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Abstract

The size of deep neural network (DNN) models has been exploding rapidly,
demanding a colossal amount of memory capacity. For example, Google has
recently scaled its Switch Transformer to have a parameter size of up to 6.4
TB. However, today’s HBM DRAM-based memory system for GPUs and DNN
accelerators is suboptimal for these extreme-scale DNNs as it fails to provide
enough capacity while its massive bandwidth is poorly utilized. Thus, we pro-
pose Leviathan, a DNN inference accelerator, which integrates a cost-effective
flash-based memory system, instead. We carefully architect the flash-based
memory system to provide enough memory bandwidth while preventing per-
formance drop caused by read disturbance errors. Our evaluation of Leviathan
demonstrates a 2.39x throughput gain compared to the iso-FLOPS DNN ac-
celerator with conventional SSDs and up to 19.47x higher cost-efficiency than
the HBM-based DNN accelerator.

Keywords: Neural Network, Flash Memory, Read Disturbance
Student Number: 2019-22004
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Chapter 1. Introduction

Deep neural networks (DNNs) have become more than just cutting-edge tech-
nology. They have now permeated diverse domains such as natural language
processing (NLP) (116, 136l 138, 44)), computer vision (24} 152} 161), and recom-
mendation systems (40). One of the most recent trends in DNNs is the increase
in their model sizes. In particular, Transformer-based models (57) have been
explosively expanding their sizes. For example, BERT (16) has hundreds of
millions of parameters, translating to 1.36 GB memory space requirements.
Similarly, GPT-3 (7) requires 350 GB memory space, and the most recent
Switch Transformer (17) requires 6.4 TB memory space. This scaling of model
size poses a significant challenge in the existing DNN inference systems having
a relatively small memory capacity of tens of GBs.

One straightforward way to secure more capacity is to increase the number
of sockets (i.e., scaling out). For example, to house a GPT-3 model requiring
350 GB memory capacity, one needs at least five NVIDIA’s A100 GPUs (1),
each having 80 GB memory to secure 400 GB memory space. However, such
a use of multiple devices incurs a high hardware cost. This is because HBM-
based memory in GPUs is costly for their high memory bandwidth; however,
this high memory bandwidth is underutilized for those extreme-scale DNNs as
their bandwidth requirements are often much smaller due to a higher degree of
data reuse (32).

NAND-based flash memory is an attractive alternative to the HBM-based
memory system for such large-scale DNN models as it provides a large memory
capacity at a low cost (4). However, several challenges need to be addressed.
First, a flash device exhibits far lower bandwidth than HBM DRAM and what
is necessary for DNN inference. For example, it takes 50 seconds to read all
weights in GPT-3 from a commercial SSD providing 7 GB/s (49), which is too



slow. Second, as DNN inference necessitates repeated reads to the devices, a
chronic problem in NAND flash known as read-disturbance (RD) (6l 19} 211 [37)
53) is exacerbated and causes severe deterioration in their performance. RD-
induced errors are typically addressed with read reclaim (RR) (9, 23, 29). RR
in the prior work is designed for a generic case of non-uniformly distributed
reads across blocks. However, in a DNN inference system, memory reads are
distributed uniformly across blocks to reach the threshold of RD-induced errors
and call RRs simultaneously. These bursty RRs cause a significant drop in flash
throughput to increase performance variability.

To address these challenges, we present Leviathan, a NAND flash-based
DNN inference accelerator specialized for extreme-scale DNNs. To boost the
bandwidth of the storage system, we conduct vertical optimization from the
host to the storage system by leveraging the domain-specific characteristics of
DNN inference. Specifically, Leviathan exploits the read-intensive nature and
static data-access pattern to facilitate flash optimizations such as cache-read
and multi-plane operations for user I/O. Leviathan also resolves performance
degradation caused by RD. Identifying that bursty RR operations are the cause,
Leviathan effectively distributes them over time in the course of multiple DNN
inference requests. Thus, it smooths out the peak bandwidth demanded from

RR operations and minimizes interference with user I/Os for computation.



Chapter 2. Background and Motivation

2.1 Extreme-scale DNN Inference

To inference a DNN model is to exploit a trained model to carry out certain
tasks it was trained for. It does so by multiplying learned weights and input
data which is being propagated through the model in the form of activations.
One interesting aspect of this process is that the dataflow strictly adheres to a
predefined path. Therefore, it is easy to sequentialize data accesses. Also, the
task features a WORM (write-once-read-many) access pattern. It reads many
times from weight data that is written once. This is especially helpful in flash
memories where a typical read is over 10x faster than write. Leviathan exploits

these properties to boost its flash bandwidth.

2.2 Reading from NAND-based memory

GPT-3 model introduced in 2020 contains 175 billion parameters, whereas
BERT model introduced in 2018 contains merely 110 million parameters. Just
within two years gap, the size of these Transformer-based models has scaled by
more than 1000x. To account for the enormous memory capacity demand from
the extreme-scale models, recent literature has been shifting the direction to
heterogeneous memory (5,32} 48 58]). Specifically, solutions using NAND-based
SSDs (55, 132) have been announced. With gigantic memory capacity, these solu-
tions adequately addressed the memory capacity wall problem induced by the
extreme-scale models. However, the NAND-based storage also induces a few
problems of its own when being exploited to accommodate DNN models for
inference. In this section, we first provide some necessary background on read-
ing from NAND flash memory. Next, we discuss read disturb, a common error

which is more susceptible in read-intensive workloads such as DNN inference.
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Figure 2.1: Reading from NAND array and read disturbance during the process

Read path. A typical NAND array in flash memory is laid out as a grid, as in
Figure [2.1)(a) referred to as a block. To read from this block, a read reference
voltage V¢ is applied to the target wordline (WL) that contains the page to
be read. The cells that are programmed with threshold voltages (Vi) lower
than V,.r will be turned off while others will be turned on. Sense amplifiers
at the bottom of the array will sense whether or not the cell placed on their
bitline (BL) is turned on and send the message to the memory controller.

This is the case of single-level cell (SLC) where each cell can represent only
one bit, namely two states. This is a simplification compared to its counterparts
such as multi-level (MLC) or triple-level (TLC) cells. These cells must apply
multiple different voltages to read a page in a block. Taking ML.C which can
represent two bits, or four states, as an example, there are 3 V,’s that sepa-
rate the four states in equal portions. First V,..¢ that is equal to the middle Vy,
is applied. The least significant bit (LSB) pages are determined in this step.
Afterward, other two V;;,’s are applied sequentially to determine the most sig-
nificant bit (MSB) pages. With V,.s applied three times, reading from MLCs
induces at least 3x latency and 7x for TLCs.

As mentioned earlier, the cell to be read from is connected to the sense

amplifier via a BL. This BL contains cells in other WLs. Thus, to read from



a cell, all other cells in the same BL must be turned on to allow current flow
into the sense amplifier. To turn the other cells, pass-through voltage (Vpqss) is
applied to all other cells as in Figure Vpass 1s set as the maximum possible
Vin to ensure that all cells receiving Vj,ss are turned on.

Read Disturbance (RD). Read disturb is an inherent problem in SSDs (/6|
9, 21, 137, [53). Reading a page from a block necessitates applying Vpqss to all
the other WLs. Applying such a high voltage to a cell will degrade its dioxide
which in turn shifts the threshold voltage due to charge loss. Figure (b)
shows the original distribution of cells right after being programmed. Cells
whose threshold voltage is lower than V, are sensed as in erased (ER) state
with a bit value of 1 and the others are sensed as P1 state with bit value of 0.
With the shift of V;j, of cells due to repeated appliance of V4, the distribution
will be expanded as in Figure (c) When the reference voltage of V, is applied
to the cells, cells in the dashed region will be read incorrectly. Namely, cells
originally in P1 state will be read as in ER state, and cells originally in ER

state will be read as in P1 state. Thus read disturb errors have been generated.
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Figure 3.1: Overview of Leviathan

Chapter 3. Leviathan Overview

Overview. Leviathan is a specialized DNN inference platform designed to
accommodate extreme-scale models. It employs a low-cost storage medium that
satisfies the bandwidth demand of the workloads. As depicted in Figure
Leviathan has multiple accelerators with DDR DRAM in place of HBM. Each
accelerator is connected to Leviathan Flash System (LFS) via 64 lanes of Gen4
PCle (42)).
DNN inference in Leviathan. Initially, a host analyzes the requested DNN
model (2, 43) to confirm that Leviathan’s LFS can provide the bandwidth de-
manded by the model inference. If so, it writes the trained model weights to
Leviathan’s LFS. Afterward, the host generates computation and DMA com-
mand sequences for each accelerator and LFS to execute the model. It then
passes the commands to Leviathan’s LFS, and the sequences guide operations
in the system. This sequence is stored in a separate stream (32) of LFS from
storing weight data.

The commands are first distributed to the accelerators they are assigned to.

Each accelerator is assigned a part of the model so that multiple accelerators



can process a single model in a model-parallel manner. For example, when three
accelerators are attached to a single LFS, a fully connected layer in the form
of 3M x N matrix is partitioned into three M x N matrices and distributed
to each accelerator. The result is accumulated in the last accelerator, which is
distributed to the Tensor Buffers of the others for the computation of the next
layer.

The inside of an accelerator is depicted in Figure Control Logic first
sequences the computation and DMA commands it was assigned. Computation
commands are issued to components in Compute Core after their dependen-
cies are met. Leviathan resembles the architecture of popular DNN accelera-
tors ([L0L [11)12] 28]) designed solely for multiply-accumulate (MAC) operations.
This MAC array is a massive grid of processing elements, each carrying out one
MAC operation every cycle. At every cycle, a part of activation is pumped into
the MAC array from SRAM buffer and multiplied to the stationed weights.
The generated result is then passed onto activation unit (ACT) if the layer in
computation contains an additional activation layer (3, [20)) to apply the corre-
sponding activation function. The final product is saved in SRAM to maintain a
copy of the result and distributed to other accelerators through Tensor Buffers.

DMA commands are issued to LFS controller, which corresponds to the
conventional SSD controller, and DRAM controller (DRAMc) to load weights
from LFS to Tensor Buffers, then to SRAM in each accelerator respectively.
The weights are finally stationed in the MAC arrays. Tensor Buffer is a DRAM
buffer that acts as a staging area for weight data to smooth the traffic be-
tween accelerator and LFS. LFS is a storage system designed to accommodate
extreme-scale models with its large capacity while at the same time providing
high enough bandwidth to support DNN inference. Both read and write datap-
ath of LFS is automated by hardware logic based on a DNN-specific lightweight
FTL (32). LFS is further delineated in Section



Chapter 4. Leviathan Flash System

The main challenges in architecting NAND flash-based memory system (LFS)
for extreme-scale DNN inference are insufficient read bandwidth and accel-
eration of read disturb (RD) errors due to the WORM access pattern. This
section describes how Leviathan FMS provides hundreds of GB/s read band-
width without deterioration from RD-induced errors caused by the WORM

pattern.

4.1 Boosting Read Bandwidth

NAND product with over 2.0GT/s (i.e., 2.0Gbps x8 DDR bus) I/O band-
width (14, 25) and controller with automated read path (13) have been in-
troduced to support the high bandwidth in various storage applications. But
this still falls short of providing hundreds of GB/s required by DNN inference
workloads. Therefore, Leviathan augments the high bandwidth NAND device
and read path hardware automation with additional optimizations. Specifically,
Leviathan adopts widely known yet un- or partially used cache-read and multi-

plane operations to elicit the full potential of NANDs.

Cache-read operation. Cache read pipelines data read through channel and
sensing from NAND page to data register (41). Figure[4.1|(a) and (b) show page
read without and with cache-read operation, respectively. Through the cache-
read operation, the channel transfer time is hidden by the page sensing time.
Most modern NAND chips employ multiple registers and additional commands
to enable cache read (14! 30} 41]).

In spite of the availability of the hardware logic, most commodity SSDs
cannot use cache-read. This is because the SSD firmware or controller must

delay the current read I/O and append the next one unless multiple read I/Os
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Figure 4.1: A NAND chip read pipeline diagram according to read methods

are pending on the same plane (27). This demand for an extraneous scheduler
increases the read I/O latency (59). Thus, conventional SSDs do not employ
cache-read since they emphasize lowering latency for more common I/Os (e.g.,
small-sized random read with low queue depth (QD)) than large-sized high-QD
sequential reads.

In contrast, Leviathan only issues sequential read requests with high QD
and in large chunks to its LFS (e.g., 2MB command x 12 QD). It always
requests more than two pending read I/Os to a particular plane at any given
time. Therefore, LF'S does not incur additional read latency while issuing cache-
read commands. This operation, coupled with multi-plane read operation based
on plane/channel /way (PCW) striping (54)), dramatically increases the effective
bandwidth.

Multi-plane operation. Multi-plane operation is a widely known technique
that partitions a NAND die into multiple planes to extract more parallelism.
The pages are sensed from multiple pages in parallel as depicted in Figure (c)
This technique is especially attractive because it significantly increases the write
bandwidth in NANDs where a program operation is over tens times slower than
a read operation. Also, it enhances the read/erase/program efficiency of garbage
collection (GC) operations (50).

Unfortunately, this useful technique is restricted to reads in GC (i.e., non-

user read). There are three reasons for this. (1) The multi-plane read (and

] 2-t) &) 3

'||



program) operation is only allowed for pages that have the same page offset
in NAND blocks of the adjacent plane (26]). This restriction makes it highly
unlikely that the pages, which can be read by multi-plane operation at a specific
time, are the data a user wants to read. That is, unless the user’s read request
refers to the pages in the order in which they were written (e.g., sequential read
after strict append-only sequential write). Additionally, (2) a multi-plane read
operation is slower than a single-plane read operation (i.e., bandwidth oriented
using large chunk) and (3) most commercial SSDs adopt channel/way /plane
(CWP) striping to maximize channel utilization and minimize latency during
user data reads (19)).

Figure[4.2]shows the difference between typical CWP striping and Leviathan’s

plane/channel/way (PCW) scheme that allows multi-plane read operation for
user data. In an SSD with M channels, N ways, and K planes, using CWP
scheme results in a distance of MN between two adjacent planes even in se-
quential writes as in Figure [4.2(a). This adds back pressure to the controller
or firmware because the initial read request to a chip has to wait for M N x
(K —1) — 1 subsequent read requests to request all pages in a particular stripe.
In contrast, as illustrated in Figure (b)7 sequential writes to a PCW-striped
SSD will have planes with contiguous pages. Therefore, reading from the PCW-
striped SSD will allow multi-plane read also for user data if the data is written
in sequential manner. As shown in Figure[d.1](d), the collaboration of cache-read

and multi-plane operation will boost the effective bandwidth of the Leviathan.

4.2 Preventing RD-induced Performance Degradation

RD errors in DNN inference. Although DNN does provide opportunities
for specializing LFS to increase throughput, it is a double-edged sword. The
intensive reads and their WORM pattern accelerates the RD-induced reliability
problem in the flash-based memory system.

The WORM nature of DNN inference quickly fills the RD threshold. All
NAND blocks in the flash memory experience almost the same degree of read
stress as all weights are read once for a single inference. Therefore, every NAND

block containing model weights exceeds the RD threshold at the same time
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Figure 4.2: Logical page mapping with two striping schemes ((a) CWP, (B)
PCW) after sequential write on an SSD with 64 channels (M=64), 8 ways
(N=8), and 4 planes (K=4).

and necessitates read reclaim (RR) operation simultaneously. Such bursty RR
operations firing over a small time window severely impede the user because
RR for blocks that exceeded RD threshold must be given higher priority than
user read requests. In this case, RR operations significantly degrade the device’s
performance, thereby worsening end-to-end quality-of-service (QoS). Note that
this degradation continues until every block is reclaimed. Thus, we propose
a new RR smoothing technique that effectively eliminates the performance

degradation induced by the bursty RR operations.

RR timing. The main difference between the conventional and Leviathan’s
RR procedures is that the former migrates after and the latter migrates before
the read count reaches RD threshold (37). The static, deterministic pattern of
data accesses in DNN inference enables accurate prediction of read counts (i.e.,
RD stress) for all blocks. Exploiting this characteristic, Leviathan issues RR
operations alongside user read requests before read count in any block exceeds
the RD threshold. To put it another way, LFS gives the same priority to RR
requests and inference reads, unlike the RR priority scheduling in conventional
SSDs. The distribution is carefully tuned to prevent any inference performance
degradation and reprogram every NAND blocks only once before reaching the
RD threshold.

11 :



The RR timing is calculated by dividing the RD threshold associated with
a P/E cycle by pages per block. For example, 768 pages per block and 6M read
counts from 75K P /E cycles require full read reclaim of all blocks for every 7813
inference requests. Note that NAND block allocation policy for RR is based on
an existing proposal (32]).

LFS resource reservation for RR. Though RR requests in the above exam-
ple is not frequent, the corresponding bandwidth must be reserved by the SSD
for execution of DNN inference without interruption via effective RD resolution.
Unlike the DNN inference workload that only issues read requests sequentially,
a RR operation, which is a type of GC, reads source pages, erases a destina-
tion block, and programs into the block. This resource consumption calls for
the need to pay careful attention to factors such as NAND topology, channel
bandwidth, FTL scheme, and degree of hardware automation. Specifically, user
read I/O to a NAND chip is blocked for a few milliseconds during the block
erase operation for RR operation; thus a read prefetch buffer of appropriate size
is required for a host system (5) or an SSD. Otherwise, erase suspension tech-
nique (31},160) can be adopted to meet the QoS requirement for DNN inference.
Leviathan reserves about 1% of channel bandwidth for the RR operation as the
use of low latency SLC NAND (15), automated read/write datapath (13} [32),
and bandwidth boost techniques (Section place the bottleneck of LFS on
channel. Also, each accelerator reserves 1 GB space in its Tensor Buffers to

prevent QoS degradation caused by block erase operations in RR.

12 :



Chapter 5. Evaluation

We use both MAESTRO (33)) and MQSim (55) for cycle-level modeling DNN
accelerator and SSD, respectively, and PyTorch (43) DNN models. The eval-
uated system has 12 compute cores to process GPT-3 model in 1.3s, which
is 10x of the known time constraint for a BERT model (46). This constraint
is conservative considering that GPT-3 model is about 500x larger than the
BERT model.

We evaluate twelve workloads with Leviathan. The models represent two
types of widely adopted transformer-based models: 1) BERT/GPT-like and 2)
T5-like, as listed in Table They are grouped in this way such that the
models in the group have identical architecture. More encoders/decoders are
stacked (Depth) and the dimensions in FC layers are expanded (Width) for
diverse comparison. They are referred as W x D in the rest of this paper.

5.1 Performance of DNN Inference

Baseline system and Leviathan. To perform inference of extreme-scale
models such as GPT-3, both the compute capability and storage capacity
should match their demands. Thus, we configure Leviathan to accommodate
these demands. The baseline accelerator has the same compute capability as
Leviathan but with conventional SSDs. We also compare Leviathan with ac-
celerators equipped with additional HBM DRAM to run those models. The
accelerator and storage configurations are tabulated in Table[5.1]and Table[5.3
respectively.

Overall inference throughput. Figure [5.1] illustrates the throughput of the
three systems. Leviathan achieves the same throughput as the HBM-based ac-
celerator in all cases, which is 2.39x of the baseline throughput on average. In
1x1 case of the BERT/GPT-like model, the presented Leviathan system uti-

13 -



Table 5.1: Platform configurations for the cost evaluation of Leviathan.

NPU Parameters

Number of cores 12 cores (52.5 TFLOPs per core)
Number of PEs 393,216
Peak throughput 630 TFLOPs

Host I/F conf. PClIe Gen4 x 256 lane (42)

Memory Parameters
Resembled TPU (28) Leviathan
16GB DDR4 DRAM +
2TB NAND flash
Peak bandwidth 2400GB/s 290GB/s

Buffer conf. 128GB HBM

Table 5.2: DNN models evaluated with Leviathan. We use a sequence length of
2048 (tokens) for each model.

Model BERT/GPT-like T5-like
Size Act. | Weight PFLOP Act. | Weight PFLOP
(GB) | (GB) (GB) | (GB)
1x1 44 350 2.15 40 305 0.62
1x2 88 698 4.42 80 609 1.25
1x4 175 1393 8.56 160 1218 2.49
2x1 88 1395 8.56 80 1218 2.49
2x2 175 2786 17.12 160 2436 4.99
2x4 349 5569 34.21 319 4871 9.97

lized 282 GB/s aggregate memory system bandwidth. About 1% extra band-
width of the 282 GB/s is reserved for RR. Since Leviathan’s LFS can provide
290 GB/s bandwidth, the system maintains high throughput without being
limited by the LFS bandwidth.

Cost efficiency. The difference in memory cost between Leviathan and the
conventional HBM-based accelerator is shown in Figure Here, we assume
$20/GB, $4/GB, and $0.81/GB for HBM DRAM, DDR4 DRAM, and NAND
flash, respectively (32)). Note that Leviathan assumes 64Gb SLC NAND based

14 :



Table 5.3: LF'S and conventional storage configuration.

Storage Parameters

Baseline SSD

Leviathan LFS

NAND 512B, 128 channels,
Configurations 1 chips/channel, 1 die/chip
Channel 2400MT/s
Speed Rate (MT/s: Mega Transfers per Second (14, [18))
NAND 32Gb SLC / die: 8 planes / die,
Structure 171 blocks / plane, 768 pages / block, 4KB page
NAND
Read: 3us, Program: 100us, Block erase: 5ms
Latency
DRAM 512GB:
SRAM 16MB:
Buffer FTL metadata
6MB for FTL metadata,
Configurations SRAM 8MB:
10MB for I/O buffer
I/0 buffer, GC Buffer
Stripe

strategy (54)

Channel/Way /Plane

Plane/Channel/Way

FTL Page mapping, Block mapping

Schemes Preemtible GC (34) Cache-read, Multi-plane
OP ratio 7% N/A
Firmware Write:
Latency 1.45us / a page (4KB) N/A

Read:
Contoller Read: 1.93us / an NVMe Cmd,
Latency 1.93us / an NVMe Cmd Write:

1.18us / an NVMe Cmd

on the same semiconductor process as the 128Gb SLC NAND ($0.67/GB) (32).
Therefore, we have added an appropriate NAND peripheral cost (30) to the
64Gb SLC NAND. The cost gap between the two systems widens with increas-
ing model size. The maximum cost difference between the two systems is $109K
for BERT/GPT-like models and $94K for T5-like models.

15
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Figure 5.2: Memory system cost comparison.

5.2 Bandwidth variability during RR

Figure depicts the bandwidth of four SSD configurations. We align the
start time of RR operations at n for all four configurations. Originally, the
start times are different due to the different speeds in reaching RD thresh-
old as they provide disparate read speeds for inference. In normal situations,
applying cache-read only maintains 60% of LFS bandwidth. Integration with

multi-plane operation, the bandwidth reaches that of LFS. However, during

16
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RR, all systems but LFS show severe bandwidth deterioration (maximum of
88%) from bursty RRs after n seconds for a maximum of 16 seconds. This is
the time needed to reprogram all weight tensors. All three systems maintain
comparable bandwidth during RR since multi-plane operation is already being
carried out for RR thus cache-read is the sole factor for increasing the band-
width during this period. In contrast, LFS shows more robust performance,
free from RD-induced bandwidth drop =by distributing RR operations over

time.
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Chapter 6. Related Work

Extreme-scale DNN model. With the advent of extreme-scale models, much
prior literatures have focused on processing these models, mostly from industry.
Megatron-LM (51)), from NVIDIA, proposes an enlarged version of GPT2 (44]),
the largest model at the time of its writing. Due to the memory capacity wall,
they were forced to adopt their massive fleet of GPUs in a model parallel man-
ner. Microsoft followed up with Turing-NLG (56)), and proposed ZeRO (45))
and subsequently, ZeRO-offload (47)). These techniques devised by Microsoft
enabled the data parallel training of the enormous model. Each device held a
contiguous portion of the model and distributed it to other devices when the
portion was next in line to be processed. Within a year, OpenAl introduced
GPT3 (7), a model with phenomenal size, which was soon topped by Google’s
GShard (35). All of the prior work was focused on training in model- arallel
manner but Microsoft. They required the use of expensive HBM to store the
model, leading to a cost-efficacious system. Behemoth (32)) was the first to mit-
igate this with NAND-based flash. However, as it focused on training of DNN
models, it does not mention the unique problem generated in DNN inference
system with NAND-based memory.

Read Disturbance. The problem of RD was given much attention relative
to its counterpart, write-induced disturbance. However, some prior works take
interesting approaches to tackle this issue. Cai’s team (8) introduces read-retry,
where the device reads the read-disturbed cells with the shifted reference volt-
ages to adapt to the changed threshold voltages. Park (41) et al. advances this
technique using pipeline and by adaptive reduction of chip-level read latency.
On the other hand, read-refresh technique is presented in WARM (39), which
our work is based upon. Ha (22) et al. proposes to isolate the read-hot data
from the cold data, such that the blocks with cold data are not affected when
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reading from hot data. Liu (37) et al. focuses on reducing the number of RD-
induced rewrites by examining the application’s expected read throughput.
With the exception of (37), all prior literature does not leverage the appli-
cation’s characteristics to specialize the NAND flash. In contrast to all prior
works, Leviathan fully takes advantage of the deterministic nature of DNN and

use it to completely hide RD induced latency and throughput issues.
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Chapter 7. Conclusion

This paper presents Leviathan, a DNN inference platform designed to fully
accommodate extreme-scale models using cost-efficient NAND flash memory.
Leveraging the static, deterministic access pattern of DNN inference, it suc-
cessfully increases the flash memory bandwidth and averts detrimental cases
arising from simultaneous, bursty read reclaims. The bandwidth is boosted us-
ing cache-read and multi-plane operations, while RD related issue is taken care
of by distributing RR between user read requests. With Leviathan, DNN in-
ference can be run on a much cheaper memory system than the conventional

HBM-based memory system.
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