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Abstract

With the advent of 5G wireless systems, ultra reliable low-latency communica-
tions (URLLC) and massive machine-type communications (mMTC) have recently at-
tracted growing attention. Applications in health care, connected cars, robotics, manu-
facturing, and free-viewpoint video are expected in low-latency communications, and
they demand extremely short round-trip latency levels as low as 1 ms. On the other
hand, mMTC mainly concerns the massive connectivity of a large number of devices
(e.g. sensors, robots, vehicles, and machines) to the base station (BS). Since conven-
tional communications systems (e.g. Long-Term Evolution (LTE)) are difficult to meet
the requirements of low-latency communications or mMTC, novel techniques suitable
for these communications environments are required. This dissertation proposes three
techniques for mMTC or low-latency communications.

In the first part of the dissertation, we propose a deep learning-based spreading
sequence design and active user detection (AUD) to support mMTC where a large
number of devices access the base station using non-orthogonal spreading sequences.
To design the whole communications system minimizing AUD error, we employ an
end-to-end deep neural network (DNN) where the spreading network models the trans-
mitter side and the AUD network estimates active devices. By using the AUD error as
a loss function, network parameters including the spreading sequences are learned to
minimize the AUD error. Numerical results reveal that the spreading sequences ob-
tained from the proposed approach achieve higher AUD performance than the conven-
tional spreading sequences in the compressive sensing-based AUD schemes, as well
as in the proposed AUD scheme.

In the second part of the dissertation, a precoding scheme to reduce the root mean
square (RMS) delay spread of precoded channels in a orthogonal frequency division

multiplexing (OFDM) system is proposed. In order to reduce latency in OFDM sys-



tems while not increasing the overhead, it is of primary importance to reduce the ef-
fective delay spread of the channel and thus the length of the cyclic prefix (CP). We
formulate an optimization problem with an upper bound of the RMS delay spread as
the objective function and a signal-to-noise ratio for each subcarrier as constraints.
Semi-definite relaxation (SDR) technique is used to convert the problem into a convex
problem so as to find the optimal precoding vector. Numerical results confirm that the
proposed precoding design provides a significant reduction in the RMS delay spread,
especially when there are a large number of antennas at the base station.

In the last part of the dissertation, we addresses linear precoding design for sum
rate maximization in low-latency OFDM systems. In order to mitigate the overhead of
CP originating from shortened symbol duration for low-latency communications, 5G
wireless systems need to adopt short CP lengths. As channel delay spread must be less
than the CP length, we first derive the effective RMS delay spread and the achievable
rate using the zero-forcing assumption. We construct a sum rate optimization problem
for each user subject to delay spread constraints and then convert the problem into
a solvable convex problem along with a SDR technique. The precoding matrix is fi-
nally obtained by solving optimization problems for all users. Numerical results reveal
that the proposed scheme attains superior performance to the conventional sum rate

optimization, as well as small RMS delay spread.

keywords: Massive machine-type communications, low-latency communications,
deep neural network, non-orthogonal multiple access, precoding
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Chapter 1

INTRODUCTION

With the advent of 5G wireless systems, ultra reliable low-latency communications
(URLLC) and massive machine-type communications (mMTC) have recently attracted
growing attention [1]-[4]. Applications in health care, connected cars, robotics, manu-
facturing, and free-viewpoint video are expected in low-latency communications, and
they demand extremely short round-trip latency levels as low as 1 ms [1], [2]. On the
other hand, mMTC mainly concerns the massive connectivity of a large number of de-
vices (e.g. sensors, robots, vehicles, and machines) to the base station (BS) [4]. Since
low-latency communications and mMTC have different requirements from conven-
tional communications systems (e.g. Long-Term Evolution (LTE)), novel techniques
to support these communications systems are essential.

Since low-latency communications require 1-ms round-trip latency levels [1]—-[3],
wider subcarrier spacing up to 480 kHz has been considered for an orthogonal fre-
quency division multiplexing (OFDM) system design [3]. As the larger subcarrier
spacing leads to the shorter symbol duration, shorter cyclic prefix (CP), i.e., 1/4 or
1/8 of the normal CP, which is 4.7 us in LTE, needs to be employed not to increase the
CP overhead due to shortened symbol duration. On the other hand, in order to avoid
inter-symbol interference (ISI) and inter-carrier interference (ICI), the CP length must

be larger than the channel delay spread [5]. Hence, it is crucial to reduce the effective



channel delay spread to realize low-latency communications with minimal CP over-
head [6].

In mMTGC, it is difficult to support mMTC in the conventional scheduling-based
orthogonal multiple access (OMA) due to the lack of resources and the heavy signaling
overhead so that grant-free non-orthogonal multiple access (GF-NOMA) has received
special attention in recent years [7]. Using non-orthogonal spreading sequences, GF-
NOMA allows devices to transmit data without complicated scheduling. In order to
support the grant-free transmission, the BS needs to identify active devices, i.e., de-
vices transmitting data, among all potential devices. This process, often called active
user detection (AUD), is an essential step for the successful data detection in GF-
NOMA [8].

This dissertation consists of three parts. In Chapter 2, we propose a deep learning-
based spreading sequence design and AUD scheme for an mMTC system. In Chapter 3
and Chapter 4, a precoding scheme is proposed to reduce the root mean square (RMS)
delay spread of precoded channels in a multiple-input single-output (MISO)-OFDM
system and to maximize the sum rate subject to RMS delay spread constraints in a

multi-user multiple-input multiple-output (MIMO)-OFDM system, respectively.

1.1 Deep Learning-based Spreading Sequence Design and
Active User Detection for Massive Machine-Type Com-

munications

Since only a small portion of machine-type devices is active at a time (see Figure 1.1), a
transmit vector consisting of data symbols of all devices is readily modeled as a sparse
vector [9]. In solving the AUD problem, compressive sensing (CS) techniques have
been widely used [8], [10]. Over the years, various techniques based on the CS-based
AUD schemes have been proposed [8], [10]. In these approaches, basically, the corre-

lation between the received signal and the spreading sequence of each device is used



to identify active devices. That is, a device whose spreading sequence is maximally
correlated with the received signal is chosen in each iteration. Since the detection per-
formance depends heavily on the correlation among spreading sequences, selection of
the spreading sequences with low-correlation structure is crucial to improve the AUD
performance.

Recently, some efforts have been made to design the low-correlation spreading
sequences. In [11] and [12], iterative algorithms to find out the collection of spread-
ing sequences having small correlation structure have been proposed. While these ap-
proaches improve the detection performance to some extent, they do not consider the
mMTC context (e.g., the number of devices, channel models, and activities of devices)
so that the performance gain in practical mMTC environments is marginal.

An aim of this dissertation is to propose a deep learning-based communications
system suited for mMTC. The key idea of the proposed scheme is to use an end-to-end
deep neural network (DNN) minimizing the AUD error [13]. In a nutshell, we divide
the proposed DNN into two parts: the spreading network (SN) at the transmitter side
(devices) to model device activities, channels, and symbol spreading and the AUD
network (AUDN) at the receiver side (BS) to estimate active devices. Due to the use of
the end-to-end network from the transmitter all the way to the receiver, we can directly
use the AUD error as a loss function in the entire network training. As a result of the
training, we can directly obtain the spreading sequences (training parameters in the
SN) minimizing the AUD error.

From the numerical evaluations in grant-free mMTC scenarios, we show that the
spreading sequences obtained from the proposed scheme perform better than those
of the conventional scheme minimizing mutual coherence in terms of the AUD error
probability. We also show that the spreading sequences obtained from the proposed

scheme can be applied to the conventional CS-based AUD schemes.
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1.2 Precoding Design for Cyclic Prefix Overhead Reduction
in a MISO-OFDM System

Inrecent years, a few preceding works have attempted to mitigate the effects of channel
delay spread. In two studies [14] and [15], time-domain equalizers were designed to
remove the residual ISI and ICI caused by the channel impulse response (CIR) exceed-
ing the CP length by solving the Rayleigh quotient for the delay spread. In other work,
to avoid the implementation of a complex equalizer on the receiver side, a precoding
technique was employed [16], [17] as an alternative means of reducing the effective
delay spread. In one such study in particular [17], a precoding matrix was designed to
mitigate the effects of residual ISI and ICI for cases in which the channel delay spread
is longer than the CP length. However, the performance of the precoding scheme in
that case is degraded significantly as the excessive delay spread increases.

This dissertation presents a precoding design which reduces the RMS delay spread
of precoded channels in a MISO-OFDM system. In contrast to previous approaches
[16], [17] where precoding is used to mitigate the effect of an excessive delay spread
for a fixed CP, the proposed precoding scheme is designed to proactively reduce the
effective delay spread of the channel. As a result, the proposed design can reduce the
CP length without causing the ISI and ICI. We derive the effective RMS delay spread
and the signal-to-noise ratio (SNR) of each OFDM subcarrier as functions of the raw
channel matrix and the precoding matrix. We then formulate a precoding optimization
problem that minimizes the upper bound of the effective RMS delay spread while
satisfying the SNR and power constraints. As the original problem is found to be a
non-convex problem, we relax the problem using the semi-definite relaxation (SDR)
technique presented in earlier work [18] into a convex problem to find the optimal

solution.



1.3 Sum Rate Maximization with Shortened Cyclic Prefix in

a MIMO-OFDM System

Although there are many works on sum rate maximization and CP overhead, respec-
tively, both topics have not been simultaneously investigated for low-latency commu-
nications. Most papers on sum rate maximization have focused on linear precoding
techniques owing to their practicability [19]-[22]. As the sum rate optimization gen-
erally demands the solution of non-convex problems, most of the preceding works at-
tempted to find a local optimum through an alternative means of Karush-Kuhn-Tucker
(KKT) conditions or a geometric program [19], [20]. Other precoding techniques im-
posed the zero-forcing condition to suppress multi-user interference and to decouple
the multi-user channel into multiple independent subchannels [21], [22]. As the spec-
tral efficiency decreases in proportion to the CP length for a given symbol duration,
sum rate maximization must consider the CP overhead. To achieve both high spec-
tral efficiency and low latency, several authors have pursued CP overhead reduction
by shortening the effective channel delay spread or modifying OFDM frame structure
[6], [23]. However, these works did not incorporate the CP overhead into the sum rate
optimization problem.

This dissertation proposes a precoding scheme to maximize the sum rate subject
to RMS delay spread constraints in a MIMO system. Contrary to earlier approaches
[19]-[22] which solely concentrate on sum rate maximization, the proposed design in-
corporates the effective RMS delay spread into the optimization problem. In the same
way as the previous works [21] and [22], we segregate the multi-user channel into
multiple single-user channels by imposing zero-forcing conditions, which results in an
optimization subproblem for each user. We examine the effective RMS delay spread
and the rate as functions of the raw channel matrix and the precoding matrix. Anal-
ogous to other sum rate optimization in [19]—[22], the original optimization problem

is found to be a non-convex problem. Using the SDR technique presented in [18], we



convert the problem into a convex problem and find the optimal solution for each user.
Finally, the entire precoding matrix is constructed by composing precoding matrices

for all users.



Chapter 2

DEEP LEARNING-BASED SPREADING SEQUENCE
DESIGN AND ACTIVE USER DETECTION FOR MAS-
SIVE MACHINE-TYPE COMMUNICATIONS

This work was in part presented at [24], where deep learning-aided spreading sequence
design was proposed. In this dissertation, we refine the training and operation process
and also supplement the performance analysis regarding AUD schemes. This work was

accepted by the IEEE Wireless Communications Letters [25].

2.1 System Model

We consider the uplink transmission of the mMTC system where /N devices access a
single BS using spreading sequences of the length M (see Figure 1.1). We assume that
the BS and all devices are equipped with one antenna and channels experience the flat
fading. In most mMTC scenarios, the number of devices is larger than the length of
spreading sequences (i.e., M < N) so that it is in general not possible to recover the
transmit vector with the conventional recovery algorithm designed for overdetermined
scenarios [26].

Let z,, and s,, € RM*! be the symbol and spreading sequence of the n-th device,



respectively. Also, let § € RY X! be the activity indicator vector (8, is 0 for an inactive
device and 1 for an active device). The indicator 6,, of the n-th device follows the
Bernoulli distribution:

Op ~ Bern(pn), (2.1

where p,, is the activity probability of the n-th device. Then, the received signal at the

BS is given by
N
y = Z thn(snxn +w
n=1 (22)
=Sq+w,
where h,, is the channel between the n-th device and the BS, S = [s; --- sy] €
RM*N i the spreading matrix, q = [h1d121 -+ hydnay] is the composite vector

of the symbols and the channels, and w ~ N(0, 0I) is the additive white Gaussian
noise (AWGN) vector. In this work, we consider the real-valued spreading sequences to
make a fair comparison with the previous study using real values [12] but the extension
to the complex scenarios is straightforward.

If the number of active devices, called sparsity, is K, then the AUD problem can
be formulated as [27]

6= arg min |y —Sq 2 2.3)
anin, | 2

To solve this problem, greedy sparse recovery algorithm such as the orthogonal match-
ing pursuit (OMP) has been employed [26], [28]. Since the AUD performance of the
greedy algorithm relies heavily on the correlation among spreading sequences, pre-
vious studies focused on the minimization of the correlation between columns in the
spreading matrix [11], [12]. In [12], for example, an approach to find out the quasi-
orthogonal spreading sequences minimizing the mutual coherence has been proposed:

- (5::5,)]

2
027 and min ||T— STS||7., (2.4)
Sy e

where ||-|| > is the Frobenius norm. It has been shown that these approaches are effec-

tive in reducing the correlation among all spreading sequences [12]. However, since



the portion of active devices is very small (less than 10%) [29], it would be more effec-
tive to consider the device activities in the spreading sequence design. If we somehow
minimize the correlation of spreading sequences for frequently active devices, multi-
user interference can be reduced significantly, thereby achieving an improvement in

the AUD performance.

2.2 DNN-based Spreading Sequence Design and Active User

Detection

In order to design the end-to-end system (transmitter and receiver) minimizing AUD
error, we employ the autoencoder-based DNN [13]. For the network training, we use

the binary cross-entropy loss of AUD [30]:

N
£@.8)=-Y (5n log(8,) + (1 — 6,) log(1 — Sn)), 2.5)

n=1

where 4 is the estimated activity indicator vector and é,, and &L are the element of &
and 4, respectively. Using the backpropagation mechanism, we can propagate the loss
(the AUD error) all the way back to the transmitter and hence train the whole network
parameters.

The basic structure of the proposed end-to-end network is illustrated in Figure 2.1.
In essence, the proposed network consists of two subnetworks (SN and AUDN). The
SN models the transmitter side (symbol spreading, device activities, and channels)
and the AUDN estimates the activity indicator vector from the received signal. The

estimated activity indicator vector generated from the end-to-end network is

8 =g(x;0), (2.6)

where x = [z - -+ 2] is the input symbol vector, g is the mapping function between
the input x and the output b of the network, and © is the set of all network parameters

including the spreading sequences. Note that parameters in ® are updated during the

10



training phase using the stochastic gradient descent (SGD) algorithm:
@j = ®j—1 - HV@[,(@]'_l), (2.7)

where ©; is the parameters in the j-th training iteration, 7 is the learning rate, and
Ve L(-) is the gradient of the loss function £ [13]. After the training phase, the spread-
ing sequences and AUD scheme are obtained from the trained end-to-end network (see

Figure 2.1).

11



Mapping g

Figure 2.1: The structure of the end-to-end network.
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2.2.1 SN Architecture

In Figure 2.2, we depict the SN structure in the transmitter. Instead of using the deter-
ministic spreading sequences, we assign the trainable vector s;, € © to the n-th device
(n=1,---,N). Hence, the spreading sequences are a part of the network parameters
to be updated by the SGD algorithm. To model the device activities, the symbol x,,
is multiplied by the activity indicator J,, which follows the Bernoulli distribution, i.e.

On, ~ Bern(py).

13



h1 01 ~ Bern(p1)

Figure 2.2: The detailed structure of the SN in the training phase.
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2.2.2 AUDN Architecture

The main goal of the AUDN is to identify the activity indicator vector d from y. Figure
2.3 depicts the structure of the AUDN. Because only a small number of machine-type
devices are active at a time, the activity indicator vector can be well modeled as a
sparse vector [9]. In solving this sparse recovery problem, we employ an iterative hard
thresholding-based network (IHT-Net), a DNN-based sparse recovery algorithm based
on iterative hard thresholding (IHT) [31]:

quﬁtiill( lly — Squ . (2.8)

In the IHT algorithm, the sparse vector q is iteratively updated as
q"*V = Hy[(Iy —87S)q"¥ + 8Ty, (2.9)

where q(*) is the estimate after ¢ iterations and H -] is the hard thresholding operator
to enforce the sparsity K of the output vector. Similar to the IHT algorithm, one itera-
tion in the IHT-Net is mapped to the neural layer of a DNN. Specifically, the ¢-th layer

of the IHT-Net can be expressed as
80 = ReLU[® ") 4 30, (2.10)

where ) and §(*+1) are the input and the output of the layer and ¥(¥) ¢ © and
B®) € © are the trainable weight and bias of the layer. Note that the hard thresholding
operator in the IHT is replaced by the rectified linear unit (ReL.U).

In order to improve the accuracy of AUD when a massive number of devices are
used, we adjust the number of nodes based on the number of devices. It is well-known
from the universal approximation theorem that a DNN can approximate the desired
function, provided that sufficiently many hidden nodes are available [32]. This implies
that the AUDN with enough nodes can carry out the accurate AUD process even when
the number of devices is large. In light of this, we set the width of layers in proportion

to the number of devices N (e.g., 8) € RON*1),

15
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In this work, we exploit the batch normalization (BN) and residual networks (ResNets)

to handle the problem occurring in the training phase [33], [34]. Since devices have
different activities in mMTC, a variation of the received signal (the sum of all device
signals) is large, which slows down the training speed and also hinders convergence
because the network should handle a large variation of input data. In order to mitigate
this, we add the BN layer to the data §® = ¥®§® 4 g1 — [s{) ... Sét]z,] so that
the normalized data 5@, e ,ng, have zero means and unit variances for each batch

size B:

=2 TPBL gori=1,.-- 5N, 2.11)

OB,
where §(*) = [Sit) e 5&2,] is the output of the BN layer and pp,; = + B Sz(t)[b}
and op; = & Zle(gi(t)[b] — pp,;)? are the mini-batch mean and variance. Since a
large number of layers are used in the AUDN, the entire network suffers from the
vanishing gradient problem. Note that as the gradient propagates backward all the way
to the SN, new gradient obtained by multiplying local gradients gets smaller, making it
difficult to update the weight of early layers (i.e., layers of the SN). In order to alleviate

this so-called vanishing gradient problem, we exploit the ResNet architecture that adds

the direct links between stacked layers. The ¢-th layer in the ResNet is given by
80D = ReLU[6® 4 6], (2.12)

Since the layers are directly connected by the ResNet (see Figure 2.3), the gradients
can be transferred across the layers with much less distortion, resulting in an improve-

ment in the training accuracy.

2.2.3 Operation

After the training phase, the trained parameters in the SN are used as the spreading

sequences. As a result of the trained AUDN, the estimated activity indicator b is

mapped to the unit interval (0, 1) through the sigmoid activation (f(z) = é,z ).

Finally, if Op is greater than the threshold o, we declare the n-th device as an active

17



device. The threshold value o minimizing the AUD error is given by

o = argmin(|{(b,n) | 0¥ < aif 61 = 1}|+

{(b,n) | 6P > aif 6111 = 0})), (2.13)

where b is the data index [35].

2.3 Numerical Results

2.3.1 Simulation Setup

We simulate the uplink mMTC system with 64 devices (N = 64). The length of
spreading sequences is set to M = 32 and each spreading sequence s,, is normalized

2 is assumed for

(i.e., ||sn]l = 1). An AWGN channel model with the noise variance o
the sake of simplicity. The average symbol SNR is set to 1/02. We test two scenar-
ios: activity probabilities are the same and different. We henceforth call these cases
homogeneous and heterogeneous activities, respectively.

For comparison, we employ the conventional spreading sequences in [12] and the
Gaussian random spreading sequences in which the elements follow the normal distri-
bution A(0, 1). To evaluate the AUD performance, AUDN is used at the receiver and

is trained with the same training data for each set of spreading sequences. As an AUD

performance measure, we use the activity error rate (AER) considering both missed

_|eng
|QU

detection and false alarms: AER = 1 where € and 2 are the support! of &
and &, respectively.

Data samples are constructed by combining symbols and activity indicators deter-
mined by the activity probabilities (see Figure 2.2). In the training phase, data samples
with SNR in the range of 15 dB to 20 dB are used. We use 480,000 samples with
40 epochs for training, 60,000 samples for validation, and 60,000 samples for testing

[31]. We employ an Adam optimizer for the SGD optimization. In the simulations,

'If § = [1 0 1 0], then the support is £ = {1,3}.
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the number of hidden layers, the batch size, and the threshold value are set to L = 10,
B =200, and oo = 0.4, respectively. The learning rate 7 starts from 0.01 and is divided

by 10 for every 10 epochs.

2.3.2 Homogeneous Activities

In the homogeneous activity scenario, the activity probabilities for all devices are the
same. Figure 2.4 presents the average AER with different spreading sequences as a
function of p,, at SNR = 20 dB. The average AER of the Gaussian random sequences
is much larger due to the high correlation among the spreading sequences. On the other
hand, the average AER of the proposed sequences is lower than that of the conventional

sequences for each activity probability p,,.

19



107

Average AER

—&— Gaussian random sequences
—x— Coventional sequences
—o6— Proposed sequences

0.02

0.03

0.04

0.05 0.06 0.07 0.08 0.09 0.1
Activity probability p,

Figure 2.4: Average AER of the AUDN as a function of the activity probability at SNR

=20dB

A & Tl 8} 3

20 S



2.3.3 Heterogeneous Activities

In this subsection, we examine whether the proposed approach can generate activity-
specific spreading sequences and thus improve the AUD performance when the activity
probabilities are different.

In Figure 2.5, we evaluate the average AER of the AUDN as a function of SNR.
The activity probability p,, is modeled by the uniform distribution on the interval of
[0.01, 0.2] for scenario 1 and [0.01, 0.1] for scenario 2. We observe that the perfor-
mance of the proposed sequences is significantly better than that of the conventional
sequences. For example, the proposed sequences achieve about 3 dB gain in scenario
1 and 0.5 dB gain in scenario 2 over the conventional sequences at high SNR.

In Figure 2.6, we plot the average cross-correlation of each device as a function of

Prn. The average cross-correlation of the ¢-th device is defined as

N

1
Hiavg = ﬁ ' ;yé |<Si75j>|. (2.14)
J=LJ7F

If 14; 40 g 1s small, the spreading sequence of the i-th device is less correlated with other
spreading sequences. In terms of the AUD performance, it is desirable to have the
spreading sequences such that the cross-correlation between any two active devices is
as small as possible [8]. We observe that the proposed approach assigns the spreading
sequences with lower fi; 4,4 to the devices with higher activity probabilities. Since
the average cross-correlation of devices with higher activity probabilities is reduced,
active devices are less correlated, thereby improving the performance of the proposed
approach in Figure 2.5.

Figure 2.7 depicts the average AER of the OMP and compressive sampling match-
ing pursuit (CoSaMP) in the heterogeneous activity scenario [36]. When compared to
Figure 2.5, we observe that the AUDN outperforms the greedy algorithms by a large
margin (e.g. more than 4 dB gain for scenario 1). Further, the performance gap be-
tween the conventional and the proposed sequences becomes more severe in a wide

range of SNR because the greedy algorithms depend heavily on the correlation among

21



spreading sequences. In the CoSaMP, for example, the proposed sequences achieve
about 2.9 dB gain in scenario 1 and 1.3 dB gain in scenario 2 over the conventional

sequences.
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Figure 2.5: Average AER of the AUDN as a function of SNR in the heterogeneous

activity scenario.

3 A=t et

23 o



Scenario 1: 1-20%

0.2F Conventional sequences | A
Proposed sequences

015t .
- o
£ 0ty M -
=~
8 1 1 1 1
5 0.05
< 0 0.05 0.1 0.15 0.2
195]
g Scenario 2: 1-10%
&) 02 1 1 T T T
&0 -
© Conventional sequences
;:g 015k '\\.\/\/\‘\/\4“ Proposed sequences .

01F M T

0.05 1 1 1 1
0.02 0.04 0.06 0.08 0.1

Activity probability p,

Figure 2.6: Average cross-correlation of each device as a function of the activity prob-

ability in the heterogeneous activity scenario.

S g Eidi

24 o



=
< 10"
)
g
= [ . + OMP (scenario 1) N
: \
= L |— % —Conv. seq. + OMP (scenario 2) é
L |—e—Prop. seq. + OMP (scenario 1) NN
| |—© —Prop. seq. + OMP (scenario 2) \\ S
—&— Conv. seq. + CoSaMP (scenario 1) AR
— A - Conv. seq. + CoSaMP (scenario 2) V.S
102 | |——Prop. seq. + CoSaMP (scenario 1) RN o
L |- —Prop. seq. + CoSaMP (scenario 2)
5 10 15 20

1/0* (dB)

Figure 2.7: Average AER of the OMP and CoSaMP as a function of SNR in the het-

erogeneous activity scenario.

25

2

i

: t113ﬂ

|

I

1L



Chapter 3

PRECODING DESIGN FOR CYCLIC PREFIX OVER-
HEAD REDUCTION IN A MISO-OFDM SYSTEM

This work was published in the IEEE Wireless Communications Letters [6].

3.1 System Model

We consider the downlink transmission of a MISO-OFDM system with M anten-
nas at the base station and N subcarriers. It is assumed that each user estimates the
frequency-selective channel and feeds it back to the base station. The frequency re-
sponse for the n-th subcarrier of the channel between the m-th transmit antenna and a

certain user can be represented as

£=0 £=0 (3.1)
m=12,--- M, n=0,1,--- , N—1

Y Y

where h,,, (¢) is the CIR for the m-th antenna and L (< N) denotes the length of the
CIR, ie., hyp(L) = hpp(L + 1) = -+- = hy(N — 1) = 0. The aggregate channel
vector for the n-th subcarrier can be defined as

ﬁ(n)é[Hl(n) Hy(n) -+ H(n) " (3.2)
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Let W,,, (n) denote the precoding vector associated with the channel vector H (n),

which is defined as
_ T
W(n) 2 Wy (n) Wa(n) --- WM(n)} . (3.3)

Accordingly, the composite channel for the n-th subcarrier encompassing the precod-

ing vector can be written as

M
Heg(n) = > Hpy (n) Wi (n) = H(n) W (n). (3.4)
m=1

By aggregating the composite channels for all subcarriers, an equivalent channel ma-

trix is formed as

Heq (0)
i, - Heq (1)
Heq (N —1)]
:FI(O)T 0 o |[ wo ]
| o HDT o W (1) | 35)
0 0 HN-1T| [W({-1)

where 0 is the 1 x M all-zero vector.

3.2 Precoding Design

In this section, the proposed precoding design is presented. In Subsection 3.2.1, we
express the effective RMS delay spread and the SNR of each subcarrier as functions
of the raw channel matrix and the precoding matrix. In Subsection 3.2.2, we formulate
a precoding optimization problem to minimize an upper bound of the effective RMS
delay spread of the channel while satisfying an SNR constraint for each subcarrier. A

method based on the SDR technique is also discussed to find the optimal solution.
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3.2.1 Effective RMS Delay Spread and SNR

The effective RMS delay spread of the equivalent channel in the OFDM system is

calculated as [14]

=

1

TRMS = || (£ = 0)%|heq ()], (3.6)

where he, (¢) is the equivalent CIR corresponding to He, (n), and E and / are, respec-

tively, given as

N-1
E=Y |heyg O (3.7)
=0
and
N-1
_ 1 9
l=+ 2 U heg (). (3.8)

Assuming that / is fixed, we represent the discrete Fourier transform (DFT) of £ — / as

N-1 j2mnd
Fn)y=> (t—0)e "~ . 3.9)
=0

Using the convolution property and Parseval’s relation [37], 7'}2% s can be expressed in

terms of H¢, (n) and F' (n) as

N-1 L 9
5 |3 (F (n) @ Hey ()

T s = , (3.10)

N-1 9
> |Heq (0)

where ® denotes the circular convolution. Consequently, /N convolutions can be rep-

resented with a matrix multiplication as

]

Heq, (3.11)

2|~
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where

[ F(0) F(N-1) F() ]
1] FQ) F(0) F(N-1)
F 2 N (3.12)
F(N-1) FO)  F(0)

isan N x N matrix. Substituting (3.5) and (3.11) into (3.10), T}%MS can be rewritten

as
o HFUFH,y  WHHYFIFHW G5.13)
Fars AHH,, WHHHIHW

On the other hand, the SNR in the n-th subcarrier is defined with the composite

channel H., (n) and the noise variance o as [38]

_ ey ()

SNR (n) 5

(3.14)
g

The SNR in (3.14) can be transformed into a matrix form analogous to (3.13) as

HEE,H., WHHYE,HW
2 - 2 ’

SNR (n) = (3.15)

o g

where the element on the i-th row and j-th column of the N x N matrix E,, is given

as

1, i=j=n+1,
(En)y; = (3.16)

0, otherwise.

3.2.2 Precoding Optimization

From (3.15), an SNR constraint for the n-th subcarrier can be imposed as

VAR, HW
SNR (n) = w - w > d,, (3.17)
g

where d,, denotes the minimum required SNR for the n-th subcarrier. Moreover, the

denominator of 7'12% s 1n (3.13) can be lower-bounded as

N-—1 N-—1
WHHIHW =0 Y " SNR.(n) > 0® ) _ dn. (3.18)
n=0 n=0
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Equivalently, the upper bound of 7'}2% s can be derived as

WHHHIFHFHW

—— (3.19)
o2 > dy
n=0

2
TrMS <

To make the optimization problem tractable, we use the upper bound in (3.19) instead
of TI% s as the objective function. As a result, an optimization problem that minimizes
the upper bound in (3.19) with the SNR constraints in (3.17) and a transmit power

constraint can be established as

min WHSW
W

st. SNR(n)= ——"—>d,, n=0,1,--- ,N — 1, (3.20)
= (12
It

where S 2 HfFPFH, S,, £ HYE, H, and P denotes the total transmit power at the
base station. Note that only the numerator of the upper bound is used in (3.20), since
the denominator is constant irrespectively of W,

The problem in (3.20) is difficult to solve as it is a non-convex problem. To tackle
this, we use an SDR technique [18]. From the property of trace, we know that WHSW =
tr(WHSW) = tr(SWWH). We also define W = WW#, which is a rank-one Her-
mitian positive semi-definite matrix. The optimization problem in (3.20) can then be
rewritten as

rr‘}‘i/n tr (SW)
st. tr (S, W) >o%d,, n=0,1,--- ,N — 1,
tr (W) = P, (3.21)
W >0,
rank (W) = 1.
Note that the objective function and constraints apart from the rank constraint are

convex in (3.21). By omitting the rank constraint, we obtain the following relaxed
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optimization problem,
min tr (SW)
w

st. tr (S, W) >o%d,, n=0,1,--- ,N — 1,
(3.22)
tr (W) = P,
W = 0,

which becomes a convex optimization problem that can be solved using standard con-
vex tools, such as CVX in MATLAB. Once we determine W, the precoding vector w
can be derived from the best rank-one approximation. Specifically, provided that the

optimal solution of (3.22) is W, the eigen-decomposition of W, is given as

Wopt = Y Niqiqf”, (3.23)
i=1
where A1 > A9 > --- > A, > 0 are the eigenvalues of W,;, while q1,q2, - , q, are

the corresponding eigenvectors, and r = rank (W, ). Given that the best rank-one
approximation to W, is A\1q q{l , V' A1qq is regarded as the solution of the problem
(3.20) [18].

3.3 Numerical Results

We evaluate the performance of the proposed precoding design. The number of anten-
nas at the base station, M, is set to 2, 4, 8, or 16. The number of OFDM subcarriers, IV,
is fixed at 16 and the length of the CIR, L, is fixed at 8. The CIR {h, (0) , by, (1), -,
hu (L — 1)} for the m-th antenna (m = 1,2,--- , M) is assumed to follow a tapped

delay line model, as in earlier research [16],

hm(ﬁ):iﬁgexp<—2€7>, (=01, L—1, (3.24)

where ay ,, is a complex normal random variable and 7 follows a log-normal distribu-

tion with log standard deviation of 10 dB. In Figs. 1 and 2, the original channel and the
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precoded channel represent the channel before and after precoding is applied, respec-
tively. The minimum SNR requirement d,, is set according to the SNR corresponding
to the maximum ratio transmission (MRT) precoding [39]; i.e., Wy, (n) = HY, (n),
where the superscript I denotes the complex conjugate. Accordingly, we set the SNR

constraints as

dn = OéSNRMRT (n) s (3.25)

where SNR )/ rr (n) denotes the SNR corresponding to MRT precoding and the pa-
rameter « € [0, 1] takes a real value. Note that less SNR loss is allowed with « closer

to 1.
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Table 3.1: Average Required CP Length and the Corresponding CP Overhead, when
M =4and o =0.5
L 4 8 12

Original channel  3.73 (189%) 7.23 31.1%) 9.20 (36.5%)

Precoded channel  0.79 (4.7%) 1.33 (7.7%) 1.50 (8.6%)

Figure 1 depicts the CIR for one specific channel realization with and without the
proposed precoding scheme, when M = 2 and o = 0.5. This figure shows that the
CIR of the precoded channel has much less spread than the original channels for the
two antennas. In fact, the RMS delay spreads of the original channels are 1.17 and 1.66
for the two antennas, whereas that of the precoded channel is 0.23.

Figure 2 shows how the effective RMS delay spreads averaged over 500 indepen-
dent channel realizations vary with « for several values of M. For comparison purpose,
we also present the results for MRT and Tomlinson-Harashima (TH) precoding in [40]
which are pre-equalization techniques. As compared with the original channels, the
proposed precoding provides less RMS delay spread in most cases. On the other hand,
MRT and TH precoding yield larger delay spread than the others, and so a longer CP
is required for those precoding schemes. When M = 4 and o = 0.5, for instance,
the average RMS delay spread of the proposed precoding is less than 25% of that of
the original channels. It should be noted that this channel shortening is attained at the
expense of allowing SNR loss as high as 3 dB, which is associated with o = 0.5, as
compared to MRT precoding. Nevertheless, the channel shortening gain still appears
to be significant for a relatively large a.. Moreover, the reduction in the effective RMS
delay spread becomes more substantial with a larger value of M for an identical «,
indicating that with the proposed precoding scheme, we can achieve a significant re-
duction in the effective RMS delay spread with negligible SNR loss once there are a

sufficiently large number of antennas at the base station.
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Table 3.1 tabulates the average required CP length and the corresponding CP over-
head for different CIR lengths L when M = 4 and o = 0.5. The CP lengths are
simply calculated as 4 times the effective RMS delay spread, as in earlier work [41],
and the CP overhead is defined as the ratio of the CP length to the overall OFDM
symbol duration including the CP. Compared to the original channels, the precoded
channel provides much less CP overhead as a result of channel shortening. Specifi-
cally, the proposed precoding reduces the CP overhead to 25% of the CP overhead of

the original channels.
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Chapter 4

SUM RATE MAXIMIZATION WITH SHORTENED
CYCLIC PREFIX IN A MIMO-OFDM SYSTEM

This work was published in the IEEE Transactions on Vehicular Technology [42].

4.1 System Model

We consider the downlink transmission of a multi-user MIMO-OFDM system with
N, antennas at the transmitter and NV, users. Each user is assumed to be equipped
with NV, antennas, and the base station estimates frequency-selective channels with NV
subcarriers. At the k-th user, the frequency response for the n-th subcarrier between

the ¢-th transmit antenna and the j-th receive antenna is given as

N-1 _ L-1 .
HE(n) = 3 B0 = 3 hb (e R,
=0 =0

“4.1)
i:1)2)"'7Nta j:172)"'7N1“7

n=0,1,--- ,N —1,
where hfj (¢) is the corresponding CIR, and L (< N) denotes the length of the CIR, i.e.,

hi?j(L) = hfj(L +1)=---= hfj(N — 1) = 0. Subsequently, the frequency response

matrix of the k-th user can be represented as an N, x Ny matrix, Hy(n) = {H. 1’3 (n)}7.

:l ¥

—
|
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Let X(n) € CN«*! denote the input vector consisting of each user’s data X (n),
k=1,2,---,N,and W(n) € CN*Nu be the corresponding precoding (pre-equalization)
matrix for the n-th subcarrier. As long as the effective delay spread of the precoded
channel is less than the CP length, we can represent the output vector of the channel at
the k-th user as [5], [43]

Yi(n) = Hy(n)W(n)X(n) + vi(n)
Nu 4.2)
= Hg(n) Z W, (n)X;(n) + vi(n),
i=1
where W;(n) is the i-th column vector of W (n), and v (n) denotes the IV, x 1 noise

vector.

4.2 Preliminaries for Precoding Design

In Subsection 4.2.1, we incorporate zero-forcing conditions into the system model.
We then derive the effective RMS delay spread and the achievable rate for each user
as functions of the precoding matrix in Subsection 4.2.2 and Subsection 4.2.3, respec-
tively. The resulting equations constitute the objective function and constraints for the

optimization problem in Section 4.3.

4.2.1 Zero-Forcing Conditions

In the same manner as [21] and [22], to eliminate other user interference at the k-
th user in (4.2), the precoding vector W (n) must satisfy the following zero-forcing

conditions:

Hl(n)Wk(n) = 0Nr><1 if ¢ 7'5 /f,
4.3)
i=1,2,--- | Ny.
where Oy, «1 is the IV, x 1 all-zero matrix. With the zero-forcing conditions imposed,

the output signal in (4.2) can be rewritten as

Yi(n) = Hy(n)Wk(n)Xi(n) + vi(n). 4.4)
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Accordingly, at the j-th antenna of the k-th user, the scalar composite channel for the

n-th subcarrier encompassing the precoding vector can be expressed as
Hegje(n) = Hj(n)Wy(n), (4.5)

in which Hj,(n) is the j-th row vector of Hy(n). By aggregating the composite chan-

nels for all subcarriers, the equivalent channel matrix is formed as

Heq,jk(o)
He , k(]-)
He,jr 2 “ = H;xWh, (4.6)

Heq,jk’(N - 1)

where H j;, € CV*NNt and W, € CNNex1 are, respectively, defined as

H;.(0) Oixn, - 01x N,
ij A 01><Nt H]k(l) 01><Nt (47)
| Oy 0 Oy, Hjp(N — 1)
and _ )
W;(0)
W (1
Wy £ @ (4.8)
| Wi(N —1))
Now let us define an NN, x N N; matrix,
H;(0) On,xn, - ON, x N,
Hi é ON’I‘XNt H’L(l) ON’I‘XNt ’ (49)
|0, x N, o Onexn, Hy(N —1)]
then the zero-forcing conditions in (4.3) can be rewritten as
HWr =0nn,x1 ifi #k,
(4.10)
1=1,2,---, Ny.
-":Ix_-i: "|-. 1 II
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From the fact that 2; W, = Onn, x1 holds if and only if ||H;W||? = 0, (4.10) can

be represented in a quadratic form:

IH > =0 ifi # &,
4.11)
i=1,2,---,N,.

4.2.2 Effective RMS Delay Spread

The effective RMS delay spread of the equivalent channel H., ji(n) in (4.6) is given
as [14]

N-1
1 _
TRMS,jk = Ef]k Z (f — fjk)2|heq,jk(£)’2, 4.12)
=0

where heq i (€) is the equivalent CIR corresponding to He, ji(n), and Ej, and l ik are

defined as
N_

N—-1
_ 1
B =Y |hequ(Of, L= ., P gk (€))%, (4.13)
=0 IR p=

—_

Assuming that Ejk is constant, we represent the DFT of ¢ — l ik as

— _j2mnt

(E — Kjk)e N (4.14)
=0

Fjr(n)

From the preceding work [6], we can express the effective RMS delay spread in (3.6)

as
—1
> | E(Ejp(n) ® Heg ju(n))[’
TI%MS,jk == N_1 ' @15
Z: ’Heq,jk(n)|2

where ® stands for the circular convolution. In addition, N convolutions can be repre-

sented with a matrix multiplication as

Fj (0) ® Heq,jk(o)

1 Fjp(1) ® Heq 1 (1
L k(1) eq.jk(1) = F;xHey ik, (4.16)

Fip(N — 1) ® Hegjx(N — 1)
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where

Fip(0)  Fp(N-1) - Fu(1)
1| F(l) Fji(0)
Fjp & ’ ’ (4.17)
| Fir(N —1) Fir(1)  Fje(0)]
is an N x N matrix. Substituting (4.6) and (4.16) into (4.15), we finally have a matrix
equation:
oo B PR F i e
RMS,jk =
! Hg,ijeq,jk
Hor B ol (4.18)

In OFDM systems, an RMS delay spread constraint is typically imposed by the CP
length. Supposing that p is the maximum allowed RMS delay spread, the delay spread

of the j-th antenna in (4.18) must satisfy

22 Wlf%ﬁcFﬁchk%jka < p? (4.19)
RMS,jk W]?Hﬁcﬁjka > .
and equivalently
WEH (HEFLF 11 — o»*HEH )W < 0. (4.20)

4.2.3 Achievable Rate

From (4.4), the achievable rate for the k-th user with all subcarriers is given as [22]

N-1

Rk = Z log

n=0
N-1

= Zlog

n=0

Ly, + S He) Wi () WY () ()

4.21)

i

U W () B (0 L () Wi ()

where Iy, is an N, x N, identity matrix and o? is the noise variance. The second
equality in (4.21) comes from Sylvester’s determinant identity [44]. In order to repre-

sent the equation in terms of Wy, an N; x N N; matrix E,, is defined as

En é ONtXNt e ONtXNt INt ONtXNt T (422)
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such that Wy(n) = E,2 Wy, n=0,1,--- , N — 1. As aresult, the achievable rate Ry,

for the k-th user can be expressed in terms of W;, as

N—-1
Rp= > log(1+ WHQuWy), (4.23)

n=0

where Qj,, = %ETIL{ HkH (n)Hg(n)E, is an N Ny x N N; positive semi-definite matrix.

4.3 Precoding Optimization

In this section, we formulate an optimization problem and present an SDR technique
to find the solution. In particular, we aim to maximize the achievable rate of each
user in (4.23) subject to the effective RMS delay spread constraint in (4.20) and zero-
forcing constraints in (4.11). Correspondingly, a precoding optimization problem can

be formulated as

N-—1
nl}\z;l;( Z log(1 + W}kaan)
n=0
S.t. W]?S]ka S O; j = 17 27 e 7N7"7 (424)

HHZW]{:H2207 Z:1727 JN'LH /L#k7

WP = -
where S j;, = HﬁgFﬁ,F]—kﬂjk — pQ’Hﬁ’ij, and P denotes the total transmit power
at the base station. Equal power allocation for all users is assumed in (4.24). Intu-
itively, the sum rate will decrease as the effective delay spread constraint becomes
more stringent, i.e., as p becomes smaller. This is because more degree of freedom in
the precoding should be exploited to limit the delay spread rather than to improve the
sum rate. However, smaller p can support a shorter CP length, which provides longer
time for data transmission. This tradeoff will be elaborated in Section 4.4.

Note that the problem in (4.24) is a non-convex quadratically constrained quadratic
program (QCQP) because S;; may not be a positive semi-definite matrix. In this re-

gard, the SDR technique in [18] can be used to solve the problem. From properties of
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trace operation, we observe that W,fl Qi Wk = tr(W;f Qi Wk) = tr(anWkW,f ).
If we define X £ WkW,f , which is a rank-one positive semi-definite matrix, the op-

timization problem in (4.24) is equivalent to

N—-1
log(1 X
max 1;) og(1 + tr(QnX))

st tr(S;pX) <0, j=1,2,---, N,

tr(HEHX) =0, i=1,2,---,N,, i#k,

(4.25)
P
tr(X) = —
I'( ) Nu7
X =0,
rank(X) = 1.

Notice that the constraints in (4.25) except for the last rank-one condition are convex.
By omitting the rank-one constraint, we obtain a relaxed formulation which becomes
a convex optimization problem. It can be solved by means of standard convex tools,
such as CVX in MATLAB [45]. Using the best rank-one approximation, we extract
the precoding vector W, from X. Provided that the optimal solution of the relaxed

problem is X, the eigen-decomposition of X, is given as

T
Xopt = > Aixix[!, (4.26)
i=1
where A\; > Ay > --- > A\, > 0 are the eigenvalues of X, while x1,x2,--- , X, are

the corresponding eigenvectors, and r = rank(X,;). Considering that the best rank-
one approximation to X, is /\1x1x{1 , VA1X1 is deemed the solution of the original
problem in (4.24) [18]. To sum up, the precoding matrix W (n) over all subcarriers is

drawn from V,, optimal solutions of (4.24) for all users.

4.4 Numerical Results

In this section, we evaluate the performance of the proposed precoding scheme in

terms of the sum rate and effective RMS delay spread. It is assumed that the number
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of transmit antennas at the base station is 4 or 8 and that each user is equipped with
1 or 2 antennas at the receiver. In all simulations, the number of OFDM subcarriers
and the length of CIR are fixed to N = 16 and L = 8§, respectively. The values of the
CIR are assumed to follow independent identically distributed (i.i.d.) complex normal
distributions CA/(0, 1), and the noise covariance matrix is set to I, , i.e., 02 = 1.
Correspondingly, the SNR is equal to the transmit power P. All the results are ob-
tained by averaging 1,000 simulation runs with independent channel realizations. For
comparison purpose, we also evaluate the performance of the zero-forcing beamform-
ing (ZFBF) based method in [21]. Given that the problem formulation in the ZFBF
based method resembles the proposed optimization problem except for delay spread
constraints in (4.24), the sum rate of the proposed scheme is expected to be upper-

bounded by that of the ZFBF based method.
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Figure 4.1 depicts the cumulative distribution function (CDF) of the effective RMS
delay spread with N; = 4, N,, = 2, and N, = {1, 2} at the SNR of 20 dB. It is demon-
strated that the proposed scheme complies with the delay spread constraints, p = 0.5
and p = 1. The average values of the effective RMS delay spread for N, = 1 amount
to 0.42 and 0.94 in the proposed design, while it is 2.41 in the ZFBF based method.
Given that the CP length is usually selected as several times the RMS delay spread
[41], the ZFBF based method yields more than 5 times CP overhead as compared to
the proposed design with p = 0.5. Hence, the proposed precoding scheme can accom-
plish low CP overhead via the delay spread constraint.

The achievable rate in (4.21) does not reflect the loss of data rate due to CP over-
head. Considering the CP overhead, we can define effective achievable rate for the k-th

user as

L
Repfp = (1 - CP) Ry, (4.27)

where L¢cp denotes the CP length, which is assumed to be 4 times the mean value of
the effective RMS delay spread in the simulation runs [41].

In Figure 4.2, we present the sum rate obtained from (4.21) and the effective sum
rate obtained from (4.27). From the magnified image, it is verified that the original
sum rate of the proposed scheme is upper-bounded by that of the ZFBF based method,
although the performance gap between the two schemes is marginal. Moreover, the
sum rate improvement with p = 1 is negligible as compared with p = 0.5, imply-
ing that constraints for the effective RMS delay spread scarcely affects the sum rate.
The effective sum rate is larger with the proposed scheme than with the ZFBF based
method, and the performance gap is mainly caused by the CP length or the effective
RMS delay spread.

Figure 4.3 illustrates the effective sum rate for different numbers of users, N, =
{1,2,4}. The effective sum rate with the proposed design is greater than that of the
ZFBF based method in all circumstances. When the number of users increases, the

effective sum rate gap between the two schemes becomes more distinct because the
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RMS delay spread of the ZFBF based method is larger. As the solution without the
delay spread constraint yields marginal sum rate improvement but considerable CP
overhead, the proposed precoding is appropriate for effective sum rate maximization.
At high SNR, the effective sum rate increases as the number of users grows. However,
even though the number of users changes from N, = 2 to N,, = 4, the effective
sum rate of both schemes decreases at low SNR. This indicates that, in the case of
many users, efforts to eliminate multi-user interference do not have a significant impact
on the sum rate maximization in low SNR regions where the noise dominates the
interference.

Figure 4.4 depicts the effective sum rate with different numbers of receive antennas
and users. Although the number of receive antennas increases, the sum rate gain is
small because both precoding techniques do not consider the degrees of freedom for
the receive antennas. Consequently, the reduction in the effective sum rate occurs by
a longer CP length. In particular, the performance degradation of the ZFBF based
method is severer due to the absence of the delay spread constraint. When N,, = 2,
for example, the average RMS delay spread of the ZFBF based method is 1.61 with
N, = 1 and nearly doubles to 3.31 with N, = 2. In the same situation, the average
RMS delay spread of the proposed scheme with p = 0.5 amounts to 0.38 with IV, =1
and 0.44 with N,. = 2.

In Figure 4.5, we present the effective sum rate versus the RMS delay spread con-
straint, p, for N} = 4 and N, = 1. When p is small, the sum rate optimization cannot
achieve high rates because it is difficult to satisfy the tight constraint. For example, the
sum rate performance with p under 0.5 is considerably small. Accordingly, the effec-
tive sum rate has a low value in spite of small CP overhead. For large values of p, the
proposed design has the sum rate performance comparable to the ZFBF based method
as shown in Figure 4.2, which leads to the improvement of the effective sum rate with
reduced CP length. The optimal value of p may exist due to aforementioned tradeoff

and appears to be constant regardless of the number of users. Hence, we can determine
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the CP length from the optimal delay spread constraint in an OFDM system.
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Chapter 5

CONCLUSION

This dissertation proposed a deep learning-based NOMA scheme and precoding design

for 5G wireless communications.

5.1 Deep Learning-based Spreading Sequence Design and
Active User Detection for Massive Machine-Type Com-

munications

In this dissertation, we proposed a deep learning-based spreading sequence design and
AUD scheme for an mMTC system. To design the communications system minimiz-
ing AUD error, we employed an end-to-end DNN. By properly training the whole
network, we can obtain the spreading sequences and the AUD scheme optimized for
mMTC environments. Numerical results demonstrated that the AUD performance of
the proposed scheme is significantly better than that of the conventional schemes in
the heterogeneous activity scenario. Further, we observed that the spreading sequences
obtained from the proposed end-to-end DNN can improve the AUD performance even

when we use the conventional greedy algorithms.
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5.2 Precoding Design for Cyclic Prefix Overhead Reduction
in a MISO-OFDM System

In this dissertation, a precoding design was proposed to reduce the effective RMS delay
spread of the precoded channel and realize low-latency communications in a MISO-
OFDM system. We formulated an optimization problem based on an upper bound of
the effective RMS delay spread and the SNR for each subcarrier. To find the optimal
precoding vector, the SDR technique is used to convert the optimization problem into
a solvable convex problem. The proposed precoding scheme is found significantly to
reduce the effective delay spread of the channel and thus the CP overhead of OFDM
systems. Moreover, the advantage of the proposed approach becomes more distinct as
the number of antennas at the base station increases. Hence, the proposed approach
in combination with massive MIMO can provide a promising solution to realize low-

latency communications with OFDM transmissions.

5.3 Sum Rate Maximization with Shortened Cyclic Prefix in

a MIMO-OFDM System

We proposed a precoding scheme to maximize the sum rate under the RMS delay
spread constraint for low-latency communications. Applying the zero-forcing condi-
tions, we formulated an optimization problem for each user in terms of the achievable
rate and the effective RMS delay spread. Subsequently, the optimal precoding matrix
was obtained from the solutions of a convex problem relaxed by the SDR technique.
Numerical results showed that the effective sum rate of the proposed design is sig-
nificantly larger than that of the conventional zero-forcing method without delay con-
straints. Last but not least, the proposed precoding scheme can substantially reduce the
effective delay spread of the channel, lowering CP overhead for low-latency commu-

nications.
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