creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Enginnering

Computation of Configuration

Space and Voronoi Structure for
Planar Moving Object with 3DOF

B oA FF ol 3AFE EA9

Configuration &7+ Voronoi T+%¢ A4t

AUGUST 2021

Graduate School of Engineering
Seoul National University

Computer Science and Engineering Major

MinGyu Jung

Mg sk

Computation of Configuration
Space and Voronoi Structure for
Planar Moving Object with 3DOF

Advisor Myung—Soo Kim
Submitting a master’s thesis of Engineering
August 2021
Graduate School of Engineering
Seoul National University
Computer Science and Engineering Major
MinGyu Jung
Confirming the master’s thesis written by

MinGyu Jung
August 2021

Chair Jehee Lee

Vice Chair Myung—-Soo Kim

Examiner Jinwook Seo

Abstract

We present efficient algorithms for computing configuration
space obstacles and Voronoi structures for a planar moving object
bounded by arc—splines. This approach is based on simple geometric
properties of circular arcs. Moving objects and obstacles represented
with Bezier curves or B—splines curves can be converted to arc—
spline models using biarc approximation. For the computation of
configuration space obstacle, we can derive the exact equation and
the parameter domain of contact surfaces from the boundary of
configuration space obstacle. For the computation of Voronoi
structure, we first compute the Voronoil diagrams for some fixed

rotations and then stack them up to form a network of surface patches.

Using the constructed network of surfaces, we generate a maximum
clearance path by following the path on the Voronoi surface. The path
can be further optimized based on various different criteria depending
on specific applications.

F89] : Configuration space, Minkowski sum, Voronoi structure,
medial axis, motion planning, circular arc
s ¥ :2019-23686

BELE

TUl

Table of Contents

Chapter 1 IntroducCtion......cccevevniieniiiierniiiniiiieiieieeireneeaeennes 1
1.1 Research Background......oooeveiniiiiii e, 1
1.2 Main ContribUtIONS ...oiueiiieiii e 5
1.3 ThesiS OrganiZatlion ... e 6
Chapter 2 Preliminari€s .o eeeiieiieeeeeeeeeeeeee e e e eeneanas 7
2.1 Configuration Space Obstacles and Minkowski Sum 7
2.2 Voronoi Structure Computationcooeveevieviiiiiiiiieeieinnenn, 10
2.3 Object Representation and Biarc Approximation............... 11
Chapter 3 Related WOrK...o..ovvviivieiiiiiiiiiiiiiinceineicei e 13
Chapter 4 Geometry Construction Algorithms..........ccuueee..e. 16
4.1 3D Configuration Space Obstacle Computation.................. 16
4.2 3D Voronoi Structure Computationcceeeeveeevvuneeevinennnn.. 23
Chapter 5 Experiment ResultS.....coceveviiiiiiiiiiiiiiiiiiiiiiceeeenee, 41
Chapter 6 CONCIUSION c.uivviieiiiiiiiiiiieiceeeeeeeer e e eanenaes 54
| 231 0) HTeYod =1 o) s /R 55

Table of Figures

Figure 1 An example VOronoi StruCtUre.....ccccvveeiiuneeirneeeiiieeiiieeniinnans 4
Figure 2 Example of a MIinKOWSKI SUM.uiiiniiiniiiiie e 9
Figure 3 Definition of a circular arc.........ccoeeiiviviiiiieiiiiie e, 17
Figure 4 Multiple common intervals of angles.......cccooiviviiiiinin. 18
Figure 5 Arc Convolution, the firSt CaS€...ccooviuiiiiiiiiiieieeeiee 19
Figure 6 Arc Convolution, the second case........ccooeevvvveiiiieiiiineiinnn.. 20
Figure 7 Parameter Domain 1ccoooiiiiiiiiiii e 22
Figure 8 Parameter Domain 2coooviiiiiiiiiie e 23
Figure 9 A single branchless bisector curve in a cycle.......o.......... 24
Figure 10 Growing touching diSKS. ..o, 26
Figure 11 Four cases Of Ca. i 28
Figure 12 Cycles With 3 OF MOTre arCS. wuiuiuei e 31
Figure 13 Division of a cycles with 3 circular arcs (upper left) using

the APOLIONIUS CIFCLE.. tiuiieii e, 32
Figure 14 Cycles wWith 4 OF MOTe ArCS ceuiuniuein e 33
Figure 15 A cycle with single circular arc.......occcoovvvviiiiiiiiiiniinenn, 34
Figure 16 A recursive appProOacCh e 35
Figure 17 The bisector (blue) between two convex circular arcs is a

Y DEIDOLA. coieii i 37
Figure 18 The bisector (blue) between a convex circular arc and a

concave circular arc 1S an ellIPSe. covu i 38

11

A2t &

Figure 19 The bisector (blue) between two concave circular arcs is a

Y DEIDOLA. ceiei i 38
Figure 20 Robot (left, gray) and Obstacles (Right, blue) 41
Figure 21 Configuration space obstacles and Voronoi structure 42
Figure 22 Configuration space obstacles in 3D.....coooviiviiiiiiiiniinnnn. 43
Figure 23 Connected Bifurcation Points in 3Dcocoviiiiviiiiiniiniinnn. 44
Figure 24 Voronoi structure stacked in 3D for the easy case. 44
Figure 25 Motion planning Result 1coiiiiiiiiiii e, 45
Figure 26 Motion Planning ReSUlt 2 ..coeieniiniiei e, 45
Figure 27 Path of Figure 25 1n 3D oo, 46
Figure 28 Path of Figure 26 in 3Dcccoviiiiiiiiiiiiiee e 47
Figure 29 Hard case, Robot (left) and Obstacles (Right) 48
Figure 30 Hard case, SHCES iiiiiiiiiie e 49
Figure 31 Configuration space obstacles in 3D.......ccooeeiiiiiiiniiinnn.. 50
Figure 32 Voronoi structure for hard case......c.ccoovevviiiiiiiiiiiiinennn.. 51
Figure 33 Path for the hard casecccoooiiiiiiiiiiii 52
Figure 34 Path in 3D, hard CasSeoviiiiiiii i 53

111

Al 2o 8t

Chapter 1

Introduction

1.1 Research Background

Motion planning is one of the most important research topics
discussed in computer graphics, computer animation, and virtual
reality [1] [2] [3]. The main goal is to find a collision—free path for
a moving object when the environment with obstacles is known [4].

There are many different types of moving objects. Some move
in a two—dimensional space, while others in 3D. Flexible robots may
even rotate and deform their shapes with joints [5]. The specific type
is a crucial aspect in motion planning. The problem complexity and
the approach to the problem are dependent on the robot type. In this
thesis, we focus on a planar motion that performs two—dimensional
rigid body transformation with translation and rotation.

A two—dimensional rigid body’s motion planning algorithms are
applicable in many real—life problems. One of the most familiar
examples that can be seen is the floor cleaning robot. The robot
should not touch obstacles in the ground and move through places.
Such a robot is confined to the ground—it cannot rise nor rotate with
axes other than the vertical one. Therefore, such a robot can be seen
as a two—dimensional rigid body robot. Another example that is

commonly used in industry is a 2.5—axis CNC machining tool [6].
1

R kT

The cutter first changes its vertical level to work on and then only
moves in that level with translation for a while. The machining tool
should never collide with the parts of the material that is a part of the
product. Another area of use is Amazon’s transporting robots in the
warehouse [7]. Some promising future areas of use include medical
surgery, VR environment, etc.

There are many kinds of approaches to the motion planning
problem. One of the most popular approaches is to convert the
problem for volumetric robots with workspace obstacles to a point
robot with configuration space obstacles [8], namely a set of
configurations which make the robot collide with workspace
obstacles. This approach simplifies the motion planning problem, as
a collision test against a moving point becomes simpler than testing
a moving volume against the surrounding environment. On the other
hand, the difficulty is in computing the configuration space obstacles.

The computation becomes much more difficult when freeform
objects are under consideration. Many previous results on motion
planning with the configuration space approach employed polygonal
approximation to the robot and the workspace obstacles [9]. While
this choice of object representation greatly simplifies the
computation of configuration space obstacles, it leads to some
undesired side effects as a result. One of the most notable drawbacks
is the loss in precision [10].

Another way we can represent objects is to use circular arcs as
the basic primitive [11] [12]. This is the approach we take in this
thesis. Compared with polygonal approximation, circular arcs can
better represent the object as it has G'—continuity and more degrees
of freedom in curvature. Owing to these desirable geometric features,
circular arc approximation is known to have cubic convergence [13].

2

B

- -

This means that we can approximate a given model with a much
smaller number of circular arcs compared with polygons, when a
certain fixed level of precision is required.

After the computation of configuration space obstacles, we need
to find a collision—free path for a moving point. There are many
approaches toward this goal, including those such as roadmap method,
cell decomposition, potential functions, etc [4].

Voronoi structures can be useful for all these methods in many
ways by providing distance information. Points on a Voronoi structure
form the so—called medial axis. The name comes from the fact that
they have two or more closest points to the configuration space
obstacles. Points on the medial axis contain distance information to
the closest configuration space obstacle. The medial axis also works
as the common boundary between adjacent Voronoi cells (consisting

of points having the same closest configuration space obstacle).

s A2t gy

Figure 1 An example Voronoi Structure. The gray objects are configuration
space obstacles. The blue curves are the medial axis. Each of the yellow,
green, purple and sky blue areas represent a Voronoi Cell.

For the roadmap method, Voronoi structure itself can be a good
roadmap and is commonly used. For the potential function method,
the computation of distance to the nearest configuration space
obstacles is often needed. For the cell decomposition method,
Voronoi cells can be used as a good decomposition of the free space.
When the object boundary is represented with a set of circular arcs,
a set of ellipses or hyperbolas will form the Voronoi cell boundary.
For other object boundary representations, such as polygons or B—
splines, the medial axis curves have degrees higher than that of the

4

input object boundary [10]. For circles, the bisector curves are also
conics. This makes the boundary representation for Voronoi cells
much easier and precise. Other ways to decompose the cells using
Voronoi structures may be proposed, such as using the maximum
touching disks which will be discussed later in this thesis, as the
Voronoi structure contains rich information about the free space.
Finally, the configuration space of a two—dimensional rigid body
motion is a three—dimensional space. In this case, the configuration
space can be visualized, which can improve understanding the
underlying structure of free space and facilitate further research in

motion planning.
1.2 Main Contributions

In this thesis, the configuration space of a two—dimensional robot
with rigid body motion is mainly discussed. To be specific, we
compute the three—dimensional configuration space obstacles and
their Voronoi structure.

We compute a set of three—dimensional surfaces that form a
superset of the configuration space obstacle boundary. Some
segments of the surface may not form the obstacle boundary. But
these redundant segments all lie in the inner region of a configuration
space obstacle. This property allows collision detection and
visualization. For instance, when a moving point in free space tries to
move along a trajectory that has collision, it will have collision with
at least one of the computed surfaces. On the other hand, if such
trajectory has no collision, it will not intersect the computed surfaces.
This 1s because, the redundant segments all stay inside the

configuration space obstacles and do not stick out to the free space.
5

B

- -

An algorithm to compute Voronol structures in the three—
dimensional free space for the above configuration space obstacles
1s proposed. In the xy0—space, points that have multiple closest
points with a fixed 0 value is computed. This means that slicing this
Voronol structure perpendicular to the 0—axis leads to a two—
dimensional Voronoi structure.

What distinguishes this thesis from other related results is the
choice of geometric primitives. We propose to use circular arcs for
the representation of robots and obstacles. One of our goals is to
propose a new computational framework for the arc—spline based

motion planning.
1.3 Thesis Organization

The thesis is organized as follows. In Chapter 2, we briefly
introduce background material to understand the configuration space
approach and the roadmap approach using Voronoi structure. In the
Chapter 3, we review other previous results related to topics such as
motion planning, Minkowski sum, and Voronoi diagrams. Details of
our algorithms are described in Chapter 4. After that, in Chapter 5,
we demonstrate the effectiveness of our approach by showing some
visual results of the successful construction for the configuration
space and actual path of maximum clearance. Finally, we conclude

this thesis.

B

Chapter 2

Preliminaries

2.1 Configuration Space Obstacles and Minkowski Sum

Motion planning is to find a collision—free path for a moving robot
when the shape of robot and obstacles are known. There are some
cases where the robot can be thought of as a point [14]. But in most
of the cases, the robot usually takes up some area or volume. Directly
testing whether the motion of a robot has collision with obstacles is
not easy. To do so, we first need to compute the space that the robot
sweeps 1n the motion. Then, we need to test whether the swept
volume has an overlap with the obstacles. Repeating this process
every time a motion is generated is quite costly.

A configuration space approach is a method that can make this
problem relatively easy [8]. A configuration is a minimal set of
variables needed to determine the positions of all the points that
constitute the robot. The dimension of this set is called the degrees
of freedom and the space that these variables make is referred to as
the configuration space [4]. For instance, in this thesis we focus on
a two—dimensional robot with translation and rotation. The
corresponding configuration can be represented with 3 variables,

namely (%, y, 0). The first two variables indicate the amount of

SRk

TUl

translation, while the last one is the rotation. For other types of
robots, more features such as joints or deformation add variables to
the configuration [5].

At some configurations, the corresponding robot may have
collision with the obstacles. A set of such configurations is called the
configuration space obstacles. On the other hand, some
configurations would be collision—free. A set of these configurations
is called the free space.

Finding a collision—free path for the point in the configuration
space 1s equivalent to the original problem. This simplifies the
problem and makes the motion planning algorithms efficient, since the
intersection tests on points or curves are much easier than that of
testing overlaps among areas or volumes. On the other hand, the
drawback of this approach is in the generation of the objects in the
configuration space, which can be quite time—consuming.

Minkowski sum is a binary operation on two sets A and B. It is
formally defined as follows [15]:

A@B={a+b|laeAbeB}.

The Minkowski difference can be defined in a similar way':
A©B={a—b|laeAbeB}.

The relation between the two operations are as follows:

AS B =A® (—B),where (—B) = {—b |b € B}.

Al 2o 8t

N <Y Y
A NN
GG N
RN N

Figure 2 Example of Minkowski sum. T'wo objects on the left are inputs.
The thick line on the right is the Minkowski sum boundary.

Minkowski sum can be used to compute a configuration space
obstacle QO when the robot can translate with a fixed orientation.
Given a robot A and an obstacle WO, the configuration space obstacle
QO is given as follows:

Q0 = WO @ (—A).

When the robot at t and an obstacle WO have some intersection,
an overlap point can be represented as either w & WO or t+a for a
& A. Thus t=w-a. In conclusion, if there is intersection between the
robot and an obstacle, t € WO @ (—A) holds. On the other hand, if
there is no collision between the robot and an obstacle, it is
impossible to choose aa € A and w € WO so that t=w -a. Thus,
Q0 = WO @ (—A).

This is possible only when the rotation 0 is fixed. From now on,
a subspace of the configuration space with a fixed 0 value will be
called a s/ice. The Minkowski sum lies in a two—dimensional slice,

while the configuration space obstacle in the xy6—space is three—

Al 2 off 8

dimensional. Therefore, we need further processing to stack those

slices. This will be discussed in Chapter 4.

2.2 Voronoi Structure Computation

Given a set of objects in a space, the Voronoil structure is a
decomposition of the space with distance information. The given
space is decomposed into Voronoi cells, and the boundary of these
cells form a medial axis [16]. Voronoi cells are a set of points that
have the same closest object. Thus, the medial axis is a set of points
which is equidistant to two or more objects [17].

Each point in the medial axis contains distance information to the
closest object. Growing a circle from a point on the medial axis, it will
stay collision—free until its radius reaches that distance. In reverse,
we can start to grow a circle tangent to a point in an obstacle’s
boundary, until the circle touches another point in some obstacle’s
boundary. The center of such circle becomes an element of the
medial axis. Such a circles is called the maximum touching disk [16],
as it has the largest radius which does not make the inner region of
the circle have contact with any obstacles. Circles that grew
tangential to a point in the obstacle’s boundary will be referred to as
touching disks throughout this thesis.

With dense sampling and criteria to restrict approximation errors,
many points on the medial axis can be found using the above method.
But the difficulty of this approach comes into sight when we consider
the correct topology [18], namely, how those points are connected
and form the boundary curves between Voronoi cells. Bifurcation
point is a point that has three or more closest points to the obstacle

boundary. At that point, three or more medial axis curves meet and
10

5 2 20 8

- -

TUl

form a branch of the network. This complicates the topological
structure of the medial axis.

One way to handle this problem is to choose certain subregions,
in each of which there exists only one single branchless medial axis
in it. It 1s already known that an area bounded by two monotone

curvature curve segments has this important feature [16].

2.3 Object Representation and Biarc Approximation

There are many ways to represent an object. One simple way is
to store some sampled points of the target object, like pixels.
However, this approach is quite inappropriate for solving problems
concerning high precision. Thus, in this thesis, we use boundaries of
the connected components of the object.

The most common tools to represent boundaries are the Bezier
curve and B—spline curves. Both of them are defined with control
points, which is quite intuitive for designers. This led to their popular
use in the current industry.

But directly using these curves has some difficulties. The
Minkowski sum and the Voronoi structure generally have higher
degrees than that of the input curves [10]. The computation is known
to be notoriously hard, and the results have poor precision even if
approximated.

A circular arc is another geometric primitive, which is efficient
enough while well approximating these frequently used curves.
Unlike Bezier or B—spline curves, the result of Minkowski sum and
the Voronoi structure can be represented using conics.

Although the circular arc is not a much—used primitive compared

to Bezier or B—spline curves, Biarc approximation [11] allows the
11

5 2 20 8

- -

TUl

transformation from those curves to arc—splines, a set of circular
arcs. Biarc approximation recursively breakdowns a given curve into
two Gl—continuous arcs. The tangents at the endpoints are also
preserved, leading to the preservation of G1—continuity of the whole
object. The recursive process is known to have a cubic convergence.
After each breakdown process, the error between the original object
and the approximation is cut to asymptotically 1/8. This leads to a
small number of total circular arcs, which generally leads to a faster

computation time.

12

Chapter 3
Related Work

Lozano—Perez first introduced the notion of configuration space
approach in motion planning [8]. The Minkowski sums of polytope
objects were computed to plan collision—free a path for a moving
object that can only translate. He also proposed a method to compute
configuration space obstacles for a polygonal rigid body in 2D. Later,
he further extended his work to visibility graphs [9], Where motions
with translation and rotation are generated by connecting 2D slices,
instead of computing the exact configuration space obstacles with full
three—dimensions.

Han et al. [15] considered a planar object as a union of balls and
represented the boundary using arc—splines. A sampling of these
balls forms a subset of the inner region, therefore convolution arc—
splines that fall into this region were trimmed. To accelerate this
process, grid and cache data structures were used. Lee et al. [10]
provide various approximation methods for the Minkowski sum
boundary of two planar rational curves.

The Minkowski sum of three—dimensional B—spline surface was
constructed by Mizrahi et al [19]. Surfaces that are neither convex
nor C'=continuous are allowed as inputs to the algorithm.

Blum first introduced the notion of medial axis transformation
[17]. Multiple equivalent definitions and properties of the structure

were given. Some important properties of the medial axis
13

R kT

transformation were discovered by Choi et al. [20]. One of the most
important properties is domain decomposition which allows the given
problem to be divided into smaller subproblems. Many recent results
including this thesis are based on this property as it stabilizes
computation.

Medial axis for polynomial spline curves was computed by
Aichholzer et al. [18]. Zhu et al. [21] approximate the medial axis of
an arbitrary planar object with B—spline curves. The algorithm
applies trimming to approximated branches that have Hausdorff
distance larger than some user defined value.

Lee et al. [16] computed bisectors between inflection—free
monotone B—spline segments in 2D. Unlike arc—splines, finding the
maximum touching disk of B—spline models is not easy. Maobius
transformation was applied to efficiently search maximum touching
disks between B—spline curves.

There have been many approaches to directly compute the
Voronoi diagram in 3D space. Culver et al. [22] algebraically derived
the exact medial axis for polyhedron models. For this case, they
showed that the medial axis surface segments are quadric surfaces,
planes, or lines. They also showed that the seam curves between
these segments can be lines, conics, or quartic curves. Musuvathy et
al. [23] computed three—dimensional medial axis for a region
bounded by C4—continuous B-—spline surfaces. The medial axis
surfaces were computed by offsetting the boundary and computing
self—intersections.

A parallelizable algorithm for medial axis computation of both
planar and volumetric models was proposed by Lee et al. [24].The
algorithm first divides the point cloud into subsets and then fits the

balls so that they become maximum touching balls.

14

Al 2o 8t

A method to compute arc—spline approximation of planar curves
in CNC machining was proposed by Meek et al [11]. The arc—splines
were constructed by connecting series of biarcs. Biarc is a set of two
circular arcs which share endpoints with G!—continuity [12].

There are other approaches toward motion planning besides the
configuration space approach. For instance, probabilistic approaches
are frequently used. Qureshi et al. [25] proposed Motion Planning
Networks (MPNet) which is based on neural networks. The algorithm
takes point clouds as input and recursively finds a midpoint for the
path. Motion planning with reinforcement learning was proposed by
Gao et al. [26]. The algorithm first finds path graphs in the scene.
The path graph connects some points in the free space. Edges with
collision are removed and then Q—learning is applied to find a path to
the goal. Butyrev et al. [27] also proposed a reinforcement learning
based approach toward motion planning. This approach takes non—
holonomic constraints into account.

In this thesis, to verify the generated Voronoi structure, roadmap
method was wused. However, other methods such as cell
decomposition or potential functions can be used with the
configuration space approach [4]. The cell decomposition approach
divides the free space into cells. Then a graph structure is generated
by using the cells as vertices and the adjacencies of the cells as edges.
A path in that graph is found and then refined. Potential function
intuitively considers the objects to be electrically charged. The goal
has attractive force while obstacles have repulsive force. This forms
a surface of potentials and the robot slides down this surface. The
method has a drawback. It might fall into local minimum and may not

reach the goal.

15

B

Chapter 4

Geometry Construction

Algorithms

4.1 3D Configuration Space Obstacle Computation

The robot can translate in two directions and rotate with its
center. Therefore, the configuration of this robot will be represented
with three—variables x,y, 0 through the rest of this thesis. Also, the
robot has a degree of freedom of 3.

Confining the robot into a slice of fixed 0 restricts its movement
to translation only. For this slice, the two—dimensional configuration
space obstacle can be calculated with the Minkowski sum. Intuitively,
the 3D configuration space obstacle can be made by stacking them in
0 —direction. This is the approach taken.

For a point p from the Minkowski sum between two G'-—
continuous curves A, B that form a loop, p € {a+b|a & 0A,b & 0B,
normal(a) I normal(b) } holds. In short, the Minkowski sum of curves
1s inside a set formed by a sum of points with parallel normal. Notice
that such set is a super set of the Minkowski sum, but it has a good
property that the segments to be trimmed lies in the inner region of
it.

16

A&

|

TUl

The robot or the obstacles may not be G'—continuous, but we
can think of those none G'—continuous points to be a circle with
radius O to solve this problem.

This thesis uses Biarc approximation to represent freeform
objects. Therefore, all objects are defined with circular arcs. The
normal of a point on a circular arc can be easily calculated by
connecting its center with the point. Also, the change of normal
direction is very simple. This greatly reduces the computational cost
of normal matching.

We can calculate the whole superset of the Minkowski sum
boundary, by a union of Ca*Cg=f{a+b|a € C» C 0A,b € Cs T 0B,
normal(a) I normal(b) }. Ca and Cp are circular arcs. The process of
finding Ca* Cg is called the arc convolution of two circular Arcs Cy and

Cs.

(xy)

Figure 3 Definition of a circular arc

A random circular arc C in Z2-—dimensional space can be

represented with 5 variables. To be specific, C(X,y, 1, o, d1) represents

17

a circular arc with its circle center at (x,y), with a radius r, and with
parameter ¢ confined to an interval between ¢o and ¢1. Here ¢ is a
variable that parameterizes the circular arc. The value of ¢ is the
angle between the two lines, the positive x—axis and the line
connecting the circle center and the point corresponding to ¢. In other
words, for a point C(¢) on the circular arc C, below holds.

C(d) = % y) +r* (cosd, sind)

Without loss of generality, we can always assume that the arc is
parameterized in a counterclockwise manner. This means that we can
assume ¢o < P1.

We can always assume that | ¢o- d1| <, as we can always divide
an arc with its central angle larger than m into two separate arcs. This
assumption simplifies finding common intervals. Normally, two
continuous Iintervals would have a single continuous interval. But
angles have a periodic property, in other words, ¢ is equivalent to ¢
+ 27. This could result into multiple common intervals, as can be
seen in Figure 4. But, restricting the arc’s central angle to be smaller
than m resolves this problem. There are still multiple intervals that
are not continuous, but they are congruent to 2m. This is illustrated

in Figure 4.

[at o

Figure 4 Multiple common intervals of angles.

The arc convolution of two arcs Co(Xo, Yo, Fo, doo, $o1) and Ci(X1, y1, 11,
b0, ©11) results into two new arcs.

18

5 2 20 8

- -

TUl

Ca, * Cb

Figure 5 Arc Convolution, the first case

The first resultant arc is C(Xo+ X1, Yo + V1, To + 1, do, 1), where [do,
¢1] denotes the common interval between the two intervals [¢oo, do1]
and [¢1o, d11]. This is the case where a point from Co and a point from
C: have parallel normals since their ¢ value is in an equivalent class
congruent to 2m. The Minkowski Sum of those two points will be as
follows:

Co(¢) + Ci($) = (X0, yo) + 1o * (cos, sind) + (x4, y1) + 1 * (cos, sing)
= (X0 + X1, Yo + y1) + (ro + r1) * (cosd, sind)

The collection of those points is also a circular arc with its center
at (Xo + X1, yo + y1), its radius (ro + r1), and its parameters confined to

[bo, d1]. This is visually illustrated in Figure 5.

19

R kT

Y
o

Cy Ca * Cb

Figure 6 Arc Convolution, the second case

Without loss of generality, we can assume that ro = ri. Both the
arc convolution operator and the Minkowski Sum operator are
commutative. Therefore, we can always change the operands order
to qualify this assumption.

The second resultant arc that comes from arc convolution can be
expressed as C(Xo+ X1, Yo + y1, Io- 11, Po, d1). For the second case, [do,
¢1] is the common interval between the two intervals [doo, $o1] and
[b10+ T, P11+ m]. This is the case where a point with parameter ¢ and
another point with ¢ + m share parallel normals. Those two points
results into a point as follows:

Co(d) + C1(d) = (X0,¥0) + 1o * (cosd,sind)
+ (X1,y1) + 11 * (cos(d + m),sin(d + m))
= (Xo +X1,¥o +y1) + (rp —r1) * (cosd,sind)

Again, the collection of these points forms a circular arc. But for
the second case, the new arc’s radius is the difference of the original

arcs’ radii. This is illustrated in Figure 6.

20

R kT

So far, we have seen that the boundary of a 2d configuration
space obstacle is a set of circular arcs. The resultant arcs in two—
dimensional space will stack up in the 8—direction and form a curved
surface in three—dimensional space. The exact equation and the
parameter domain of that surface can be found by observing how arc
convolution changes with 0.

The given robot changes its orientation as the 0 value changes.
This results in a change in the circular arcs that constitute the robot’s
boundary. All such arcs need to be rotated with a uniform center point,
the robot center, which necessarily is not the arc’s center. Assume
that the robot center is represented with (x,, yr). After some arbitrary
rotation of 6, C (X, y, 1, o, 1) becomes as follows:

Co (X'(8),y'(8), 1, do+6, $1+06)

e, 10 5m0 Z53) 5

On the other hand, the arcs that constitute the boundary of
obstacles do not change with 0. Therefore, an arc convolution
between an arc from a robot at rotation 8 and an arc from an obstacle
would be as follows:

Co (X, ¥, 1, ®o+0, d1+0) * Cobs (Xo, Yo, To, P2, P3)
As we stack these arcs through the 0—direction, they form a

surface in 3d.

x(0,P)| x'(0) +x, + Irl £ r2| * cos ()
SO, ¢) = [y(6,)| = y'(8) +y, + Irl + r2| * sin (¢)
z(6,) 0

We also need to find the parameter domain of the surface.
Assume that the ¢p—value of a robot’s arc is bounded to [¢yo + 6, Pg1 +
6], while that of the obstacle is [¢1g, P11]- A (8, ¢) —value is a part of
the parameter domain only when the normal directions are shared.

As the ¢—value interval of the obstacle’s arc does not change, we can

21

MLt

| &}

1

easily see that two inequalities ¢19 < ¢ and ¢ < ¢;; must hold.
These are the inequalities that restrict parameter domain.

There are two more inequalities. For there to be an overlapping
d—value, the two intervals must have an intersection. As 0 increases,
the first contact occurs at 8 = ¢19— ¢Po1. As 0 keeps increasing,
there will be an overlapping region until 8 reaches ¢;; — ¢go. This
can be seen as a line segment moving diagonally in the ¢—6
parameter space, forming a band. The inequalities of the band are
¢ — o1 <0 and 0 < ¢ — ¢yo. Eventually, the four inequalities form a
parallelogram in the parameter space.

Figure 7 and Figure 8 show an example of the computed
parameter domain. On the left are the input circular arcs, one from
the robot and the other from the obstacle. On the right is the
parameter space, with the x—axis as ¢ and y—axis as 0. Note that the

diagonal part of the band always has a slope of 1.

C
“robot.

Cobs

Figure 7 Parameter Domain 1

22

s 42T 8 i

60
50

40

20

thui

=20 =10 o 10 20 30 40 50 60 70 &0 a0 100 110

20
k]
20

=50

Cobs

60

Figure 8 Parameter Domain 2

4.2 3D Voronoi Structure Computation

In this section we discuss how the Voronoi Structure is calculated.
We first start with the computation in a single slice. After some
sampled slices are properly computed, we stack them up through the
0—direction to get a three—dimensional structure.

The Voronoi Structure can be seen as a representation of the
free space with two components, the medial axis and the maximum
touching disks. The trails of the center of moving maximum touching
disks form the medial axis. In reverse, by sweeping the medial axis
with maximum touching circles, we get the free space. We can see

the Voronoi Structure as a compression of the free space.

23

s A 2o ghw

To find the medial axis in the free space, we use the fact that two
curve segments have a single branchless bisector under the following
conditions [16] :

1. Each endpoint of a curve segment shares a maximum
touching disk with an endpoint of another curve segment.

2. The curvature of the two curve segments should be
monotone. This means that either the curvature never
decreases or never increases.

The bisector segment is a part of the medial axis. We also need
to find the endpoints of this bisector curve segment. The endpoints
are the two circle centers of the maximum touching disks described

in the first condition.

Figure 9 A single branchless bisector curve in a cycle.

We are using circular arcs to represent the boundaries of the

configuration space obstacles. A circular arc is a subset of some
24

TU

circle. A circle has a constant curvature. Therefore, it is obvious that
the second condition always suffices.

We can divide the whole free space into segments, which is
bounded by two circular arcs and two lines connected to a maximum
touching disk’s center. Then we can evaluate each of these free space
segments separately and get a single curve corresponding to that
segment.

The free space segment that was segmented following the above
paragraph will be called a cycle throughout this thesis. This is
because the segment is bounded by a loop of alternating circular arcs
and transitions between arcs. A transition between arcs is a set of 2
line segments, which each of them connects the maximum touching
circle’s center with its closest circular arc’s endpoint. A cycle’s
boundary alternates between circular arcs and transitions, for
instance (Arco, Transitiono, Arci, Transitioni, ..., Arc,, Transition,).
The last point of the last transition coincides with the first point of
the first circular arc. Thus, the structure is named a cycle.

To find a cycle, we first need to find transitions. Since a transition
1s between two arcs’ endpoints that share a maximum touching disk,
we first need to find such pairs.

A random arc’s endpoint's maximum touching disk would
generally touch a point from a different arc, that is not an endpoint.
This is because the arcs are a result of biarc approximation, which
chooses the arc endpoints in each step to be the one which could
minimize the error. Therefore, we need to subdivide the arcs into two
smaller arcs at some point whenever some other arc’s endpoint
shoots a maximum touching disk toward it.

Subdividing all the arcs in the scene with the above process
would yield the following statement to hold; each endpoint from some

25

B

- -

arc in the scene has a paired endpoint which shares a maximum
touching disk with it. Therefore, we can now always assume that for

every endpoint, there is a transition that leads to another wvalid

endpoint.

Figure 10 Growing touching disks. The one with the maximum radius is
called the maximum touching disk.

The process of finding a maximum touching disk for an arc
endpoint is done as follows. Let point p denote the endpoint we want
to find its maximum touching disk and vector t denote its tangent.
Without loss of generality, we can assume that all of the configuration
space obstacles are parameterized in a counterclockwise manner.
This means that for a point on the boundary, the inner region of a

configuration space obstacle exists on the point’s left side of t. On the

26

fom A 2o gt w

AETPS SECUL NATIONAL | INNVERSTY

LT

other hand, the free space exists in the right side. Let n denote a
vector that is perpendicular to t and pointing towards the free space.
As the boundary is counterclockwise, rotating t with -90 degrees
yields n. Due to tangential contact, the maximum touching disk’s
center ¢, the circular arc’s center, and p will be all in the same line of
direction n. As the disk lies in the free space, we can say that c=p+
r *n for some non—negative real value r.
Finding the maximum touching disk is now equivalent to finding
a maximum value of a real value r, while the disk not having contact
with any of the inner region of the configuration space obstacles. This
is also equivalent to finding the minimum value of r that has any
contact with the boundary. We can first compute the maximum
touching disk radius for each of the circular arcs that constitutes the
configuration space obstacles and then apply the minimum to get the
maximum touching disk radius for the whole scene.
If a circular arc is extended to have a full angle, for instance ¢o=
0 and ¢1 = 2m, it becomes a circle. Given a point—normal pair (p, n),
computing the maximum touching disk radius for a circle is much
simpler than that of a circular arc. But as circular arcs are just mere
subsets of some circle, there is no guarantee that such radius is valid.
Depending on the interval of the circular arc [¢o, d1], any point on
the superset circle can become the point forming the maximum
touching disk. For a superset circle Cs, r(c) for ¢ € Cs is the

maximum touching disk which has contact with c.

27

B

Figure 11 Four cases of Cs.

The relation between a point—normal pair (p, n) and a random
circle Cs, can be divided into four cases.
1. p is inside Cs.
2. p is outside of Cs and Cs has contact with the tangential line at p.
3. p is outside of Cs and (c—p) *n < 0Vc € Cs.
4. p is outside of Cs and (c—p) *n > 0Vc € Cs.

The four cases each have a different distribution of r(c).

If a maximum touching disk is shared with a point ¢ below the
tangent line, r(c) will be negative. Such points are meaningless in the
perspective of free space. Thus, we can easily ignore all arcs that
have a superset of case 3.

For case 1 and 2, the circle has intersections with the tangent
line. r(c) is not G°—continuous near the intersection points. r(c)

approaches positive or negative infinity as c¢ goes close to those

28

points. The circle can be divided into two segments. We ignore the
segment with negative r value.

One property the touching disk has is that all touching disks with
a radius smaller than R are contained in the inner region of a touching
disk of radius R. Therefore, When the touching disk passes through
some point ¢ in a circle, whether r(c) increases or decreases is related
to whether the tangent heads to the inner region or the outer region.
If the inner product between the ¢’s tangent and the outward normal
of the touching disk at c is positive, r(c) will increase. If it is negative,
r(c) will decrease. When the inner product is zero, r(c) is at its critical
point. Therefore, we can conclude that r(c) monotonically increases
or decreases between tangential contact points. The value of r
corresponding to the tangential contact point can be found by solving
the following equation. (The circle C¢ has a center of ¢, and a radius
of r)

r=|lcc=p—r*n|trc|

Above is a tweaked version of the formula which states the
relationship between two circles’ radius and center distance when
there 1s tangential contact. After getting r, we can easily get the
coordinate of the tangential contact point and whether that point is
the minimum or not.

If such minimum point is a member of the circular arc in interest,
picking that point as the maximum touching disk radius is sufficient.
However, if it is not a member of the circular arc, more works should
be done. For case 4, where the whole circle lies above the tangent
line, we can simply choose one of the endpoints with a smaller r(c)
value. If the circular arc contains the tangential contact point with
maximum r(c), the r(c) monotonically increases until reaching that

tangential contact point. Thus, the only the endpoints have a local

29

B

- -

minimum. On the other hand, if the tangential contact point with
maximum is not included, one endpoint will have a minimum while the
other will have a maximum.

For case 1 and 2, some ¢ has negative r(c). Getting rid of those
parts from the circular arc leads into at most two new circular arcs
to evaluate. Again, if the minimum point is contained, simply picking
that gets the minimum. If not, picking the best among the endpoints
will get the minimum. This is because each of the new circular arcs
have a continuous, monotonic, and positive r(c). There is no
tangential contact point with local maximum, as the radius can diverge
to infinity.

As we can find the maximum touching disk radius for a single
circular arc, we can simply iterate through all of the circular arcs and
find the minimum value.

Notice that p is a point in the boundary. The whole boundary
should be G9—continuous, so there should be two arcs that have p as
an endpoint. If the model is not G1—continuous at p, there is no extra
modification to the algorithm. But if it is G!, the arcs that contain p
should be excluded in the iteration. This is because, numerical errors
can lead to a maximum touching disk of radius 0.

As there always exists a transition for a segmented circular arc’s
endpoint, we can simply form a cycle by alternating between circular
arcs and transitions. We start from a circular arc and travel
counterclockwise. If the endpoint is reached, we follow the transition
and move to another endpoint of some arc. We again follow that arc
counterclockwise and repeat. This alternating between circular arcs
and transitions terminates when we reach a point that has already
been visited, in other words, when the trail forms a cycle. It is

obvious that this method would eventually form a cycle and terminate

30

5 2 20 8

- -

TUl

in finite time, as the circular arcs are finite. Iterating this method until
all of the circular arcs are visited leads to a decomposition of the free

space into cells bounded by cycles.

Figure 12 Cycles with 3 or more arcs.

Figure 12 illustrates an example of a cycle. The thick black
curves are the circular arc segments from the obstacles. The two red
lines are the transitions. You can see that they form a loop and bound
a free space segment. The dotted circle is a maximum touching disk
at the circular arc endpoints. The dashed and dotted circles are the
superset circles of the circular arcs.

You can see in Figure 12 that a cycle might have more than two
circular arcs in it. This can easily happen as the second arc’s
maximum touching disk need not have contact with the first arc and

have contact with any other arc in the scene.

31

s A 2o ghw

T

-

Figure 13 Division of a cycles with 3 circular arcs (upper left) using the
Apollonius circle. The Apollonius circle has contact with all three circular
arcs. Using the Apollonius circle, the cycle can be divided into subproblems
(upper right, lower left, lower right).

A cycle with exactly two circular arcs is needed to evaluate a
branch—less medial axis. We can divide a cycle with three circular
arcs into three cycles with two circular arcs. Cycles with three
circular arcs will have a Y-—shaped medial axis inside it. The
bifurcation point is the point where medial axis branches and has
triple contact with the circular arcs. By finding that point, we can
divide the cycle into three parts. Each of the smaller cycle will contain
circular arcs segmented at the contact point of the bifurcation point’s

maximum touching disk. Also, the smaller cycle will contain two

32

BELE

TUl

transitions, where one of them is from the original cycle and the other
corresponding to the maximum touching disk with triple contact.
Such a maximum touching disk is called a circle of Apollonius.
Circles of Apollonius refers to a set of circles which have tangential
contact with the 3 circles given. In our case, the 3 circles correspond
to the superset circles of the 3 circular arcs. There are at most 8
solutions to the Circles of Apollonius problem. The Apollonius circle
and a given circle can have two types of tangential contact, whether
one circles includes the other or not. And there are 3 circles given.
These leads to 8 cases of contact types that a solution circle can have
and results into a change in the equation. We can easily know whether
the two centers lie in the same side or not, as the solution circle’s

center should always appear on the free space side.

Figure 14 For cycles with 4 or more arcs, randomly sample maximum
touching disk to make their children smaller.

33

s A 2o ghw

- -

There are cases where cycles contain 4 or even more circular
arcs in it. A circle that has tangential contact with four circular arcs
generally do not exist. Instead, we can find any maximum touching
circle and use it to divide the cycle. Adding a transition inside a cycle
will cut the cycle in two. The two cycle can have at minimum two
circular arcs inside it, while at maximum it can have the same number
of arcs before the cut. There is no guarantee that the cut reduces the
number of circular arcs in the cycle at each cut operation. But it is
guaranteed that the free space size is reduced, as the two new cycles’
free space are mutually exclusive and collectively exhaustive to the

input cycle’s free space. Therefore, we can recursively cut the cycle

with many arcs, and it will eventually fall under some error bound.

........

Figure 15 The trivial case of a cycle with single circular arc.

A cycle might have only a single circular arc inside it. This can
happen when a circular arc has its concave part to the outside. The
touching disk has first contact at another endpoint of the same
circular arc. We can simply discard this free space segment. The
shape of the free space is a circular sector. No disk in the circular
sector can have multiple contacts with the given circular arc.

Therefore, there is no medial axis in the inner region.

34

* ,H w

- -

2 g

Figure 16 A recursive approach to evaluate a free space with single medial
axis segment.

Through cutting, all cycles have two circular arcs in it. Evaluating
these cycles leads to a single branch—less medial axis. To evaluate
a cycle into a curve, we can take two approaches. The first one is the
recursive approach. We can further cut these cycles of two circular
arcs. These leads into two cycles with two circular arcs. We can
recursively cut these cycles. The free space related to the cycle
always decreases at each recursion. Eventually, the circles will
almost be very small, and the two transitions’ midpoints will come
very closer to each other. If some error bound conditions are met,
we can simply connect the two transition midpoints to form a very
small line segment. As the segmentation of the free space was
mutually exclusive and collectively exhaustive, we can get a union of
all of these tiny line segments to form the medial axis.

The second approach is geometric. Concerning the fact that the
medial axis is a set of equidistant points, we can use the geometric
features of circular arcs to get the exact equation of the medial axis

in that cycle. The medial axis segment is a conic section.

35

s A 2o ghw

The type of conic section changes with whether the free space
1s on the convex part of the circular arc or not. The distance to a
circular arc can be represented with the circular arc’s radius r and
the distance dto the circular arc’s center. But this changes with the
convexity. If the random point is on the convex side of the arc, the
distance to the circular arc is (d-r). On the other hand, if the point
exists in concave part of the circular arc, the distance to the circular
arc becomes (r-d).

Assume that for a point p in the free space of a cycle, its distance
to the first arc of radius r; is di, while the distance to the second arc
of radius rz is dp. If both circular arcs have a free space on its convex
side, the distance between p and the circular arcs are (r1 -di) and (r2
-d;) respectively. The point p is on the medial axis, therefore those
two distances are the same. The equation therefore becomes ri-r; =
di - d2. The left—hand side is a constant. This means that for p to be a
medial axis, its difference of the distances to two points should be a
constant. This 1s a definition of a hyperbola with its foci as the
circular arcs’ center. The resulting equation is the same when both
circular arcs are concave. Therefore, if the convexities of the two
circular arcs are the same, the medial axis is a hyperbola. If the radii
of the two circular arcs are the same, the hyperbola degenerates into
a line segment.

If the convexities of the two circular arcs differ, the equation
becomes r1 + r, =d; + dz, which is an equation of an ellipse.

We know the foci positions and the major axis length. Therefore,
we can evaluate the explicit form of the conic sections using cos, sin,
cosh, and sinh. The endpoints of these conics are the maximum

touching disk centers. We can know which parameter value it

36

B

- -

corresponds to using arccosh and arcsinh. Therefore, with equation and
parameter range, we can evaluate a conic section segment.

Notice that the geometric approach uses algebraic formulas, this
1s usually faster than the recursive approach when size of the free
hyperbolic

space between the circular arcs is big. Or else,

trigonometry functions and their inverse are relatively a heavy

operation, and this will make the routine slower.

Figure 17 The bisector(blue) between two convex circular arcs is a
hyperbola.

37

R

Cy

i
Figure 18 The bisector(blue) between a convex circular arc and a concave
circular arc is an ellipse.

T ~-

il

Figure 19 The bisector(blue) between two concave circular arcs is a
hyperbola.

From above, Voronoi structure in 2D is computable. The method
to construct a 3D structure is to use multiple samples of 2D Voronoi
structures. We connect them between slices to get a 3d structure.

We can see the medial axis in a slice as a graph structure. The

38

bifurcation points correspond to vertices in the graph, while the
medial axes are the edges. The main task is to find which point in one
slice corresponds to which point in another slice. Intuitively, if the
two slices are very close to each other, the topology of the graph will
be the same and the bifurcation points would not move largely. There
could be ambiguous correspondence between bifurcation points when
they get clustered in a small region, but we can perform denser
sampling to reduce the ambiguity to some extent under the error
bound. We add edges between bifurcation points if they seem to
match. Through this process we get a curve that connects the
bifurcation points. These curves are boundaries between Voronoi
surface segments.

A surface segment can be formed by picking four neighboring
bifurcation points a, b, ¢, d according to the following conditions. The
points a and b should be inside the same slice, while points ¢,d should
be inside the same neighboring slice. There should be 4 edges, each
of which connects (a, b), (¢, d), (a, ¢), and (b, d). The graph structure
should be that of a quadrilateral. The first two edges, which are
medial axis component curves confined to a single slice, are almost
the same when the slices are close. The latter two edges are line
segments almost parallel to the 0—axis, connecting two slices.
Therefore, the four edges would form a boundary of a surface that is
almost a ruled surface. Collection of these surfaces would result into
the Voronoi structure in 3d.

One thing to take attention is the X—junction. As 8 changes, two
bifurcation points with three branches, could come together and
become a single bifurcation point with 4 branches. This bifurcation
point is called a X—junction and can be thought of as a change in the

topology of the Voronoi structure. If there is a large 0 value

39

- ;ﬂ i 1_'_” 'ﬁ}

- -

TUl

difference between the two slices near a X—junction, the matching of
the bifurcation points can get erroneous. To prevent this, a denser
sampling is needed when there are two bifurcation points near each
other. It is hard to compute the exact value of 8 with X—junction.
Through dense sampling, an approximate 8 where the two bifurcation

points are near enough is computable.

40

Chapter 5

Experiment Results

The proposed algorithms were implemented in C++ under an
environment of Windows 10. The tests were performed with a CPU
of i7=6700k, a GPU of GTX1070, and a memory of 32GB.

Two pairs of a robot and a scene filled with obstacles were tested.
One of them will be called the easy case and the other one will be
called the hard case.

The easy case uses a simple square robot and a scene with some
regular polygons. The gray object in the left is the robot, while the

blue objects in the right are obstacles.

.
O

Figure 20 Robot (left, gray) and Obstacles (Right, blue)

41

A2t &

Below in Figure 21 is some construction results of the Minkowski

Sum and the Voronoi structure in a single slice. The gray objects are

the configuration space obstacles. The blue curves are the medial

axes. The black square surrounding the scene exists to give a bound

to the Voronoi structure, as medial axis can have infinite length. The

surrounding square can be thought of as a bound to the robot’s

working region.

@
0 e

Qe

O
Qe

Figure 21 Configuration space obstacles and Voronoi structure at 8 = 0°

(upper left), 30° (upper right), 60° (lower left), 90° (lower right).
The result of upper left and lower right is different
as the robot’s rotational center is not exactly the square’s center.

42

;.,ﬂ

e

o1
=]

| 8w

The red objects below in Figure 22 is the configuration space
obstacles in 3D. The four images show the same set of configuration
space obstacles, with different camera positions and angles.

From the lower right image, you can see that some of the
surfaces that is not part of the boundary exist, but they only exist in

the inner region of the configuration space obstacles.

)) X (o
X

Figure 22 Configuration space obstacles in 3D,
with different camera configurations

Stacking up the Voronoi structures in 2D leads to the green
object you can see in Figure 24 . The magenta curves in Figure 23

visualizes the connection between the bifurcation points.

43

Figure 23 Connected Bifurcation Points in 3D

Figure 24 Voronoi structure stacked in 3D for the easy case.

44

@

Figure 25 Motion planning Result 1

o A

> i “-\\

pd)
il)

@

Figure 26 Motion Planning Result 2

What you can see in Figure 25 and Figure 26 are examples of
motion planning results, using the network constructed by connecting
the two—dimensional Voronoi structures. A total of 360 slices each
were used to find the path. The color coding of the path represents

the rotation of the robot, to be specific, the RGB value is (1 —%) *
45

(1,0,0) + (%) % (0,1,0).

A" algorithm was used for searching the path in the network of
Voronoi structures. The code for the A" algorithm was from an open—
source library called C++ Boost.

For the case of Figure 25, it took 2.28 seconds to compute all the
slices. It took 3.379 seconds to execute the A" algorithm. And for the
case of Figure 26, it took 2.275 seconds to compute all 360 slices, and
3.372 to run A",

Each of Figure 27 and Figure 28 is a visualization of a path in

three—dimensional configurations space of Figure 25 and Figure 26.

Figure 27 Path of Figure 25 in 3D

46

Figure 28 Path of Figure 26 in 3D

For the hard case, we use a 1° rotational sweep volume of a
rectangle as the input of a robot. If a path does not have contact with
this rotational sweep volume, the original rectangle is guaranteed to
be collision—free when all the differences between slices are below
1°.

The scene of obstacles was intentionally designed so that the
robot must pass through a narrow corridor while performing rotation
simultaneously.

The robot is colored gray and the obstacles in the scene are

colored blue in Figure 29.

47

f

%

Figure 29 Hard case, Robot (left) and Obstacles (Right)

Figure 30 shows the slices containing configuration space
obstacles and the Voronoi structure. Unlike the easy case, the robot
has its center at the center of the rotation sweep volume. Therefore,
the robot is equivalent to itself rotated with an angle of 180°.

One thing you can find in Figure 30 is that there are much more
medial axes in the configuration space. This comes from the fact that
the robot is a rotational sweep volume. Rotational sweep volumes
have points that are not G'—continuous. Minkowski sum with such
object causes the medial axis to have contact with configuration

space obstacles at some points.

48

Figure 30 Hard case, slices with rotation of 0°, 30°, 60°, 90°, 120°, 150°

49

Figure 31 shows the 3D configuration space obstacle’s surfaces
calculated with the discussed algorithms. You can see in lower left
that the hole, which the robot can traverse with rotation, is preserved.
This is one example that shows that no redundant surfaces invade

free space.

Figure 31 Configuration space obstacles in 3D, for the hard case

The Voronoi Structure in this setting is in Figure 32. The picture
above only shows the configuration space obstacles, while the bottom
one shows the Voronoi structure too. The camera configuration is the

same.

50

Figure 32 Voronoi structure for hard case.

The path that is made for the hard case is in Figure 33. You can
see that the robot rotates through to corridor as intended.

The time needed to generate the Voronoi structure was 2.896
seconds. While the time needed to perform A" search was 5.93

seconds.

Figure 33 Path for the hard case

Finally, the path in 3D is shown in Figure 34. The figure shows
that the narrow corridor is properly generated and followed. The
generated path enters the narrow free space inside the object at the

upper left image and leaves it at the lower right image.

52

2 g8 i

Fiaaen, SEOUL NATIONAL | NVERSTY

Figure 34 Path in 3D, hard case

-

B
o

:

-Tff 8} 3

Chapter 6

Conclusion

In this thesis we proposed an algorithm to compute the
configuration space obstacles for a moving planar robot with
translation and rotation in the xy6—space. Based on the result, the
Voronol structure is also computed. It is generated by stacking two—
dimensional medial axes. Notice that the result is different from
directly constructing a medial surface in the xyz—space. This is
because the distance metric is different from the Euclidean metric.

Another contribution of this thesis is a motion planning
framework that 1s based on an arc—spline representation for two—
dimensional objects. This is because our algorithms use circular arcs
as input. The circle—based geometric structures greatly simplify
motion planning using the configuration space approach. Providing a
visualization tool for the 3D configuration space, we can facilitate

further research in motion planning.

54

s A2t gy

Bibliography

[1] S. M. LaValle, Planning Algorithms, USA: Cambridge University Press,
2006.

[2] X. Sheng, "Motion Planning for Computer Animation and Virtual Reality
Applications," in Proceedings of the Computer Animation, USA, 1995.

[3] A. D. Mali, "Motion Planning in Computer Games," in Encyclopedia of
Computer Graphics and Games, N. Lee, Ed., Cham, Springer
International Publishing, 2018, p. 1-6.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.
Kavraki and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations, MIT Press, 2005.

[5] Y.-J.Kim, G. Elber and M.-S. Kim, "Precise contact motion planning for
deformable planar curved shapes," Computer-Aided Design, vol. 70, pp.
126-133, 2016.

[6] R.Narayanaswami and J. Pang, "Multiresolution analysis as an approach
for tool path planning in NC machining," Computer-Aided Design, vol.
35, pp. 167-178, 2003.

[7] D. Edwards, "Amazon now has 200,000 robots working in its
warehouses," 21 01 2020. [Online]. Available:
https://roboticsandautomationnews.com/2020/01/21/amazon-now-—
has—-200000-robots—working—in—its—-warehouses/28840/. [Accessed
01 06 20211.

[8] Lozano—-Perez, "Spatial Planning: A Configuration Space Approach,”
[EEE Transactions on Computers, Vols. C-32, pp. 108-120, 1983.

[9] T. Lozano-Pérez and M. A. Wesley, "An Algorithm for Planning
Collision—-Free Paths among Polyhedral Obstacles," Commun. ACM, vol.
22, p. 560-570, 10 1979.

[10] M.-S. K. G. E. In-Kwon Lee, "Polynomial/Rational Approximation of
Minkowski Sum Boundary Curves,," Graphical Models and Image
Processing,, Vols. Volume 60, Issue 2,, pp. 136-165, 1998,.

[11]1 D. S. Meek and D. J. Walton, "Approximating smooth planar curves by
arc splines," Journal of Computational and Applied Mathematics, vol.
59, pp. 221-231, 1995.

[12] K. M. Bolton, "Biarc curves," Computer-Aided Design, vol. 7, pp. 89—
92, 1975.

[13]J. Lee, Y. Kim, M. Kim and G. Elber, "Comparison of three bounding
regions with cubic convergence to planar freeform curves," 7The Visual

55

Al 2 off 8

Computer, vol. 31, pp. 809-818, 2015.

[14] V. J. Lumelsky and A. A. Stepanov, "Path—-Planning Strategies for a
Point Mobile Automaton Moving amidst Unknown Obstacles of Arbitrary
Shape," Algorithmica, vol. 2, p. 403-430, 11 1987.

[15] S. Han, S.-H. Yoon, M.-S. Kim and G. Elber, "Minkowski Sum
Computation for Planar Freeform Geometric Models Using G'-Biarc
Approximation and Interior Disk Culling," Vis. Comput., vol. 35, p. 921-
933, 6 2019.

[16]J. Lee, Y.-J. Kim, M.-S. Kim and G. Elber, "Efficient Voronoi diagram
construction for planar freeform spiral curves," Computer Aided
Geometric Design, vol. 43, pp. 131-142, 2016.

[17] H. Blum, "A Transformation for Extracting New Descriptors of Shape,"
in Models for the Perception of Speech and Visual Form, W. Wathen—
Dunn, Ed., Cambridge, MIT Press, 1967, p. 362-380.

[18] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jittler and M.
Rabl, "Medial axis computation for planar free—form shapes,"
Computer-Aided Design, vol. 41, pp. 339-349, 2009.

[19]J. Mizrahi, S. Kim, I. Hanniel, M. Kim and G. Elber, "Minkowski sum
computation of B-spline surfaces," Graph. Model., vol. 91, pp. 30-38,
2017.

[20] H. Choi, S. Choi and H. Moon, "Mathematical Theory Of Medial Axis
Transform," Pacific J Math, vol. 181, 12 1997.

[211Y. Zhu, F. Sun, Y.-K. Choi, B. lJittler and W. Wang, "Computing a
compact spline representation of the medial axis transform of a 2D
shape," Graphical Models, vol. 76, pp. 252-262, 2014.

[22] T. Culver, J. Keyser and D. Manocha, "Exact computation of the medial
axis of a polyhedron," Computer Aided Geometric Design, vol. 21, pp.
65-98, 2004.

[23] S. Musuvathy, E. Cohen and J. Damon, "Computing medial axes of
generic 3D regions bounded by B-spline surfaces," Computer-Aided
Design, vol. 43, pp. 1485-1495, 2011.

[24]1Y. Lee, J. Baek, Y. M. Kim and F. C. Park, "IMAT: The lterative Medial
Axis Transform," Computer Graphics Forum, vol. n/a.

[25] A. H. Qureshi, Y. Miao, A. Simeonov and M. C. Yip, "Motion Planning
Networks: Bridging the Gap Between Learning-Based and Classical
Motion Planners," /EEE Transactions on Robotics, vol. 37, pp. 48-66,
2021.

[26] P. Gao, Z. Liu, Z. Wu and D. Wang, "A Global Path Planning Algorithm
for Robots Using Reinforcement Learning," in 2019 IEEE International
Conference on Robotics and Biomimetics (ROBIO), 2019.

[27] L. Butyrev, T. EdelhduBer and C. Mutschler, Deep Reinforcement
Learning for Motion Planning of Mobile Robots, 2019.

[28]1J. Connors and G. Elkaim, "Analysis of a Spline Based, Obstacle
Avoiding Path Planning Algorithm," in 2007 IEEE 65th Vehicular

56

Al 2 off 8

Technology Conference — VIC2007-Spring, 2007.

57

Abstract

HH oA FF ol 3AFE A9
Configuration &7t Voronoi 7+%¢] A4t

o] =o A= HH 9ol RF o= arc—splinel.® XdE =9

Configuration #%F Fol&E31 Voronoi 7%¢ &2 Al WS A
Alstt), ol 5 94, 957t A= w@edt 7)skErd A Eo] dgdth
Bezier ¥+ B-spline 4% % Z3HE &F ol EAO ZH$of+=,

biarc approximations %3 arc—splinel® X3&o] 7lsa|Zt}.
Configuration &3t FellZe] AAW A ¢4 WS 53
Aest A Jojods & 4 Sl 3% Voronoi 7-32E ©°]F
2 o7 149 229 Voronoi Diagrams 2+ W28 ALg-slo] ot
Aok mpreto® | whEojxl 3 QoA Aol Hu clearance

= A4 EH

rlr

=
od i
e 2

Keywords : Configuration #Z%F %IZXA7] HA Voronoi T-F,
THE, T2 A8, 4%
Student Number : 2019—23686

58

A2t &

	Chapter 1 Introduction
	1.1 Research Background
	1.2 Main Contributions
	1.3 Thesis Organization

	Chapter 2 Preliminaries
	2.1 Configuration Space Obstacles and Minkowski Sum
	2.2 Voronoi Structure Computation
	2.3 Object Representation and Biarc Approximation

	Chapter 3 Related Work
	Chapter 4 Geometry Construction Algorithms
	4.1 3D Configuration Space Obstacle Computation
	4.2 3D Voronoi Structure Computation

	Chapter 5 Experiment Results
	Chapter 6 Conclusion
	Bibliography

<startpage>7
Chapter 1 Introduction 1
 1.1 Research Background 1
 1.2 Main Contributions 5
 1.3 Thesis Organization 6
Chapter 2 Preliminaries 7
 2.1 Configuration Space Obstacles and Minkowski Sum 7
 2.2 Voronoi Structure Computation 10
 2.3 Object Representation and Biarc Approximation 11
Chapter 3 Related Work 13
Chapter 4 Geometry Construction Algorithms 16
 4.1 3D Configuration Space Obstacle Computation 16
 4.2 3D Voronoi Structure Computation 23
Chapter 5 Experiment Results 41
Chapter 6 Conclusion 54
Bibliography 55
</body>

