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Abstract

With the advent of 5G wireless systems, ultra reliable low-latency communica-

tions (URLLC) and massive machine-type communications (mMTC) have recently at-

tracted growing attention. Applications in health care, connected cars, robotics, manu-

facturing, and free-viewpoint video are expected in low-latency communications, and

they demand extremely short round-trip latency levels as low as 1 ms. On the other

hand, mMTC mainly concerns the massive connectivity of a large number of devices

(e.g. sensors, robots, vehicles, and machines) to the base station (BS). Since conven-

tional communications systems (e.g. Long-Term Evolution (LTE)) are difficult to meet

the requirements of low-latency communications or mMTC, novel techniques suitable

for these communications environments are required. This dissertation proposes three

techniques for mMTC or low-latency communications.

In the first part of the dissertation, we propose a deep learning-based spreading

sequence design and active user detection (AUD) to support mMTC where a large

number of devices access the base station using non-orthogonal spreading sequences.

To design the whole communications system minimizing AUD error, we employ an

end-to-end deep neural network (DNN) where the spreading network models the trans-

mitter side and the AUD network estimates active devices. By using the AUD error as

a loss function, network parameters including the spreading sequences are learned to

minimize the AUD error. Numerical results reveal that the spreading sequences ob-

tained from the proposed approach achieve higher AUD performance than the conven-

tional spreading sequences in the compressive sensing-based AUD schemes, as well

as in the proposed AUD scheme.

In the second part of the dissertation, a precoding scheme to reduce the root mean

square (RMS) delay spread of precoded channels in a orthogonal frequency division

multiplexing (OFDM) system is proposed. In order to reduce latency in OFDM sys-
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tems while not increasing the overhead, it is of primary importance to reduce the ef-

fective delay spread of the channel and thus the length of the cyclic prefix (CP). We

formulate an optimization problem with an upper bound of the RMS delay spread as

the objective function and a signal-to-noise ratio for each subcarrier as constraints.

Semi-definite relaxation (SDR) technique is used to convert the problem into a convex

problem so as to find the optimal precoding vector. Numerical results confirm that the

proposed precoding design provides a significant reduction in the RMS delay spread,

especially when there are a large number of antennas at the base station.

In the last part of the dissertation, we addresses linear precoding design for sum

rate maximization in low-latency OFDM systems. In order to mitigate the overhead of

CP originating from shortened symbol duration for low-latency communications, 5G

wireless systems need to adopt short CP lengths. As channel delay spread must be less

than the CP length, we first derive the effective RMS delay spread and the achievable

rate using the zero-forcing assumption. We construct a sum rate optimization problem

for each user subject to delay spread constraints and then convert the problem into

a solvable convex problem along with a SDR technique. The precoding matrix is fi-

nally obtained by solving optimization problems for all users. Numerical results reveal

that the proposed scheme attains superior performance to the conventional sum rate

optimization, as well as small RMS delay spread.

keywords: Massive machine-type communications, low-latency communications,

deep neural network, non-orthogonal multiple access, precoding

student number: 2014-22545

ii



Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

1 INTRODUCTION 1

1.1 Deep Learning-based Spreading Sequence Design and Active User

Detection for Massive Machine-Type Communications . . . . . . . . 2

1.2 Precoding Design for Cyclic Prefix Overhead Reduction in a MISO-

OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Sum Rate Maximization with Shortened Cyclic Prefix in a MIMO-

OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 DEEP LEARNING-BASED SPREADING SEQUENCE DESIGN AND

ACTIVE USER DETECTION FOR MASSIVE MACHINE-TYPE COM-

MUNICATIONS 8

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 DNN-based Spreading Sequence Design and Active User Detection . 10

2.2.1 SN Architecture . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 AUDN Architecture . . . . . . . . . . . . . . . . . . . . . . 15

iii



2.2.3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Homogeneous Activities . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Heterogeneous Activities . . . . . . . . . . . . . . . . . . . . 21

3 PRECODING DESIGN FOR CYCLIC PREFIX OVERHEAD REDUC-

TION IN A MISO-OFDM SYSTEM 26

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Precoding Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Effective RMS Delay Spread and SNR . . . . . . . . . . . . 28

3.2.2 Precoding Optimization . . . . . . . . . . . . . . . . . . . . 29

3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 SUM RATE MAXIMIZATION WITH SHORTENED CYCLIC PREFIX

IN A MIMO-OFDM SYSTEM 37

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Preliminaries for Precoding Design . . . . . . . . . . . . . . . . . . . 38

4.2.1 Zero-Forcing Conditions . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Effective RMS Delay Spread . . . . . . . . . . . . . . . . . . 40

4.2.3 Achievable Rate . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Precoding Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 CONCLUSION 53

5.1 Deep Learning-based Spreading Sequence Design and Active User

Detection for Massive Machine-Type Communications . . . . . . . . 53

5.2 Precoding Design for Cyclic Prefix Overhead Reduction in a MISO-

OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



5.3 Sum Rate Maximization with Shortened Cyclic Prefix in a MIMO-

OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Abstract (In Korean) 60

Acknowledgments 62

v



List of Tables

3.1 Average Required CP Length and the Corresponding CP Overhead,

when M = 4 and α = 0.5 . . . . . . . . . . . . . . . . . . . . . . . 35

vi



List of Figures

1.1 The illustration of the uplink mMTC scenario with N devices sporad-

ically transmitting data symbols. . . . . . . . . . . . . . . . . . . . . 4

2.1 The structure of the end-to-end network. . . . . . . . . . . . . . . . . 12

2.2 The detailed structure of the SN in the training phase. . . . . . . . . . 14

2.3 The detailed structure of the AUDN. . . . . . . . . . . . . . . . . . . 16

2.4 Average AER of the AUDN as a function of the activity probability at

SNR = 20 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Average AER of the AUDN as a function of SNR in the heterogeneous

activity scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Average cross-correlation of each device as a function of the activity

probability in the heterogeneous activity scenario. . . . . . . . . . . . 24

2.7 Average AER of the OMP and CoSaMP as a function of SNR in the

heterogeneous activity scenario. . . . . . . . . . . . . . . . . . . . . 25

3.1 CIR of the original channels and precoded channel, when M = 2 and

α = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Average effective RMS delay spreads versus α for several values of M . 34

4.1 CDF of the effective RMS delay spread with Nt = 4, Nu = 2, and

Nr = {1, 2} at SNR = 20 dB. . . . . . . . . . . . . . . . . . . . . . 45

4.2 Sum rate and effective sum rate with Nt = 4, Nu = 2, and Nr = 1. . 46

vii



4.3 Effective sum rate for different numbers of users, Nu = {1, 2, 4},

when Nt = 4 and Nr = 1. . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Effective sum rate for different numbers of antennas and users, Nr =

{1, 2} and Nu = {2, 4}, when Nt = 8. . . . . . . . . . . . . . . . . . 48

4.5 Effective sum rate versus the RMS delay spread constraint with Nt =

4 and Nr = 1 at SNR = 20 dB. . . . . . . . . . . . . . . . . . . . . . 49

viii



Chapter 1

INTRODUCTION

With the advent of 5G wireless systems, ultra reliable low-latency communications

(URLLC) and massive machine-type communications (mMTC) have recently attracted

growing attention [1]–[4]. Applications in health care, connected cars, robotics, manu-

facturing, and free-viewpoint video are expected in low-latency communications, and

they demand extremely short round-trip latency levels as low as 1 ms [1], [2]. On the

other hand, mMTC mainly concerns the massive connectivity of a large number of de-

vices (e.g. sensors, robots, vehicles, and machines) to the base station (BS) [4]. Since

low-latency communications and mMTC have different requirements from conven-

tional communications systems (e.g. Long-Term Evolution (LTE)), novel techniques

to support these communications systems are essential.

Since low-latency communications require 1-ms round-trip latency levels [1]–[3],

wider subcarrier spacing up to 480 kHz has been considered for an orthogonal fre-

quency division multiplexing (OFDM) system design [3]. As the larger subcarrier

spacing leads to the shorter symbol duration, shorter cyclic prefix (CP), i.e., 1/4 or

1/8 of the normal CP, which is 4.7 µs in LTE, needs to be employed not to increase the

CP overhead due to shortened symbol duration. On the other hand, in order to avoid

inter-symbol interference (ISI) and inter-carrier interference (ICI), the CP length must

be larger than the channel delay spread [5]. Hence, it is crucial to reduce the effective
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channel delay spread to realize low-latency communications with minimal CP over-

head [6].

In mMTC, it is difficult to support mMTC in the conventional scheduling-based

orthogonal multiple access (OMA) due to the lack of resources and the heavy signaling

overhead so that grant-free non-orthogonal multiple access (GF-NOMA) has received

special attention in recent years [7]. Using non-orthogonal spreading sequences, GF-

NOMA allows devices to transmit data without complicated scheduling. In order to

support the grant-free transmission, the BS needs to identify active devices, i.e., de-

vices transmitting data, among all potential devices. This process, often called active

user detection (AUD), is an essential step for the successful data detection in GF-

NOMA [8].

This dissertation consists of three parts. In Chapter 2, we propose a deep learning-

based spreading sequence design and AUD scheme for an mMTC system. In Chapter 3

and Chapter 4, a precoding scheme is proposed to reduce the root mean square (RMS)

delay spread of precoded channels in a multiple-input single-output (MISO)-OFDM

system and to maximize the sum rate subject to RMS delay spread constraints in a

multi-user multiple-input multiple-output (MIMO)-OFDM system, respectively.

1.1 Deep Learning-based Spreading Sequence Design and

Active User Detection for Massive Machine-Type Com-

munications

Since only a small portion of machine-type devices is active at a time (see Figure 1.1), a

transmit vector consisting of data symbols of all devices is readily modeled as a sparse

vector [9]. In solving the AUD problem, compressive sensing (CS) techniques have

been widely used [8], [10]. Over the years, various techniques based on the CS-based

AUD schemes have been proposed [8], [10]. In these approaches, basically, the corre-

lation between the received signal and the spreading sequence of each device is used
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to identify active devices. That is, a device whose spreading sequence is maximally

correlated with the received signal is chosen in each iteration. Since the detection per-

formance depends heavily on the correlation among spreading sequences, selection of

the spreading sequences with low-correlation structure is crucial to improve the AUD

performance.

Recently, some efforts have been made to design the low-correlation spreading

sequences. In [11] and [12], iterative algorithms to find out the collection of spread-

ing sequences having small correlation structure have been proposed. While these ap-

proaches improve the detection performance to some extent, they do not consider the

mMTC context (e.g., the number of devices, channel models, and activities of devices)

so that the performance gain in practical mMTC environments is marginal.

An aim of this dissertation is to propose a deep learning-based communications

system suited for mMTC. The key idea of the proposed scheme is to use an end-to-end

deep neural network (DNN) minimizing the AUD error [13]. In a nutshell, we divide

the proposed DNN into two parts: the spreading network (SN) at the transmitter side

(devices) to model device activities, channels, and symbol spreading and the AUD

network (AUDN) at the receiver side (BS) to estimate active devices. Due to the use of

the end-to-end network from the transmitter all the way to the receiver, we can directly

use the AUD error as a loss function in the entire network training. As a result of the

training, we can directly obtain the spreading sequences (training parameters in the

SN) minimizing the AUD error.

From the numerical evaluations in grant-free mMTC scenarios, we show that the

spreading sequences obtained from the proposed scheme perform better than those

of the conventional scheme minimizing mutual coherence in terms of the AUD error

probability. We also show that the spreading sequences obtained from the proposed

scheme can be applied to the conventional CS-based AUD schemes.
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Figure 1.1: The illustration of the uplink mMTC scenario with N devices sporadically

transmitting data symbols.
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1.2 Precoding Design for Cyclic Prefix Overhead Reduction

in a MISO-OFDM System

In recent years, a few preceding works have attempted to mitigate the effects of channel

delay spread. In two studies [14] and [15], time-domain equalizers were designed to

remove the residual ISI and ICI caused by the channel impulse response (CIR) exceed-

ing the CP length by solving the Rayleigh quotient for the delay spread. In other work,

to avoid the implementation of a complex equalizer on the receiver side, a precoding

technique was employed [16], [17] as an alternative means of reducing the effective

delay spread. In one such study in particular [17], a precoding matrix was designed to

mitigate the effects of residual ISI and ICI for cases in which the channel delay spread

is longer than the CP length. However, the performance of the precoding scheme in

that case is degraded significantly as the excessive delay spread increases.

This dissertation presents a precoding design which reduces the RMS delay spread

of precoded channels in a MISO-OFDM system. In contrast to previous approaches

[16], [17] where precoding is used to mitigate the effect of an excessive delay spread

for a fixed CP, the proposed precoding scheme is designed to proactively reduce the

effective delay spread of the channel. As a result, the proposed design can reduce the

CP length without causing the ISI and ICI. We derive the effective RMS delay spread

and the signal-to-noise ratio (SNR) of each OFDM subcarrier as functions of the raw

channel matrix and the precoding matrix. We then formulate a precoding optimization

problem that minimizes the upper bound of the effective RMS delay spread while

satisfying the SNR and power constraints. As the original problem is found to be a

non-convex problem, we relax the problem using the semi-definite relaxation (SDR)

technique presented in earlier work [18] into a convex problem to find the optimal

solution.
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1.3 Sum Rate Maximization with Shortened Cyclic Prefix in

a MIMO-OFDM System

Although there are many works on sum rate maximization and CP overhead, respec-

tively, both topics have not been simultaneously investigated for low-latency commu-

nications. Most papers on sum rate maximization have focused on linear precoding

techniques owing to their practicability [19]–[22]. As the sum rate optimization gen-

erally demands the solution of non-convex problems, most of the preceding works at-

tempted to find a local optimum through an alternative means of Karush-Kuhn-Tucker

(KKT) conditions or a geometric program [19], [20]. Other precoding techniques im-

posed the zero-forcing condition to suppress multi-user interference and to decouple

the multi-user channel into multiple independent subchannels [21], [22]. As the spec-

tral efficiency decreases in proportion to the CP length for a given symbol duration,

sum rate maximization must consider the CP overhead. To achieve both high spec-

tral efficiency and low latency, several authors have pursued CP overhead reduction

by shortening the effective channel delay spread or modifying OFDM frame structure

[6], [23]. However, these works did not incorporate the CP overhead into the sum rate

optimization problem.

This dissertation proposes a precoding scheme to maximize the sum rate subject

to RMS delay spread constraints in a MIMO system. Contrary to earlier approaches

[19]–[22] which solely concentrate on sum rate maximization, the proposed design in-

corporates the effective RMS delay spread into the optimization problem. In the same

way as the previous works [21] and [22], we segregate the multi-user channel into

multiple single-user channels by imposing zero-forcing conditions, which results in an

optimization subproblem for each user. We examine the effective RMS delay spread

and the rate as functions of the raw channel matrix and the precoding matrix. Anal-

ogous to other sum rate optimization in [19]–[22], the original optimization problem

is found to be a non-convex problem. Using the SDR technique presented in [18], we
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convert the problem into a convex problem and find the optimal solution for each user.

Finally, the entire precoding matrix is constructed by composing precoding matrices

for all users.
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Chapter 2

DEEP LEARNING-BASED SPREADING SEQUENCE

DESIGN AND ACTIVE USER DETECTION FOR MAS-

SIVE MACHINE-TYPE COMMUNICATIONS

This work was in part presented at [24], where deep learning-aided spreading sequence

design was proposed. In this dissertation, we refine the training and operation process

and also supplement the performance analysis regarding AUD schemes. This work was

accepted by the IEEE Wireless Communications Letters [25].

2.1 System Model

We consider the uplink transmission of the mMTC system where N devices access a

single BS using spreading sequences of the lengthM (see Figure 1.1). We assume that

the BS and all devices are equipped with one antenna and channels experience the flat

fading. In most mMTC scenarios, the number of devices is larger than the length of

spreading sequences (i.e., M < N ) so that it is in general not possible to recover the

transmit vector with the conventional recovery algorithm designed for overdetermined

scenarios [26].

Let xn and sn ∈ RM×1 be the symbol and spreading sequence of the n-th device,
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respectively. Also, let δ ∈ RN×1 be the activity indicator vector (δn is 0 for an inactive

device and 1 for an active device). The indicator δn of the n-th device follows the

Bernoulli distribution:

δn ∼ Bern(pn), (2.1)

where pn is the activity probability of the n-th device. Then, the received signal at the

BS is given by

y =
N∑
n=1

snhnδnxn + w

= Sq + w,

(2.2)

where hn is the channel between the n-th device and the BS, S = [s1 · · · sN ] ∈

RM×N is the spreading matrix, q = [h1δ1x1 · · · hNδNxN ] is the composite vector

of the symbols and the channels, and w ∼ N (0, σ2I) is the additive white Gaussian

noise (AWGN) vector. In this work, we consider the real-valued spreading sequences to

make a fair comparison with the previous study using real values [12] but the extension

to the complex scenarios is straightforward.

If the number of active devices, called sparsity, is K, then the AUD problem can

be formulated as [27]

δ̃ = arg min
‖δ‖0=K

‖y − Sq‖22 . (2.3)

To solve this problem, greedy sparse recovery algorithm such as the orthogonal match-

ing pursuit (OMP) has been employed [26], [28]. Since the AUD performance of the

greedy algorithm relies heavily on the correlation among spreading sequences, pre-

vious studies focused on the minimization of the correlation between columns in the

spreading matrix [11], [12]. In [12], for example, an approach to find out the quasi-

orthogonal spreading sequences minimizing the mutual coherence has been proposed:

min
S

max
1≤i 6=j≤N

|〈si, sj〉|
‖si‖2 ‖sj‖2

and min
S

∥∥I− STS
∥∥2
F
, (2.4)

where ‖·‖F is the Frobenius norm. It has been shown that these approaches are effec-

tive in reducing the correlation among all spreading sequences [12]. However, since
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the portion of active devices is very small (less than 10%) [29], it would be more effec-

tive to consider the device activities in the spreading sequence design. If we somehow

minimize the correlation of spreading sequences for frequently active devices, multi-

user interference can be reduced significantly, thereby achieving an improvement in

the AUD performance.

2.2 DNN-based Spreading Sequence Design and Active User

Detection

In order to design the end-to-end system (transmitter and receiver) minimizing AUD

error, we employ the autoencoder-based DNN [13]. For the network training, we use

the binary cross-entropy loss of AUD [30]:

L(δ, δ̂) = −
N∑
n=1

(
δn log(δ̂n) + (1− δn) log(1− δ̂n)

)
, (2.5)

where δ̂ is the estimated activity indicator vector and δn and δ̂n are the element of δ

and δ̂, respectively. Using the backpropagation mechanism, we can propagate the loss

(the AUD error) all the way back to the transmitter and hence train the whole network

parameters.

The basic structure of the proposed end-to-end network is illustrated in Figure 2.1.

In essence, the proposed network consists of two subnetworks (SN and AUDN). The

SN models the transmitter side (symbol spreading, device activities, and channels)

and the AUDN estimates the activity indicator vector from the received signal. The

estimated activity indicator vector generated from the end-to-end network is

δ̂ = g(x; Θ), (2.6)

where x = [x1 · · · xN ] is the input symbol vector, g is the mapping function between

the input x and the output δ̂ of the network, and Θ is the set of all network parameters

including the spreading sequences. Note that parameters in Θ are updated during the
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training phase using the stochastic gradient descent (SGD) algorithm:

Θj = Θj−1 − η∇ΘL(Θj−1), (2.7)

where Θj is the parameters in the j-th training iteration, η is the learning rate, and

∇ΘL(·) is the gradient of the loss function L [13]. After the training phase, the spread-

ing sequences and AUD scheme are obtained from the trained end-to-end network (see

Figure 2.1).
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Figure 2.1: The structure of the end-to-end network.
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2.2.1 SN Architecture

In Figure 2.2, we depict the SN structure in the transmitter. Instead of using the deter-

ministic spreading sequences, we assign the trainable vector s′n ∈ Θ to the n-th device

(n = 1, · · · , N ). Hence, the spreading sequences are a part of the network parameters

to be updated by the SGD algorithm. To model the device activities, the symbol xn

is multiplied by the activity indicator δn which follows the Bernoulli distribution, i.e.

δn ∼ Bern(pn).
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2.2.2 AUDN Architecture

The main goal of the AUDN is to identify the activity indicator vector δ from y. Figure

2.3 depicts the structure of the AUDN. Because only a small number of machine-type

devices are active at a time, the activity indicator vector can be well modeled as a

sparse vector [9]. In solving this sparse recovery problem, we employ an iterative hard

thresholding-based network (IHT-Net), a DNN-based sparse recovery algorithm based

on iterative hard thresholding (IHT) [31]:

min
‖q‖0=K

‖y − Sq‖22 . (2.8)

In the IHT algorithm, the sparse vector q is iteratively updated as

q(t+1) = HK [(IN − STS)q(t) + STy], (2.9)

where q(t) is the estimate after t iterations and HK [·] is the hard thresholding operator

to enforce the sparsity K of the output vector. Similar to the IHT algorithm, one itera-

tion in the IHT-Net is mapped to the neural layer of a DNN. Specifically, the t-th layer

of the IHT-Net can be expressed as

δ(t+1) = ReLU[Ψ(t)δ(t) + β(t)], (2.10)

where δ(t) and δ(t+1) are the input and the output of the layer and Ψ(t) ∈ Θ and

β(t) ∈ Θ are the trainable weight and bias of the layer. Note that the hard thresholding

operator in the IHT is replaced by the rectified linear unit (ReLU).

In order to improve the accuracy of AUD when a massive number of devices are

used, we adjust the number of nodes based on the number of devices. It is well-known

from the universal approximation theorem that a DNN can approximate the desired

function, provided that sufficiently many hidden nodes are available [32]. This implies

that the AUDN with enough nodes can carry out the accurate AUD process even when

the number of devices is large. In light of this, we set the width of layers in proportion

to the number of devices N (e.g., δ(t) ∈ R5N×1).
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Figure 2.3: The detailed structure of the AUDN.
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In this work, we exploit the batch normalization (BN) and residual networks (ResNets)

to handle the problem occurring in the training phase [33], [34]. Since devices have

different activities in mMTC, a variation of the received signal (the sum of all device

signals) is large, which slows down the training speed and also hinders convergence

because the network should handle a large variation of input data. In order to mitigate

this, we add the BN layer to the data δ̄(t) = Ψ(t)δ(t) + β(t) = [δ̄
(t)
1 · · · δ̄(t)5N ] so that

the normalized data δ̌(t)1 , · · · , δ̌(t)5N have zero means and unit variances for each batch

size B:

δ̌
(t)
i =

δ̄
(t)
i − µB,i
σB,i

, for i = 1, · · · , 5N, (2.11)

where δ̌(t) = [δ̌
(t)
1 · · · δ̌(t)5N ] is the output of the BN layer and µB,i = 1

B

∑B
b=1 δ̄

(t)[b]
i

and σB,i = 1
B

∑B
b=1(δ̄

(t)[b]
i − µB,i)2 are the mini-batch mean and variance. Since a

large number of layers are used in the AUDN, the entire network suffers from the

vanishing gradient problem. Note that as the gradient propagates backward all the way

to the SN, new gradient obtained by multiplying local gradients gets smaller, making it

difficult to update the weight of early layers (i.e., layers of the SN). In order to alleviate

this so-called vanishing gradient problem, we exploit the ResNet architecture that adds

the direct links between stacked layers. The t-th layer in the ResNet is given by

δ(t+1) = ReLU[δ̌(t) + δ(t−1)]. (2.12)

Since the layers are directly connected by the ResNet (see Figure 2.3), the gradients

can be transferred across the layers with much less distortion, resulting in an improve-

ment in the training accuracy.

2.2.3 Operation

After the training phase, the trained parameters in the SN are used as the spreading

sequences. As a result of the trained AUDN, the estimated activity indicator δ̂n is

mapped to the unit interval (0, 1) through the sigmoid activation (f(x) = 1
1+e−x ).

Finally, if δ̂n is greater than the threshold α, we declare the n-th device as an active
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device. The threshold value α minimizing the AUD error is given by

α∗ = arg min
α

(|{(b, n) | δ̂[b]n ≤ α if δ[b]n = 1}|+

|{(b, n) | δ̂[b]n > α if δ[b]n = 0}|), (2.13)

where b is the data index [35].

2.3 Numerical Results

2.3.1 Simulation Setup

We simulate the uplink mMTC system with 64 devices (N = 64). The length of

spreading sequences is set to M = 32 and each spreading sequence sn is normalized

(i.e., ‖sn‖2 = 1). An AWGN channel model with the noise variance σ2 is assumed for

the sake of simplicity. The average symbol SNR is set to 1/σ2. We test two scenar-

ios: activity probabilities are the same and different. We henceforth call these cases

homogeneous and heterogeneous activities, respectively.

For comparison, we employ the conventional spreading sequences in [12] and the

Gaussian random spreading sequences in which the elements follow the normal distri-

bution N (0, 1). To evaluate the AUD performance, AUDN is used at the receiver and

is trained with the same training data for each set of spreading sequences. As an AUD

performance measure, we use the activity error rate (AER) considering both missed

detection and false alarms: AER = 1 − |Ω∩Ω̂|
|Ω∪Ω̂|

where Ω and Ω̂ are the support1 of δ

and δ̂, respectively.

Data samples are constructed by combining symbols and activity indicators deter-

mined by the activity probabilities (see Figure 2.2). In the training phase, data samples

with SNR in the range of 15 dB to 20 dB are used. We use 480,000 samples with

40 epochs for training, 60,000 samples for validation, and 60,000 samples for testing

[31]. We employ an Adam optimizer for the SGD optimization. In the simulations,
1If δ = [1 0 1 0], then the support is Ω = {1, 3}.
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the number of hidden layers, the batch size, and the threshold value are set to L = 10,

B = 200, and α = 0.4, respectively. The learning rate η starts from 0.01 and is divided

by 10 for every 10 epochs.

2.3.2 Homogeneous Activities

In the homogeneous activity scenario, the activity probabilities for all devices are the

same. Figure 2.4 presents the average AER with different spreading sequences as a

function of pn at SNR = 20 dB. The average AER of the Gaussian random sequences

is much larger due to the high correlation among the spreading sequences. On the other

hand, the average AER of the proposed sequences is lower than that of the conventional

sequences for each activity probability pn.

19



0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

10
-3

10
-2

10
-1
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2.3.3 Heterogeneous Activities

In this subsection, we examine whether the proposed approach can generate activity-

specific spreading sequences and thus improve the AUD performance when the activity

probabilities are different.

In Figure 2.5, we evaluate the average AER of the AUDN as a function of SNR.

The activity probability pn is modeled by the uniform distribution on the interval of

[0.01, 0.2] for scenario 1 and [0.01, 0.1] for scenario 2. We observe that the perfor-

mance of the proposed sequences is significantly better than that of the conventional

sequences. For example, the proposed sequences achieve about 3 dB gain in scenario

1 and 0.5 dB gain in scenario 2 over the conventional sequences at high SNR.

In Figure 2.6, we plot the average cross-correlation of each device as a function of

pn. The average cross-correlation of the i-th device is defined as

µi,avg =
1

N − 1

N∑
j=1,j 6=i

|〈si, sj〉|. (2.14)

If µi,avg is small, the spreading sequence of the i-th device is less correlated with other

spreading sequences. In terms of the AUD performance, it is desirable to have the

spreading sequences such that the cross-correlation between any two active devices is

as small as possible [8]. We observe that the proposed approach assigns the spreading

sequences with lower µi,avg to the devices with higher activity probabilities. Since

the average cross-correlation of devices with higher activity probabilities is reduced,

active devices are less correlated, thereby improving the performance of the proposed

approach in Figure 2.5.

Figure 2.7 depicts the average AER of the OMP and compressive sampling match-

ing pursuit (CoSaMP) in the heterogeneous activity scenario [36]. When compared to

Figure 2.5, we observe that the AUDN outperforms the greedy algorithms by a large

margin (e.g. more than 4 dB gain for scenario 1). Further, the performance gap be-

tween the conventional and the proposed sequences becomes more severe in a wide

range of SNR because the greedy algorithms depend heavily on the correlation among
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spreading sequences. In the CoSaMP, for example, the proposed sequences achieve

about 2.9 dB gain in scenario 1 and 1.3 dB gain in scenario 2 over the conventional

sequences.
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Figure 2.5: Average AER of the AUDN as a function of SNR in the heterogeneous
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Chapter 3

PRECODING DESIGN FOR CYCLIC PREFIX OVER-

HEAD REDUCTION IN A MISO-OFDM SYSTEM

This work was published in the IEEE Wireless Communications Letters [6].

3.1 System Model

We consider the downlink transmission of a MISO-OFDM system with M anten-

nas at the base station and N subcarriers. It is assumed that each user estimates the

frequency-selective channel and feeds it back to the base station. The frequency re-

sponse for the n-th subcarrier of the channel between the m-th transmit antenna and a

certain user can be represented as

Hm(n) =
N−1∑
`=0

hm(`)e−
j2πn`
N =

L−1∑
`=0

hm(`)e−
j2πn`
N ,

m = 1, 2, · · · ,M, n = 0, 1, · · · , N − 1,

(3.1)

where hm (`) is the CIR for the m-th antenna and L (≤ N ) denotes the length of the

CIR, i.e., hm(L) = hm(L + 1) = · · · = hm(N − 1) = 0. The aggregate channel

vector for the n-th subcarrier can be defined as

H̄ (n) ,
[
H1 (n) H2 (n) · · · HM (n)

]T
. (3.2)
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Let W̄m (n) denote the precoding vector associated with the channel vector H̄ (n),

which is defined as

W̄ (n) ,
[
W1 (n) W2 (n) · · · WM (n)

]T
. (3.3)

Accordingly, the composite channel for the n-th subcarrier encompassing the precod-

ing vector can be written as

Heq (n) =

M∑
m=1

Hm (n)Wm (n) = H̄(n)T W̄ (n) . (3.4)

By aggregating the composite channels for all subcarriers, an equivalent channel ma-

trix is formed as

~Heq ,


Heq (0)

Heq (1)

· · ·

Heq (N − 1)



=


H̄(0)T 0 · · · 0

0 H̄(1)T 0 · · ·

· · · · · · · · · · · ·

0 · · · 0 H̄(N − 1)T


︸ ︷︷ ︸

H


W̄ (0)

W̄ (1)

· · ·

W̄ (N − 1)


︸ ︷︷ ︸

~W

, (3.5)

where 0 is the 1×M all-zero vector.

3.2 Precoding Design

In this section, the proposed precoding design is presented. In Subsection 3.2.1, we

express the effective RMS delay spread and the SNR of each subcarrier as functions

of the raw channel matrix and the precoding matrix. In Subsection 3.2.2, we formulate

a precoding optimization problem to minimize an upper bound of the effective RMS

delay spread of the channel while satisfying an SNR constraint for each subcarrier. A

method based on the SDR technique is also discussed to find the optimal solution.
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3.2.1 Effective RMS Delay Spread and SNR

The effective RMS delay spread of the equivalent channel in the OFDM system is

calculated as [14]

τRMS =

√√√√ 1

E

N−1∑
`=0

(
`− ¯̀

)2|heq (`)|2, (3.6)

where heq (`) is the equivalent CIR corresponding toHeq (n), and E and ¯̀are, respec-

tively, given as

E =
N−1∑
`=0

|heq (`)|2 (3.7)

and

¯̀=
1

E

N−1∑
`=0

`|heq (`)|2. (3.8)

Assuming that ¯̀is fixed, we represent the discrete Fourier transform (DFT) of `− ¯̀as

F (n) =

N−1∑
`=0

(
`− ¯̀

)
e−

j2πn`
N . (3.9)

Using the convolution property and Parseval’s relation [37], τ2RMS can be expressed in

terms of Heq (n) and F (n) as

τ2RMS =

N−1∑
n=0

∣∣ 1
N (F (n) ~Heq (n))

∣∣2
N−1∑
n=0
|Heq (n)|2

, (3.10)

where ~ denotes the circular convolution. Consequently, N convolutions can be rep-

resented with a matrix multiplication as

1

N


F (0) ~Heq (0)

F (1) ~Heq (1)

· · ·

F (N − 1) ~Heq (N − 1)

 = F ~Heq, (3.11)
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where

F ,
1

N


F (0) F (N − 1) · · · F (1)

F (1) F (0) F (N − 1) · · ·

· · · · · · · · · · · ·

F (N − 1) · · · F (1) F (0)

 (3.12)

is an N × N matrix. Substituting (3.5) and (3.11) into (3.10), τ2RMS can be rewritten

as

τ2RMS =
~HH
eqF

HF ~Heq

~HH
eq
~Heq

=
~WHHHFHFH ~W

~WHHHH ~W
. (3.13)

On the other hand, the SNR in the n-th subcarrier is defined with the composite

channel Heq (n) and the noise variance σ2 as [38]

SNR (n) =
|Heq (n)|2

σ2
. (3.14)

The SNR in (3.14) can be transformed into a matrix form analogous to (3.13) as

SNR (n) =
~HH
eqEn

~Heq

σ2
=

~WHHHEnH ~W

σ2
, (3.15)

where the element on the i-th row and j-th column of the N ×N matrix En is given

as

(En)ij =

 1, i = j = n+ 1,

0, otherwise.
(3.16)

3.2.2 Precoding Optimization

From (3.15), an SNR constraint for the n-th subcarrier can be imposed as

SNR (n) =
~WHHHEnH ~W

σ2
≥ dn, (3.17)

where dn denotes the minimum required SNR for the n-th subcarrier. Moreover, the

denominator of τ2RMS in (3.13) can be lower-bounded as

~WHHHH ~W = σ2
N−1∑
n=0

SNR (n) ≥ σ2
N−1∑
n=0

dn. (3.18)
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Equivalently, the upper bound of τ2RMS can be derived as

τ2RMS ≤
~WHHHFHFH ~W

σ2
N−1∑
n=0

dn

. (3.19)

To make the optimization problem tractable, we use the upper bound in (3.19) instead

of τ2RMS as the objective function. As a result, an optimization problem that minimizes

the upper bound in (3.19) with the SNR constraints in (3.17) and a transmit power

constraint can be established as

min
~W

~WHS ~W

s.t. SNR (n) =
~WHSn ~W

σ2
≥ dn, n = 0, 1, · · · , N − 1,∥∥∥ ~W∥∥∥2 = P,

(3.20)

where S , HHFHFH, Sn , HHEnH, and P denotes the total transmit power at the

base station. Note that only the numerator of the upper bound is used in (3.20), since

the denominator is constant irrespectively of ~W .

The problem in (3.20) is difficult to solve as it is a non-convex problem. To tackle

this, we use an SDR technique [18]. From the property of trace, we know that ~WHS ~W =

tr( ~WHS ~W ) = tr(S ~W ~WH). We also define W = ~W ~WH , which is a rank-one Her-

mitian positive semi-definite matrix. The optimization problem in (3.20) can then be

rewritten as
min
W

tr (SW)

s.t. tr (SnW) ≥ σ2dn, n = 0, 1, · · · , N − 1,

tr (W) = P,

W � 0,

rank (W) = 1.

(3.21)

Note that the objective function and constraints apart from the rank constraint are

convex in (3.21). By omitting the rank constraint, we obtain the following relaxed
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optimization problem,

min
W

tr (SW)

s.t. tr (SnW) ≥ σ2dn, n = 0, 1, · · · , N − 1,

tr (W) = P,

W � 0,

(3.22)

which becomes a convex optimization problem that can be solved using standard con-

vex tools, such as CVX in MATLAB. Once we determine W, the precoding vector ~W

can be derived from the best rank-one approximation. Specifically, provided that the

optimal solution of (3.22) is Wopt, the eigen-decomposition of Wopt is given as

Wopt =

r∑
i=1

λiqiq
H
i , (3.23)

where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the eigenvalues of Wopt, while q1,q2, · · · ,qr are

the corresponding eigenvectors, and r = rank (Wopt). Given that the best rank-one

approximation to Wopt is λ1q1q
H
1 ,
√
λ1q1 is regarded as the solution of the problem

(3.20) [18].

3.3 Numerical Results

We evaluate the performance of the proposed precoding design. The number of anten-

nas at the base station,M , is set to 2, 4, 8, or 16. The number of OFDM subcarriers,N ,

is fixed at 16 and the length of the CIR,L, is fixed at 8. The CIR {hm (0) , hm (1) , · · · ,

hm (L− 1)} for the m-th antenna (m = 1, 2, · · · ,M ) is assumed to follow a tapped

delay line model, as in earlier research [16],

hm (`) =
a`,m√
τ

exp

(
− `

2τ

)
, ` = 0, 1, · · · , L− 1, (3.24)

where a`,m is a complex normal random variable and τ follows a log-normal distribu-

tion with log standard deviation of 10 dB. In Figs. 1 and 2, the original channel and the
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precoded channel represent the channel before and after precoding is applied, respec-

tively. The minimum SNR requirement dn is set according to the SNR corresponding

to the maximum ratio transmission (MRT) precoding [39]; i.e., Wm (n) = H†m (n),

where the superscript † denotes the complex conjugate. Accordingly, we set the SNR

constraints as

dn = αSNRMRT (n) , (3.25)

where SNRMRT (n) denotes the SNR corresponding to MRT precoding and the pa-

rameter α ∈ [0, 1] takes a real value. Note that less SNR loss is allowed with α closer

to 1.
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Figure 3.1: CIR of the original channels and precoded channel, when M = 2 and

α = 0.5.
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Figure 3.2: Average effective RMS delay spreads versus α for several values of M .
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Table 3.1: Average Required CP Length and the Corresponding CP Overhead, when

M = 4 and α = 0.5

L 4 8 12

Original channel 3.73 (18.9%) 7.23 (31.1%) 9.20 (36.5%)

Precoded channel 0.79 (4.7%) 1.33 (7.7%) 1.50 (8.6%)

Figure 1 depicts the CIR for one specific channel realization with and without the

proposed precoding scheme, when M = 2 and α = 0.5. This figure shows that the

CIR of the precoded channel has much less spread than the original channels for the

two antennas. In fact, the RMS delay spreads of the original channels are 1.17 and 1.66

for the two antennas, whereas that of the precoded channel is 0.23.

Figure 2 shows how the effective RMS delay spreads averaged over 500 indepen-

dent channel realizations vary with α for several values ofM . For comparison purpose,

we also present the results for MRT and Tomlinson-Harashima (TH) precoding in [40]

which are pre-equalization techniques. As compared with the original channels, the

proposed precoding provides less RMS delay spread in most cases. On the other hand,

MRT and TH precoding yield larger delay spread than the others, and so a longer CP

is required for those precoding schemes. When M = 4 and α = 0.5, for instance,

the average RMS delay spread of the proposed precoding is less than 25% of that of

the original channels. It should be noted that this channel shortening is attained at the

expense of allowing SNR loss as high as 3 dB, which is associated with α = 0.5, as

compared to MRT precoding. Nevertheless, the channel shortening gain still appears

to be significant for a relatively large α. Moreover, the reduction in the effective RMS

delay spread becomes more substantial with a larger value of M for an identical α,

indicating that with the proposed precoding scheme, we can achieve a significant re-

duction in the effective RMS delay spread with negligible SNR loss once there are a

sufficiently large number of antennas at the base station.
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Table 3.1 tabulates the average required CP length and the corresponding CP over-

head for different CIR lengths L when M = 4 and α = 0.5. The CP lengths are

simply calculated as 4 times the effective RMS delay spread, as in earlier work [41],

and the CP overhead is defined as the ratio of the CP length to the overall OFDM

symbol duration including the CP. Compared to the original channels, the precoded

channel provides much less CP overhead as a result of channel shortening. Specifi-

cally, the proposed precoding reduces the CP overhead to 25% of the CP overhead of

the original channels.
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Chapter 4

SUM RATE MAXIMIZATION WITH SHORTENED

CYCLIC PREFIX IN A MIMO-OFDM SYSTEM

This work was published in the IEEE Transactions on Vehicular Technology [42].

4.1 System Model

We consider the downlink transmission of a multi-user MIMO-OFDM system with

Nt antennas at the transmitter and Nu users. Each user is assumed to be equipped

with Nr antennas, and the base station estimates frequency-selective channels with N

subcarriers. At the k-th user, the frequency response for the n-th subcarrier between

the i-th transmit antenna and the j-th receive antenna is given as

Hk
ij(n) =

N−1∑
`=0

hkij(`)e
− j2πn`

N =
L−1∑
`=0

hkij(`)e
− j2πn`

N ,

i = 1, 2, · · · , Nt, j = 1, 2, · · · , Nr,

n = 0, 1, · · · , N − 1,

(4.1)

where hkij(`) is the corresponding CIR, andL (≤ N ) denotes the length of the CIR, i.e.,

hkij(L) = hkij(L+ 1) = · · · = hkij(N − 1) = 0. Subsequently, the frequency response

matrix of the k-th user can be represented as anNr×Nt matrix, Hk(n) = {Hk
ij(n)}T .
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Let X(n) ∈ CNu×1 denote the input vector consisting of each user’s data Xk(n),

k = 1, 2, · · · , Nu and W(n) ∈ CNt×Nu be the corresponding precoding (pre-equalization)

matrix for the n-th subcarrier. As long as the effective delay spread of the precoded

channel is less than the CP length, we can represent the output vector of the channel at

the k-th user as [5], [43]

Yk(n) = Hk(n)W(n)X(n) + νk(n)

= Hk(n)

Nu∑
i=1

Wi(n)Xi(n) + νk(n),
(4.2)

where Wi(n) is the i-th column vector of W(n), and νk(n) denotes the Nr × 1 noise

vector.

4.2 Preliminaries for Precoding Design

In Subsection 4.2.1, we incorporate zero-forcing conditions into the system model.

We then derive the effective RMS delay spread and the achievable rate for each user

as functions of the precoding matrix in Subsection 4.2.2 and Subsection 4.2.3, respec-

tively. The resulting equations constitute the objective function and constraints for the

optimization problem in Section 4.3.

4.2.1 Zero-Forcing Conditions

In the same manner as [21] and [22], to eliminate other user interference at the k-

th user in (4.2), the precoding vector Wk(n) must satisfy the following zero-forcing

conditions:

Hi(n)Wk(n) = 0Nr×1 if i 6= k,

i = 1, 2, · · · , Nu.
(4.3)

where 0Nr×1 is the Nr × 1 all-zero matrix. With the zero-forcing conditions imposed,

the output signal in (4.2) can be rewritten as

Yk(n) = Hk(n)Wk(n)Xk(n) + νk(n). (4.4)
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Accordingly, at the j-th antenna of the k-th user, the scalar composite channel for the

n-th subcarrier encompassing the precoding vector can be expressed as

Heq,jk(n) = Hjk(n)Wk(n), (4.5)

in which Hjk(n) is the j-th row vector of Hk(n). By aggregating the composite chan-

nels for all subcarriers, the equivalent channel matrix is formed as

Heq,jk ,


Heq,jk(0)

Heq,jk(1)

· · ·

Heq,jk(N − 1)

 = HjkWk, (4.6)

where Hjk ∈ CN×NNt and Wk ∈ CNNt×1 are, respectively, defined as

Hjk ,


Hjk(0) 01×Nt · · · 01×Nt

01×Nt Hjk(1) 01×Nt · · ·

· · · · · · · · · · · ·

01×Nt · · · 01×Nt Hjk(N − 1)

 (4.7)

and

Wk ,


Wk(0)

Wk(1)

· · ·

Wk(N − 1)

. (4.8)

Now let us define an NNr ×NNt matrix,

Hi ,


Hi(0) 0Nr×Nt · · · 0Nr×Nt

0Nr×Nt Hi(1) 0Nr×Nt · · ·

· · · · · · · · · · · ·

0Nr×Nt · · · 0Nr×Nt Hi(N − 1)

 , (4.9)

then the zero-forcing conditions in (4.3) can be rewritten as

HiWk = 0NNr×1 if i 6= k,

i = 1, 2, · · · , Nu.
(4.10)

39



From the fact that HiWk = 0NNr×1 holds if and only if ‖HiWk‖2 = 0, (4.10) can

be represented in a quadratic form:

‖HiWk‖2 = 0 if i 6= k,

i = 1, 2, · · · , Nu.
(4.11)

4.2.2 Effective RMS Delay Spread

The effective RMS delay spread of the equivalent channel Heq,jk(n) in (4.6) is given

as [14]

τRMS,jk =

√√√√ 1

Ejk

N−1∑
`=0

(`− ¯̀
jk)

2|heq,jk(`)|2, (4.12)

where heq,jk(`) is the equivalent CIR corresponding to Heq,jk(n), and Ejk and ¯̀
jk are

defined as

Ejk =

N−1∑
`=0

|heq,jk(`)|2, ¯̀
jk =

1

Ejk

N−1∑
`=0

`|heq,jk(`)|2. (4.13)

Assuming that ¯̀
jk is constant, we represent the DFT of `− ¯̀

jk as

Fjk(n) =
N−1∑
`=0

(`− ¯̀
jk)e

− j2πn`
N . (4.14)

From the preceding work [6], we can express the effective RMS delay spread in (3.6)

as

τ2RMS,jk =

N−1∑
n=0

∣∣ 1
N (Fjk(n) ~Heq,jk(n))

∣∣2
N−1∑
n=0
|Heq,jk(n)|2

, (4.15)

where ~ stands for the circular convolution. In addition, N convolutions can be repre-

sented with a matrix multiplication as

1

N


Fjk(0) ~Heq,jk(0)

Fjk(1) ~Heq,jk(1)

· · ·

Fjk(N − 1) ~Heq,jk(N − 1)

 = FjkHeq,jk, (4.16)
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where

Fjk ,
1

N


Fjk(0) Fjk(N − 1) · · · Fjk(1)

Fjk(1) Fjk(0) · · · · · ·

· · · · · · · · · · · ·

Fjk(N − 1) · · · Fjk(1) Fjk(0)

 (4.17)

is an N ×N matrix. Substituting (4.6) and (4.16) into (4.15), we finally have a matrix

equation:

τ2RMS,jk =
HH
eq,jkF

H
jkFjkHeq,jk

HH
eq,jkHeq,jk

=
WH

k HH
jkF

H
jkFjkHjkWk

WH
k HH

jkHjkWk
.

(4.18)

In OFDM systems, an RMS delay spread constraint is typically imposed by the CP

length. Supposing that ρ is the maximum allowed RMS delay spread, the delay spread

of the j-th antenna in (4.18) must satisfy

τ2RMS,jk =
WH

k HH
jkF

H
jkFjkHjkWk

WH
k HH

jkHjkWk
≤ ρ2 (4.19)

and equivalently

WH
k (HH

jkF
H
jkFjkHjk − ρ2HH

jkHjk)Wk ≤ 0. (4.20)

4.2.3 Achievable Rate

From (4.4), the achievable rate for the k-th user with all subcarriers is given as [22]

Rk =
N−1∑
n=0

log

∣∣∣∣INr +
1

σ2
Hk(n)Wk(n)WH

k (n)HH
k (n)

∣∣∣∣
=

N−1∑
n=0

log

∣∣∣∣1 +
1

σ2
WH

k (n)HH
k (n)Hk(n)Wk(n)

∣∣∣∣,
(4.21)

where INr is an Nr × Nr identity matrix and σ2 is the noise variance. The second

equality in (4.21) comes from Sylvester’s determinant identity [44]. In order to repre-

sent the equation in terms of Wk, an Nt ×NNt matrix En is defined as

En ,
[
0Nt×Nt · · · 0Nt×Nt INt 0Nt×Nt · · ·

]
(4.22)
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such that Wk(n) = EnWk, n = 0, 1, · · · , N − 1. As a result, the achievable rate Rk

for the k-th user can be expressed in terms of Wk as

Rk =

N−1∑
n=0

log(1 + WH
k QknWk), (4.23)

where Qkn , 1
σ2 EH

n HH
k (n)Hk(n)En is anNNt×NNt positive semi-definite matrix.

4.3 Precoding Optimization

In this section, we formulate an optimization problem and present an SDR technique

to find the solution. In particular, we aim to maximize the achievable rate of each

user in (4.23) subject to the effective RMS delay spread constraint in (4.20) and zero-

forcing constraints in (4.11). Correspondingly, a precoding optimization problem can

be formulated as

max
Wk

N−1∑
n=0

log(1 + WH
k QknWk)

s.t. WH
k SjkWk ≤ 0, j = 1, 2, · · · , Nr,

‖HiWk‖2 = 0, i = 1, 2, · · · , Nu, i 6= k,

‖Wk‖2 =
P

Nu
,

(4.24)

where Sjk , HH
jkF

H
jkFjkHjk − ρ2HH

jkHjk, and P denotes the total transmit power

at the base station. Equal power allocation for all users is assumed in (4.24). Intu-

itively, the sum rate will decrease as the effective delay spread constraint becomes

more stringent, i.e., as ρ becomes smaller. This is because more degree of freedom in

the precoding should be exploited to limit the delay spread rather than to improve the

sum rate. However, smaller ρ can support a shorter CP length, which provides longer

time for data transmission. This tradeoff will be elaborated in Section 4.4.

Note that the problem in (4.24) is a non-convex quadratically constrained quadratic

program (QCQP) because Sjk may not be a positive semi-definite matrix. In this re-

gard, the SDR technique in [18] can be used to solve the problem. From properties of
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trace operation, we observe that WH
k QknWk = tr(WH

k QknWk) = tr(QknWkWH
k ).

If we define X , WkWH
k , which is a rank-one positive semi-definite matrix, the op-

timization problem in (4.24) is equivalent to

max
X

N−1∑
n=0

log(1 + tr(QknX))

s.t. tr(SjkX) ≤ 0, j = 1, 2, · · · , Nr,

tr(HH
i HiX) = 0, i = 1, 2, · · · , Nu, i 6= k,

tr(X) =
P

Nu
,

X � 0,

rank(X) = 1.

(4.25)

Notice that the constraints in (4.25) except for the last rank-one condition are convex.

By omitting the rank-one constraint, we obtain a relaxed formulation which becomes

a convex optimization problem. It can be solved by means of standard convex tools,

such as CVX in MATLAB [45]. Using the best rank-one approximation, we extract

the precoding vector Wk from X. Provided that the optimal solution of the relaxed

problem is Xopt, the eigen-decomposition of Xopt is given as

Xopt =
r∑
i=1

λixix
H
i , (4.26)

where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the eigenvalues of Xopt, while x1,x2, · · · ,xr are

the corresponding eigenvectors, and r = rank(Xopt). Considering that the best rank-

one approximation to Xopt is λ1x1x
H
1 ,
√
λ1x1 is deemed the solution of the original

problem in (4.24) [18]. To sum up, the precoding matrix W(n) over all subcarriers is

drawn from Nu optimal solutions of (4.24) for all users.

4.4 Numerical Results

In this section, we evaluate the performance of the proposed precoding scheme in

terms of the sum rate and effective RMS delay spread. It is assumed that the number

43



of transmit antennas at the base station is 4 or 8 and that each user is equipped with

1 or 2 antennas at the receiver. In all simulations, the number of OFDM subcarriers

and the length of CIR are fixed to N = 16 and L = 8, respectively. The values of the

CIR are assumed to follow independent identically distributed (i.i.d.) complex normal

distributions CN (0, 1), and the noise covariance matrix is set to INr , i.e., σ2 = 1.

Correspondingly, the SNR is equal to the transmit power P . All the results are ob-

tained by averaging 1,000 simulation runs with independent channel realizations. For

comparison purpose, we also evaluate the performance of the zero-forcing beamform-

ing (ZFBF) based method in [21]. Given that the problem formulation in the ZFBF

based method resembles the proposed optimization problem except for delay spread

constraints in (4.24), the sum rate of the proposed scheme is expected to be upper-

bounded by that of the ZFBF based method.
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Figure 4.1: CDF of the effective RMS delay spread with Nt = 4, Nu = 2, and Nr =

{1, 2} at SNR = 20 dB.
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Figure 4.2: Sum rate and effective sum rate with Nt = 4, Nu = 2, and Nr = 1.
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Figure 4.3: Effective sum rate for different numbers of users, Nu = {1, 2, 4}, when

Nt = 4 and Nr = 1.
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Figure 4.4: Effective sum rate for different numbers of antennas and users,Nr = {1, 2}

and Nu = {2, 4}, when Nt = 8.
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Figure 4.5: Effective sum rate versus the RMS delay spread constraint with Nt = 4

and Nr = 1 at SNR = 20 dB.
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Figure 4.1 depicts the cumulative distribution function (CDF) of the effective RMS

delay spread withNt = 4,Nu = 2, andNr = {1, 2} at the SNR of 20 dB. It is demon-

strated that the proposed scheme complies with the delay spread constraints, ρ = 0.5

and ρ = 1. The average values of the effective RMS delay spread for Nr = 1 amount

to 0.42 and 0.94 in the proposed design, while it is 2.41 in the ZFBF based method.

Given that the CP length is usually selected as several times the RMS delay spread

[41], the ZFBF based method yields more than 5 times CP overhead as compared to

the proposed design with ρ = 0.5. Hence, the proposed precoding scheme can accom-

plish low CP overhead via the delay spread constraint.

The achievable rate in (4.21) does not reflect the loss of data rate due to CP over-

head. Considering the CP overhead, we can define effective achievable rate for the k-th

user as

Reff,k =

(
1− LCP

LCP +N

)
Rk, (4.27)

where LCP denotes the CP length, which is assumed to be 4 times the mean value of

the effective RMS delay spread in the simulation runs [41].

In Figure 4.2, we present the sum rate obtained from (4.21) and the effective sum

rate obtained from (4.27). From the magnified image, it is verified that the original

sum rate of the proposed scheme is upper-bounded by that of the ZFBF based method,

although the performance gap between the two schemes is marginal. Moreover, the

sum rate improvement with ρ = 1 is negligible as compared with ρ = 0.5, imply-

ing that constraints for the effective RMS delay spread scarcely affects the sum rate.

The effective sum rate is larger with the proposed scheme than with the ZFBF based

method, and the performance gap is mainly caused by the CP length or the effective

RMS delay spread.

Figure 4.3 illustrates the effective sum rate for different numbers of users, Nu =

{1, 2, 4}. The effective sum rate with the proposed design is greater than that of the

ZFBF based method in all circumstances. When the number of users increases, the

effective sum rate gap between the two schemes becomes more distinct because the
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RMS delay spread of the ZFBF based method is larger. As the solution without the

delay spread constraint yields marginal sum rate improvement but considerable CP

overhead, the proposed precoding is appropriate for effective sum rate maximization.

At high SNR, the effective sum rate increases as the number of users grows. However,

even though the number of users changes from Nu = 2 to Nu = 4, the effective

sum rate of both schemes decreases at low SNR. This indicates that, in the case of

many users, efforts to eliminate multi-user interference do not have a significant impact

on the sum rate maximization in low SNR regions where the noise dominates the

interference.

Figure 4.4 depicts the effective sum rate with different numbers of receive antennas

and users. Although the number of receive antennas increases, the sum rate gain is

small because both precoding techniques do not consider the degrees of freedom for

the receive antennas. Consequently, the reduction in the effective sum rate occurs by

a longer CP length. In particular, the performance degradation of the ZFBF based

method is severer due to the absence of the delay spread constraint. When Nu = 2,

for example, the average RMS delay spread of the ZFBF based method is 1.61 with

Nr = 1 and nearly doubles to 3.31 with Nr = 2. In the same situation, the average

RMS delay spread of the proposed scheme with ρ = 0.5 amounts to 0.38 with Nr = 1

and 0.44 with Nr = 2.

In Figure 4.5, we present the effective sum rate versus the RMS delay spread con-

straint, ρ, for Nt = 4 and Nr = 1. When ρ is small, the sum rate optimization cannot

achieve high rates because it is difficult to satisfy the tight constraint. For example, the

sum rate performance with ρ under 0.5 is considerably small. Accordingly, the effec-

tive sum rate has a low value in spite of small CP overhead. For large values of ρ, the

proposed design has the sum rate performance comparable to the ZFBF based method

as shown in Figure 4.2, which leads to the improvement of the effective sum rate with

reduced CP length. The optimal value of ρ may exist due to aforementioned tradeoff

and appears to be constant regardless of the number of users. Hence, we can determine
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the CP length from the optimal delay spread constraint in an OFDM system.
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Chapter 5

CONCLUSION

This dissertation proposed a deep learning-based NOMA scheme and precoding design

for 5G wireless communications.

5.1 Deep Learning-based Spreading Sequence Design and

Active User Detection for Massive Machine-Type Com-

munications

In this dissertation, we proposed a deep learning-based spreading sequence design and

AUD scheme for an mMTC system. To design the communications system minimiz-

ing AUD error, we employed an end-to-end DNN. By properly training the whole

network, we can obtain the spreading sequences and the AUD scheme optimized for

mMTC environments. Numerical results demonstrated that the AUD performance of

the proposed scheme is significantly better than that of the conventional schemes in

the heterogeneous activity scenario. Further, we observed that the spreading sequences

obtained from the proposed end-to-end DNN can improve the AUD performance even

when we use the conventional greedy algorithms.
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5.2 Precoding Design for Cyclic Prefix Overhead Reduction

in a MISO-OFDM System

In this dissertation, a precoding design was proposed to reduce the effective RMS delay

spread of the precoded channel and realize low-latency communications in a MISO-

OFDM system. We formulated an optimization problem based on an upper bound of

the effective RMS delay spread and the SNR for each subcarrier. To find the optimal

precoding vector, the SDR technique is used to convert the optimization problem into

a solvable convex problem. The proposed precoding scheme is found significantly to

reduce the effective delay spread of the channel and thus the CP overhead of OFDM

systems. Moreover, the advantage of the proposed approach becomes more distinct as

the number of antennas at the base station increases. Hence, the proposed approach

in combination with massive MIMO can provide a promising solution to realize low-

latency communications with OFDM transmissions.

5.3 Sum Rate Maximization with Shortened Cyclic Prefix in

a MIMO-OFDM System

We proposed a precoding scheme to maximize the sum rate under the RMS delay

spread constraint for low-latency communications. Applying the zero-forcing condi-

tions, we formulated an optimization problem for each user in terms of the achievable

rate and the effective RMS delay spread. Subsequently, the optimal precoding matrix

was obtained from the solutions of a convex problem relaxed by the SDR technique.

Numerical results showed that the effective sum rate of the proposed design is sig-

nificantly larger than that of the conventional zero-forcing method without delay con-

straints. Last but not least, the proposed precoding scheme can substantially reduce the

effective delay spread of the channel, lowering CP overhead for low-latency commu-

nications.
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초록

최근 5G시스템의등장으로고신뢰저지연통신(ultra reliable low-latency com-

munications, URLLC)과 대규모 사물 통신(massive machine-type communications,

mMTC)이주목을받고있다.의료서비스,커넥티드카,로봇공학,제조업,자유시

점 비디오 등 다양한 서비스들이 저지연 통신에서 예상되고, 이들은 1 ms 정도의

극도로낮은지연시간을요구한다.한편,대규모사물통신은기지국에서많은기기

(예를들어센서,로봇,자동차,기계)의방대한연결성에관한것이다.기존통신시

스템(예를 들어 Long-Term Evolution (LTE))은 저지연 통신과 대규모 사물 통신의

요구사항을만족하기어렵기에이통신환경에적합한새로운기술이필요하다.본

학위논문에서는대규모사물통신과저지연통신을위한세가지기술을제안한다.

논문의첫부분에서는많은기기가비직교확산시퀀스를사용해기지국에접속

하는대규모사물통신을지원하는딥러닝기반의확산시퀀스설계및활성사용자

검출(active user detection, AUD)방법을제안한다.검출오류를최소화하는전체통

신시스템을설계하기위해,종단간심층신경네트워크(deep neural network, DNN)

를활용한다.이신경네트워크에서확산네트워크는송신기를모델링하고검출네

트워크는활성기기를추정한다.검출오류를손실함수로사용함으로써,확산시퀀

스를 포함한 네트워크 변수들은 검출 오류를 최소화하도록 학습된다. 시뮬레이션

결과에서는 제안한 방법으로 얻어진 확산 시퀀스가 압축센싱 기반의 검출 기법과

제안한검출기법모두에서기존의시퀀스보다더좋은검출성능을달성하는것을

보여준다.

논문의두번째부분에서는직교주파수분할다중방식(orthogonal frequency di-
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vision multiplexing, OFDM)시스템에서프리코딩된채널의RMS (root mean square)

지연 확산을 줄이는 프리코딩 기법을 제안한다. OFDM 시스템에서 오버헤드를 증

가시키지않으면서지연을줄이기위해서는채널의지연확산과그로인한CP (cyclic

prefix)의 길이를 줄이는 것이 무엇보다 중요하다. 제안하는 기법에서는 RMS 지연

확산의상한을목적함수로하고각부반송파의신호대잡음비를제약조건으로하

는최적화문제를설정한다.최적화된프리코딩을찾을수있도록원래문제를볼록

문제로변환하기위해 SDR (semi-definite relaxation)기법을사용한다.시뮬레이션

결과에서는제안한프리코딩설계가특히기지국에서안테나의수가많을때 RMS

지연확산을크게줄이는것을보여준다.

논문의마지막부분에서는저지연 OFDM시스템에서전송률최대화를위한선

형 프리코딩 설계를 다룬다. 저지연 통신에서 짧아지는 심볼 주기로 인한 CP의 오

버헤드를완화하기위해 5G무선시스템은짧은 CP를사용할필요가있다.채널의

지연확산은 CP길이보다짧아야하므로먼저실질적인 RMS지연확산과달성가능

한전송률을제로포싱조건을사용하여유도한다.다음으로지연확산제약조건을

만족하는 전송률 최적화 문제를 사용자마다 정립하고 SDR 기법으로 해결 가능한

볼록 문제로 변환한다. 모든 사용자에 대해 최적화 문제를 푸는 것으로 전체 프리

코딩행렬을얻는다.시뮬레이션결과에서는제안한기법이작은 RMS지연확산과

함께기존의전송률최적화보다월등한성능을달성하는것을보여준다.

주요어:대규모사물통신,저지연통신,딥러닝,비직교다중접속,프리코딩

학번: 2014-22545
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