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Abstract

Degradation kinetics and mechanism of

bisphenol A in vacuum ultraviolet photolysis

Yerim Choi
Department of Environmental Health Sciences
Graduate School of Public Health

Seoul National University

Bisphenol A (BPA) is a compound classified as an EDC that is mainly used for
the production of polycarbonates and epoxy resins. In this study, the kinetics and
degradation mechanism of BPA during vacuum ultraviolet (VUV) treatment were
examined. BPA was completely degraded within 60 minutes of VUV treatment,
following the pseudo-first-order kinetics (ko»s = 6.75 x 102 min™"). The degradation
kinetics of one the BPA alternatives, BPAF, was observed in parallel for the
comparison with BPA. The k., of BPAF was 5.49 x 102 min!' which was slightly
slower than that of BPA. The influencing factors on BPA degradation were observed
at different pH levels, as well as the presence of dissolved organic matter (DOM)
and inorganic anions, bicarbonate (HCOs"), and nitrate (NO3"). The k.5 of BPA was
the fastest at pH 6.0 and it gradually decreased with the increasing pH. The radical
contribution during VUV reaction was also observed using TBA for competition
kinetics with BPA. It was found out that *OH contributed to 82.6%, 71.4%, 49.65%,
and 43.36% at pH 6, 7, 8, and 9, respectively, which explains the retardation of ko
with increasing pH. The influence of DOM and HCO;™ were insignificant at low
concentrations, whereas the presence of NO;  hindered BPA degradation.

Approximately 91% of BPA was mineralized within 12 hours of VUV reaction, and



a total of seven organic transformation products were identified (TP 243, TP 241, TP
257, TP 259, TP 181, TP 104). The acute toxicity was observed by the inhibition rate
of bioluminescence of Vibrio fischeri. The toxicity decreased about 20% after the
reaction, indicating that VUV treatment could potentially diminish the toxicity of

BPA.

Keywords: Bisphenol A; Endocrine Disrupting Compounds; VUV; degradation
kinetics; byproducts; degradation pathway

Student Number: 2019-23778
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1. Introduction

1.1.Study Background

As the world’s industrial market develops, the demand for the production of new
materials also increases. As a consequence of increased demand for such materials,
various chemicals are produced for manufacturing purposes (Muhamad et al., 2016).
Due to such reasons, the chemicals that are used for manufacturing are introduced to
the environment, in which the impact on the environment and the ecosystem may
cause potential danger afterward. Even though the used chemicals undergo water
treatment processes in wastewater treatment plants (WWTPs), some of the refractory
chemicals are released to the environment without complete degradation. Numerous
types of organic contaminants that are frequently detected in the environment include
pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting
compounds (EDCs), which are considered as contaminants of rising concern.
Especially, the EDCs are the prime municipal driven contaminants released to the
environment mainly through the discharge of industrial and municipal wastewater
(Huang and Huang, 2009). When these contaminants are released to surface water
without complete degradation, they may potentially pose detrimental effects not only
on the aquatic ecosystem but also to humans (Ming et al., 2021; Qin et al., 2018;
Kong et al., 2019).

Bisphenol A (BPA), one of the well-known EDCs, is widely used as a raw
material for manufacturing purposes (Hunge et al., 2021) for the productions of
polycarbonates, epoxy resins, polyesters, etc. (Allsop et al., 2019). BPA is used for
the production of products that are used in everyday life, such as plastic cups and
bottles, thermal papers, medical devices, vehicle parts, etc. (Muhamad et al., 2016).
Every year, 5 million tonnes of BPA is produced, and it is reported that production
increases every year (Vandenber et al., 2007). The problem is that BPA is detected at
several pg L! levels to thousands of ng L™! in sewage water treatment effluents and
even in drinking water (Man et al., 2018; He et al., 2017; Fan et al., 2013; Zhang et
al., 2019). It has been revealed that BPA potentially could cause neurotoxicity,

cardiovascular disease, breast cancer, reproductive disorder (Rochester 2013;



Almeida et al., 2019). Ever since the detrimental effect of BPA has been reported,
the use of BPA has been restricted as BPA alternatives were introduced.

As the restriction on BPA usage increased, the demand for BPA alternatives has
increased in return. The BPA analogues include BPS, BPF, BPB, and etc. (Qiu et al.,
2019), which are substituted in products that claim to be BPA free (Zhang et al.,
2018). As the demand for BPA alternatives increased for BPA substitutes, they have
been detected not only in water bodies but also in sediments. However, because the
BPA alternatives have analogous molecular structure to that of BPA, the BPA
analogues have similar endocrine disrupting property (Lu et al., 2019). Therefore,
further studies on efficient degradation of such BPA alternatives need to be fulfilled.
Among the BPs however, BPA has been and is still most frequently detected in
various water sources in different countries (Table 1). Therefore, efficient removal
of BPA in water is essential to reduce the risk on human health and aquatic
ecosystems.

Even though several methods for organic pollutant treatment exist, including
biological treatment, adsorption, and oxidation, these conventional treatment
methods are not as effective as advanced oxidation processes (AOPs) (Duetal., 2016;
Hunge et al., 2021;). AOP is an oxidative degradation technique that is efficient for
removing refractory organic compounds (Gmurek et al., 2017). Ever since the
introduction of AOP, it has been receiving much interest for its efficacy and
practicality, especially the UV-based AOPs consist of a UV lamp and an oxidant is
one of the best known AOPs (e.g., HO», S20s%, etc.) (Chong et al., 2010; Wang et
al., 2019a). In the UV/oxidant reaction, the UV photolysis converts the oxidant into
highly reactive species, such as hydroxyl radical (*OH) and sulfate radical (¢SO.)
that are in charge of target compound degradation (Hossaini et al., 2014). However,
the so-called efficient photochemical processes need additional chemicals.

Among the aforementioned AOPs, vacuum ultraviolet (VUV) photolysis is
considered as a green method that does not require additional chemicals as oxidants
but still produces plenty of reactive species through activation of water molecules
(Xie et al., 2018; Gonzalez et al., 2004). The VUV radiation covers wavelength from
100- 200 nm in which the photons homolyze and ionize water molecules to produce

powerfully-oxidizing species; *OH, though Eq. (1) and (2) (Zoschke et al., 2014).
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H,0 + hvigspm — *OH+He D
Hy0 + hvigspm — * OH+ H + +eg, (2)
Even without additive chemicals and simple reaction equipment, the VUV process
has the advantages of high efficiency for organic pollutants degradation (Imoberdorf
and Mohseni, 2012; Wu et al., 2021). Hence, since the VUV treatment is a
technology that does not require auxiliary chemical oxidant, it is considered as an
environmentally sustainable process (Bagheri and Mohseni (2015)), which does not
require post treatment of residual oxidant. Through VUV photolysis, organic
pollutants are degraded rapidly, and the toxicity decrease was remarkable compared
to other treatments such as chlorination (Yang et al., 2018; Wu et al., 2021). Previous

studies of BPA degradation in the AOP are listed in Table 2.



Table 1. Occurrence of BPA in various water media (unit: ng L)

Country Concentration Reference

China 2,980 Sun et al. (2014)
Sewage water effluent Australia 17 - 165 Ying et al (2016)

France 109 - 791 Tran et al. (2015)

USA 6.48 - 4700 Santos et al., (2016)

South Korea 4.6-272 Yamazaki et al. (2015)
Surface water Japan ND - 431 Yamazaki et al. (2015)

India 40 — 4,460 Chakraborty et al. (2021)

Mexico 39.1-174.6 Calderon-Moreno et al. (2019)

China 349-128 Zhang et al. (2019); Fan et al. (2013)
Drinking water Malaysia 3.5-59.8 Santhi et al. (2012)

Serbia 7.3 Celi¢ et al. (2020)

4



Table 2. Previous studies on degradation of BPA in AOP

Process Kinetics Removal % Byproduct Reference
UV/H,0; o 89 X Zhang and Li (2014)
VUV/H;0, 0] 97.6 X Moussavi et al. (2018)
VUV/PMS 0) 96.7 0) Sharma et al. (2015)
Ozonation o - O Kusvuran and Yildirim (2013)
Granular Activated carbon(GAC) X 100 X Moura et al. (2018)
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Objective

As mentioned earlier, numerous AOP methods for BPA removal have been carried
out, but there are minimal studies on BPA using VUV treatment. Because of such
unique property of the VUV process of producing reactive species through the
activation of water molecules that are in charge of the pollutant degradation, more
research needs to be fulfilled. Therefore, the main objective of this study is to not
only observe the efficacy and performance of the VUV reaction on BPA degradation,

but also figure out the impact of the degraded/ transformed BPA after the treatment.
2. Materials and methods

2.1. Chemicals

Bisphenol A (BPA, 99% >) and bisphenol AF (BPAF, analytical standard) were
purchased from Sigma Aldrich (St. Louis, MO, USA), and the physicochemical
properties are listed in Table 3. Potassium phosphate monobasic (NaH-PO.), humic
acid, potassium phosphate dibasic (Na;HPO,), sodium bicarbonate (NaHCO:s),
sodium nitrate (NaNQgs), and tert-butanol (TBA), were purchased from Sigma
Aldrich (St. Louis, MO, USA). Acetonitrile was purchased from Thermo Fischer
Scientific (Waltham, MA, USA) at HPLC grade, which was used as the mobile phase
for HPLC analysis.

Table 3. Physicochemical property of bisphenol A

Structure Properties

Chemical formula C1sH1602

HOOH Molecular weight 228.29 g mol*
Water solubility 120 mg L?




Table 4. Physicochemical property of bisphenol AF

Structure Properties
Chemical formula CisH1oF6O2
Molecular weight 336.233 g mol*?
Water solubility 240 mg L*

2.2. Experimental procedure

2.2.1. Degradation kinetics
The degradation kinetics of BPA in VUV photolysis was conducted using a dual

jacketed batch type photo-reactor (600 mL) equipped with a 6-W low-pressure VUV
mercury lamp (185 nm/254 nm, Sankyo Electric Co., Tokyo, Japan) (Figure 1.). All
of the experiments were conducted in duplicate. The stock solutions were prepared
by dissolving the chemicals in deionized water. The high stock BPA was prepared
by dissolving powdered form of BPA, and it was kept in the dark and cold condition
in the refrigerator.

For the removal kinetics, pH was first adjusted by spiking in 1M phosphate buffer
into 600 mL of deionized water and stirring with a magnetic bar on a stirring plate.
Then the BPA stock was spiked into the reactor to adjust to the initial concentration
of 22 uM (5 mg L™?). Finally, a VUV lamp was inserted into the batch reactor, in
which the reaction started as soon as the lamp was ignited. The temperature of the
reaction solution was maintained at 20.0 £ 0.1 G during the reaction by circulating
cooling water in the jacket to minimize the heat emitted from the UV lamp.

The influence of pH and the presence of inorganic anions and dissolved organic
matter (DOM) on BPA degradation were observed during the VUV reaction. For the
pH effect, pH was adjusted to 6, 7, 8, and 9 using phosphate buffer. Also, for the
effect of water components, bicarbonate and nitrate ions were used as inorganic
anions, and humic acid (HA) was used as DOM, at concentrations 0 mg L, 1 mg L
110 mg L and 30 mg L.
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Figure 1. The schematic diagram of the batch type reactor system.

2.2.2. Toxicity test

Acute toxicity test was fulfilled to examine the change in toxicity of BPA after
the VUV treatment using Microtox Model 500 Toxicity Analyzer. The luminescence
intensity was measured using bioluminescent bacteria Vibrio Fischeri. For the
experiment, the pH of the sample was not adjusted and VUV reaction was done with
BPA concentration of 22 uM and the reaction time of 3 hours.

Rk R



2.3. Analytical method

2.3.1. Analysis of BPA
BPA was analyzed using high-performance liquid chromatography (HPLC)

(UltiMate- 3000, Dionex, Sunnyvale, CA, USA) equipped with a Luna C18 (2)
column (2.0 mm x 150 mm i.d., 3-um particles; Phenomenex, Torrance, CA, USA).
The UV detector was set at 278 nm wavelength, and acetonitrile and deionized water
were used as the mobile phases (A) and (B), with the flow rate of 0.8 mL min-1 in
isocratic mode (A: B =5:5). The injection volume was set to 100 pL, and the column

was thermostated at 40 °C.

2.3.2. Mineralization of BPA
Total organic carbon (TOC) was employed to observe the mineralization of BPA

during the VUV process by using a TOC analyzer (TOC 5000, Shimadzu, Japan).

2.3.3. Analysis of transformation products (TPs)

In order to identify the organic transformation products (TPs) of BPA during the
VUV reaction, ultra-performance liquid chromatography quadrupole time-of-flight
mass spectrometry (UPLC-gTOF/MS) (Acquity UPLC Synapt G2-Si, Waters, USA)
equipped with Waters Acquity UPLC BEH C18 column (2.1 mm x 100 mm, 1.7
um). As for the HPLC condition, (A), acetonitrile, and (B) deionized water were
used for the UPLC-gTOF/MS mobile phase. The flow rate was set to 0.3 mL min-1,
and the samples were analyzed in the isocratic mode of 50% of (B), under negative
ESI mode. After UPLC-qTOF/MS analysis, the data were analyzed with UNIFI
software (Waters, Milford, MA, USA) to identify transformation products.

2.3.4. Radical contribution

The radical concentrations at each pH were determined using tertiary butanol
(TBA) for the calculation of the contribution of «OH during VUV reaction. Since
TBA is a *OH probe and reacts with «OH while it does not react with other radicals,

the contribution of reactive species can be calculated using competition kinetics.



3. Results and discussion

3.1. Degradation kinetics of BPA during VUV

photolysis

The degradation of BPA in VUV and UV-C photolysis is shown in Fig. 2, in
which the VUV reaction was shown to be much more efficient than that of UV-C
reaction. The BPA removal reached 99.5% removal within 1 hour while UV-C
treatment reached only 15.4% removal given the same amount of time. Even though
UV-C also contributed to slight BPA degradation, it requires a longer reaction time
than the VUV reaction, which can be considered inefficient.

The degradation of BPA during VUV and UV-C photolysis reaction both
followed the pseudo-first-order reaction kinetics (Kops) of 6.71 x 102 min? (R? =
0.99), and 2.66 x 10 min (R? = 0.99), respectively in the same condition at pH 7.0.
The Kkons 0f VUV treatment was 25 times faster than the UV-C reaction. This may be
because UV-C photolysis is not a radical mediated reaction, which does generate any
reactive species. Rather, the 254 nm wavelength directly photolyzes the target
compound with photons. Since the role of photons is minimal in BPA degradation,
UV-C degradation may not have contributed to efficient BPA degradation. In
contrast, the VUV reaction led to effective degradation of BPA via indirect oxidation
by the formation of *OH via activation of water.

In order to compare the effectiveness of VUV treatment in BPA degradation, one
of the BPA analogues, BPAF was compared in parallel in kinetic-wise. The
degradation kinetics of BPAF is illustrated in figure 2b, in which the kos) of BPAF
at pH 7.0 was 5.49 x 102 min? (R? = 0.99). Compared to BPA degradation at the
same condition, BPAF tends to have slower degradation kinetics. Because BPAF has
two trifluromethyl groups attached on the center of two phenols, it may have slower
degradation efficiency compared to that of BPA. However, since BPA and BPAF

have analogous molecular structures, they tend to have similar degradation kinetics.
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Figure 2a. Degradation kinetics of BPA by VUV and UV-C photolysis. ([BPA]o =
23 uM; pH =7.0, (6 W), The error bars indicate standard deviation (SD) of duplicate

experiments)
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Figure 2b. Degradation kinetics comparison of BPA and BPAF during VUV
treatment ([BPA]o = [BPAF]o = 23 uM; pH = 7.0, (6 W), The error bars indicate SD
of duplicate experiments)

3.2. Influencing factors

In water treatment processes, numerous factors influence the removal of
pollutants. Among those factors, the solution’s pH, water components, and the
temperature of water play significant roles in the target pollutant degradation.
Therefore, it is necessary to observe the target compound degradation under various

pH ranges and during the presence of inorganic anions and dissolved organic matters.

3.2.1. Effect of pH
For most cases, the pH of the solution often plays a significant impact on target
compound degradation. The pH of the solution affects the oxidation potential and
the production rate of *OH (Yang and Zhang 2019). The kons of BPA decreased as
the pH of the solution increased from 6 to 9 (Fig. 3). The konsat pH 6 was the fastest,
with the value of 8.76 x 102 min™. The kops gradually decreased to 5.08 x 102 min?
12



as the solution leaned to a more alkaline condition. Since the oxidation potential of
*OH decreases from 2.59 V at pH 0 to 2.18V at pH 7, the removal efficiency has
slowed down (Koppenol and Liebman (1984)). As a result, the kqns of BPA declined
due to a decrease in abundance of «OH, which played as the key factor in the

retardation of BPA degradation.
According to a previous study of VUV degradation on organic pollutants, a higher

production rate of H.O, was observed under acidic conditions, which favored the
production of *OH, following Eq. (3) (Yang et al. 2018).
H,0,+hv — 2¢0H

@)

o
<
o
Q
<
o
Q
£
[
(@)
M ¢
A pHo9
'4 T T T T T
0 10 20 30 40 50 60
Time (min)

Figure 3. Degradation kinetics of BPA in different pH values. ([BPA]o = 23 pM; pH

=7.0, (6 W), The error bars indicate the SD of duplicate experiments)

Table 5. Pseudo-first-order kinetics and coefficients of different pH values

pH 6 7 8 9
kops (min™) 0.0876 0.0675 0.0571 0.0516
R 0.998 0.999 0.998 0.995
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3.2.2. Effect of DOM and inorganic anions
Dissolved organic matter (DOM) and inorganic anions are also significant factors

that influence target compound degradation. Various anions and DOM are present
in every water sources, they should not be neglected since they are known to inhibit
the degradation efficiency of oxidation processes by scavenging the reactive radicals
(Chen, 2019; Duca et al., 2016). Therefore, the effects of water components on BPA
degradation in the VUV reaction should be considered. Humic acid (HA) was used
as the reference DOM, which is known to perform as a photosensitizer, light filter,
and radical quencher (Dhaka et al., 2017). Bicarbonate (HCOs") and nitrate (NO3")
were used as the anions, for they are the most common constituents present in water
bodies. The results on the effect of DOM, HCOs and NOs™ at concentrations of 1,
10, and 30 mg L*are shown in Fig. 4.

As shown in Fig. 4, the removal percentage of BPA in the presence of 1, 10, and
30 mg LT HA was 99.6%, 98.7%, and 94.7%, respectively. Compared to 99.5%
removal in the absence of HA. At HA concentration at 1 and 10 mg L?, the
degradation efficiency of BPA slightly improved and almost had no effect, while
concentration at 30 mg L™ slightly inhibited BPA degradation. The observed Kops
were 7.07 x 102 mint 6.73 x 10 min*t and 4.58 x 102 min for concentrations 1
mg L, 10 mg L%, and 30 mg L2, respectively. Compared to kops 0f 0 mg L of HA,
which was 6.75 x 102 min?, the presence of 1mg L* surely enhanced the BPA
degradation. This may be due to the formation of photo-oxidant species by the
reaction between HA and contaminants (Rebeiro et al., 2019; Ngouyap Mouamfon
et al., 2010). Moreover, it has been revealed that low concentrations of HA can
promote the degradation of target compound when photons excite HA into a triplet
state and generate various reactive oxygen species (ROS) are produced (Sharma et
al., 2015a; Kang et al., 2018). However, at HA concentration of 30 mg L*, the
observed kobs Slowed down, in which HA conducted as a radical scavenger (Zhang et
al., 2019).

The presence of anions in water could either boost the degradation of target
compounds via the generation of reactive species or hinder the degradation
efficiency by scavenging reactive species in AOPs (Moussavi et al., 2019; Zhang et
al., 2019; Acero et al., 2019). According to Fig. 4, the different concentrations of 1

14



mg L%, 10 mg L, and 30 mg L of HCOj3 did not alter the degradation efficiency of
BPA. The percent removal of BPA reached above 99% for all concentration levels
within 60 min of reaction in the HCO3" existence. Also, kinetic-wise, the observed
kons Of BPA rather slightly increased at the presence of 10 mg L™ of HCO3 of 7.71 x
102 mint (R? = 0.99) compared to kops Of the absence of HCOs™. Since the reaction
rate constant of HCOs is very slow, its inhibition on BPA degradation was
insignificant. This may be explained by the fact that COs™ radical, «COs, is produced
by the reaction with «OH (Duca et al., 2017), which is less reactive than <OH.
Because the produced *OH is converted into «COsas shown in Eg. (3), the
degradation of BPA has remained unchanged.

¢eOH+ HCO3 - H,0 + «CO3 (3)

In contrast, the presence of NOs™ ions hindered the removal efficiency during
VUV reaction where the observed kops in the presence of NOs anions were 6.66 x
102 min? (R?=0.99), 4.15 x 102 min** (R? =0.99), and 3.60 x 10 min** (R? = 0.99)
for 1 mg L%, 10 mg L%, and 30 mg Lt NOs respectively. At 1 mg L of NOs, there
was almost no change on the degradation kinetics when compared to 0 mg L NO3-
condition. However, at concentrations of 10 and 30 mg L, the degradation This can
be explained by the fact that NOs™ acted as an inner filter for the photon absorption
at 185 nm (Duca et al., 2017), which absorbed 185 nm photons and inhibited the
homolysis of water molecule. As a result, the formation of *OH drastically

decreased, and retarded the degradation of BPA.

15
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Figure 4. Degradation of BPA in the presence of HA during VUV reaction. ([BPA]o
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3.3. Mineralization and transformation products

3.3.1. TOC mineralization of BPA

The mineralization of BPA was observed through the decrease in TOC during the
12 hours VUV reaction time. As illustrated in Fig. 6, while BPA was completely
degraded within 60 min of reaction, only about 14% of mineralization of BPA was
achieved during 1 hour of reaction. It subsequently increased to 40% after 2 hours
and further reached to 91% mineralization at the final point. The fact that 92%
mineralization of BPA was attained within 12 hours indicates that a longer reaction
would completely mineralize BPA. Moreover, the decrease in TOC of BPA during
VUV reaction designates the aromatic ring opening of the BPA molecule, and it is

further broken down into smaller molecules.

3.3.2. Identification of TPs

A total of seven organic TPs of BPA during the VUV reaction were identified
with UPLC-qTOF/MS (TP 243, TP 241, TP 257, TP259, TP181, TP 104). The time-
peak area profile and degradation pathway of the identified BPA are illustrated in
Fig. 7 and 8, respectively. The degradation pathway of BPA was deduced by
examining the time-peak area profile, which provides examples of identified
byproducts.

According to the degradation pathway illustrated in Fig. 7 and 8, the very first
transformation product formed was expected to be TP 243, which was driven by the
attachment of an OH adduct on BPA ([M-H] = 227.1085). It can be inferred that TP
243 formation initiated the further formation of other TPs for they appeared after the
formation of TP 243. After the TP 243, the structure further transformed to TP 167
in which one of the phenol rings of the BPA structure was torn off by the *OH attack,
and simultaneous followed the attachment of another OH bond. Then TP 241 was
produced when OH on each side of TP 243 was oxidized, which then further
transformed into TP 259 which is formed by another hydroxylation on the meta
position of the meta position of the previous structure. Moreover, TP 257 was
produced by the transformation of methyl to carboxylic acid, which was then

transformed into TP181, which is also known as benzophenone.
18
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Figure 6. Decrease in TOC of BPA during VUV process. ([BPA]o = 23 uM; pH =
7.0, (6 W). The error bars indicate the SD of duplicate experiments)
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Table 7. Identified degradation products of BPA during VUV process

Component Formula Observed m/z Mass error RT Structure
TP104 CsHs 104.0629 2.63 0.91 ;\\
OH
TP167 CoH1203 167.0717 0.33 0.91
HO OH
o
TP181 Ci3H100 181.0728 -0.26 1.28
OH
TP241 C1sH150s 241.0860 0.49 1.28 ] C C
o
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3.4. Toxicity

In order to examine the ecological risk of BPA and its TPs during the VUV
reaction, acute toxicity test was assessed using Microtox and bioluminescent
bacteria V. fischeri. The luminescence of the bacteria is used as an index for the
observation of change in toxicity. The higher the luminescence of V. fischeri gets, the
less toxic the samples are. For the acute toxicity assessment, V. fischeri was exposed
to VUV treated samples. Unlike the effective degradation of BPA within 40 min of
VUV reaction, there was no dramatic change in luminescence. However, as
illustrated in Fig. 7, the luminescence inhibition decreased about 20% after 60 min,
and maintained until 180 min of the reaction. The increased luminescence indicates
that VUV treatment could potentially decrease the toxicity of BPA after the treatment.

Hence, the results indicate that the residual byproduct are less toxic than BPA.

90

—&— Toxicity

Luminescence inhibition (%)

50 T T T T T T T

0 20 40 60 80 100 120 140 160 180
Time (min)
Figure 9. Luminescence inhibition of V. fischeri. ([BPA]o = 23 uM; pH = 7.0, (6

W). The error bars indicate the SD of duplicate experiments)

23



3.5. Radical Contribution

The contribution of dominant radical species that is in charge of BPA degradation
during the VUV treatment was investigated using a radical scavenger, tertiary
butanol (TBA). During the VUV reaction, *OH, *H, and e, are produced, and among
these reactive species, *OH plays a major role in target pollutant degradation, for it
has the highest oxidation potential. Since *OH is the main contributor of BPA
degradation in the VUV reaction, TBA, which is a powerful «OH scavenger was used
to figure out the «OH contribution. The contribution of «<OH at pH 6, 7, 8, and 9 were
evaluated in the presence of 23 UM TBA adopting a competition kinetics method
under different pH conditions (6, 7, 8, and 9) to determine the second-order rate
constants of BPA with *OH (K.on-tea). The K.on-tea is known to have a rate constant
of 6.0 x 108 Ms? (Buxton et al., 1988), and keon.tsa Can be obtained via degradation
kinetics of TBA, which was analyzed using GC-MS. Therefore, [*OH]s can be
determined using Eq. (4). The k tsa was calculated to be 5.45 x 103, 3.4 x 103, 4.08
x 1073, and 4.21 x 10° mint at pH 6, 7, 8, and 9, respectively, and [+OH]ss is shown
was calculated to be 1.51 x 1013, 9.28 x 1014, 1.13 x 10%, and 1.17 x 10* M at pH
6, 7, 8, and 9, respectively. As for k.on-gea Iin EQ. (5), it has been reported previously
(1.7 x 10 M1s) (Sanchez-Polo et al., 2013).

k'rga = keon-TBa X [* OH]gs 4

k'.on-gpa = k.on-gpa X [* OH]s )
The contribution of *OH (k".on-sra) to BPA degradation during the VUV reaction at
different pH values can be calculated using Eq. (5). The results show that «OH
contributed to 82.6%, 71.4%, 49.65%, and 43.36% at pH 6, 7, 8, and 9, respectively.
Since the degradation kinetic was the fastest at pH 6 and gradually decreased with

rising pH, the contribution of «OH also decreased as pH increased.
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4. Conclusion

This study investigated the degradation kinetics, influencing factors,
transformation products, and toxicity during the removal of BPA during VUV
reaction. The BPA degradation reached 99.5% removal with VUV reaction within 1
hr. Based on the experimental results, the VUV process exhibited a higher efficiency
for BPA removal than that of the UV process. The BPA was degraded with k&, of
6.75 x 102 min’! for VUV reaction, whereas the k., of UV-C process was 25 times
slower. Also, the solution pH played a significant role in BPA degradation in which
BPA degraded faster in acidic conditions than alkaline conditions. During the VUV
reaction, approximately 92% of BPA was mineralized, and seven organic
transformation products were identified. With the identified TPs, the degradation
pathway of BPA was proposed. Based on the VUV reaction, acute toxicity test was
assessed with V. fischeri in which the luminescence inhibition rate decreased,
indicating the toxicity decrease of BPA after the treatment. Through the calculation
of radical contribution, it was revealed that the contribution of «OH gradually
decreased as pH increased. These results imply that the VUV process can be one of

the alternative options in water treatment plants in removing organic pollutants.
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Figure S1. Extracted ion chromatogram (XIC) and ion spectrum of BPA.
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Figure S2. XIC and ion spectrum of TP104.
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Figure S3. XIC and ion spectrum of TP104.
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Figure S4. XIC and ion spectrum of TP181.
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Figure S5. XIC and ion spectrum of TP241.
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Figure S7. XIC and ion spectrum of TP257.
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