

Figure 2.9: Daily bitcoin closing price with a smoothing line

We also add LOESS (locally estimated scatterplot smoothing) regression

line to a scatter plot of a daily closing price in Figure 2.9. The dataset shows

locally strong upward and downward movements. We apply LABS and other

models to estimate the curve of daily bitcoin closing price. Figure 2.10 illus-

trates the predicted curves of the LABS and competing models for approximat-

ing an unknown function of daily bitcoin closing price. There are no significant

differences between the estimated posterior curves.

Alternatively, we calculate cross-validation errors to assess model perfor-

mances. The values of cross-validation errors are given in Table 2.6. Table 2.6

demonstrates that the LABS model provides more accurate function estima-

tion and consistent performance through both minimum mean and relatively

low standard deviation values of the cross-validation errors. They also indi-

cate that the Gaussian process is not proper in the cases with locally varying
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Figure 2.10: Posterior mean of η on Bitcoin dataset using four models: (a)
LABS, (b) BASS-1, (c) BPP-21 and (d) LARMuK

smoothness. We can find out that the LABS gives more reliable estimated

functions with both discontinuous and smooth parts than other methods.

LABS BASS-1 BPP-21 LARMuK GP-R
Mean 98014 109222 99937 149272 583046

Standard Deviation 30057 30052.5 29210 51128.7 137859.7

Table 2.6: Mean and standard deviation for the error rate of 10-fold cross-
validation on Bitcoin dataset

2.6.3 Example 3: Fine particulate matter in Seoul

The fine dust has become a national issue, and its forecast received great

attention from the media. Much research on fine particulate matter (PM2.5)
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has been carried out as it gained social attention. According to the studies,

Korea’s fine dust particles originated from within the country and external

sources from China. Many factors cause PM2.5 concentration to rapidly rise

or fall and make it difficult to predict its behavior accurately.

We estimate the unknown function of maximum daily concentrations of

PM2.5 in Seoul. The PM2.5 dataset collected from the AIRKOREA (https:

//www.airkorea.or.kr) includes 1261 daily maximum values of PM2.5 con-

centration from January 1, 2015, to June 30, 2018. We removed all observations

that have missing values.

Figure 2.11: Daily maximum concentrations of PM2.5 in Seoul with a smooth-
ing line

Figure 2.11 displays daily fluctuations and seasonality. PM2.5 concentra-

tions are higher in winter and spring than in summer and fall. A LOESS

smoothed line added in the figure does not reflect these features well. We take

advantage of combinations of basis functions, S = {0, 1, 2} to grasp such char-
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Figure 2.12: Posterior mean of the mean function on PM2.5 dataset using four
models: (a) LABS, (b) BASS-1, (c) BPP-10 and (d) GP-R

acteristics of PM2.5 data with multiple jumps and peak points. As shown in

Figure 2.12, all four methods represent different estimated lines of the unknown

mean function and pick features of the data up in their way. Interestingly,

LABS, BASS-1, and BPP-10 react in different ways while they detect peaks,

jumps, and smooth parts of PM2.5 data.

We also compute the average and standard deviation of the cross-validated

errors of LABS, BPP-10, BASS-1, LARMuK, and GP-R, given in Table 2.7.

The LABS model has the lowest cross-validation error among all methods.

Moreover, a comparably low standard deviation of LABS supports that it has

a more stable performance for estimating any shape of functions due to using

all three types of B-spline basis.
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LABS BASS-1 BPP-10 LARMuK GP-R
Mean 384.8863 393.6049 398.17 399.6718 436.2286

Standard Deviation 56.88069 60.38016 58.63784 53.02499 67.98722

Table 2.7: Mean and standard deviation for the error rate of 10-fold cross-
validation on Seoul PM2.5 dataset

2.7 Discussion

We suggested general function estimation methodologies using the B-spline

basis function as the elements of an overcomplete system. The B-spline basis

can systematically represent functions with varying smoothness since it has

nice properties such as local support and differentiability. The overcomplete

system and a Lévy random measure enable a function with both continuous and

discontinuous parts to capture all features of the unknown regression function.

Simulation studies and real data analysis also show that the proposed models

perform better than other competing models. We also showed that the prior

has full support in certain Besov spaces. The major limitation of the LABS

model is the slow mixing of the MCMC algorithm. Future work will develop

an efficient algorithm for the LABS model and extend the LABS model for

multivariate analysis.
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Chapter 3

Bayesian multivariate

nonparametric regression using

overcomplete systems with

tensor products of B-spline

bases

3.1 Introduction

In this chapter, we develop a fully Bayesian nonparametric regression with

tensor products of B-spline bases based on the Lévy process priors and call it

the Multivariate Lévy Adaptive B-Spline regression (MLABS). The MLABS

models adaptively as a sum of basis functions. There are three main contribu-

tions of this work. First, the proposed method can adapt various smoothness
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of functions in the multi-dimensional data by changing a set of degrees of the

tensor product basis function. Especially, the local support of the B-spline ba-

sis can also make more delicate predictions than other existing methods in the

non-smooth surface data. Second, Levy process priors encourage sparsity in

the expansions and provide automatic selection over the number of basis func-

tions. That is, our model does not suffer from model selection problems like

a LABS model. Finally, the MLABS model has comparable performance on

regression and classification problems. Empirical results demonstrate that the

MLABS has more stable and accurate predictive abilities than state-of-the-art

regression models.

The outline of the chapter is as follows. In Section 2, we propose an ex-

tended model of LARK and LABS models for multivariate analysis. The pos-

terior computation and details for tensor product bases used in the proposed

model are also presented. Simulation experiments comparing the predictive

performance of our method with others are provided in Section 3. In Section

4, the proposed model is applied to regression and classification problems us-

ing several real-world data sets. We conclude the chapter with a discussion in

Section 5.

3.2 Multivariate Lévy adaptive B-spline regres-

sion

In this section, we propose an extended model of the LABS model that can

only cope with data has one variable for multivariate analyses.
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3.2.1 Model specifications

General tensor product B-spline bases require a lot of computations as the

number of variables increases. This problem is the so-called “curse of dimen-

sionality”, which means computation burden can increase exponentially with

dimension. We apply the structure of basis functions of (Bayesian) MARS to

that of the LABS model to lessen the computational effort. The idea regard-

ing tensor products of B-spline bases was initially proposed by Bakin et al.

(2000). We consider general basis functions without restricted degrees. The

MARS model approximates an unknown function as a weighted sum of basis

functions that are product of K (< p) univariate spline functions for handling

the multi-dimensional or high-dimensional data. It means that it is enough

to represent an unknown function by a combination of main effect terms and

lower-order interactions.

We first define the jth tensor product of B-spline bases B : Rp × Ω′ → R

used by a generating function as

Bj(xi) :=

Kj∏
l=1

B
c
(j)
l

(x
i,ν

(j)
l

; ξ
(j)
l ), (3.1)

where Kj ∈ {1, 2, . . . , Kmax} is an interaction order of Bj(xi), c
(j)
l ∈ S is a

degree number of univariate B-spline basis, ν
(j)
l ∈ {1, 2, . . . , p} is an index to

determine which a variable is used and ξ
(j)
l are a knot sequence on (X

ν
(j)
l

)(c
(j)
l +2),

a product space of the ν
(j)
l th variable . For the parameters in the jth tensor

product of B-spline bases, we write c(j) := (c
(j)
1 , . . . , c

(j)
Kj

),ν(j) := (ν
(j)
1 , . . . , ν

(j)
Kj

)

and ξ(j) := (ξ
(j)
1 , . . . , ξ

(j)
Kj

). We also assume ωj := (c(j),ν(j), ξ(j)) and ψj :=

(Kj, ωj) ∈ Ω′, a complete separable metric space. Then, we can rewrite the
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jth basis function from Bj(xi) to Bj(xi;ψj).

The mean function of the MLABS model can be formulated by

f(xi) = β0 +
J∑
j=1

Bj(xi;ψj)βj, xi ∈ Rp, (3.2)

where β0 is an fixed intercept term, J is a Poisson random variable with mean

M > 0, and {βj,ψj} are i.i.d from a distribution π(dβ, dψ) := N (dβ; 0, φ2) ·

π(dψ). The main different things are the structure of basis functions and the

randomness of degrees of B-spline basis. The prespecified degree numbers of the

basis functions in ψ are fixed in the LABS model but random in the MLABS

model. The mean function (3.2) can also be expressed as a stochastic integral

f(x) :=

∫
Ω′

B(x;ψ)L(dψ),

with respect to a Lévy random measure L(dψ) =
∑

j βjδψj(dψ) with a Lévy

measure satisfying M ≡ ν(R× Ω′) <∞.

We follow the priors for β, ξ, J , M and σ of chapter 2 and have to place

priors additionally on parameters in the basis functions including c,ν, and K.

The prior distributions for c(j),ν(j) and Kj, following Nott et al. (2005) are

assumed to follow the discrete uniform distribution over some predetermined

sets. We also assume independent prior distributions for Kj, ν
(j), and c(j)

In detail, the prior on Kj is uniform on {1, . . . , Kmax}, where Kmax is the

maximum degree of interaction for the tensor product basis. We set Kmax

below 3 in most experiments of section 3.3 and section 3.4. The prior for ν(j) is

uniform distribution that puts equal weight on indices of candidate predictors

46



from one to
(
p
Kj

)
denoted by V (e.g, if Kj = 1, then V = {1, 2, . . . , p}). The

prior for c
(j)
l is uniform on S, the prespecified subset of degree numbers of

B-spline basis. Note that the prior for ξ
(j)
l is the uniform distribution over

(X
ν
(j)
l

)(c
(j)
l +2) since length and support of a knot sequence ξ

(j)
l depend on a

degree number c
(j)
l and an index ν

(j)
l , respectively. Below we summarize the

MLABS model:

Yi|xi
ind∼ N (f(xi), σ

2), i = 1, 2, · · · , n,

f(xi) = β0 +
J∑
j=1

Bj(xi;Kj,ωj)βj,

σ2 ∼ IG

(
r

2
,
rR

2

)
,

J ∼ Poi(M), M ∼ Ga(aγ, bγ),

βj
iid∼ N (0, φ2), j = 1, 2, · · · , J,

Kj
iid∼ DU({1, . . . , Kmax}), j = 1, 2, · · · J,

ν(j) ind∼ DU(V ), j = 1, 2, · · · , J,

c
(j)
l

iid∼ DU(S), l = 1, · · · , Kj, j = 1, 2, · · · , J,

ξ
(j)
l

ind∼ U
(

(X
ν
(j)
l

)(c
(j)
l +2)

)
, l = 1, · · · , Kj, j = 1, 2, · · · , J,

(3.3)

and we set β0 = Y and φ = Var(Y) or 0.5× (maxi{Yi} −mini{Yi}).

3.2.2 Comparisons between basis fucntions of MLABS

and MARS

The main difference between the basis function of the MLABS model and

the (Bayesian) MARS model is the form of univariate basis functions in each
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element of the tensor product. Thus, their basis functions have very different

parameters, too. The tensor product spline basis of the MARS is given by

Nj(xi) =

Kj∏
l=1

[s
(j)
l · (xi,ν(j)l − t

(j)
l )]+,

where s
(j)
l ∈ {−1,+1} is a sign indicator, t

(j)
l is a knot point and [·]+ =

max(·, 0). Kj and ν
(j)
l of the MARS are the same as those of the MLABS.

First, the number and the location of the knot point in the basis functions

are quite unlike. The B-spline basis with a degree c
(j)
l in the MLABS needs

(c
(j)
l +2) knot points. The locations of the knots in the MLABS are freely chosen

in the domain of x
ν
(j)
l

. In contrast, the univariate basis function of the MARS

has only one knot point is set at each data point. In the Bayesian MARS, the

prior distribution for t
(j)
l is uniform on {x

1,ν
(j)
l
, . . . , x

n,ν
(j)
l
}. We fit the MLABS

model and the MARS model to the data generated from a piecewise smooth

function with two-dimensional support provided by Imaizumi and Fukumizu

(2019) at 50× 50 equally spaced points on the unit square. Figure 3.1 reveals

that there is a considerable difference between the numbers of knot points used

in the two methods and they set knot points with or without data points.

Second, while the degrees of the basis functions in the MARS model is

fixed, those in the MLABS model are random and comprised of various com-

binations of predetermined degree numbers, S. Furthermore, the degree, α

is added to the basis functions in the modified Bayesian MARS approach of

Francom et al. (2018). Then, in the case of the (Bayesian) MARS, α = 1.

Figure 3.2 shows that the MLABS model needs more basis functions and uses

more diverse types of basis functions than the MARS model to estimate an

48



Figure 3.1: Plot for knot points of the Bayesian MARS (left) and the MLABS
(right). In each plot the solid lines mean the locations of the knots and the
small dots indicate the data points.

unknown surface. Especially, some of the tensor product bases in the MLABS

model have very small local support, unlike those of the MARS. These parts

will lead to producing accurate estimations for spatially varying surfaces.

Figure 3.2: Plot for tensor product basis functions constructed by the Bayesian
MARS (left) and the MLABS (right) to estimate a non-smooth function of
Imaizumi and Fukumizu (2019).
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3.2.3 Posterior inference

The structure of the MLABS model is similar to that of the LABS model,

although we modified the form of basis function from univariate to the mul-

tivariate case. Thus, we follow most posterior computation steps in chapter 2

but incorporate update steps for newly added parameters such as c,ν, and

K to the existing MCMC algorithm. The joint posterior distribution of the

MLABS model (3.3) is given by

π(β, ξ,K,ν, c, ξ, J,M, σ2 |Y ) ∝ L(Y | f, σ2) · π(β|J)π(K|J) · π(ν|K, J)

× π(c|K, J) · π(ξ|K,ν, c, J)

× π(ξ|K,ν, c, J) · π(J |M) · π(M) · π(σ2),

where L is the likelihood function based on data generating mechanism (1.1).

We sum up the posterior sampling schemes of the MLABS model based

on the RJMCMC algorithm. Let us denote θj := (βj, Kj,ν
(j), c(j), ξ(j)) by an

element of θ = {θ1, θ2, . . . , θJ}, where both ν(j) and c(j) are Kj dimensional

vectors, ξ
(j)
l has (c

(j)
l + 2) knot points and J is the number of coefficients

(or basis functions) in the current model. The RJMCMC algorithm consists

of three updating steps to sample posterior distribution. Such move types are

called birth step, death step, and relocation step, respectively. The probabilities

of exploring the birth, death, and relocation steps are pb, pd and pw with

pb + pd + pw = 1. Each step is determined with probabilities pb, pd and pw.

The birth step is to decide whether to add a new component θJ+1 generated

from the proposal distributions or not, i.e., this updating phase is to allow the

sampler to move from a current state θ to a new state θ∗ := (θ1, . . . , θJ , θ(J+1)).
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On the contrary, the death step is to decide whether to remove one of the

existing components, θj or not. Finally, the relocation step is to only update θ

without altering the dimensionality of the parameters. The updating scheme

of this step is the same as the standard MCMC methods, including Gibbs

sampling or Metropolis-Hastings algorithm. The acceptance ratio in each move

step is given by

A = min

[
1,
L(Y|θ∗, J∗) π(θ∗|J∗)π(J∗)q(θ|θ∗)
L(Y|θ , J) π(θ|J)π(J)q(θ∗|θ)

]
,

where θ and J indicate the current model parameters and the number of tensor

product basis functions in the current state. θ∗ and J∗ refer to the new model

parameters and the number of tensor product basis functions in the new state.

q(θ∗|θ) is the jump proposal distribution that proposes a new state θ∗ given a

current state θ. We follow the jump proposals of Lee et al. (2020) for each move

step. The posterior samples for σ2 and M are drawn from each full conditional

distribution.

In practice, the LABS model had an inefficient sampling for knot points

becuase they were uniformly sampled from the domain regardless of the distri-

bution of data points. This caused proposed samples for knot points to locate

far from the data points. As a result, the LABS model generated unnecessary

B-spline bases and spent many MCMC iterations.

To solve this problem, we introduce new knot proposal schemes to the

MLABS model. We illustrate the proposal processes for knot points using

Figure 3.3. First, in the case of a degree k = 0 (panel (a) of Figure 3.3), a data

point xi is uniformly sampled from {x1, . . . , xn} := I and then knot points ξ1

and ξ2 are generated from [b1, xi] and [xi, b2] intervals, respectively. Here, the
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domain, [x1, xn] is expanded to the interval [b1, b2] for boundary data points.

In practice, we expand by the E × (xn − x1) = (x1 − b1) = (b2 − xn) from

endpoints, where E is a multiplier. Second, if k = 1 (panel (b) of Figure 3.3),

xi is uniformly sampled from I and set to ξ2. Similarly, ξ1 and ξ3 are generated

from [b1, xi] and [xi, b2] intervals, respectively. Third, in the case of k = 2

(panel (c) of Figure 3.3), ξ1 and ξ2 are generated from [b1, xi] and ξ3 and ξ4

are generated from [xi, b2] after xi is uniformly sampled from I. Finally, for

k = 3 (panel (d) of Figure 3.3), we generate a point ξ1 uniformly distributed

on I and set to ξ3. Then, ξ1 and ξ2 are generated from [b1, xi] and ξ4 and ξ5 are

generated from [xi, b2]. These data-dependent knot proposals lead to achieving

faster convergence than the LABS model.

(a) (b)

(c) (d)

Figure 3.3: Proposal schemes for knot points of the B-spline basis function
with a degree k = (a) 0, (b) 1, (c) 2, and (d) 3.
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3.2.4 Binomial regressions for MLABS

The generalized linear models can cope with the non-Gaussian data. We can

further extend the MLABS model (3.3) to generalized linear models by intro-

ducing a distribution and link function g into the model as

g(E[Y |x]) := f(x) =
J∑
j=1

Bj(x;Kj,ωj)βj. (3.4)

In this subsection, we focus on binary regressions. Thus, the link func-

tion will be either the logit or probit function for Binomial distribution. For

example, the logit model of the MLABS can be defined as

Yi | pi
ind∼ Ber(pi), Yi ∈ {0, 1},

pi = P(Yi = 1|xi) = logit−1(f(xi)), i = 1, 2, · · · , n,

J ∼ Poi(M), M ∼ Ga(aγ, bγ),

βj
iid∼ N (0, τ−1), j = 1, 2, · · · , J,

τ ∼ Ga(aτ , bτ ),

where logit−1(a) = 1/(1 + exp(−a)). The priors for the remaining parameters

K,ν, c, and ξ are identical with those of the MLABS model (3.3) for regression.

For the logit model, the posterior distribution for β has no closed-form and is

approximated using the Metropolis-Hastings sampler.

In probit link function, model (3.4) takes the form as

P(Yi = 1|xi) = Φ(f(xi)),
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where Φ(·) denotes the cumulative distribution function of the standard nor-

mal distribution. For posterior inference in the probit model, we use the data

augmentation algorithm proposed by Albert and Chib (1993). We introduce

the latent variables zi such that

zi = f(xi) + εi, εi
iid∼ N (0, 1),

Yi =

1, zi > 0

0, zi ≤ 0

. i = 1, . . . , n.

Then, the normal prior for β gives a conjugate Gibbs-sampling update, unlike

the logit model. The full conditional of zi is given by

zi | yi, f(xi) =

T N (f(xi), 1, 0,∞), if yi = 1

T N (f(xi), 1,−∞, 0), if yi = 0

,

where T N (µ, σ2, a, b) is a truncated normal distribution with mean µ, vari-

ance σ2, and support [a, b]. The posterior samples for zi, i = 1, . . . , n are drawn

from the full conditional after the RJMCMC algorithm as illustrated in sub-

section 3.2.3. The model parameters M,J,K,ν, c, and τ have the same prior

distributions of the MLABS model (3.3). We use the MCMC algorithm using

the probit link function in terms of the efficient posterior sampling.

We identify the decision boundaries for the probit model of the MLABS

on five benchmark datasets: Linearly separable data, Circle data, XOR data,

Two moons data, and Two spirals data. Both Figure 3.4 and Figure 3.5 show

that the MLABS model produces visually more reasonable decision boundaries

than the state-of-the-art classifiers. In other words, the MLABS model can have

54



different and flexible decisions changing the degrees, or interaction orders in

the tensor product basis function (3.1).

(a) Linearly separable dataset

(b) Circle dataset

Figure 3.4: Comparison of decision boundaries of MLABS and four classifiers
on linearly separable and circle data sets

3.3 Simulation studies

In this section, in the regression settings, we measure the performance of the

MLABS model (3.3) and competitive methods on simulated data sets. We

first consider three test functions with bivariate predictors: the radial and

complex interaction functions of Hwang et al. (1994) and the non-smooth test

function of Imaizumi and Fukumizu (2019). The two test functions of Hwang

et al. (1994) are smooth. Second, we take the examples proposed by Friedman

(1991) as benchmark datasets in the multivariate nonparametric regression.

One of Friedman’s test functions is widely used to assess variable selection

55



(a) Two moons dataset

(b) XOR dataset

(c) Two Spirals dataset

Figure 3.5: Comparison of decision boundaries of MLABS and four classifiers
on two moons, XOR, two spirals data sets

performance in high-dimensional data. For all test functions, we generate 100

pairs of held-in data with independent Gaussian noise and held-out data to

evaluate the predictive performance based on root-mean-square error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(f(x?i )− f̂(x?i ))
2,

where x?i is a held-out test set.
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For comparison, we consider several competitive alternatives, including

the multivariate adaptive regression splines of Friedman (1991) (denoted by

MARS), a modified version of Bayesian MARS of Francom et al. (2018) (de-

noted by BASS), LARK model using multivariate Gaussian kernels of Ouyang

(2008) (denoted by BARK), support vector machines with radial basis func-

tion (RBF) kernels of Boser et al. (1992); Cortes and Vapnik (1995) (denoted

by SVM), a fully connected Neural network with two hidden layers (each 15

nodes) using sigmoid activation (denoted by NN), random forests of Breiman

(2001) (denoted by RF), accelerated gradient-boosted decision trees of Chen

and Guestrin (2016) (denoted by XGB), and Bayesian decision tree ensembles:

Bayesian additive regression trees of Chipman et al. (2010) (denoted by BART)

and BART using soft decision trees of Linero and Yang (2018) (denoted by

SBART). All competing models were implemented in R packages: earth, BASS

(Francom and Sansó, 2020), bark, e1071 (Meyer and Wien, 2015), keras,

randomforest, xgboost, BayesTree, and SoftBart, respectively.

The hyperparameters for all methods are chosen using grid-search with five-

fold cross-validation. The MLABS model have seven tuning parameters such

as aγ, bγ, r, R, S, Kmax, and E. We set aγ = 5, bγ = 1, r = 0.01 and R = 0.01

as default values. The parameters S, Kmax and E are optimized by cross-

validated grid-search over parameter grids. The hyperparameter candidates of

all methods used in all experiments of this chapter are given in Table 3.1.

We also run the MLABS model for 100,000 iterations, with the first 50,000

iterations discarded as burn-in, and retain every 50th sample.
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Method Parameter Values considerred

MLABS set of degree numbers: S 0, 1, 2, 3, (0,1), (0,2), (0,3),
(1,2), (1,3), (2,3), (0,1,2), (0,1,2,3)

mmaximum degree of interaction: Kmax 1, 2, 3
multiplier for expanded intervals: E 0.1, 1, 2, 3

SBART number of trees 20, 50, 200
BART Sigma prior: (ν, q) combinations (3,0.9), (3,0.99), (10,0.75)

number of trees: m 50, 20
µ prior: k value for σu 1, 2, 3, 5

BARK type of prior for the scale parameters “e”, “d”,“se”, “sd”
BASS degree of splines: α 1, 2, 3

maximum degree of interaction: Kmax 1, 2, 3
MARS maximum number of terms in the pruned model 2, 12, 23, 34, 45, 56, 67, 78, 89, 100

maximum degree of interaction: Kmax 1, 2, 3
RF number of trees 2,. . . , p
SVM regularization constant: C 0.001, 0.01, 0.1, 1, 5, 10, 100

kernel hyperparameter: γ 0.5, 1, 2, 3, 4
NN learning rate: r 0.001, 0.005, 0.01, 0.05, 0.1, 0.5
XGB max number of boosting iterations 250, 500, 1000

maximum depth of a tree 4, 8, 12
learning rate 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40
minimum sum of instance weight needed in a child 1, 10, 15
subsample ratio of columns 0.7, 1

Table 3.1: Hyperparameter grid for various competitive models

3.3.1 Surface examples

For each surface test function, in-sample data sets are generated from the true

function at 30×30 equally spaced grid points on X := [0, 1]×[0, 1]. We also add

independent normally distributed noises N (0, σ2) to the true target functions.

We select the value of σ such that the root signal-to-noise ratio (RSNR) was

1 and 5. We use 2500 additional data points generated independently and

uniformly on [0, 1] as out-of-sample data. The three true surfaces are given by

f (1)(x) = 24.234[r2(0.75− r2)],

f (2)(x) = 1.9{1.35 + ex1 sin[13(x1 − 0.6)2]× e−x2 sin(7x2)},

f (3)(x) = 1R1(0.2 + x2
1 + 0.1x2) + 1R1(0.7 + 0.01|4x1 + 10x2 − 9|1.5),
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where r2 = (x1−0.5)2 +(x2−0.5)2, R1 = {(x1, x2) : x2 ≥ −0.6x1 +0.75}, R2 =

I2\R1 and 1R is the indicator function of R. They are visualized in Figure 3.6.

(a) (b) (c)

Figure 3.6: Three true surfaces: (a) radial (b) complex interaction and (c)
non-smooth functions

In this example, we add the thin plate spline (TPS) as a benchmark tech-

nique since it is a commonly used tool for the smooth interpolation of two-

dimensional data. The TPS is also referred to as a generalization of the smooth-

ing spline. Results of this simulation are presented in Table 3.2. Table 3.2

demonstrates that the MLABS model performs well in most cases with the

lowest, the second or the third-lowest average RMSE values across 100 in-

sample and out-of-sample sets. According to the average rank of Table 3.2, the

MLABS attains a more accurate estimation of the surface test function than

the TPS. The tree-based models such as SBART, BART, RF, and XGB have

difficulties in estimating smooth surfaces or regions due to their lack of smooth-

ness. The NN doesn’t work very well owing to fixed model structures relative

to the training data size. The BASS can choose diverse degrees of the spline

functions and produce the lowest value on the radial and complex test func-
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tions with RSNR = 1, unlike the MARS. One characteristic of the proposed

model is smoothness adaptation Figure 3.7 supports that the MLABS model

has the advantages of canceling the noise and adapting to the non-smooth

function.

(a) (b) (c) (d)

Figure 3.7: Plot of the (a) true non-smooth function with additive Gaussian
noise, and estimated surfaces obtained by fitting the (b) TPS, (c) BART, and
(d) MLABS model.

3.3.2 Friedman’s examples

We conduct additional experiments using Friedman 1, 2, and 3 data sets to

assess the practical performance of the proposed method on general p (> 2)

dimensional data. The Friedman 1 data set has ten independent uniform ran-

dom variables on the interval [0, 1]. The output is computed using the following

formula

f1(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.

The data set uses only the first five variables out of ten variables. The Fried-

man 2 and 3 data sets have four independent random variables with uniform
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distribution on the intervals

0 ≤ x1 ≤ 100, 40π ≤ x2 ≤ 560π, 0 ≤ x3 ≤ 1, 1 ≤ x4 ≤ 11.

The corresponding responses are created according to the mean functions

f2(x) = (x2
1 + (x2x3 − (1/(x2x4)))2)0.5,

f3(x) = arctan((x2x3 − (1/(x2x4)))/x1).

These data sets have non-linear and high interaction order terms. For each test

function, we create in-sample data sets of 250 observations and add indepen-

dent Gaussian noise with mean zero and standard deviation σ, so that the root

signal-to-noise ratio is set at 1 and 5. We also generate out-of-sample data sets

of 1000 observations to measure the predictive accuracy of regression models.

Results of the simulation for Friedman’s data sets are given in Table 3.3.

The MLABS model has the best performance in almost all cases, as shown

in Table 3.3. The feature of this experiment is the tensor product basis-based

models, including the MLABS, BASS, and MARS, are superior to others. The

results are caused by whether the interaction order terms can be estimated di-

rectly or not. Although the SBART and BART have relatively good prediction

abilities, the MLABS overwhelms them for all test functions regardless of the

RSNR. The average rank in Table 3.3 shows the ensemble models of the RF

and XGB, and kernel-based models of the BARK and SVM perform poorly in

Friedman’s data sets. The NN is not appropriate for handling small datasets,

as seen in the previous surface examples.

We evaluate the out-of-sample performance with methods based on the
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Friedman 1 data set in the high-dimensional settings for a detailed comparison.

In other words, we check how well the models work as the number of variables

increases. We reproduce the simulation scenarios of Linero and Yang (2018).

We create five pairs of 250 training and 1000 test samples with p features,

which increase from 5 to 1000 along an evenly spaced grid on the scale of

log(p). Independent Gaussian noise with mean zero and standard deviation

σ2 ∈ {1, 10} is also added to the training samples generated from the true mean

function. Methods are compared by an average of RMSEs over five replications.

Every time the number of variables increases, most methods are tuned by using

cross-validation.

Results of this simulation are provided in Figure 3.8. An interesting part

of Figure 3.8 is that the MLABS achieves the best performance up to about

70-dimensional data irrespective of the noise level. After that point, its er-

ror increases gradually in both the low and the high noise settings. Since the

MLABS and BASS have the same performance behaviors, unlike MARS, these

results seem to come from slowly mixing of the RJMCMC algorithm. In con-

trast, the SBART and MARS are interestingly invariant to the number of

predictors. The SBART is superior to other methods, including the MLABS,

for high-dimensional settings where p is large.

3.4 Real data applications

We now compare the MLABS model (3.3) with various competing methods on

several real data sets of regression and classification problems.
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Figure 3.8: Average root-mean-square error of various methods with a smooth-
ing line as a function of the dimension p on the log scale.

3.4.1 Regression examples

We prepare the six real-life datasets from the UCI Machine Learning Reposi-

tory (UCI) and several R packages: caret, mfp, MASS, and AppliedPredictiveModeling.

The summary of these data sets is provided in Table 3.6. Since the MLABS

model can handle only quantitative variables, we don’t consider categorical

predictors in the data sets. We also erase missing values. Specifically, case 42

of the bodyfat data seems to be an apparent error, and its height variable

is replaced by 69.5. The tecator meat and residential building datasets have

multiple responses variables. We choose one of the responses in each data set:

the percentages of protein (tecator meat) and actual sales prices (residential

building).

We consider the nine competing approaches as illustrated in subsection 3.3.2

and select the best hyperparameters of each method using cross-validation

64



Dataset # Samples # Features Source

Bodyfat 252 13 mfp

Boston housing 506 12 MASS

Concrete compressive strength 1030 8 UCI
Residential building 372 103 UCI
Tecator meat 215 100 caret

Chemical manufacturing process 152 58 AppliedPredictiveModeling

Table 3.4: Information of six data sets for regression analysis.

methods. To gauge the predictive performance among the methods, we make

use of 20 times replicated five-fold cross-validations. Thus, we compute an

average of 20 estimated CV errors as a measure of accuracy.

Results of the experiment for the regression problem are presented in Ta-

ble 3.6. Table 3.6 illustrates that the MLABS model has stable predictive

abilities by getting the best performance on three data sets. It also produces

the third-lowest average RMSE in the remaining three data sets. By the av-

erage rank of Table 3.6, the MLABS model generally outperforms state-of-art

methods in the fields of machine learning or Bayesian nonparametrics. Fur-

thermore, for the tecator meat data, the tensor product basis based models

work much better than the tree-based models do.

In contrast, the tree-based methods perform well for the chemical manu-

facturing process datasets and rank high among the methods. In practice, the

kernel-based methods show bad performance in the regression examples, and

the lowest-ranked approach is the SVM. These results are attributed to lacking

the flexibility and adaptability to the data sets by using only one type of kernel

function.
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3.4.2 Classification examples

We choose the seven competitive methods for classification problems and ex-

clude the SBART and BASS because the two models cannot yet analyze the

binary data. We compare the MLABS model using the probit link with other

methods that optimized their hyperparameters using grid-search with five-fold

cross-validation by a classification performance measure: AUC (area under the

receiver operating characteristic (ROC) curve). The AUC is the most common

metric for classification tasks, and the value lies between 0 to 1, where 1 indi-

cates an excellent classifier. We calculate the average of performance metrics

obtained by repeating 5-fold cross-validation 20 times. We collect the seven

real data sets for classification from the UCI Machine Learning Repository

and two R packages: mlbench and datamicroarray. The Alon dataset is the

high-dimensional microarray data set for colon cancer. The Pima Indian di-

abetes data set contains zero values of some variables, and we consider the

values missing values. The missing values and categorical variables of every

real data set for classification are processed in the same way as regression ex-

periments. The real data sets are listed in with the information such as the

number of sample size and features, source, and imbalanced ratio (IR) defined

as

IR =
maxC∈A |C|
minC∈A |C|

,

where A is the set of all classes.

Results of this experiment are given in Table 3.7. The columns of the meth-

ods represent their average of cross-validated AUC values over 20 replicates.

As shown in Table 3.7, the MLABS method doesn’t show excellent predictive
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Dataset # Samples # Features IR Source
Parkinson 195 22 3.06 UCI
Ionosphere 351 32 1.79 UCI
Breast cancer Wisconsin (Diagnostic) 569 30 1.7 UCI
Sonar 208 61 1.14 UCI
Spambase 4601 57 1.54 UCI
Pima Indian diabetes 392 9 2.02 mlbench

Alon 62 2000 1.82 datamicroarray

Table 3.5: Information of seven real data sets for classification tasks

performance for classification, but it is comparable to the XGB and RF as gold

standard models. Specifically, the MLABS model performs well in most cases

except the Ionosphere, Sonar, and Alon data set. It is seen as having difficulties

estimating in high-dimensional cases. Here, the XGB model provides the best

performance, followed by the RF, MLABS, and BART model. In contrast with

the regression problems, tree-based models generally provide better predictive

capabilities than the others.

3.5 Discussion

In this chapter, we have introduced a general Bayesian sum-of-bases model

named Multivariate Lévy Adaptive B-Spline Regression using the tensor prod-

uct of B-spline basis function of which parameters are automatically deter-

mined by the Lévy random measure. The B-spline basis has nice properties

such as local support and differentiability. We have illustrated that it has a

powerful predictive ability over the state-of-the-art methods in simulation stud-

ies and real data applications of the regression problems. We also proposed a

comparable classification model using the data augmentation strategies of Al-

bert and Chib (1993). However, there are drawbacks that the proposed model
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can treat only continuous variables and is slightly inefficient as it uses the RJM-

CMC. The MCMC algorithm makes it difficult to deal with high-dimensional

data. The classifier based on the MLABS framework also does not work well

compared to the tree-based models. Further studies are needed to improve

these problems.
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Chapter 4

Concluding Remarks

This dissertation proposed two Bayesian nonparametric regression models con-

structed by a sum of the B-spline bases as elements of an overcomplete system.

The first model, the LABS for function estimation, was designed to simulta-

neously use various B-spline basis functions to capture all parts of functions

with locally varying smoothness. We presented that the function spaces for the

LABS model rely on the degree of B-spline basis that belongs to the Besov

spaces and proved that its prior has full support in the same Besov spaces.

We also proposed the MLABS model for multi-dimensional data analysis

by using tensor products of B-spline bases. These basis functions enable it to

circumvent the curse of dimensionality. We also considered the efficient knot

proposal schemes, and then the algorithm converged faster than an existing

proposal method. Finally, we showed that it achieved high predictive accuracy

through simulated and real data sets in the regression problems.

Future work will develop a versatile and efficient sampling-based model for

the MLABS model. One possibility is to give the Lévy process prior up and use
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regularization priors to handle the high-dimensional data under a large and

fixed number of the basis function. Using a Bayesian backfitting algorithm of

Hastie et al. (2000) as a core algorithm in the BART is expected to be more

effective to achieve high performance and fast convergence than the inefficient

RJMCMC. Moreover, scalable algorithms such as either the Consensus Monte

Carlo or variational Bayes can be applied to our model for large and tall

data. Another possibility is that the tensor product bases will be to allowed

to contain indicators for categorical data.
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Appendix A

Appendix

A.1 Appendix for Chapter 2

A.1.1 Proof of Theorem 2.3.1

For simplicity, we assume that X = [0, 1]. Since the B-spline basis has local

support and is bounded, ‖Bk(x; ξk)‖p is finite for all k ≥ 0. It is enough to

show that if the Besov semi-norm, |Bk(x; ξk)|Bαp,q is finite for all k ≥ 0.The

definition of the modulus of smoothness and the property that ωk(f, t)p ≤

2r · ωk−r(f, t)p, 0 ≤ r ≤ k, if f ∈ Lp(X ) imply that

ωr(Bk(x; ξk), t)p ≤ 2r−1 · ω1(Bk(x; ξk), t)p.

Let k be zero. Then, the B-spline basis is piecewise constant with 2 knots,

ξ0 := (ξ01, ξ02). By the definition of the B-spline basis (2.6), we divide into

two cases to calculate the modulus of continuity.
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Case 1. Assume ξ01 + h < ξ02, h > 0. Thus,

‖B0(x+ h; ξ0)−B0(x; ξ0)‖p ≤ 2 · h
1
p .

Case 2. Assume ξ01 + h > ξ02, h > 0. Thus,

‖B0(x+ h; ξ0)−B0(x; ξ0)‖p ≤ 2 · h
1
p .

Therefore, in all cases,

ωr(B0(x; ξ0), t)p ≤ 2r · h
1
p . (A.1)

By definition, |B0(x; ξ0)|Bαp,q =
(∫∞

0
(t−sωr(B0(x; ξ0), t)p)

p dt
t

)1/q
, so

|B0(x; ξ0)|Bαp,q ≤
[∫ 1

0

t−sq−1 · 2rq · t
1
p dt+

∫ ∞
1

t−sq−1 · 2rq dt
]1/q

= 2r ·
[∫ 1

0

t−q(s−
1
p

)−1 dt+

∫ ∞
1

t−sq−1 dt

]1/q

.

The upper bound of |B0(x; ξ0)|Bαp,q is finite if and only if α < 1
p

and q <∞.

Let k ≥ 1. Since the B-spline basis of degree k is a piecewise polynomial

and has (k − 1) continuous derivatives at the knots, it falls in W k
p (X ), where

W k
p (X ) is the Sobolev space, which is a vector space of functions that have weak

derivatives. See the definition of the Sobolev space described in chapter 2.5 of

DeVore and Lorentz (1993). We use the following property of the modulus of

smoothness,

ωr+k(f, t)p ≤ tr · ωk(f (r), t)p, t > 0,
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where f (r) is the weak rth derivative of f . For k ≥ 1, the Besov semi-norm of

Bk(x; ξk) is bounded by

|Bk(x; ξk)|Bαp,q =

(∫ ∞
0

(t−αωr(Bk(x; ξk), t)p)
q dt

t

)1/q

≤
(∫ 1

0

(t−α · (tk · ωr−k(B(k)
k (x; ξk), t)p)

q dt

t
+

∫ ∞
1

2rq · t−sq−1 dt

)1/q

≤
(∫ 1

0

(t−αq−1 · (tk · 2r−k−1 · ω1(B
(k)
k (x; ξk), t)p)

q dt+ 2rq ·
∫ ∞

1

t−αq−1 dt

)1/q

(A.2)

Since B
(k)
k (x; ξk) is a piecewise constant function, (A.1) implies that

ω1(B
(k)
k (x; ξk), t)p ≤ C · h

1
p , for some constant C > 0. (A.3)

Using (A.2) and (A.3), it follows that

|Bk(x; ξk)|Bαp,q ≤
(
C ′ ·

∫ 1

0

t−αq+kq+
q
p
−1 dt+ 2rq ·

∫ ∞
1

t−αq−1 dt

)1/q

, for some constant C ′ > 0.

For all k ≥ 1, |Bk(x; ξk)|Bαp,q is finite if and only if α < k + 1
p

and q < ∞, so

the proof is complete.
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A.1.2 Proof of Theorem 2.3.2

By Theorem 3 of Wolpert et al. (2011), the Lp norm and Besov semi-norm of

η satisfy the following upper bounds, respectively.

‖η‖p ≤
∑
k∈S

∑
l

‖Bk(x; ξk,l)‖p|βk,l|,

|η|Bαp,q ≤
∑
k∈S

∑
l

|βk,l| · |Bk|Bαp,q ,

Since the condition for (2.11) is satisfied and B-spline basis is bounded and

locally supported, ‖η‖p is almost surely finite. To obtain finite Besov semi-

norms for all k ∈ S, the smoothness parameter α should be α < min(S) + 1
p

by Theorem 2.3.1. Therefore, η belongs to Bαp,q with α < min(S) + 1
p

almost

surely.

A.1.3 Proof of Theorem 2.3.3

For the sake of simplicity we assume X = [0, 1]. Fix δ > 0 and η0 ∈ Bαp,q([0, 1])

with α > 0, 1 ≤ p, q <∞. If 1 ≤ p′ ≤ p <∞, then η0 also belongs to Bαp′,q([0, 1])

by property of the Besov space (Cohen, 2003)[3.2, page 163]. From Theorem

2.1 of Petrushev (1988), we can show that there exists a spline s ∈ S(n?, q)

such that

‖η0 − s‖p < C
‖η0‖Bα

p′,q

(n?)α
<
δ

2
,

where S(n?, q) denotes the set of all splines of degree (q−1) with a sufficiently

large number n? knots and constant C = C(α, p, q). Since any spline of given

degree can be represented as a linear combination of B-spline basis functions
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with same degree, we can define a spline s(x) by

s(x) =
n?∑
j=1

β∗jB
∗
(q−1),j(x), (A.4)

where B∗(q−1),j(x) is the B-spline basis of degree (q − 1) with a sequence of

knots ξ∗ in (2.5).

Set n? :=
∑

k∈S J
δ
k , A :=

∑
k∈S
∑Jδk

l=1 |βk,l| < ∞ , ρ := sup ‖Bk(x, ξk)‖p <

∞ and ε := δ
2(A+ρ)

. We denote the range of a sequence of knots ξk,l by r(ξk,l),

e.g., r(ξk,l) = (ξk,l,(k+2)−ξk,l,1). For convenience, we reindex the coefficients and

knots of the spline s(x) in (A.4) such that β∗k,l and ξ∗k,l for l = 1, . . . , Jδk , k ∈ S.

Then, the spline s(x) can be expressed as follows:

s(x) =
∑
k∈S

Jδk∑
l=1

β∗k,lB
∗
(q−1),l(x; ξ∗k,l),

where ξ∗k,l := (ξ∗l , . . . , ξ
∗
l+(q−1)+1) is a subsequence of given knots ξ∗. Using the

definitions of B-spline basis in (2.5) and (2.6), we can find a ζ > 0 such that

max(r(ξk,l), r(ξ
∗
k,l)) < ζ ⇒ ‖Bk(x; ξk,l)−B∗(q−1),l(x; ξ∗k,l)‖p < ε, ∀l, ∀k.

Let’s define the set

b̄′(η0) :=

η : η(x) =
∑
k∈S

Jδk∑
l=1

βk,lBk(x; ξk,l),
∑
k∈S

Jδk∑
l=1

|βk,l − β∗k,l| < ε, max(r(ξk,l), r(ξ
∗
k,l)) < ζ, ∀l, ∀k

 .

(A.5)
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Lemma A.1.1.

b̄′δ(η0) ⊂ b̄δ(η0)

Proof. It suffices to show that η ∈ b̄′δ(η0) =⇒ η ∈ b̄δ(η0) to finish the proof

of the lemma. For any η ∈ b̄′δ(η0),

‖η − s‖p ≤
∑
k∈S

Jδk∑
l=1

‖βk,lBk(x; ξk,l)− β∗k,lB∗(q−1),l(x; ξ∗k,l)‖p

≤
∑
k∈S

Jδk∑
l=1

|βk,l| · ‖Bk(x; ξk,l)−B∗(q−1),l(x; ξ∗k,l)‖p +
∑
k∈S

Jδk∑
l=1

|βk,l − β∗k,l| · ‖Bk(x; ξk,l)‖p

≤ ε ·
∑
k∈S

Jδk∑
l=1

|βk,l|+ ρ ·
∑
k∈S

Jδk∑
l=1

|βk,l − β∗k,l|

≤ ε · A+ 2ρ · ε = (A+ ρ) · ε =
δ

2
.

By the triangle inequality,

‖η − η0‖p ≤ ‖η − s‖p + ‖s− η0‖p

<
δ

2
+
δ

2
= δ.

Thus, η ∈ b̄δ(η0) and this finishes the proof of the lemma. �
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To complete the proof of this theorem, we have to show that Π
(
η ∈ b̄′δ(η0)

)
>

0 by using the previous lemma. Let J? := maxk∈S J
δ
k . By the triangle inequal-

ity,

Π
(
η ∈ b̄′δ(η0)

)
= Π

(∑
k∈S

∫ ∫
R×X (k+2)

βkBk(x; ξk)Nk(dβk, dξk) ∈ b̄′δ(η0)

)

= Π

(∑
k∈S

Jk∑
l=1

Bk(x; ξk,l)βk,l ∈ b̄′δ(η0)

)

= P

∑
k∈S

Jδk∑
l=1

|βk,l − β∗k,l| < ε, max(r(ξk,l), r(ξ
∗
k,l)) < ζ, Jk = Jδk , ∀k ∈ S


>
∏
k∈S

{
P
[
|βk,l − β∗k,l| <

ε

|S|J?
,max(r(ξk,l), r(ξ

∗
k,l)) < ζ, l = 1, 2, . . . , Jδk

]}

×
∏
k∈S

[
νk(R×X (k+2))J

δ
k · exp(−νk(R×X (k+2)))

Jδk !

]

=
∏
k∈S


Jδk∏
j=1

[
νk(|βk,l − β∗k,l| < ε

|S|J? ,max(r(ξk,l), r(ξ
∗
k,l)) < ζ)

νk(R×X (k+2))

]
×
∏
k∈S

[
νk(R×X (k+2))J

δ
k · exp(−νk(R×X (k+2)))

Jδk !

]

=
∏
k∈S


Jδk∏
j=1

[∫
|βk,l−β∗k,l|<

ε
|S|J?

π(βk)dβk

∫
max(r(ξk,l),r(ξ

∗
k,l))<ζ

π(ξk)dξk

]

×

[
M

Jδk
k · exp(−Mk)

Jδk !

]}
.

Since we assume a finite Levy measure and π(βk) = N (βk; 0, φ2
k), π(ξk) =
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U(X (k+2)) in the LABS model,

Π
(
η ∈ b̄′δ(η0)

)
> 0.

Hence, by applying the lemma, we get Π
(
η ∈ b̄δ(η0)

)
≥ Π

(
η ∈ b̄′δ(η0)

)
> 0

and the theorem is proved.

A.1.4 Full simulation results for Simulation 1

This appendix contains the full simulations results of the four DJ test functions.

We simulated two scenarios: (a) small sample size (n = 128) and (b) large

sample size (n = 512) with different noise levels (RSNR = 3, 5, and 10).

Model
Bumps

RSNR=3 RSNR=5 RSNR=10

BSP-2 26.904(0.4461) 25.495(0.1606) 24.9(0.0401)
LOESS 47.266(0.1618) 47.163(0.0812) 47.119(0.0366)

SS 43.552(4.6764) 43.377(4.7159) 43.984(4.6074)
NWK 39.892(1.8831) 39.365(1.3862) 39.033(0.7393)
EBW 4.986(1.1761) 1.936(0.601) 0.447(0.0981)
TF-0 47.574(3.6625) 48.449(0.9754) 48.604(0.1229)
TF-1 47.836(1.5952) 47.906(0.5399) 47.954(0.5211)
TF-2 47.585(1.7116) 47.748(0.0384) 47.714(0.0096)

GSP-L 22.99(4.8847) 22.03(5.3556) 20.112(4.4213)
GSP-R 41.626(2.9041) 40.819(2.7234) 40.955(3.102)
BPP-10 4.571(2.3604) 3.668(2.7142) 3.304(2.9789)
BPP-21 15.115(5.9376) 14.674(6.3396) 14.363(6.7395)
BASS-1 2.968(0.4322) 1.206(0.4907) 0.252(0.0421)
BASS-2 47.977(7.4411) 45.988(9.3435) 45.021(9.2185)

LARMuK 2.852(0.426) 1.182(0.678) 0.319(0.0663)
LABS 2.589(0.5908) 0.837(0.3124) 0.246(0.0683)

Table A.1: Average mean squared error with estimated standard error in paren-
theses from 100 replications for Bumps example with n = 128
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Model
Blocks

RSNR=3 RSNR=5 RSNR=10

BSP-2 5.96(0.4429) 4.53(0.1594) 3.927(0.0399)
LOESS 17.924(0.7218) 17.503(0.3846) 17.332(0.2312)

SS 4.895(0.5145) 3.396(0.241) 2.699(0.1107)
NWK 4.285(0.7336) 1.936(0.36) 0.472(0.0567)
EBW 3.243(1.0747) 0.859(0.2237) 0.21(0.0484)
TF-0 2.553(1.0393) 1.062(0.4313) 0.344(0.126)
TF-1 3.502(0.8151) 1.418(0.3327) 0.387(0.0869)
TF-2 3.862(0.7746) 1.715(0.298) 0.499(0.1615)

GSP-L 7.409(1.3261) 6.637(0.9807) 6.546(1.1115)
GSP-R 15.654(2.0255) 15.323(1.8902) 15.44(2.3391)
BPP-10 2.156(0.789) 0.908(0.2537) 0.465(0.2403)
BPP-21 3.918(0.589) 2.682(0.5399) 2.311(0.451)
BASS-1 2.498(0.6331) 0.696(0.2226) 0.122(0.0381)
BASS-2 7.533(1.7616) 4.253(0.8586) 2.852(0.3863)

LARMuK 1.799(0.5873) 0.682(0.2436) 0.193(0.08)
LABS 1.305(0.5272) 0.365(0.1645) 0.072(0.0293)

Table A.2: Average mean squared error with estimated standard error in paren-
theses from 100 replications for Blocks example with n = 128

Model
Doppler

RSNR=3 RSNR=5 RSNR=10

BSP-2 3.896(0.4928) 2.447(0.1774) 1.836(0.0444)
LOESS 8.891(1.506) 6.533(1.0853) 5.344(0.6362)

SS 3.644(0.587) 2.025(0.24) 1.251(0.0812)
NWK 4.045(1.102) 1.864(0.2683) 0.477(0.0624)
EBW 2.979(0.6397) 1.319(0.3142) 0.341(0.0855)
TF-0 4.172(0.9906) 1.891(0.2543) 0.49(0.0664)
TF-1 3.832(1.2397) 1.783(0.3894) 0.49(0.0688)
TF-2 4.122(1.2599) 1.834(0.3309) 0.489(0.0674)

GSP-L 5.845(1.3505) 5.313(1.3217) 4.843(0.9023)
GSP-R 12.164(2.9995) 11.588(3.1093) 12.402(3.5243)
BPP-10 2.911(0.6396) 1.275(0.2471) 0.559(0.2008)
BPP-21 2.575(0.5217) 1.463(0.3399) 1.166(0.3932)
BASS-1 2.865(0.6162) 1.167(0.2607) 0.353(0.0605)
BASS-2 2.841(0.5796) 1.753(0.2702) 1.344(0.1205)

LARMuK 3(0.6708) 1.212(0.3684) 0.364(0.1179)
LABS 2.273(0.568) 0.848(0.2521) 0.234(0.0551)

Table A.3: Average mean squared error with estimated standard error in paren-
theses from 100 replications for Doppler example with n = 128
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Model
Heavisine

RSNR=3 RSNR=5 RSNR=10

BSP-2 2.399(0.4208) 0.926(0.1515) 0.305(0.0379)
LOESS 0.895(0.2248) 0.548(0.0976) 0.35(0.0436)

SS 0.875(0.2725) 0.484(0.1021) 0.235(0.0299)
NWK 1.022(0.352) 0.521(0.1321) 0.228(0.0472)
EBW 1.29(0.3473) 0.586(0.1365) 0.185(0.0456)
TF-0 1.668(0.4638) 0.831(0.1786) 0.306(0.051)
TF-1 1.129(0.6408) 0.581(0.2344) 0.205(0.0611)
TF-2 1.043(0.6797) 0.543(0.2195) 0.23(0.0692)

GSP-L 2.601(2.0255) 2.217(2.1273) 1.743(1.7561)
GSP-R 1.02(0.2869) 0.756(0.1707) 0.646(0.1152)
BPP-10 1.503(0.4239) 0.674(0.1576) 0.217(0.0616)
BPP-21 0.941(0.2702) 0.444(0.105) 0.147(0.032)
BASS-1 1.022(0.2434) 0.499(0.1047) 0.135(0.033)
BASS-2 0.802(0.2053) 0.452(0.0953) 0.176(0.0399)

LARMuK 1.13(0.3235) 0.541(0.16) 0.164(0.0566)
LABS 0.897(0.242) 0.413(0.1492) 0.103(0.0406)

Table A.4: Average mean squared error with estimated standard error in paren-
theses from 100 replications for Heavisine example with n = 128

Model
Bumps

RSNR=3 RSNR=5 RSNR=10

BSP-2 29.359(0.1163) 29.011(0.0419) 28.864(0.0105)
LOESS 43.468(5.4554) 40.385(7.3012) 36.495(7.2734)

SS 16.211(0.255) 15.406(0.123) 15.06(0.0537)
NWK 4.885(0.3559) 1.796(0.1194) 0.482(0.0319)
EBW 2.42(0.3291) 0.914(0.0992) 0.272(0.0279)
TF-0 2.921(0.8496) 1.762(0.3298) 0.491(0.0319)
TF-1 4.716(0.9879) 1.965(0.1328) 0.492(0.0326)
TF-2 3.095(0.4119) 3.609(0.9328) 6.917(1.2674)

GSP-L 16.704(2.5691) 16.212(2.324) 16.224(2.5594)
GSP-R 39.297(1.3464) 39.046(1.3386) 38.885(1.2831)
BPP-10 1.9(0.6277) 1.429(0.6619) 1.352(0.8161)
BPP-21 4.698(0.9928) 4.428(1.1195) 4.308(1.1065)
BASS-1 2.497(0.5322) 1.679(0.4936) 1.356(0.559)
BASS-2 24.925(2.6356) 23.806(2.8435) 23.387(2.6943)

LARMuK 3.692(1.7663) 2.465(1.0197) 1.999(0.7813)
LABS 1.371(0.6845) 0.619(0.1769) 0.341(0.1905)

Table A.5: Average mean square error with estimated standard error in paren-
theses from 100 replications for Bumps example with n = 512
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Model
Blocks

RSNR=3 RSNR=5 RSNR=10

BSP-2 5.097(0.118) 4.74(0.0425) 4.59(0.0106)
LOESS 3.755(0.2529) 3.095(0.1343) 2.922(0.0252)

SS 2.837(0.1609) 2.197(0.0713) 1.883(0.0256)
NWK 2.34(0.1831) 1.349(0.1149) 0.581(0.1147)
EBW 1.227(0.2009) 0.398(0.0753) 0.088(0.0177)
TF-0 0.65(0.1486) 0.237(0.057) 0.061(0.0199)
TF-1 1.97(0.2187) 0.763(0.0876) 0.193(0.0273)
TF-2 2.234(0.2525) 1.069(0.1013) 0.478(0.0785)

GSP-L 3.089(0.342) 2.613(0.3006) 2.522(0.3358)
GSP-R 13.847(1.3079) 13.783(1.3156) 13.622(1.2962)
BPP-10 0.493(0.137) 0.216(0.0819) 0.182(0.0848)
BPP-21 1.385(0.1974) 0.845(0.127) 0.665(0.1055)
BASS-1 0.942(0.195) 0.436(0.1189) 0.273(0.1078)
BASS-2 3.033(0.2242) 2.613(0.182) 2.426(0.1763)

LARMuK 1.074(0.392) 0.646(0.2521) 0.395(0.1903)
LABS 0.363(0.1391) 0.113(0.0562) 0.021(0.009)

Table A.6: Average mean squared error with estimated standard error in paren-
theses from 100 replications for Blocks example with n = 512

Model
Doppler

RSNR=3 RSNR=5 RSNR=10

BSP-2 2.875(0.1038) 2.534(0.0374) 2.39(0.0093)
LOESS 2.756(0.3006) 2.044(0.0474) 1.893(0.0202)

SS 1.993(0.1234) 1.385(0.0531) 1.086(0.0174)
NWK 1.649(0.1233) 0.853(0.105) 0.431(0.0289)
EBW 1.263(0.1618) 0.592(0.0809) 0.156(0.0209)
TF-0 1.774(0.1822) 0.888(0.1084) 0.344(0.0595)
TF-1 1.434(0.1904) 0.715(0.1636) 0.263(0.0812)
TF-2 1.504(0.4085) 0.772(0.1816) 0.292(0.0914)

GSP-L 2.167(0.2292) 1.767(0.2376) 1.621(0.2526)
GSP-R 9.389(1.6093) 9.432(1.6343) 9.1(1.577)
BPP-10 1.36(0.1866) 0.632(0.0819) 0.22(0.0283)
BPP-21 1.055(0.1663) 0.496(0.0768)
BASS-1 1.116(0.1587) 0.602(0.064) 0.363(0.024)
BASS-2 1.051(0.1916) 0.588(0.0804)

LARMuK 1.584(0.2401) 1.04(0.1675) 0.652(0.1067)
LABS 1.243(0.2135) 0.66(0.1141) 0.343(0.0843)

Table A.7: Average mean squared error with estimated standard error in paren-
theses from 100 replications for Doppler example with n = 512
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Model
Heavisine

RSNR=3 RSNR=5 RSNR=10

BSP-2 0.635(0.1112) 0.294(0.04) 0.15(0.01)
LOESS 0.464(0.067) 0.306(0.0523) 0.172(0.0531)

SS 0.384(0.0699) 0.225(0.0299) 0.113(0.0102)
NWK 0.398(0.0789) 0.223(0.0327) 0.106(0.0113)
EBW 0.435(0.1007) 0.202(0.0457) 0.066(0.0127)
TF-0 0.619(0.0906) 0.307(0.0399) 0.118(0.0126)
TF-1 0.391(0.0916) 0.198(0.036) 0.082(0.0107)
TF-2 0.393(0.0839) 0.211(0.0321) 0.095(0.0111)

GSP-L 0.785(0.246) 0.402(0.1555) 0.261(0.1383)
GSP-R 0.422(0.0677) 0.322(0.0409) 0.279(0.0372)
BPP-10 0.431(0.1015) 0.173(0.0392) 0.055(0.0108)
BPP-21 0.308(0.0771) 0.134(0.0328) 0.04(0.0091)
BASS-1 0.365(0.0894) 0.149(0.0348) 0.046(0.011)
BASS-2 0.354(0.0709) 0.169(0.0385) 0.063(0.0131)

LARMuK 0.413(0.1155) 0.19(0.0543) 0.074(0.0206)
LABS 0.291(0.1185) 0.103(0.0508) 0.031(0.0128)

Table A.8: Average mean squared error with estimated standard error in paren-
theses from 100 replications for Heavisine example with n = 512

A.1.5 Derivation of the full conditionals for LABS

In this appendix, we derive the full conditional distributions of some param-

eters required for Gibbs sampling. The full conditional posterior of each pa-

rameter can be easily obtained via conjugacy properties. Let us first find the

full conditional posterior for βp,q.

• Full conditional posterior for βp,q
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For each q = 1, . . . , Jp,

[βp,q |βp,−q, others, Y] ∝

[
exp

{
− 1

2σ2

n∑
i=1

(yi − β0 −
∑
k∈S

Jk∑
l=1

Bk,l(xi; ξk,l)βk,l)
2

}]

×

[
exp

{
−
∑
k∈S

Jk∑
l=1

β2
k,l

2σ2
k

}]

∝ exp

− 1

2σ2

n∑
i=1

(yi − β0 −
∑

k∈S\{p}

Jk∑
l=1

Bk,l(xi; ξk,l)βk,l

−
Jp∑
l=1

Bp,l(xi; ξp,l)βp,l)
2 − 1

2σ2
p

Jp∑
k=1

β2
p,l



For convenience, we set ci = β0 +
∑

k∈S\{p}
∑Jk

l=1Bk,l(xi; ξk,l)βk,l as a

constant term. Then,

∝ exp

− 1

2σ2

n∑
i=1

(yi − ci −
Jp∑
l=1

Bp,l(xi; ξp,l)βp,l)
2 − 1

2σ2
p

Jp∑
l=1

β2
p,l


∝ exp

− 1

2σ2

n∑
i=1

(yi − ci −
Jp∑
l 6=q

Bp,l(xi; ξp,l)βp,l −Bp,q(xi; ξp,q)βp,q)2 −
β2
p,q

2σ2
p


∝ exp

− 1

2σ2

β2
p,l

n∑
i=1

(
Bp,q(xi; ξp,q)

)2 − 2βp,q

n∑
i=1

yi − ci − Jp∑
l 6=q

Bp,l(xi; ξp,q)βp,l


×Bp,q(xi; ξp,q)

)
−
β2
p,q

2σ2
p

}

= exp

{
−1

2

((∑n
i=1

(
Bp,q(xi; ξp,q)

)2
σ2

+
1

σ2
p

)
β2
p,q

−2
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i=1

(
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∑Jp
l 6=q Bp,l(xi; ξp,q)βp,l

) (
Bp,q(xi; ξp,q)

)
σ2
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84



Thus, the full conditional distribution for βp,q is

[βp,q | βp,−q, others, Y] ∼ N (µp0 , σ
2
p0

)

with

σ2
p0

=

(∑n
i=1

(
Bp,q(xi; ξp,q)

)2

σ2
+

1

σ2
p

)−1

µp0 = σ2
p0
×

∑n
i=1

(
yi − ci −

∑Jp
l 6=q Bp,l(xi; ξp,q)βp,l

) (
Bp,q(xi; ξp,q)

)
σ2

.

• Full conditional posterior of Mk

For each k ∈ S,

[Mk | others] ∝MJk
k exp{−Mk} ×M

aγk−1

k exp{−bγkMk}

= MJk+aγk−1 exp{−(1 + bγk)Mk}

The full conditional distribution for Mk is given by

[Mk | others] ∼ Ga(ak, bk)

where

ak = aγk + Jk,

bk = bγk + 1.
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• Full conditional posterior of σ2

[σ2 | others,Y] ∝

[
(σ2)−

n
2 × exp

{
− 1

2σ2

n∑
i=1

(yi − β0 −
∑
k∈S

Jk∑
l=1

Bk(x; ξk,l)βk,l)
2

}]

×
[
(σ2)−

r
2+1 × exp

{
− rR

2σ2

}]
∝ (σ2)−

n+r
2 +1 exp

{
− 1

2σ2

n∑
i=1

(yi − β0 −
∑
k∈S

Jk∑
l=1

Bk(x; ξk,l)βk,l)
2 − rR

2σ2

}

The full conditional distribution for σ2 is

[σ2 | others,Y] ∼ IG

(
r0

2
,
r0R0

2

)

with

r0 = r + n,

R0 =

∑n
i=1(yi − β0 −

∑
k∈S
∑Jk

l=1 Bk(x; ξk,l)βk,l)
2 + rR

r0

.
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국문초록

본 학위 논문에서는 함수의 변화하는 부드러움을 추정하기 위해 LARK 모형을

확장한 “레비 적응 B-스플라인 회귀 모형” (LABS) 을 제안한다. 즉, 제안한 모

형은 B-스플라인 기저들이 생성 커널로 갖는 LARK 모형이다. 제안한 모형은

B-스플라인 기저의 차수를 조정하면서 불연속하거나 최고점 등을 지닌 함수

의 부드러움에 체계적으로 적응한다. 모의 실험들과 실제 자료 분석을 통해서

제안한 모형이 불연속점, 최고점, 곡선 부분을 모두 잘 추정하고 있음을 입증

하고, 거의 모든 실험에서 최고의 성능을 발휘한다. 또한, B-스플라인 차수에

따라 LABS 모형의 평균 함수가 특정 베소프 공간에 존재하고, LABS 모형의

사전분포가 해당 베소프 공간에 상당히 넓은 받침을 갖는다는 것을 밝힌다.

추가적으로, 텐서곱 B-스플라인 기저를 도입하여 다차원 자료를 분석할 수

있는 LABS 모형을 개발한다. 제안한 모형을 “다차원 레비 적응 B-스플라인 회

귀 모형” (MLABS) 이라고 명명한다. MLABS 모형은 회귀 및 분류 문제들에서

최신 모형들과 필적할만한 성능을 갖추고 있다. 특히, MLABS 모형이 저차원

회귀 문제들에서 최신 비모수 회귀 모형들보다 안정적이고 정확한 예측 능력을

지니고 있음을 실험들을 통해 보인다.

주요어: 레비 랜돔 측도; 베소프 공간; 텐서곱 B-스플라인 기저; 가역 점프 마르

코프 체인 몬테 카를로
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