creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering

Data Augmentation and Filtering
for Supervised Learning using
Splash Data Preprocessor

Splash Hl°o|H A7 HAAE o] &3 A=
gt dioly 3% 2EH

August 2021

Graduate School of Electrical and Computer
Engineering
Seoul National University

Yehyun Kim



Data Augmentation and Filtering
for Supervised Learning using
Splash Data Preprocessor

Seongsoo Hong

Submitting a master’s thesis of
Engineering

August 2021

Graduate School of Electrical and Computer
~ Engineering
Seoul National University

Yehyun Kim

Confirming the master’s thesis written by

Yehyun Kim
August 2021

Chair Taewhan Kim

e Chair _Seongsoo Hong
Kyuseok Shim

ad
(o
‘o
-2
=




Abstract

Splash is a graphical user interface programming framework
designed to support artificial intelligence application development.
Artificial intelligence experts in various fields including data, modeling,
control engineers can easily develop artificial intelligence applications
without profound programming knowledge through Splash’s
programming abstraction. To further increase Splash’s functionality for
supporting artificial intelligence application development, we are
adding a language construct in Splash for data preprocessing. This
language construct provides an easy-to-use data augmenter and data
filter, which are the main tasks of data preprocessing for data engineers
in supervised learning.

Data augmentation and filtering are particularly important tasks in
supervised learning because the training dataset's quality and quantity
directly affect the accuracy of the model. Datasets such as MNIST and
datasets prepared in person have data with accurate labels yet lack an
amount of data and labels, so the datasets need augmentation for an
increase in dataset quantity. When using a data label platform such as
crowdsourcing or an automated label program to utilize numerous
datasets for training, the datasets need filtering because they often

include noisy labels. In this thesis, we implement basic data



augmentation and filtering techniques as a Splash language construct,
called data preprocessor, to support data engineers.

Data augmentation function in Splash data preprocessor increases
dataset quantity by using seven augmentation techniques: horizontal
and vertical shift, horizontal and vertical flip, random rotation, random
brightness, and random zoom. The data filtering function finds
duplicated images with different and same labels, then removes those
images to improve the quality of the training dataset. To demonstrate
the feasibility of using Splash data preprocessor and to confirm the
correctness of the data preprocessor implementation, we trained the
CIFAR-10 dataset as an experiment using Splash data preprocessor.
This experiment shows that training data filtering and augmentation can

be easily performed using the Splash data preprocessor.

Keyword: Splash programming framework, training data
preprocessing, supervised learning data filtering, data augmentation

Student Number: 2019-28252



Table of Contents

Chapter 1. Introduction..................ooooiiiiii 1
Chapter 2. Splash programming language ................................ 4
Chapter 3. Splash data preprocessor.............ccccccciiiiiieeeeeeennnnns 9
Chapter 4. Splash data preprocessor experiment.................... 14

Chapter 5. Conclusion ..., 18
REFEIENCES ... .o e, 19
Abstract in Korean ..o 21

iii



Tables

[Table 1] ... .o 8
Figures
[FIgure ] ... 4
[FIQUIe 2] ... e 6
e L8 T = O SUPPTPR 9
[FIgUuIre 4] .. ..o 9
[FIQUIE 5] ... 1
[FIigure 6] ..o 13
[FIQUIE 7] ... e 14
[FIgUIre 8] ... 16
[FIgUre O] ... 17

v



Chapter 1. Introduction

Splash is a graphical user interface programming framework that
allows developers to easily handle software structures that are becoming
more complex with the advancement of artificial intelligence. The main
goals of Splash are to provide programming abstraction, real-time stream
processing support for artificial intelligence applications, programming
support for real-time control systems, and performance optimization of a
software system [1]. Artificial intelligence experts in various fields
including data, modeling, control engineers can easily develop artificial
intelligence applications without profound programming knowledge
through Splash’s programming abstraction. To further increase Splash’s
functionality for supporting artificial intelligence application development,
we are adding a language construct in Splash for data engineers.

The data engineer’s primary job is data preprocessing, such as
data filtering and augmentation. Data preprocessing is becoming more
important because the quantity and quality of the dataset required are
increasing as the range of industries that demand the use of artificial
intelligence applications are broadening [2][3][4]. These artificial
intelligence applications that are used by various industries often use
supervised learning as a method to train machine learning models. In
supervised learning, a dataset refers to labeled data, and labeled data
is necessary for training a model [5]. Labeled data can be obtained by
using datasets such as MNIST and CIFAR-10, which have been

1]



carefully reviewed for a long time, or by labeling the data in person.
MNIST and CIFAR-10 datasets are reliable, but the amount of labeled
data are limited. Labeling the data in person requires tremendous time
so it is impractical to obtain a large amount of labeled data [6][7].

To acquire a large number of classes and data, one can use a
data labeling platform such as crowdsourcing or automatic labeling that
uses a vast amount of data and labels on the internet. However, labeled
data procured from crowdsourcing platforms or automatic labeling often
includes data with incorrect labels, which are named noisy labeled data.
Training with noisy labeled data causes performance degradation of a
trained model [8].

We are implementing a data preprocessor as a language construct
of Splash to support data engineers in two ways: data augmentation for
an increase in the amount of dataset and data filtering to easily filter
noisy labeled data.

Data augmentation function in Splash data preprocessor increases
dataset quantity by using seven augmentation techniques: horizontal
and vertical shift, horizontal and vertical flip, random rotation, random
brightness, and random zoom. The data filter function finds duplicated
images with different and same labels. Duplicated images with different
labels are removed and duplicated images with the same labels are
removed except for one. These removals of duplicated images improve
the quality of the training dataset. To demonstrate the feasibility of

using Splash data preprocessor and to validate the correctness of



Splash data preprocessor implementation, we trained the CIFAR-10
dataset using Splash data preprocessor as an experiment. From this
experiment, we show that training data filtering and augmentation can

be easily performed using the Splash data preprocessor.



Chapter 2. Splash Programming Language

Splash is a graphical user interface programming framework that
supports the development of artificial intelligence applications. Figure
1 shows an example of the Splash program. Splash was developed with
an emphasis on supporting the fusion and real-time processing of

sensor stream data.

tores_lkas

torcs + lkas on Splash m @ Edit Schematic

Schematic Code

Betuatar_steeng

Figure 1. A Splash program example.

Splash provides developers with programming abstraction to
intuitively develop artificial intelligence applications. Developers can

use Splash to specify an application’s end-to-end timing constraints,

4 B



and Splash monitors and handles violations of specified timing
constraints at runtime. In addition, Splash provides support for
implementing sensor data fusion, exception handling, mode change,
and features to help optimize and tune application performance.

The splash application developer uses a program in the form of a
directed data flow graph. The data flow graph is automatically
converted into a template code for data transmission/reception by
Splash’s code generator. This automated code generation of data flow
graph makes it convenient for developers to handle complex
applications since the developer only needs to focus on the
implementation of the internal algorithm.

The language constructs of the Splash program are component,
port, channel, and clink. This section explains these language

constructs and their functionalities.



2.1. Components

A component corresponds to the node of the directed graph and is
the basic execution unit of the Splash application. In Splash, there are
two kinds of components: composite and atomic components. The
composite component is a factory, which is the largest building block in
the Splash program. The atomic component consists of a processing
component, a source component, a sink component, and a fusion
operator.

A processing component, as shown in Figure 2, performs user-
defined computation on data received from the stream input port then
generates output data to the stream output port. The processing

component may have multiple stream input and output ports.

> >

Figure 2. Processing component.

A source component receives the signal from sensors outside of
the Splash system and produces stream data as an output. The source
component does not have a stream input port, since it receives signals
outside of the Splash system, and it only has a single stream output

port.



A sink component is opposite to a source component. It has a
single stream input port and no stream output port since it receives
stream data from the Splash system and transfers those data into a
system out of Splash.

A fusion operator merges multiple stream input data into a single
stream output data. The fusion operator is made for developers to
conveniently manage the complicated implementation challenges of

sensor fusion algorithms [1].



2.2. Ports

A port receives stream data from a channel and sends stream data
out to a channel. There are three types of ports in Splash: stream input
and output ports for receiving and sending stream data, event input and
output ports for receiving and sending events, and mode change input
and output ports for receiving and sending mode change signals.

Graphical symbols for different types of ports are shown in Table 1.

Table 1. Symbol for Ports

Stream Port

Event Port v A

Mode Change Port ® &8




2.3. Channel and Clink

A channel is a path for stream data that connects the stream input
port and stream output port. As shown in Figure 3, the channel is
symbolized as a solid line. Clink is a path for event and mode change

signals. Clink is represented as a dotted line as shown in Figure 4.

Figure 3. Graphical representation of a channel.

———————————————————————————

Figure 4. Graphical representation of a clink.



Chapter 3. Splash Data Preprocessor

This chapter introduces data preprocessor, a new language
construct to provide programming abstraction for data preprocessing
and the semantics of data preprocessor. Also, this chapter describes

the implementation of the Splash data preprocessor.

3.1. Data preprocessor and semantics

Figure 5 is the graphical representation of the data preprocessor.
The data preprocessor has one stream input port and two stream output
ports. Stream input port receives data with labels through a channel.
The developer can set a rule to configure several augmentations to add
per labeled data by double-clicking the data preprocessor. Also,
developers can set a rule on whether to filter the data. The top stream
output port produces augmented dataset or clean labeled data if
filtering function is used, and the bottom stream output port produces
the filtered noisy labeled data.

The Splash data augmentation function supports seven
augmentation techniques: horizontal and vertical shift, horizontal and
vertical flip, random rotation, random brightness, and random zoom.
The Splash data filtering function performs two main tasks. First, it finds
duplicate images with the same label and leaves only one image with
label. If the duplicate images have different labels, then it excludes all

of those datasets.

10



Figure 5. Data preprocessor.

3.2. Data augmentation function

We used ImageDataGenerator available at the Keras deep
learning library for data augmentation [9]. Seven data augmentation
techniques are used to increase the number of datasets. All of the data
augmentation techniques keep the image dimensions the same.
Horizontal and vertical shift augmentation technique shifts all pixels of
the image horizontally or vertically. Horizontal and vertical flip
technique flips the images randomly. The random rotation
augmentation technique can rotate the image clockwise from 0 to 360
degrees. The random brightness augmentation technique randomly
darkens or brightens images. The random zoom augmentation
technique randomly zooms in or out ranging from 50% zoom in to 100%
zoom out.

Developers can specify which data augmentation techniques and
how many to use to increase the amount of dataset. Also, developers
can just specify the number of the dataset to increase, and the Splash

data augmentation function will randomly pick from seven techniques.

11



3.3. Data filtering function

Figure 6 is the pseudocode of the Splash data filtering algorithm.
The goal of the algorithm is to return filtered labeled data. The first
input is a list D that is created using d;, which is an image in the form of
an array. The second input is a list of labels L that corresponds to the
images in D. H is a hash table that stores image and label information.
H uses an image array d; as a key, and uses a list consisting of a label
and a logic filter flag as a value.

Lines 2 of the DUPLICATEFILTER algorithm looks for key-value
d; in the hash table H. If the key-value d; is not in H, the algorithm
adds key d; and value of a list that consists of [; and flag 0 to H (line
3). If the key-value d; is already in H, then the algorithm checks
whether the label [; is the same with the label stored in H (line 5). If
the label [; is the same as the label stored in H, then the algorithm
removes d; and [; (line 6). If the label [; is different from the label
stored in H, then the algorithm removes d; and [; and sets the logic
flagin Hto 1 (line 8-9). Line 10-12 of the DUPLICATEFILTER algorithm
iterates through H to find a logic filter flag with value 1 and removes d;

and [; if the flag value is 1.

12



ALGORITHM 1. DUPLICATEFILTER

Input: A list of data images D = [d;,d,,..., dn]
A list of data labels L = [I3,1,, ..., L]

Variables: An Empty Dictionary H ={}

DUPLICATEFILTER (D, L, S)
for i=1tom
if H.get(d;) == None
Hld;] = [I;, 0]
else
if I; == H[d,][0]
MOVETOREDUNDANT(d;, [;)
else
MOVETOLOGICERROR(d;, [;)
Hlg;][1] =1
for j =1 tolen(H)
ifH[d;][1] == 1
MOoVETOLOGICERROR(d}, [;)
return (D, L)

A R T

el = )
Q"

Figure 6. Pseudocode of DUPLICATEFILTER

13



Chapter 4. Splash Data Preprocessor
Experiment

This chapter demonstrates an example of using the Splash data
preprocessor on training a model for image classification. Two
experiments are performed using Splash data preprocessor. One
experiment uses the Splash data filtering function and the other uses

the Splash data augmentation function.

B—

Dataset

Image Classification
Training

Data Preprocessor

s

Moisy Labeled Datacet

Figure 7. Image classification with Splash data preprocessor.

Figure 7 is an example of a supervised learning using data
preprocessor between a dataset and an image classification training
model. When a developer adds the Splash data preprocessor to the
right of the dataset and sets the rules for filtering or augmentation,
Splash automatically filters or augments the dataset. Developers can
easily filter and augment data without having to deal with complicated
coding works.

To confirm the correctness of the Splash data filtering and data

3§ 53 17
14 -"-\."i':"ll.;



augmentation implementation, we trained a simple convolutional neural
network with the CIFAR-10 dataset. This convolutional neural network
has 3 convolutional layers, flatten layer, 2 hidden layers, and an output
layer with a SoftMax activation function.

To check the correctness of Splash data filtering implementation,
noisy labeled data was generated by assigning a random label on the
clean CIFAR-10 dataset then those noisy labeled data were added to
the original CIFAR-10 dataset. We added the noisy labeled data so that
the percentage of the noisy labeled data ranges from 10% to 40% of
the dataset.

The image classification model was trained with a noisy labeled
CIFAR-10 dataset to get the prediction accuracy of the model. Then we
added the Splash data preprocessor to filter out the noisy labels and
obtained the prediction accuracy of the image classification model.

The comparison between the prediction accuracy of the two
models is shown in Figure 8. In Figure 8, the x-axis represents the ratio
of noisy labeled data to the entire dataset, and the y-axis represents
the prediction accuracy of the model after the training. The prediction
accuracy of the noisy labeled dataset that passed through the Splash
data filter was 5% higher than the noisy labeled dataset when there

were 40% of noisy labeled data.

15



—o—Noisy labeled data Filtered data

55
50
45

40
0 10 20 30 40

Prediction accuracy(%)

% of noisy labeled data

Figure 8. Splash data filtering experiment result.

To check the correctness of Splash data augmentation
implementation, 1000 out of 50000 CIFAR-10 datasets were used for
image classification. Randomly selected augmentation techniques
were used to increase the number of the training dataset. In Figure 9,
the x-axis represents the number of labeled data added to the training
dataset using the data augmentation function, and the y-axis
represents the prediction accuracy of the model after the training.
Prediction accuracy of the augmented dataset that was added through

the Splash data augmentation function increased up to 6%.

L6 ] 2



65
63
61
59
57

55
3000 23000 43000 63000 83000

Prediction accuracy(%)

number of training data

Figure 9. Splash data augmentation experiment result.

2
17 - A—T 2T



Chapter 5. Conclusion

This thesis introduced a graphical user interface programming
framework designed to support artificial intelligence application
development named Splash, along with the key components and
language constructs. The thesis demonstrated the feasibility of using
Splash data preprocessor to filter out noisy labeled data and to
augment data.

To confirm the correctness of the Splash data filter implemented in
this thesis, the noisy labeled CIFAR-10 dataset was used to train an
image classification model on Splash runtime. As a result of the
experiment, the use of the Splash data filter improved the model’'s
prediction accuracy by 7% in the dataset containing 40% of noisy
labeled data.

To check the correctness of the Splash data augmentation
implemented in this thesis, a limited number of CIFAR-10 dataset was
used to train an image classification model Splash runtime. With the
increase in the dataset with Splash data augmentation, the prediction
accuracy improved from 57% to 63%.

For future work, Splash can provide more practicability to the
developers by adding a language construct that automates all data
preprocessing tasks, which is essential for artificial intelligence

application development, including data filtering.

18



References

[1] N. Soonhyun and H. Seongsoo, "Splash: A Graphical Programming
Framework for an Autonomous Machine," The 16th International
Conference on Ubiquitous Robots (UR 2019) , pp. 660-666, Jun 2019.
[2] lliou, Theodoros, et al. "A novel machine learning data
preprocessing method for enhancing classification algorithms
performance." Proceedings of the 16th International Conference on
Engineering Applications of Neural Networks (INNS). 2015.

[3] Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation
strategies from data." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019.

[4] Soni, Neha, et al. "Impact of artificial intelligence on businesses:
from research, innovation, market deployment to future shifts in
business models." arXiv preprint arXiv:1905.02092. 2019.

[5] A. Khetan, Z. C. Lipton, A. Anandkumar, “Learning from Noisy
Singly-Labeled Data,” in arXiv preprint arXiv: 1712.04577, 2017.

[6] I. Misra, C. L. Zitnick, M. Mitchell, R. Girshick, "Seeing through the
human reporting bias: Visual classifiers from noisy human-centric
labels," Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016

[7] T. Xiao, T, Xia, Yi Yang, C. Huang, and X. Wang, "Learning from
massive noisy labeled data for image classification," in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2015.

19 .__:Ix_s _'q.;:-'_ T



[8] J. Li, Y. Wong, Q. Zhao and M. S. Kankanhalli, “Learning to Learn
from Noisy Labeled Data,” in Proceeding of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

[9] “How to Configure Image Data Augmentation in Keras,” [Online].

Available: https://gist.github.com/mohdsanadzakirizvi



Abstract

Splash© 1% A5 & /&S AYstr] #18) e GUI 221
A =z deaeltt. Splashe ZzIadW #4315 S8 tlolH, Al &
a5, Alo] dAAYAE EFHGE ofe] Fof dirtee] TR A A4
o= EHA AR = RS wrEolH AdF AT &8 e A
Ask= Splash® 7ls& Bl FEAI717] flste] dHelH dAe 7les
Splashe] o} Fx=2 F7ielglrl. o] Ao Fx&= doly A Yol

el dely A2 T dold YA T4 7ee A

o

ket
A & k5 (supervised learning)ol A dHloly dHHI} 4 &
8 a7 Aol AkgEs A= delEel Hoide dHelH 7t
daghd, g4 72 5 e MNISTS 22 st vloje o]y 24
deol&a®d g deolH A 7k dA A ol wekA HelE o] 5 SV

7171 918ke] dlolg F7 7]%o] Aasith Be 59 dHolHAS &4

)2 W Falok Ak B ERoIAE A% GgoA Bad /JEA

dolel Z8® 7IH3 Holy 7 7IW& Splashol F+dste] dlolH



Fol: Splash Teaalw Zalgla, sty dold AAT, Aw s
dole "E Y, doly 5%

8} ¥ 2019-28252

22 2 M E g



	Chapter 1. Introduction
	Chapter 2. Splash programming language
	Chapter 3. Splash data preprocessor
	Chapter 4. Splash data preprocessor experiment
	Chapter 5. Conclusion
	References
	Abstract in Korean


<startpage>8
Chapter 1. Introduction 1
Chapter 2. Splash programming language 4
Chapter 3. Splash data preprocessor 9
Chapter 4. Splash data preprocessor experiment 14
Chapter 5. Conclusion 18
References 19
Abstract in Korean 21
</body>

