

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사 학위논문

자율 주행 차량의 심층강화학습 기반

긴급 차선 변경 경로 최적화

Deep Reinforcement Learning-based Path Optimization

for Emergency Lane Change of Autonomous Vehicles

2021 년 8 월

서울대학교 대학원

기계항공공학부

송 준

DEEP REINFORCEMENT LEARNING-

BASED PATH OPTIMIZATION FOR

EMERGENCY LANE CHANGE OF

AUTONOMOUS VEHICLES

DISSERTATION

SUBMITTED TO THE SCHOOL OF MECHANICAL AND

AEROSPACE ENGINEERING AND THE COMMITTEE ON

GRADUATE STUDIES OF SEOUL NATIONAL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Jun Song

August 2021

To my parents and my family

In memories of

Prof. Chong-Nam Chu

i

Abstract

Jun Song

School of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

The emergency lane change is a risk itself because it is made

instantaneously in emergency such as a sudden stop of the vehicle in front in

the driving lane. Therefore, the optimization of the lane change trajectory is

an essential research area of autonomous vehicle. This research proposes a

path optimization for emergency lane change of autonomous vehicles based

on deep reinforcement learning. This algorithm is developed with a focus on

fast and safe avoidance behavior and lane change in an emergency.

As the first step of algorithm development, a simulation environment was

established. IPG CARMAKER was selected for reliable vehicle dynamics

ii

simulation and construction of driving scenarios for reinforcement learning.

This program is a highly reliable and can analyze the behavior of a vehicle

similar to that of a real vehicle. In this research, a simulation was performed

using the Hyundai I30-PDe full car model. And as a simulator for DRL and

vehicle control, Matlab Simulink which can encompass all of control,

measurement, and artificial intelligence was selected. By connecting two

simulators, the emergency lane change trajectory is optimized based on DRL.

The vehicle lane change trajectory is modeled as a 3rd order polynomial.

The start and end point of the lane change is set and analyzed as a function of

the lane change distance for the coefficient of the polynomial. In order to

optimize the coefficients. A DRL architecture is constructed. 12 types of

driving environment data are used for the observation space. And lane change

distance which is a variable of polynomial is selected as the output of action

space. Reward space is designed to maximize the learning ability. Dynamic

& static reward and penalty are given at each time step of simulation, so that

optimization proceeds in a direction in which the accumulated rewards could

be maximized. Deep Deterministic Policy Gradient agent is used as an

algorithm for optimization.

iii

An algorithm is developed for driving a vehicle in a dynamic simulation

program. First, an algorithm is developed that can determine when, at what

velocity, and in which direction to change the lane of a vehicle in an

emergency situation. By estimating the maximum tire-road friction

coefficient in real-time, the minimum distance for the driving vehicle to stop

is calculated to determine the risk of longitudinal collision with the vehicle in

front. Also, using Gipps’ safety distance formula, an algorithm is developed

that detects the possibility of a collision with a vehicle coming from the lane

to be changed, and determines whether to overtake the vehicle to pass forward

or to go backward after as being overtaken. Based on this, the decision-

making algorithm for the final lane change is developed by determine the

collision risk and safety of the left and right lanes.

With the developed algorithm that outputs the emergency lane change

trajectory through the configured reinforcement learning structure and the

general driving trajectory such as the lane keeping algorithm and the adaptive

cruise control algorithm according to the situation, an integrated algorithm

that drives the ego vehicle through the adaptive model predictive controller is

developed.

iv

As the last step of the research, DRL was performed to optimize the

developed emergency lane change path optimization algorithm. 60,000 trial-

and-error learning is performed to develop the algorithm for each driving

situation, and performance is evaluated through test driving.

Keyword: Deep Reinforcement Learning (DRL), Neural Network,

Autonomous Vehicle, Artificial Intelligence, Emergency Lane Change,

Evasive Steering, Collision Avoidance, Trajectory Planning, Vehicle Control

Student Number: 2012-23168

v

Contents

Abstract ... i

Contents .. v

List of Figures ... viii

List of Tables ... xi

List of Symbols ... xii

Chapter 1. Introduction .. 1

1.1. Research Background .. 1

1.2. Previous Research .. 5

1.3. Research Objective .. 9

1.4. Dissertation Overview ... 13

Chapter 2. Simulation Environment .. 19

vi

2.1. Simulator ……………………………………........................... 19

2.2. Scenario …………... 26

Chapter 3. Methodology .. 28

3.1. Reinforcement learning ... 28

3.2. Deep reinforcement learning ... 30

3.3. Neural network .. 33

Chapter 4. DRL-enhanced Lane Change ... 36

4.1. Necessity of Evasive Steering Trajectory Optimization 36

4.2. Trajectory Planning .. 39

4.3. DRL Structure .. 42

4.3.1. Observation ... 43

4.3.2. Action .. 47

4.3.3. Reward .. 49

4.3.4. Neural Network Architecture ... 58

vii

4.3.5. Deep Deterministic Policy Gradient (DDPG) Agent 60

Chapter 5. Autonomous Driving Algorithm Integration 64

5.1. Lane Change Decision Making .. 65

5.1.1. Longitudinal Collision Detection 66

5.1.2. Lateral Collision Detection .. 71

5.1.3. Lane Change Direction Decision 74

5.2. Path Planning ... 75

5.3. Vehicle Controller .. 76

5.4. Algorithm Integration .. 77

Chapter 6. Training & Results .. 79

Chapter 7. Conclusion ... 91

References .. 97

국문초록 .. 104

viii

List of Figures

Figure 1.1 Outline for overall study

Figure 2.1 Highly detailed vehicle dynamics model

Figure 2.2 Chain of vehicle body motion calculation

Figure 2.3 CARMAKER driving environment

Figure 2.4 Matlab Simulink model

Figure 2.5 Driving scenario

Figure 3.1 Deep Deterministic Policy Gradient (DDPG) structure

Figure 4.1 Slow lane-change inducing crash with the vehicle in front

Figure 4.2 Rapid lane-change inducing loss of controllability

Figure 4.3 3rd order polynomial trajectory approximation

Figure 4.4 Deep reinforcement learning agent architecture

ix

Figure 4.5 Observation-space of Simulink model

Figure 4.6 Action of Simulink model

Figure 4.7 Reward-space of Simulink model

Figure 4.8 Neural network architecture: (a) Critic network, (b) Actor

network

Figure 4.9 DDPG algorithm flow chart

Figure 5.1 Lane change decision making algorithm

Figure 5.2 Longitudinal collision detection algorithm

Figure 5.3 Slip-slope method using Recursive Least-squares

identification

Figure 5.4 Lateral collision detection algorithm

Figure 5.5 Lateral collision detection according to Gipps’ safety

distance

Figure 5.6 Lane change direction decision algorithm

Figure 5.7 Case of lane change direction decision

Figure 5.8 Path planning algorithm

Figure 5.9 Vehicle controller using Adaptive model predictive

controller (AMPC)

x

Figure 5.10 Integrated DRL-enhanced lane change algorithm

Figure 6.1

Deep Reinforcement Learning training graph

Figure 6.2 Lane change distance according to target vehicle velocity

Figure 6.3 Minimum distance between ego vehicle and front vehicle

according to target vehicle velocity

Figure 6.4 Maximum yaw rate of ego vehicle according to target

vehicle velocity

Figure 6.5 Maximum lateral force of ego vehicle according to target

vehicle velocity

Figure 6.6 Lane change direction of ego vehicle according to target

vehicle velocity

xi

List of Tables

Table 2.1 The description of the vehicle components

Table 3.1 Parameters of neural networks

Table 4.1 Observation-space of Simulink model

Table 4.2 Action of Simulink model

Table 4.3 Reward-space of Simulink model

Table 4.4 Critic-network structure

Table 4.5 Actor-network structure

Table 4.6 Hyperparameters used to train the DDPG agent

Table 4.7 Pseudo code of the DDPG algorithm

xii

List of Symbols

𝜋 = Policy of DRL agent

𝑎 = An action of policy

𝑠 = A state of environment

𝑟 = Instant reward value

𝑆 = Set of states

𝐴 = Set of action

𝑇 = Transition probability function

R = Rewards function

𝛾 = Discount factor of DRL agent

𝑡 = Simulation time step

xiii

𝜇 = Actor network of DDPG agent

𝑄 = Critic network of DDPG agent

𝛼 = Learning rate

𝑙 = Lane width

𝑥𝑓 = Longitudinal lane change distance

𝐶𝑒𝑔𝑜 = Ego vehicle object

𝐶1 = Vehicle object in front of the ego vehicle

𝐶2 = Vehicle object in the rear left of the ego vehicle

𝐶3 = Vehicle object in the rear right of the ego vehicle

𝑝𝑟,𝑖,𝑥 = Relative longitudinal distance between the ego vehicle

and vehicle object, 𝐶𝑖

xiv

𝑣𝑟,𝑖,𝑥 = Relative longitudinal velocity between the ego vehicle

and vehicle object, 𝐶𝑖 in inertial frame.

𝜌 = Yaw angle in inertial frame

𝜌̇ = Yaw rate in vehicle frame

𝑣𝑒𝑔𝑜 = Ego vehicle velocity in vehicle frame

𝑑𝑏𝑟𝑎𝑘𝑒 = Minimum braking distance

𝑐𝑙 = Lane change starting index

𝑟1 = Reward according to ego vehicle longitudinal position

𝑟𝑐 = Trigger function of 𝑟1

𝜔1 = Weight factor for 𝑟1

𝑖𝑐 = Lane change direction index

xv

𝑠𝑟1 = Static reward according to lane change complete

𝑠𝑟𝑐 = Trigger function of 𝑠𝑟1

𝑥 = Center of mass longitudinal position of ego vehicle in

inertial frame

𝑦 = Center of mass lateral position of ego vehicle in inertial

frame

𝑉𝑒𝑥

= 𝑥̇

= Center of mass longitudinal velocity of ego vehicle in

inertial frame

𝑝1 = Penalty according to ego vehicle later deviation

𝑦𝑡 = Reference lateral position of current state

𝜔3 = Weight factor for 𝑝1

𝑝2 = Penalty according to ego vehicle yaw rate

𝜔4 = Weight factor for 𝑝2

xvi

𝑠𝑝1 = Static penalty according to distance between ego vehicle

and surrounding vehicles

𝑠𝑝𝑐 = Trigger function for 𝑠𝑝1

𝑑𝑙,𝑖 = Relative distance between the ego vehicle and the

vehicle object, 𝐶𝑖

𝜔5 = Weight factor for 𝑠𝑝1

𝑠𝑝2 = Static penalty according to ego vehicle velocity

𝑠𝑝𝑐2 = Trigger function for 𝑠𝑝2

𝜔6 = Weight factor for 𝑠𝑝2

𝑅𝑡 = Summation of rewards

𝐱(𝐭) = States of Kalman filter

𝐲(𝐭) = Measurements of Kalman filter

𝐹𝑥 = Longitudinal tire force

xvii

𝐹𝑦 = Lateral tire force

𝜔ℎ = Wheel velocity

𝑎𝑥 = Longitudinal acceleration in vehicle frame

𝑎𝑦 = Lateral acceleration in vehicle frame

𝜖 = Maximum friction coefficient

𝜎𝑥 = Wheel slip ratio

𝐾 = Slip-slope

𝜑 = System output of parameter identification form

𝑒(𝑡) = Identification error

𝑚 = Ego vehicle mass

𝜇 = Friction coefficient of each tire

𝐶𝐿𝑂 = Longitudinal collision detection index function

𝑉𝑡𝑥 = Target vehicle longitudinal velocity

xviii

𝑎𝑚 = Maximum acceleration

𝐶𝐿𝐴 = Lateral collision detection index function

CHAPTER 1 INTRODUCTION 1

Chapter 1

Introduction

1.1. Research Background

The quality of vehicle technology is greatly improved according to

continuous research and development in the automotive industry. However,

due to the many complex factors in surroundings, traffic accidents are still

considered a major problem causing death. In 2015, the World Health

Organization revealed that road traffic crashes resulted in more than 1.2

million deaths each year, making road traffic accidents the leading global

cause of death. According to the United States (US) Department of

Transportation’s National Highway Traffic Safety Administration, 37,462

people were killed in crashes on US road in 2016, 5.6% more from the 35,485

in 2015. In addition, the latest statistics from China’s Ministry of

Transportation found that about 63,194 people died in crashes in 2019 (China

Bureau of Statistics, 2019). This shows a slight reduction, but still very

serious. Therefore, governments, institutes and manufacturers are paying

great attention to vehicle safety. A reliable study found that 70% of accidents

CHAPTER 1 INTRODUCTION 2

were the fault of the driver and most traffic accidents were avoidable [1]. One

solution to decrease mortality is intelligent transportation systems and self-

driving vehicles. In 2013, the US government proposed a pilotless automobile

plan in an effort to reduce fatalities [2]. Automated vehicle technology can

significantly improve traffic safety, reduce traffic congestion, and has

attracted a lot of attention in recent years [3] [4]. Some automated vehicles

such as Google Car, nuYonomy and Apple Car are already being tested on

the highway. However, existing tests for automated vehicles met some safety

problems in driving in a real traffic environment due to the complexity of the

transportation system. In recent autonomous-driving car tests, a series of

traffic accidents have occurred. and one of the important causes of these

accidents is that the control algorithms built into the autonomous-driving car

have failed in the face of dynamic changes in the real traffic environment.

To solve this problem, autonomous vehicles based on artificial intelligence

(AI) are being widely studied in recent years [5] [6]. Collision avoidance is a

key safety factor for autonomous vehicles. Lane change maneuvers are

generally more desirable as they interfere with traffic flow to a minimum,

compared to slowing down to a complete stop without hitting an obstacle [7].

There have been a few researches in lane change of vehicles such as

CHAPTER 1 INTRODUCTION 3

A lot of research has recently been performed on automated lane change of

vehicles. Particularly, end-to-end, a new paradigm involving cognition and

decision-making, has been proposed [8]. The existing method for

autonomous vehicle is composed of the recognition of the environment

according to sensors implemented on vehicles, decision making according to

recognized environment and path planning to create future trajectory, and

then follow a given path through control. However, end-to-end learning is

based on machine learning, integrating recognition, decision making, and

planning, and generating control inputs [8].

 Deep reinforcement learning (DRL) is a combination of deep learning and

reinforcement learning. Reinforcement learning learns how to maximize

numerical rewards by relating situations and actions [9]. DRL provides a high

level of optimization by combining the advantages of reinforcement learning

and deep learning such as function approximation and expression learning

properties[10]. In addition, DRL allows vehicles to learn from their actions

instead of labeled data [11]. Labeled data is not required where vehicle agents

take action and are rewarded.

In emergency that could cause an accident, vehicle control algorithms must

immediately provide feasible maneuvers such as trajectories or paths. So real-

CHAPTER 1 INTRODUCTION 4

time-based algorithms are needed. The standardization organization validates

the performance of vehicles and algorithms through several test cases

described previously and tests them on a vehicle test site [12]. One is the

Double Lane Change Test (DLC) as defined in ISO-3888-2 [13]. DLC test

also known as the “Moose test” aims at how well the target vehicle can avoid

the obstacle that appears suddenly. The DLC test is described as follows. The

target vehicle starts to drive at an start lane which has 12m length. And the

test is finished when the vehicle exits ends of an exit lane which has the same

size of start lane. The side lane which is between the start lane and the exit

lane has an offset of 1 m. The longitudinal distance between the start position

of the start lane and side lanes is 13.5m, and the length between the side and

the end of the exit lane is 12.5m. This test requires throttle to be releases 2

meters after entering. And the rest of the tests are performed using only the

steering without throttle or brake actuation. Testing is generally conducted

with or without Electronic Stability Control (ESC) system. However, the

DLC test also has limitations. This is because evasive steering in an actual

driving environment cannot be the same as a standardized test environment.

In the case of the sudden appearance of an obstacle, i.e. sudden stop of the

vehicle in front in the actual driving environment, it is necessary to consider

not only the distance to the obstacle, but also the vehicle in the lanes on both

CHAPTER 1 INTRODUCTION 5

sides. Therefore, in order to implement a stable avoidance behavior, tests

must be conducted by simulating the actual driving situation. For stable

evasive steering, it is necessary to optimize the lane change trajectory based

on driving environment.

In this study, trajectory optimization for emergency lane change based on

DRL in actual driving conditions with a highly detailed vehicle dynamics is

performed. In a general driving situation, when the vehicle in front of ego

vehicle suddenly stops, the tire-road friction coefficient is estimated in real

time to determine whether it can stop through braking. When it is not possible

to stop, the ego vehicle decides whether to change lanes to the left or to the

right, and decides whether to overtake or to be overtaken. After the decision

making, the ego vehicle changes lanes along the optimized trajectory based

on driving environment, i, e. both sides vehicles, vehicle in front, ensuring

collision avoidance and vehicle controllability.

1.2. Previous Research

In order to solve issues related to lane change control of autonomous

vehicles, many researchers have studied about trajectory planning. The

CHAPTER 1 INTRODUCTION 6

methodology of the researches can be classified like follows: Geometric

methods, empirical methods, and optimal nonlinear control algorithms.

Finally, machine learning-based solutions are emerging in recent years. The

geometric method uses curve fitting according to the input of a vehicle state

and obstacles information and creates a path with a combination of straight

line, arcs or splines [14]. Although these methods can compute optimum

values fast, the dynamic viability of the generated trajectories is not

guaranteed. Therefore, it must be evaluated later [15].

Some AI-based optimization can be found among the empirical approaches

that use searching or random sampling. On the contrary to geometric

approaches, these approaches need heavy calculation process. To reduce

complexity, Ferguson et al. used sample time-based purification and

Likhachev et al. used adaptive purification for the same purpose [16] [17].

However, because of a discrete solution of these method, the Hybrid A*

algorithm is used to connect a continuous state to the discrete solution. The

nonlinear optimization-based approaches define the problem as a nonlinear

optimization problem (NLP) to ensure dynamic feasibility, where the

technique is usually based on a geometric method to create a trajectory and

establish a value function [18] [19]. Dynamic feasibility has trade off relation

CHAPTER 1 INTRODUCTION 7

with the computation speed. So, These methods create a limited minimization

problem [20].

Machine learning approaches can reduce these trade-offs problem.

Supervised learning is one of the solution approaches. The nonlinear

optimization problem solver can generate valid trajectories for various

simulation conditions and use them as data set for a neural network training

to generalize the problem and generate path in real time [21]. However, it is

not always possible to generate enough data sets for training. RL-based

technique uses trial and error method as a solution to the problem mentioned

above. And the reinforcement learning agents are trained according to

experimental data set obtained by a large number of trials [9] [22]. End to end

method is usually used in reinforcement learning approaches that makes

action space composed of steering and throttling commands according to the

states which means environments. These studies need sensors to acquire

environmental information, such as grid topology [23], lidar sensor [24],

camera [11] or ground truth [25]. Some research group pay attention to

decision-making, like the determination of action of the agent, such as lane-

change, lane-keeping, cruise control, etc. Microscopic simulation is used in

theses group [26]. Though hybrid solutions combination of decision making

CHAPTER 1 INTRODUCTION 8

and end-to-end control exist, there are only a few researches dealing with how

to define a trajectories through a geometrical approach through RL [27] [28].

In recent years, a few researches focus directly on the lane-change and

evasive maneuvers using RL. Theses can be classified into four group:

evasive steering path optimization, decision making for lane change,

collision avoidance and real-time path planning. Feher et al. performed RL-

based evasive path optimization [29]. They use standardized tests which is

ISO-3888-2 to gain optimized trajectory. However, it is difficult to apply to

the actual driving environment because they have optimized the trajectory

only in the standardized test. An et al. used RL to decide lane change

situation. It is hard to respond to emergency situations because they perform

stable lane change of a pre-determined trajectory in a normal driving

condition [30]. Duan et al. developed the hierarchical RL-based lane change

decision making algorithm. However, it is also a normal driving situation

algorithm. And they focused on time spent from starting point to target point

[31]. Kim et al. developed RL-based vehicle control algorithm to prevent

collision with traffic violations at intersections. But they didn’t focus on

trajectory optimization but collision avoidance. And they performed

simulation on low-speed conditions [32]. Zhang et al. performed path

optimization using RL of flying robot. They treated the robot as a geometric

CHAPTER 1 INTRODUCTION 9

mass point. So, it can’t be applied to real environment because optimization

without dynamics.

It is shown that trend of recent research about RL-based autonomous

vehicle driving are simulation to reach the target point in normal driving

situations, for algorithm development under a vehicle simulator, and to

develop controller of steering wheel. However, there are a few limitations:

Few researches on algorithm development using event driven strategy,

performing only standardized tests or aiming at avoidance itself, and using a

simplified vehicle dynamics model.

1.3. Research Objective

In this study, four kinds of main objective are achieved. The objective of

the first part is the construction of the simulation environment. In order to

apply the results of this study to the actual road environment, it is important

to implement a precise simulation environment. The simulation environment

was implemented using IPG CARMAKER and Matlab Simulink. By using

the Hyundai I30-PDE full car model and the MF 5.2 tire model, accurate and

reliable vehicle dynamics environment was built. In addition, an emergency

scenario which is the same environment as the actual emergency situation is

CHAPTER 1 INTRODUCTION 10

implemented to simulator. The scenario consists of four steps: normal driving

situation, emergency situation occurrence, decision making, and lane change.

In the scenario, the tire-road friction coefficient is reflected in order to make

relation between vehicle and road.

The second objective, the principal section of this study, is the development

of the deep reinforcement learning (DRL) structure. In case of emergency, for

rapid and stable lane change, this study optimizes the lane change trajectory

through DRL. For the optimization, the structure of observations, action, and

rewards must be constructed robustly. The agent of DRL performs actions in

the direction of maximizing rewards based on observations. Based on

appropriate observations and rewards, DRL structure is constructed to

perform an optimized trajectory action. In this study, the agent is constructed

using a neural network and trained using the deep deterministic policy

gradient (DDPG) algorithm.

The third object is the development of an integrated control algorithm for

vehicle control. The vehicle integrates three algorithms to drive suitable for

driving conditions: decision making, path planning, and vehicle controller. In

the decision-making algorithm, it is determined whether to change lanes by

detecting a collision with the vehicle in front while normal driving. It also

CHAPTER 1 INTRODUCTION 11

determines whether to overtake or be overtaken by detecting collisions with

the left and right vehicles. Then, the direction of lane change to ensure

stability is determined. The path planning algorithm is composed of DRL

agents and provides the optimal lane change trajectory at the moment of

decision making. Finally, the vehicle is controlled with and optimized path

through adaptive model predictive controller (AMPC). By integrating the

three algorithms, the vehicle drives in a developed scenario.

The final object is the training of DRL agent and the evaluation of DRL

agent results. Based on the established simulation environment, vehicle

model, and DRL agent, the agent is trained 60,000 times. The agent performs

optimization in the direction of maximizing the reward through the trial &

error method. In addition, the optimized agent is used to evaluate the

optimized trajectories according to the driving situation, driving environment,

and also evaluate the vehicle states.

This study proposes a new algorithm for lane change control of

autonomous vehicles to avoid collision and ensure safety. The proposed

method in this study can be improvement compared to previous researches.

⚫ The simulation environment constructed in this study can provide

accurate vehicle dynamics model and road environment the same

CHAPTER 1 INTRODUCTION 12

as actual driving condition. The environment includes Hyundai

I30-PDE full car model and MF tire model which is the most

detailed vehicle model and road condition which is applying tire-

road friction coefficient. Most papers used simplified vehicle

dynamics and didn’t consider tire-road friction coefficient. In this

study, tire-road friction coefficient was considered in detail using

slip-slope method.

⚫ Deep reinforcement learning structure in this study can provide

suitable architecture for autonomous vehicles. Because

observation and reward don’t include specific vehicle parameter

such as unique characteristics of certain vehicle, DRL structure can

be applied to various vehicles.

⚫ The proposed algorithm enables autonomous vehicles to drive and

evade collision safely. Most existing researches provided

algorithm for normal driving condition lane change or algorithm

focused on collision avoidance itself. But this algorithm cannot

only be used in normal driving condition but also in emergency

condition. And it can provide stable controllability after collision

avoidance.

CHAPTER 1 INTRODUCTION 13

1.4. Dissertation Overview

The reminder of this dissertation is organized as follows. Specially, study

outline from Chapter 2 to Chapter 7 is summarized in Figure 1.1.

⚫ Chapter 2: Simulation Environments presents various states to

be analyzed through this study. First, detailed vehicle dynamics

was established. Hyundai I30-PDE full car model is a vehicle

parameter model for vehicle dynamics simulator IPG

CARMAKER. IPG CARMAKER provides the most detailed

vehicle dynamics so that it can be the best simulation

environment in this study. IPG CARMAKER provides 7 types of

vehicle dynamics: vehicle body modelling, suspension

kinematics, aerodynamics, steering system, powertrain, brake,

tire. The vehicle body is a multi-body system which is

characterized through different bodies. The motion of the multi

body system is described with differential and with algebraic

equations. The principle of d’Alembert is applied to get

differential equations of motion for the generalized coordinates of

CHAPTER 1 INTRODUCTION 14

the system. Kinematics of suspension which comprises spring,

damper, buffer, and stabilizer describes the special movements of

a wheel due to compression and steer action. Aerodynamics in

this study is ignored. Steering system is modelled according to

2nd order differential equations. Brake system consider brake type

and brake pressure. Powertrain system is not considered in this

research. And tire is modelled using Magic Formula (MF) 5.2

ver.

Road environment is also established on IPG CARMAKER. The

road condition contains friction coefficient likewise actual

driving road so that tire-road friction coefficient can be estimated

then minimum braking distance of ego vehicle can be estimated

according to tire-road friction coefficient.

⚫ Chapter 3: Fundamentals presents about deep neural network,

reinforcement learning, and deep reinforcement learning.

Because main topic of this study is DRL-base optimization,

chapter 3 shows that the RL algorithm used in this study and

theoretical base of DRL. And because DRL contains Deep neural

network, Layers of neural network used in this study is shown

and also the theoretical base of neural network.

CHAPTER 1 INTRODUCTION 15

⚫ Chapter 4: DRL-enhanced lane change presents necessity of

trajectory optimization and type of lane change trajectory. Lane

change trajectory can be simplified into 3rd order polynomial

shape. And then the coefficients of the polynomials will be the

action of the DRL agent. For optimization training of DRL agent,

DRL structure is built. Observation presents real-time states of

environment such as ego vehicle velocity, relative distance

between ego vehicle and target vehicle, etc. It is used as

characteristic properties that is ground for agent actions. Reward

is target properties that need to be maximized. DRL training is

progressed to maximize reward according to observations. Neural

network architecture is the structure of the DRL agent. For the

detailed feature extraction of observation, neural network is

implemented. And action is the output of the agent. The goal of

this study is optimization of 3rd order polynomial shaped lane

change trajectory, agent outputs the coefficients as action. And

action values will be optimized through training in Chapter. 6.

⚫ Chapter 5: Autonomous Driving Algorithm Integration presents

hierarchical algorithm that is needed for driving in simulation

environment. Longitudinal collision detection algorithm

CHAPTER 1 INTRODUCTION 16

estimates the tire-road friction coefficient in real time. Using this,

the minimum braking distance of the ego vehicle is estimated. If

the distance to the vehicle in front is less than the minimum

braking distance, a collision will occur, and thus a collision is

determined based on this algorithm. Lateral collision detection

algorithm detects the state of the vehicle following the left and

right lanes. When the lane needs to be changed through the

longitudinal collision detection algorithm, Gipps’ safety distance

is used to detect whether a collision with a vehicle on the rear

side is encountered when the lane is changed in the current

vehicle velocity. If there is no collision, make a lane change

toward the larger safety distance side. In the warning of a

collision, the vehicle speed is lowered with maximum braking,

and the vehicle is overtaken by the vehicle in the rear side and

then the lane change is performed. Lane change direction

decision algorithm determines which direction to change lanes.

When overtaking and overtaken are determined through the later

collision detection algorithm, the lane is changed through

comparison of left and right value scale.

CHAPTER 1 INTRODUCTION 17

⚫ Chapter 6: Training & Results presents training results of deep

reinforcement learning agent. Training was performed 60,000

times and it shows feasible results. And various properties

according to operating conditions are evaluated.

⚫ Chapter 7: Conclusion shows a summary of the study.

CHAPTER 1 INTRODUCTION 18

Figure 1.1 Outline for overall study

CHAPTER 2 SIMULATION ENVIRONMENT 19

Chapter 2

Simulation Environment

2.1. Simulator

As the first process of this study, a simulator is selected. This study is

conducted through simulation based on a virtual model, but the goal is to

apply the algorithm to actual vehicles, so a simulation environment requires

very detailed model similar to the actual environment. In addition, programs

that can use appropriate algorithms for reinforcement learning training are

needed. Based on these properties, IP CARMAKER and Matlab Simulink

were selected.

First, IPG CARMAKER is a multi-body vehicle dynamics simulator, and

CARMAKER models realistically and precisely simulate a wide variety of

vehicle types along with their handling characteristics, the road and the

surrounding environment, driver behavior and the traffic situation in the

virtual world. It provides the widest variety of pre-defined models for vehicles,

as well as a data set generator for quickly defining new models with a high

CHAPTER 2 SIMULATION ENVIRONMENT 20

degree of precision and realistic behavior to the vehicle dynamics. It

implements multibody system efficiently – non-linear, expandable and real-

time capable. And it provides realistic generation of roads or specific test

tracks.

Table 2.1 The description of vehicle components

Body Parts of the body

Vehicle’s body All sprung masses beside engine,

trimloads

Trimloads Constant loads

Wheel suspension

-front left

-front right

-rear left

-rear right

All unsprung masses without the

wheel, like link, wheel carrier,

suspension leg, wishbone mount…

Wheel All rotating masses, like tire, rim,

bearing, brake disc…

External and internal forces/torques and constraints

Suspension Force elements

Aerodynamics

Kinematics and Compliance

Tire forces/torques

CHAPTER 2 SIMULATION ENVIRONMENT 21

In this study, Hyundai I30-Pde full car model was used as a pre-defined

vehicle model. Vehicle dynamics model is implemented based on the

parameters of the full car model.

The simulated vehicle is a multi-body system which is characterized

through different bodies. They are generated and optimized with MESA

VERDE [33]. Following Table 2.1 is the description of vehicle components

Figure 2.1 shows the vehicle dynamics model which are involved in the

vehicle model calculation. The dynamics model involves highly detailed

systems which contain empirical kinematics and compliance model. And

Figure 2.2 demonstrates the chain of calculation of the vehicle model.

Detailed vehicle dynamics equations are described in the reference manual of

IPG CARMAKER.

CHAPTER 2 SIMULATION ENVIRONMENT 22

Figure 2.1. Highly detailed vehicle dynamics model

CHAPTER 2 SIMULATION ENVIRONMENT 23

Figure 2.2. Chain of vehicle body motion calculation

CHAPTER 2 SIMULATION ENVIRONMENT 24

Figure 2.3. CARMAKER driving environment

Through detailed dynamics model as shown in Figure 2.2 above, this

study can develop a reliable vehicle control algorithm applicable to real

vehicles. In addition, like Figure 2.3, It is possible to make driving

environment more similar to actual environment by applying the actual tire-

road friction coefficient.

Second, Matlab Simulink is selected to train DRL agent and control

vehicle which is defined in IPG CARMAKER. As shown in Figure 2.4,

Simulink is a graphical programming environment for simulating and

analyzing multidomain dynamical systems. It is widely used in automatic

control and digital signal processing. In addition, it has excellent

CHAPTER 2 SIMULATION ENVIRONMENT 25

compatibility with other software such as CARMAKER. Most of all, it has

powerful tools and functions for reinforcement learning. It provides

functions and block for learning policies using RL algorithms including

DQN, A2C, and DDPG. This policy can be used to implement algorithms

for complex systems such as autonomous systems. Policies can be

implemented using deep neural networks, polynomial, or lookup tables. In

addition, agent training can be accelerated using parallel computing.

Figure 2.4. Matlab Simulink model

CHAPTER 2 SIMULATION ENVIRONMENT 26

2.2. Scenario

In order to develop an algorithm applicable to the actual environment, it is

important not only to select appropriate simulator which uses a detailed

vehicle model, but also to make a scenario that imitate the actual driving

conditions. This is because optimizing the trajectory through a scenario

different from the real environment eventually leads to unexpected results

when applying the algorithm to the actual driving condition. In this study,

four stages of driving situations were set as s scenario for lane change in

emergency situations. As shown in Figure 2.5, in the first situation, the ego

vehicle maintains the distance to the vehicle in front, like adaptive cruise

control, and drives in normal condition. The second situation represents a

situation in which the vehicle in front suddenly stops or an obstacle appears.

In this study, the vehicle in front does not stop through braking but stops

momentarily in order to express a case in which a sudden obstacle appearance.

In addition, since lane change in an unstoppable situation is the goal which

should be optimized, lane change is not performed if the distance to the

vehicle in front is stoppable. Collision detection is determined through the

longitudinal collision detection algorithm, which will be discussed in Chapter

5. The third one is a situation in which, after an emergency, it is decided in

CHAPTER 2 SIMULATION ENVIRONMENT 27

which way or in which direction to change lanes. This is determined through

the lateral collision detection algorithm and the lane change direction decision

algorithm, which will be discussed in Chapter 5. The fourth situation is

evasive steering. Evasive steering is performed based on the lane change

trajectory modeled as a 3rd order polynomial. The coefficients of the lane

change trajectory are optimized through reinforcement learning.

Figure 2.5. Driving scenario

CHAPTER 3 METHODOLOGY 28

Chapter 3

Methodology

This chapter details the methods used to optimize lane change trajectory.

Reinforcement learning process is composed of training and evaluation like

most machine learning approaches. This chapter presents the training phase

of reinforcement learning of the neural networks.

3.1. Reinforcement learning

The reinforcement learning is composed of environments which means

state-space, action-space and reward-space. And the agent of RL system takes

solution from the action-space according to environments. And the agent

takes action to make the accumulated reward which means summation of

reward-space maximize based on state-space which is an input of the agent.

During the training phase, agent learn a policy, 𝜋, to make the accumulated

rewards maximized. The policy defines action, 𝑎, to be taken depending on

the state, 𝑠. Then the state-space is changed to the new state, 𝑠′, and the

CHAPTER 3 METHODOLOGY 29

reward, 𝑟 , is returned. RL problems are modeled as a Markov Decision

Process (MDP), which is defined as a tuple modeled as a Markov Decision

Process (MDP), which is defined as a tuple 〈𝑆, 𝐴, 𝑇, 𝑅, 𝛾〉, where 𝑆 is the set

of states, 𝐴 is the set of actions, 𝑇: 𝑆 × 𝐴 → 𝑆 is the state transition

probability function, 𝑅: 𝑆 × 𝐴 × 𝑆 → R is the reward function and 𝛾 ∈

[0,1] is the discount factor. MDP meets Markov properties expressed as

Pr(𝑆𝑡+1 = 𝑠′ | 𝑆0, 𝑆1, ⋯ , 𝑆𝑡−1, 𝑆𝑡) = Pr(𝑆𝑡+1 = 𝑠′ | 𝑆𝑡) . This means that

the probability distribution of future states depends only on the current state

and behavior, not the history of the previous state. At every time step, 𝑡, the

agent’s goal is to maximize the future discounted returned, defined as:

𝑅𝑡 = ∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘, (3.1)

Where 𝑟𝑡+𝑘 is the reward given in step 𝑡 + 𝑘 [9]. The RL-system needs

to be built to optimize the trajectory mentioned in Chapter 1. The system is

made in Simulink, and the components are presented in Chapter 5.

CHAPTER 3 METHODOLOGY 30

3.2. Deep reinforcement learning

In this study, the Deep Reinforcement Learning (DRL) method is selected

to optimize lane change trajectory. Recently DRL has been greatly improved

and utilized. In [34], a deep neural network is used for function estimation of

value-based reinforcement learning. This method is applicable only to tasks

with discrete action space. Because the action space of this study is

continuous, deep deterministic policy gradient method (DDPG) is selected to

solve a continuous control task [35]. Actor-critic network is used in DDPG

algorithm. And deep neural networks represent policy 𝜇(𝑠|𝜃𝜇) and value

𝑄(𝑠, 𝑎|𝜃𝑄) in it. To solve the learning instability problem due to deep neural

networks, replay buffer and the target networks are adopted. The algorithm

can be more data-efficient by using replay buffer. Because training samples

are distributed independently and equally. The target network makes the

parameters change more slowly. The critic network is trained using the

following Bellman equation,

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1
~𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1)) (3.2)

CHAPTER 3 METHODOLOGY 31

a random minibatch of 𝑁 transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) is as Equation 3.3.

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

) (3.3)

The following policy gradient is used for updating the actor.

∇𝜃𝜇𝐽= 𝔼𝑠𝑡~𝜌𝛽[∇𝜃𝜇𝑄(𝑠, 𝑎|𝜃𝑄)|
𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡|𝜃𝜇

)] (3.4)

the sampled policy gradient is calculated as

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑆𝑖

𝑖

 (3.5)

The actor is updated with policy gradients, the gradients is calculated from

the Temporal error. And the critic-network is updated with gradients. The TD

error can be calculated by the following Equation 3.6. And it can be used to

update the weights of critic-networks.

CHAPTER 3 METHODOLOGY 32

𝐿 =
1

𝑀
∑(𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃

𝑄)2)

𝑖

 (3.6)

According to policy gradient, the policy network is also updated. DDPG uses

a soft update to make the stability of algorithm greater than other algorithm.

In other words, DDPG algorithm adopt a strategy that blend between the

regular and target network weights slowly.

Since a DDPG algorithm is a proper DRL algorithm for optimization

problem requiring continuous action spaces, this method is adopted to

optimize path planning with continuous control action for the vehicle.

Figure 3.1. Deep Deterministic Policy Gradient (DDPG) structure

CHAPTER 3 METHODOLOGY 33

3.3. Neural network

The actor and the critic of the DDPG agent mentioned previous subset are

consist of two neural network each other. The function of the actor-network

is making an optimal parameters of lane change trajectories. And critic-

network learns to evaluate the actor to improve the learning process.

The actor-network is composed of 10-element input layers and

implemented in Matlab Simulink.

The first layer is feature input layer function,𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑛𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟(𝑁𝑓),

and 𝑁𝑓 is the number of observations, Feature input layer is an input layer

that inputs feature data to a network and applies data normalization. When a

data set of numeric scalars represents features, this layer can be used. Four

fully connected hidden layers, 𝑓𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐿𝑎𝑦𝑒𝑟(𝐿), where, 𝐿 is the

number of neurons, follow feature input layer. For hidden layers, batch

normalization and rectified linear unit (ReLu) activation function is used. The

ReLu layer performs a threshold operation that sets all values less than zero

to zero for each element of the input. 9th element of actor network is a

hyperbolic tangent activation function, 𝑡𝑎𝑛ℎ𝐿𝑎𝑦𝑒𝑟. This layer applies the

𝑡𝑎𝑛ℎ function on the layer inputs. And the last element layer is the scaling

CHAPTER 3 METHODOLOGY 34

layer, 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐿𝑎𝑦𝑒𝑟. This function linearly scales and biases an input array,

giving an output 𝑌 = 𝑆𝑐𝑎𝑙𝑒.∗ 𝑈 + 𝐵𝑖𝑎𝑠. Because 𝑡𝑎𝑛ℎ𝐿𝑎𝑦𝑒𝑟 gives

bounded output that falls between -1 and 1. This layer is useful for scaling

and shifting the outputs of nonlinear layers.

The second layer is critic-network. Critic network is composed of two

parallel sub layers: state path, action path. State path consists of feature input

layer, fully connected layer, ReLu layer, and addition layer. Action path is

composed of one feature input layer and one fully connected layer. This path

is added in the middle of the state path, to addition layer. Table 3.1

Summarizes the architecture of both networks.

CHAPTER 3 METHODOLOGY 35

Table 3.1. Parameters of neural networks

Actor network

Learning rate (𝛼)

Mini batch size

Structure of fully connected layer

0.0001

64

[100 100 100 1]

Critic network

Learning rate (𝛼)

Gradient threshold

L2 regularization

Discount factor

Head 1 Structure of fully connected layer

Head 2 Structure of fully connected layer

0.001

1

0.0001

0.99

[100 100 100 1]

[100]

CHAPTER 4 DRL-ENHANCED LANE CHANGE 36

Chapter 4

DRL-enhanced Lane change

In this Chapter, the deep reinforcement learning structure is designed for

optimizing the lane change trajectory in an emergency situation based on a

given driving environment and scenario. First, we describe the lane-

changing trajectory as a 3rd order polynomial. And second, the observation,

action, and reward space of deep reinforcement learning to obtain the

coefficients of polynomial is designed, and the DDPG agent for optimal

learning is constructed.

4.1. Necessity of Evasive Steering Trajectory

Optimization

Lane change refers to the act of moving a vehicle to the left or right lanes.

When vehicle is driving on a straight road, the lane change situation can be

divided into two types scenario. The first is changing lanes in order to get to

the target point quickly in normal driving situations. This is a sufficiently

relaxed situation and enables the driver or an autonomous vehicle to stably

CHAPTER 4 DRL-ENHANCED LANE CHANGE 37

change lanes. Research on this type of lane change has been sufficiently

conducted since the past and is currently commercialized. The second is

changing lanes in case of emergency situations. In particular, when an

obstacle appears or the vehicle in front of the ego vehicle suddenly stops and

a collision with the vehicle in front cannot be avoid, the ego vehicle performs

evasive steering to avoid a collision. Changing to a different lane by evasive

steering is the only way to ensure traffic flow and driver safety. However, in

this case, unlike a normal driving situation, the driver cannot sufficiently

recognize the surrounding information, which may cause another accident.

On the other hand, since autonomous vehicles continuously observe the

surrounding traffic environment in real time, it is possible to effectively avoid

crash by evasive steering by judging risks in real time.

However, if the steering wheel is simply steered in the direction in which

the vehicle intends to move, it is not possible to guarantee the stability of the

vehicle and passenger’s safety. In this study, lane change in an emergency

situation is analyzed into two extreme cases. The first is when the autonomous

vehicle steers too slow or the steering angle is insufficient. As shown in

Figure 4.1, in this case, the vehicle collides with an obstacle or the vehicle in

front of the ego vehicle before completing the lane change. Therefore, in order

CHAPTER 4 DRL-ENHANCED LANE CHANGE 38

to prevent such an accident, faster evasive steering that means short lane

change trajectory is required. Second case shown in Figure 4.2 is occurred

when the steering angle is too much or the vehicle steers to fast. In this case,

the vehicle can successfully avoid the crash with the obstacle ahead, but if the

vehicle’s behavior exceeds the limitation of vehicle dynamics, the vehicle

loses controllability, resulting in other type of accidents such as spin, roll-

over.

Therefore, for effective and stable emergency lane change, an optimized

lane change trajectory between the above two aspects of lane change cases is

required. By optimizing the lane change trajectory, it is possible to avoid

collision with obstacles ahead by changing lanes quickly and other types of

accidents can be prevented by securing vehicle controllability through safe

lane change.

CHAPTER 4 DRL-ENHANCED LANE CHANGE 39

Figure 4.1. Slow lane-change inducing crash with the vehicle in front

Figure 4.2. Rapid lane-change inducing loss of controllability

4.2. Trajectory Planning

In this study, to describe the lane change trajectory, a 3rd order polynomial

lane change trajectory model is selected like following equation.

𝑦 = 𝑓(𝑥) = 𝑐𝑎𝑥3 + 𝑐𝑏𝑥2 + 𝑐𝑐𝑥 + 𝑑𝑐 (4.1)

This model has advantages in that it can be expressed with one explicit

equation compared to the conventional arc and straight-line method. And it

CHAPTER 4 DRL-ENHANCED LANE CHANGE 40

can be calculated more simply than 5th order polynomial model so that

optimization cost can be decreased.

Figure 4.3. 3rd order polynomial trajectory approximation

CHAPTER 4 DRL-ENHANCED LANE CHANGE 41

As shown in Figure 4.3, assuming that the position of the ego vehicle mass

center at the starting point of lane change is (0,0), the boundary conditions at

the start and end point of lane change are given as follows.

𝑓(0) = 0

𝑓′(0) = 0

𝑓(𝑥𝑓) = 𝑙

𝑓′(𝑥𝑓) = 0

(4.2)

Modelling an equation based on the boundary conditions, the following

equations can be obtained.

𝑎𝑐 = −
8

𝑥𝑓
3

𝑏𝑐 =
12

𝑥𝑓
2

𝑐𝑐 = 𝑑𝑐 = 0

(4.3)

CHAPTER 4 DRL-ENHANCED LANE CHANGE 42

Finally, the lane change expressed as a 3rd order polynomial is determined

according to 𝑥𝑓, which is the distance from the lane change start point to the

end point as shown in Figure 4.3. Therefore, in this study, the agent is trained

and evaluated to provides optimal 𝑥𝑓 according to driving environment in

real time through deep reinforcement learning.

4.3. DRL Structure

In this study, as mentioned before, the emergency lane change trajectory

described as a 3rd order polynomial is optimized through deep reinforcement

learning. It is important to design a robust reinforcement learning structure

for stable and fast emergency lane change trajectory optimization.

Figure 4.4. Deep reinforcement learning agent architecture

AGENT

POLICY

REINFORCEMENT
LEARNING

ALGORITHM

ENVIRONMENT

OBSERVATION
Qt

ACTION
At

REWARD
Rt

POLICY
UPDATE

State
S

Deep Neural Network
Policy
TT(S,a)

Parameter ϴ

Reinforcement learning Deep neural network

CHAPTER 4 DRL-ENHANCED LANE CHANGE 43

Figure 4.4 shows the deep reinforcement learning agent, environment, and

architecture. In this chapter, such an artificial intelligence structure is

designed.

4.3.1. Observation(states)

The agent receives no information from the environments because of the

model-free training system. It only receives quantified observation variables

closely related to the actions. To optimize lane change trajectory, the status

variables are to specify the vehicles’ relation between front, left side, right

side and ego vehicle. Also be to specify the ego vehicles motion parameters.

As mentioned in the scenario in Chapter 2.2, the simulation is performed

with a straight line of three lanes. The ego vehicle, 𝐶𝑒𝑔𝑜 , and object 1,

𝐶1,drive on middle lane. And object 2, 𝐶2, and object 3, 𝐶3, are drive on left

and right lane respectively. During normal driving situation, 𝐶1 suddenly

stops and the ego vehicle decides to change lanes through the relation with

object 𝐶1, 𝐶2, 𝐶3. According to these relations, the observation space consists

of 12 continuous states.

CHAPTER 4 DRL-ENHANCED LANE CHANGE 44

[𝑝𝑟,1,𝑥, 𝑣𝑟,1,𝑥, 𝑝𝑟,2,𝑥, 𝑣𝑟,2,𝑥, 𝑝𝑟,3,𝑥, 𝑣𝑟,3,𝑥, 𝜓, 𝜓̇, 𝑣𝑒𝑔𝑜,𝑥, 𝑑𝑏𝑟𝑎𝑘𝑒, 𝑥𝑓 , 𝑐𝑙] (4.4)

𝑝𝑟,1,𝑥 and 𝑣𝑟,1,𝑥 shows the relative longitudinal distance and velocity

with 𝐶1 in the scenario. 𝑝𝑟,2,𝑥, 𝑣𝑟,2,𝑥, 𝑝𝑟,3,𝑥 and 𝑣𝑟,3,𝑥 represent the relative

longitudinal distance and velocity with 𝐶2 and 𝐶3 respectively. This

observation space is selected as a factor to avoid collisions with vehicles

during lane change and to decide lane change motion. 𝜌, 𝜌̇ , and 𝑣𝑒𝑔𝑜,𝑥

represent the yaw angle yaw rate, and longitudinal velocity of the ego vehicle

respectively. These are selected as a factor affecting the stability of the vehicle

during lane change. 𝑑𝑏𝑟𝑎𝑘𝑒 is the minimum braking distance to stop, which

is selected as a factor related to collision avoidance with the 𝐶1. 𝑥𝑓 is the

action feed back from the previous time stop, and 𝑐𝑙 is the index that

determines whether changes lane or not, which will be described later in

Chapter 5, and is selected as a factor involved in the collision with 𝐶2 and

𝐶3. As mentioned in Chapter 3 above, the observations are normalized to the

range [0, 1] based on the experience gained in previous reinforcement

learning systems. This is because training takes more time when one variable

CHAPTER 4 DRL-ENHANCED LANE CHANGE 45

has a large difference in size from the other variable in a high-dimensional

observation.

Figure 4.5. Observation-space of Simulink model

CHAPTER 4 DRL-ENHANCED LANE CHANGE 46

Table 4.1. Observation-space of Simulink model

Observation name Object

Obj#1 relative longitudinal distance
Relative motion parameters

- Collision prevention

- Decision making

Obj#1 relative longitudinal velocity

Obj#2&3 relative longitudinal distance

Obj#2&3 relative longitudinal velocity

Ego vehicle yaw angle
Ego motion parameters

- Vehicle stability
Ego vehicle yaw rate

Ego vehicle longitudinal velocity

Minimum braking distance Collision prevention

Lane change distance (𝑥𝑓) Action space feed back

Lane change availability Decision making

CHAPTER 4 DRL-ENHANCED LANE CHANGE 47

4.3.2. Action

The agent has only one continuous action output, which significantly

reduces the complexity of the training task. As mentioned in chapter 4.2, it is

possible not by finding all points of lane change trajectories through

reinforcement learning, but by simplifying trajectory points to an explicit

function 3rd order polynomial. And for more effectiveness, Outputs of the

action space, 𝑥𝑓 , is limited to between 3 (m) to 100 (m). The action

parameters determine the trajectory through which the ego vehicle is going to

path. The manners of overtaking or being overtaken is decided through

another decision-making algorithm which will be mentioned in chapter 5. The

normalized action space [0, 1] can make the better training results than raw

action space during the DRL training. So, the actor network uses

normalization function and being connected scaling layer at the end of the

layer to scale the normalized outputs into a 𝑥𝑓. Figure 4.6 shows the action

system of Matlab Simulink block.

CHAPTER 4 DRL-ENHANCED LANE CHANGE 48

Figure 4.6. Action of Simulink model

Table 4.2. Action of Simulink model

Action Limit

Lane change distance (𝑥𝑓)
Min : 3 (m)

Max : 100 (m)

CHAPTER 4 DRL-ENHANCED LANE CHANGE 49

4.3.3. Reward

The DRL learning is composed of a series of iterations. It is composed of

steps in which the successive trial can be identified by accumulated reward.

In an emergency lane change, the reward functions are to quantify how much

good generated trajectory is, where the agent responds to a given state which

means observation. The reward function has to be built to make the action be

optimized.

The goal of the agent in DRL is not the reward value at each time step, but

to maximize the accumulated reward during each episode. It is important to

design a reward space to make the ego vehicle change the lane appropriately.

The training of DRL is simulated for a lane change as an episodic task. And

it means that the ego vehicle will be in a specific state at the end of the episode.

Thus, a lane change is defined as moving into the next lane without collision.

To meet this goal, a reward function is constructed as follows.

CHAPTER 4 DRL-ENHANCED LANE CHANGE 50

1. Ego vehicle longitudinal position (𝑟1)

𝑟𝑐(𝑥) = {
𝑥 𝑖𝑓 𝑖𝑐 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑟1 = 𝜔1 ∗ 𝑟𝑐(𝑥̇, 𝑖𝑐)

(4.5)

This function is a reward function to encouraging the ego vehicle to move

forward. 𝑟𝑐 is a trigger function. 𝜔1 is a weight factor for reward. 𝑥̇ is ego

vehicle longitudinal velocity. and 𝑖𝑐 is a lane change decision index value.

2. Lane-change complete index (𝑠𝑟1)

𝑠𝑟𝑐(𝑙, 𝑦, 𝜌) = {
1 𝑖𝑓 𝑦 ≅ 𝑙 𝑎𝑛𝑑 𝑦̇ ≅ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑟1 = 𝜔2 ∗ 𝑠𝑟𝑐(𝑙, 𝑦, 𝜌)

(4.6)

This function is a static reward function that encourages rapid

successful lane change. 𝑠𝑟𝑐 is a trigger function. 𝑙 is target lateral

position. 𝑦 is ego vehicle lateral position of current state. and 𝜌 is

ego vehicle yaw angle.

CHAPTER 4 DRL-ENHANCED LANE CHANGE 51

3. Ego vehicle lateral deviation (𝑝1)

𝑝1 = 𝜔3 ∗ |𝑦𝑡 − 𝑦| (4.7)

This function is a penalty function that indicates the deviation between the

current ego vehicle’s lateral position and the reference lateral position. 𝑦𝑡 is

reference lateral position of current state, y is current lateral position, and 𝜔3

is weight factor.

4. Ego vehicle yaw rate (𝑝2)

𝑝2 = 𝜔4 ∗ |𝜌̇| (4.8)

This function is also a penalty function that indicates the yaw stability.

𝜌̇ is ego vehicle yaw rate, and 𝜔4 is weight-factor.

CHAPTER 4 DRL-ENHANCED LANE CHANGE 52

5. Distance between ego vehicle and surroundings (𝑠𝑝1)

𝑠𝑝𝑐(𝑥) = {
1 𝑖𝑓 |𝑑𝑙,𝑖| < 4

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑝1 = 𝜔5 ∗ ∑ 𝑠𝑝𝑐(𝑑𝑙,𝑖)

(4.9)

This function is a static penalty function that indicates vehicle

controllability.𝑠𝑝𝑐 is trigger function, 𝑑𝑙,𝑖 is distance between ego

vehicle and surrounding vehicles especially 𝑐1 and 𝑐2. And 𝜔5 is

weight factor

6. Ego vehicle velocity (𝑠𝑝2)

𝑠𝑝𝑐2(𝑥) = {
1 𝑖𝑓 |𝑑𝑙,𝑖| < 4

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑝1 = 𝜔5 ∗ ∑ 𝑠𝑝𝑐(𝑑𝑙,𝑖)

(4.10)

This function is also a static penalty function that prevent excessive low

CHAPTER 4 DRL-ENHANCED LANE CHANGE 53

speed of ego vehicle. 𝑠𝑝𝑐2 is a trigger function. 𝑥̇ is ego vehicle

longitudinal velocity. and 𝜔6 is weight factor

The sum of the rewards is expressed as follows.

𝑅𝑡 = 𝑟1 + 𝑠𝑟1 − 𝑝1 − 𝑝2 − 𝑠𝑝1 − 𝑠𝑝2 (4.11)

Through the training of deep reinforcement learning, the total value of the

reward in one episode is output by accumulating the reward value of equation.

At every time step. And training proceeds in the direction of maximizing this

accumulated reward value.

The first reward value is a function that rewards the vehicle so that it can

change lanes quickly. When the index value for the moment when lane change

starts is triggered, compensation is rewarded as much as the ego vehicle

longitudinal velocity. Second is the reward given when the lane change is

completed. In order to prevent a reference trajectory from agent that the ego

vehicle cannot pass along, a criterion for the success of lane change is

established, and when it is completed, additional compensation is rewarded.

Third to sixth are about penalties. Third one shows the difference between the

CHAPTER 4 DRL-ENHANCED LANE CHANGE 54

lateral reference position and the current lateral position. Stable driving is

impossible if the actual behavior of the vehicle differs greatly from the

reference trajectory provided by agent. In other words, since this is an index

indicating the controllability of the ego vehicle, optimization proceeds in the

direction of minimizing it. Fourth represents the ego vehicle’s current yaw

rate. As the yaw rate increases, the ego vehicle gets more unstable and the

ride comfort decreases. Therefore, optimization proceeds in the direction of

minimizing the yaw rate. Fifth is the penalty of the distance between the ego

vehicle and surrounding vehicles. If the distance becomes too close, the risk

of collision increases, so it prevents the ego vehicle from getting close to

surrounding vehicles. Sixth is the penalty for the vehicle’s excessive low

velocity. In order to prevent a vehicle from colliding, it is possible to slow

down and change lanes in an overtaken method, but it is reasonable to change

lanes as quickly as possible to get out of the danger situation, so a penalty is

imposed if the vehicle is too slow.

CHAPTER 4 DRL-ENHANCED LANE CHANGE 55

Figure 4.7. Reward-space of Simulink model

CHAPTER 4 DRL-ENHANCED LANE CHANGE 56

Table 4.3. Reward-space of Simulink model

Reward Object

Ego vehicle longitudinal position Encouraging progress

Static reward

Lane-change complete
Encouraging rapid successful lane

change

Penalty

Position difference between

reference trajectory and ego

vehicle position

Vehicle controllability

Ego vehicle yaw rate Vehicle stability

Static penalty

Distance between ego vehicle and

obj#1

Collision prevention

Distance between ego vehicle and

obj#2

Ego vehicle velocity Prevention of excessive low speed

CHAPTER 4 DRL-ENHANCED LANE CHANGE 57

Figure 4.8. Neural network architecture: (a) Critic network, (b)

Actor network

CHAPTER 4 DRL-ENHANCED LANE CHANGE 58

4.3.4. Neural Network Architecture

As mentioned briefly in previous Chapter 3.3, the agent constructed in this

study contains the neural network architecture. The DDPG algorithm was

used in this study. The DDPG algorithm consists of an actor network and a

critic network as shown in Figure 4.8.(a). All of the network structure

constructed in this study is shown in Figure 4.8 and Table 4.4 & 4.5.

Table 4.4. Critic-network structure

State path

 Neurons Name

Feature Input Layer 12 Observation

Fully Connected Layer 100 Fc1

Rectified Linear Unit Relu1

Fully Connected Layer 100 Fc2

Addition Layer 2 Add

Rectified Linear Unit Relu2

Fully Connected Layer 100 Fc3

Rectified Linear Unit Relu3

Fully Connected Layer 1 Fc4

Action path

Feature Input Layer 1 Action

Fully Connected Layer 100 Fc5

CHAPTER 4 DRL-ENHANCED LANE CHANGE 59

Table 4.5. Actor-network structure

 Neurons Name

Feature Input Layer 12 Observation

Fully Connected Layer 100 Fc1

Rectified Linear Unit Relu1

Fully Connected Layer 100 Fc2

Rectified Linear Unit Relu2

Fully Connected Layer 100 Fc3

Rectified Linear Unit Relu3

Fully Connected Layer 1 Fc4

Hyperbolic Tangent Layer Tanh1

Scaling Layer Actorscaling1

State of environment also known as observation, and action of the previous

time step moment are combined as 𝑠𝑎 = (𝑜𝑏𝑠, 𝑥𝑓,𝑡−1). They are adopted as

the input to the actor-network. Therefore, the number of neurons of actor-

network input-layer which is feature input layer is 12. Meanwhile, the actor

network’s hidden layer utilizes four fully connected networks; each layer

contains 100 neurons. The fully connected layer is followed by batch

normalization (BN), before the ReLu layer is adopted as the activation

function. At the same time, the layer of the network chooses tanh as the

activation function to map the network output between the interval [-1, 1].

And the scaling layer the last layer of the networks makes the outputs of tanh

CHAPTER 4 DRL-ENHANCED LANE CHANGE 60

layer to the 𝑥𝑓. After the observation and action are merged as 𝑠𝑐 = (𝑠𝑎, 𝑥𝑓),

then the critic network receives the merged value as input. The number of

critic network input-layer neurons is 13. The critic network’s hidden layer

utilizes five fully connected layers and each layer contains 100 neurons. The

fully connected layer is followed by batch normalization like actor network.

4.3.5. Deep Deterministic Policy Gradient (DDPG) agent

DDPG adopts the Actor-Critic framework, including the Actor and Critic

network which mentioned previous steps. And Table 4.6, shows the

hyperparameters used to train the DDPG agent. The online policy and the

target policy network which adopt the deterministic policy is included in actor

network to get a definite action from the environments. And the online Q

network and the target Q network is included in the critic network. And the

Bellman equation of the function Q is used to evaluate the action. The pseudo

code of the DDPG algorithm is shown in Table 4.7. And the DDPG algorithm

flow is shown in Figure 4.9. The input state (𝑑1, … , 𝑑11, 𝑥𝑓,𝑡−1) and output

CHAPTER 4 DRL-ENHANCED LANE CHANGE 61

action 𝑥𝑓 are represented accordingly. The action is the output of the policy

because of a deterministic policy of DDPG algorithm. So, it requires

relatively less data to maximize efficiency. However, this can cause the

environment not to be fully explored. So, to make the algorithm fully analyze

the environment, the OU stochastic process was adopted.

Table 4.6. Hyperparameters used to train the DDPG agents

Discount factor, 𝛾

Target smooth factor

Mini-batch size

Target network update frequency

Replay memory size

0.99

0.001

64

100

1,000,000

Ornstein-Uhlenbeck parameters

Mean attraction constant

Decay rate of the standard deviation

Noise model standard deviation

Minimum standard deviation

0.15

0

0.3

0

CHAPTER 4 DRL-ENHANCED LANE CHANGE 62

Table 4.7. Pseudo code of the DDPG algorithm.

 Randomly initialize Critic online Q network parameters 𝜽𝑸 and

Actor’s online policy network parameters 𝜽𝝁.

Initialize Critic target Q network parameters 𝜽𝑸′
← 𝜽𝑸 and Actor’s

target policy network parameters 𝜽𝝁′ ← 𝜽𝝁

Initialize experience replay memory (R).

For 𝒆𝒑𝒊𝒔𝒐𝒅𝒆 = 𝟏, M do

Initialize the OU random process D for the exploration of action

Input initial observation state 𝒔𝟏

For 𝒕 = 𝟏, 𝑻 do

Choose action 𝒂𝒕 according to current strategy 𝝁(𝒔𝒕) and noise

𝑫𝒕 ∶ 𝒂𝒕 = 𝝁(𝒔𝒕) + 𝑫𝒕

Take the action 𝒂𝒕, the reward 𝒓𝒕, and the new state 𝒔𝒕+𝟏.

Store the process (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) in 𝑹.

Sampling from R to get the process (𝒔𝒊, 𝒂𝒊, 𝒓𝒊, 𝒔𝒊+𝟏) of batch 𝑵

Set 𝒚𝒊 = 𝒓𝒊 + 𝜸𝑸′(𝒔𝒊+𝟏, 𝝁′(𝒔𝒊+𝟏|𝜽𝝁′
)|𝜽𝝁′

)//𝑸′ is the state-action

value calculated by the target Q network, and 𝝁′ is the current

strategy obtained by the target policy network.

Update Critic’s online Q network by minimizing the loss

function: 𝑳 =
𝟏

𝑵
∑ (𝒚𝒊 − 𝑸(𝒔𝒊, 𝒂𝒊|𝜽𝑸)

𝟐
)𝒊

Update the Actor’s online policy network with sampling

gradient: 𝛁𝜽𝝁𝝁 |𝒔𝒊 ≈
𝟏

𝑵
∑ 𝛁𝒂𝑸(𝒔, 𝒂|𝜽𝑸)𝒊 |

𝒔=𝒔𝒊,𝒂=𝝁(𝒔𝒊)
𝛁𝜽𝝁𝝁(𝒔|𝜽𝝁)|𝒔𝒊

Update Critic’s target Q network: 𝜽𝑸′ ← 𝝉𝜽𝑸 + (𝟏 − 𝝉)𝜽𝑸′

Update Actor’s target policy network: 𝜽𝝁′ ← 𝝉𝜽𝝁 + (𝟏 − 𝝉)𝜽𝝁′

End for

End for

CHAPTER 4 DRL-ENHANCED LANE CHANGE 63

Figure 4.9. DDPG algorithm flow chart.

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 64

Chapter 5

Autonomous Driving Algorithm

Integration

In this chapter, the algorithm for driving the vehicle in a given driving

scenario is integrated. First, the algorithm that determines whether to start

changing lanes while the ego vehicle is driving. The minimum braking

distance to detect the risk of collision with the vehicle in front, and Gipps’

safety distance is calculated to detect the risk of collision with the vehicle in

front. Based on this, the lane change direction is set. Second, a path planning

algorithm is designed using the DRL structure designed in Chapter 4. Third,

the vehicle controller is configured and an integrated algorithm that can

finally drive the vehicle is designed.

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 65

Figure 5.1. Lane change decision making algorithm

5.1. Lane Change Decision Making

Prior to initiating a lane change, the ego vehicle must determine when and

at what speed and direction to start to change the lane. First, in order to

prevent a collision with the vehicle in front, it is necessary to detect the danger

of a collision with a vehicle in front. In addition, in order to prevent a collision

with a vehicle coming from the direction of the target lane, a collision with a

vehicle from the side must be detected. And it is necessary to decide whether

to overtake or being overtaken the target lane vehicle according to the

distance between ego vehicle and target lane vehicle. Finally, a lane change

direction is determined by comparing the distances of between ego vehicle

and the vehicles on both lanes.

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 66

Figure 5.2. Longitudinal collision detection algorithm

5.1.1. Longitudinal Collision Detection

In order to detect a collision with the vehicle in front, the tire-road friction

coefficient must first be estimated. Since the friction coefficient can be

estimated based on the normal force and longitudinal force of the ego vehicle,

the longitudinal traction force is first estimated. And the longitudinal traction

force is estimated using Kalman estimation method by expressing the vehicle

states in state-space form due to the difficulty of measuring the force directly,

and the equation is as follows.

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 67

𝐱̇(𝐭) = A(t)𝐱(𝐭) + B(t) + ωh(t)𝐲(𝐭) = C(t)𝐱(𝐭) + v(t)

𝐲(𝐭) = C(t)𝐱(𝐭) + v(t)

x(t) = [F Ω φ]T

where, F = [Fx,fl Fx,fr Fx,rl Fx,rr Fy,f Fy,r]

 Ω = [ωh,fl ωh,fr ωh,rl ωh,rr]

(5.1)

z(t) = [𝑎𝑥 𝑎𝑦 ωh,fl ωh,fr ωh,rl ωh,rr 𝜑]T

where, ax =
1

m
(FXF + FXR − Fa)

 ay =
1

m
(FYF + FYR)

(5.1)

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 68

Based on the estimated longitudinal force, the tire-road friction coefficient

is estimated. The coefficient varies depending on the slip-ratio of the wheel

during driving. In this study, it is assumed that the maximum friction

coefficient is applied during full braking situation. Since the coefficient

increases linearly as the slip ratio increases when the slip-ratio of the wheel

is small, slip-slope estimation was used to estimate the maximum friction

coefficient using this slope, and the equation is as follows.

𝜖 =
𝐹𝑥

𝐹𝑧
= 𝐾𝜎𝑥

(5.3)

𝜖 means the friction coefficient of current driving state. Since this is

proportional to the current slip ratio, 𝜎𝑥, the slip slope, 𝐾, can be derived.

Using the MF formula used in the ego vehicle dynamics, a database of the

maximum friction coefficient according to the slip-slope is constructed as

shown in Figure 5.3. And the maximum friction coefficient is estimated using

recursive least-squares (RLS) identification. To use RLS identification, the

slip-slope model of equation () is transformed into a parameter identification

form as expressed as follows. And 𝑦(𝑡) is 𝜌 the system output, 𝜑𝑇(𝑡) is

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 69

𝜎𝑥 the regression vector, 𝜃(𝑡) is 𝐾 the estimated parameter, and 𝑒(𝑡) is

identification error.

y(t) = 𝜑𝑇(𝑡)𝜃(𝑡) + 𝑒(𝑡) (5.4)

In this study, it is assumed that the maximum coefficient of friction is

applied during full braking as mentioned above, so the calculation of the

minimum braking distance is performed based on the estimated maximum

coefficient. During full braking, the aerodynamic force and rolling resistance

of the wheel is neglected due to small scale. Accordingly, the following

equation is derived.

1

2
𝑚𝑣𝑙,𝑥

2 = (𝜇𝐹𝐿𝐹𝑧,𝐹𝐿 + 𝜇𝐹𝑅𝐹𝑧,𝐹𝑅 + 𝜇𝑅𝐿𝐹𝑧,𝑅𝐿 + 𝜇𝑅𝑅𝐹𝑧,𝑅𝑅)S (5.5)

Here, 𝑆 denotes the minimum braking distance, 𝜇 is maximum friction

coefficient, and 𝐹𝑧 is the normal force of the vehicle at each wheel. Based

on the finally calculated distance, the longitudinal collision detection

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 70

algorithm operates as follows, where 𝐶𝐿𝑂 is the braking availability index

function, and 𝑥𝑖 is the relative longitudinal distance.

𝐶𝐿𝑂 = {
1 𝑖𝑓 𝑥𝑙 < 𝑆
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.6)

Figure 5.3. Slip-slope method using Recursive Least-squares

identification

Figure 5.4. Lateral collision detection algorithm

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 71

5.1.2. Lateral Collision Detection

In order to detect the risk of collision with a vehicle driving in the side lane,

it is first necessary to determine the safety distance from the vehicle behind

it. Gipps’ safety distance formula is used to calculate the minimum distance

at which the vehicle behind the vehicle cannot slow down and does not collide

when changing lanes at the current speed. Following equation shows Gipps’

safety distance, where 𝑆 is safety distance, 𝑉𝑡𝑥 is target vehicle

longitudinal velocity, 𝑉𝑒𝑥 is ego vehicle longitudinal velocity, 𝑡𝑟 is reaction

time, and 𝑎𝑚 is maximum deceleration. It is assumed that the maximum

deceleration of target vehicle is the same as the ego vehicle.

𝑆 = 𝑉𝑡𝑥𝑡𝑟 +
𝑉𝑡𝑥

2 − 𝑉𝑒𝑥
2

𝑎𝑚
 (5.7)

Based on the safety distance, it is divided into two scenarios depending on

whether the ego vehicle collides with the target lane vehicle. As shown in

Figure 5.5, There are two cases when the longitudinal distance between the

ego vehicle and the target lane vehicle is longer than the safety distance and

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 72

the opposite. Scenario 1, it is possible to change lanes safely when changing

lane as it is. But scenario 2 causes a collision.

Accordingly, in scenario 1, a strategy to change lanes in front of the target

lane vehicle is selected, and in scenario 2, the ego vehicle changes the lane

behind the target lane vehicle by decelerating the speed as much as possible

through full braking. Based on these two strategies, the following equation is

derived, where 𝐶𝐿𝐴 denotes collision detection index, and 𝑥𝑙 denotes the

relative longitudinal distance.

𝐶𝐿𝐴 = {
1 𝑖𝑓 𝑑𝑥 < 𝑆
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.8)

Figure 5.5. Lateral collision detection according to Gipps’ safety

distance

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 73

Figure 5.6. Lane change direction decision algorithm

Figure 5.7. Case of lane change direction decision

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 74

5.1.3. Lane Change Direction Decision

Once a decision has been made whether to overtake or be overtaken for a

particular lane, the ego vehicle must decide in which direction to change lanes.

In this study, the direction is determined through four divided lane change

situations as shown in Figure 5.7. The first is the overtaking-overtaking case.

In this case, since it is possible to change lanes without slowing down both

sides, it makes sense to change lanes toward a longer safety distance lane.

Second is the overtaken-overtaking case. As mentioned in the previous chpter,

the priority of lane change is to get out of the danger situation quickly, so lane

change is performed toward the right lane where overtake is possible.

Likewise, in the case of overtake-overtaken, the lane is changed to the left

lane. Lastly, in the overtaken-overtaken situation, the target lane vehicle must

quickly pass the ego vehicle through deceleration. So the lane change is

performed in a direction where the lane with a shorter safety distance.

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 75

Figure 5.8. Path planning algorithm

5.2. Path Planning

Based on the lane change decision making algorithm developed in Chapter

5.1.1, the chapter develops an algorithm that creates the path that the ego

vehicle should be going to pass through. As in the simulation scenario, the

ego vehicle drives at a constant distance from the vehicle in front in normal

driving situation. Therefore, when it is not an emergency situation, it performs

lane keeping and active cruise control and generates a path for this algorithm.

In the meantime, when an emergency occurs, a trajectory for emergency lane

change is immediately created according to driving environment and

designated as a reference position so that the vehicle can prevent accident.

The emergency lane change trajectory generator represented in the Figure 5.8

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 76

is a block composed of DRL agents constructed in Chapter. 4 and will be

trained in Chapter 6 to generate an optimized trajectory.

5.3. Vehicle Controller

The trajectory created through the path planning algorithm is implemented

as vehicle motion through the vehicle controller. In this chapter, the vehicle

is controlled using an adaptive model predictive controller (Adaptive MPC)

Figure 5.9. Vehicle controller using Adaptive model predictive

controller (AMPC)

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 77

Figure 5.10. Integrated DRL-enhanced lane change algorithm

5.4. Algorithm Integration

In this chapter, the algorithm developed through Chapter 4 to Chapter 5 is

integrated to optimize emergency lane change trajectory using deep

reinforcement learning. First, IPG CARMAKER provides a vehicle dynamics

simulation environment. It provides accurate states and environment

information by performing reliable vehicle dynamics simulation with the

Hyundai I30-Pde full car model. In Matlab Simulink environment, lane

change decision making algorithm, path planning algorithm and vehicle

controller are integrated. The lane change direction, overtake/overtaken,

starting point of lane change are determined based on the carmaker’s driving

CHAPTER 5 AUTONOMOUS DRIVING ALGORITHM INTEGRATION 78

environment. These are applied as an input to the path planning algorithm,

creating a reference point for lane keeping, active cruise control, and lane

change. And the vehicle controller determines vehicle throttling and steering

based on reference point.

CHAPTER 6 TRAINING & RESULTS 79

Chapter 6

Training & Results

In this chapter, applying the previously developed integrated control

algorithm model for the emergency lane change, deep reinforcement learning

was trained. The training result is an actor network that generates appropriate

value needed to create the optimized trajectory from the state-space and a

critic neural network that determines a Q value from the actor’s actions and

state-space. In the optimized system, the Q value can get closer to the

accumulated reward. So, it is significant that it can give feasibility of the

action. As mentioned in chapter 4, the training of the DDPG agent applies

noise to the action-space output to retain exploration. Therefore, the

optimized agent also generates the results that include noise. In the evaluation

step, the optimization quality of the agent is determined with the noise. If the

accumulated reward converges to a pre-set value which means successive

attempts or designated times of episode are over, the training ends. And the

estimated Q value becomes closer to the accumulated reward.

CHAPTER 6 TRAINING & RESULTS 80

In this study, the number of training episode is 60,000 with a powerfully

configured computer (i9-9900K). it lasted 50 hours and 25 minutes with 8

parallel computing workers.

From the human driver point of view, a driver experiences emergency, such

as a collision situation, a few times ever. And when the driver meets an

emergency, the driver controls the vehicle abruptly, the vehicle comes close

to the limit of stability. It is very unexpected situation, and the control depends

on the driver’s ability. However, the algorithm developed in this study is

capable of change lanes safely and quickly for each traffic situation through

training in dangerous situations 60,000 times.

 Figure 6.1 is a graph that trains reinforcement learning by linking Matlab

Simulink and IPG CARMAKER. The blue data on the graph means

accumulated reward for each episode, and the orange graph means average

reward. As a result of training 60,000 times, the average reward continuously

increased and converged to 242.1352.

CHAPTER 6 TRAINING & RESULTS 81

Figure 6.1. Deep Reinforcement Learning training graph

Figure 6.2 represents the lane change distance of the ego vehicle in each

driving condition, and this is the optimized value through reinforcement

learning. The x axis represents the trailing vehicle velocity of the target lane

to change lanes. All three graphs (a), (b), and (c) have a constant 𝑥𝑓 value

when the velocity of the target vehicle is not significantly different from the

velocity of the ego vehicle. However, when it reaches a certain velocity, it

can be seen that the length of 𝑥𝑓 decreases rapidly. This section is the

moment when the ego vehicle changes from overtaking the target area to

CHAPTER 6 TRAINING & RESULTS 82

overtaken by the target area. In the overtaking section, the lane change

distance is long enough from the point where braking is impossible because

it is necessary to quickly change lanes in front of the target vehicle. However,

since it is possible to change lanes from the moment the 𝐶𝐺 of the target

vehicle passes the 𝐶𝐺 of the ego vehicle at the moment of the overtaken

section, the ego vehicle allows the target vehicle to pass as quickly as possible

through full braking. During that section, the ego vehicle travels in a straight

line, so the distance at which lane change is possible is reduced. After 𝑥𝑓

decreases rapidly, the value of 𝑥𝑓 increases almost linearly as the velocity of

the target vehicle gradually increases. If the value continuously increases and

then increases to a certain velocity or mor, it has the same value as the lane

change distance in the initial overtaking area. This is because the 𝐶𝐺 of the

target vehicle is already ahead of the 𝐶𝐺 of the ego vehicle when the

distance between the ego vehicle and the front vehicle is reduced below the

braking distance to prevent collision with the vehicle in front, although it is

an overtaken area.

CHAPTER 6 TRAINING & RESULTS 83

Figure 6.2. Lane change distance according to target vehicle velocity:

(a) Ego vehicle velocity: 80km/h, (b) Ego vehicle velocity: 100km/h, (c)

Ego vehicle velocity: 120km/h

Figure 6.3 represents the minimum distance between the ego vehicle and the

front vehicle for each driving condition. As can be seen from Figure 6.3 (a),

(b), and (c), it can be seen that regardless of the velocity condition, the

minimum distance converges to 0.5m. This is related to the reward of

reinforcement learning. Looking ate the reward in Chapter 4, it can be seen

CHAPTER 6 TRAINING & RESULTS 84

that the minimum distance does not decrease to less than 0.5m in order to

maximize the reward because a large penalty is imposed if it is reduced to a

certain distance from the vehicle in front.

Figure 6.3. Minimum distance between ego vehicle and front vehicle

according to target vehicle velocity: (a) Ego vehicle velocity: 80km/h,

(b) Ego vehicle velocity: 100km/h, (c) Ego vehicle velocity: 120km/h

CHAPTER 6 TRAINING & RESULTS 85

As shown in the Figure 6.2 and 6.3, it can be seen that the lane change

trajectory through reinforcement learning is optimized. In order to change

lanes quickly and safely, lane changes must be made in a direction that

minimizes the minimum distance to the vehicle in front. Since the yaw rate

penalty and lateral deviation in Chapter 4 increase as 𝑥𝑓 gets shorter,

optimization if made in the direction in which 𝑥𝑓 is maximized in each

condition. However, it can be seen that 𝑥𝑓 does not decrease to less than

0.5m because it is necessary to prevent a collision with the vehicle in front

due to the lengthening of 𝑥𝑓 beyond a certain level. Figure 6.4 shows that

the maximum yaw rate in each condition is inversely proportional to the

distance of 𝑥𝑓 . The maximum yaw rate in the overtaken area increases

because it has to adapt to a short 𝑥𝑓. In Figure 6.4, it can be seen that the

maximum yaw rate at the moment of switching to the overtaken area is the

largest in each driving condition. In addition, it can be seen that the maximum

yaw rate is larger in the scenario where the velocity of the ego vehicle is low.

This is because, in the same scenario, the smaller the longitudinal velocity of

the ego vehicle, the smaller the length of 𝑥𝑓, and thus the maximum slope of

the 3rd order polynomials.

CHAPTER 6 TRAINING & RESULTS 86

Figure 6.4. Maximum yaw rate of ego vehicle according to target

vehicle velocity: (a) Ego vehicle velocity: 80km/h, (b) Ego vehicle

velocity: 100km/h, (c) Ego vehicle velocity: 120km/h

CHAPTER 6 TRAINING & RESULTS 87

Figure 6.5 is a graph of the maximum lateral forces in each driving

conditions. The maximum lateral force also shows a similar pattern to the

maximum yaw rate. It can be seen that the maximum lateral force at the

moment of transition to the overtaken area is the largest, and this is due to the

shortest 𝑥𝑓. Like the yaw rate, it can be seen that the maximum lateral force

is the largest in the ego vehicle velocity condition of 80 km/h. The lateral

force increases as the velocity increases, but as mentioned in Figure 6.4 above,

the maximum value of the yaw rate at 80 km/h is the largest and the lateral

force is proportional to the square of the angular velocity, so it can be

confirmed that the largest lateral force appears in this section.

CHAPTER 6 TRAINING & RESULTS 88

Figure 6.5. Maximum lateral force of ego vehicle according to target

vehicle velocity: (a) Ego vehicle velocity: 80km/h, (b) Ego vehicle

velocity: 100km/h, (c) Ego vehicle velocity: 120km/h

CHAPTER 6 TRAINING & RESULTS 89

When changing lanes to the left or right, the direction of lane change is

determined through the decision-making algorithm in Chapter 5. Figure 6.6

is a graph of the lane change direction according to the velocity of the trailing

vehicles coming from the left and right lanes. The white part is an area where

the left and right lanes have the same velocity, so that lane change is selective.

The Light gray area indicates the area that changes to the left lane, and the

dark gray indicates the area that changes to the right lane. The method of

determining the lane change direction according to the speed of each lane

vehicle is described in detail in Chapter 5.1.3.

CHAPTER 6 TRAINING & RESULTS 90

Figure 6.2. Lane change direction of ego vehicle according to target

vehicle velocity: (a) Ego vehicle velocity: 80km/h, (b) Ego vehicle

velocity: 100km/h, (c) Ego vehicle velocity: 120km/h

CHAPTER 7 CONCLUSION 91

Chapter 7

Conclusion

In this study, an emergency lane change control algorithm for autonomous

vehicles based on reinforcement learning was proposed.

Firstly, a simulator is selected. Because the simulation performed in this

study requires very detailed model similar to the actual environment, IPG

CARMAKER was selected. Hyundai I30-PDe full car model was used as a

pre-defined vehicle model. Vehicle dynamics model is implemented based on

the parameters of the full car model. And for deep reinforcement learning

process, Matlab Simulink was chosen. The simulator shows high performance

in the field of optimization because it is highly interoperable with IPG

CARMAKER, and optimization and system measurement through

reinforcement learning are possible.

Secondly, the scenario for simulation was constructed. Four stages of

driving situations were set as a scenario for lane change in emergency

CHAPTER 7 CONCLUSION 92

situations. The first situation, the ego vehicle maintains the distance to the

vehicle in front, like adaptive cruise control, and drives in normal condition.

The second situation represents a situation in which the vehicle in front

suddenly stops or an obstacle appears. The third one is a situation in which,

after an emergency, it is decided in which way or in which direction to change

lanes. This is determined through the lateral collision detection algorithm and

the lane change direction decision algorithm. The fourth situation is evasive

steering. Evasive steering is performed based on the lane change trajectory

modeled as a 3rd order polynomial.

Third, to describe the lane change trajectory, a 3rd order polynomial lane

change trajectory model is selected like following equation. This model has

advantages in that it can be expressed with one explicit equation compared to

the conventional arc and straight-line method. And it can be calculated more

simply than 5th order polynomial model so that optimization cost can be

decreased. The 3rd order polynomial can be optimized through get 4

coefficients. However, based on the initial conditions and the end conditions,

the 3rd order polynomial is simplified by optimization for the lane change

distance, 𝑥𝑓.

CHAPTER 7 CONCLUSION 93

Fourth, a reinforcement learning structure was designed to optimize lane

change trajectories through deep reinforcement learning. The reinforcement

learning structure consists of observation space, actor, reward, and agent,

respectively. And the selected parameters are followed

⚫ Observation: Obj#1 relative longitudinal distance, Obj#1

relative longitudinal velocity, Obj#2&3 relative longitudinal

distance, Obj#2&3 relative longitudinal velocity, ego vehicle

yaw angle, ego vehicle yaw rate, ego vehicle longitudinal

velocity, minimum braking distance, lane change distance, lane

change availability.

⚫ Action: 3rd order polynomial coefficients

⚫ Reward: Ego vehicle longitudinal position, lane-change

complete index, ego vehicle lateral deviation, ego vehicle yaw

rate, distance between ego vehicle and surroundings, ego vehicle

velocity

⚫ Agent: Deep Deterministic Policy Gradient

CHAPTER 7 CONCLUSION 94

Fifth, integrated autonomous driving algorithm to control ego vehicle was

developed. Hierarchical algorithm that is needed for driving in simulation

environment. Longitudinal collision detection algorithm estimates the tire-

road friction coefficient in real time. Using this, the minimum braking

distance of the ego vehicle is estimated. If the distance to the vehicle in front

is less than the minimum braking distance, a collision will occur, and thus a

collision is determined based on this algorithm. Lateral collision detection

algorithm detects the state of the vehicle following the left and right lanes.

When the lane needs to be changed through the longitudinal collision

detection algorithm, Gipps’ safety distance is used to detect whether a

collision with a vehicle on the rear side is encountered when the lane is

changed in the current vehicle velocity. If there is no collision, make a lane

change toward the larger safety distance side. In the warning of a collision,

the vehicle speed is lowered with maximum braking, and the vehicle is

overtaken by the vehicle in the rear side and then the lane change is performed.

Lane change direction decision algorithm determines which direction to

change lanes. When overtaking and overtaken are determined through the

later collision detection algorithm, the lane is changed through comparison of

left and right value scale.

CHAPTER 7 CONCLUSION 95

And the last, deep reinforcement learning was trained on developed

algorithm and simulation environment. The algorithm is capable of change

lanes safely and quickly for each traffic situation through training in

dangerous situations 60,000 times. During training, the average reward

continuously increased and converged to 242.1352.

The training was performed successfully, the 3rd order polynomial

coefficients are fully optimized. And the evaluations according to optimized

value are followed

⚫ 𝑥𝑓 value when the velocity of the target vehicle is not significantly

different from the velocity of the ego vehicle. However, when it

reaches a certain velocity, it can be seen that the length of 𝑥𝑓

decreases rapidly.

⚫ The minimum distance between ego vehicle and the front vehicle

converges to 0.5m regardless of driving conditions.

⚫ Maximum yaw rate at the moment of transition to the overtaken

area is the largest

CHAPTER 7 CONCLUSION 96

⚫ Maximum lateral force at the moment of transition to the overtaken

area is the largest

This study contributes to two aspects. Since trajectory optimization through

reinforcement learning generally does not include vehicle dynamics, it is

difficult to apply when the vehicle model changes. However, since vehicle

control in this study is performed through a separate controller, a general

purpose algorithm that can be applied even if the vehicle model is changed

was developed. Secondly, by simulating a scenario similar to an actual

emergency situation, even if it is applied to an actual vehicle, it can be quickly

adapted. Consequently, it led the autonomous vehicle to drive safely. Theses

results are expected to be easily and directly applicable to automobile industry.

 97

References

1. Rolison, J.J., et al., What are the factors that contribute to road

accidents? An assessment of law enforcement views, ordinary

drivers’ opinions, and road accident records. Accident Analysis &

Prevention, 2018. 115: p. 11-24.

2. Fagnant, D.J. and K. Kockelman, Preparing a nation for

autonomous vehicles: opportunities, barriers and policy

recommendations. Transportation Research Part A: Policy and

Practice, 2015. 77: p. 167-181.

3. Bevly, D., et al., Lane change and merge maneuvers for connected

and automated vehicles: A survey. IEEE Transactions on Intelligent

Vehicles, 2016. 1(1): p. 105-120.

4. Wang, M., et al., Game theoretic approach for predictive lane-

changing and car-following control. Transportation Research Part C:

Emerging Technologies, 2015. 58: p. 73-92.

5. Rigas, E.S., S.D. Ramchurn, and N. Bassiliades, Managing electric

vehicles in the smart grid using artificial intelligence: A survey.

 98

IEEE Transactions on Intelligent Transportation Systems, 2014.

16(4): p. 1619-1635.

6. Garcia-Pulido, J., et al., Recognition of a landing platform for

unmanned aerial vehicles by using computer vision-based

techniques. Expert Systems with Applications, 2017. 76: p. 152-165.

7. Peng, T., et al., A new safe lane-change trajectory model and

collision avoidance control method for automatic driving vehicles.

Expert Systems with Applications, 2020. 141: p. 112953.

8. Schwarting, W., J. Alonso-Mora, and D. Rus, Planning and

decision-making for autonomous vehicles. Annual Review of

Control, Robotics, and Autonomous Systems, 2018.

9. Sutton, R.S. and A.G. Barto, Reinforcement learning: An

introduction. 2018: MIT press.

10. Arulkumaran, K., et al., A brief survey of deep reinforcement

learning. arXiv preprint arXiv:1708.05866, 2017.

 99

11. Wolf, P., et al. Learning how to drive in a real world simulation with

deep q-networks. in 2017 IEEE Intelligent Vehicles Symposium (IV).

2017. IEEE.

12. Szalay, Z., et al., Development of a test track for driverless cars:

vehicle design, track configuration, and liability considerations.

Periodica Polytechnica Transportation Engineering, 2018. 46(1): p.

29-35.

13. -2:, I., Passenger cars–test track for a severe lane-change

manoeuvre–Part 2: obstacle avoidance. 2011.

14. Vorobieva, H., et al. Geometric continuous-curvature path planning

for automatic parallel parking. in 2013 10th IEEE International

Conference on Networking, Sensing and Control (ICNSC). 2013.

IEEE.

15. Li, X., et al. A practical trajectory planning framework for

autonomous ground vehicles driving in urban environments. in 2015

IEEE Intelligent Vehicles Symposium (IV). 2015. IEEE.

 100

16. Ferguson, D., T.M. Howard, and M. Likhachev. Motion planning in

urban environments: Part ii. in 2008 IEEE/RSJ International

Conference on Intelligent Robots and Systems. 2008. IEEE.

17. Likhachev, M., et al. Anytime Dynamic A*: An Anytime, Replanning

Algorithm. in ICAPS. 2005.

18. Bian, C., et al., Active collision algorithm for autonomous electric

vehicles at intersections. IET Intelligent Transport Systems, 2018.

13(1): p. 90-97.

19. Hegedüs, F., et al., Model based trajectory planning for highly

automated road vehicles. IFAC-PapersOnLine, 2017. 50(1): p. 6958-

6964.

20. Lin, Y., J. McPhee, and N.L. Azad. Longitudinal dynamic versus

kinematic models for car-following control using deep reinforcement

learning. in 2019 IEEE Intelligent Transportation Systems

Conference (ITSC). 2019. IEEE.

21. Hegedüs, F., et al., Motion planning for highly automated road

vehicles with a hybrid approach using nonlinear optimization and

 101

artificial neural networks. Strojniski Vestnik-Journal of Mechanical

Engineering, 2019. 65(3): p. 148-160.

22. Ly, A.O. and M.A. Akhloufi, Learning to drive by imitation: An

overview of deep behavior cloning methods. IEEE Transactions on

Intelligent Vehicles, 2020.

23. Folkers, A., M. Rick, and C. Büskens. Controlling an autonomous

vehicle with deep reinforcement learning. in 2019 IEEE Intelligent

Vehicles Symposium (IV). 2019. IEEE.

24. Lee, J., T. Kim, and H.J. Kim. Autonomous lane keeping based on

approximate Q-learning. in 2017 14th International Conference on

Ubiquitous Robots and Ambient Intelligence (URAI). 2017. IEEE.

25. Xia, W., H. Li, and B. Li. A control strategy of autonomous vehicles

based on deep reinforcement learning. in 2016 9th International

Symposium on Computational Intelligence and Design (ISCID).

2016. IEEE.

26. Ye, Y., X. Zhang, and J. Sun, Automated vehicle’s behavior decision

making using deep reinforcement learning and high-fidelity

 102

simulation environment. Transportation Research Part C: Emerging

Technologies, 2019. 107: p. 155-170.

27. Ronecker, M.P. and Y. Zhu. Deep Q-Network based decision

making for autonomous driving. in 2019 3rd International

Conference on Robotics and Automation Sciences (ICRAS). 2019.

IEEE.

28. Fehér, Á ., et al. Proving ground test of a DDPG-based vehicle

trajectory planner. in 2020 European Control Conference (ECC).

2020. IEEE.

29. Fehér, Á ., S. Aradi, and T. Bécsi, Hierarchical Evasive Path

Planning Using Reinforcement Learning and Model Predictive

Control. IEEE Access, 2020. 8: p. 187470-187482.

30. An, H. and J.-i. Jung, Decision-making system for lane change using

deep reinforcement learning in connected and automated driving.

Electronics, 2019. 8(5): p. 543.

31. Duan, J., et al., Hierarchical reinforcement learning for self-driving

decision-making without reliance on labelled driving data. IET

Intelligent Transport Systems, 2020. 14(5): p. 297-305.

 103

32. Kim, M., et al., Unexpected collision avoidance driving strategy

using deep reinforcement learning. IEEE Access, 2020. 8: p. 17243-

17252.

33. Wittenburg, J., U. Wolz, and A. Schmidt, MESA VERDE—A

general-purpose program package for symbolical dynamics

simulations of multibody systems, in Multibody Systems Handbook.

1990, Springer. p. 341-360.

34. Mnih, V., et al., Human-level control through deep reinforcement

learning. nature, 2015. 518(7540): p. 529-533.

35. Lillicrap, T.P., et al. Continuous control with deep reinforcement

learning. 2015. arXiv:1509.02971.

 104

국문 초록

서울대학교

공과대학원

기계항공공학부

송 준

긴급 차선 변경은 주행 차선에서 선행차량 급정거와 같은

응급상황 발생시에 순간적으로 이루어지는 것이므로 그 자체에

위험성을 안고 있다. 지나치게 느리게 조향을 하는 경우, 주행

차량은 앞에 있는 장애물과의 충돌을 피할 수 없다. 이와 반대로

지나치게 빠르게 조향을 하는 경우, 차량과 지면 사이의 작용력은

타이어 마찰 한계를 넘게 된다. 이는 차량의 조종 안정성을

떨어트려 스핀이나 전복 등 다른 양상의 사고를 야기한다. 따라서

 105

차선 변경 경로의 최적화는 자율 주행 차량의 응급 상황 대처에

필수적인 요소이다.

본 논문에서는 심층강화학습을 기반으로 자율 주행 차량의

긴급 차선 변경 경로를 최적화한다. 이 알고리즘은 선행차량의

급정거나 장애물 출현과 같은 응급상황 발생 시, 빠르고 안전한

회피 거동 및 차선 변경에 초점을 맞추어 개발되었다.

알고리즘 개발의 첫 번째 단계로서 시뮬레이션 환경이

구축되었다. 신뢰성 있는 차량 동역학 시뮬레이션과 강화학습을

위한 주행 시나리오 구축을 위하여 IPG CARMAKER 가

선정되었다. 이 프로그램은 실제 산업 현장에서 사용되는 높은

신뢰성을 가진 프로그램으로 실제 차량과 유사한 차량의 거동을

분석할 수 있다. 본 연구에서는 현대자동차의 I30-PDe 모델을

사용하여 시뮬레이션을 수행하였다. 또한 강화학습과 차량제어를

위한 프로그램으로 제어, 계측, 인공지능을 모두 아우를 수 있는

Matlab Simulink 를 선정하였다. 본 연구에서는 IPG

CARMAKER 와 Matlab Simulink 를 연동하여 심층 강화 학습을

바탕으로 긴급 차선 변경 궤적을 최적화하였다.

 106

차량의 차선 변경 궤적은 3 차 다항식의 형상으로 모델링

되었다. 차선 변경 시작 지점과 종료 지점을 설정하여 다항식의

계수를 차선 변경 거리에 대한 함수로 해석하였다. 심층 강화

학습을 기반으로 계수들을 최적화하기 위하여, 강화 학습

아키텍처를 구성하였다. 관측 공간은 12 가지의 주행 환경

데이터를 이용하였고, 강화 학습의 출력으로는 3 차 함수의 변수인

차선 변경 거리를 선정하였다. 그리고 강화 학습의 학습 능력을

극대화할 수 있는 보상 공간을 설계하였다. 동적 보상, 정적 보상,

동적 벌칙, 정적 벌칙을 시뮬레이션의 매 단계마다 부여함으로써

보상 총 합이 최대화될 수 있는 방향으로 학습이 진행되었다.

최적화를 위한 알고리즘으로는 Deep Deterministic Policy

Gradient agent 가 사용되었다.

강화학습 아키텍처와 함께 동역학 시뮬레이션 프로그램에서의

차량 구동을 위한 알고리즘을 개발하였다. 먼저 응급상황시에

차량의 차선을 언제, 어떤 속도로, 어떤 방향으로 변경할 지

결정하는 의사결정 알고리즘을 개발하였다. 타이어와 도로 사이의

최대 마찰계수를 실시간으로 추정하여 주행 차량이 정지하기 위한

 107

최소 거리를 산출함으로써 선행 차량과의 충돌 위험을 판단하였다.

또한 Gipps 의 안전거리 공식을 사용하여 변경하고자 하는

차선에서 오는 차량과의 충돌 가능성을 감지하여 그 차량을

추월해서 앞으로 지나갈지, 추월을 당해서 뒤로 갈 것인지를

결정하는 알고리즘을 개발하였다. 이를 바탕으로 좌측 차선과

우측 차선의 충돌 위험성 및 안정성을 판단하여 최종적인 차선

변경을 위한 의사결정 알고리즘을 개발하였다.

구성된 강화 학습 구조를 통한 긴급 차선 변경 궤적과 차선

유지 장치, 적응형 순항 제어와 같은 일반 주행시의 궤적을

상황에 맞추어 출력하는 알고리즘을 개발하고 적응형 모델 예측

제어기를 통해 주행 차량을 구동하는 통합 알고리즘을 개발하였다.

본 연구의 마지막 단계로서, 개발된 긴급 차선 변경 경로 생성

알고리즘의 최적화를 위하여 심층 강화 학습이 수행되었다. 총

60,000 회의 시행 착오 방식의 학습을 통해 각 주행 상황 별

최적의 차선 변경 제어 알고리즘을 개발하였고, 각 주행상황 별

최적의 차선 변경 궤적을 제시하였다.

 108

주요어: 심층 강화 학습, 신경망, 자율주행자동차, 인공지능, 긴급

차선 변경, 회피 조향, 충돌 회피, 경로 계획, 차량 제어

학번: 2012-23157

 109

Ph. D Dissertation Information

Submitted to the School of Mechanical and Aerospace Engineering and the

Committee on Graduate Studies of Seoul National University in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy

Title: Deep Reinforcement Learning-based Path Optimization for Emergency Lane

Change of Autonomous Vehicles

Keywords: Deep Reinforcement Learning (DRL), Neural Network, Autonomous

Vehicle, Artificial Intelligence, Emergency Lane Change, Evasive Steering,

Collision Avoidance, Path Planning, Vehicle Control

Author: Jun Song

Advisor: Professor Yeon June Kang

Laboratory: Precision Engineering & Manufacturing Lab., Seoul National

University

Contact: fkqnfkqn3@snu.ac.kr, http://prema.snu.ac.kr

Version: 1.0 – the final

Date: August 8, 2021

ⓒ Copyright 2021

By

Jun Song

All Rights Reserved

	Chapter 1. Introduction
	1.1. Research Background
	1.2. Previous Research
	1.3. Research Objective
	1.4. Dissertation Overview

	Chapter 2. Simulation Environment
	2.1. Simulator
	2.2. Scenario

	Chapter 3. Methodology
	3.1. Reinforcement learning
	3.2. Deep reinforcement learning
	3.3. Neural network

	Chapter 4. DRL-enhanced Lane Change
	4.1. Necessity of Evasive Steering Trajectory Optimization
	4.2. Trajectory Planning
	4.3. DRL Structure
	4.3.1. Observation
	4.3.2. Action
	4.3.3. Reward
	4.3.4. Neural Network Architecture
	4.3.5. Deep Deterministic Policy Gradient (DDPG) Agent

	Chapter 5. Autonomous Driving Algorithm Integration
	5.1. Lane Change Decision Making
	5.1.1. Longitudinal Collision Detection
	5.1.2. Lateral Collision Detection
	5.1.3. Lane Change Direction Decision

	5.2. Path Planning
	5.3. Vehicle Controller
	5.4. Algorithm Integration

	Chapter 6. Training & Results
	Chapter 7. Conclusion
	References
	국문초록

<startpage>25
Chapter 1. Introduction 1
 1.1. Research Background 1
 1.2. Previous Research 5
 1.3. Research Objective 9
 1.4. Dissertation Overview 13
Chapter 2. Simulation Environment 19
 2.1. Simulator 19
 2.2. Scenario 26
Chapter 3. Methodology 28
 3.1. Reinforcement learning 28
 3.2. Deep reinforcement learning 30
 3.3. Neural network 33
Chapter 4. DRL-enhanced Lane Change 36
 4.1. Necessity of Evasive Steering Trajectory Optimization 36
 4.2. Trajectory Planning 39
 4.3. DRL Structure 42
 4.3.1. Observation 43
 4.3.2. Action 47
 4.3.3. Reward 49
 4.3.4. Neural Network Architecture 58
 4.3.5. Deep Deterministic Policy Gradient (DDPG) Agent 60
Chapter 5. Autonomous Driving Algorithm Integration 64
 5.1. Lane Change Decision Making 65
 5.1.1. Longitudinal Collision Detection 66
 5.1.2. Lateral Collision Detection 71
 5.1.3. Lane Change Direction Decision 74
 5.2. Path Planning 75
 5.3. Vehicle Controller 76
 5.4. Algorithm Integration 77
Chapter 6. Training & Results 79
Chapter 7. Conclusion 91
References 97
국문초록 104
</body>

