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Abstract

Object detection, one of the main areas of computer vision researches, is a

task that predicts where and what the objects are in an RGB image. While the

object detection task requires a massive number of annotated samples to guar-

antee its performance, placing bounding boxes for every object in each sample

is costly and time consuming. To alleviate this problem, Weakly-Supervised

Learning and Semi-Supervised Learning methods have been proposed. How-

ever, they show large gaps from supervised learning in efficiency and require

a lot of research. Especially in Semi-Supervised Learning, the deep learning-

based learning methods are not yet applied to object detection.

In this dissertation, we have applied the latest deep learning-based Semi-

Supervised Learning methods to object detection, which considers and solves

the problems caused by applying the established Semi-Supervised Learning al-

gorithms. Specifically, we have adopted Consistency Regularization (CR) and

Interpolation Regularization (IR) Semi-Supervised Learning methods to object

detection individually and combined them together for performance improve-

ment. It is the first attempt to extend CR and IR to object detection problem

which was only used in conventional semi-supervised classification problems.

First, we propose a novel Consistency-based Semi-Supervised Learning method

for object Detection (CSD), which is a way of using consistency constraints to

enhance detection performance by making full use of available unlabeled data.

To be specific, the consistency constraint is applied not only for object classifica-

tion but also for localization. We also propose Background Elimination (BE) to

avoid the negative effect of the predominant backgrounds on the detection per-
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formance. We evaluated the proposed CSD both in single-stage and two-stage

detectors, and the results show the effectiveness of our method.

Second, we present a novel Interpolation-based Semi-Supervised Learning

method for object Detection (ISD), which considers and solves the problems

caused by applying conventional Interpolation Regularization (IR) directly to

object detection. We divide the output of the model into two types according to

the objectness scores of both original patches that are mixed in IR. Then, we

apply a separate loss suitable for each type in an unsupervised manner. The pro-

posed losses dramatically improve the performance of Semi-Supervised Learn-

ing as well as supervised learning.

Third, we introduce the method of combining CSD and ISD. In CSD, it

requires an additional prediction for applying consistency regularization, and

it allocates twice (⇥2) as much memory as conventional supervised learning.

In ISD, in addition, two supplementary predictions are computed for applying

interpolation regularization, and it takes three times (⇥3) as much memory as

conventional training. Therefore, it requires three extra predictions to combine

CSD and ISD. In our method, by applying shuffle the sample in mini-batch in

CSD, we reduced the additional predictions from three to two, which can cut

back the memory. Furthermore, combining two algorithms shows performance

improvement.

keywords: Semi-supervised learning, Object detection, Consistency regu-

larization, Interpolation regularization, Deep learning

student number: 2015-26109

ii



Contents

Abstract i

Contents iii

List of Tables vii

List of Figures ix

1 INTRODUCTION 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Consistency-based Semi-Supervised Learning for ob-

ject Detection (CSD) . . . . . . . . . . . . . . . . . . . 9

iii



1.4.2 Interpolation-based Semi-Supervised Learning for ob-

ject Detection (ISD) . . . . . . . . . . . . . . . . . . . 10

1.4.3 Combination of CSD with ISD . . . . . . . . . . . . . . 10

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related works 12

2.1 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Self-Training . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Consistency Regularization . . . . . . . . . . . . . . . . 14

2.1.3 Interpolation Regularization . . . . . . . . . . . . . . . 15

2.2 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Evaluation metric . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Survey of Object Detection Algorithms . . . . . . . . . 23

3 Consistency-based Semi-supervised learning for object Detection (CSD) 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Consistency loss for classification . . . . . . . . . . . . 45

3.2.2 Consistency loss for localization . . . . . . . . . . . . . 46

3.2.3 Overall loss for object detection . . . . . . . . . . . . . 47

3.2.4 Application to two-stage detector . . . . . . . . . . . . 48

3.2.5 Background Elimination . . . . . . . . . . . . . . . . . 49

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Implementation Detail . . . . . . . . . . . . . . . . . . 52

3.3.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Unlabeled data with different distribution (MSCOCO) . 55

iv



3.3.4 MSCOCO . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Consistency regularization with only labeled data . . . . 58

3.4.2 Single-stage detector vs. Two-stage detector: . . . . . . 60

3.4.3 Background Elimination: . . . . . . . . . . . . . . . . . 60

3.4.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.5 Self-training vs. Consistency regularization . . . . . . . 63

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Interpolation-based Semi-supervised learning for object Detection

(ISD) 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Type categorization. . . . . . . . . . . . . . . . . . . . 69

4.2.2 Type I loss . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Type II loss . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 PASCAL VOC . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Ablation studies for Type-I and Type-II losses . . . . . . 77

4.4.2 Beta distribution . . . . . . . . . . . . . . . . . . . . . 78

4.4.3 Training model size . . . . . . . . . . . . . . . . . . . . 79

4.4.4 Object detector . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Combination of CSD and ISD 82

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

v



5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 PASCAL VOC . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Unlabeled data with different distribution (MSCOCO) . 89

5.2.3 MSCOCO . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 CSD and ISD with only labeled data . . . . . . . . . . . 90

5.3.2 Small labeled dataset . . . . . . . . . . . . . . . . . . . 91

5.3.3 Training model size . . . . . . . . . . . . . . . . . . . . 92

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusion 98

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 101

Abstract (In Korean) 116

⇣¨X� 118

vi



List of Tables

2.1 Pascal VOC and MSCOCO Dataset . . . . . . . . . . . . . . . 19

2.2 Pascal VOC and MSCOCO Classes . . . . . . . . . . . . . . . 20

2.3 VOC2007+2012 training and VOC 2007 test result . . . . . . . 35

2.4 Recall for objects in different size [49]. . . . . . . . . . . . . . 37

2.5 Results on VOC2007 test dataset trained with VOD2007 small

train dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Single-Stage Detection results for PASCAL VOC2007 test set. . 54

3.2 Two-Stage Detection results for PASCAL VOC2007 test set. . . 56

3.3 Detection results on PASCAL VOC2007 test set. . . . . . . . . 57

3.4 Detection results for MS COCO test-dev set. . . . . . . . . . . . 58

3.5 Detection results for PASCAL VOC2007 test set. . . . . . . . . 59

3.6 Effects of using Background Elimination (BE) on SSD300 per-

formance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Comparisons between self-training and consistency regulariza-

tion based methods on PASCAL VOC2007 test set. . . . . . . . 62

4.1 Detection results for PASCAL VOC2007 test set under the su-

pervised training setting. . . . . . . . . . . . . . . . . . . . . . 75

vii



4.2 Detection results for PASCAL VOC2007 test set under the semi-

supervised training setting. . . . . . . . . . . . . . . . . . . . . 76

4.3 Ablation study of Type-II losses on PASCAL VOC2007 test set. 78

4.4 Ablation study for ↵ and each type in VOC07(L) + VOC12(U)

training dataset and VOC07 testing dataset. . . . . . . . . . . . 79

5.1 Detection results for PASCAL VOC2007 test set under the su-

pervised training setting. . . . . . . . . . . . . . . . . . . . . . 87

5.2 Detection results for PASCAL VOC2007 test set under the semi-

supervised training setting. . . . . . . . . . . . . . . . . . . . . 88

5.3 Detection results for PASCAL VOC2007 test set. . . . . . . . . 89

5.4 Detection results for MS COCO test-dev set. . . . . . . . . . . . 90

5.5 Detection results for PASCAL VOC 2007 set. . . . . . . . . . . 91

viii



List of Figures

1.1 Annotation types and times for three different tasks. . . . . . . . 2

1.2 Different types of object detection settings . . . . . . . . . . . 3

1.3 Semi-supervised Learning for Object Detection . . . . . . . . . 5

2.1 The overall structure of Self-Training. . . . . . . . . . . . . . . 13

2.2 The overall structure of Consistency Regularization. . . . . . . . 14

2.3 Example of Conventional training and Mixup training methods

in binary classification problem . . . . . . . . . . . . . . . . . . 16

2.4 Overview of the images of Cutout, Cowout, Mixup, CutMix,

and our CowMix . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Interpolation Consistency Training . . . . . . . . . . . . . . . . 18

2.6 Detection results according to the threshold. . . . . . . . . . . . 21

2.7 Recall vs. Precision graph . . . . . . . . . . . . . . . . . . . . . 22

2.8 Two types of object detectors in pre-deep learning era. . . . . . 24

2.9 deep learning based two types of object detectors . . . . . . . . 26

2.10 Example of classifier of object detection based on deep learning 27

2.11 Conventional SSD vs. the proposed Rainbow SSD (R-SSD). . . 30

2.12 Proposed methods of feature concatenation . . . . . . . . . . . 32

2.13 Conventional SSD vs. the proposed Rainbow SSD (R-SSD). . . 40

ix



3.1 difficult to establish a one-to-one correspondence . . . . . . . . 43

3.2 Overall structure of our proposed method for single stage detector. 45

3.3 Overall structure of our proposed method for two stage detector. 48

4.1 Mixed image created by random interpolation between images

A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 (a) Type-I : both patches are from object classes. (b) Type-II :

one of the patches is from the object class. . . . . . . . . . . . . 67

4.3 Type-I Loss : both patches are from object classes . . . . . . . . 70

4.4 Type-II : one of the patches is from the object class . . . . . . . 71

5.1 The mixed image Mix�(A, Â) of A 2 A and its horizontal

flipped version Â 2 Â . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Combination of ISD with CSD. . . . . . . . . . . . . . . . . . . 84

5.3 Qualitative results for the PASCAL VOC2007 test set using su-

pervised SSD, semi-supervised CSD and CSD+ISD models in

table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Qualitative results for the PASCAL VOC2007 test set using su-

pervised SSD, semi-supervised CSD and CSD+ISD models in

table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Qualitative results for the PASCAL VOC2007 test set using su-

pervised SSD, semi-supervised CSD and CSD+ISD models in

table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Qualitative results for the PASCAL VOC2007 test set using su-

pervised SSD, semi-supervised CSD and CSD+ISD models in

table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



Chapter 1

INTRODUCTION

Object detection, one of the main topics of computer vision research, is the

task of predicting the position of objects and their classes in an RGB image

[60, 57, 58, 50]. It can facilitate high-level scene understanding from an image

consisting of digital numbers for each pixel. Therefore, it is widely employed

in applications, such as license plate recognition, surveillance cameras, driving

aid, and autonomous cars [79, 8, 26]. Since improving the accuracy and speed

of object detection directly benefits downstream tasks mentioned above, this

research is crucial, and various methods have been studied [50, 60, 72, 7].

Semi-Supervised Learning (SSL) is a method alleviating the inefficiencies

associated with the data collection and annotation process, which lies between

supervised learning and unsupervised learning in that both labeled and unla-

beled data are used in the learning process [9, 55]. It can efficiently train a

model from fewer labeled data using a large amount of unlabeled data [92, 9].

Accordingly, the significance of SSL has been studied extensively in the previ-

ous literature [94, 62, 32, 56]. These results suggest that SSL can be a useful

approach when the amount of annotated data is insufficient.
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Figure 1.1: Annotation types and times for three different tasks.

Large datasets with complete annotations are essential to the success of the

image recognition task [34, 53, 63, 33, 36]. In Fig. 1.1, it shows each annotation

type and time for three types of recognition tasks. Among them, labeling for ob-

ject detection requires a pair of a category and a bounding box (bbox) location

for each object within each image, and it is known that it takes about 10 seconds

for labeling an object [64, 2]. As such, labeling for object detection consumes

enormous costs, time, and effort. As an example, the Caltech pedestrian detec-

tion benchmark took about 400 hours to annotate 250k images [21].

Despite the data labeling cost for the object detection tasks being substan-

tially more than that of the classification tasks, semi-supervised learning meth-

ods for classification have been mainly studied. Therefore, it is necessary to

investigate semi-supervised learning for object detection or segmentation which

takes more time due to the instance-level annotation.
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(a) Supervised learning (b) Weakly supervised learning

(c) Weakly semi-supervised learning (d) Semi-supervised learning

Figure 1.2: Different types of object detection settings

Because of the higher complexity in time and resource for creating object

detection datasets, methods for learning with weakly labeled data (DW ) or un-

labeled data (DU ) have been recently studied as opposed to learning with the

labeled data (DL)1 only. There are mainly three types of object detection meth-

ods for reducing the cost of such labeling: Weakly-Supervised, Weakly-Semi-

Supervised, and Semi-Supervised Learning. Weakly-Supervised Learning trains

a model with a dataset that has only class information but no location informa-

tion (DW ) [96, 65, 29, 80, 30], as shown in Fig. 1.2.(b). Although this takes

less effort than the existing box-level labeling method, it results in a far infe-

rior localization performance compared to fully supervised learning [61, 12].

On the other hand, Weakly-Semi-Supervised Learning is a learning method

that uses DW as well as DL [70, 87], as shown in Fig. 1.2.(c). Weakly-Semi-

1DL = (Ii, yi)
NL
i=1 where yi = (classj , bboxj)

Mi

j=1 , DW = (Ii, yi)
NW
i=1 where yi =

(classj)
Mi

j=1, and DU = (Ii)
NU
i=1. Here, NX is the number of images, and Mi is the number

of objects in the image Ii.
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Supervised detector improves its performance compared to that of Weakly-

Supervised Learning, but it still needs to label classes for DW . In the setting of

Semi-Supervised object detection, instead of DW , unlabeled data DU is utilized

in combination with the labeled data (DL) [82, 54], as shown in Fig. 1.2.(d).

Studies on complete Semi-Supervised object detection have recently been stud-

ied [82, 54] which is also the main topic of this dissertation.

The purpose of this dissertation is to propose novel Semi-Supervised Learn-

ing for object detection algorithms. We adopt various deep learning-based Semi-

Supervised Learning algorithms to object detection. Especially, we considered

and solved the problems caused by applying each conventional algorithm di-

rectly to object detection. Moreover, we propose a method to combine the pro-

posed algorithms efficiently to improve performance. First, Consistency-based

Semi-Supervised Learning for object detection is proposed as a way to improve

the detection performance by applying consistency constraint. We define the

classification consistency constraint as well as the localization consistency con-

straint for object detection. Furthermore, Background Elimination that reduces

the background effects is suggested.

Second, Interpolation-based Semi-Supervised Learning for object detection,

which is an approach by adopting interpolation regularization to improve detec-

tion performance, is proposed. We discovered that a problem occurred when

IR was directly applied to object detection, and we divided the types according

to the case where the problem occurs. Afterwards, we defined the appropriate

losses for each type.

Third, efficient way of combining the above two algorithms, CSD and ISD,

is proposed. Each CSD or ISD algorithm requires much memory, and simply

combining the two algorithms accumulates the memory. In other words, utiliz-

4



Figure 1.3: Semi-supervised Learning for Object Detection

ing the dataset of CSD, the combined model is designed to use the same memory

as the ISD.

The remainder of this chapter is organized as follows. In Section 1.1, we

define the problem to solve throughout this dissertation. Then, motivation and

challenges are discussed in Section 1.2 and Section 1.3, respectively. Contribu-

tions of the proposed methods in this dissertation are discussed in Section 1.4.

Finally, an outline of the dissertation is given in Section 1.5.

1.1 Problem Definition

This dissertation aims to propose various algorithms that improve the perfor-

mance of 2D object detection by applying Semi-Supervised Learning schemes.

In this dissertation, 2D object detection is defined as the combination of lo-

calizing bounding boxes of instances and classifying these regions into one

of the pre-defined categories. As shown in Fig 1.3, labeled dataset is com-

posed of DL = (Ii, yi)
NL
i=1 and each annotation of image is consisted of yi =

(classj , bboxj)
Mi

j=1 while unlabeled dataset is composed of DU = (Ii)
NU
i=1. Here,

NL is the number of images and Mi is the number of objects in the image Ii.

The object detector is trained in various ways by using not only DL but also DU

and the performance of the object detector is verified through the test dataset.

5



1.2 Motivation

In this section, we discuss the importance of 2D object detection, Semi-Supervised

Learning, Semi-Supervised Learning for object detection and the proposed al-

gorithms.

As previously stated, object detection predicts where and what objects are

in an image. By predicting high-level information from an image, we can apply

this algorithm in various fields. For example, through license plate recognition,

information on automobiles can be recognized much faster [1, 39, 45]. Also, in

the case of a driving aid, an object detector can notify the existence of an object

in the driver’s blind spot, enabling safer driving. Besides mentioned above, ob-

ject detection is useful in a wide variety of fields and with a fast and accurate

detector, it can change our environment in even better.

Semi-Supervised Learning is a learning method that improves the model’s

performance by using both labeled and unlabeled data. Since annotation con-

sumes enormous cost, time, and effort, as shown in Fig 1.1, various Semi-

Supervised Learning methods have been proposed to reduce the consumption

of annotations [77, 84]. Moreover, it shows significant performance improve-

ment compared to conventional supervised learning in the classification task.

Recently, Semi-Supervised Learning for object detection research that ap-

plies Semi-Supervised Learning to object detection has been introduced. As

mentioned before, since the annotation time of object detection is more required

than that of classification, the research of Semi-Supervised Learning for object

detection is necessary. Nonetheless, Semi-Supervised Learning methods before

the pre-deep learning era have been applied to deep learning-based object de-

tection researches.
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The proposed algorithms are the methods that apply the latest deep learning-

based Semi-Supervised Learning method to object detection. By using the latest

high-performance Consistency Regularization and Interpolation Regularization

mentioned above, a deep learning-based Semi-Supervised Learning method can

be applied to object detection leading to efficiency improvement.

1.3 Challenges

There are several obstacles that directly apply classification-based Semi-Supervised

Learning methods to object detection. In this section, we discuss the challenges

we have faced.

1.3.1 Structure

Object detection predicts multiple bounding boxes and their class probabilities.

Recent Semi-Supervised Learning methods for classification tasks adopt multi-

ple inferences, which computes the defined loss from multiple outputs. In classi-

fication, It is easy to match each other, but one-to-one correspondence between

outputs in object detection is very challenging.

1.3.2 Localization

Object detection predicts not only classification but also localization. As men-

tioned above, outputs of object detection have a lot of class probabilities and

box information which makes it difficult to match each box without annotation.

In addition, conventional classification-based Semi-Supervised Learning meth-

ods may work well in regression. Moreover, it may be necessary to define a new

type of loss for localization.

7



1.3.3 Background

Unlike classification problems, object detection has an additional class called

background. This background causes two problems: The first is the imbalance

problem of the number of classes. There are at most 100 instances in an image,

but prediction outputs of object detection are more than 30k in [50, 48]. There-

fore, semi-supervised learning losses computed with all candidates will be easily

dominated by backgrounds. In the absence of ground truth, it is difficult to dis-

tinguish the background and apply the algorithm. Second, it causes a problem

in interpolation regularization. We found that when interpolation regularization

was applied to object detection, the trend was different from that of the con-

ventional classification. When an object is interpolated with a background, the

interpolated image appears to be a 100% object corrupted by noise. Therefore,

we cannot directly apply interpolation regularization to object detection.

1.3.4 Memory

There is a memory limitation in training object detection. The latest object de-

tectors require large GPU memory to train the model, mainly due to the large

batch and network sizes. So memory should be considered even in small model

training. However, as mentioned above, the model has to be inferred multiple

times, which requires even more memory. Therefore, with our resources (four

1080Ti GPUs), it is difficult to train the state-of-the-art detector algorithms un-

der the same settings, such as the batch and model sizes.
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1.4 Contributions

The major contribution of this dissertation is that we are the first to adopt deep

learning-based semi-supervised classification algorithms for object detection.

Consistency Regularization (CR) and Interpolation Regularization (IR), which

are widely used in semi-supervised classification problems, are applied to object

detection. Moreover, we identify the problems that appear when CR and IR are

applied simultaneously to object detection and solve them, leading to higher

performance. Contributions to each method are discussed in this section.

1.4.1 Consistency-based Semi-Supervised Learning for object De-

tection (CSD)

We propose Consistency-based Semi-Supervised Learning for object Detection

(CSD) which is inspired by the Consistency Regularization (CR) [37, 71, 52]

that helps train a model to be robust to given perturbed inputs. However, as men-

tioned in 1.3.1, it is difficult to apply CR directly to the object detection problem

in case of multiple candidate boxes are generated for each image. Therefore, we

explore the consistency between the box predictions in the original and the hor-

izontally flipped version, which can be simply identified. Then, to tackle the

challenge in 1.3.2, we propose a new consistency loss for the location of the

predicted boxes, and it shows performance improvement and can help with re-

gression problems. We also propose the Background Elimination (BE) method

which excludes boxes with high background probability in the computation of

the consistency loss to prevent the ‘background’ class from dominating the con-

sistency loss, which is mentioned in 1.3.3.

We apply our CSD to both the single-stage detector and two-stage detec-
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tor and perform various ablation studies to show the benefits of the proposed

consistency losses for classification and localization. Also, the effect of BE has

been experimentally verified. Our experimental results show that the proposed

CSD helps all the detectors improve the performance.

1.4.2 Interpolation-based Semi-Supervised Learning for object De-

tection (ISD)

We propose Interpolation-based Semi-Supervised Learning for object Detection

(ISD), which is inspired by the Interpolation Regularization (IR) [89, 75, 76]

that shows the outstanding performance in supervised learning as well as in

Semi-Supervised Learning. However, as mentioned in 1.3.3, IR shows differ-

ent tendency from that of the conventional classification problem. To tackle this

problem, we categorize the mixed images into two types depending on whether

one of the original images is the object or background. Then, we apply a differ-

ent Semi-Supervised Learning algorithm suitable for each type.

Our experiments show the effectiveness of the proposed method for each

type by demonstrating a significant performance improvement over the conven-

tional algorithms.

1.4.3 Combination of CSD with ISD

We propose the method of combining two algorithms above. In order to com-

bine CSD with ISD, consideration of the memory size is essential. For CSD

algorithm, we compute an additional prediction for horizontally flipped images.

On the other hand, for the ISD algorithm, we compute two additional predictions

for other images and mixed images. Therefore, it requires four times memory

size to combine CSD with ISD. Our total memory in GPU available in the lab
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is 44 GB (four 1080Ti GPUs), and 12GB of memory is required for conven-

tional SSD. To sum up, when we directly combine two algorithms, it requires

48 GB memory which apparently exceeds our available memory. To solve this

problem, we shuffled horizontal flipped images in CSD and mixed with orig-

inal image batch. With this method, we can get four outputs (original outputs,

flipped outputs, shuffled flipped outputs, mixed outputs) using shuffle with three

inference (original images, flipped images, mixed images), which enables us to

train together in our environment.

In conclusion, combining of CSD with ISD shows much higher performance

than each algorithms adopted individually.

1.5 Outline

The structure of this dissertation is composed as follows: In Chapter 2, prior

works related to Semi-Supervised Learning and object detection are reviewed.

The proposed algorithms for Semi-Supervised Learning for object detection are

discussed through Chapter 3 to Chapter 5. Chapter 3 proposes Consistency-

based Semi-Supervised Learning for object Detection. Chapter 4 presents Interpolation-

based Semi-Supervised Learning for object Detection. Chapter 5 describes the

combination method for CSD and ISD. Finally, Chapter 6 provides concluding

remarks, limitations, and future directions of this research.
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Chapter 2

Related works

This chapter provides related works on Semi-Supervised Learning and object

detection.

In Section 2.1, Semi-Supervised Learning is described. In more detail, Sec-

tion 2.1.1 introduces self-training that is long used for Semi-Supervised Learn-

ing. Then, Section 2.1.2 presents Consistency Regularization, which is related to

Chapter 3. Section 2.3 represents Interpolation Regularization, which is related

to Chapter 4.

In Section 2.2, object detection is described. In more detail, we explain the

object detection dataset in Section 2.2.1. Then, evaluation metrics for object de-

tection are presented in Section 2.2.2. Section 2.2.3 represents various object

detection algorithms with Supervised and Semi-Supervised Learning. In Sec-

tion 2.2.3, we further introduce our previous work on supervised object detec-

tion.
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2.1 Semi-supervised learning

In a real environment, a finite number of labeled data (L = {(xl, yl)}) is usually

provided with an unlimited number of unlabeled data (U = {(xu}). Due to this

insufficient annotations of real-world sample, a lot of researchers have tried to

exploit the potential of unlabeled data.

2.1.1 Self-Training

Figure 2.1: The overall structure of Self-Training.

The self-training method has long been researched for Semi-Supervised

Learning [51, 62, 93, 95, 86]. It is a resampling technique that repeatedly anno-

tates unlabeled training samples based on the predicted confidence scores and

retrains itself with the selected data. Fig. 2.1 shows the overall process of self-

training. Self-training methods train a model using labeled data and then make

predictions on unlabeled data. If the top-1 prediction score for the input xu is

13



Figure 2.2: The overall structure of Consistency Regularization.

greater than a threshold �, the pseudo label of xu is set as the class ȳ whose score

is the maximum. Then xu can be treated as a labeled data in the form of (xu, ȳ)

[9]. Repetitively applying this process can boost the model’s performance but

impedes the whole training speed. In addition, depending on the threshold value

�, the amount of added data varies a lot, resulting in unstable performance. A

small number of additional pseudo-labeled samples may not improve the perfor-

mance sufficiently, while too many samples may degrade the performance with

incorrect labeling.

2.1.2 Consistency Regularization

The central idea of the Consistency Regularization methods is to enforce that

the model predictions should be the same under reasonable perturbations to the

input, as shown in Fig. 2.2 [37, 52, 71]. For object classification, such perturba-

tions involve random translation, random cropping, and horizontal flipping, etc.

Let us assume that xu and x0u are the original and the perturbed inputs, d(·, ·) be

a distance function, w(t) be a weighting function over iterations t and f(·) be

a function on which consistency loss is measured, then the consistency loss LU

14



is computed in an unsupervised manner and consequently the total loss Ltotal

is given by a linear combination of the consistency loss and the supervised loss

LS as follows:

LU = d(f(xu), f(x
0
u)) (2.1)

Ltotal = LS + w(t) · LU . (2.2)

Some notable examples of consistency training include the ⇧ model [37]

and Mean Teacher [71]. In the case of the ⇧ model, it is a method of learning

using different images xu and x0u in the same model. in the case of the Mean

Teacher, it is a method of learning using the teacher (ft) and student (fs) models.

At this time, ft is updated with EMA (exponential moving average).

FixMatch [67] is an algorithm that combines self-training and consistency

regularization. FixMatch utilizes Weak Augmentation data with horizontal flip-

ping, random translation, and cropping. When the output of Weak Augmentation

data exceeds the threshold, it makes a pseudo-label in the same way as in 2.1.1.

Then, for the pseudo-labeling samples, it applies strong augmentation [16, 13, 4]

and trains with pseudo-labeling. It has state-of-the-art performance among the

latest algorithms and is the inspiration for our ISD model.

2.1.3 Interpolation Regularization

An Interpolation-based Regularization is a promising approach due to its state-

of-the-art performances and virtually no additional computational cost [89, 75,

31]. These methods construct additional training samples by combining two

or more training samples. Mixup [89] and Between-class learning [73] are the

earliest works that took steps in this direction. These methods are based on the

principle that the output of a supervised network for an affine combination of
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(a) Conventional Training

(b) Mixup Training

Figure 2.3: Example of Conventional training and Mixup training methods in

binary classification problem

two training samples should change linearly.

Such kind of inductive bias can be induced in a network by training it on the

synthetic samples constructed by mixing two samples and their corresponding

targets.

x̃ = � · xi + (1� �) · xj

ỹ = � · yi + (1� �) · yj
(2.3)

As shown in Fig. 2.3.(a), the decision boundary becomes steep under the

conventional training scheme. Therefore, for the new data input xk (red point

in Fig. 2.3.(a)) between x1 and x2, the model predicts to 1 even though xk is
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Figure 2.4: Overview of the images of Cutout, Cowout, Mixup, CutMix, and our

CowMix

near the decision boundary. On the other hand, as shown in Fig. 2.3.(b), using

the Mixup training method, the model predicts more linearly, and it makes the

decision boundary more smooth.

Manifold Mixup [75] mixes features in the deeper layers instead of input im-

ages. As shown in the Fig. 2.4, other works such as CutMix [88] and CowMix

[24] construct the synthetic samples by mixing the CutOut [16] and CowOut

versions of two samples. Overall, these approaches can be interpreted as a form

of data-augmentation technique that seeks to construct additional training sam-

ples by combining two or more samples.

In the Semi-Supervised Learning setting, Interpolation Consistency Train-

ing (ICT) is the approach that applies Interpolation regularization [76]. As shown

in Fig. 2.5, ICT encourages the prediction (f(Mix�(xui , xuj ))1 at an interpo-

lation of unlabeled samples ((Mix�(xui , xuj )) to be consistent with the inter-

1Mix�(A,B) = � ·A+ (1� �) ·B
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Figure 2.5: Interpolation Consistency Training

polation (Mix�(f(xui), f(xuj ))) of the predictions at those samples (f(xui),

f(xuj )). It achieves state-of-the-art performance, and we adopt this approach to

object detection in chapter 4.
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2.2 Object detection

2.2.1 Dataset

Table 2.1: Pascal VOC and MSCOCO Dataset

PASCAL VOC MSCOCO

# of classes 20 80

Super Category

Person (1) Person (1), Accessory (5)

Animal (6) Animal (10), Appliance (5)

Electronic (6), Food (10)

(# of classes Indoor (6) Furniture (6), Indoor (7)

in Super Category) Kitchen (7), Outdoor (5)

Vehicle (7) Sports (10), Vehicle (8)

Train dataset
VOC2007 trainval COCO Train2014

VOC2012 trainval COCO Val2014-35k

Test dataset VOC2007 test COCO test-dev

In this dissertation, we have utilized the PASCAL VOC [23] and MSCOCO

[49] datasets which are the most popular datasets in object detection. They con-

sist of 20 and 80 classes, respectively. PASCAL VOC 2007 and 2012 datasets

consist of 5k and 12k trainval (train and validation) images respectively. COCO

Train2014 and COCO Val2014-35k datasets consist of 83k and 35k images, re-

spectively. We use a test set of PASCAL VOC2007 (5k images) and MS COCO

test-dev (20k images) for testing.
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Table 2.2: Pascal VOC and MSCOCO Classes (Bold : the intersection classes

between two datasets)

Super Category PASCAL VOC MSCOCO

Person Person Person

Accessory Backpack, Handbag, Suitcase, Tie, Umbrella

Animal
Bird, Cat, Cow, Bear, Bird, Cat, Cow, Dog,

Dog, Horse, Sheep Elephant, Giraffe, Horse, Sheep, Zebra

Appliance Microwave, Oven, Refrigerator, Sink, Toaster

Electronic
Cell phone, Keyboard, Laptop,

Mouse, Remote, TV

Food
Apple, Banana, Broccoli, Cake, Carrot,

Donut, Hot dog, Orange, Pizza, Sandwich

Furniture
Bed, Chair, Couch,

Dining table, Potted plant , Toilet

Indoor
Bottle, Chair, Dining table, Book, Clock, Hair drier, Scissors,

Potted plant, Sofa, Tv/monitor Teddy bear, Toothbrush, Vase

Kitchen
Bottle, Bowl, Cup, Fork,

Knife, Spoon, Wine glass

Outdoor Bench, Fire hydrant, Parking meter, Stop sign, Traffic light

Sports
Baseball bat, Baseball glove, Frisbee, Kite, Skateboard,

Skis, Snowboard, Sports ball, Surfboard, Tennis racket

Vehicle
Aeroplane, Bicycle, Boat, Bus, Airplane, Bicycle, Boat, Bus,

Car, Motorbike, Train Car, Train, Truck, Motorcycle
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(a) Threshold = 0.9 (b) Threshold = 0.01

Figure 2.6: Detection results according to threshold. Blue box represents the

false negative and Red box represents the false positive.

2.2.2 Evaluation metric

We use mean Average Precision (mAP) as an evaluation metric. Since object

detection performance is a matter of detecting objects rather than classification,

the Average Precision (AP) evaluation metric is widely used. AP is a concept of

integrating precision as recall is varied from 0 to 1. And mAP is defined as the

average of AP for all the object classes.

As shown in Fig. 2.6.(a), the detection accuracy may be high with a high

threshold, but there is a false negative (Blue Box) that is not recognized by the

detector. In this case, it has high precision and low recall. On the other hand, as

shown in Fig. 2.6.(b), with a low threshold, all objects are detected, but there is

a false positive (Red Box) that is detected as an object, but it is not. In this case,

it has a high recall but low precision. The precision and recall are computed as

follows:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(2.4)
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Figure 2.7: Recall vs. Precision graph

Here, TP is a true positive, FN is a false negative, and FP is a false positive.

In Fig 2.7, we show the example of recall vs. precision graph. Most of the

algorithms show decreasing the precision according to increase the recall. And,

a detector with high precision in many candidates (high recall) will have high

AP. In other words, higher mAP means better detection accuracy.

The criterion for true positive of the prediction box is Intersection over

Union (IoU) overlap between ground truth and prediction bounding boxes. In

the Pascal VOC dataset, the prediction box is regarded as a true positive under

the criterion of IoU� 0.5. In the MSCOCO dataset, evaluation is conducted un-

der various IoU criteria. AP@0.5 is the same as the criterion of Pascal VOC, and

AP@0.75 has a stricter standard with IoU � 0.75. AP@0.5:0.95 is the average

AP for IoU from 0.5 to 0.95 with a step size of 0.05
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2.2.3 Survey of Object Detection Algorithms

Object detection has been researching with a wide variety of approaches. Until

a recent date, these methods can be broadly categorized into (1) Single-Stage

methods and (2) Two-Stage methods.

Fig. 2.8 shows the single-stage and two-stage methods in the pre-deep learn-

ing era. The single-stage method has a fixed size classifier, as shown in Fig. 2.8.(a),

which slides the image and classifies all positions [15, 19, 20, 38]. In this case,

since it is impossible to detect multiple scales, the image pyramids are gener-

ated. The classifier slides the resized images and classifies them for all scales.

As shown in Fig. 2.8.(b), the two-stage method extracts the location where the

object is likely to be using segment information2 and classifies for the extracted

samples [74, 97].

In comparing the two methods, the single-stage method enables faster clas-

sification, and the two-stage method provides more accurate predictions. Al-

though the single-stage method has to perform classification for all candidates,

it does not take a long time [18, 19, 17]. The classifier does not require much

computation, and it is possible to classify using some algorithms such as soft

cascade quickly [91]. Among the single-stage methods, an algorithm capable

of 100 Frame Per Second (FPS) has been introduced [3], which means that 100

images can be detected in 1 second. On the other hand, in the two-stage method,

the number of candidate samples is much smaller, and the classification speed

is the same. However, it took tremendous time to calculate these regions of in-

terest. As an example above, there is a Selective search algorithm [74], which

has Fast and Quality versions. In the case of the Fast version, it takes about 3.7
2Groups are created with similar values of surrounding pixels, and boxes are generated using

the grouped edge information.
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(a) Single Stage Method

(b) Two Stage Method

Figure 2.8: Two types of object detectors in pre-deep learning era.
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seconds to sample about 2k box candidates, and in the case of the Quality ver-

sion, it takes about 17 seconds to sample about 10k candidates. Therefore, it is

not easy to detect in real-time in the two-stage method. In terms of detection

accuracy, in the single-stage method, accurate regression is difficult due to the

size of the specified classifier. On the other hand, in the two-stage method, ac-

curate regression is possible because the detection is performed according to the

candidate group for the region of interest.

Even deep learning was applied to object detection, the above two schemes

were similarly applied. The single-stage detector has changed from the image

pyramid to the feature pyramid [50] or grid method [57], as shown in Fig. 2.9(a).

And, the two-stage detector has changed from Selective Search to Region Pro-

posal Network (RPN) [60], as shown in Fig. 2.9(b). Single-stage detectors per-

form classification and localization in all the spatial locations of feature maps.

On the other hand, Two-stage detectors are RPN-based algorithms, which de-

tect objects only for RoIs that have a high possibility of containing an object

[14, 60]. There have been tremendous performance improvements using deep

learning, and there are algorithms that are able to detect objects in real-time on

a desktop.

In comparing the deep learning-based two detectors, same as predecessors,

the single-stage detectors still enable faster classification, and the two-stage de-

tectors provide accurate predictions. The two-stage detector requires an addi-

tional inference of RPN and sorting for the sampling. In addition, in the process

of classification, convolution or fully connected operation for RoIs consume

much redundant operation, which consumes a lot of time. Therefore, many stud-

ies to improve the speed of the two-stage detector have been introduced [43, 66].

On the contrary, in the single-stage detector, researchers have focused on per-
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(a) Single Stage Detector

(b) Two Stage Detector

Figure 2.9: deep learning based two types of object detectors
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Figure 2.10: Example of classifier of object detection based on deep learning

formance improvement.

In deep learning, the Classifier layer predicts not only classification but also

regression for the refinement. Fig. 2.10 shows an example of a classification

process in SSD. The left of the figure shows the feature map of 10⇥10, and the

classifier network operates for the fixed area as shown in the red box. As shown

in the middle of the figure, each classifier has several default boxes, and each

default box consists of the softmax output vector (c1, c2, · · ·cp) and the local-

ization offset of the center and the size of the box [�cx,�cy,�w,�h]). The

localization offset is trained in relative coordinates, not absolute coordinates, to

take advantage of the shift-invariant property. In other words, the localization is

not the position from the upper left coordinate (0,0), but the difference of center

position and size of the object from the default box. In the two-stage detector,

an anchor box is applied to extract RoIs in RPN.

2.2.3.1 Supervised Learning

A wide variety of methods using deep learning have been applied to the problem

of object detection and it continues to show performance improvements [57]. In

the earlier works pioneered by R-CNN (region-based CNN) [27], the candidate
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region was proposed through a separate algorithms such as selective search [74]

or Edge boxes [97] and the classification was performed with deep learning.

Although R-CNN improved the accuracy using deep learning, speed was

still a problem, and end-to-end learning was impossible. The region proposal

network (RPN) was first proposed in faster R-CNN, which improved the speed

of the object detector significantly and was able to learn end-to-end [60].

YOLO (you only look once) greatly improved the speed by dividing a single

image into multiple grids and simultaneously performing localization and clas-

sification in each grid [57]. While YOLO performed object detection by con-

centrating only on speed, an enhanced version of YOLO, which is denoted as

YOLO2, removed the fully connected layers and used anchor boxes to improve

both the speed and the accuracy [58].

On the other hand, SSD creates bounding box candidates at a given position

and scale and obtains their actual bounding box and score for each class [50].

To improve the accuracy of SSD, especially for small object, DSSD (deconvolu-

tional SSD) that uses a large scale context for the feature pyramid was proposed

[25]. DSSD applied a deconvolution module to the feature pyramid and used

ResNet instead of VGGNet. DSSD succeeded in raising accuracy at the ex-

pense of speed. Like DSSD, methods to use the feature pyramid efficiently have

been studied [47, 85, 44], and one of them will be introduced in 2.2.3. These

are methods of improving model performance by making correlations between

feature pyramids.

These object detection algorithms are continuously being studied, such as

research on new approaches based on key points [40, 22, 41], research on lightweight

the model [59, 11, 10], new methods for high performance [46, 90, 69] and high

speed [83, 6], etc.
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2.2.3.2 Our previous work in supervised object detection

Enhancement of SSD by concatenating feature maps for object detection

We proposed an object detection method that improves the conventional Sin-

gle Shot Multibox Detector (SSD) performance, one of the top object detection

algorithms in both aspects of accuracy and speed.

Although the conventional SSD performs well in both speed and detection

accuracy, it has a couple of points to be supplemented.

First, each layer in the feature pyramid is used independently as an input to

the classifier network, as shown in Fig. 2.9.(a). Thus, the same object can be

detected on multiple scales. Consider a certain position of a feature map in a

lower layer is activated. This information can affect entire scales up to the last

layer, which means that the relevant positions in the higher layers have a good

chance to be also activated. However, SSD does not consider the relationships

between the different scales because it looks at only one layer for each scale.

For example, in Fig.2.11(a), SSD finds various scale boxes for one object.

Second, SSD has the limitation that small objects are not detected well. This

is not the problem only for SSD but the problem for most object detection algo-

rithms. There have been various attempts to solve this problem such as replacing

the base network with more powerful one, e.g., replacing VGGNet with ResNet

[14, 25] or increasing the number of channels in a layer [42]. Fig. 2.11(b) shows

that SSD has a limitation in detecting small objects. Especially in the two fig-

ures, persons on the boat and small cows are not detected, respectively.

In this research, we tackle these problems as follows. First, the classifier

network is implemented considering the relationship between layers in the fea-

ture pyramid. Second, the number of channels (or feature maps) in a layer is
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Figure 2.11: Conventional SSD vs. the proposed Rainbow SSD (R-SSD). Boxes

with objectness score of 0.3 or higher is drawn: (a) SSD with two boxes for one

object; (b) SSD for small objects; (c) R-SSD with one box for one object; (d)

R-SSD for small objects

efficiently increased. More specifically, only the layers in the feature pyramid

are allowed to have increased number of feature maps instead of increasing the

number of layers in the base network. The proposed network is suitable for shar-

ing weights in the classifier networks for different scales, resulting in a single

classifier network. This enables faster training speed with advanced generaliza-

tion performance. Furthermore, this property of a single classifier network is

very useful in a small database. In the conventional SSD, if there is no object at

a certain size, the classifier network of that size cannot learn anything. However,

if a single classifier network is used, it can get information about the object from

the training examples in different scales.

Using the proposed architecture, our version of SSD can prevent detecting

multiple boxes for one object, as shown in Fig. 2.11(c). In addition, the number

of channels can be efficiently increased to detect small objects, as shown in
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Fig. 2.11(d). At that time, the proposed method showed state-of-the-art mAP

with a slightly degraded speed compared to the conventional SSD.

Method

Our strategy of improving the accuracy of SSD is to make the classifier network

fully utilize the relationship between the layers in the feature pyramid without

changing the base network that is closely located to the input data. In addition,

it also increases the number of channels in the feature pyramid efficiently.

Fig. 2.12 shows several ways of increasing the number of feature maps in

different layers for the classifier networks to utilize the relationship between

layers in the feature pyramid. To enable this, in Fig. 2.12(a), feature maps in

the lower layers are concatenated to those of the upper layers through pooling.

In this way, the classifier networks with large receptive fields can have enriched

representation power for object detection. On the other hand, Fig. 2.12(b) shows

the method of concatenating the feature maps of the upper layers to the lower

layer features through deconvolution or upsampling. Fig. 2.12(c) shows the fea-

ture map concatenation method that utilizes both the lower layer pooling and

the upper layer deconvolution.

One thing to note is that before concatenating feature maps, a normalization

step is inevitable. This is because the feature values in different layers are quite

different in scale. Here, normalization is applied for each filter before concate-

nation.

All of the above methods have the advantage that end-to-end learning is

possible. More details about each are described below.
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Figure 2.12: Proposed methods of feature concatenation: (a) concatenation

through pooling (b) concatenation through deconvolution; (c) rainbow concate-

nation through both pooling and concatenation.
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1) Concatenation through pooling or deconvolution

In the structure of SSD, generally, the numbers of channels in the lower layers

are larger than those in the upper layer. To make an explicit relationship between

the feature pyramid and to increase the number of channels effectively, we con-

catenate feature maps of the upper layers through pooling or concatenate fea-

ture maps of the lower layers through deconvolution. Unlike DSSD [25], which

uses a deconvolution module consisting of 3 convolution layers, 1 deconvolu-

tion layer, 3 batch normalization layers, 2 Relu and elementwise products, our

model of concatenation through deconvolution performs the only deconvolution

with batch normalization and does not need the elementwise product.

The advantage of these structures is that object detection can be performed

with information from the other layers. On the other hand, the disadvantage is

that information flows unidirectional, and the classifier network cannot utilize

other directional information.

2) Rainbow concatenation

As shown in Fig. 2.12(c), in the rainbow concatenation, pooling and decon-

volution are performed simultaneously to create feature maps with an explicit

relationship between different layers. After pooling or deconvolving features in

every layer to the same size, we concatenate them. Using these concatenated

features, detection is performed considering all the cases where the size of the

object is smaller or larger than the specific scale. That is, it can have additional

information about the object larger than or smaller than the object. Therefore, it

is expected that the object in a specific size is likely to be detected only in an

appropriate layer in the feature pyramid, as shown in Fig. 2.11(c).
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In addition, the low-layer features that have been with limited representation

power are enriched by the concatenation of higher-layer features, resulting in

good representation power for small object detection as in DSSD [25] without

much computational overhead.

Experiment and Discussion

Experiment : We trained our model with VOC2007 and VOC2012 ‘trainval’

datasets. In the case of speed, it is measured by using the forward path of the

network with a batch size of 1. The experiments were done with cuDNN v5.1 us-

ing CAFFE time function. Therefore, if the detection time is measured from the

pre-processing (resizing image and so on), it may take longer. The experimental

results are shown in Table 2.3. In the table, the performances of YOLO [57],

YOLOv2 [58], Faster R-CNN [60], R-FCN [14], and DSSD [25] were obtained

from their homepage 3 or the respective paper. To see the performance of var-

ious feature augmentation methods, we performed experiments using features

concatenated through pooling (SSD pooling) and deconvolution (SSD deconvo-

lution) as described in Section 2.2.3. Three types of R-SSD was tested. The first

one utilizes separate classifier networks for different scales and the rest two use

a common classifier with 4 or 6 default boxes for a scale as described in Section

2.2.3. The conventional SSD was also trained and tested by ourselves.

For the 300 input model, there is a 0.8% improvement in accuracy with

78.5% mAP compared to conventional SSD. However, due to the increased

computational complexity, the speed drops to 35.0 FPS. For the 512 input model,

it results in mAP of 80.8% which is 1% better than conventional SSD. However

its speed drops to 16.6 FPS. In particular, comparing the two SSD 512 models,
3YOLO and YOLOv2 : http://pjreddie.com/darknet
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Input Train Test mAP FPS

YOLO[57] 448 VOC2007+2012 2007 63.4 45

YOLOv2[58] 416 VOC2007+2012 2007 76.8 67

YOLOv2 544x544[58] 544 VOC2007+2012 2007 78.6 40

Faster R-CNN[60] VOC2007+2012 2007 73.2 5

R-FCN (ResNet-101)[14] VOC2007+2012 2007 80.5 5.9

SSD*[50] 300 VOC2007+2012 2007 77.7 61.1

DSSD (ResNet-101)[25] 321 VOC2007+2012 2007 78.6 9.5

ISSD* 300 VOC2007+2012 2007 78.1 26.9

ours (SSD pooling)* 300 VOC2007+2012 2007 77.1 48.3

ours (SSD deconvolution)* 300 VOC2007+2012 2007 77.3 39.9

ours (R-SSD)* 300 VOC2007+2012 2007 78.5 35.0

ours (R-SSD one classifier (4 boxes))* 300 VOC2007+2012 2007 76.2 34.8

ours (R-SSD one classifier (6 boxes))* 300 VOC2007+2012 2007 77.0 35.4

SSD*[50] 512 VOC2007+2012 2007 79.8 25.2

DSSD (ResNet-101)[25] 513 VOC2007+2012 2007 81.5 5.5

ours (R-SSD)* 512 VOC2007+2012 2007 80.8 16.6

Table 2.3: VOC2007+2012 training and VOC 2007 test result (* is tested by

ourselves)
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precision increases 2.9% at recall value 0.8 and 8.2% at recall of 0.9. In the case

of single classifier model with 300 input model, it has a 76.2% and 77.0% mAP

when they use four and six default boxes, respectively.

Concatenation by pooling or deconvolution : These two models are both

inferior in accuracy and speed compared to conventional SSD, although they

made explicit relationship between multiple layers and increased the number

of channels. These two models need to perform more operations, therefore the

speed can drop. As for accuracy, the reason can be conjectured that the layers

sharing the same feature maps with other layers can be affected by the loss of

other scales and do not fully focus on the scale. That is, they cannot learn prop-

erly on their scale.

Single classifier vs. Multiple classifiers : Unlike the conventional SSD, be-

cause R-SSD have the similar feature maps for different layers only different in

size, the classifier network can be shared. Here, the experiments with a single

classifier network by unifying the number of channels in each scale of feature

pyramid. As shown in the Table 2.3, there is a difference in the number of boxes,

but there is little difference in speed. In comparison, performance was 1.2 % and

0.7 % lower than that of conventional SSD. However, the advantage of a single

classifier is that learning can be effective especially when there are significant

imbalance between the numbers of training samples for different sizes. In this

case, conventional SSD cannot train the classifier for a scale with small number

of samples. However, in R-SSD, this problem is avoided because the classifier

network is shared. Furthermore, single classifier is faster at the early stage of

training. Therefore, even for a large dataset, R-SSD can be trained fast by train-

36



Recall (# of detected objects / # of total object)

Small (area< 322) Medium (322 <area< 962) Large (962 <area)

SSD300 0.3845 (218/567) 0.7754 (2965/3824) 0.9314 (7117/7641)

ours(R-SSD300) 0.4127 (234/567) 0.8073 (3087/3824) 0.9374 (7163/7641)

SSD512 0.6526 (370/567) 0.8023 (3068/3824) 0.9361 (7153/7641)

ours(R-SSD512) 0.6949 (394/567) 0.8248 (3154/3824) 0.9365 (7156/7641)

Table 2.4: Recall for objects in different size [49]. A box is declared as an object

when the object score is higher than 0.1.

ing a single classifier in the early stage and at some point, the classifiers can be

trained separately for different scales.

Accuracy vs. Speed : The conventional SSD is one of the top object detection

algorithms in both aspects of accuracy and speed. For SSD300 or SSD512, it

has 77.7 % mAP and 79.8 % mAP respectively and has 61.1 FPS and 25.2 FPS.

Looking at the results of the ISSD for comparison with our algorithm, ISSD had

a 0.4 % accuracy gain, but the speed dropped to 26.9 FPS. In our experiments,

R-SSD shows improved accuracy with a bit slow speed. Compared to the ISSD,

R-SSD shows higher accuracy and faster speed. Moreover, it shows about 1%

mAP improvement over the conventional SSD. At a speed of 15 fps or higher,

our R-SSD shows 80.8 % mAP. Compared to R-FCN with similar accuracy, R-

SSD is about three times faster.

Performances for different scales : Table 2.4 shows the recall of each object

size [49]. Normally, the AP or AR (Average Recall) should be obtained, but,

the VOC2007 test set has a total of 12,032 objects, of which 567 are small ob-
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Input pre-trained model mAP

SSD [50] 300 reduced VGG-16 66.1

ours (R-SSD) 300 reduced VGG-16 66.9

ours (R-SSD one classifier (6 boxes)) 300 reduced VGG-16 67.2

Table 2.5: Results on VOC2007 test dataset trained with VOD2007 small train

dataset (2,501 images)

jects. In evaluating the performance for small objects, there are several classes

with no object at all. Therefore, we integrate all the objects in measuring the

recall. When the object size is small, R-SSD300 and R-SSD512 detect more

number of objects than SSD300 and SSD512, respectively. It can be shown that

R-SSD misses a few small objects. At medium size, R-SSD300 has even more

recall than SSD512. Furthermore, when the object size is large, recall of all

models show high value over 0.93. The difference of R-SSD300, SSD512, and

R-SSD512 is less than 10 out of 7,641.

Small Train Dataset in VOC2007 : Table 2.5 is experimental results of dif-

ferent networks that were trained using the train dataset in VOC2007 which

consists of a relatively small number of images (2,501 images in total). Each

network was trained with these 2,501 images and the mAP was measured with

VOC 2007 test dataset. The conventional SSD [50] shows a mAP of 66.1%,

while R-SSD achieves 66.9% which is 0.8% better than that of SSD. Further-

more, R-SSD with one classifier achieves an even better mAP of 67.2%. It shows

that training a single classifier is better not only in generalization power result-

ing in a faster training speed but also in detection performance when the training
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dataset is small.

Conclusion

In this research, we presented a rainbow concatenation scheme that can effi-

ciently solve the problems of the conventional SSD. The contribution of the

paper is as follows. First, it creates a relationship between each scale of feature

pyramid to prevent unnecessary detection such as multiple boxes in different

scales for one object. Second, by efficiently increasing the number of feature

maps of each layer in the feature pyramid, the accuracy is improved without

much time overhead. Finally, the number of feature maps for different layers

are matched so that a single classifier can be used for different scales. By us-

ing a single classifier, improvement on the generalization performance can be

expected, and it can be effectively used for datasets with size imbalance or for

small datasets. The proposed R-SSD was created considering both the accuracy

and the speed simultaneously, and showed state-of-the-art mAP among the ones

that have speed of more than 15 FPS.
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(a) (b) (c) (d)

Figure 2.13: Conventional SSD vs. the proposed Rainbow SSD (R-SSD). Boxes

with objectness score of 0.3 or higher is drawn: (a) SSD with two boxes for one

object; (b) R-SSD with one box for one object (c) SSD for small objects; (d)

R-SSD for small objects;
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2.2.3.3 Semi-supervised learning

Until recently, most semi-supervised learning methods for object detection are

based on the self-training scheme [82, 81]. A representative method is the Self-

supervised Sample Mining (SSM) [82] algorithm. It trains a model with labeled

data and then predicts unlabeled data. For high confidence patches predicted in

unlabeled data, SSM makes psuedo-labeling and stitches those patches to la-

beled dataset. And, the model is re-trained with new labeled dataset. SSM per-

forms the above method until no new sample is added. SSM has used a method

called ‘evaluating consistency’ to make the pseudo box label robust. It operates

as a mask to verify that the Intersection over Union (IoU) score between the

previously detected box and the currently detected box is greater than threshold

�. Therefore, SSM differs from our method of directly using consistency losses.

SSM repeats the process of making an intermediate unlabeled data prediction

and changing the training set. Consequently, SSM shares the same drawback as

self-training.
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Chapter 3

Consistency-based Semi-supervised learning for ob-

ject Detection (CSD)

3.1 Introduction

In this chapter, we introduce a Consistency-based Semi-supervised learning for

object Detection (CSD) which is similar to the consistency regularization (CR)

[37, 71, 52] that has shown state-of-the-art performance in semi-supervised clas-

sification [55]. CR helps train a model to be robust to given perturbed inputs.

However, as shown in Fig. 3.1, it is difficult to apply CR directly to the object

detection problem where multiple candidate boxes are generated for each im-

age. Because images with different perturbation may have different numbers of

boxes with various locations and sizes, it is difficult to match boxes in given

images. Therefore, we use the horizontally flipped image so that one-to-one

correspondence between the predicted boxes in the original and the flipped im-

ages can be easily identified. In our method, in addition to applying consistency

constraint to the classification results for each predicted box, we propose a new

consistency loss for fine-tuning the location of the predicted box. Experimental
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Figure 3.1: difficult to establish a one-to-one correspondence

results show that each of these consistency losses can improve performance and

we can get additional performance improvement by combining these two.

We also observed that eliminating ‘background’ class benefits the proposed

CSD, because the predominant ‘background’ class affects the consistency loss

much. As a way of reducing the influence of the background and achieving

improved performance, we propose the Background Elimination (BE) method

which excludes boxes with high background probability in the computation of

consistency loss.

CSD can be applied to both the single-stage detector such as SSD [50] and

the two-stage detector such as R-FCN [14]. Various ablation studies have been

performed showing the benefits of the proposed consistency losses for classifica-

tion and localization. Also the effect of BE has been experimentally confirmed.

Experimental results show that the proposed CSD improves the detection per-

formance for all the detectors experimented.

Our main contributions can be summarized as follows:

• We propose a novel consistency-based semi-supervised learning algo-

rithm for object detection that can be applied not only to single-stage
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detectors but also to two-stage detectors.

• The proposed consistency constraints for object detection work well for

both the classification of a bounding box and the regression of its location.

• We propose the BE method to mitigate the effect of background and show

improvement of performance in most cases.

3.2 Method

The CSD to be presented works differently depending whether it is for a single-

stage or for a two-stage object detector. The overall CSD structure for single-

stage and two-stage object detectors is depicted in Fig. 3.2 and 3.3 respectively.

The proposed structure is the combination of the ⇧-model in SSL [37] and an

object detection algorithm. To allow one-to-one correspondence of target ob-

jects, an original image, I , and its flipped version, Î , are used as inputs. As in

Fig. 3.2 and 3.3, a paired bounding box should represent the same class and

their localization information must remain consistent.

During the training process, each mini-batch includes both labeled and unla-

beled images. The labeled samples are trained using the typical object detection

approach. The consistency loss is additionally applied to both the labeled and

unlabeled images. In section 3.2.1, we explain the association method of cor-

responding boxes as well as the objective function used for training the object

classifier in a single stage object detector. Likewise, in section 3.2.2, we define

the objective function used for localization in both images. In the following sec-

tions afterward, we explain how these loss functions are utilized and show that

our method is also applicable to a two-stage object detector.
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Figure 3.2: Overall structure of our proposed method for single stage detector.

fk(I) and fk0(Î) are extracted by a single stage detector from image I and

flipped image Î respectively. The supervised loss is computed between fk(I)

and the ground truth for labeled data and the consistency loss is computed be-

tween fk(I) and fk0(Î) for labeled and unlabeled data.

3.2.1 Consistency loss for classification

We denote fp,r,c,d
cls (I) as the output class probability vector after softmax op-

eration corresponding to the p-th pyramid, r-th row, c-th column and d-th de-

fault box. Since Î is a horizontally flipped version of I , predictions of two im-

ages should be equivalent. Also we want to make these vectors, fp,r,c,d
cls (I) and

fp,r,c0,d
cls (Î), share a very similar distribution where c0 = C� c+1 and C is hor-

izontal spatial dimension of the feature map. In semi-supervised learning, some
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candidates such as L2 distance or ↵-Jensen-Shannon divergence (↵-JSD / for ↵

= 1) Jeffreys Divergence (JD)) can be used as the consistency regularization

loss.

JS↵ = KL(p||(1� ↵)p+ ↵q) +KL(q||(1� ↵)q + ↵p)

JS↵=1 = JD = KL(p||q) +KL(q||p)
(3.1)

Among them, we specifically take advantage of JD for the following rea-

sons. L2 loss treats all the classes equal and in our case, consistency loss for

irrelevant classes with low probability can affect the classification performance

much. We experimentally observed that the performance of SSL with L2 con-

sistency loss is even worse than that of the supervised learning. To simplify the

notation, we denote the location (p, r, c, d) as k and the horizontally opposite

location (p, r, c0, d) as k0. The classification consistency loss used for a pair of

bounding boxes in our method is given as below:

lcon cls(f
k
cls(I), f

k0
cls(Î)) = JD(fk

cls(I), f
k0
cls(Î)) (3.2)

where JD represents the Jeffreys Divergence. The overall consistency loss

for classification is then obtained from the average of loss values from all bound-

ing box pairs:

Lcon�c = Ek[lcon cls(f
k
cls(I), f

k0
cls(Î))] (3.3)

3.2.2 Consistency loss for localization

The localization result for the k-th candidate box fk
loc(I) consists of [�cx, �cy,

�w, �h], which represent the displacement of the center and scale coefficients

of a candidate box, respectively. Unlike the pair (fk
cls(I), f

k0
cls(Î)), f

k
loc(I) and

fk0
loc(Î) require a simple modification to be equivalent to each other. Since the
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flipping transformation makes �ĉx move in the opposite direction, a negation

should be applied to correct it.

� cxk ()�� ĉxk
0

� cyk, � wk, � hk () � ĉyk
0
, � ŵk0 , � ĥk

0

The localization consistency loss used for a single pair of bounding boxes

in our method is given as below:

lcon loc(f
k
loc(I), f

k0
loc(Î)) =

1

4
(k�cxk � (��ĉxk

0
)k2+k�cyk ��ĉyk

0k2

+ k�wk ��ŵk0k2+k�hk ��ĥk
0k2)

(3.4)

The localization loss of each pair of bounding boxes and the total consis-

tency loss are computed in the same principle as in the previous section:

Lcon�l = Ek[lcon loc(f
k
loc(I), f

k0
loc(Î))] (3.5)

3.2.3 Overall loss for object detection

The total consistency loss is composed of the losses from section 3.2.1 and 3.2.2

as in

Lcon = Lcon�c + Lcon�l (3.6)

Eventually, the final loss L is composed of the original object detector’s

classification loss Lc and localization loss Ll, in addition to the consistency

loss mentioned above. As in the typical semi-supervised learning methods [37,

71], ramp-up and ramp-down techniques, which can be defined by the weight

scheduling w(t), are used for the stable training.

L = Lc + Ll + w(t) · Lcon (3.7)
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Figure 3.3: Overall structure of our proposed method for two stage detector.

�(I) and �(Î) originate from the backbone network and the RoI is computed

only from �(I). ĥk is obtained by flipping hk to associate two corresponding

boxes and supervised and consistency losses are calculated in the same way as

for the single stage detector.

3.2.4 Application to two-stage detector

Unlike the single-stage detector, the two-stage detector has region proposal net-

work (RPN) to generate region proposals and recognize the objectness of them.

If we pass both the original and the flipped images to the RPN, the correspon-

dence matching problem between the region proposals occurs which is relatively

hard to solve. To simplify the problem, we only pass the feature �(I) generated

from the original image to the RPN. Then the output RoI locations are reversed

and applied to the corresponding feature �(Î) as shown in Fig. 3.3. Given the
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feature map �(Î) from the backbone network and the k-th RoI, hk, from the

RPN, the RoI-specific feature map of Î corresponding to the flipped area ĥk can

be easily derived. As shown in Fig. 3.3 RPN is trained without the consistency

loss. The features corresponding to the RoI, r(�(I), hk) and r(�(Î), ĥk), are

processed by a classifier g. Then, outputs g(r(�(I), hk)) and g(r(�(Î), ĥk)) are

used to compute the loss to train the network. As will be seen in the experi-

ments, compared to the single-stage detector, the performance improvement of

the proposed CSD is lower for two-stage detector and this attributes to the lack

of consistency loss in RPN training.

3.2.5 Background Elimination

Particularly in object detection, an additional class of ‘background’ exists and

most of the candidate boxes are usually classified to this class unless it is filtered

by a confidence threshold. Consequently, consistency losses computed with all

candidates will be easily dominated by backgrounds. This can degrade the clas-

sification performance for the foreground classes. Therefore, we exclude boxes

having a high probability of background class by marking it with a mask. The

mask is created according to the classification result for every candidate bound-

ing box of I as in

mk =

8
>><

>>:

1, if argmax(fk
cls(I)) 6= background

0, otherwise.
(3.8)

Applying the mask to (3.3) and (3.5) yields

Lcon�c = EImk=1
[lcon cls(f

k
cls(I), f

k0
cls(Î))],

Lcon�l = EImk=1
[lcon loc(f

k
loc(I), f

k0
loc(Î))]

(3.9)
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where Imk=1 indicates that the expectation is taken only for the positive

mask. The overall process of the proposed CSD is described in Algorithm 1

3.3 Experiments

In our experiments, we have utilized the PASCAL VOC [23] and MSCOCO [49]

datasets, as mention in 2.2.1. For PASCAL dataset, PASCAL VOC2007 trainval

is used as the labeled data and PASCAL VOC2012 trainval and MSCOCO are

utilized as the unlabeled one. We use test set of PASCAL VOC2007 for testing.

For MS COCO dataset, we divided the MS COCO 2014 dataset into the exist-

ing categorized Train2014 (83k images) and Val2014-35k (35k images) dataset

because minor classes may not be in the labeled dataset with random sampling.

We trained our model with Val 35k dataset as labeled data and Train 83k as

unlabeled data. Then, we tested with MS COCO test-dev dataset.

The codes used for our experiments are based on Pytorch. We have used

third-party codes for SSD [50] 1 and R-FCN [14] 2. All experiments have been

done under the similar setting with the code3 of the author. Expediently, labeled

and unlabeled data are gathered in a single dataset and then randomly shuffled.

In our setting, both labeled and unlabeled samples sit together in each mini-

batch. The experimental settings of R-FCN are referred to those of SSM. As

the batch size used for R-FCN is 4, using the same sampling strategy of SSD

experiments does not guarantee that at least one labeled data is included in every

mini-batch. To solve this problem, we have established separate data-loaders

for labeled and unlabeled data. The amount of unlabeled data in a mini-batch is
1https://github.com/amdegroot/ssd.pytorch
2https://github.com/princewang1994/R-FCN.pytorch
3https://github.com/weiliu89/caffe/tree/ssd
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Algorithm 1 Training procedure of the proposed CSD
Require: DL,DU : labeled and unlabeled datasets

Require: w(t): weight scheduling function

Require: f(·): trainable object detection model

Require: h(·): horizontal flip function

Require: m(·): objectness masks

1: for each t 2 [1, max iterations] do

2: Data Preparation

3: A DL [DU , Â h(A)

4: Compute the outputs

5: f(A), f(Â)

6: Compute the objectness mask

7: mA  f(A) (Eq. 3.8)

8: Compute the supervised & CSD losses

9: LS  f(A 2 DL \A)

10: LCSD  f(A 2 DU \A), f(Â),mA

11: Compute the total loss

12: LTotal  LS + w(t) · (LCSD)

13: Update f(·) using LTotal

14: end for
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three times larger than that of the labeled data4. The total number of RoIs for

CSD is 2k and all the parameter settings and training details are presented in the

supplementary material.

3.3.1 Implementation Detail

Single-stage detector

Both SSD300 and SSD512 are used in our experiments. The authors of SSD pro-

vide the code in a github repository and we have followed the experimental set-

tings in it. The backbone network is VGG16 pre-trained with ImageNet dataset.

With PASCAL VOC dataset, models in all experiments have been trained for

120k iterations with a mini-batch size of 32. The learning rate is multiplied by

0.1 at 80k and 100k iterations. For the weight scheduling function w(t), we

have followed the policy of temporal ensembling [37]. The function is defined

as below:

w(t) =

8
>>>>>><

>>>>>>:

exp
�5⇥(1� t

t1
)2
, t < t1

1, t1  t < T � t2

exp
�12⇥(1�T�t

t2
)2
, t � T � t2.

(3.10)

Here, T denotes the total number of iterations while t1 and t2 represent the

ramp-up and ramp-down coefficients respectively. In experiments using PAS-

CAL VOC dataset, t1 is set to 32k and t2 is set to 20k. Experiments of VOC-

only COCO (COCO†) and Full COCO(COCO§) have been done with 240k and

360k of iterations, and parameter scheduling is also changed 2 ⇠ 3 times, ex-
4During the training, we allow the labeled data and unlabeled data not to share the same epoch

number.
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cluding ramp-down. If the ramp-down is longer, the influence of consistency is

less affected by learning. Therefore, the ramp-dwon is maintained. A proper or-

ganization of a single mini-batch plays an important role for stable training. In

case of COCO§, the ratio of labeled data to unlabeled data is 1:26 which means

that labeled data may be omitted in a mini-batch. To compensate this, unlabeled

data are sampled according to the total number of samples in VOC12.

Two-stage detector

In experiments using a two-stage detector, we have adopted R-FCN under the

same setting of SSM. ResNet-101 is used as a backbone network. In experiments

using PASCAL VOC dataset, every model has been trained for 70k iterations

with a batch size of 4. The learning rate is multiplied by 0.1 at 50k iterations.

t1 is set to 20k and t2 is set to 10k. Experiments of VOC-only COCO (COCO†)

and Full COCO(COCO§) have been done with 140k and 210k of iterations, and

parameter scheduling is also changed 2 ⇠ 3 times, excluding ramp-down. In

R-FCN, the ratio of positive regions to negative regions is 1:3 and this rate is

applied to COCO as well.

3.3.2 Ablation Study

We have examined the influence of Lcon�c, Lcon�l and Background Elimi-

nation (BE) on SSD300, SSD512 and R-FCN and the performances are pre-

sented in Table 3.1 and 3.2. For SSD300, supervised learning using VOC07

and VOC0712 show 70.2 mAP and 77.2 mAP respectively as shown in Ta-

ble 3.1. Using Lcon�c with Jeffreys Divergence induces 1.4% of improvement

while Lcon�c with L2-norm causes a performance degradation to 70.0 mAP,

which is slightly lower than that of the supervised learning. Lcon�l shows 2.0%
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Table 3.1: Single-Stage Detection results for PASCAL VOC2007 test set. The

first two rows show the performance of each detector by supervised learning.

* is the score from [50, 14]. The following experiments use VOC07 as the la-

beled data and VOC12 as the unlabeled data, and show the results of the pro-

posed CSD with/without Lcon�c (cls), Lcon�l (loc) and EB. The numbers in the

parentheses are the performance enhancement over the baseline.

Labeled Unlabeled Consistency Background mAP (%)

data data cls loc Elimination SSD 300 SSD 512

VOC07 - - - - 68.0*/70.2 71.6*/73.3

VOC0712 - - - - 74.3*/77.2 76.8*/79.6

VOC07 VOC12

X - - 71.6 (1.4) 74.6 (1.3)

- X - 72.2 (2.0) 74.6 (1.3)

X X - 72.0 (1.8) 74.8 (1.5)

VOC07 VOC12

X - X 71.7 (1.5) 75.4 (2.1)

- X X 71.9 (1.7) 75.2 (1.9)

X X X 72.3 (2.1) 75.8 (2.5)
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of enhancement and jointly using both consistency losses shows 1.8% of en-

hancement. Particularly in SSD300 using Lcon�l only has shown better perfor-

mance than using both. SSD512 scored 73.3 mAP and 79.6 mAP in pure super-

vised learning on VOC07 and VOC0712 respectively. Separate use of Lcon�c

or Lcon�l induces 1.3% of improvements in both cases and joint usage of both

losses improves 1.5% of accuracy. BE significantly improves the performance

when used with both of the consistency losses. Especially, since more regions

are predicted as backgrounds in SSD512 compared to SSD300, BE is more

beneficial to SSD512 than to SSD300. Particularly in the case of using con-l in

SSD300, the performance is quite good even without using BE. We think that it

is because the number of samples with flat areas is relatively small for a small

input resolution and this helps the regression process while con-c disturbs the

effect of con-l.

As mentioned in section 3.2.4, CSD in R-FCN uses consistency losses only

after the RoI pooling and not in the RPN. For R-FCN, supervised learning using

VOC07 and VOC0712 shows 73.9 mAP and 79.4 mAP of accuracy respectively

as shown in Table 3.2. There are small or no performance improvement before

applying BE. However, when BE is applied, performance is improved by adding

Lcon�c and Lcon�l. In addition, the performance is further improved with simul-

taneous use of both consistency losses.

3.3.3 Unlabeled data with different distribution (MSCOCO)

To see the effect of unlabeled data with different distribution to the labeled set,

we use VOC07 as the labeled data and VOC12 plus MSCOCO as the unla-

beled data as shown in Table 3.3. We denote ‘trainval’ of the MSCOCO dataset

(123,287 images) as COCO§ and the dataset (19,592 images) of which images
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Table 3.2: Two-Stage Detection results for PASCAL VOC2007 test set. The first

two rows show the performance of each detector by supervised learning. * is the

score from [50, 14]. The following experiments use VOC07 as the labeled data

and VOC12 as the unlabeled data, and show the results of the proposed CSD

with/without Lcon�c (cls), Lcon�l (loc) and EB. The numbers in the parentheses

are the performance enhancement over the baseline.

Labeled Unlabeled Consistency Background mAP (%)

data data cls loc Elimination R-FCN

VOC07 - - - - 73.9

VOC0712 - - - - 79.5*/79.4

VOC07 VOC12

X - - 74.0 (0.1)

- X - 73.9 (0.0)

X X - 74.0 (0.1)

VOC07 VOC12

X - X 74.5 (0.6)

- X X 74.4 (0.5)

X X X 74.7 (0.8)
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Table 3.3: Detection results on PASCAL VOC2007 test set. “COCO§”: All 80

classes. “COCO†”: 20 PASCAL VOC classes.

Labeled Unlabeled CSD Method (mAP)

data data SSD300 SSD512 R-FCN

VOC07 - 70.2 73.3 73.9

VOC07

VOC12 72.3 75.8 74.7

VOC12+COCO§ 71.7 75.1 74.9

VOC12+COCO† 72.6 75.9 75.1

contain only objects belonging to the 20 PASCAL VOC classes as COCO†.

In single-stage detectors, the performance by training with unlabeled VOC12

and COCO§ shows better performance than the supervised learning, but it is less

than the performance using unlabeled VOC12 only. In a two stage detector, it

shows higher performance than the supervised learning and training with un-

labeled VOC12 data. Training with unlabeled VOC12 and COCO†, both the

single-stage detector and two-stage detector show performance improvements.

We analyze this phenomenon in the next section.

3.3.4 MSCOCO

Table 3.4 shows the results of experiments on the MSCOCO dataset. The super-

vised performances of SSD using Val35k and Trainval35k show 18.8 mAP and

23.9 mAP, respectively. CSD with Val35k labeled data and Train80k unlabeled

data on SSD shows 1.0% of enhancement.
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Table 3.4: Detection results for MS COCO test-dev set. The following experi-

ments use Val35k (labeled) and Train80k (unlabeled) data. The numbers in the

parentheses are the performance improvements from the baseline model (SSD

trained on Val35k). All experiments are tested by ourselves.

Method
Labeled Unlabeled Avg. Precision, IoU:

data data 0.5:0.95 0.5 0.75

SSD300
Val35k - 18.8 34.8 18.6

Val35k + Train80k (trainval35k) - 23.9 40.8 24.7

Ours (CSD) Val 35k Train 80k 19.8 (1.0) 35.8 (1.0) 19.8 (1.2)

3.4 Discussion

3.4.1 Consistency regularization with only labeled data

We evaluated our method on PASCAL VOC 2007 under the supervised train-

ing setting. We observed that training with the consistency loss only on labeled

data led to worse results. It means that the consistency loss does not affect the

improvement of performance for labeled data. We conjecture this problem as

follows. A model trained with a small amount of labeled data can be easily fit-

ted, and the classification probability of output of the objects will have very high

confidence (fk
cls(I) � 0.9). At this time, if the consistency loss is applied, the

fitting outputs (fk
cls(I) and fk0

cls(I)) are computed as each other’s target (fk0
cls(I),

and fk
cls(I)) and it may cause overfitting. It shows the same tendency in con-

ventional semi-supervised learning [37, 71]. On the other hand, in the case of

semi-supervised setting, the classification probability of output of objects is no

longer sharp because of unlabeled data. Therefore, our consistency constraints

are helpful to improve the performance for semi-supervised object detection
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Table 3.5: Detection results for PASCAL VOC2007 test set. The first two rows

show the performance of each detector by supervised learning. * is the score

from [50]. The following experiments use VOC07 as the labeled data and show

the results of the proposed CSD with/without Lcon�c (cls), Lcon�l (loc) and BE.

Labeled Unlabeled Consistency Background Method (mAP)

data data cls loc Elimination SSD300

VOC07 - - - - 68.0*/70.2

VOC0712 - - - - 74.3*/77.2

VOC07 -

X - - 69.4

- X - 69.9

X X - 69.7

VOC07 -

X - X 70.2

- X X 69.8

X X X 69.3
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Table 3.6: Effects of using Background Elimination (BE) on SSD300 perfor-

mance.

VOC07(L)+VOC12(U) mAP

without BE 72.0

BE with mk 72.3

BE with mk ⌦mk0 71.7

task.

3.4.2 Single-stage detector vs. Two-stage detector:

We apply consistency constraint differently depending on whether RPN is used

or not. First, in a single-stage detector, the proposed consistency losses can

be applied to all areas and it shows much improvement in performance. The

two-stage detector, on the other hand, uses ĥ by flipping the h obtained from

I . Therefore, while we can expect to improve performance in the classifier,

it is hard to expect additional performance improvement of RPN. As a result,

the two-stage detector has less performance improvement than the single-stage

detector. To optimize the RPN, a new way exploiting the consistency loss is

needed, which we leave as further work.

3.4.3 Background Elimination:

The proportion of background in the predefined boxes is very large. We apply

BE to reduce the effect of the background and show that BE is helpful in improv-

ing the performance. However, getting rid of too many samples is not helpful in
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learning, as shown in Table 3.6. As a way of reducing more background sam-

ples, the consistency losses are applied to the candidate boxes only when their

estimated class is non-background (mk = 1) as well as their flipped boxes on

the flipped images are estimated as non-background (mk0 = 1). At this time, the

performance of the SSD300 model shows 71.7 mAP, which is 0.6% lower than

the original 72.3 mAP. This shows that removing too many background samples

may cause performance degradation.

3.4.4 Datasets

Table 3.3 shows that in learning 20 classes of VOC, additional usage of unla-

beled data leads to an enhanced performance. However, the ratio of labeled/unlabeled

class mismatch decides the amount of improvement. This is why the case of us-

ing VOC12 + COCO† shows a better result than the case of VOC12 + COCO§.

This result is consistent with the recent study by [55].

BE is hardly expected to remove this out-of-distribution. It is intended to

eliminate background, but classes in MSCOCO can have a higher confidence

in other classes that are similar. For example, classes such as ‘giraffe’ and ‘ele-

phant’ may have features similar to ‘horse’ or ‘dog’ rather than the background.

These data can interfere with training detectors.

On the other hand, adding unlabeled data with a similar distribution, all

detectors have improved the performance. Our CSD does not need any labeling

in the additional data but it still has its limitation that the distribution of the

unlabeled data should be similar to that of the labeled data. Further research is

needed to solve this problem, which we leave it for future work.
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Table 3.7: Comparisons between self-training and consistency regularization

based methods on PASCAL VOC2007 test set. “COCO§”: All 80 classes.

“COCO†”: 20 PASCAL VOC classes.

Single-Stage Detector

Method Labeled data Unlabeled data mAP Gain

SSD512 (supervised) VOC07 - 73.3 -

SSD512 + CSD (ours) VOC07 VOC12 75.8 2.5

SSD512 + CSD (ours) VOC07 VOC12 + COCO§ 75.1 1.8

SSD512 + CSD (ours) VOC07 VOC12 + COCO† 75.9 2.6

Two-Stage Detector

Method Labeled data Unlabeled data mAP Gain

R-FCN (supervised) VOC07 - 73.9 -

RFCN + SPL (300%) [35] VOC07

VOC12 + COCO§

74.1 0.2

RFCN + SPL (400%) [35] VOC07 74.7 0.8

RFCN + SSM (300%) [82] VOC07 75.6 1.7

RFCN + SSM (400%) [82] VOC07 76.7 2.8

RFCN + CSD (ours) VOC07 VOC12 74.7 0.8

RFCN + CSD (ours) VOC07 VOC12 + COCO§ 74.9 1.0

RFCN + CSD (ours) VOC07 VOC12 + COCO† 75.1 1.2
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3.4.5 Self-training vs. Consistency regularization

Self-training is widely used as a simple heuristic method in semi-supervised

learning. As it is an iterative method which cycles training, prediction of un-

labeled data and changing the training dataset, it is time-consuming and com-

putationally intensive [62]. In addition, the threshold and stop criterion, which

decide the quality and quantity of an additional dataset, affect the algorithm’s

performance. Meanwhile, CR method which trains unlabeled data with an addi-

tional loss helps the more common and robust learning.

Table 3.7 shows the performance of SPL [35], SSM [82] and CSD. SPL and

SSM are based on the self-training method, which shows different performance

depending on the amount of data added 5. They experimented only with R-FCN

framework and trained with VOC07 as labeled data and VOC12 and MSCOCO

as unlabeled data. The performance of SPL is improved by 0.2 and 0.8 than

baseline while SSM has 1.7 and 2.8 better performance than the baseline. In

CSD, according to unlabeled dataset, it shows performance improvement of 0.8

⇠ 1.2 than baseline. As mentioned above, CSD has a limitation in the two stage

detector, which has less performance improvement than single stage detector. In

single stage detector, however, SSD512 shows the 1.8% and 2.6% performance

improvements.

Comparison with SSM: For a practical usage of a model, the stopping criteria

must be defined properly. SSM continues the training until no more unlabeled

data are included in the training set (Algorithm 1 in [82]). In Fig.4 of [82], the

performance improves initially as unlabeled samples are added but it starts to de-

grade as more samples are added. However, the reported score of the SSM is not
5% means that the percentage of additional unlabeled objects over labeled objects.
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from an objective stopping criterion but the peak performance during the entire

iterations. With this setting, the influx of the data from out-of-distribution and

incorrectly labeled samples cannot be prevented. As we all know that the per-

formance of SSM should not be measured with this setting, we are not sure that

the performance of a detector combined with SSM would get better. To check

this, we tried to implement SSM in SSD. However, many details are missing in

SSM and the learning parameters of single-stage detector and two-stage detec-

tor are different. Its intense time-cost and huge hyper-parameter space makes it

difficult to implement SSM properly. In our work, we just wanted to present a

representative self-learning method.

3.5 Conclusion

We have introduced a novel Consistency-based Semi-supervised learning for

object Detection (CSD) method. To the best of our knowledge, it is the first

attempt to extend CR used in conventional semi-supervised classification prob-

lems to object detection problem. We applied the proposed CSD to single-stage

detectors and a two-stage detector respectively and designed loss to improve the

performance of both detectors over the supervised learning method. We have

shown that consistency loss is helpful for semi-supervised learning in classifi-

cation as well as localization with various ablation experiments. In addition, BE

has been shown to improve performance.
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Chapter 4

Interpolation-based Semi-supervised learning for ob-

ject Detection (ISD)

4.1 Introduction

In this chapter, we address the semi-supervised object detection problem and

propose a new method called Interpolation-based Semi-supervised learning for

object Detection (ISD) whose loss terms can also be applied to the supervised

learning framework. Interpolation Regularization (IR) which mixes different

images and learns to predict the combined label rather than one hot vector per-

forms outstandingly in supervised learning as well as in semi-supervised learn-

ing for classification problems [89, 75, 76, 5, 78].

However, it is challenging to apply IR directly to object detection because

the background class consists of a very diverse and irregular texture. Fig. 4.1

shows an example of applying IR to the object detection problem. As shown

in Fig. 4.1, we mix image A and B using the mixing parameter � = 0.5 as

shown in the middle. Obviously, the mixed green box has 50% of a dog and

50% of a bird as we can see in Fig. 4.2(a). However, when an object is mixed
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Figure 4.1: Mixed image created by random interpolation between images A

and B

with a background as in Fig. 4.2(b), the mixed image appears to be an 100%

object corrupted by noise. If the detector is trained by the conventional IR, any

blurred or noisy mixture images contribute to increasing the confidence of the

background class, and it will degrade performance. On the other hand, if that

sample is trained as a foreground object, it is expected to be robust to noise and

to learn about various backgrounds around the object.

To tackle this problem, in this chapter, we divide the mixed images into two

types (Type-I and II) depending on whether one of the original images is the

background or not. Then, we apply a different IR algorithm suitable for each

type. The proposed ISD method which will be detailed in next chapter can be

combined with conventional semi-supervised learning methods such as CSD

(consistency-based semi-supervised learning) to improve the semi-supervised

object detection performances. Also, the proposed scheme can be used to en-

hance the detection performance in the supervised learning framework. Our
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(a)

(b)

Figure 4.2: (a) Type-I : both patches are from object classes. (b) Type-II : one of

the patches is from the object class.
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main contributions can be summarized as follows:

• We show the problem in applying interpolation regularization directly to

the object detection task and propose a novel interpolation-based semi-

supervised learning algorithm for object detection.

• In doing so, we define two types of interpolation in the object detection

task and propose efficient semi-supervised learning methods suitable for

each type.

• We experimentally show the effectiveness of the proposed method for

each type by demonstrating a significant performance improvement over

the conventional semi-supervised object detection algorithms.

4.2 Method

We denote an image created by random mixing, � · A + (1 � �) · B, of two

images A and B as Mix�(A,B).

Mix�(A,B) = � ·A+ (1� �) ·B (4.1)

Similar to Mixup, the mixing coefficient � is drawn from the Beta(↵,↵)

distribution. In our method, we use SSD [50], one of the most popular single-

stage object detectors, as a baseline detector. The network output of SSD fp,r,c,d

is denoted as the output of the pth layer of the pyramid, rth row, cth column and

dth default box, and (p, r, c, d) is expressed as k for brevity. Each fk is com-

posed of fk
cls and fk

loc which are the softmax output vector and the localization

offsets of the center and the size of the box, [�cx,�cy,�w,�h], at position
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k, respectively. The mask m(I), which is computed by fcls(I), is used in back-

ground elimination and interpolation type categorization for image I and has

the binary objectness value at each location k:

m(I)k =

8
>><

>>:

1, if argmax(fk
cls(I)) 6= background

0, otherwise.
(4.2)

4.2.1 Type categorization.

We determine the type of a pair of patches by the background elimination method

that only extracts patches with a high objectness probability. Then we apply dif-

ferent methods appropriate for each type of patches. Eq. (4.3) is how we calcu-

late each type of a mask. The Type-I mask, mI , is calculated by element-wise

multiplication of m(A) and m(B). In other words, it becomes 1 when both

patches of m(A)k and m(B)k are 1, and otherwise it is 0. On the other hand,

the Type-II mask mA
II is calculated by element-wise multiplication of m(A) and

⇠ m(B), which means it is 1 when the patch in image A has a high objectness

score while the corresponding patch at the same location in image B has a high

background score, and vice versa for mB
II .

Type-I mask: mI = m(A)⌦m(B),

Type-II(A) mask: mA
II = m(A)⌦ ⇠ m(B),

Type-II(B) mask: mB
II =⇠ m(A)⌦m(B).

(4.3)

4.2.2 Type I loss

When the patches in image A and B are all likely to be objects (Type-I), we

define a Type-I loss inspired by the ICT loss [76]. Note that there are two dif-
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Figure 4.3: Type-I Loss : both patches are from object classes

ferences compared to the conventional ICT. First, we used ↵-Jensen-Shannon

divergence (↵-JSD / for ↵ = 1) Jeffreys Divergence (JD)) as the consistency

regularization loss (function d(., .) in Eq. (2.2)).

JS↵ = KL(p||(1� ↵)p+ ↵q) +KL(q||(1� ↵)q + ↵p)

JS↵=1 = JD = KL(p||q) +KL(q||p)
(4.4)

In the CSD, JD shows better performance because L2 loss equally weights

all the classes, including the background class. Second, we use the same net-

work to feed-forward inputs like CSD, distinct from ICT which uses differ-

ent networks for mixed and original inputs using MeanTeacher [71]. Eq. (4.5)

shows the loss function of Type-I, which is the distance between the mixed out-

put of f(A)kcls and f(B)kcls and the output of the mixed image of A and B,

f(Mix�(A,B))kcls.

lI = JD(Mix�(f(A)kcls, f(B)kcls)||f(Mix�(A,B))kcls) (4.5)
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Figure 4.4: Type-II : one of the patches is from the object class

The overall Type-I loss LI is the average of patches whose Type-I mask is

1.

LI = EI{mI=1}[lI ]. (4.6)

Here, E and I are the expectation and the indicator function, respectively.

4.2.3 Type II loss

As shown in Fig. 4.4, in Type II, one patch has a high probability of foreground,

while the other has a high probability of background. In this case, instead of

using the Type I loss described above, we train the network to have similar

predictions on the mixed patch and the patch with a high probability of fore-

ground. This kind of loss can be interpreted as a form of FixMatch loss [67]

which encourages consistency between the predictions on the strong augmen-

71



tation and the weak augmentation of an input. More specifically, in our case,

the mixed patch is considered as a strong augmentation while the patch with a

high foreground probability acts as no-augmentation. Note that, for classifica-

tion, FixMatch is trained with targets by creating pseudo-labels of samples that

exceed a threshold, whereas we do not need to set a specific threshold and the

target is set according to the output distribution of no-augmentation patch.

We set f(A) or f(B) as a target, and train the mixed output (f(Mix�(A,B)))

to be close to f(A) or f(B). In doing so, Kullback-Leibler (KL) divergence and

L2 loss are used as the classification and localization losses, respectively as fol-

lows:

lAII cls = KL(f(A)kcls||f(Mix�(A,B))kcls) (4.7)

lAII loc =
1

4
kf(A)kloc � f(Mix�(A,B))klock22. (4.8)

The overall Type-II loss when patch A is foreground, LA
II , is calculated as the

average of the sum of two individual losses as follows:

LA
II = EI{mA

II=1}[l
A
II cls + lAII loc]. (4.9)

Likewise, LB
II is also calculated by applying the above loss, and the total

loss of Type-II is calculated as follows:

LII = LA
II + LB

II . (4.10)

Finally, the overall ISD loss is computed by Type-I loss (LI ) and Type-II

loss (LII ) as follows:

LISD = �1 · LI + �2 · LII . (4.11)

Here, �1 and �2 are set appropriately to balance both loss terms. The overall

process of the proposed semi-supervised learning is described in Algorithm 2.
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Algorithm 2 Training procedure of the proposed ISD
Require: DL,DU : labeled and unlabeled datasets

Require: w(t): weight scheduling function

Require: f(·): trainable object detection model

Require: h(·): horizontal flip function

Require: m(·): objectness masks

1: for each t 2 [1, max iterations] do

2: Data Preparation

3: A,B  DL [DU

4: C  Mix�(A,B)

5: Compute the outputs

6: f(A), f(B), f(C)

7: Compute the objectness mask

8: mA  f(A), mB  f(B) (Eq. 4.2)

9: Compute the supervised loss

10: LS  f(A 2 DL \A)

11: Compute the ISD loss using the type mask (Eq. 4.3)

12: LI  EI{mI=1}[lI ] (Eq. 4.5)

13: LA
II  EI{mA

II=1}[l
A
II cls + lAII loc] (Eq. 4.7, 4.8)

14: LB
II  EI{mB

II=1}[l
B
II cls + lBII loc]

15: LII  LA
II + LB

II

16: LISD  �1 · LI + �2 · LII

17: Compute the total loss

18: LTotal  LS + w(t) · (LISD)

19: Update f(·) using LTotal

20: end for
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4.3 Experiments

All experiments have been done under the similar setting with the experimen-

tal settings chapter 3. Similar to CSD, we experimented on the PASCAL VOC

dataset and MS COCO dataset with SSD300 model. VGG-16 pre-trained model

is used as our backbone network. For VOC dataset, we followed the settings

from the conventional Semi-Supervised Learning methods for object detection.

Similar to [82] and CSD, we trained our model with PASCAL VOC07 train-

val (5k images) dataset as labeled data and PASCAL VOC12 trainval (12k im-

ages) as unlabeled data. Then, we tested with PASCAL VOC07 test dataset.

For MSCOCO dataset, we divided the MSCOCO 2014 dataset into the existing

categorized Train2014 (83k images) and Val2014-35k (35k images) dataset be-

cause minor classes may not be in the labeled dataset with random sampling.

We trained our model with Val 35k dataset as labeled data and Train 83k as

unlabeled data. Then, we tested with MS COCO test-dev dataset.

We sample the mixing parameter � from Beta(↵, ↵) at every iteration. The

parameters are set to (�1, �2) = (0.1, 1) in Eq. (4.11) and ↵ = 100 in the beta

distribution. Other learning parameters such as the learning rate and the batch

size are the same as CSD.

4.3.1 PASCAL VOC

Supervised Learning

We start by examining the effect of ISD on SSD in the supervised training set-

ting, i.e, the proposed losses in 4.11 are applied to labeled data. The results are

presented in Table 4.1. In the first row block, SSD (base) trained with VOC

07 (trainval) data shows 70.2 mAP performance, while that of SSD (CSD) de-
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Table 4.1: Detection results for PASCAL VOC2007 test set under the supervised

training setting. Lcls and Lloc are the consistency classification and localiza-

tion loss with BE in CSD. The following experiments use VOC07 (labeled) and

VOC12 (unlabeled) data. Blue and Red are represented as the Baseline score

and Best score, respectively. The numbers in the parentheses are the perfor-

mance increments compared with the baseline.

Semi-Supervised Loss Labeled data Unlabeled data mAP (%)

Supervised Learning – Trained only with labeled data

None [50] VOC07 - 70.2

(Supervised Learning) VOC07 + VOC12 - 77.2

CSD
VOC07

- 69.3

Ours (ISD only) - 72.3

creases to 69.3 mAP, which shows a side effect that we mentioned in 3.4.1. On

the other hand, SSD300 (ISD) shows 2.1% improvement in accuracy compared

to SSD (base).

Semi-Supervised Learning

We evaluate the performance of ISD in the Semi-Supervised Learning setting.

As shown in Table 4.2, the performance of the SSD model trained only with

VOC07 labeled data is 70.2%. Type-I and Type-II show 1.7% and 3.6% of en-

hancement, respectively. The Type-I consists of only classification loss, and it

shows better result than the score of only classification loss in CSD. Type-II

shows much better performance than CSD and jointly using both Type-I and

Type-II losses shows 3.9% of enhancement. This demonstrates the effectiveness
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Table 4.2: Detection results for PASCAL VOC2007 test set under the semi-

supervised training setting. Lcls and Lloc are the consistency classification and

localization loss with BE in CSD. The following experiments use VOC07 (la-

beled) and VOC12 (unlabeled) data. Blue and Red are represented as the Base-

line score and Best score, respectively. The numbers in the parentheses are the

performance increments compared with the baseline.

Semi-Supervised Loss Labeled data Unlabeled data mAP (%)

None [50] VOC07 - 70.2

(Supervised Learning) VOC07 + VOC12 - 77.2

Semi-Supervised Learning

CSD (Lcls)

VOC07 VOC12

71.7 (1.5)

CSD (Lloc) 71.9 (1.7)

CSD (Lcls + Lloc) 72.3 (2.1)

ISD (Type-I only)

VOC07 VOC12

71.9 (1.7)

ISD (Type-II only) 73.8 (3.6)

ISD (Type-I,II) 74.1 (3.9)
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of our approach in the SSL setting.

4.4 Discussion

4.4.1 Ablation studies for Type-I and Type-II losses

We experiment to verify the performance of the two types of loss we proposed

in Table 4.2. Each loss shows a significant performance improvement compared

to the supervised learning. In the table, for all the cases, the Type-II loss per-

formed better than of Type-I loss. There are three reasons for this results. First,

the numbers of Type-I and Type-II samples are different. With a trained model,

the number of Type-II samples was 5 times that of Type-I samples, which indi-

cates that the influence of Type-I loss is relatively small. Second, Type-I only

considers the classification loss while Type-II uses the localization loss as well.

Because the two objects in Type-I have different bounding boxes, the boundary

of their mixed patch is not equal to the interpolation of their bounding boxes.

Therefore, the localization loss cannot be applied in Type-I cases. Third, two

objects that are mixed may not be aligned well. More research is needed for the

alignment in Interpolation Regularization, which remains as a future work.

In Table 4.31, we analyzed the effect of the classification and the localization

loss in Type-II when ↵ is 100. The classification loss on Type-II samples showed

more remarkable performance improvement than the localization loss, and by

combining them, we can obtain better performance.

In the case of Type-II, it shows a very large performance improvement com-

pared to Type-I. And we can think of a way to make strong augmented data
1Note that the model is combined with the CSD, and the combining method will be described

in the next chapter.
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Table 4.3: Ablation study of Type-II losses on PASCAL VOC2007 test set. All

the experiments in this table are performed by adding each loss to the CSD. (↵

is 100).

VOC07(L)+VOC12(U) mAP (%)

Type-II (cls) 74.0

Type-II (loc) 73.1

Type-II (cls + loc) 74.2

like mixed images by generating images to fit object detection. However, the

purpose of this paper is to inform that there is a problem when applying inter-

polation regularization and to suggest a way to solve it. In addition, the above

mentioned method [68] was published by the google brain team at the same time

as our paper and shows good performance.

4.4.2 Beta distribution

In ISD, the mixing coefficient � is sampled from the Beta(↵,↵) distribution.

Table 4.42 shows the performance of ISD using various values of ↵ across dif-

ferent types of ISD losses. We observe that a large range of ↵ gives improved

performance in comparison to the baseline (CSD with 72.3% mAP). In general,

we recommend to set ↵ to a sufficiently large value. The reason for choosing

relatively large ↵ is as follows: With a smaller values of ↵ (e.g. ↵ < 1), �

will be close to either 0 or 1 with high probability, thus most of the mixed im-

ages will be closer to either of the original images being mixed. In this case,
2Note that the model is combined with the CSD, and the combining method will be described

in the next chapter.
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Table 4.4: Ablation study for ↵ and each type in VOC07(L) + VOC12(U) train-

ing dataset and VOC07 testing dataset. The row represents the ↵ of the beta

distribution, and the column represents each type. All the experiments in this

table are performed by adding each loss to the CSD.

�(↵, ↵) SSD300 + ISD Method (mAP (%))

↵ Type-I Type-II Type-I + Type-II

1 72.3 72.8 72.9

10 72.4 73.8 74.0

100 72.4 74.2 74.4

1000 72.2 74.2 74.3

the mixed image M will be extremely weak (for one image) or strong (for the

other) augmentation resulting in lowered performance with high variance. In

contrast, increasing the values of ↵ increases the probability of � being closer

to 0.5, which provides an appropriate level of regularization. Note that if the

value of ↵ is too large, � will be concentrated too much around 0.5 and all the

augmented samples will be too different from the original images resulting in

degraded performance with high variance at test time.

4.4.3 Training model size

For ISD training, image batches are inferred by the network three times over

conventional SSD. Also, due to the calculation of additional losses, it requires

more than three times the conventional SSD memory. We used Nvidia 1080Ti

GPU, and we assigned 4 GPUs for SSD model with ISD training. With fewer

GPUs, our implementation was not trainable because of limited memory budget.
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However, at testing, it has the same network size and inference time as the base

network and can improve the performance.

4.4.4 Object detector

In this chapter, we have used the SSD model among various single stage de-

tectors. In the case of other detectors, algorithm-specific modifications should

be made to successfully apply interpolation regularization, while the basic idea

of separating Type-I and Type-II samples and applying a different loss for each

case is still valid. In the case of a Two-Stage detector, generally, Region of In-

terest (RoI) is obtained by Region Proposal Network (RPN) and classification

of that location is performed for object detection. Since the RoIs of A, Â, B,

and Mix�(A,B) are all different, in order to apply our algorithm, one of RoIs

should be applied to other images for one-to-one correspondence. If the RoI of A

is applied to other images, Type-II loss between B and Mix�(A,B) cannot be

obtained, and if each RoI of A, B, Mix�(A,B) is applied individually to other

images, a lot of computation will be required. Thus how to apply interpolation-

based regularizer for Two-stage detectors is an interesting avenue for further

research.

4.5 Conclusion

In this chapter, we have proposed ISD, a simple and efficient Interpolation-based

semi-supervised learning algorithm for object detection using single-stage de-

tectors. We started by investigating the challenges that occur when the Interpo-

lation Regularization methods for the classification task are applied directly to

an object detection task, and have addressed these challenges by proposing dif-
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ferent types of interpolation-based loss functions. Our method shows significant

improvement in both semi-supervised and supervised object detection tasks over

the previous methods, compared over the same dataset and the same architecture

settings. We leave the exploration of Interpolation Regularization for Two-stage

detectors as a future work.
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Chapter 5

Combination of CSD and ISD

In this chapter, we introduce the method of combining CSD and ISD. As state

in chapter 3, CSD not only computes the original batch but also predicts another

batch that is horizontally flipped images. Therefore, CSD requires twice as much

memory as conventional training. On the other hand, as mentioned in chapter 4,

ISD needs predictions of the original mini-batch, other new mini-batch, and

another mini-batch that are mixed between the original mini-batch and other.

Therefore, ISD allocates three times as much memory as conventional training.

Since the combination of CSD and ISD needs four types of predictions men-

tioned above, it requires four times as much memory as conventional training.

However, even the SSD300 model, which requires a small amount of memory,

cannot be trained with four 1080ti GPUs at the same batch size.

We proposed a method of using horizontal flip image batch in CSD to ef-

ficiently use memory and easily combine the two algorithms. However, it is

difficult to apply the horizontal flip image batch directly. The mixed image

Mix�(A, Â) of A 2 A and its horizontal flipped version Â 2 Â would have

similar backgrounds and predict the same class in the center of the image, as
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Figure 5.1: The mixed image Mix�(A, Â) of A 2 A and its horizontal flipped

version Â 2 Â

shown in Fig. 5.1. Therefore, by applying shuffle and mixing in batch, we got

the same result as a prediction of 4 times with a prediction of 3 times. Our main

contributions can be summarized as follows:

• We show the problem in mixing the original image and the horizontally

flipped image and propose a method to combine CSD and ISD with less

memory by shuffle and mix mini-batch.

• We experimentally show the effectiveness of combining CSD and ISD by

verifying a significant performance improvement over the previous CSD

and ISD algorithms.
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Figure 5.2: Combination of ISD with CSD. The original images (A) are flipped

(Â) and the mixed images (M) are obtained by combining the two. First, the

order of flipped images are changed by shuffling (B = shuffle(Â)), then A and

B are mixed (M = Mix�(A,B)). CSD loss is calculated between A and Â and

ISD loss is computed between M and (A and/or B). In the original set (A), the

blue box (S) is labeled, to which the supervised loss is applied.
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5.1 Method

For ISD training, three sets of image batches, A, B, and M = Mix�(A,B)

should be inferred by the network. For efficient training, we set B as the hor-

izontally flipped version of A, i.e, Â = flip(A), as shown in Fig. 5.2. We

calculated the CSD loss with those two batches. As shown in Fig. 5.2, we make

the mixed images by combining the original batch (A) with the half-shuffled

flipped batch (B = shuffle(Â)). The total loss consists of supervised loss

(LS), CSD loss (LCSD), and ISD loss (LISD) as follows:

LTotal = LS + w(t) · [LCSD + LISD], (5.1)

where w(t) is a weight scheduling function. The overall process of the proposed

semi-supervised learning is described in Algorithm 3

5.2 Experiments

All experiments have been done under the similar setting with the experimental

settings chapter 3 and 4.

5.2.1 PASCAL VOC

Supervised Learning

We start by examining the effect of combining CSD and ISD on SSD in the

supervised training setting, i.e, the proposed losses in 5.1 are applied to labeled

data. The results are presented in Table 5.1. SSD (base) trained with VOC 07

(trainval) data shows 70.2 mAP performance, while that of SSD (CSD) de-

creases to 69.3 mAP. On the other hand, SSD300 (ISD) and SSD (ISD + CSD)
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Algorithm 3 Training procedure of the proposed Combination of CSD with ISD
Require: DL,DU : labeled and unlabeled datasets

Require: w(t): weight scheduling function

Require: f(·): trainable object detection model

Require: h(·): horizontal flip function

Require: m(·): objectness masks

1: for each t 2 [1, max iterations] do

2: Data Preparation

3: A DL [DU , Â h(A)

4: B  shuffle(Â)

5: C  Mix�(A,B)

6: Compute the outputs

7: f(A), f(Â), f(C)

8: f(B) shuffle(f(Â))

9: Compute the objectness mask

10: mA  f(A), mB  f(B) (Eq. 4.2)

11: Compute the supervised & CSD losses

12: LS  f(A 2 DL \A)

13: LCSD  f(A 2 DU \A), f(Â),mA

14: Compute the ISD loss using the type mask (Eq. 4.3)

15: LI  EI{mI=1}[lI ] (Eq. 4.5)

16: LA
II  EI{mA

II=1}[l
A
II cls + lAII loc] (Eq. 4.7, 4.8)

17: LB
II  EI{mB

II=1}[l
B
II cls + lBII loc]

18: LII  LA
II + LB

II

19: LISD  �1 · LI + �2 · LII

20: Compute the total loss

21: LTotal  LS + w(t) · (LCSD + LISD)

22: Update f(·) using LTotal

23: end for
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Table 5.1: Detection results for PASCAL VOC2007 test set under the supervised

training setting. Lcls and Lloc are the consistency classification and localiza-

tion loss with BE in CSD. The following experiments use VOC07 (labeled) and

VOC12 (unlabeled) data. Blue and Red are represented as the Baseline score

and Best score, respectively. The numbers in the parentheses are the perfor-

mance increments compared with the baseline.

Semi-Supervised Loss Labeled data Unlabeled data mAP (%)

Supervised Learning – Trained only with labeled data

None [50] VOC07 - 70.2

(Supervised Learning) VOC07 + VOC12 - 77.2

CSD

VOC07

- 69.3

ISD - 72.3

CSD + ISD - 73.1

show 2.1% and 2.9% improvements in accuracy compared to SSD (base), re-

spectively. This shows that combining ISD with a strong CSD regularizer stabi-

lizes the training, making the network more robust.

Semi-Supervised Learning

We evaluate the performance of combining CSD and ISD in the semi-supervised

learning setting. As shown in Table 5.2, the performance of the SSD model

trained only with VOC07 labeled data is 70.2%. When CSD and ISD are com-

bined, it shows even greater performance improvement. This demonstrates the

effectiveness of our approach in the SSL setting. Moreover, ISD+CSD with

VOC07 labeled data and VOC12 unlabeled data on SSD (Table 5.2, last row)
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Table 5.2: Detection results for PASCAL VOC2007 test set under the semi-

supervised training setting. Lcls and Lloc are the consistency classification and

localization loss with BE in CSD. The following experiments use VOC07 (la-

beled) and VOC12 (unlabeled) data. Blue and Red are represented as the Base-

line score and Best score, respectively. The numbers in the parentheses are the

performance increments compared with the baseline.

Semi-Supervised Loss Labeled data Unlabeled data mAP (%)

None [50] VOC07 - 70.2

(Supervised Learning) VOC07 + VOC12 - 77.2

Semi-Supervised Learning

CSD (Lcls)

VOC07 VOC12

71.7 (1.5)

CSD (Lloc) 71.9 (1.7)

CSD (Lcls + Lloc) 72.3 (2.1)

ISD (Type-I only)

VOC07 VOC12

71.9 (1.7)

ISD (Type-II only) 73.8 (3.6)

ISD (Type-I,II) 74.1 (3.9)

CSD+ISD 74.4 (4.2)
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Table 5.3: Detection results for PASCAL VOC2007 test set. The following ex-

periments use VOC07 (labeled) and VOC12 & MSCOCO (unlabeled) data.

Detector
Labeled Unlabeled mAP (%)

data data CSD ISD + CSD

SSD300 VOC07

VOC12 72.3 74.4

VOC12 + MSCOCO (full) 71.7 73.7

VOC12 + MSCOCO(VOC) 72.6 74.5

shows 1.3% performance improvement in comparison to the fully supervised

setting with VOC07 labeled data on SSD (Tabel 5.1, last row). This explains

that the combined loss of ISD+CSD not only on labeled data, but also on un-

labeled data contributes to better performance. The results shown in Table 5.2

demonstrate that our ISD+CSD approach outperforms the baseline CSD-only

approach by a significant margin.

5.2.2 Unlabeled data with different distribution (MSCOCO)

Similar to 3.3.3, we experimented by adding the MSCOCO dataset that has dif-

ferent distributions to the unlabeled data. In our results, as shown in Table 5.3

When VOC 12 + MSCOCO (VOC) is trained as unlabeled data, it shows better

performance than VOC 12 alone as unlabeled data. On the other hand, when

VOC12 + MSCOCO (full) is used as unlabeled data, the performance is dete-

riorated. This shows one of the semi-supervised learning limitations [55, 28],

which can degrade performance as the out-of-class distribution data in the unla-

beled dataset increases.
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Table 5.4: Detection results for MS COCO test-dev set. The following experi-

ments use Val35k (labeled) and Train80k (unlabeled) data. The numbers in the

parentheses are the performance improvements from the baseline model (SSD

trained on Val35k). All experiments are tested by ourselves.

Method
Labeled Unlabeled Avg. Precision, IoU:

data data 0.5:0.95 0.5 0.75

SSD300
Val35k - 18.8 34.8 18.6

Val35k + Train80k (trainval35k) - 23.9 40.8 24.7

CSD
Val 35k Train 80k

19.8 (1.0) 35.8 (1.0) 19.8 (1.2)

CSD + ISD 21.0 (2.2) 37.7 (2.9) 21.1 (2.5)

5.2.3 MSCOCO

Table 5.4 shows the results of experiments on the MSCOCO dataset. The su-

pervised performances of SSD using Val35k and Trainval35k show 18.8 mAP

and 23.9 mAP, respectively. While CSD with Val35k labeled data and Train80k

unlabeled data on SSD shows 1.0% of enhancement, CSD+ISD shows 2.1% per-

formance improvement in the same experimental setting for the COCO dataset.

5.3 Discussion

5.3.1 CSD and ISD with only labeled data

We evaluated combination of CSD and ISD on PASCAL VOC 2007 under the

supervised training setting. When CSD and ISD are combined together, it re-

sults in even better performance compared to the case only ISD is applied to the

labeled data which also improves performance. On the contrary, applying only

CSD to the labeled data decreases improvement. We analyzed this result as fol-
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Table 5.5: Detection results for PASCAL VOC 2007 set. The following exper-

iments use three types of VOC07 (labeled/ half-train, train, and trainval) and

VOC12 (unlabeled) data.

Labeled SSD Unlabeled CSD CSD + ISD

VOC07 half-train (1.3k) 41.5 VOC12 trainval (12k) 45.8 54.9

VOC07 train (2.5k) 63.6 VOC12 trainval (12k) 64.9 68.5

VOC07 trainval (5k) 70.2 VOC12 trainval (12k) 72.3 74.4

lows. In case of CSD, the supervised and the consistency losses are small values,

so there is little change in the weight of the model. Therefore, both the original

image and the flipped image have the fitted values, which can cause the over-

fitting as mentioned in 3.4.1. On the other hand, in the case of ISD, the model

is trained with both Type-I and Type-II losses for training on the mixed image,

so it cannot be easily fitted. In this case, the ISD loss has a huge value, which

causes a lot of weight change in the model and prevents overfitting. Therefore,

it is helpful to combine ISD with the CSD for enhanced result.

5.3.2 Small labeled dataset

Table 5.5 is the experimental results of each algorithm that is trained using the

train dataset in VOC07, which consists of a various number of images (1.3k,

2.5k, and 5k). As the number of labeled data decreased, the performance of

the SSD decreased significantly. At this time, the performance of CSD and

CSD+ISD showed better performance than the existing supervised learning.

Nevertheless, the results of CSD+ISD are inferior to those trained with a lit-

tle more labeling data. In the case of CSD + ISD trained with VOC07 half-train
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labeled data and VOC12 unlabeled data, a total of 13.3k data are used. It shows

the 54.9% mAP score. At this time, the SSD trained only with the VOC 07 train

label shows 63.6% performance, and the performance of CSD+ISD (VOC07

half-train labeled data and VOC12 unlabeled data) shows worse than supervised

learning with VOC07 train labeled dataset.

5.3.3 Training model size

For CSD and ISD algorithms, we have to predict one and two additional mini-

batches for computing the losses, respectively. Therefore, combining CSD with

ISD is needed three additional prediction In other words, since conventional

SSD allocates 12 GB memory, proposed method requires 48GB memory. How-

ever, we have 4 1080Ti GPUs, and out total memory in GPU is 44 GB. In our

method, as we shuffled the mini-batch output of horizontal flipped batches, we

reduce the network prediction and memory.

5.4 Conclusion

In this chapter, we have introduced combining method of CSD and ISD. In com-

bining the above two algorithms directly, we cannot train the model due to the

out-of-memory. In order to utilize existing resources, we made the mixed im-

age using mixing original image and horizontal flipped image. However, this

method generates data so that it has a problem with the conventional training of

ISD. Therefore, we adopted the shuffle and mix method so that results are equiv-

alent to the method that predicts all mini-batch. We confirmed that the proposed

algorithm shows significant improvement in not only supervised learning but

also semi-supervised learning, and this algorithm shows improved performance
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not only in the VOC dataset but also in the COCO dataset.
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SSD CSD CSD+ISD

Figure 5.3: Qualitative results for the PASCAL VOC2007 test set using su-

pervised SSD, semi-supervised CSD and CSD+ISD models in table 5.2. The

first, middle, and last columns are the resulting images of the SSD, CSD, and

CSD+ISD models, respectively. A score threshold of 0.3 is used to display these

images.
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SSD CSD CSD+ISD

Figure 5.4: Qualitative results for the PASCAL VOC2007 test set using super-

vised SSD, semi-supervised CSD and CSD+ISD models in table 5.2. .
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SSD CSD CSD+ISD

Figure 5.5: Qualitative results for the PASCAL VOC2007 test set using super-

vised SSD, semi-supervised CSD and CSD+ISD models in table 5.2.
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SSD CSD CSD+ISD

Figure 5.6: Qualitative results for the PASCAL VOC2007 test set using super-

vised SSD, semi-supervised CSD and CSD+ISD models in table 5.2.
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Chapter 6

Conclusion

In this dissertation, we proposed various Semi-Supervised Learning methods

for object detection. Prior to our proposed algorithms, algorithms that applied

the self-training method are introduced, which take much time to train and are

sensitive to hyperparameter. Our algorithms are the first attempt to extend CR

and IR to object detection, which was only used in conventional semi-supervised

classification problems. Also, we conducted research to find problems resulting

from applying CR and IR to object detection at the same time. Finally, we solved

the defined problem and achieved better result. Our proposed algorithms show

great performance improvement compared to the supervised learning method

and it is an important step in semi-supervised object detection in the future.

In this chapter, we give a brief summary of the proposed method and discuss

the limitations along with future directions of our research.
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6.1 Summary

Methods for Semi-Supervised Learning for object Detection are proposed through-

out this dissertation, which improves the performance of object detectors by

training labeled and unlabeled data together.

First, we proposed a way of applying Semi-Supervised Learning of the Con-

sistency Regularization method to object detection. This is the first algorithm to

apply a consistency-based semi-supervised classification problem to object de-

tection. We have defined a new consistency loss for classification as well as

localization and have verified that our algorithm improves performance in not

only single-stage detector but also the two-stage detector. In addition, it was

confirmed that the proposed Background Elimination alleviates the imbalance

problem of the background and helps to improve performance.

Second, we also proposed a way of applying Semi-Supervised Learning of

the Interpolation Regularization method to object detection. This is also the first

algorithm to apply an interpolation-based semi-supervised classification prob-

lem to object detection. We discovered that directly applying it causes The IR

problem and found a solution to deal with it which is reversely utilizing the

problem. By adopting this method, the performance is improved.

Lastly, we proposed an algorithm that can utilize CSD and ISD at the same

time. We faced the memory issue that occurs when using both of them at the

same time. Therefore, we shuffle the flipped batch to use memory efficiently

and achieve the same result. Memory problem is effectively solved enabling to

train CSD and ISD simultaneously resulting in higher efficiency compared to

each training performance.
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6.2 Limitations

In this dissertation, there are three significant limitations:

First, the two-stage detector has structural limitations on applying to our

algorithm. In a Two-stage Detector, Region Proposal Network (RPN) is used to

extract Region of Interest (RoI), and classification is performed on these RoIs.

At this time, the RPN is sampling the patches that are likely to be objects. Since

the object candidates can be sampled from different locations under the minor

perturbation in the same image, it is difficult to match the outputs. In the case of

CSD, the outputs of RPN cannot be matched one-to-one correspondence for the

same reason. Consequentially, the two-stage detector shows less improvement

than the single-stage detector. In the case of ISD, more outputs are predicted

than CSD, and matching the outputs is a more difficult problem.

Second, the proposed algorithms have a limitation in that they require a lot

of memory. The proposed algorithm requires 2-3 times more memory than the

conventional algorithm, making it challenging to apply to the latest object de-

tector. SOTA object detectors, which achieve higher (30%+) mAP, require large

GPU memory to train the model mainly due to the large batch and network sizes.

For example, RetinaNet uses 8 GPUs with a minibatch size of 16 (2 images per

GPU). Therefore, with our resources (4 1080Ti GPUs), it was challenging to

train the SOTA detector algorithms under the same settings such as the batch

and model sizes.

Last, there is a well known limitation of Semi-Supervised Learning that the

performance of any Semi-Supervised Learning method usually degrades with

out-of-class distribution unlabeled samples. In the case of our algorithms, when

training the labeled VOC dataset with the unlabeled MSCOCO dataset, it shows
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the performance degradation. This is the same trend as the classification prob-

lem, and in-class distribution data should be added also as unlabeled data is

added.

6.3 Future Directions

To conclude, we discuss the future directions of the research in Semi-Supervised

Learning for object detection and Interpolation Regularization.

First, a method of matching the outputs in a two-stage detector is needed.

By matching outputs, we can expect performance improvement through training

of consistency loss in RPN and ISD training in the two-stage detector. However,

as mentioned in Limitations, it is difficult to match between two outputs due to

the sampling.

Second, a method for memory efficiency is required. The proposed algo-

rithm requires 2-3 times more memory than the conventional algorithm. Since

the state-of-the-art algorithms with high performance recently allocate much

GPU memory to train, it is difficult to additionally train Semi-Supervised Learn-

ing. Therefore, by efficiently using memory and applying Semi-Supervised Learn-

ing to the SOTA object detector, we can expect further performance improve-

ment.

Third, processing for out-of-class distribution is essential. Since the prob-

lem of out-of-class distribution has not yet been solved, the classification of

unlabeled data is vital. To address the out-of-class distribution, we can sample

the unlabeled data using the trained model or ignore it during the training. If

we do sampling, training can be efficient but there is a possibility of the in-

class distribution not be added. On the other hand, if we ignore it in the training
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phase, it can be inefficient to predict for all samples. Thus, a way to deal with

the out-of-class distribution to allow training without human intervention must

be proposed.

Fourth, experiments with different proportions of labeled and unlabeled data

are required. Most of our experiments were performed at a fixed ratio. However,

in recent studies, experiments are being conducted with changing proportions

of labeled data (0.5%, 1%, 2%, 5%, and 10%). To control the ratio of labeled

data, sampling is performed, and it makes a large deviation. Therefore, through

3 ⇠ 5 experiments, results are obtained, and they have reported the average and

standard deviation.

Fifth, for research in this field, many GPUs are required, and a method to

learn or utilize them efficiently is needed. When training our CSD+ISD exper-

iment with the SSD300 model, the PASCAL VOC dataset takes about 1 day,

and the MS COCO dataset takes about 3 days with four Nvidia 1080Ti GPUs.

Therefore, our algorithm takes at least 3 days ⇥ 3 times ⇥ 5 ratio = 45 days for

the MSCOCO experiment. It will take longer to learn the latest algorithm, and

this should be taken into consideration.

Last, there are still many problems in Interpolation Regularization, and re-

search on this is needed. We have shown good results with a very simple binary

classification problem as an example in 2, but there are problems as in our ISD.

An example of an IR problem similar to that in ISD can be found in the SVHN

dataset that consists of digit numbers of data. When we mix 1 and 4, the mixed

image would be similar to 4. At that time, it faces the same problem with ISD.

We solve this problem to fit object detection, but for other problems, it is needed

to solve the problem considering tasks.
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�‹T (Interpolation Regularization)0⇠X�¿ƒYµ)ïD⌧‹X�‡,
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