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Abstract 

Jun Song 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

The emergency lane change is a risk itself because it is made 

instantaneously in emergency such as a sudden stop of the vehicle in front in 

the driving lane. Therefore, the optimization of the lane change trajectory is 

an essential research area of autonomous vehicle. This research proposes a 

path optimization for emergency lane change of autonomous vehicles based 

on deep reinforcement learning. This algorithm is developed with a focus on 

fast and safe avoidance behavior and lane change in an emergency. 

As the first step of algorithm development, a simulation environment was 

established. IPG CARMAKER was selected for reliable vehicle dynamics 
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simulation and construction of driving scenarios for reinforcement learning. 

This program is a highly reliable and can analyze the behavior of a vehicle 

similar to that of a real vehicle. In this research, a simulation was performed 

using the Hyundai I30-PDe full car model. And as a simulator for DRL and 

vehicle control, Matlab Simulink which can encompass all of control, 

measurement, and artificial intelligence was selected. By connecting two 

simulators, the emergency lane change trajectory is optimized based on DRL. 

The vehicle lane change trajectory is modeled as a 3rd order polynomial. 

The start and end point of the lane change is set and analyzed as a function of 

the lane change distance for the coefficient of the polynomial. In order to 

optimize the coefficients. A DRL architecture is constructed. 12 types of 

driving environment data are used for the observation space. And lane change 

distance which is a variable of polynomial is selected as the output of action 

space. Reward space is designed to maximize the learning ability. Dynamic 

& static reward and penalty are given at each time step of simulation, so that 

optimization proceeds in a direction in which the accumulated rewards could 

be maximized. Deep Deterministic Policy Gradient agent is used as an 

algorithm for optimization. 
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An algorithm is developed for driving a vehicle in a dynamic simulation 

program. First, an algorithm is developed that can determine when, at what 

velocity, and in which direction to change the lane of a vehicle in an 

emergency situation. By estimating the maximum tire-road friction 

coefficient in real-time, the minimum distance for the driving vehicle to stop 

is calculated to determine the risk of longitudinal collision with the vehicle in 

front. Also, using Gipps’ safety distance formula, an algorithm is developed 

that detects the possibility of a collision with a vehicle coming from the lane 

to be changed, and determines whether to overtake the vehicle to pass forward 

or to go backward after as being overtaken. Based on this, the decision-

making algorithm for the final lane change is developed by determine the 

collision risk and safety of the left and right lanes. 

With the developed algorithm that outputs the emergency lane change 

trajectory through the configured reinforcement learning structure and the 

general driving trajectory such as the lane keeping algorithm and the adaptive 

cruise control algorithm according to the situation, an integrated algorithm 

that drives the ego vehicle through the adaptive model predictive controller is 

developed. 
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As the last step of the research, DRL was performed to optimize the 

developed emergency lane change path optimization algorithm. 60,000 trial-

and-error learning is performed to develop the algorithm for each driving 

situation, and performance is evaluated through test driving. 

 

Keyword: Deep Reinforcement Learning (DRL), Neural Network, 

Autonomous Vehicle, Artificial Intelligence, Emergency Lane Change, 

Evasive Steering, Collision Avoidance, Trajectory Planning, Vehicle Control 

Student Number: 2012-23168 
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Chapter 1 

Introduction 

 

1.1. Research Background 

 

The quality of vehicle technology is greatly improved according to 

continuous research and development in the automotive industry. However, 

due to the many complex factors in surroundings, traffic accidents are still 

considered a major problem causing death. In 2015, the World Health 

Organization revealed that road traffic crashes resulted in more than 1.2 

million deaths each year, making road traffic accidents the leading global 

cause of death. According to the United States (US) Department of 

Transportation’s National Highway Traffic Safety Administration, 37,462 

people were killed in crashes on US road in 2016, 5.6% more from the 35,485 

in 2015. In addition, the latest statistics from China’s Ministry of 

Transportation found that about 63,194 people died in crashes in 2019 (China 

Bureau of Statistics, 2019). This shows a slight reduction, but still very 

serious. Therefore, governments, institutes and manufacturers are paying 

great attention to vehicle safety. A reliable study found that 70% of accidents 
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were the fault of the driver and most traffic accidents were avoidable [1]. One 

solution to decrease mortality is intelligent transportation systems and self-

driving vehicles. In 2013, the US government proposed a pilotless automobile 

plan in an effort to reduce fatalities [2]. Automated vehicle technology can 

significantly improve traffic safety, reduce traffic congestion, and has 

attracted a lot of attention in recent years [3] [4]. Some automated vehicles 

such as Google Car, nuYonomy and Apple Car are already being tested on 

the highway. However, existing tests for automated vehicles met some safety 

problems in driving in a real traffic environment due to the complexity of the 

transportation system. In recent autonomous-driving car tests, a series of 

traffic accidents have occurred. and one of the important causes of these 

accidents is that the control algorithms built into the autonomous-driving car 

have failed in the face of dynamic changes in the real traffic environment. 

To solve this problem, autonomous vehicles based on artificial intelligence 

(AI) are being widely studied in recent years [5] [6]. Collision avoidance is a 

key safety factor for autonomous vehicles. Lane change maneuvers are 

generally more desirable as they interfere with traffic flow to a minimum, 

compared to slowing down to a complete stop without hitting an obstacle [7]. 

There have been a few researches in lane change of vehicles such as  
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A lot of research has recently been performed on automated lane change of 

vehicles. Particularly, end-to-end, a new paradigm involving cognition and 

decision-making, has been proposed [8]. The existing method for 

autonomous vehicle is composed of the recognition of the environment 

according to sensors implemented on vehicles, decision making according to 

recognized environment and path planning to create future trajectory, and 

then follow a given path through control. However, end-to-end learning is 

based on machine learning, integrating recognition, decision making, and 

planning, and generating control inputs [8]. 

 Deep reinforcement learning (DRL) is a combination of deep learning and 

reinforcement learning. Reinforcement learning learns how to maximize 

numerical rewards by relating situations and actions [9]. DRL provides a high 

level of optimization by combining the advantages of reinforcement learning 

and deep learning such as function approximation and expression learning 

properties[10]. In addition, DRL allows vehicles to learn from their actions 

instead of labeled data [11]. Labeled data is not required where vehicle agents 

take action and are rewarded. 

In emergency that could cause an accident, vehicle control algorithms must 

immediately provide feasible maneuvers such as trajectories or paths. So real-
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time-based algorithms are needed. The standardization organization validates 

the performance of vehicles and algorithms through several test cases 

described previously and tests them on a vehicle test site [12]. One is the 

Double Lane Change Test (DLC) as defined in ISO-3888-2 [13]. DLC test 

also known as the “Moose test” aims at how well the target vehicle can avoid 

the obstacle that appears suddenly. The DLC test is described as follows. The 

target vehicle starts to drive at an start lane which has 12m length. And the 

test is finished when the vehicle exits ends of an exit lane which has the same 

size of start lane. The side lane which is between the start lane and the exit 

lane has an offset of 1 m. The longitudinal distance between the start position 

of the start lane and side lanes is 13.5m, and the length between the side and 

the end of the exit lane is 12.5m. This test requires throttle to be releases 2 

meters after entering. And the rest of the tests are performed using only the 

steering without throttle or brake actuation. Testing is generally conducted 

with or without Electronic Stability Control (ESC) system. However, the 

DLC test also has limitations. This is because evasive steering in an actual 

driving environment cannot be the same as a standardized test environment. 

In the case of the sudden appearance of an obstacle, i.e. sudden stop of the 

vehicle in front in the actual driving environment, it is necessary to consider 

not only the distance to the obstacle, but also the vehicle in the lanes on both 
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sides. Therefore, in order to implement a stable avoidance behavior, tests 

must be conducted by simulating the actual driving situation. For stable 

evasive steering, it is necessary to optimize the lane change trajectory based 

on driving environment. 

In this study, trajectory optimization for emergency lane change based on 

DRL in actual driving conditions with a highly detailed vehicle dynamics is 

performed. In a general driving situation, when the vehicle in front of ego 

vehicle suddenly stops, the tire-road friction coefficient is estimated in real 

time to determine whether it can stop through braking. When it is not possible 

to stop, the ego vehicle decides whether to change lanes to the left or to the 

right, and decides whether to overtake or to be overtaken. After the decision 

making, the ego vehicle changes lanes along the optimized trajectory based 

on driving environment, i, e. both sides vehicles, vehicle in front, ensuring 

collision avoidance and vehicle controllability. 

 

1.2. Previous Research 

 

In order to solve issues related to lane change control of autonomous 

vehicles, many researchers have studied about trajectory planning. The 
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methodology of the researches can be classified like follows: Geometric 

methods, empirical methods, and optimal nonlinear control algorithms. 

Finally, machine learning-based solutions are emerging in recent years. The 

geometric method uses curve fitting according to the input of a vehicle state 

and obstacles information and creates a path with a combination of straight 

line, arcs or splines [14]. Although these methods can compute optimum 

values fast, the dynamic viability of the generated trajectories is not 

guaranteed. Therefore, it must be evaluated later [15]. 

Some AI-based optimization can be found among the empirical approaches 

that use searching or random sampling. On the contrary to geometric 

approaches, these approaches need heavy calculation process. To reduce 

complexity, Ferguson et al. used sample time-based purification and 

Likhachev et al. used adaptive purification for the same purpose [16] [17]. 

However, because of a discrete solution of these method, the Hybrid A* 

algorithm is used to connect a continuous state to the discrete solution. The 

nonlinear optimization-based approaches define the problem as a nonlinear 

optimization problem (NLP) to ensure dynamic feasibility, where the 

technique is usually based on a geometric method to create a trajectory and 

establish a value function [18] [19]. Dynamic feasibility has trade off relation 
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with the computation speed. So, These methods create a limited minimization 

problem [20].  

Machine learning approaches can reduce these trade-offs problem. 

Supervised learning is one of the solution approaches. The nonlinear 

optimization problem solver can generate valid trajectories for various 

simulation conditions and use them as data set for a neural network training 

to generalize the problem and generate path in real time [21]. However, it is 

not always possible to generate enough data sets for training. RL-based 

technique uses trial and error method as a solution to the problem mentioned 

above. And the reinforcement learning agents are trained according to  

experimental data set obtained by a large number of trials [9] [22]. End to end 

method is usually used in reinforcement learning approaches that makes 

action space composed of steering and throttling commands according to the 

states which means environments. These studies need sensors to acquire 

environmental information, such as grid topology [23], lidar sensor [24], 

camera [11] or ground truth [25]. Some research group pay attention to 

decision-making, like the determination of action of the agent, such as lane-

change, lane-keeping, cruise control, etc. Microscopic simulation is used in 

theses group [26]. Though hybrid solutions combination of decision making 
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and end-to-end control exist, there are only a few researches dealing with how 

to define a trajectories through a geometrical approach through RL [27] [28].  

In recent years, a few researches focus directly on the lane-change and 

evasive maneuvers using RL. Theses can be classified into four group: 

evasive steering path optimization, decision making for lane change, 

collision avoidance and real-time path planning. Feher et al. performed RL-

based evasive path optimization [29]. They use standardized tests which is 

ISO-3888-2 to gain optimized trajectory. However, it is difficult to apply to 

the actual driving environment because they have optimized the trajectory 

only in the standardized test. An et al. used RL to decide lane change 

situation. It is hard to respond to emergency situations because they perform 

stable lane change of a pre-determined trajectory in a normal driving 

condition [30]. Duan et al. developed the hierarchical RL-based lane change 

decision making algorithm. However, it is also a normal driving situation 

algorithm. And they focused on time spent from starting point to target point 

[31]. Kim et al. developed RL-based vehicle control algorithm to prevent 

collision with traffic violations at intersections. But they didn’t focus on 

trajectory optimization but collision avoidance. And they performed 

simulation on low-speed conditions [32]. Zhang et al. performed path 

optimization using RL of flying robot. They treated the robot as a geometric 
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mass point. So, it can’t be applied to real environment because optimization 

without dynamics. 

It is shown that trend of recent research about RL-based autonomous 

vehicle driving are simulation to reach the target point in normal driving 

situations, for algorithm development under a vehicle simulator, and to 

develop controller of steering wheel. However, there are a few limitations: 

Few researches on algorithm development using event driven strategy, 

performing only standardized tests or aiming at avoidance itself, and using a 

simplified vehicle dynamics model. 

1.3. Research Objective 

 

In this study, four kinds of main objective are achieved. The objective of 

the first part is the construction of the simulation environment. In order to 

apply the results of this study to the actual road environment, it is important 

to implement a precise simulation environment. The simulation environment 

was implemented using IPG CARMAKER and Matlab Simulink. By using 

the Hyundai I30-PDE full car model and the MF 5.2 tire model, accurate and 

reliable vehicle dynamics environment was built. In addition, an emergency 

scenario which is the same environment as the actual emergency situation is 
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implemented to simulator. The scenario consists of four steps: normal driving 

situation, emergency situation occurrence, decision making, and lane change. 

In the scenario, the tire-road friction coefficient is reflected in order to make 

relation between vehicle and road. 

The second objective, the principal section of this study, is the development 

of the deep reinforcement learning (DRL) structure. In case of emergency, for 

rapid and stable lane change, this study optimizes the lane change trajectory 

through DRL. For the optimization, the structure of observations, action, and 

rewards must be constructed robustly. The agent of DRL performs actions in 

the direction of maximizing rewards based on observations. Based on 

appropriate observations and rewards, DRL structure is constructed to 

perform an optimized trajectory action. In this study, the agent is constructed 

using a neural network and trained using the deep deterministic policy 

gradient (DDPG) algorithm. 

The third object is the development of an integrated control algorithm for 

vehicle control. The vehicle integrates three algorithms to drive suitable for 

driving conditions: decision making, path planning, and vehicle controller. In 

the decision-making algorithm, it is determined whether to change lanes by 

detecting a collision with the vehicle in front while normal driving. It also 
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determines whether to overtake or be overtaken by detecting collisions with 

the left and right vehicles. Then, the direction of lane change to ensure 

stability is determined. The path planning algorithm is composed of DRL 

agents and provides the optimal lane change trajectory at the moment of 

decision making. Finally, the vehicle is controlled with and optimized path 

through adaptive model predictive controller (AMPC). By integrating the 

three algorithms, the vehicle drives in a developed scenario. 

The final object is the training of DRL agent and the evaluation of DRL 

agent results. Based on the established simulation environment, vehicle 

model, and DRL agent, the agent is trained 60,000 times. The agent performs 

optimization in the direction of maximizing the reward through the trial & 

error method. In addition, the optimized agent is used to evaluate the 

optimized trajectories according to the driving situation, driving environment, 

and also evaluate the vehicle states. 

This study proposes a new algorithm for lane change control of 

autonomous vehicles to avoid collision and ensure safety. The proposed 

method in this study can be improvement compared to previous researches. 

⚫ The simulation environment constructed in this study can provide 

accurate vehicle dynamics model and road environment the same 
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as actual driving condition. The environment includes Hyundai 

I30-PDE full car model and MF tire model which is the most 

detailed vehicle model and road condition which is applying tire-

road friction coefficient. Most papers used simplified vehicle 

dynamics and didn’t consider tire-road friction coefficient. In this 

study, tire-road friction coefficient was considered in detail using 

slip-slope method. 

⚫ Deep reinforcement learning structure in this study can provide 

suitable architecture for autonomous vehicles. Because 

observation and reward don’t include specific vehicle parameter 

such as unique characteristics of certain vehicle, DRL structure can 

be applied to various vehicles. 

⚫ The proposed algorithm enables autonomous vehicles to drive and 

evade collision safely. Most existing researches provided 

algorithm for normal driving condition lane change or algorithm 

focused on collision avoidance itself. But this algorithm cannot 

only be used in normal driving condition but also in emergency 

condition. And it can provide stable controllability after collision 

avoidance. 
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1.4. Dissertation Overview 

 

The reminder of this dissertation is organized as follows. Specially, study 

outline from Chapter 2 to Chapter 7 is summarized in Figure 1.1. 

 

⚫ Chapter 2: Simulation Environments presents various states to 

be analyzed through this study. First, detailed vehicle dynamics 

was established. Hyundai I30-PDE full car model is a vehicle 

parameter model for vehicle dynamics simulator IPG 

CARMAKER. IPG CARMAKER provides the most detailed 

vehicle dynamics so that it can be the best simulation 

environment in this study. IPG CARMAKER provides 7 types of 

vehicle dynamics: vehicle body modelling, suspension 

kinematics, aerodynamics, steering system, powertrain, brake, 

tire. The vehicle body is a multi-body system which is 

characterized through different bodies. The motion of the multi 

body system is described with differential and with algebraic 

equations. The principle of d’Alembert is applied to get 

differential equations of motion for the generalized coordinates of 
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the system. Kinematics of suspension which comprises spring, 

damper, buffer, and stabilizer describes the special movements of 

a wheel due to compression and steer action. Aerodynamics in 

this study is ignored. Steering system is modelled according to 

2nd order differential equations. Brake system consider brake type 

and brake pressure. Powertrain system is not considered in this 

research. And tire is modelled using Magic Formula (MF) 5.2 

ver. 

Road environment is also established on IPG CARMAKER. The 

road condition contains friction coefficient likewise actual 

driving road so that tire-road friction coefficient can be estimated 

then minimum braking distance of ego vehicle can be estimated 

according to tire-road friction coefficient.  

⚫ Chapter 3: Fundamentals presents about deep neural network, 

reinforcement learning, and deep reinforcement learning. 

Because main topic of this study is DRL-base optimization, 

chapter 3 shows that the RL algorithm used in this study and 

theoretical base of DRL. And because DRL contains Deep neural 

network, Layers of neural network used in this study is shown 

and also the theoretical base of neural network. 
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⚫ Chapter 4: DRL-enhanced lane change presents necessity of 

trajectory optimization and type of lane change trajectory. Lane 

change trajectory can be simplified into 3rd order polynomial 

shape. And then the coefficients of the polynomials will be the 

action of the DRL agent. For optimization training of DRL agent, 

DRL structure is built. Observation presents real-time states of 

environment such as ego vehicle velocity, relative distance 

between ego vehicle and target vehicle, etc. It is used as 

characteristic properties that is ground for agent actions. Reward 

is target properties that need to be maximized. DRL training is 

progressed to maximize reward according to observations. Neural 

network architecture is the structure of the DRL agent. For the 

detailed feature extraction of observation, neural network is 

implemented. And action is the output of the agent. The goal of 

this study is optimization of 3rd order polynomial shaped lane 

change trajectory, agent outputs the coefficients as action. And 

action values will be optimized through training in Chapter. 6. 

⚫ Chapter 5: Autonomous Driving Algorithm Integration presents 

hierarchical algorithm that is needed for driving in simulation 

environment. Longitudinal collision detection algorithm 
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estimates the tire-road friction coefficient in real time. Using this, 

the minimum braking distance of the ego vehicle is estimated. If 

the distance to the vehicle in front is less than the minimum 

braking distance, a collision will occur, and thus a collision is 

determined based on this algorithm. Lateral collision detection 

algorithm detects the state of the vehicle following the left and 

right lanes. When the lane needs to be changed through the 

longitudinal collision detection algorithm, Gipps’ safety distance 

is used to detect whether a collision with a vehicle on the rear 

side is encountered when the lane is changed in the current 

vehicle velocity. If there is no collision, make a lane change 

toward the larger safety distance side. In the warning of a 

collision, the vehicle speed is lowered with maximum braking, 

and the vehicle is overtaken by the vehicle in the rear side and 

then the lane change is performed. Lane change direction 

decision algorithm determines which direction to change lanes. 

When overtaking and overtaken are determined through the later 

collision detection algorithm, the lane is changed through 

comparison of left and right value scale. 
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⚫ Chapter 6: Training & Results presents training results of deep 

reinforcement learning agent. Training was performed 60,000 

times and it shows feasible results. And various properties 

according to operating conditions are evaluated. 

⚫ Chapter 7: Conclusion shows a summary of the study. 

 

 



CHAPTER 1 INTRODUCTION  18 

 

 

Figure 1.1 Outline for overall study 
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Chapter 2 

Simulation Environment 

 

2.1. Simulator 

 

As the first process of this study, a simulator is selected. This study is 

conducted through simulation based on a virtual model, but the goal is to 

apply the algorithm to actual vehicles, so a simulation environment requires 

very detailed model similar to the actual environment. In addition, programs 

that can use appropriate algorithms for reinforcement learning training are 

needed. Based on these properties, IP CARMAKER and Matlab Simulink 

were selected. 

First, IPG CARMAKER is a multi-body vehicle dynamics simulator, and 

CARMAKER models realistically and precisely simulate a wide variety of 

vehicle types along with their handling characteristics, the road and the 

surrounding environment, driver behavior and the traffic situation in the 

virtual world. It provides the widest variety of pre-defined models for vehicles, 

as well as a data set generator for quickly defining new models with a high 
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degree of precision and realistic behavior to the vehicle dynamics. It 

implements multibody system efficiently – non-linear, expandable and real-

time capable. And it provides realistic generation of roads or specific test 

tracks. 

 

 

Table 2.1 The description of vehicle components 

Body Parts of the body 

Vehicle’s body All sprung masses beside engine, 

trimloads 

Trimloads Constant loads 

Wheel suspension 

-front left 

-front right 

-rear left 

-rear right 

All unsprung masses without the 

wheel, like link, wheel carrier, 

suspension leg, wishbone mount… 

Wheel All rotating masses, like tire, rim, 

bearing, brake disc… 

External and internal forces/torques and constraints 

Suspension Force elements 

Aerodynamics 

Kinematics and Compliance 

Tire forces/torques 
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In this study, Hyundai I30-Pde full car model was used as a pre-defined 

vehicle model. Vehicle dynamics model is implemented based on the 

parameters of the full car model. 

The simulated vehicle is a multi-body system which is characterized 

through different bodies. They are generated and optimized with MESA 

VERDE [33]. Following Table 2.1 is the description of vehicle components 

Figure 2.1 shows the vehicle dynamics model which are involved in the 

vehicle model calculation. The dynamics model involves highly detailed 

systems which contain empirical kinematics and compliance model. And 

Figure 2.2 demonstrates the chain of calculation of the vehicle model. 

Detailed vehicle dynamics equations are described in the reference manual of 

IPG CARMAKER. 
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Figure 2.1. Highly detailed vehicle dynamics model
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Figure 2.2. Chain of vehicle body motion calculation 
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Figure 2.3. CARMAKER driving environment 

Through detailed dynamics model as shown in Figure 2.2 above, this 

study can develop a reliable vehicle control algorithm applicable to real 

vehicles. In addition, like Figure 2.3, It is possible to make driving 

environment more similar to actual environment by applying the actual tire-

road friction coefficient. 

Second, Matlab Simulink is selected to train DRL agent and control 

vehicle which is defined in IPG CARMAKER. As shown in Figure 2.4, 

Simulink is a graphical programming environment for simulating and 

analyzing multidomain dynamical systems. It is widely used in automatic 

control and digital signal processing. In addition, it has excellent 
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compatibility with other software such as CARMAKER. Most of all, it has 

powerful tools and functions for reinforcement learning. It provides 

functions and block for learning policies using RL algorithms including 

DQN, A2C, and DDPG. This policy can be used to implement algorithms 

for complex systems such as autonomous systems. Policies can be 

implemented using deep neural networks, polynomial, or lookup tables. In 

addition, agent training can be accelerated using parallel computing. 

 

 

Figure 2.4. Matlab Simulink model 
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2.2. Scenario 

 

In order to develop an algorithm applicable to the actual environment, it is 

important not only to select appropriate simulator which uses a detailed 

vehicle model, but also to make a scenario that imitate the actual driving 

conditions. This is because optimizing the trajectory through a scenario 

different from the real environment eventually leads to unexpected results 

when applying the algorithm to the actual driving condition. In this study, 

four stages of driving situations were set as s scenario for lane change in 

emergency situations. As shown in Figure 2.5, in the first situation, the ego 

vehicle maintains the distance to the vehicle in front, like adaptive cruise 

control, and drives in normal condition. The second situation represents a 

situation in which the vehicle in front suddenly stops or an obstacle appears. 

In this study, the vehicle in front does not stop through braking but stops 

momentarily in order to express a case in which a sudden obstacle appearance. 

In addition, since lane change in an unstoppable situation is the goal which 

should be optimized, lane change is not performed if the distance to the 

vehicle in front is stoppable. Collision detection is determined through the 

longitudinal collision detection algorithm, which will be discussed in Chapter 

5. The third one is a situation in which, after an emergency, it is decided in 
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which way or in which direction to change lanes. This is determined through 

the lateral collision detection algorithm and the lane change direction decision 

algorithm, which will be discussed in Chapter 5. The fourth situation is 

evasive steering. Evasive steering is performed based on the lane change 

trajectory modeled as a 3rd order polynomial. The coefficients of the lane 

change trajectory are optimized through reinforcement learning.  

 

Figure 2.5. Driving scenario 
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Chapter 3 

Methodology 

 
This chapter details the methods used to optimize lane change trajectory.  

Reinforcement learning process is composed of training and evaluation like 

most machine learning approaches. This chapter presents the training phase 

of reinforcement learning of the neural networks. 

 

3.1. Reinforcement learning 

 

The reinforcement learning is composed of environments which means 

state-space, action-space and reward-space. And the agent of RL system takes 

solution from the action-space according to environments. And the agent 

takes action to make the accumulated reward which means summation of 

reward-space maximize based on state-space which is an input of the agent. 

During the training phase, agent learn a policy, 𝜋, to make the accumulated 

rewards maximized. The policy defines action, 𝑎, to be taken depending on 

the state, 𝑠. Then the state-space is changed to the new state, 𝑠′, and the 
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reward, 𝑟 , is returned. RL problems are modeled as a Markov Decision 

Process (MDP), which is defined as a tuple modeled as a Markov Decision 

Process (MDP), which is defined as a tuple 〈𝑆, 𝐴, 𝑇, 𝑅, 𝛾〉, where 𝑆 is the set 

of states, 𝐴  is the set of actions, 𝑇: 𝑆 × 𝐴 → 𝑆  is the state transition 

probability function, 𝑅: 𝑆 ×  𝐴 ×  𝑆 → R is the reward function and 𝛾 ∈

[0,1] is the discount factor. MDP meets Markov properties expressed as 

Pr(𝑆𝑡+1 = 𝑠′ | 𝑆0, 𝑆1, ⋯ , 𝑆𝑡−1, 𝑆𝑡) = Pr(𝑆𝑡+1 = 𝑠′ |   𝑆𝑡) . This means that 

the probability distribution of future states depends only on the current state 

and behavior, not the history of the previous state. At every time step, 𝑡, the 

agent’s goal is to maximize the future discounted returned, defined as: 

𝑅𝑡 = ∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘, (3.1) 

 

Where 𝑟𝑡+𝑘 is the reward given in step 𝑡 + 𝑘 [9]. The RL-system needs 

to be built to optimize the trajectory mentioned in Chapter 1. The system is 

made in Simulink, and the components are presented in Chapter 5. 
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3.2. Deep reinforcement learning 

 

In this study, the Deep Reinforcement Learning (DRL) method is selected 

to optimize lane change trajectory. Recently DRL has been greatly improved 

and utilized. In [34], a deep neural network is used for function estimation of 

value-based reinforcement learning. This method is applicable only to tasks 

with discrete action space. Because the action space of this study is 

continuous, deep deterministic policy gradient method (DDPG) is selected to 

solve a continuous control task [35]. Actor-critic network is used in DDPG 

algorithm. And deep neural networks represent policy 𝜇(𝑠|𝜃𝜇) and value 

𝑄(𝑠, 𝑎|𝜃𝑄) in it. To solve the learning instability problem due to deep neural 

networks, replay buffer and the target networks are adopted. The algorithm 

can be more data-efficient by using replay buffer. Because training samples 

are distributed independently and equally. The target network makes the 

parameters change more slowly. The critic network is trained using the 

following Bellman equation, 

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1
~𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1)) (3.2) 
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a random minibatch of  𝑁 transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) is as Equation 3.3. 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

) (3.3) 

 

The following policy gradient is used for updating the actor. 

∇𝜃𝜇𝐽= 𝔼𝑠𝑡~𝜌𝛽[∇𝜃𝜇𝑄(𝑠, 𝑎|𝜃𝑄)|
𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡|𝜃𝜇

)] (3.4) 

 

the sampled policy gradient is calculated as 

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑆𝑖

𝑖

 (3.5) 

 

The actor is updated with policy gradients, the gradients is calculated from 

the Temporal error. And the critic-network is updated with gradients. The TD 

error can be calculated by the following Equation 3.6. And it can be used to 

update the weights of critic-networks. 
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𝐿 =
1

𝑀
∑(𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜃

𝑄)2)

𝑖

 (3.6) 

According to policy gradient, the policy network is also updated. DDPG uses 

a soft update to make the stability of algorithm greater than other algorithm. 

In other words, DDPG algorithm adopt a strategy that blend between the 

regular and target network weights slowly.  

Since a DDPG algorithm is a proper DRL algorithm for optimization 

problem requiring continuous action spaces, this method is adopted to 

optimize path planning with continuous control action for the vehicle.  

 

 

 

Figure 3.1. Deep Deterministic Policy Gradient (DDPG) structure 
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3.3. Neural network 

 

The actor and the critic of the DDPG agent mentioned previous subset are 

consist of two neural network each other. The function of the actor-network 

is making an optimal parameters of lane change trajectories. And critic-

network learns to evaluate the actor to improve the learning process. 

The actor-network is composed of 10-element input layers and 

implemented in Matlab Simulink.  

The first layer is feature input layer function,𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑛𝑝𝑢𝑡𝐿𝑎𝑦𝑒𝑟(𝑁𝑓), 

and 𝑁𝑓 is the number of observations, Feature input layer is an input layer 

that inputs feature data to a network and applies data normalization. When a 

data set of numeric scalars represents features, this layer can be used. Four 

fully connected hidden layers, 𝑓𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐿𝑎𝑦𝑒𝑟(𝐿), where, 𝐿 is the 

number of neurons, follow feature input layer. For hidden layers, batch 

normalization and rectified linear unit (ReLu) activation function is used. The 

ReLu layer performs a threshold operation that sets all values less than zero 

to zero for each element of the input. 9th element of actor network is a 

hyperbolic tangent activation function, 𝑡𝑎𝑛ℎ𝐿𝑎𝑦𝑒𝑟. This layer applies the 

𝑡𝑎𝑛ℎ function on the layer inputs. And the last element layer is the scaling 
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layer, 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐿𝑎𝑦𝑒𝑟. This function linearly scales and biases an input array, 

giving an output 𝑌 = 𝑆𝑐𝑎𝑙𝑒.∗ 𝑈 +  𝐵𝑖𝑎𝑠.  Because 𝑡𝑎𝑛ℎ𝐿𝑎𝑦𝑒𝑟  gives 

bounded output that falls between -1 and 1. This layer is useful for scaling 

and shifting the outputs of nonlinear layers. 

The second layer is critic-network. Critic network is composed of two 

parallel sub layers: state path, action path. State path consists of feature input 

layer, fully connected layer, ReLu layer, and addition layer. Action path is 

composed of one feature input layer and one fully connected layer. This path 

is added in the middle of the state path, to addition layer. Table 3.1 

Summarizes the architecture of both networks. 
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Table 3.1. Parameters of neural networks 

Actor network 

Learning rate (𝛼) 

Mini batch size 

Structure of fully connected layer 

0.0001 

64 

[100 100 100 1] 

Critic network 

Learning rate (𝛼) 

Gradient threshold 

L2 regularization 

Discount factor 

Head 1 Structure of fully connected layer 

Head 2 Structure of fully connected layer 

0.001 

1 

0.0001 

0.99 

[100 100 100 1] 

[100] 
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Chapter 4 

DRL-enhanced Lane change 

 
In this Chapter, the deep reinforcement learning structure is designed for 

optimizing the lane change trajectory in an emergency situation based on a 

given driving environment and scenario. First, we describe the lane-

changing trajectory as a 3rd order polynomial. And second, the observation, 

action, and reward space of deep reinforcement learning to obtain the 

coefficients of polynomial is designed, and the DDPG agent for optimal 

learning is constructed. 

4.1. Necessity of Evasive Steering Trajectory 

Optimization 

 

Lane change refers to the act of moving a vehicle to the left or right lanes. 

When vehicle is driving on a straight road, the lane change situation can be 

divided into two types scenario. The first is changing lanes in order to get to 

the target point quickly in normal driving situations. This is a sufficiently 

relaxed situation and enables the driver or an autonomous vehicle to stably 
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change lanes. Research on this type of lane change has been sufficiently 

conducted since the past and is currently commercialized. The second is 

changing lanes in case of emergency situations. In particular, when an 

obstacle appears or the vehicle in front of the ego vehicle suddenly stops and 

a collision with the vehicle in front cannot be avoid, the ego vehicle performs 

evasive steering to avoid a collision. Changing to a different lane by evasive 

steering is the only way to ensure traffic flow and driver safety. However, in 

this case, unlike a normal driving situation, the driver cannot sufficiently 

recognize the surrounding information, which may cause another accident. 

On the other hand, since autonomous vehicles continuously observe the 

surrounding traffic environment in real time, it is possible to effectively avoid 

crash by evasive steering by judging risks in real time. 

However, if the steering wheel is simply steered in the direction in which 

the vehicle intends to move, it is not possible to guarantee the stability of the 

vehicle and passenger’s safety. In this study, lane change in an emergency 

situation is analyzed into two extreme cases. The first is when the autonomous 

vehicle steers too slow or the steering angle is insufficient. As shown in 

Figure 4.1, in this case, the vehicle collides with an obstacle or the vehicle in 

front of the ego vehicle before completing the lane change. Therefore, in order 
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to prevent such an accident, faster evasive steering that means short lane 

change trajectory is required. Second case shown in Figure 4.2 is occurred 

when the steering angle is too much or the vehicle steers to fast. In this case, 

the vehicle can successfully avoid the crash with the obstacle ahead, but if the 

vehicle’s behavior exceeds the limitation of vehicle dynamics, the vehicle 

loses controllability, resulting in other type of accidents such as spin, roll-

over. 

Therefore, for effective and stable emergency lane change, an optimized 

lane change trajectory between the above two aspects of lane change cases is 

required. By optimizing the lane change trajectory, it is possible to avoid 

collision with obstacles ahead by changing lanes quickly and other types of 

accidents can be prevented by securing vehicle controllability through safe 

lane change. 
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Figure 4.1. Slow lane-change inducing crash with the vehicle in front 

 

Figure 4.2. Rapid lane-change inducing loss of controllability 

 

4.2. Trajectory Planning 

 

In this study, to describe the lane change trajectory, a 3rd order polynomial 

lane change trajectory model is selected like following equation. 

𝑦 = 𝑓(𝑥) = 𝑐𝑎𝑥3 + 𝑐𝑏𝑥2 + 𝑐𝑐𝑥 + 𝑑𝑐 (4.1) 

 

This model has advantages in that it can be expressed with one explicit 

equation compared to the conventional arc and straight-line method. And it 
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can be calculated more simply than 5th order polynomial model so that 

optimization cost can be decreased. 

 

 

 

 

Figure 4.3. 3rd order polynomial trajectory approximation 
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As shown in Figure 4.3, assuming that the position of the ego vehicle mass 

center at the starting point of lane change is (0,0), the boundary conditions at 

the start and end point of lane change are given as follows. 

𝑓(0) = 0 

𝑓′(0) = 0 

𝑓(𝑥𝑓) = 𝑙 

𝑓′(𝑥𝑓) = 0 

 

(4.2) 

 

Modelling an equation based on the boundary conditions, the following 

equations can be obtained. 

𝑎𝑐 = −
8

𝑥𝑓
3 

𝑏𝑐 =
12

𝑥𝑓
2  

𝑐𝑐 = 𝑑𝑐 = 0 

(4.3) 
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Finally, the lane change expressed as a 3rd order polynomial is determined 

according to 𝑥𝑓, which is the distance from the lane change start point to the 

end point as shown in Figure 4.3. Therefore, in this study, the agent is trained 

and evaluated to provides optimal 𝑥𝑓 according to driving environment in 

real time through deep reinforcement learning. 

4.3. DRL Structure 

 

In this study, as mentioned before, the emergency lane change trajectory 

described as a 3rd order polynomial is optimized through deep reinforcement 

learning. It is important to design a robust reinforcement learning structure 

for stable and fast emergency lane change trajectory optimization. 

 

 

Figure 4.4. Deep reinforcement learning agent architecture 
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Figure 4.4 shows the deep reinforcement learning agent, environment, and 

architecture. In this chapter, such an artificial intelligence structure is 

designed. 

4.3.1. Observation(states) 

The agent receives no information from the environments because of the 

model-free training system. It only receives quantified observation variables 

closely related to the actions. To optimize lane change trajectory, the status 

variables are to specify the vehicles’ relation between front, left side, right 

side and ego vehicle. Also be to specify the ego vehicles motion parameters. 

As mentioned in the scenario in Chapter 2.2, the simulation is performed 

with a straight line of three lanes. The ego vehicle,  𝐶𝑒𝑔𝑜 ,  and object 1, 

𝐶1,drive on middle lane. And object 2, 𝐶2, and object 3, 𝐶3, are drive on left 

and right lane respectively. During normal driving situation, 𝐶1 suddenly 

stops and the ego vehicle decides to change lanes through the relation with 

object 𝐶1, 𝐶2, 𝐶3. According to these relations, the observation space consists 

of 12 continuous states. 
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[𝑝𝑟,1,𝑥, 𝑣𝑟,1,𝑥, 𝑝𝑟,2,𝑥, 𝑣𝑟,2,𝑥, 𝑝𝑟,3,𝑥, 𝑣𝑟,3,𝑥, 𝜓, 𝜓̇, 𝑣𝑒𝑔𝑜,𝑥, 𝑑𝑏𝑟𝑎𝑘𝑒, 𝑥𝑓 , 𝑐𝑙] (4.4) 

 

𝑝𝑟,1,𝑥  and 𝑣𝑟,1,𝑥  shows the relative longitudinal distance and velocity 

with 𝐶1 in the scenario. 𝑝𝑟,2,𝑥, 𝑣𝑟,2,𝑥, 𝑝𝑟,3,𝑥 and 𝑣𝑟,3,𝑥 represent the relative 

longitudinal distance and velocity with 𝐶2  and 𝐶3  respectively. This 

observation space is selected as a factor to avoid collisions with vehicles 

during lane change and to decide lane change motion. 𝜌, 𝜌̇ , and 𝑣𝑒𝑔𝑜,𝑥 

represent the yaw angle yaw rate, and longitudinal velocity of the ego vehicle 

respectively. These are selected as a factor affecting the stability of the vehicle 

during lane change. 𝑑𝑏𝑟𝑎𝑘𝑒 is the minimum braking distance to stop, which 

is selected as a factor related to collision avoidance with the 𝐶1. 𝑥𝑓 is the 

action feed back from the previous time stop, and 𝑐𝑙  is the index that 

determines whether changes lane or not, which will be described later in 

Chapter 5, and is selected as a factor involved in the collision with 𝐶2 and 

𝐶3. As mentioned in Chapter 3 above, the observations are normalized to the 

range [0, 1] based on the experience gained in previous reinforcement 

learning systems. This is because training takes more time when one variable 
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has a large difference in size from the other variable in a high-dimensional 

observation.  

 

 

Figure 4.5. Observation-space of Simulink model 
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Table 4.1. Observation-space of Simulink model 

Observation name Object 

Obj#1 relative longitudinal distance 
Relative motion parameters 

- Collision prevention 

- Decision making 

Obj#1 relative longitudinal velocity 

Obj#2&3 relative longitudinal distance 

Obj#2&3 relative longitudinal velocity 

Ego vehicle yaw angle 
Ego motion parameters 

- Vehicle stability 
Ego vehicle yaw rate 

Ego vehicle longitudinal velocity 

Minimum braking distance Collision prevention 

Lane change distance (𝑥𝑓) Action space feed back 

Lane change availability Decision making 
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4.3.2. Action 

The agent has only one continuous action output, which significantly 

reduces the complexity of the training task. As mentioned in chapter 4.2, it is 

possible not by finding all points of lane change trajectories through 

reinforcement learning, but by simplifying trajectory points to an explicit 

function 3rd order polynomial. And for more effectiveness, Outputs of the 

action space, 𝑥𝑓 , is limited to between 3 (m) to 100 (m). The action 

parameters determine the trajectory through which the ego vehicle is going to 

path. The manners of overtaking or being overtaken is decided through 

another decision-making algorithm which will be mentioned in chapter 5. The 

normalized action space [0, 1] can make the better training results than raw 

action space during the DRL training. So, the actor network uses 

normalization function and being connected scaling layer at the end of the 

layer to scale the normalized outputs into a 𝑥𝑓. Figure 4.6 shows the action 

system of Matlab Simulink block.  
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Figure 4.6. Action of Simulink model 

 

Table 4.2. Action of Simulink model 

Action Limit 

Lane change distance (𝑥𝑓) 
Min :       3 (m) 

Max :     100 (m) 
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4.3.3. Reward 

The DRL learning is composed of a series of iterations. It is composed of 

steps in which the successive trial can be identified by accumulated reward. 

In an emergency lane change, the reward functions are to quantify how much 

good generated trajectory is, where the agent responds to a given state which 

means observation. The reward function has to be built to make the action be 

optimized. 

The goal of the agent in DRL is not the reward value at each time step, but 

to maximize the accumulated reward during each episode. It is important to 

design a reward space to make the ego vehicle change the lane appropriately. 

The training of DRL is simulated for a lane change as an episodic task. And 

it means that the ego vehicle will be in a specific state at the end of the episode. 

Thus, a lane change is defined as moving into the next lane without collision. 

To meet this goal, a reward function is constructed as follows. 
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1. Ego vehicle longitudinal position (𝑟1) 

𝑟𝑐(𝑥) =  {
𝑥          𝑖𝑓 𝑖𝑐 = 1
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑟1 = 𝜔1 ∗ 𝑟𝑐( 𝑥̇, 𝑖𝑐) 

(4.5) 

 

This function is a reward function to encouraging the ego vehicle to move 

forward. 𝑟𝑐 is a trigger function. 𝜔1 is a weight factor for reward. 𝑥̇ is ego 

vehicle longitudinal velocity. and 𝑖𝑐 is a lane change decision index value. 

2. Lane-change complete index (𝑠𝑟1) 

𝑠𝑟𝑐(𝑙, 𝑦, 𝜌) =  {
1          𝑖𝑓 𝑦 ≅ 𝑙 𝑎𝑛𝑑 𝑦̇ ≅ 0
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑠𝑟1 = 𝜔2 ∗ 𝑠𝑟𝑐(𝑙, 𝑦, 𝜌) 

(4.6) 

 

This function is a static reward function that encourages rapid 

successful lane change. 𝑠𝑟𝑐  is a trigger function. 𝑙 is target lateral 

position. 𝑦 is ego vehicle lateral position of current state. and 𝜌 is 

ego vehicle yaw angle. 
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3. Ego vehicle lateral deviation (𝑝1) 

𝑝1 = 𝜔3 ∗ |𝑦𝑡 − 𝑦| (4.7) 

 

This function is a penalty function that indicates the deviation between the 

current ego vehicle’s lateral position and the reference lateral position. 𝑦𝑡 is 

reference lateral position of current state, y is current lateral position, and 𝜔3 

is weight factor. 

4. Ego vehicle yaw rate (𝑝2) 

 

𝑝2 = 𝜔4 ∗ |𝜌̇| (4.8) 

 

This function is also a penalty function that indicates the yaw stability. 

𝜌̇ is ego vehicle yaw rate, and 𝜔4 is weight-factor. 
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5. Distance between ego vehicle and surroundings (𝑠𝑝1) 

 

𝑠𝑝𝑐(𝑥) =  {
1          𝑖𝑓 |𝑑𝑙,𝑖| < 4

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑠𝑝1 = 𝜔5 ∗  ∑ 𝑠𝑝𝑐(𝑑𝑙,𝑖) 

(4.9) 

 

 

This function is a static penalty function that indicates vehicle 

controllability.𝑠𝑝𝑐  is trigger function, 𝑑𝑙,𝑖  is distance between ego 

vehicle and surrounding vehicles especially 𝑐1 and 𝑐2. And 𝜔5 is 

weight factor 

6. Ego vehicle velocity (𝑠𝑝2) 

 

𝑠𝑝𝑐2(𝑥) =  {
1          𝑖𝑓 |𝑑𝑙,𝑖| < 4

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑠𝑝1 = 𝜔5 ∗  ∑ 𝑠𝑝𝑐(𝑑𝑙,𝑖) 

(4.10) 

 

This function is also a static penalty function that prevent excessive low 
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speed of ego vehicle. 𝑠𝑝𝑐2  is a trigger function. 𝑥̇  is ego vehicle 

longitudinal velocity. and 𝜔6 is weight factor 

The sum of the rewards is expressed as follows.  

𝑅𝑡 = 𝑟1 + 𝑠𝑟1 − 𝑝1 − 𝑝2 − 𝑠𝑝1 − 𝑠𝑝2 (4.11) 

 

Through the training of deep reinforcement learning, the total value of the 

reward in one episode is output by accumulating the reward value of equation. 

At every time step. And training proceeds in the direction of maximizing this 

accumulated reward value. 

The first reward value is a function that rewards the vehicle so that it can 

change lanes quickly. When the index value for the moment when lane change 

starts is triggered, compensation is rewarded as much as the ego vehicle 

longitudinal velocity. Second is the reward given when the lane change is 

completed. In order to prevent a reference trajectory from agent that the ego 

vehicle cannot pass along, a criterion for the success of lane change is 

established, and when it is completed, additional compensation is rewarded. 

Third to sixth are about penalties. Third one shows the difference between the 
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lateral reference position and the current lateral position. Stable driving is 

impossible if the actual behavior of the vehicle differs greatly from the 

reference trajectory provided by agent. In other words, since this is an index 

indicating the controllability of the ego vehicle, optimization proceeds in the 

direction of minimizing it. Fourth represents the ego vehicle’s current yaw 

rate. As the yaw rate increases, the ego vehicle gets more unstable and the 

ride comfort decreases. Therefore, optimization proceeds in the direction of 

minimizing the yaw rate. Fifth is the penalty of the distance between the ego 

vehicle and surrounding vehicles. If the distance becomes too close, the risk 

of collision increases, so it prevents the ego vehicle from getting close to 

surrounding vehicles. Sixth is the penalty for the vehicle’s excessive low 

velocity. In order to prevent a vehicle from colliding, it is possible to slow 

down and change lanes in an overtaken method, but it is reasonable to change 

lanes as quickly as possible to get out of the danger situation, so a penalty is 

imposed if the vehicle is too slow.  
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Figure 4.7. Reward-space of Simulink model 
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Table 4.3. Reward-space of Simulink model 

Reward Object 

Ego vehicle longitudinal position Encouraging progress 

Static reward 
 

Lane-change complete 
Encouraging rapid successful lane 

change 

Penalty 
 

Position difference between 

reference trajectory and ego 

vehicle position 

Vehicle controllability 

Ego vehicle yaw rate Vehicle stability 

Static penalty 
 

Distance between ego vehicle and 

obj#1 

Collision prevention 

Distance between ego vehicle and 

obj#2 

Ego vehicle velocity Prevention of excessive low speed 
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Figure 4.8. Neural network architecture: (a) Critic network, (b) 

Actor network 

 

 



CHAPTER 4 DRL-ENHANCED LANE CHANGE 58 

 

4.3.4. Neural Network Architecture 

 

As mentioned briefly in previous Chapter 3.3, the agent constructed in this 

study contains the neural network architecture. The DDPG algorithm was 

used in this study. The DDPG algorithm consists of an actor network and a 

critic network as shown in Figure 4.8.(a). All of the network structure 

constructed in this study is shown in Figure 4.8 and Table 4.4 & 4.5. 

Table 4.4. Critic-network structure 

State path 

 Neurons Name 

Feature Input Layer 12 Observation 

Fully Connected Layer 100 Fc1 

Rectified Linear Unit  Relu1 

Fully Connected Layer 100 Fc2 

Addition Layer 2 Add 

Rectified Linear Unit  Relu2 

Fully Connected Layer 100 Fc3 

Rectified Linear Unit  Relu3 

Fully Connected Layer 1 Fc4 

Action path 

Feature Input Layer 1 Action 

Fully Connected Layer 100 Fc5 
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Table 4.5. Actor-network structure 

 Neurons Name 

Feature Input Layer 12 Observation 

Fully Connected Layer 100 Fc1 

Rectified Linear Unit  Relu1 

Fully Connected Layer 100 Fc2 

Rectified Linear Unit  Relu2 

Fully Connected Layer 100 Fc3 

Rectified Linear Unit  Relu3 

Fully Connected Layer 1 Fc4 

Hyperbolic Tangent Layer  Tanh1 

Scaling Layer  Actorscaling1 

 

State of environment also known as observation, and action of the previous 

time step moment are combined as 𝑠𝑎 = (𝑜𝑏𝑠, 𝑥𝑓,𝑡−1). They are adopted as 

the input to the actor-network. Therefore, the number of neurons of actor-

network input-layer which is feature input layer is 12. Meanwhile, the actor 

network’s hidden layer utilizes four fully connected networks; each layer 

contains 100 neurons. The fully connected layer is followed by batch 

normalization (BN), before the ReLu layer is adopted as the activation 

function. At the same time, the layer of the network chooses tanh as the 

activation function to map the network output between the interval [-1, 1]. 

And the scaling layer the last layer of the networks makes the outputs of tanh 
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layer to the 𝑥𝑓. After the observation and action are merged as 𝑠𝑐 = (𝑠𝑎, 𝑥𝑓), 

then the critic network receives the merged value as input. The number of 

critic network input-layer neurons is 13. The critic network’s hidden layer 

utilizes five fully connected layers and each layer contains 100 neurons. The 

fully connected layer is followed by batch normalization like actor network. 

 

 

4.3.5. Deep Deterministic Policy Gradient (DDPG) agent 

 

DDPG adopts the Actor-Critic framework, including the Actor and Critic 

network which mentioned previous steps. And Table 4.6, shows the 

hyperparameters used to train the DDPG agent. The online policy and the 

target policy network which adopt the deterministic policy is included in actor 

network to get a definite action from the environments. And the online Q 

network and the target Q network is included in the critic network. And the 

Bellman equation of the function Q is used to evaluate the action. The pseudo 

code of the DDPG algorithm is shown in Table 4.7. And the DDPG algorithm 

flow is shown in Figure 4.9. The input state (𝑑1, … , 𝑑11, 𝑥𝑓,𝑡−1) and output 
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action 𝑥𝑓 are represented accordingly. The action is the output of the policy 

because of a deterministic policy of DDPG algorithm. So, it requires 

relatively less data to maximize efficiency. However, this can cause the 

environment not to be fully explored. So, to make the algorithm fully analyze 

the environment, the OU stochastic process was adopted.  

 

Table 4.6. Hyperparameters used to train the DDPG agents 

Discount factor, 𝛾 

Target smooth factor 

Mini-batch size 

Target network update frequency 

Replay memory size 

0.99 

0.001 

64 

100 

1,000,000 

Ornstein-Uhlenbeck parameters 

Mean attraction constant 

Decay rate of the standard deviation 

Noise model standard deviation 

Minimum standard deviation 

0.15 

0 

0.3 

0 
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Table 4.7. Pseudo code of the DDPG algorithm. 

 Randomly initialize Critic online Q network parameters 𝜽𝑸 and 

Actor’s online policy network parameters 𝜽𝝁. 

Initialize Critic target Q network parameters 𝜽𝑸′
← 𝜽𝑸 and Actor’s 

target policy network parameters 𝜽𝝁′  ← 𝜽𝝁 

Initialize experience replay memory (R). 

For 𝒆𝒑𝒊𝒔𝒐𝒅𝒆 = 𝟏, M do 

Initialize the OU random process D for the exploration of action 

Input initial observation state 𝒔𝟏 

For 𝒕 = 𝟏, 𝑻 do 

Choose action 𝒂𝒕 according to current strategy 𝝁(𝒔𝒕) and noise 

𝑫𝒕 ∶ 𝒂𝒕 = 𝝁(𝒔𝒕) + 𝑫𝒕 

Take the action 𝒂𝒕, the reward 𝒓𝒕, and the new state 𝒔𝒕+𝟏. 

Store the process (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) in 𝑹. 

Sampling from R to get the process (𝒔𝒊, 𝒂𝒊, 𝒓𝒊, 𝒔𝒊+𝟏) of batch 𝑵 

Set 𝒚𝒊 = 𝒓𝒊 + 𝜸𝑸′(𝒔𝒊+𝟏, 𝝁′(𝒔𝒊+𝟏|𝜽𝝁′
)|𝜽𝝁′

)//𝑸′ is the state-action 

value calculated by the target Q network, and 𝝁′ is the current 

strategy obtained by the target policy network. 

Update Critic’s online Q network by minimizing the loss 

function: 𝑳 =
𝟏

𝑵
∑ (𝒚𝒊 − 𝑸(𝒔𝒊, 𝒂𝒊|𝜽𝑸)

𝟐
)𝒊  

Update the Actor’s online policy network with sampling 

gradient: 𝛁𝜽𝝁𝝁 |𝒔𝒊 ≈
𝟏

𝑵
∑ 𝛁𝒂𝑸(𝒔, 𝒂|𝜽𝑸)𝒊 |

𝒔=𝒔𝒊,𝒂=𝝁(𝒔𝒊)
𝛁𝜽𝝁𝝁(𝒔|𝜽𝝁)|𝒔𝒊

 

Update Critic’s target Q network: 𝜽𝑸′ ← 𝝉𝜽𝑸 + (𝟏 − 𝝉)𝜽𝑸′
 

Update Actor’s target policy network: 𝜽𝝁′ ← 𝝉𝜽𝝁 + (𝟏 − 𝝉)𝜽𝝁′
 

End for 

End for 
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Figure 4.9. DDPG algorithm flow chart. 
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Chapter 5 

Autonomous Driving Algorithm 

Integration 

 
In this chapter, the algorithm for driving the vehicle in a given driving 

scenario is integrated. First, the algorithm that determines whether to start 

changing lanes while the ego vehicle is driving. The minimum braking 

distance to detect the risk of collision with the vehicle in front, and Gipps’ 

safety distance is calculated to detect the risk of collision with the vehicle in 

front. Based on this, the lane change direction is set. Second, a path planning 

algorithm is designed using the DRL structure designed in Chapter 4. Third, 

the vehicle controller is configured and an integrated algorithm that can 

finally drive the vehicle is designed. 
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Figure 5.1. Lane change decision making algorithm 

5.1. Lane Change Decision Making 

 

Prior to initiating a lane change, the ego vehicle must determine when and 

at what speed and direction to start to change the lane. First, in order to 

prevent a collision with the vehicle in front, it is necessary to detect the danger 

of a collision with a vehicle in front. In addition, in order to prevent a collision 

with a vehicle coming from the direction of the target lane, a collision with a 

vehicle from the side must be detected. And it is necessary to decide whether 

to overtake or being overtaken the target lane vehicle according to the 

distance between ego vehicle and target lane vehicle. Finally, a lane change 

direction is determined by comparing the distances of between ego vehicle 

and the vehicles on both lanes. 
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Figure 5.2. Longitudinal collision detection algorithm 

 

5.1.1. Longitudinal Collision Detection 

 

In order to detect a collision with the vehicle in front, the tire-road friction 

coefficient must first be estimated. Since the friction coefficient can be 

estimated based on the normal force and longitudinal force of the ego vehicle, 

the longitudinal traction force is first estimated. And the longitudinal traction 

force is estimated using Kalman estimation method by expressing the vehicle 

states in state-space form due to the difficulty of measuring the force directly, 

and the equation is as follows. 
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𝐱̇(𝐭) = A(t)𝐱(𝐭) + B(t) + ωh(t)𝐲(𝐭) = C(t)𝐱(𝐭) + v(t) 

𝐲(𝐭) = C(t)𝐱(𝐭) + v(t) 

x(t) = [F Ω φ]T 

where, F = [Fx,fl Fx,fr Fx,rl    Fx,rr Fy,f Fy,r] 

     Ω = [ωh,fl ωh,fr     ωh,rl ωh,rr] 

 

(5.1) 

 

z(t) = [𝑎𝑥 𝑎𝑦     ωh,fl ωh,fr     ωh,rl ωh,rr 𝜑]T 

where, ax =
1

m
(FXF + FXR − Fa) 

    ay =
1

m
(FYF + FYR) 

 

(5.1) 
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Based on the estimated longitudinal force, the tire-road friction coefficient 

is estimated. The coefficient varies depending on the slip-ratio of the wheel 

during driving. In this study, it is assumed that the maximum friction 

coefficient is applied during full braking situation. Since the coefficient 

increases linearly as the slip ratio increases when the slip-ratio of the wheel 

is small, slip-slope estimation was used to estimate the maximum friction 

coefficient using this slope, and the equation is as follows. 

𝜖 =  
𝐹𝑥

𝐹𝑧
= 𝐾𝜎𝑥 

 

(5.3) 

𝜖  means the friction coefficient of current driving state. Since this is 

proportional to the current slip ratio, 𝜎𝑥, the slip slope, 𝐾, can be derived. 

Using the MF formula used in the ego vehicle dynamics, a database of the 

maximum friction coefficient according to the slip-slope is constructed as 

shown in Figure 5.3. And the maximum friction coefficient is estimated using 

recursive least-squares (RLS) identification. To use RLS identification, the 

slip-slope model of equation () is transformed into a parameter identification 

form as expressed as follows. And 𝑦(𝑡) is 𝜌 the system output, 𝜑𝑇(𝑡) is 
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𝜎𝑥 the regression vector, 𝜃(𝑡) is 𝐾 the estimated parameter, and 𝑒(𝑡) is 

identification error. 

y(t) =  𝜑𝑇(𝑡)𝜃(𝑡) + 𝑒(𝑡) (5.4) 

 

In this study, it is assumed that the maximum coefficient of friction is 

applied during full braking as mentioned above, so the calculation of the 

minimum braking distance is performed based on the estimated maximum 

coefficient. During full braking, the aerodynamic force and rolling resistance 

of the wheel is neglected due to small scale. Accordingly, the following 

equation is derived. 

1

2
𝑚𝑣𝑙,𝑥

2 = (𝜇𝐹𝐿𝐹𝑧,𝐹𝐿 + 𝜇𝐹𝑅𝐹𝑧,𝐹𝑅 + 𝜇𝑅𝐿𝐹𝑧,𝑅𝐿 + 𝜇𝑅𝑅𝐹𝑧,𝑅𝑅)S (5.5) 

 

Here, 𝑆 denotes the minimum braking distance, 𝜇 is maximum friction 

coefficient, and 𝐹𝑧 is the normal force of the vehicle at each wheel. Based 

on the finally calculated distance, the longitudinal collision detection 
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algorithm operates as follows, where 𝐶𝐿𝑂 is the braking availability index 

function, and 𝑥𝑖 is the relative longitudinal distance. 

𝐶𝐿𝑂 = {
1        𝑖𝑓 𝑥𝑙 < 𝑆
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.6) 

 

 

Figure 5.3. Slip-slope method using Recursive Least-squares 

identification 

 

 

Figure 5.4. Lateral collision detection algorithm 
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5.1.2. Lateral Collision Detection 

In order to detect the risk of collision with a vehicle driving in the side lane, 

it is first necessary to determine the safety distance from the vehicle behind 

it. Gipps’ safety distance formula is used to calculate the minimum distance 

at which the vehicle behind the vehicle cannot slow down and does not collide 

when changing lanes at the current speed. Following equation shows Gipps’ 

safety distance, where 𝑆  is safety distance, 𝑉𝑡𝑥  is target vehicle 

longitudinal velocity, 𝑉𝑒𝑥 is ego vehicle longitudinal velocity, 𝑡𝑟 is reaction 

time, and 𝑎𝑚  is maximum deceleration. It is assumed that the maximum 

deceleration of target vehicle is the same as the ego vehicle. 

𝑆 = 𝑉𝑡𝑥𝑡𝑟 +  
𝑉𝑡𝑥

2 − 𝑉𝑒𝑥
2

𝑎𝑚
 (5.7) 

 

Based on the safety distance, it is divided into two scenarios depending on 

whether the ego vehicle collides with the target lane vehicle. As shown in 

Figure 5.5, There are two cases when the longitudinal distance between the 

ego vehicle and the target lane vehicle is longer than the safety distance and 
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the opposite. Scenario 1, it is possible to change lanes safely when changing 

lane as it is. But scenario 2 causes a collision. 

Accordingly, in scenario 1, a strategy to change lanes in front of the target 

lane vehicle is selected, and in scenario 2, the ego vehicle changes the lane 

behind the target lane vehicle by decelerating the speed as much as possible 

through full braking. Based on these two strategies, the following equation is 

derived, where 𝐶𝐿𝐴 denotes collision detection index, and 𝑥𝑙  denotes the 

relative longitudinal distance. 

𝐶𝐿𝐴 = {
1        𝑖𝑓 𝑑𝑥 < 𝑆
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.8) 

 

 

Figure 5.5. Lateral collision detection according to Gipps’ safety 

distance 
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Figure 5.6. Lane change direction decision algorithm 

 

 

 

Figure 5.7. Case of lane change direction decision 
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5.1.3. Lane Change Direction Decision 

 

Once a decision has been made whether to overtake or be overtaken for a 

particular lane, the ego vehicle must decide in which direction to change lanes. 

In this study, the direction is determined through four divided lane change 

situations as shown in Figure 5.7. The first is the overtaking-overtaking case. 

In this case, since it is possible to change lanes without slowing down both 

sides, it makes sense to change lanes toward a longer safety distance lane. 

Second is the overtaken-overtaking case. As mentioned in the previous chpter, 

the priority of lane change is to get out of the danger situation quickly, so lane 

change is performed toward the right lane where overtake is possible. 

Likewise, in the case of overtake-overtaken, the lane is changed to the left 

lane. Lastly, in the overtaken-overtaken situation, the target lane vehicle must 

quickly pass the ego vehicle through deceleration. So the lane change is 

performed in a direction where the lane with a shorter safety distance. 
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Figure 5.8. Path planning algorithm 

 

5.2. Path Planning 

 

Based on the lane change decision making algorithm developed in Chapter 

5.1.1, the chapter develops an algorithm that creates the path that the ego 

vehicle should be going to pass through. As in the simulation scenario, the 

ego vehicle drives at a constant distance from the vehicle in front in normal 

driving situation. Therefore, when it is not an emergency situation, it performs 

lane keeping and active cruise control and generates a path for this algorithm. 

In the meantime, when an emergency occurs, a trajectory for emergency lane 

change is immediately created according to driving environment and 

designated as a reference position so that the vehicle can prevent accident. 

The emergency lane change trajectory generator represented in the Figure 5.8 
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is a block composed of DRL agents constructed in Chapter. 4 and will be 

trained in Chapter 6 to generate an optimized trajectory. 

 

5.3. Vehicle Controller 

 

The trajectory created through the path planning algorithm is implemented 

as vehicle motion through the vehicle controller. In this chapter, the vehicle 

is controlled using an adaptive model predictive controller (Adaptive MPC) 

 

 

Figure 5.9. Vehicle controller using Adaptive model predictive 

controller (AMPC) 
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Figure 5.10. Integrated DRL-enhanced lane change algorithm 

 

5.4. Algorithm Integration 

 

In this chapter, the algorithm developed through Chapter 4 to Chapter 5 is 

integrated to optimize emergency lane change trajectory using deep 

reinforcement learning. First, IPG CARMAKER provides a vehicle dynamics 

simulation environment. It provides accurate states and environment 

information by performing reliable vehicle dynamics simulation with the 

Hyundai I30-Pde full car model. In Matlab Simulink environment, lane 

change decision making algorithm, path planning algorithm and vehicle 

controller are integrated. The lane change direction, overtake/overtaken, 

starting point of lane change are determined based on the carmaker’s driving 
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environment. These are applied as an input to the path planning algorithm, 

creating a reference point for lane keeping, active cruise control, and lane 

change. And the vehicle controller determines vehicle throttling and steering 

based on reference point. 
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Chapter 6 

Training & Results 

 
 

In this chapter, applying the previously developed integrated control 

algorithm model for the emergency lane change, deep reinforcement learning 

was trained. The training result is an actor network that generates appropriate 

value needed to create the optimized trajectory from the state-space and a 

critic neural network that determines a Q value from the actor’s actions and 

state-space. In the optimized system, the Q value can get closer to the 

accumulated reward. So, it is significant that it can give feasibility of the 

action. As mentioned in chapter 4, the training of the DDPG agent applies 

noise to the action-space output to retain exploration. Therefore, the 

optimized agent also generates the results that include noise. In the evaluation 

step, the optimization quality of the agent is determined with the noise. If the 

accumulated reward converges to a pre-set value which means successive 

attempts or designated times of episode are over, the training ends. And the 

estimated Q value becomes closer to the accumulated reward. 
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In this study, the number of training episode is 60,000 with a powerfully 

configured computer (i9-9900K). it lasted 50 hours and 25 minutes with 8 

parallel computing workers. 

From the human driver point of view, a driver experiences emergency, such 

as a collision situation, a few times ever. And when the driver meets an 

emergency, the driver controls the vehicle abruptly, the vehicle comes close 

to the limit of stability. It is very unexpected situation, and the control depends 

on the driver’s ability. However, the algorithm developed in this study is 

capable of change lanes safely and quickly for each traffic situation through 

training in dangerous situations 60,000 times.  

 Figure 6.1 is a graph that trains reinforcement learning by linking Matlab 

Simulink and IPG CARMAKER. The blue data on the graph means 

accumulated reward for each episode, and the orange graph means average 

reward. As a result of training 60,000 times, the average reward continuously 

increased and converged to 242.1352. 
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Figure 6.1. Deep Reinforcement Learning training graph 

 

Figure 6.2 represents the lane change distance of the ego vehicle in each 

driving condition, and this is the optimized value through reinforcement 

learning. The x axis represents the trailing vehicle velocity of the target lane 

to change lanes. All three graphs (a), (b), and (c) have a constant 𝑥𝑓 value 

when the velocity of the target vehicle is not significantly different from the 

velocity of the ego vehicle. However, when it reaches a certain velocity, it 

can be seen that the length of 𝑥𝑓  decreases rapidly. This section is the 

moment when the ego vehicle changes from overtaking the target area to 
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overtaken by the target area. In the overtaking section, the lane change 

distance is long enough from the point where braking is impossible because 

it is necessary to quickly change lanes in front of the target vehicle. However, 

since it is possible to change lanes from the moment the 𝐶𝐺 of the target 

vehicle passes the 𝐶𝐺 of the ego vehicle at the moment of the overtaken 

section, the ego vehicle allows the target vehicle to pass as quickly as possible 

through full braking. During that section, the ego vehicle travels in a straight 

line, so the distance at which lane change is possible is reduced. After 𝑥𝑓 

decreases rapidly, the value of 𝑥𝑓 increases almost linearly as the velocity of 

the target vehicle gradually increases. If the value continuously increases and 

then increases to a certain velocity or mor, it has the same value as the lane 

change distance in the initial overtaking area. This is because the 𝐶𝐺 of the 

target vehicle is already ahead of the 𝐶𝐺  of the ego vehicle when the 

distance between the ego vehicle and the front vehicle is reduced below the 

braking distance to prevent collision with the vehicle in front, although it is 

an overtaken area. 
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Figure 6.2. Lane change distance according to target vehicle velocity: 

(a) Ego vehicle velocity: 80km/h, (b) Ego vehicle velocity: 100km/h, (c) 

Ego vehicle velocity: 120km/h  

 

Figure 6.3 represents the minimum distance between the ego vehicle and the 

front vehicle for each driving condition. As can be seen from Figure 6.3 (a), 

(b), and (c), it can be seen that regardless of the velocity condition, the 

minimum distance converges to 0.5m. This is related to the reward of 

reinforcement learning. Looking ate the reward in Chapter 4, it can be seen 
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that the minimum distance does not decrease to less than 0.5m in order to 

maximize the reward because a large penalty is imposed if it is reduced to a 

certain distance from the vehicle in front. 

 

 

Figure 6.3. Minimum distance between ego vehicle and front vehicle 

according to target vehicle velocity: (a) Ego vehicle velocity: 80km/h, 

(b) Ego vehicle velocity: 100km/h, (c) Ego vehicle velocity: 120km/h  
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As shown in the Figure 6.2 and 6.3, it can be seen that the lane change 

trajectory through reinforcement learning is optimized. In order to change 

lanes quickly and safely, lane changes must be made in a direction that 

minimizes the minimum distance to the vehicle in front. Since the yaw rate 

penalty and lateral deviation in Chapter 4 increase as 𝑥𝑓  gets shorter, 

optimization if made in the direction in which 𝑥𝑓  is maximized in each 

condition. However, it can be seen that 𝑥𝑓 does not decrease to less than 

0.5m because it is necessary to prevent a collision with the vehicle in front 

due to the lengthening of 𝑥𝑓 beyond a certain level. Figure 6.4 shows that 

the maximum yaw rate in each condition is inversely proportional to the 

distance of 𝑥𝑓 . The maximum yaw rate in the overtaken area increases 

because it has to adapt to a short 𝑥𝑓. In Figure 6.4, it can be seen that the 

maximum yaw rate at the moment of switching to the overtaken area is the 

largest in each driving condition. In addition, it can be seen that the maximum 

yaw rate is larger in the scenario where the velocity of the ego vehicle is low. 

This is because, in the same scenario, the smaller the longitudinal velocity of 

the ego vehicle, the smaller the length of 𝑥𝑓, and thus the maximum slope of 

the 3rd order polynomials.  
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Figure 6.4. Maximum yaw rate of ego vehicle according to target 

vehicle velocity: (a) Ego vehicle velocity: 80km/h, (b) Ego vehicle 

velocity: 100km/h, (c) Ego vehicle velocity: 120km/h  
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Figure 6.5 is a graph of the maximum lateral forces in each driving 

conditions. The maximum lateral force also shows a similar pattern to the 

maximum yaw rate. It can be seen that the maximum lateral force at the 

moment of transition to the overtaken area is the largest, and this is due to the 

shortest 𝑥𝑓. Like the yaw rate, it can be seen that the maximum lateral force 

is the largest in the ego vehicle velocity condition of 80 km/h. The lateral 

force increases as the velocity increases, but as mentioned in Figure 6.4 above, 

the maximum value of the yaw rate at 80 km/h is the largest and the lateral 

force is proportional to the square of the angular velocity, so it can be 

confirmed that the largest lateral force appears in this section. 
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Figure 6.5. Maximum lateral force of ego vehicle according to target 

vehicle velocity: (a) Ego vehicle velocity: 80km/h, (b) Ego vehicle 

velocity: 100km/h, (c) Ego vehicle velocity: 120km/h  
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When changing lanes to the left or right, the direction of lane change is 

determined through the decision-making algorithm in Chapter 5. Figure 6.6 

is a graph of the lane change direction according to the velocity of the trailing 

vehicles coming from the left and right lanes. The white part is an area where 

the left and right lanes have the same velocity, so that lane change is selective. 

The Light gray area indicates the area that changes to the left lane, and the 

dark gray indicates the area that changes to the right lane. The method of 

determining the lane change direction according to the speed of each lane 

vehicle is described in detail in Chapter 5.1.3. 
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Figure 6.2. Lane change direction of ego vehicle according to target 

vehicle velocity: (a) Ego vehicle velocity: 80km/h, (b) Ego vehicle 

velocity: 100km/h, (c) Ego vehicle velocity: 120km/h  
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Chapter 7 

Conclusion 

 
 

In this study, an emergency lane change control algorithm for autonomous 

vehicles based on reinforcement learning was proposed. 

Firstly, a simulator is selected. Because the simulation performed in this 

study requires very detailed model similar to the actual environment, IPG 

CARMAKER was selected. Hyundai I30-PDe full car model was used as a 

pre-defined vehicle model. Vehicle dynamics model is implemented based on 

the parameters of the full car model. And for deep reinforcement learning 

process, Matlab Simulink was chosen. The simulator shows high performance 

in the field of optimization because it is highly interoperable with IPG 

CARMAKER, and optimization and system measurement through 

reinforcement learning are possible. 

Secondly, the scenario for simulation was constructed. Four stages of 

driving situations were set as a scenario for lane change in emergency 
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situations. The first situation, the ego vehicle maintains the distance to the 

vehicle in front, like adaptive cruise control, and drives in normal condition. 

The second situation represents a situation in which the vehicle in front 

suddenly stops or an obstacle appears. The third one is a situation in which, 

after an emergency, it is decided in which way or in which direction to change 

lanes. This is determined through the lateral collision detection algorithm and 

the lane change direction decision algorithm. The fourth situation is evasive 

steering. Evasive steering is performed based on the lane change trajectory 

modeled as a 3rd order polynomial. 

Third, to describe the lane change trajectory, a 3rd order polynomial lane 

change trajectory model is selected like following equation. This model has 

advantages in that it can be expressed with one explicit equation compared to 

the conventional arc and straight-line method. And it can be calculated more 

simply than 5th order polynomial model so that optimization cost can be 

decreased. The 3rd order polynomial can be optimized through get 4 

coefficients. However, based on the initial conditions and the end conditions, 

the 3rd order polynomial is simplified by optimization for the lane change 

distance, 𝑥𝑓. 



CHAPTER 7 CONCLUSION                                   93 

 

Fourth, a reinforcement learning structure was designed to optimize lane 

change trajectories through deep reinforcement learning. The reinforcement 

learning structure consists of observation space, actor, reward, and agent, 

respectively. And the selected parameters are followed 

⚫ Observation: Obj#1 relative longitudinal distance, Obj#1 

relative longitudinal velocity, Obj#2&3 relative longitudinal 

distance, Obj#2&3 relative longitudinal velocity, ego vehicle 

yaw angle, ego vehicle yaw rate, ego vehicle longitudinal 

velocity, minimum braking distance, lane change distance, lane 

change availability. 

⚫ Action: 3rd order polynomial coefficients 

⚫ Reward: Ego vehicle longitudinal position, lane-change 

complete index, ego vehicle lateral deviation, ego vehicle yaw 

rate, distance between ego vehicle and surroundings, ego vehicle 

velocity 

⚫ Agent: Deep Deterministic Policy Gradient 
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Fifth, integrated autonomous driving algorithm to control ego vehicle was 

developed. Hierarchical algorithm that is needed for driving in simulation 

environment. Longitudinal collision detection algorithm estimates the tire-

road friction coefficient in real time. Using this, the minimum braking 

distance of the ego vehicle is estimated. If the distance to the vehicle in front 

is less than the minimum braking distance, a collision will occur, and thus a 

collision is determined based on this algorithm. Lateral collision detection 

algorithm detects the state of the vehicle following the left and right lanes. 

When the lane needs to be changed through the longitudinal collision 

detection algorithm, Gipps’ safety distance is used to detect whether a 

collision with a vehicle on the rear side is encountered when the lane is 

changed in the current vehicle velocity. If there is no collision, make a lane 

change toward the larger safety distance side. In the warning of a collision, 

the vehicle speed is lowered with maximum braking, and the vehicle is 

overtaken by the vehicle in the rear side and then the lane change is performed. 

Lane change direction decision algorithm determines which direction to 

change lanes. When overtaking and overtaken are determined through the 

later collision detection algorithm, the lane is changed through comparison of 

left and right value scale. 
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And the last, deep reinforcement learning was trained on developed 

algorithm and simulation environment. The algorithm is capable of change 

lanes safely and quickly for each traffic situation through training in 

dangerous situations 60,000 times. During training, the average reward 

continuously increased and converged to 242.1352. 

The training was performed successfully, the 3rd order polynomial 

coefficients are fully optimized. And the evaluations according to optimized 

value are followed 

 

⚫ 𝑥𝑓 value when the velocity of the target vehicle is not significantly 

different from the velocity of the ego vehicle. However, when it 

reaches a certain velocity, it can be seen that the length of 𝑥𝑓 

decreases rapidly. 

⚫ The minimum distance between ego vehicle and the front vehicle 

converges to 0.5m regardless of driving conditions. 

⚫ Maximum yaw rate at the moment of transition to the overtaken 

area is the largest 
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⚫ Maximum lateral force at the moment of transition to the overtaken 

area is the largest 

 

This study contributes to two aspects. Since trajectory optimization through 

reinforcement learning generally does not include vehicle dynamics, it is 

difficult to apply when the vehicle model changes. However, since vehicle 

control in this study is performed through a separate controller, a general 

purpose algorithm that can be applied even if the vehicle model is changed 

was developed. Secondly, by simulating a scenario similar to an actual 

emergency situation, even if it is applied to an actual vehicle, it can be quickly 

adapted. Consequently, it led the autonomous vehicle to drive safely. Theses 

results are expected to be easily and directly applicable to automobile industry.



                                               97 

 

References 

1. Rolison, J.J., et al., What are the factors that contribute to road 

accidents? An assessment of law enforcement views, ordinary 

drivers’ opinions, and road accident records. Accident Analysis & 

Prevention, 2018. 115: p. 11-24. 

2. Fagnant, D.J. and K. Kockelman, Preparing a nation for 

autonomous vehicles: opportunities, barriers and policy 

recommendations. Transportation Research Part A: Policy and 

Practice, 2015. 77: p. 167-181. 

3. Bevly, D., et al., Lane change and merge maneuvers for connected 

and automated vehicles: A survey. IEEE Transactions on Intelligent 

Vehicles, 2016. 1(1): p. 105-120. 

4. Wang, M., et al., Game theoretic approach for predictive lane-

changing and car-following control. Transportation Research Part C: 

Emerging Technologies, 2015. 58: p. 73-92. 

5. Rigas, E.S., S.D. Ramchurn, and N. Bassiliades, Managing electric 

vehicles in the smart grid using artificial intelligence: A survey. 



                                               98 

 

IEEE Transactions on Intelligent Transportation Systems, 2014. 

16(4): p. 1619-1635. 

6. Garcia-Pulido, J., et al., Recognition of a landing platform for 

unmanned aerial vehicles by using computer vision-based 

techniques. Expert Systems with Applications, 2017. 76: p. 152-165. 

7. Peng, T., et al., A new safe lane-change trajectory model and 

collision avoidance control method for automatic driving vehicles. 

Expert Systems with Applications, 2020. 141: p. 112953. 

8. Schwarting, W., J. Alonso-Mora, and D. Rus, Planning and 

decision-making for autonomous vehicles. Annual Review of 

Control, Robotics, and Autonomous Systems, 2018. 

9. Sutton, R.S. and A.G. Barto, Reinforcement learning: An 

introduction. 2018: MIT press. 

10. Arulkumaran, K., et al., A brief survey of deep reinforcement 

learning. arXiv preprint arXiv:1708.05866, 2017. 



                                               99 

 

11. Wolf, P., et al. Learning how to drive in a real world simulation with 

deep q-networks. in 2017 IEEE Intelligent Vehicles Symposium (IV). 

2017. IEEE. 

12. Szalay, Z., et al., Development of a test track for driverless cars: 

vehicle design, track configuration, and liability considerations. 

Periodica Polytechnica Transportation Engineering, 2018. 46(1): p. 

29-35. 

13. -2:, I., Passenger cars–test track for a severe lane-change 

manoeuvre–Part 2: obstacle avoidance. 2011. 

14. Vorobieva, H., et al. Geometric continuous-curvature path planning 

for automatic parallel parking. in 2013 10th IEEE International 

Conference on Networking, Sensing and Control (ICNSC). 2013. 

IEEE. 

15. Li, X., et al. A practical trajectory planning framework for 

autonomous ground vehicles driving in urban environments. in 2015 

IEEE Intelligent Vehicles Symposium (IV). 2015. IEEE. 



                                               100 

 

16. Ferguson, D., T.M. Howard, and M. Likhachev. Motion planning in 

urban environments: Part ii. in 2008 IEEE/RSJ International 

Conference on Intelligent Robots and Systems. 2008. IEEE. 

17. Likhachev, M., et al. Anytime Dynamic A*: An Anytime, Replanning 

Algorithm. in ICAPS. 2005. 

18. Bian, C., et al., Active collision algorithm for autonomous electric 

vehicles at intersections. IET Intelligent Transport Systems, 2018. 

13(1): p. 90-97. 

19. Hegedüs, F., et al., Model based trajectory planning for highly 

automated road vehicles. IFAC-PapersOnLine, 2017. 50(1): p. 6958-

6964. 

20. Lin, Y., J. McPhee, and N.L. Azad. Longitudinal dynamic versus 

kinematic models for car-following control using deep reinforcement 

learning. in 2019 IEEE Intelligent Transportation Systems 

Conference (ITSC). 2019. IEEE. 

21. Hegedüs, F., et al., Motion planning for highly automated road 

vehicles with a hybrid approach using nonlinear optimization and 



                                               101 

 

artificial neural networks. Strojniski Vestnik-Journal of Mechanical 

Engineering, 2019. 65(3): p. 148-160. 

22. Ly, A.O. and M.A. Akhloufi, Learning to drive by imitation: An 

overview of deep behavior cloning methods. IEEE Transactions on 

Intelligent Vehicles, 2020. 

23. Folkers, A., M. Rick, and C. Büskens. Controlling an autonomous 

vehicle with deep reinforcement learning. in 2019 IEEE Intelligent 

Vehicles Symposium (IV). 2019. IEEE. 

24. Lee, J., T. Kim, and H.J. Kim. Autonomous lane keeping based on 

approximate Q-learning. in 2017 14th International Conference on 

Ubiquitous Robots and Ambient Intelligence (URAI). 2017. IEEE. 

25. Xia, W., H. Li, and B. Li. A control strategy of autonomous vehicles 

based on deep reinforcement learning. in 2016 9th International 

Symposium on Computational Intelligence and Design (ISCID). 

2016. IEEE. 

26. Ye, Y., X. Zhang, and J. Sun, Automated vehicle’s behavior decision 

making using deep reinforcement learning and high-fidelity 



                                               102 

 

simulation environment. Transportation Research Part C: Emerging 

Technologies, 2019. 107: p. 155-170. 

27. Ronecker, M.P. and Y. Zhu. Deep Q-Network based decision 

making for autonomous driving. in 2019 3rd International 

Conference on Robotics and Automation Sciences (ICRAS). 2019. 

IEEE. 

28. Fehér, Á ., et al. Proving ground test of a DDPG-based vehicle 

trajectory planner. in 2020 European Control Conference (ECC). 

2020. IEEE. 

29. Fehér, Á ., S. Aradi, and T. Bécsi, Hierarchical Evasive Path 

Planning Using Reinforcement Learning and Model Predictive 

Control. IEEE Access, 2020. 8: p. 187470-187482. 

30. An, H. and J.-i. Jung, Decision-making system for lane change using 

deep reinforcement learning in connected and automated driving. 

Electronics, 2019. 8(5): p. 543. 

31. Duan, J., et al., Hierarchical reinforcement learning for self-driving 

decision-making without reliance on labelled driving data. IET 

Intelligent Transport Systems, 2020. 14(5): p. 297-305. 



                                               103 

 

32. Kim, M., et al., Unexpected collision avoidance driving strategy 

using deep reinforcement learning. IEEE Access, 2020. 8: p. 17243-

17252. 

33. Wittenburg, J., U. Wolz, and A. Schmidt, MESA VERDE—A 

general-purpose program package for symbolical dynamics 

simulations of multibody systems, in Multibody Systems Handbook. 

1990, Springer. p. 341-360. 

34. Mnih, V., et al., Human-level control through deep reinforcement 

learning. nature, 2015. 518(7540): p. 529-533. 

35. Lillicrap, T.P., et al. Continuous control with deep reinforcement 

learning. 2015. arXiv:1509.02971. 

 



                                               104 

 

국문 초록 

서울대학교 

공과대학원 

기계항공공학부 

송 준 

 

긴급 차선 변경은 주행 차선에서 선행차량 급정거와 같은 

응급상황 발생시에 순간적으로 이루어지는 것이므로 그 자체에 

위험성을 안고 있다. 지나치게 느리게 조향을 하는 경우, 주행 

차량은 앞에 있는 장애물과의 충돌을 피할 수 없다. 이와 반대로 

지나치게 빠르게 조향을 하는 경우, 차량과 지면 사이의 작용력은 

타이어 마찰 한계를 넘게 된다. 이는 차량의 조종 안정성을 

떨어트려 스핀이나 전복 등 다른 양상의 사고를 야기한다. 따라서 
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차선 변경 경로의 최적화는 자율 주행 차량의 응급 상황 대처에 

필수적인 요소이다. 

본 논문에서는    심층강화학습을 기반으로 자율 주행 차량의 

긴급 차선 변경 경로를 최적화한다. 이 알고리즘은   선행차량의 

급정거나 장애물 출현과 같은 응급상황 발생 시, 빠르고 안전한 

회피 거동 및 차선 변경에 초점을 맞추어 개발되었다. 

알고리즘 개발의 첫 번째 단계로서 시뮬레이션 환경이 

구축되었다. 신뢰성 있는 차량 동역학 시뮬레이션과 강화학습을 

위한 주행 시나리오 구축을 위하여 IPG CARMAKER 가 

선정되었다. 이 프로그램은 실제 산업 현장에서 사용되는 높은 

신뢰성을 가진 프로그램으로 실제 차량과 유사한 차량의 거동을 

분석할 수 있다. 본 연구에서는 현대자동차의 I30-PDe 모델을 

사용하여 시뮬레이션을 수행하였다. 또한 강화학습과 차량제어를 

위한 프로그램으로 제어, 계측, 인공지능을 모두 아우를 수 있는 

Matlab Simulink 를 선정하였다. 본 연구에서는 IPG 

CARMAKER 와 Matlab Simulink 를 연동하여 심층 강화 학습을 

바탕으로 긴급 차선 변경 궤적을 최적화하였다. 
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차량의 차선 변경 궤적은 3 차 다항식의 형상으로 모델링 

되었다. 차선 변경 시작 지점과 종료 지점을 설정하여 다항식의 

계수를 차선 변경 거리에 대한 함수로 해석하였다. 심층 강화 

학습을 기반으로 계수들을 최적화하기 위하여, 강화 학습 

아키텍처를 구성하였다. 관측 공간은 12 가지의 주행 환경 

데이터를 이용하였고, 강화 학습의 출력으로는 3 차 함수의 변수인 

차선 변경 거리를 선정하였다. 그리고 강화 학습의 학습 능력을 

극대화할 수 있는 보상 공간을 설계하였다. 동적 보상, 정적 보상, 

동적 벌칙, 정적 벌칙을 시뮬레이션의 매 단계마다 부여함으로써 

보상 총 합이 최대화될 수 있는 방향으로 학습이 진행되었다. 

최적화를 위한 알고리즘으로는 Deep Deterministic Policy 

Gradient agent 가 사용되었다.  

강화학습 아키텍처와 함께 동역학 시뮬레이션 프로그램에서의 

차량 구동을 위한 알고리즘을 개발하였다. 먼저 응급상황시에 

차량의 차선을 언제, 어떤 속도로, 어떤 방향으로 변경할 지 

결정하는 의사결정 알고리즘을 개발하였다. 타이어와 도로 사이의 

최대 마찰계수를 실시간으로 추정하여 주행 차량이 정지하기 위한 
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최소 거리를 산출함으로써 선행 차량과의 충돌 위험을 판단하였다. 

또한 Gipps 의 안전거리 공식을 사용하여 변경하고자 하는 

차선에서 오는 차량과의 충돌 가능성을 감지하여 그 차량을 

추월해서 앞으로 지나갈지, 추월을 당해서 뒤로 갈 것인지를 

결정하는 알고리즘을 개발하였다. 이를 바탕으로 좌측 차선과 

우측 차선의 충돌 위험성 및 안정성을 판단하여 최종적인 차선 

변경을 위한 의사결정 알고리즘을 개발하였다. 

구성된 강화 학습 구조를 통한 긴급 차선 변경 궤적과 차선 

유지 장치, 적응형 순항 제어와 같은 일반 주행시의 궤적을 

상황에 맞추어 출력하는 알고리즘을 개발하고 적응형 모델 예측 

제어기를 통해 주행 차량을 구동하는 통합 알고리즘을 개발하였다.  

본 연구의 마지막 단계로서, 개발된 긴급 차선 변경 경로 생성 

알고리즘의 최적화를 위하여 심층 강화 학습이 수행되었다. 총 

60,000 회의 시행 착오 방식의 학습을 통해 각 주행 상황 별 

최적의 차선 변경 제어 알고리즘을 개발하였고, 각 주행상황 별 

최적의 차선 변경 궤적을 제시하였다. 
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