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Abstract

Development of a statistical model to
detect pleiotropic loci shared by multiple

traits

Cue Hyunkyu Lee

The Department of Biomedical Science
The Graduate School of Medicine

Seoul National University

Introduction: GWAS have been used widely for mapping disease-associated
genetic variants. Some of these variants exhibited pleiotropic effects in which a locus
affects multiple traits simultaneously. Detecting and interpreting pleiotropic loci
provides important information to understand the genetic structure shared between
diseases and complex traits. A common approach to detecting pleiotropic loci is to
perform a meta-analysis with multi-trait GWAS summary statistics. However,
existing meta-analysis methods do not model complex genetic structures such as

genetic correlations and heritability. In addition, these multi-trait analyses are often



difficult to interpret the analysis results due to the differences in units or scales in

phenotypes across traits.

Method: In this paper, I propose PLEIO, a summary statistics-based framework that
can map and interpret pleiotropic loci by jointly analyzing diseases and complex
traits. The method maximizes the performance of the association test by using a
novel statistical model that comprehensively describes the genetic correlations and
heritabilities of the traits. PLEIO uses standardized metrics to account for differences
in phenotypic units and scales; This generalized model can seamlessly combine any
sets of traits. To reduce the computation time for the multi-trait analysis, I used an
optimization process using novel mathematical techniques such as importance
sampling and eigenvalue decomposition. In addition, PLEIO provides an
interpretation and visualization tool that supports downstream analysis of the

identified loci.

Results: To verify the performance of PLEIO, I carried out extensive simulations
and real data analysis. Simulations, assuming various genetic correlations and
heritabilities structures, have confirmed that PLEIO has good control over false-
positive rates and outperforms other multi-trait analysis methods. In the real data
analysis, I applied PLEIO to 18 traits related to cardiovascular disease and detected
13 novel (newly identified) pleiotropic loci showing four different association
patterns. In terms of computational efficiency, the real data analysis that combines

18 traits used less than 4 hours per one CPU unit to test 1,777,411 association tests.

11 P _._j_‘:_.l.



Conclusion: PLEIO is a multi-trait analysis framework, which uses genetic structure
between traits to detect pleiotropic loci. The statistical model implemented in PLEIO
uses a generalized model that includes the assumptions used by the existing models.
The software can be downloaded for free from the following Github webpage:

https://github.com/cuelee/pleio.

Keywords: multi-trait analysis, pleiotropy, association test, heritability, genetic

correlation, meta-analysis, GWAS, variance component

Student number: 2019-33070
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C. H., Shi, H., Pasaniuc, B., Eskin, E., & Han, B. (2021). “PLEIO: a method to map

and interpret pleiotropic loci with GWAS summary statistics.” Am J Hum Genet,
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Chapter 1. Introduction

1.1 Study background

The thesis contains contents that require a high level of background in bioinformatics
and statistics. This section is intended to provide background information that helps
readers, especially non-majors. Throughout this chapter, I avoided the use of math

equations and complicated jargon.

1.1.1 Mendelian and complex disorders

Genetic diseases are health problems caused by abnormalities in the genome,
classified as Mendelian disorders or complex disorders. Mendelian (monogenic)
disease is caused by a single mutated gene. This type of diseases includes Cystic
fibrosis, Sickle cell disease, and Hemophilia diseases. For example, Cystic fibrosis
is a recessive genetic disorder caused by mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene[l]. Complex disease (or
multifactorial disease) is the parlance of genomics, which denotes that a disease is
not a simple Mendelian single-gene disorder but is caused by a combination of many
genes and significant environmental contributions. One of the good examples of
complex diseases is cardiovascular disease. The risk of cardiovascular disease can
be increased by genetic factors[2], such as an ancestor’s medical history[3], and by
environmental factors, such as long-term consumption of salty foods[4]. Similarly,
some human traits such as height and body mass index (BMI) are multifactorial, of
which phenotypes are determined by many genetic and environmental factors[5, 6].

Ay
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1.1.2 Genetic liability-threshold model

The liability-threshold model is a threshold model that describes categorical
outcomes (usually binary) with liability scores obtained by summing over many
variables. The model assumes that the observed outcome is determined by whether
the latent score (I) is less than or greater than the threshold value (z). In a genetic
context, the liability score can be described as the sum of two components: genetic
(9) and environmental (e), and thus | = g + e, and the threshold z defines the limit
by which the disease is determined by of genetic and environmental factors. For
diseases (whose phenotypic outcomes are binary or categorical), the threshold can
be estimated from the population prevalence of the disease (which is typically low).
The threshold is defined relative to the population and environment, so the liability

score is generally considered as a N (0,1) normally distributed random variable.

1.1.3 Genome-wide association studies (GWAS)

GWAS is a type of research design that identifies genetic variants associated with a
trait by performing association tests at the whole genome level using the genotypes
and phenotypes generated from many individuals in the general population. To date,
GWAS has been performed on a large scale for several complex diseases (or traits)
using single nucleotide polymorphisms (SNPs) as independent variables. Here, each
SNP represents a single genetic variation that has a modest fraction of mutant alleles
in the population (e.g., 1 % or more). Since a single nucleotide can be one of adenine
(A), thymine (7"), guanine (), and cytosine (C), a SNP can be one of bi-, tri-, or

tetra-allelic. Usually, however, SNPs are considered bi-allelic. Alternatively, GWAS



can be performed using genetic variations other than SNPs (e.g., deletions, insertions,

copy number variations, CNVs).

The traits used in GWAS can be broadly divided into two categories (binary and
quantitative), and each type uses a different method to estimate the magnitude of
individual SNP associations. For quantitative traits (e.g., height, BMI, fasting
glucose concentration), we usually use a linear regression model that regresses the
standardized phenotypes (continuous) on standardized genotypes. The term
‘standardized’ here means that the phenotypes (or genotypes) are normalized to
follow the standard distribution, N(0,1). For binary traits (e.g., cardiovascular
diseases or type 2 diabetes), we can use a logistic regression model that regresses
the phenotypes (0 or 1) on genotypes. To perform the above regression analysis, we
transform each genotype of an individual into a dosage (0/1/2) representing the

frequency of the minor allele of the individual.

Since 2005, the first successful GWAS study[7], to the present, GWAS have
identified more than 55,000 significant (p — value < 5 x 107%; genome wide
significance threshold, 2021-06-15) genome-wide associations between genetic
variations and common diseases or traits collected from 5106 GWAS publications
(Figure 1)[8]. These associations have led to many important scientific discoveries:
understanding disease mechanisms by identifying novel associated loci causing the
disease, identifying therapeutic targets of diseases, and developing methods for

diagnosing and predicting prognosis[9].



Figure 1 GWAS diagram from the NHGRI-EBI catalog In this diagram, associations

with p-values less than 5 x 10~® are shown and colored according to trait categories.

Despite these great successes, GWAS have several limitations[9]. A representative
example is the problem of missing heritability, a phenomenon in which associations
identified by GWAS explain only a small fraction of the heritability of complex traits
(e.g., height)[10]. This may be because GWAS does not study all types of genetic
variations that affect complex traits. For example, most GWAS does not include rare
variants (or ultra-rare variants) and the effects due to epistasis[9]. In many cases,
GWAS do not directly identify disease- or trait-causal variants. Instead, they detect
tag-SNPs correlated with nearby causal variants through the genetic structure called
linkage disequilibrium (LD)[11]. Some critics argue that GWAS associations may

be spurious associations caused by the cryptic relatedness between individuals[12].



1.2 Purpose of research

GWAS (Genome-wide association studies) have discovered many genetic variants
with pleiotropic effects that affect several traits simultaneously[13, 14]. For example,
the GWAS catalog, a database that summarizes the associated variants identified by
GWAS performed to date, contains several pleiotropic variants for which
pleiotropic effects have been firmly established (e.g., hypertension and myocardial
infarction)[15]. Recently, Watanabe et al. conducted a study to examine the GWAS
catalog data collected up to 2019 to map pleiotropic variants' position and interpret
their genetic structures| 14]. In this study, Watanabe et al. found that a large part of

the human genome is related to pleiotropy (Figure 2)[14].

Pleiotropic
a b (60%)

i/

Trait specific
| (40%)

> Pleiotropic
(93.3%)

Is
Trait specific
(6.7%)

Figure 2 Proportion of pleiotropic trait-associated loci and SNP. a. Each value is
based on the summed length of the associated loci, and each associated locus represents a
genomic segment correlated by linkage disequilibrium (LD). Here, each locus may contain
more than one trait-associated SNP. The definition of an associated locus can be found
elsewhere[14] b. Each percentage value uses the number of SNPs in the GWAS included in

the analysis as the denominator.



Identifying pleiotropic loci is vital as they can understand the physiological
mechanism of complex diseases or develop common therapeutic targets. Most of the

resulting summary statistics of the GWAS performed to date are publicly available,

which can be used to detect pleiotropic loci. Existing methods for detecting
pleiotropic loci are based on a meta-analysis[16-18], trait-specific effect size
estimation[19], or Bayesian approaches. Meta-analysis-based methods are suitable
for variant mapping because they provide one p-value for each variant. However,
the pooled statistics and p-values alone are insufficient to determine how much a
gene is associated with each trait. In other words, there are limits to interpreting the
results. The trait-specific methods are advantageous for interpretation and genetic
risk prediction because they provide updated effect sizes and p-values for each trait

and variant. However, variant mapping is difficult for trait-specific methods as

additional multiple testing corrections may be required to obtain per variant p-values.

In this thesis, I developed a meta-analysis-based method to detect pleiotropic loci.

There are several problems with the strategy of naive application of the existing
meta-analysis method to multi-trait analysis. First, existing methods do not
adequately model the genetic structure of diseases and complex traits. The problem
can be ameliorated by explicitly modeling the genetic correlation and heritabilities
and providing information about the magnitude and direction of effect sizes across
traits. Second, conventional methods use the assumption that the phenotypic unit and
scale are the same. In a multi-trait analysis, units can differ between quantitative

traits, and the definitions of the effect size can vary between binary and quantitative



traits. Currently, most meta-analysis methods ignore these differences and use the
observed effect size estimates as input, so multi-trait analysis using the existing
meta-analysis methods does not provide optimal results. For the same reason, the
interpretation of the analysis using a forest plot or m-value may not provide optimal
results. Third, there may be environmental correlations between traits resulting from
using the same sample in multiple GWAS. Without systemic estimation and
correction for environmental correlations, the use of meta-analysis can inflate false

positives.

In this study, I propose a multi-trait method PLEIO (Pleiotropic Locus Exploration
and Interpretation using Optimal test), which maps and interprets pleiotropic loci
(Figure 3). PLEIO uses GWAS summary statistics as input. The multi-trait analysis
begins with estimating the genetic correlations, heritabilities, and environmental
correlations using whole-genome GWAS summary statistics. Then, it transforms the
observed effect size estimates into standardized estimates. For quantitative traits, the
standardization makes the phenotypes and genotypes follow a standard normal
distribution. For binary traits, standardization means converting per sample genetic
contributions into a liability. This process is necessary to analyze diseases and
complex traits with different units and compare the magnitude of their effect sizes.
PLEIO uses a variance component model and assumes genetic effects as a random
variable. The model tests the non-zero genetic variance component where the
covariance matrix is proportional to the cross-trait genetic covariance matrix. The
statistical model can account for genetic correlations and heritabilities to maximize

statistical power and control the false positive rate by taking environmental



correlations into account. To increase the computational efficiency in maximum
likelihood estimation, PLEIO uses an optimization technique that applies spectral
decomposition to the covariance matrix of the linearly transformed effect sizes.
While using the proposed variance component model, I discovered bias in the p-
values in multi-trait analysis using a small number of traits due to the small sample
problem. I addressed this problem by implementing a novel importance sampling

method that accurately estimates the p-value.
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Figure 3. Overview of the PLEIO framework. a. One collects summary statistics of
genetically correlated traits. b. One estimates genetic correlations, heritabilities, and
environmental correlations across the traits using LDSC. c. PLEIO performs association

analysis by modeling the effect sizes as the sum of genetic and environmental effects.
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I have validated the power of PLEIO to detect pleiotropic loci through extensive
simulations and real data analysis. The simulations assumed different cross-trait
genetic correlation structures and compared the performance of several multi-trait
methods. PLEIO outperformed almost all competitors in various simulation settings.
The results showed that PLEIO, unlike other methods, can adapt flexibly to changes
in genetic structures. Next, I collected summary statistics of 18 GWAS related to
cardiovascular disease and performed real-data analysis. Through this joint analysis
of 18 traits, PLEIO discovered 13 novel pleiotropic loci. I have divided these 13
pleiotropic loci into four groups according to their association patterns, where each
group may represent a distinct pathway. To visualize the association patterns of each
pleiotropic locus, I used the visualization tool, “pleiotropicPlot” implemented in
PLEIO. The software is available to the research community on the GitHub page:

https://github.com/cuelee/pleio.




Chapter 2. Material and method

2.1 The whole process of PLEIO analysis

Below, I describe the framework, PLEIO (Pleiotropic Locus Exploration and
Interpretation using Optimal test). To jointly analyze multiple traits, the user needs
to select the () traits and collect ' GWAS summary statistics. Each of T summary
statistics is a SNP association test result of a trait in Q traits, and the traits can be any
combination of binary and quantitative phenotypes. One can collect more than one
GWAS for one trait so that 7" can be greater than (). PLEIO takes M common SNPs

shared by 7" summary statistics as input. The risk and reference alleles of each SNP
should be matched across all 7' summary statistics. Let Bit be the observed effect
size of the 7th SNP and tth trait, SE[B“] be the corresponding standard error, and [V,

is the number of the sample size of tth trait. PLEIO uses the 7" summary statistics as

input and performs five analysis steps described below.

2.1.1 Step 1: Estimation of correlation matrices

PLEIO assumes that the correlation of GWAS marginal effect sizes is the summation
of the correlation due to causal genetic effects and the correlation due to
environmental effects. Here, each marginal effect size measures additive genetic
effects. Let Cy is a T' x T' matrix of the genetic correlation matrix, C isaT' X T
matrix of the environmental correlation, and h? is a T x 1 vector of narrow sense
heritabilities. It is straightforward to obtain C'; and h? by applying the linkage-

disequilibrium score regression (LDSC) to a pair of studies [19, 20]. For C, we use

10 2] o r



the "Genetic Covariance" value in LDSC analysis output[21], and for C,, we use

"Intercept of Genetic Covariance" as suggested by multi-trait analysis of GWAS

(MTAG)[19].

Additionally, I suggest another method for estimating C,. The proposed method is
a two-step procedure. First, a pair of traits are combined using the fixed-effects meta-
analysis method based on the inverse variance of the effect size. Then, I apply the
single trait LDSC method to this pooled summary statistics, which gives a LDSC

intercept. Let this LDSC intercept be a the environmental correlation (p,)

meta>

becomes

N; + Ny,
Pe X o (ameta - 1) .
2y Nij Equation 1
where N; and N, are the sample sizes of the two studies. I found that the two

approaches described above give similar estimates for C,. For details, see

Estimation of environmental correlations using LDSC.

2.1.2 Step 2: Standardization of the input statistics

In the collection of T" summary statistics (or traits), the scale of observed effect sizes
can be heterogeneous. Instead of using the observed (reported) effect sizes, PLEIO
uses the effect sizes in a standardized metric derived from each summary statistics.

The standardized effect size of SNP ¢ for trait ¢ can be shown as follows:

11 2] o 1T



N Bir

X SE B SB[
it = — 5 ;and SE[7;,] A[ ] Nit
. it
N, +6,0, |—Diu__ untion
SE [/Bit] quation

Ki(-K,)? 1

0, is a scaling factor that is 1 for quantitative trait and FA P [0 T(K)P
t

a binary trait, where K, refers to the disease prevalence, P, = (NV,|y = 1)/ N, refers
to the sample prevalence, 1 refers to the probability density function (PDF) of the
standard normal distribution, and ¢! refers to the inverse of the cumulative density

function (CDF) of the standard normal distribution. 6, is a scaling factor that is O for

quantitative trait and (it X I:flft t) (t — i, X I:fé f) for a binary trait, where i, =

Yo 1 (1-K,))

Ve refers to the mean liability of cases, and t = gb_l(l — K,) refers to the

liability threshold for cases. For quantitative traits, 7, = %\/Lﬁ, which
it t

corresponds to the regression coefficient of the simple linear regression model using
the standardized phenotypes and the standardized genotypes. For binary traits, 7);, is
the standardized effect size with a liability scale derived from a linear model,
assuming a non-randomly ascertained case-control study (by setting the phenotypes
1 and 0). The use of the two scaling factors in Equation 2 was suggested by S.H Lee
et al. For binary traits, the observed statistics are often obtained from logistic
regression model rather than linear regression model, but it has been customary to
assume that the statistics were obtained from the simple linear regression model[20].
The accuracy of the proposed scaling function was verified by performing extensive

simulations with different K, and P, (Figure 4). The use of 7;, is useful for
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downstream analysis as it is convenient to interpret the pleiotropic association
pattern across traits. Note that the proposed standardized effect size is independent

of phenotypic and genotypic units.
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Figure 4. Simulation to verify the scaling of the effect sizes for binary traits. I
generated liabilities of 20 individuals where 1 ~ N(0,1) and l = g + € where g is the random
genetic effects and e is the random errors. In this simulation, I assumed g = X8,,.,,. Where
Birue 1S @ 100 x 1 vector of causal SNPs and ﬁtru;N(O,%), h? is fixed to 0.3, and X is the
genotypes whose minor allele frequency (p) is fixed to 0.3. Then, I generated a case-control
study whose total sample number is fixed to 20,000 and estimated the regression coefficients
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of 100 variants using a linear regression model. Let g3 be the estimates of the effect

estim

sizes after transforming the observed estimate with the proposed scaling scheme. To show

the validity of the scaling, we plotted 8 and B;,,. ON @ 2-D plane (total a hundred red

estim
dots). The test was repeated using 16 different combinations of population prevalence and

sample prevalence

2.1.3 Step 3: A variance component model to identify
pleiotropic loci using GWAS summary statistics

Below, I describe the statistical model of the PLEIO, which is optimized to identify
pleiotropic loci. I assume that a phenotype is influenced by K causal SNPs whose
individual contribution is very small. For simplicity, I assume that all X SNPs are
shared by the 7 traits. Let i, be a 1" x 1 vector denoting the true effect sizes of ith
causal SNP. Inspired by the LDSC model used in Step 1: Estimation of correlation
matrices, 1 assume that all K SNPs have equal contributions such that
n; ~ MVN(O,%) where €2 is the genetic covariance matrix whose diagonal
elements are the narrow sense heritabilities. For non-causal SNPs, I assume n; = 0.
Let 7, is the observed effect sizes of ith SNP and SE(7),) is the corresponding
standard errors. I model 7); as the sum of the true genetic effect and the error as

follows:

ﬁi =mn; + €; Equation 3

where €; is a random variable of the errors such that ,~MVN(0, ) where ¥ =
diag(SE[R);)) - C, - diag(SE[#;]) . Thus, 7;~MVN(0,£+ %) for causal SNP
and 17,~MVN(0, X) for non-causal SNPs. As described earlier, LDSC uses 7; and
SE|[#;] for M observed SNPs to estimate the genetic covariance matrix £ and

Ay

3 ™ 1 1
14 :'--i -';"-'l'!;..:i



environmental correlation matrix % (see Step 1: Estimation of correlation

matrices for details).

In the remaining half of this section, I demonstrate how to test the pleiotropic
association using 7;, SE[7,], Q, and 3. First, I relax the assumption that K SNPs
have equal contributions and model 7); as the sum of two random variables as

follows

ﬁi =, + €; Equation 4

where «; is a new random variable of genetic effects that follows v,~MVN(0, 722),
and 77 is a scaling factor of the variance-covariance matrix €2 so that 72 > 0 for
causal SNPs and 72 = 0 for non-causal SNPs. Note that, in a special case, v, is
equivalent to 17; when 77 has the fixed value of % In this model, PLEIO tests
pleiotropic association by testing 72 = 0 under the null hypothesis and 72 > 0 under

the alternative hypothesis.

I describe intuitions of our model as follows. The key assumption is that the genetic
component -y, is a random variable whose variance is proportional to the genetic
covariance matrix =y;. This implies the following two: First, phenotypes with larger
heritability show larger genetic effects. Second, phenotypes of multiple traits show

genetic effects concordance to their genetic correlations. The statistical model is

optimized to have maximized power with Q and . The use of estimates obtained
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using whole-genome data, such as Q and 3, is similar to the approach of the

empirical Bayes approaches[22].

I can test the hypothesis by fitting the variance component model in Equation 4 and

obtaining the maximum likelihood estimate (MLE) 72 that maximize

L (TZ2

1 ﬁ, i)\) This can be done with numerical solution such as the pseudo-
Newton-Raphson method. However, updating the parameter 72 in the likelihood

. . .. . =~ S1-1. . . .
function above requires a matrix inversion, [TEQ + 2] , in every iteration, which

has a polynomial time complexity. To solve this challenge, I developed an
optimization technique that considerably reduces the computational burden for

finding MLE (see Appendix A).

In the suggested optimization technique, I apply a linear transformation to 7), as
follows:

1 N PO |
Q 27, ~ MVN <O,TZ-I—|—Q 330 z). Equation 5

The goal of the optimization is to find the MLE 77 that maximize

£(r2|Q=n

7

.;ﬁféiﬁfé) with 72 >0 as a constraint. By applying spectral

1
decomposition, D = Q23Q 2 = Py (A p)PL where A, is a diagonal matrix of
the eigenvalues that are arranged in ascending order, and Pp, is an eigenvector
matrix whose ith column corresponds to the ith eigenvalue. Then, D! can be

simplified as Pp(Ap + 72I) ' P} . Note that the computation of Pp(Ap +

16 1] 2. +1 &1



72I)"'PL is much easier than the computation of (7202 + %)~!. The log-
likelihood function obtained through the linear transformation (£7) can be shown as

follows:

4] =-3 T In(2m) —I—Z n(& + 77)

)T A (PDE Q9]

l\)l)—l
N

(PDE [Q9]%7

n)]

— e " 2y 0%
—3[Tmen + X7 w4+ Y 2

=1 i Equation 6

where R is the number of non-zero eigenvalues, A}, is a R x R matrix that
removed columns with zero diagonal elements of A 5, &, is the tth diagonal element
of A}, 67 is the tth element of the vector PDEﬁ_%ﬁi, and F is a diagonal matrix
of which the first p elements are ones, and the rest are zeros.

The first and second derivatives of ¢ with respect to 77 are:

D e
d7’i2 tlft—I—T ft—l—T

t=

=
ﬁw%
S~—

[\

|

|

N~
]
o)
Mm

82
t=1 (§t + 77 7 (& + 7} ] Equation 7

With Equation 7, I can obtain optimal 77 using the Newton Raphson method. the

resulting log-likelihood ratio test (LRT) statistic can be shown as follows:



snumo = [0 (55)] + [ 2 - 352

This technique can substantially reduce the time to complete the association tests
where the amount of the time reduction increases with the increase of the number of
traits (Figure 5 and Figure 6). The use of spectral decomposition was inspired by
the technique used in the Efficient Mixed-Model Association (EMMA)[23]. Kang
et al. applied eigendecomposition on the variance of a linear mixed model to reduce

the time complexity of solving REML.
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Figure 5. Comparison of the computational efficiency between the proposed
Newton Raphson (NR) technique and the pseudo-NR technique implemented in
Python’s Scipy library. I measured the time for a 10K SNP test with PLEIO, where I
changed the number of traits from 5 to 200. The dark gray bar represents the NR method
implemented in PLEIO, and the light gray bar represents the pseudo-Newton-Raphson

method implemented in Python’s Scipy library.
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Figure 6. Line plot comparing the computational time of the NR method proposed
by PLEIO and the pseudo-NR method implemented in Scipy library. Each point
indicates the ratio of computational time for testing 10K simulations using the NR

implemented in PLEIO to the pseudo NR implemented in Scipy.

2.14 Step 4: P-value estimation using a novel importance
sampling method

I describe how the statistical significance (p-value) of the LRT statistic, Sp; pro, 1S
evaluated. PLEIO’s LRT statistic uses only one variance estimate as to the parameter.
According to Self and Liang, the statistic asymptotically follows a 50:50 mixture of
X& and x? under the null hypothesis[24]. However, the asymptotic approximation is
inaccurate when the number of traits (7) is small. I found that the null p-values
calculated from the asymptotic distribution deviate from the uniform distribution

(the left column of Figure 7). Sp; p;o has a unique null distribution for every

combination of © and . In this case, a reasonable solution is to estimate null

distribution using by applying a simulation-based approach (e.g., Monte Carlo



method) to the analysis that uses those study-specific factors (ﬁ and i) The
suggested approach has to accurately approximate the p-value at a very small
quantity (e.g., 5 x 10~8). For this reason, the use of the Monte Carlo method is not

an optimal solution, as it will significantly increase the total analysis time.

Below, I suggest a novel importance sampling method to assess the p-value of
Sprero- Let x be a random variable of the standard effect sizes, and g(z) be the
probability density function (PDF) of z under the null hypothesis. Thus,
g(x) ~ MVN(0,%). By the definition of the probability distribution, | ¢(z) dz =
1 when D = R”. In this section, Below, I treat Sp; ;o as a function of = given Q

and 3, and let 0 be the observed statistics of S pre1o- Using definitions above, I

define an indicator function f(z, 6) as follows:

S8 Lif SPLE10(3C|§a§) >0
USLED :{ J[S.8) <0

0 Zf SPLEIO( ) Equation 9

For simplicity, I replace f(ac, 9\/2\), ﬁ) with f(x). Then, the p-value of 6 can be

shown as:

I= /m(ﬂ:)dm
D Equation 10

where m(z) = f(z)q(z). To estimate the value of I, one can use the importance
sampling approaches. Let p(x) be a sampling distribution that differs from ¢(x), and

XP~p(x) denote a M x T matrix of the effect sizes sampled from p(x) where M

20 :_'i _»':_1-!i =]



is the number of samples. Note that M can be any number but is usually smaller than
the number of samples using the Monte Carlo method. Then, the estimate I using

XP can be shown as follows:

i [f] L [i f(Xf)q<Xf)]
M= p(X})

where EP[-] denotes the expectation over X?, and X7 is the ith row vector of X”.

The challenge in the above importance sampling is to choose an p(x) that minimize

the variance of I. In GWAS, this can be more challenging because the range of Iis

very wide, from 1.0 to 5 x 10~%. In other words, each § may have an optimal p(z)

that minimizes the variance of I. To solve this problem, I applied the importance
sampling method suggested by Owen and Zhou[25]. The proposed method generates

samples from a mixture distribution. Let p;(z) be the jth sampling distribution
where j = {1,2,..., F'}. Unlike the conventional importance sampling method,
p;(x) can include g(x). Let p,(x) be the mixture distribution of F' sampling
distribution. In PLEIO, I assume 11 sampling distributions (F' = 11) including ¢(x)
and assume the equal contribution of jth sampling distribution such that p_ (z) =

%Zf: ,P;(x). Detailed information on how I selected p;(z) can be found in

Appendix B.

In the suggested importance sampling, Owen and Zhou used each p,(z) as a control

variate of m(z) = f(2)q(x) to reduce the variance of I[25]. Let m*(z, 3) be an

estimator of m(z) which can be shown as follows:

21 :_'i O
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Equation 12

where E[m*| =E[m|=1, and fD pj(r)dx =1. The control variate method

minimizes the variance of I with the optimal control variate coefficient (3*) where
B* ={By, By, ..., Br}- Then, the variance Var(m®*) is equivalent to or smaller than

Var(m). Following Equation 12, the p-value estimate of § can be shown as follows:

I = EPa[m’]

1 (L f(XT)q Z Bipi (X ) K
= — 5 + B
M (; Pa (Xi ) ; ) Equation 13

In PLEIO, I implemented the suggested importance sampling above as follows.
Instead of estimating p-values of every variant being tested, I approximate the null
distribution of Sp; ;o using 40 different 0 that roughly correspond to the p-values
from 1.0 to 5 x 1078, Note that the p-value estimation in Equation 13 requires
optimization of B to maximize the variance reduction of each p-value estimate.
Using these 40 p-values, I interpolate p-values for 6 < 40 using B-spline fit and
extrapolate p-values for # > 40 using the linear fit on the logarithmic p-value scale.
A detailed description of how to get the optimal control variate coefficients (3*) can

be found in Appendix B.
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Figure 7 PLEIO’s p-value distribution plot. We compared the probability plots of p-
values obtained using the importance sampling method and asymptotic distribution under
the null hypothesis. The p-values were sorted in ascending order and compared with the

expected p-values. I have changed the number of traits from 5 to 100.
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2.1.5 Step 5: Visualization of pleiotropic association pattern

PLEIO offers PleiotropyPlot, which visualizes the pleiotropic effects of a SNP in a
circular plot[26]. Each plot contains information on the normalized effect sizes, the
local heritability, the genetic correlation structure, and the local Manhattan plots of
the SNP. The information in the outer part of the plot is as follows: 1. textual
information of the effect sizes and p-values obtained from raw summary statistics of
the traits. 2. per trait regional Manhattan plots showing the p-values of the SNPs
within 1M base-pair window. 3. bar plots whose length indicates the magnitude of
the standard effect and whose color indicates the direction of the effects. The inner
part of this plot is a ribbon plot where each ribbon connects two traits. The color of
the ribbon indicates the magnitude of the genetic correlation between the two traits,
and the width at the end of each ribbon indicates the locus heritability of the trait on

a relative scale (square of the normalized effect size).

2.2 Simulations

2.2.1 Evaluation method of false-positive rate

Below, I describe how to generate SNP effects in the false positive rate (FPR)
simulation. In each simulation of the given 3, and C_, I generated standard effect

sizes (7, ) from MVN(0,3X where ¥, =C,_, and SE[n,,,]=1.1

sim) e’

assumed a significance threshold level a and estimated FPR at o = 0.05 as the

proportion of simulations whose P < «.

3 ™ 1 1
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2.2.2 Generation of effect sizes used in power simulation

I provide a detailed description of how I generate SNP effects used in the power
simulation. I assumed a SNP whose minor allele frequency p is fixed to 0.3 under
the Hardy Weinberg equilibrium. I performed a joint analysis of seven traits (1" = 7)
for each simulation setting. Each setting differed following factors: heritability h?2,
the genetic correlation C,, phenotypic unit (U), and phenotypic type (either B or
Q). For simplicity, I treated the environmental correlation matrix, C, as a diagonal

matrix of ones.

First, I describe how to generate effect sizes for quantitative traits (Q). Let 8; =

(Bi1s Bigs -+, Byr) be the T' x 1 vector of true effect sizes of the SNP i. I generated
B; ~ MVN(O,mﬂsim) where Qg = diag(vVh?) - C,- diag(v/h?) , and

M

true

is the number of causal variants. By default, M,,.,,. = 1,000. Let N be the

rue
number of samples, h? is the tth element of h?, x, is a N x 1 vector of genotypes.

For each trait, I simulated «, from Binomial(2, p) and standardized them such that

Ty g = %. Then, I generated y, from the linear model y; = BT o1q + €

_ ~ 132
where €, = (€1, €9, .-, €;v) i a vector of errors and €;; ~ N(O, 1 —57— ht).

the observed effect size BAZ-t is the regression coefficient of the linear regression of

Y 0Ty o1q-

Second, I describe how to generate effect sizes for binary traits (B). I assumed that

each binary study contains half cases (%) and half controls (%).
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[Step 1: Sampling of true effect size under observed linear scale]

Let B, be the T x1 vector of true effect sizes of the SNP ¢ and

B;~MVN (0, L0 ) For binary traits, I treat 3, as the true effect sizes under

Mtrue sim

the liability scale. I converted this true effect size into the observed scale 8

i,0bs

3 3 — K?(l_Kt>2 . 1
B;/9,. where J, is a scaling factor and §, = PO-P) TR where K,

refers to the disease prevalence of trait ¢, P, refers to the sample prevalence (fixed
to 0.5 in this power test), ¢ refers to the probability density function of the standard
normal distribution, and ¢! refers to the inverse of the cumulative density function

of the standard normal distribution.

[Step 2: Searching for relative risk corresponding to the true effect size]

Now, I search for the value of the relative risk v giving 8 under the observed

i,0bs

linear scale. Suppose that  is any scalar value. Given the disease prevalence K, and

the population minor allele frequency (MAF) p (which is 0.5), the expected case

MAF is pt = p(ﬂ% —7 and the expected control MAF is p~ = p;f’i;fjt. Assuming the

Hardy-Weinberg equilibrium, I can construct a set of reference genotypes such that
the case MAF is exactly p* and control MAF is exactly p~ (after ignoring the

integer rounding). Let z;, is a N X 1 vector of the reference genotypes and ; ;, =

Zy—2p
2p(1-p)

. As mentioned earlier, the vector of phenotypes y, consists of half ones and

half zeros. Thus, I can perform a linear regression analysis of y, on y, to get the

effect size under the observed linear scale . Finally, I search the relative risk

2,0bs

estimate 7 that satisfies 8, ;s = B, ops-
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[Step 3: Generating genotypes]|
Now I can create the genotypes x, using the value of p* and p~ that corresponds

to 7, I generated the case genotypes from x,; ~ Binomial(2,p") and the control

genotypes from z,; ~ Binomial(2,p~).

[Step 4: Logistic regression]

Commonly, the heritability calculations of binary traits are based on the (observed
and liability scale) linear model. This was why I had to derive the relative risk and
the case and control MAFs through the observed scale linear model. However, in
association analyses, the logistic regression model is commonly used. To simulate a
realistic situation, I applied logistic regression to y, and the sampled x,. This way,
I obtained the log odds ratios and the standard errors for 7 traits. This information

was used as the final input for binary traits in our power analysis.

2.3 Real data analysis

2.3.1 Data collection

I collected 18 public GWAS summary statistics on traits related to cardiovascular
disease. These 18 traits include the diseases (binary phenotypes) and the complex

traits (quantitative phenotypes).

Table 1 provides a detailed summary of these 18 traits. I selected the most recent

study where the consortium has more than one summary statistics for the same trait.
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From the Global Lipid consortium[27], I collected summary statistics on four
quantitative traits. Each summary statistics is the result of GWAS from 94,595
individuals from 23 studies genotyped with GWAS array and 93,982 individuals
from 37 studies genotyped with Metabochip array. From the GWAS results of the
UK biobank, I collected summary statistics of twelve binary traits(Table 2)[28].
Each summary statistics is the result of GWAS from 361,193 individuals. From the
CARDIo+C4D consortium[2], I collected summary statistics of one binary trait
(coronary artery disease), which is the result of GWAS from 60,801 cases and
123,504 controls of 48 studies. Finally, from the MAGIC consortium[29], I collected
summary statistics of one quantitative trait (fasting glucose), GWAS from 46,186

non-diabetic patients of 21 studies. All study subjects were of European ancestry.
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Phenotype S,.ey  Pprey  Year Phenotype Database Ny ;i Neontrols Neases ~— LDSC_h2

Heart attack: 6150 1  0.024  0.024 2018 Binary UK Biobank 360419 352132 8287 0.14
Hypertension: 19 0.003  0.003 2018 Binary UK Biobank 361193 359957 1236 0.11

Essential (primary) hypertension: [10  0.002  0.002 2018 Binary UK Biobank 361193 360329 864 0.11
Acute myocardial infarction: 121~ 0.018  0.018 2018 Binary UK Biobank 361193 354782 6411 0.13
Myocardial infarction: 19 0.020  0.020 2018 Binary UK Biobank 361193 354175 7018 0.13

Major coronary heart disease: 19  0.029  0.029 2018 Binary UK Biobank 361193 351037 10156 0.13
Ischemic heart disease: I9  0.061  0.061 2018 Binary UK Biobank 361193 340337 20856 0.13
Coronary atherosclerosis: 19 0.041  0.041 2018 Binary UK Biobank 361193 346860 14333 0.15
Heart failure  0.004  0.004 2018 Binary UK Biobank 361193 359789 1404 0.16

Obesity: E66  0.001  0.001 2018 Binary UK Biobank 361193 360752 441 0.36

Type 1 diabetes: E4  0.002  0.002 2018 Binary UK Biobank 361193 360611 582 0.17

Type 2 diabetes: E4  0.002  0.002 2018 Binary UK Biobank 361193 360305 888 0.17

Coronary artery disease  0.492  0.050 2015 Binary CARDIo+C4D 184305 123504 60801 0.06
High-density lipoprotein NA NA 2013  Quantitative Global Lipids 188577 NA NA 0.21
Low-density lipoprotein NA NA 2013  Quantitative Global Lipids 188577 NA NA 0.20

Total cholesterol NA NA 2013 Quantitative Global Lipids 188577 NA NA 0.21

Triglycerides NA NA 2013  Quantitative Global Lipids 188577 NA NA 0.21

Fasting glucose NA NA 2011 Quantitative Magic 46186 NA NA 0.09

Table 1. The list of phenotypes included in the PLEIO's real data analysis. For binary phenotypes, S

prev

means sample prevalence,

and P, means the population prevalence.

prev
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Phenotype Code
6150_1
I9_HYPTENS
110

121

19_MI

I19_CHD
I19_IHD
I19_CORATHER
I19_HEARTFAIL
E66

E4_DM1

E4_DM2

Table 2 The detailed description of twelve UKB traits. The data above can be found at Neale lab’s UKB summary statistics portal.

Phenotype Description

Vascular/heart problems diagnosed by doctor: Heart attack
Hypertension

Diagnoses - main ICD10: 110 Essential (primary) hypertension
Diagnoses - main ICD10: I21 Acute myocardial infarction
Myocardial infarction

Major coronary heart disease event

Ischaemic heart disease, wide definition

Coronary atherosclerosis

Heart failure,strict

Diagnoses - main ICD10: E66 Obesity

Type 1 diabetes

Type 2 diabetes

30

Sex
both_sexes
both_sexes
both_sexes
both_sexes
both_sexes
both_sexes
both_sexes
both_sexes
both_sexes
both_sexes
both_sexes

both_sexes

File

6150_1.gwas.imputed_v3.both_sexes.tsv.bgz
I9_HYPTENS.gwas.imputed_v3.both_sexes.tsv.bgz
I110.gwas.imputed_v3.both_sexes.tsv.bgz
I121.gwas.imputed_v3.both_sexes.tsv.bgz
19_MI.gwas.imputed_v3.both_sexes.tsv.bgz
19_CHD.gwas.imputed_v3.both_sexes.tsv.bgz
19_IHD.gwas.imputed_v3.both_sexes.tsv.bgz
I19_CORATHER.gwas.imputed_v3.both_sexes.tsv.bgz
I19_HEARTFAIL.gwas.imputed_v3.both_sexes.tsv.bgz
E66.gwas.imputed_v3.both_sexes.tsv.bgz
E4_DM1.gwas.imputed_v3.both_sexes.tsv.bgz

E4_DM2.gwas.imputed_v3.both_sexes.tsv.bgz



2.3.2 Quality control of the data

Each study underwent the following standard quality control protocols. For each
summary statistics, I excluded SNPs not in the 1000 Genomes and checked the
consistency of allele pair of each SNP with the corresponding allele pair of the SNP
in 1000 Genomes. In addition, I removed all strand-ambiguous SNPs that have allele
pair GC or AT. A total of 1,777,411 SNPs were included in the joint analysis of the
18 traits. Summary statistics of these remaining SNPs were used to estimate the

genetic covariance and error correlation.
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Chapter 3. Results

3.1 Overview of the method

PLEIO is a multi-trait framework to identify and interpret pleiotropic loci. PLEIO
uses genetic covariance and environmental correlation across these traits to optimize
the statistical power. I described the statistical model used in PLEIO using a toy
model of three traits (A, B, and C) in Figure 8. Let X, be a SNP that has observed
effect sizes of (2.2,2.8, —1.2), and X, be another SNP that has observed effect sizes
of (—1.5,0.4, —2.7). For simplicity, the variances of all estimates were assumed to
be one. If I test the SNP association using the fixed-effects meta-analysis method,
these SNPs have the exact p-value (P = 0.03) as the magnitude of the mean effect
size is the same. However, suppose we know that A and B have a positive correlation,
and C has a negative correlation with the rest. Then, taking into account the genetic
correlation between traits, SNP X is more likely to be a true signal compared to X,.
Additionally, suppose we know that B has the most significant heritability and C has
the least heritability, which makes the association of X; much more likely to be a
true signal because the relative strength of the effect sizes is similar to the
heritabilities. PLEIO accounts for the genetic covariance and environmental
correlation and gives a more significant p-value at SNP X, (P = 0.0006) than X,

(P =0.1).

The complete analysis of PLEIO consists of five steps. First, PLEIO uses LD score

regression (LDSC)[20] to estimate the genetic correlation C,, environmental
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correlation C,, and the heritabilities h?. Note that the genetic covariance €2 is

obtained by summarizing C, and h?. Second, it changes the scale of observed effect

sizes ,é into the standardized scale 7). For quantitative traits, 7) corresponds to the
regression coefficient of simple linear regression whose dependent and independent
variables follow N(0,1). For binary traits, 7 is the standardized effect sizes for
liability. Third, PLEIO uses a variance component model 7 = g + e to map
pleiotropic loci (Figure 3). The primary assumption of this statistical model is that
the genetic effects g follows the genetic covariance, Var(g) = 72€2. Each SNP
association test, PLEIO performs hypothesis test of H,: 72 = 0 versus H,: 72 > 0.
To increase the computational efficiency, an optimization technique using spectral
decomposition of the variance, Var(g) 4+ Var(e), was applied. Fourth, PLEIO uses
an importance sampling method to assess the one-tailed p-value per SNP. Lastly,

PLEIO provides a visualized summary of the analysis results to help interpretation.
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Figure 8. A toy example desighed to understand the association analysis carried

out by PLEIO.

3.2 Evaluation of false-positive rates in null simulations

I evaluated the false positive rate (FPR) of PLEIO using extensive simulations. I
assumed the null hypothesis of no genetic effects at a SNP for all 7" traits. I tested
FPR by differing the following four factors: 1. the number of traits 7', 2. the

heritabilities h?, 3. the genetic correlation matrix C,, and 4. the environmental

g>
correlation matrix C,. Note that, the h? and Q are zeros under the null, but I treated
h? and € as input parameters generated from an external dataset. In other words, h?
and Q describe what PLEIO thought to be true. In a real data analysis, h? and €2

(and C,) are estimates generated from GWAS summary statistics.
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I tested three different 7= 5, 10, and 20. I set off-diagonal elements of C|, to 0.0 and
0.5 to simulate uncorrelated and correlated errors, respectively. I simulated two
different h?. For “equal h?”, I set the same heritability for all traits as 0.5. For
“different h2”, 1 simulated heritabilities ranged from 0.1 to 0.5. I simulated two

different C,. For “uniform C,”, I set off-diagonal elements of C, to 0.3. For
“partitioned C”, 1 set up two sub-groups and set the off-diagonal elements to 0.3

within a group and to 0 between groups. A total of 24 FPR tests were conducted. In
each simulation, I generated one million null datasets for each situation and
calculated FPR at a = 0.05. Table 3 shows that PLEIO’s FPR is well calibrated in

all situations.

Next, I examined if PLEIO’s FPR is well-calibrated at a very low threshold of
5 x 1078, which is used as the statistical significance of the conventional GWAS. I
assumed three situations that use 7' = 5, 10, 20 and increased the number of null
datasets to a billion (10°). For each situation, I assumed that the equal h?, partitioned
C,, and no sample overlap (uncorrelated errors). Table 4 shows that PLEIO’s FPR
is well calibrated for o down to o = 5 x 1078, See Evaluation method of false-

positive rate for a detailed explanation for the simulation.
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T=5 T=10 T =20
Equalh?  Diffh?  Equalh?  Diffh?  Equalh?  Diffh2
Uniform No C, 0.0499  0.0497 0.0500 0.0497  0.0505  0.0499
Ce Uniform C, 0.0499 0.0499 0.0496 0.0499 0.0496 0.0500
Partitioned No C, 0.0497 0.0498 0.0499 0.0498  0.0509  0.0502
Ce Uniform C, 0.0499 0.0500 0.0495 0.0499 0.0505 0.0502

Table 3. PLEIO’s FPR in various simulation conditions. In this simulation, 107 null study

sets were generated for each of the 24 situations, and the FPR was calculated at o = 0.05.

Each test consisted of a unique combination of four parameters: T, h2, C,, and C,. 1

changed the number of studies (T) to 5, 10, and 20. “Equal h2?” denotes that the heritability

is fixed to the value of 0.5, and “Diff h2” denotes that the values of the heritabilities increase

from 0.1 to 0.5. “Uniform C,"” denotes a genetic correlation matrix whose non-diagonal

value is fixed to 0.3, and “partitioned C,” denotes a genetic correlation matrix consisting of

two sub-groups where each non-diagonal value within a group is fixed to 0.3, and each non-
diagonal value between groups is fixed to 0. “*No C_” denotes an environmental correlation
matrix whose non-diagonal value is fixed to 0, and “Uniform C,” denotes an environmental

correlation matrix whose non-diagonal value is fixed to 0.5.
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FPR T=5 T=10 T =20

5x 102 5.02 x 102 .03 x 102 5.09 x 102
5x 103 5.02 x 103 .05 x 1073 5.07 x 103
5x 104 5.00 x 104 .07 x 104 5.06 x 104
5x 108 5.01 x 107 .04 %1078 4.99 x 107
5x 106 5.00 x 106 .91 x 1076 5.06 x 106
5x 1077 4.86 x 107 .94 x 1077 5.57 x 1077
5x10°8 5.50 x 108 .70 x 10°8 4.00x 108

Table 4. PLEIO’s FPR at genome-wide thresholds. In this simulation, I generated 10°
null study sets to test FPR in different a ranging from 5 x 1072 to 5 x 10~%. I changed the
number of studies (T) to 5, 10, and 20, and the fixed h27Cg, and C, as follows: For h2, I
used a T x 1 vector whose values increase in the range of (0.1, 0.5). For C,, I used a genetic
correlation matrix consisting of two sub-groups where each non-diagonal value within a

group is fixed to 0.3. Each non-diagonal value between groups is fixed to 0. For C_, I used

a diagonal matrix.
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3.3 Evaluation of power in alternate simulations

I compared the power of PLEIO with conventional meta-analysis methods: the fixed
effects meta-analysis and association analyses based on SUubSETs (ASSET)[30]. For
the fixed-effects method, 1 used the inverse variance weighted sum method
implemented in METAL[31]. In addition, I applied Lin-Sullivan’s approach to the
inverse variance weighted sum method above to explain the correlation due to
sample overlap between traits. Finally, I generated a simple R test code of the fixed

effect method above. For ASSET, I downloaded and used the R package “ASSET.”

Additionally, I compared the power of PLEIO with a trait-specific approach
(MTAG)[19]. MTAG jointly analyzes summary statistics of GWAS as in the meta-
analysis methods, but there are differences in identifying pleiotropic loci. A meta-
analytic method gives a single p-value per SNP, but MTAG gives multiple p-values
per SNP (1" p-values per SNP). A straightforward solution is to choose a minimum
p-value per SNP, but it leads to multiple testing problems. In the FPR test result, I
observed inflated FPR in MTAG that uses the minimum p-value approach. To
correct the multiple testing problem, I applied the Bonferroni correction by
multiplying the minimum p-value by 7. I observed that Bonferroni correction can
control FPR but is conservative due to the correlation between T effect size
estimates from MTAG. Therefore, I reported the powers of MTAG both before the
Bonferroni correction (MTAG-U; uncorrected) and after the Bonferroni correction
(MTAG-C; corrected). Since MTAG-U is anti-conservative and MTAG-C is

conservative, they can be treated as the upper and lower bounds of the MTAG’s
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power. I implemented the MTAG method using test code written in Python because
The MTAG software thought the input was defective if the median z-score was far

from zero, such as the input used in the power simulation.

I evaluated the power of PLEIO, MTAG-U, MTAG-C, ASSET, and METAL using
various simulation settings. For each simulation setting, I defined a specific genetic

correlation structure (C), heritability (h?), phenotypic unit (U), and trait type
(quantitative; () or binary; B). In the power simulation, C, and h? given to PLEIO

and MTAG are not estimates but true genetic correlation and heritability. I assumed
the seven traits (1" = 7) and repeated the simulation 10,000 times. For each method,
the statistical power was estimated as the proportion of simulations with estimated
P < 5 x 1078, In this power simulation, instead of directly sampling the effect sizes
from a multivariate distribution, I generated the actual genotypes (See Generation

of effect sizes used in power simulation).

First, I assumed a fixed heritability of 0.4 and perfect correlation (r? = 1.0) across
seven traits. This represents the scenario that collects the multiple GWAS of the
same traits. In this situation, PLEIO, METAL, MTAG-U performed better than
MTAG-C and ASSET (Figure 9a). With a sample size of N = 50,000, the power
of PLEIO, METAL, MTAG-U, MTAG-C, and ASSET were 63.79%, 63.81%,
63.81%, 63.81%, and 61.67%. As expected, METAL performed well because it is
optimized to aggregate multiple GWAS with the same trait. MTAG-U and METAL
are analytically identical[19]; therefore, MTAG-U performed the same as the

METAL. PLEIO attained similar (or slightly less) power of METAL and MTAG-U
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as it can account for the genetic correlations. In this scenario with one trait, the
multiple testing correction using Bonferroni is not necessary for MTAG-U. Because

of this, the power of MTAG-C was overly conservative.

Second, I changed the heritability for seven traits from 0.005 to 0.7. I assumed a
uniform genetic correlation of » = 0.5 of all trait pairs. In this scenario, PLEIO
outperformed other methods (Figure 9b). With a sample size of N = 50,000,
PLEIO attained a power of 77.6%, while the second-best method (MTAG-U)
attained 67.2%, and the third-best method (MTAG-C) attained 62.7%. The result
indicates that PLEIO is optimized for a joint analysis of multi-trait with different

heritabilities.

Third, I simulated a complex genetic correlation pattern with both positive and
negative correlations. I divided seven groups into two groups (three traits and four
traits). I set the within-group correlation of the first group to 0.95 and the second
group to 0.9, and I set the correlation between groups to —0.9. I assumed a uniform
heritability of 0.4 for all traits. PLEIO outperformed other methods (Figure 9c).
With a sample size of N = 50,000, PLEIO attained a power of 78.6%, while the
second-best method (MTAG-U) attained 66.3%, and the third-best method (MTAG-
C) attained 62.6%. The result indicates that PLEIO is optimized for a joint analysis

of multi-trait with a complex correlation pattern.

Fourth, I simulated a mixture of quantitative and binary traits. I assumed four

quantitative traits and three binary traits. For quantitative traits, I assumed that
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phenotypic units could differ between traits. When U is the standard phenotypic unit
I assumed, I changed the units of four traits from 0.1U to 10U. I assumed a uniform
heritability of 0.4 and a uniform genetic correlation of 0.5. Again, PLEIO
outperformed other methods (Figure 9d). With a sample size of N = 50,000,
PLEIO attained a power of 80.1%, while the second-best method (MTAG-U)
attained 63.4%, and the third-best method (MTAG-C) attained 57.3%. The result

indicates that PLEIO systematically combines heterogeneous traits by standardizing

the effect sizes.

So far, I tested the power by changing one factor per simulation: different
heritabilities, a complex genetic correlation pattern, different phenotypic units. In a
real data analysis, all three can occur together. I tested such a combined situation
(Figure 9¢). With a sample size of N = 50,000, PLEIO attained a power of 49.2%,

while the second-best method (MTAG-U) attained 59.3%.

Next, I wanted to test a power simulation using real data-based parameters. In this
simulation of seven studies, I assumed one focal trait and six non-focal traits where
the focal trait shows strong genetic correlations with the non-focal traits. Here, 1
assumed that MTAG could selectively take the p-values of the focal trait only, which

I call MTAG-F.

Based on the information provided by LD-HUB[32], I chose LDL as the focal trait

and selected six traits that are strongly correlated to LDL (0.35 > |rg| > 0.17):

triglyceride (TG), coronary artery disease (CAD), Age at Smoking (Age Smo),
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childhood IQ (cIQ), Hemoglobin Alc (HbA1C), and Waist-Hip-Ratio (WHR). For
simplicity, I assumed that all seven traits share 1000 causal variants. Unlike MTAG-
F, PLEIO and MTAG-U can have strong associations driven by one or some non-
focal traits with the large h? if I assume the same sample size. To compensate for
this difference in heritability, the samples sizes were adjusted so that Nh?2 is

constant for all traits. Then, I doubled the sample size of the focal trait.

Figure 10 shows the result of the power simulation above. Again, PLEIO
outperformed other methods. With sample sizes that meet Nh? = 10,000, PLEIO
attained a power of 72.6%, while the second-best method (MTAG-U) attained
52.8%, and the third-best method (ASSET) attained 37.3%. Note that MTAG-F is a
trait-specific method, and the interpretation is different for MTAG-F than other
methods. Therefore, a careful interpretation is required for other methods before

concluding that the focal trait drives the association.
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Figure 9 The results of the power test. I performed a total of five power tests. Each line
shows the statistical power of a model gained from an association test using seven summary
statistics: PLEIO (red), MTAG-U (blue), MTAG-C (light blue), METAL (green), and ASSET
(yellow). At the bottom of the figure, I visualized the simulation setting of each test. The
box plot shows the genetic correlation. @ and B indicate whether the phenotype is
quantitative or binary. The heritability values of the traits are shown on the left side of the
boxplot. The trait phenotype units are shown at the bottom of the box plot. The line

thickness indicates the 95% confidence interval.
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Figure 10. Power test results assuming LDL as the focal trait. Each line shows the

statistical power of a model gained from an association test using seven summary statistics:

PLEIO (red), MTAG-U (blue), MTAG-F (light blue), METAL (green), and ASSET (yellow). Note

that the x-axis is the product of the sample number and heritability. For example, the

number of samples of a trait with a heritability value of 0.1 is 100,000 for Nh? = 10,000 and

40,000 for Nh? = 4,000. At the bottom of the figure, I visualized the simulation setting of each

test. The box plot shows the genetic correlation. The color of the trait name indicates

whether the phenotype is quantitative (green) or binary (purple). Since the focal trait is the

main interest of this analysis, I assumed that the focal trait collected twice as many samples

as a non-focal trait. In other words, a point of the focal trait in the x-axis means &7

Nh?
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3.4 Measuring computation time and memory usage

Here, I compared the computation time and maximum memory usage of PLEIO,
MTAG, ASSET, and METAL. I assumed the simulation setting used in the focal-
trait power simulation above. The source codes of MTAG and METAL are
implemented in test codes and used for the simulation. For importance sampling, I

used N

sample

= 100K. I generated two sets of simulation inputs for 10K and 1M
association tests and tested each method with one CPU.
Table 5 shows that all methods except ASSET can perform 1M association tests in

an hour with less than 4 Gb of free memory usage.

10K association tests 1M association tests
PLEIO PLEIO
Prep. Prep.
assoc. | MTAG | ASSET | METAL assoc. | MTAG | ASSET | METAL
null. null.
tests tests
dist dist

[Total analysis time
1125.04| 45.48 8.8 |2150.7| 3.71 |1125.04{1607.1| 967.6 | N/A 46.6
using 1 CPU (sec)

Maximum
177.7 Mb 108 Mb|80.4 Mb|73.6 Mb 1.02 Gb 2.8Gb| N/A |0.7Gb
memory usage

Table 5. Comparison of the computational efficiency of PLEIO, MTAG, ASSET, and
METAL. I measured the runtime and maximum memory usage of each method required to
perform 10K and 1M association tests with one CPU. We used our own implementation of
MTAG (python) and METAL (R). For PLEIO, we distinguished the time used for the association
test (assoc. tests) and the time used for the importance sampling procedure (Prep. null.
dist). By default, the importance sampling procedure performs 100,000 association tests to

compute the probability distribution of the PLEIO statistics under the null hypothesis.
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3.5 Joint analysis of multiple traits related to
cardiovascular disease

I used PLEIO to identify pleiotropic loci of cardiovascular disease (CVD) related
traits. To this end, I reviewed several GWAS consortia open to the public and
collected 18 GWAS summary statistics on disease status and complex traits (Table
1). I reviewed the UK Biobank GWAS results of Neale Lab and selected twelve
binary traits that included one or more of the following keywords: heart,
hypertension, obesity, lipoprotein, cholesterol, and diabetes (Table 2)[28]. I selected
four lipid traits from the Global Lipid consortium[27], one binary trait (coronary
artery disease) from CARDIoGRAM+C4D consortium|[2], and one quantitative trait
(fasting glucose) from the MAGIC (Meta-Analysis of Glucose and Insulin-related
traits Consortium)[29]. As a result, I collected a total of 13 binary traits and five
quantitative traits. See Data collection for details of the trait selection procedure.
For quantitative traits, I found differences in the phenotypic units. For example,
Lipid traits had the unit of mg/dl, whereas the fasting glucose uses the unit of
mmol/l[27, 29]. Below, I tested SNP associations of 1,777,412 SNPs shared by these
18 summary statistics. In the pre-analysis phase with LDSC, 18 traits showed
differing heritabilities and non-zero environmental and genetic correlations (Figure

11).

I perform SNP association tests of 1,777,412 SNPs using PLEIO and identified 625
independent GWAS hits that exceeded the threshold P < 5 x 10~% (Figure 12).

Among those, I found 13 independent novel variants, each of which locus was not

listed in the GWAS catalog and was not identified by one of the 18 GWAS (Table
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6). Figure 13 shows local Manhattan plots of these 13 variants. Figure 12a shows a
circular plot whose radial position denotes the genomic position and heights of
points denote the statistical significance of variants. Figure 12b shows the genome-
wide Manhattan plot of the association test results. Next, I compared the results of
PLEIO to input summary statistics using a mirrored Manhattan plot in Figure 14.
Finally, I applied LDSC to the association results of PLEIO and estimated the LDSC
intercept (o = 1.11) to see if PLEIO’s log-likelihood statistics had systematic

inflation.

To investigate the biological role of these identified variants, I conducted a
functional analysis using Variant Effect Predictor (VEP v.97.2) in ENSEMBL
GRCh37[33]. The 13 novel variants included six intronic variants, three non-coding
transcript variants, three intergenic variants, one upstream gene variant (Table 7).
The 625 top hits included 374 intronic variants, 112 intergenic variants, 41 upstream
gene variants, 25 downstream variants, 23 missense variants, 21 3-prime UTR
variants, 12 non-coding transcript exon variants, 12 synonymous variants, and five

5-prime UTR variants.

I did additional analysis on 625 top hits using DAVID v.6.8[34]. Here, the gene list
obtained from the VEP was used as an input for DAVID to search for the existence
of known trait-gene associations in the Genetic Association Database (GAD). 1
curated the results to get eight categories of traits: coronary artery disease, fasting
glucose, high blood pressure, diabetes, high-density lipoprotein, low-density

lipoprotein, total cholesterol, and total glycerides. In other words, I obtained eight
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sets of genes where each gene set corresponds to a trait above. Finally, I visualized
the results in the circular ribbon plot in Figure 12a. Each ribbon represents a pair of

genes in the same phenotypic category.

I performed an additional real data analysis using the same data for MTAG (Table
8). Since MTAG produced as many p-values as the number of studies per SNP, I
converted MTAG results to MTAG-U and MTAG-C and compared the results to
PLEIO as in the power test. As a result, MTAG-U found 622 independent GWAS
top hits variants, slightly fewer than the 625 variants found by PLEIO. As explained
earlier, MTAG-U is one method of selecting the minimum p per SNP, which leads
to multiple testing problems. Applying LDSC to MTAG-U confirmed the strong
inflation in the LDSC intercept (o« = 3.89). Next, I compared MTAG-C and PLEIO
using Bonferroni correction on MTAG-U. MTAG-C found 493 GWAS top hits. In
addition, as an alternative to solve the multiple testing problem in MTAG-U, I
corrected the chi-square statistics X2 of MTAG-U so that the LDSC-intercept
estimate is the same as 1.10, which is the LDSC intercept estimated from PLEIO. I
referred to the approach as MTAG- a and compared MTAG- a with other
approaches. The number of GWAS top hits obtained from MTAG-o was only 102,

confirming that using the LDSC section did not solve the multi-test problem well.

I measured the computation time and maximum memory usage needed for this real

data analysis using a single CPU core. The estimated time to run single-trait LDSC
analysis took 0.2 hours and to run pairwise LDSC analysis for (128) pairs took 1.5

hours. Estimation of null distribution took 1.89 hours. Lastly, the association test
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analysis of 1,777,141 SNPs took 1.83 hours. In total, PLEIO required 3.72 hours,

excluding LDSC preprocessing using 2.1 GB memory at peak.

In this real data analysis, I assumed that the samples used in each UKB GWAS
represented the European population and used the frequency of the case sample
among the total sample as both the sample prevalence and the disease prevalence.
However, the UKB cohort consists of the individuals who volunteered for this study,
not a random sampling process. Therefore, we cannot say that the cohort represents
the European population. For some traits (e.g., coronary atherosclerosis, obesity,
etc.), there is a possibility that an individual’s phenotype has not yet been explicitly
diagnosed or expressed, in which case a control sample may later turn out to be a
case sample. In this case, the disease prevalence and sample prevalence are not the

same as the frequency of the case samples.

To determine whether the issues described above influenced the results of the real
data analysis, I performed an additional analysis. In this analysis, I conducted a
literature review and updated the disease prevalence of the 13 UKB binary traits (see
Table 9). I then completed the real data analysis again and compared the PLEIO’s
p-values of the 13 novel loci between the two analyses (old and new). Table 10
shows the resulting PLEIO’s p-values for 13 novel pleiotropic variants obtained
from the two analyses, and I confirmed that there was no significant difference

between the p-values.
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Figure 11. Genetic correlation and environmental correlation

among 18 traits. The

18 x 18 matrix shows the genetic (upper triangular) and environmental (lower triangular)

correlations among 18 traits. The labels on the left and the top are the names of the traits,

and the labels on the right indicate the heritabilities along with the names of the database

and the types of the phenotypes (green: binary, red: quantitative).
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Figure 12. The summary of the real data analysis. a. The circular plot shows the
locations and the statistical significances of the 13 novel variants (outer edge) and the 625
GWAS top SNPs (inner edge). The inner ribbons connect the variants in the same functional
category found by the DAVID analysis. b. The Manhattan plot of the PLEIO association

results. Red triangles indicate the 13 novel loci.
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SNP  CHR BP Al A2 Spimio Prisio HGNC Symbols
rs7590392 2 148379602 T c 32.46  3.69E-09
rs876320 4 15930961 A G 32.06  4.38E-09
rs7693203 4 100500130 T c 27.77  3.27E-08 MTTP
rs1979974 4 146800815 G A 27.5  3.76E-08 ZNF827
rs6817572 4 151303318 A G 28.51  2.24E-08 LRBA
rs1561105 8 23610799 G T 29.43  1.43E-08 RP11-175E9.1
rs2891902 8 122422130 c T 36.36  6.18E-10
rs2055014 11 29195732 A G 28.38  2.39E-08 RP11-46611.1
rs12787728 11 57069056 @ A 29.25  1.56E-08 TNKS1BP1
rs2278093 12 29534209 A c 27.48  3.80E-08 ERGIC2
rs4393438 13 114821075 c T 27.76  3.28E-08 RASA3
rs1039119 16 76946526 T c 27.08  4.71E-08 CTD-2336H13.2
rs1688030 19 35556744 c T 33.53  2.30E-09 HPN

Table 6 The summary of 13 NOVEL GWAS hits identified by PLEIO. S, ;,, column
contains the PLEIO’s log-likelihood ratio test statistics; Pp; ;o column contains PLEIO’s p-
values. HGNC Symbols column gives the human genome nomenclature (HGNG) gene names
of the genetic loci associated with the 13 novel variants. SNP denote rsID of SNPs, CHR
denote chromosome number, BP denote a base position, A1 denote risk allele, A2 denote

reference allele.
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Figure 13. Local Manhattan plots of the 13 novel loci identified by PLEIO.
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Figure 14. Manhattan plots showing the association analysis results using real data.

The top shows the PLEIO’s p-values, and the bottom shows the minimum p-values of 18

summary statistics included in the PLEIO analysis. I set the maximum value of the -log(p)

to 15.
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Location
(CHR: BP)

2:148379602
4:15930961

4:100500130

4:146800815

4:151303318

8:23610799
8:122422130
11:29195732

11:57069056

Allele
(Ref/Risk)

C/T
G/A

C/T

A/G

G/A

T/G
T/C
G/A

A/G

HGNC
gene
symbol

MTTP

ZNF827

LRBA

RP11-175E9.1

RP11-46611.1

TNKS1BP1

VEP Consequence

Intergenic
Intergenic

Intronic

Intronic

Intronic

Intronic
non_coding_transcript
Intergenic

Intronic
non_coding_transcript
Intronic

Alias

Microsomal
Triglyceride
Transfer Protein

Zinc Finger Protein
827

Lipopolysaccharide-
Responsive And
Beige-Like Anchor
Protein

Antisense RNA

LincRNA

Tankyrase 1
Binding Protein 1
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Cellular
location
(3-5;
confidence
level)

Endoplasmic
reticulum(5)
Golgi
apparatus(5)
Plasma
membrane(4)
Extracellular

(3)

Nucleus(4)

Plasma
membrane(5)
Cytosol(5)
Endoplasmic
reticulum(4)
Lysosome(4)
Golgi
apparatus(4)
Nucleus(3)

Cytoskeleton(5)
Nucleus(5)
Cytosol(5)
Plasma
membrane(3)

Known function

Required for the
assembly and
secretion of
plasma
lipoproteins that
contain
apolipoprotein B

May be involved
in transcriptional
regulation

May be involved
in coupling
signal
transduction and
vesicle
trafficking to
enable polarized
secretion and/or
membrane
deposition of
immune effector
molecules.

Deadenylation-
dependent
mRNA decay

GWAS catalog
(S):p<5x10°8
(W):p>5x108

triglyceride
measurement(S),
high-density
lipoprotein
cholesterol
measurement(S)

sleep duration,
low-density
lipoprotein
cholesterol
measurement(S),
coronary artery
disease(S)
systolic blood
pressure(S),
peripheral arterial
disease, traffic air
pollution
measurement(W),

apolipoprotein A 1
measurement(S)



12:29534209

13:114821075

16:76946526

19:35556744

C/A

T/C

C/T

T/C

ERGIC2

RASA3

CTD-2336H13.2

HPN

Upstream

Intronic

Intronic
non_coding_transcript
Intronic

ERGIC And Golgi 2

RAS P21 Protein
Activator 3

LincRNA

Hepsin

Nucleus(5)
Golgi
apparatus(5)
Endoplasmic
reticulum(4)
Plasma
plasma
membrane(5)
cytosol(5)

plasma
membrane(5),
extracellular(5)

Possible role in
transport
between
endoplasmic
reticulum and
Golgi.
Inhibitory
regulator of the
Ras-cyclic AMP
pathway.

Plays a role in

cell growth and
maintenance of
cell morphology

low-density
lipoprotein
cholesterol
measurement(S)

Lymphocyte
percentage of
leukocytes(S),
monocyte count(S)

triglyceride
measurement(S)

Table 7. The functional analysis of the 13 GWAS novel hits using ENSEMBL VEP[33], Gene Cards[35], and GWAS catalog[8].

The 13 variants are in ascending order by chromosomal position and then in ascending order according to by genomic position (BP)

56



PLEIO MTAG-U  MTAG-C MTAG-X

#independent GWAS hits 625 622 493 102
intercept (LDSC) 1.109 3.893 0.556 1.113
Aco 1.5883 8.456 0.0367 2.413

Table 8. Comparison of the number of GWAS-TOP hits of PLEIO and MTAG
identified in post GWAS analysis. I applied real data of CVD-related traits to PLEIO,
MTAG-U, MTAG-C, and MTAG-)\ and identified GWAS top hits. I obtained the intercept of the
LDSC heritability estimate and the genomic inflation factor (\,.) from the output of LDSC
software. MTAG-U: Selecting minimum p-value among the multi-trait MTAG p-values;
MTAG-C: Bonferroni correction applied to MTAG-U; MTAG-X: Intercept correction applied to

MTAG-U so that intercept can be comparable to PLEIO.



Trait name Sprev Pprev Pprev_literature phenotypic type Database

Heart attack: 6150_1 0.023533 0.023533 0.043 Binary UK Biobank
Hypertension: 19 0.003433 0.003433 0.436 Binary UK Biobank
Essential (primary) hypertension: 110 0.002397 0.002397 0.4033 Binary UK Biobank
Acute myocardial infarction: 121 0.018070 0.018070 0.043 Binary UK Biobank
Myocardial infarction: 19 0.019815 0.019815 0.043 Binary UK Biobank
Major coronary heart disease: 19 0.028931 0.028931 0.07 Binary UK Biobank
Ischemic heart disease: 19 0.061280 0.061280 0.035 Binary UK Biobank
Coronary atherosclerosis: 19 0.041322 0.041322 0.485 Binary UK Biobank
Heart failure 0.003902 0.003902 0.06 Binary UK Biobank
Obesity: E66 0.001222 0.001222 0.424 Binary UK Biobank
Type 1 diabetes: E4 0.001616 0.001616 0.095 Binary UK Biobank
Type 2 diabetes: E4 0.002464 0.002464 0.0628 Binary UK Biobank
Coronary artery disease 0.492299 0.05 0.05 Binary CARDIo+C4D
High density lipoprotein NaN NaN NaN Quantitative Global Lipids
Low density lipoprotein NaN NaN NaN Quantitative Global Lipids
Total cholesterol NaN NaN NaN Quantitative Global Lipids
Triglycerides NaN NaN NaN Quantitative Global Lipids
Fasting glucose NaN NaN NaN Quantitative Magic

Table 9. Disease prevalence of 13 UKB traits, updated based on a literature review.
Trait name; the name of the trait, Sprev; sample prevalence used in the real data analysis,
Pprev; disease prevalence used in the real data analysis, Pprev_literature; disease
prevalence obtained from a literature search, phenotypic type; the type of the phenotype

(either binary or quantitative), Database; The source of the GWAS summary statistics.

58

o

S JCE |

-

i



SNP PPLEIO,l PPLEIO
157590392 2.418961e-09  2.91E-09

151979974 2.500851e-08 3.65E-08
1s6817572 2.150352¢-08 2.19E-08
rs12787728 1.627141e-08 1.50E-08
152278093 3.807202¢-08 3.69E-08
1rs1688030 1.823994e-09 1.67E-09
157693203 3.789116e-08 3.19E-08
154393438 3.281006e-08 3.21E-08
15876320 3.071378e-09 3.56E-09
1s1561105 1.372890e-08 1.37E-08
152891902 5.758588e-10 3.77E-10
152055014 2.479782e-08 2.34E-08
rs1039119 6.511051e-08  4.51E-08

Table 10. Comparison of PLEIO p-value results for 13 new pleiotropic loci before
and after adjusting for disease prevalence values. P, ;,,; the p-value obtained from
the real data analysis, Pp;5;0,; The p-value obtained from the real data analysis to which

the updated disease prevalence obtained from the literature search was applied.
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3.6 Interpretation of the joint analysis results

I interpreted the 13 novel multi-trait associations with the visualization tool
implemented in PLEIO, called the “pleiotropy plot.”” The R package software can
produce a circular plot, which gives a detailed summary of the association pattern of
the pleiotropic variant. The outer plot area includes the local Manhattan plots and
the bar plots of the standard effect sizes. The inner ribbons show the genetic
correlations as colors and the locus heritability as widths. I drew pleiotropic plots of
the 13 novel variants identified by PLEIO (Figure 15). Based on the association
patterns observed in these plots, I divided these 13 novel variants into four groups

without overlapping (Figure 16).

The first group of variants had associations with seven binary traits that include six
traits (acute myocardial infarction, myocardial infarction, heart attack, major
coronary heart disease, coronary atherosclerosis, and ischemic heart disease) from
the UK Biobank and one trait from CARDIoOGRAM-+C4D. These seven traits
showed high genetic correlations (Figure 15). The variants in this group showed the
strongest association with one of the seven traits and had associations (P < 0.001)
with at least three of the seven traits. The variants showing this pattern were
rs7590392 near the ACVR2A gene (2q22.3) and rs1979974 in the ZNF827 gene

(4931.22).

The second group of variants had an association with four lipid phenotypes
(triglycerides, low-density lipoprotein; LDL, high-density lipoprotein; HDL, and

total cholesterol). The variants in this group showed the strongest association with
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one of four traits and had associations (P < 0.001) with at least two of the four traits.
The variants showing this pattern were rs6817572 in the LRBA gene (6p22.3),
rs12787728 in the TNKSIBPI gene (11ql2.1), 1s2278093 in the ERGIC2 gene
(12p11.22), and rs1688030 in the HPN gene (19q13.12). These variants were
associated with some (but not all) of the lipid phenotypes. rs6817572 showed the
strongest associations to the total cholesterol and LDL. rs12787728 showed the
strongest associations to the total cholesterol and HDL. rs2278093 and 1688030

showed the strongest associations to the total cholesterol and triglycerides.

The third group of variants had associations with both coronary artery disease and
lipid phenotypes. These variants in this group showed association (P < 0.001) with
both coronary artery disease and one of the lipid traits at the same time. These
variants met both the condition for group 1 and the condition for group 2, but I
categorized them separately into the third group. The variants showing this pattern
were 1s7693203 in the MTTP gene (4q23) and rs4393438 in the RASA3 gene (13q34).
The variants in this group showed strong associations (P < 0.0001) to the total

cholesterol and LDL.

The fourth group of variants was a set of not categorized variants into the three
aforementioned groups. The variants in this group were rs876320 near the FGFBPI
gene (4p15.32), 1s1561105 in the RP11-175E9.1 gene (8p21.2), rs2891902 near the
RPL354AP19 gene (8q24.12), rs2055014 in the RP11-46611.1 gene (8q24.12), and

rs1039119 in the AC106729.1 gene (16q23.1). rs2891902 showed the strongest

association to obesity (P < 0.001) and weak associations to type 2 diabetes and
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hypertension. Rs876320, rs1561105, and rs1039119 were interesting because their
associations to all traits were weak (P > 0.01). The strongest associations of
rs1039119 were to coronary atherosclerosis (P = 0.02) and triglycerides (P =
0.08). However, this SNP’s effect size directions to the seven binary traits in the first
group were all concordant to the genetic correlations of these traits. The strongest
associations of rs1561105 were to triglycerides (P = 0.005) and major coronary
heart disease (P = 0.03), acute myocardial infarction (P = 0.04), and myocardial
infarction (P = 0.05). This SNP’s effect size directions to these three traits were all
concordant to the genetic correlations. The strongest associations of 1s876320 were
to acute myocardial infarction (P = 0.01), myocardial infarction (P = 0.04), and
heart attack (P = 0.04). This SNP’s effect size directions to these three traits were
all concordant to the genetic correlations. Thus, PLEIO seems to have captured the
aggregate information in multiple weak associations by considering the fact that the
effect size directions were concordant to the genetic correlations. Follow-up studies
will be needed to determine whether loci with weak associations for all traits are true

associations or false positives.
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[Group 1: Driven by seven binary traits]
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C. rs6817572.

[Group 2: Driven by lipid phenotypes (triglycerides, LDL, HDL, and total cholesterol)]
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D. rs12787728
[Group 2: Driven by lipid phenotypes (triglycerides, LDL, HDL, and total cholesterol)]
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E. rs2278093.

[Group 2: Driven by lipid phenotypes (triglycerides, LDL, HDL, and total cholesterol)]
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F. 151688030

[Group 2: Driven by lipid phenotypes (triglycerides, LDL, HDL, and total cholesterol)]
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G. 1s7693203.

[Group 3: Driven by both coronary artery disease and lipid]
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H. rs4393438.

[Group 3: Driven by both coronary artery disease and lipid]
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I. 1s876320.

[Group 4: Others]
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J. 1s1561105.

[Group 4: Others]
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K. rs2891902.

[Group 4: Others]
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Figure 15. Pleiotropy plots of 13 novel loci identified by PLEIO.
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Figure 16. Distinct association patterns of 13 novel variants identified by PLEIO.
Each box represents the association of a variant with a trait, where the size of the box
indicates the magnitude of the standardized effect size (n) and the color of the box indicates
the statistical significance. The right-side heatmap shows the genetic correlations. We

divided the variants into four groups based on their association patterns.
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3.7 Comparison of the association patterns between
known and novel pleiotropic loci.

Of the 625 GWAS hits identified by PLEIO, I performed additional analysis on 612
known pleiotropic loci previously identified and reported in a GWAS study. In this
analysis, I visualized the association patterns of the 625 variants. Then I compared
the similarities and differences in association patterns between the known 612
pleiotropic loci and the 13 novel pleiotropic loci. For visualization, I collected p-
values of 625 variants for 18 GWAS summary statistics used in my real data analysis

and generated a heatmap with the —log scaled p-values.

Figure 17 shows distinct association patterns of 625 pleiotropic variants for a total
of 18 traits. In this analysis, I first divided these 625 variants into 16 categories using
k-mean clustering. The majority of the pleiotropic loci identified by PLEIO showed
strong associations (p =2 1 x 107%) with either four lipid traits (low-density
lipoproteins, high-density lipoproteins, triglycerides, total cholesterol) or three
cardiovascular diseases (coronary artery disease, ischemic heart disease, coronary
atherosclerosis). This observation appears to be related to the number of samples
used in each GWAS. For example, the summary statistics of the four lipid traits
include more than 180,000 samples, which is three times the number of GWAS
samples for fasting glucose (/N = 46,186). The three cardiovascular disease traits
from the UKB include many case samples over 10,000. In contrast, the number of
case samples for other UKB traits, including hypertension, type 1 diabetes, type 2
diabetes, and obesity, was less than 1,500. For some pleiotropic loci, I found no

strong associations with any of the 18 traits.
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In summary, I found that the association patterns between known and novel
pleiotropic loci were similar. As observed in the analysis above, PLEIO have
identified some novel pleiotropic loci that have strong associations with either four
lipid traits or three cardiovascular diseases (see Figure 16). However, I also
confirmed that the magnitudes of the trait-specific associations of 13 novel
pleiotropic loci were small compared to 612 known pleiotropic loci; therefore, they

have not been identified as associated loci to date.
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Figure 17. A heatmap created using the p-values of 625 pleiotropic variants for a total of 18 traits. The x-axis represents genetic variants, and the y-axis

represents traits. Since the x-axis contains both known and novel pleiotropic variations, I added an annotation at the bottom of the heatmap to distinguish the two.

To identify association patterns, I performed k-mean clustering on each axis. To find an optimal k for an axis, I tested several k values and selected one that would

allow for a straightforward interpretation of the heatmap.
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Chapter 4. Discussion

In this study, I proposed PLEIO, a statistical framework that identifies and interprets
pleiotropic loci using GWAS summary statistics of multiple traits as input. PLEIO
increases its statistical power by using a variance component model, which can
account for genetic correlations and heritabilities across traits. Furthermore, PLEIO
can seamlessly combine any set of quantitative and binary traits whose phenotypic
units and scales can vary and provides an interpretation of the analysis results. This
can be possible through the process of converting the observed effect sizes into
standardized metrics. Finally, we provide an extension (R package) named

'pleiotropyPlot' to visualize and interpret the results of PLEIO’s analysis.

PLEIO is a generalized method that can replace the traditional meta-analysis in
special cases. If I set the genetic covariance matrix to a matrix of ones and the
environmental correlation to zeros, the test is almost identical to the fixed effects
meta-analysis method. If we assume non-zero environmental correlations, the test is
nearly identical to the Lin-Sullivan method[36]. Suppose I set the genetic covariance
matrix to the identity matrix and the environmental correlation to zeros. In that case,
it is similar to the heterogeneity test in the Han-Eskin random-effects model[37]. If
we assume non-zero environmental correlations, it is similar to the heterogeneity test
in the RE2C model[38]. In contrast to the conventional meta-analysis methods,
PLEIO optimizes model performance by learning genetic covariances and

environmental correlations based on data (GWAS summary statistics). For example,
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suppose you have a collection of multiple GWAS summary statistics on the same
trait. In that case, PLEIO will learn the information and work as if it were a fixed-

effects meta-analysis method.

We can do a fine-mapping analysis to test whether an identified pleiotropic locus
has a true signal[39]. However, PLEIO does not tell us which traits were attributed
to the pleiotropic association of the variant we tested. One way is to do a fine-

mapping analysis for each trait, which requires a lot of labor. To reduce the number

of traits to analyze, we can use a screening strategy to select strongly associated traits.

One option is to use ASSET and select traits having strong signals, or one can

manually select traits by interpreting the pleiotropy plot.

PLEIO can be extended to a single trait analysis that spans multiple ethnic groups.
Assuming that each GWAS is carried out on one ethnic group, the genetic
correlations can be estimated by considering the population-specific LD structures
[40, 41]. In this case, the estimated genetic correlation between two GWAS summary
statistics of the same trait from an ethnic group is 1. However, the estimated genetic
correlation between the two GWAS summary statistics obtained from two different

ethnic groups is generally positive but imperfect (0 < r, < 1).

In a Multi-trait analysis, one must make a careful decision when choosing which
traits to include in the analysis. This process can be performed based on literature
describing comorbidities, shared candidate genes, or observed genetic correlations.

Choosing a trait that does not have pleiotropic correlations with other traits reduces
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the power to identify pleiotropic loci. In the real data analysis, the trait selection

process was based on the literature search, and the observed r, between selected
traits was greater than 0.15. The method of selecting traits based on r, estimated

from the whole genome has a potential risk that can neglect the region-specific
pleiotropic effects. This can happen when there are certain regions in which the

regional co-heritabilities are greater than in other regions.

During the data collection, we may collect two or more GWAS that share
overlapping samples. Failure to adequately account for the sample overlap between
these summary statistics can inflate the error of the pooled estimates. For PLEIO,
the proposed variance component model can account the sample overlaps across
traits with an environmental correlation matrix. For example, our real data analysis
showed strong environmental correlations between some traits collected by the UK

Biobank and the Global Lipid Consortium that contains many overlapping samples.

There are two types of multi-trait analysis. The first type is a joint meta-analysis, in
which statistics of several traits are combined into one. The goal of this type of
analysis is to find pleiotropic loci that have associations with several traits. This type
shares the advantages and disadvantages of conventional meta-analysis methods.
Aggregating more traits can provide additional power, but modeling the
heterogeneity between traits and interpreting results can often be challenging. The
second type is a trait-specific analysis, in which multiple related traits are used to
help with association tests of a specific trait. This type of analysis aims to maximize

the statistical power of the analysis of individual traits. PLEIO is an analysis method
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using a meta-analytic approach. Utilizing the visualization tool to facilitate

interpretations, PLEIO can minimize the weaknesses of the joint meta-analysis.

PLEIO has similarities and differences to MTAG, which is used as the gold standard
for multi-trait analyses. For example, both methods model genetic correlations,
heritabilities, and environmental correlations. Although each has applied a different
strategy, both methods can combine binary and quantitative traits of different units
seamlessly. The main difference is that PLEIO is a meta-analysis approach, whereas
MTAG is a trait-specific approach. For example, for a set of 7' traits, PLEIO
provides one p-value per SNP, whereas MTAG provides 1" p-values per SNP.
Therefore, if one aims to estimate a single p-value per SNP to map pleiotropic
associations throughout the genome, PLEIO will be the optimal choice. On the other
hand, one advantage of MTAG is the ability to assess the polygenic risk predictions

more accurately using updated trait-specific effect sizes.

For PLEIO, the trait-specific effect sizes can be updated manually with the results

of the PLEIO analysis by estimating BLUP (best linear unbiased predictor)[42].
Using Q, 3, and standardized effect sizes(7; ), the updated trait-specific effect sizes

can be estimated as follows:

and
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where the u,; is a 7" x 1 vector representing the BLUP estimators of the observed

effect sizes ,BAZ Note that the estimates of 77 for ith association test can be found in

PLEIO’s output file.

The pleiotropic loci found by PLEIO can be attributed to biological or mediated
pleiotropy[43]. In the former case, the variant has an independent association for
each trait tested. However, the variant will have non-independent associations in the
latter case due to the causal relationship of two or more traits being tested. In the
case of PLEIO, the association test results identify both biological and mediated
pleiotropic associations, and the model does not discriminate the type of pleiotropy
of the identified pleiotropic loci. Later, examining the extent of the pleiotropic
association due to biological pleiotropy using the analysis results of PLEIO will be

an exciting research direction.

Although not mentioned in this study, there exist multi-trait analysis methods that
apply individual levels of genotyping data to a multivariate regression model[44-46].
These methods can utilize individual-level information to control confounding
factors consistently across traits. However, to use this model, sample data for all
traits must be collected in one place. Furthermore, the transmission of the genotyping
data itself is becoming more and more difficult due to privacy concerns, hindering
the use of these methods[47, 48]. In addition, models that use individual genotypes
typically require a lot of computing resources. In terms of statistical power, Lin and
Zeng[49] have shown that using data at the individual level does not significantly

improve statistical power over using summary statistics in the context of traditional
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meta-analysis. It would be interesting to compare the power between the two types

of methods in future studies.

In this study, I assume that the additive effects can explain a large part of the genetic
contribution of a locus. However, an average gene effect can also be modulated by
either dominance effects or epistasis (how genes interact with genes at other loci).
In PLEIO, I used a variance component model of two random effects (genetic and
environmental). Here, the variance-covariance matrices were obtained from a
method that only models additive genetic effects. To add a new variance component
(either dominance effects or epistasis) into the variance component model of PLEIO,
it might be required to estimate each variance component's covariance matrix and

collect summary statistics for each genetic effect and variant.

PLEIO can be extended as a web application that helps many researchers around the
world. Below, I provide the details of the proposed web application. The suggested
web application includes a database capable of storing several GWAS summary
statistics for various complex diseases and traits. Here, we consolidate the format of
each summary statistics to simplify the analysis in the backend. The front end
provides the user with the following functions: navigation and selection of the traits
to be analyzed and various options for interpreting the analysis results. Finally, the
back end provides core algorithms required for the PLEIO analysis and the

interpretation of the analysis results.
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In summary, I proposed a general and flexible meta-analysis framework to identify
and interpret pleiotropic loci. I expect that our framework can help discover core
genes that contribute to multiple phenotypes, leading us to a better understanding of

the common etiology of traits and the development of shared drug targets.
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Appendix

Appendix A Optimization strategy for variance
component test

a) LRT statistic
Below, 1 describe our optimization strategy that increases the computational
efficiency for determining the maximum likelihood estimate (MLE) in the variance
component test of PLEIO. Note that I use the letter L to denote the number of traits
in the multi-trait joint analysis (not 1", because I use the letter 71" to denote the matrix
transpose). Let 77; denote a L x 1 vector representing the observed standardized
effect sizes for SNP ¢ and SE(7),;) denote the vector of the corresponding standard
errors. Let © denote a L x L matrix representing the genetic covariance matrix of
L traits, and S denote a L x L matrix representing the environmental covariance
matrix. Note that 3 = diag(SE(#;)) - C,, - diag(SE(%;)), where C, is a L x L
matrix representing the environmental correlation matrix, and diag(SE(ﬁi)) is a
diagonal matrix whose diagonal values are SE(7; ). As described, S is independent
of SNP ¢ under the standardized scale. The PLEIO’s statistic is a log-likelihood ratio

test statistic (LRT). The likelihood functions under the null and alternative

hypotheses can be shown as follows:

1 a1
—5n; 1771')

50(' |ﬁi%2) :WGXP< B
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- 55 1 Lerig.e A’“.)
;2,3 <2W>L/2|§Ti2+§‘l/zexp( S (O +3) ),

£, (7’2

and the corresponding LRT statistic is

Sprpro = —2 In

slig) )

sup{£1 (TZZ ﬁi;ﬁ,i):ﬁ > 0}

b) Efficient optimization

Our goal is to find 72 that satisfies sup{£1 (Tf

ﬁﬁﬁvi):ﬂ? > ()} under the
alternative model, 7; ~ MVN(O, 20 + i), to obtain the LRT statistic. To find
MLE 72, one possible way is to use an iterative optimization technique (e.g., quasi
Newton’s method). This optimization, however, requires a burdensome calculation
of the matrix inversion of the variance-covariance matrix in the function £, for each

iteration. Instead, I propose a novel optimization technique that avoids the repeated

inversions.

I first define a spectral (eigen) decomposition of a symmetric and positive
semidefinite matrix A of size L x L as follows: let £ 4 denote the L x 1 vector
representing eigenvalues of A, and P, denote the L x L matrix whose <th column
vector indicates the corresponding eigenvector. By definition, P, is an orthonormal
matrix so that P! = P2%. Suppose the values of £ 4 are sorted in descending order,
and the corresponding column order of P, is also sorted as well. Let { 4 ; be the ith

eigenvalue. Then, £, ; > 0 where i = {1,2,..., L}.
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Note that any covariance matrix (including Qand /2\1) is symmetric and positive

semidefinite by definition. Let Q9 be the generalized (pseudo) inverse of . Since

L

& > 0 for all non-zero $a.00 Q9 is also positive semidefinite (PSD) and symmetric,

Nl

as is [ﬁg] . Then, T apply the following linear transformation to 7);:

—~ -~

—~ .1 1 1
[Q9)%; ~ MVN (0, [Q9]*T Q9] + 731>
whose log-likelihood functions under the null and alternative hypotheses can be

shown as:

(- |[@e)*: )

T

) o (1)

D=

. .
=—3 [L In(27) + In(|DJ) + ([Qg]

T

) 5 (a)|

and K = D + 721. The product of two symmetric real

D=

_ _% [Lln(27r) + In(|K) + ([ﬁg]

—~

where D = [(39] 5[]

SIS

PSD matrices, A~ %BA*%, is also symmetric real PSD, and the value of Tf is
strictly non-negative. Therefore, D and K are symmetric real PSD, and are
covariance matrices. Note that by applying this transformation, I made the second
term in K a diagonal matrix. Under this condition, I can apply an optimization
technique similar to ones used in EMMA[50] or RE2C[38]. The following equalities

hold:
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KP,=(D+71I)Pp
= (DPp + Pp7?) = PpAp + Pp1?
= Pp(Ap + 721),
and
K = P,(Ap + 721 P}
where A is a L x L diagonal matrix whose ith element is £, ;. By the definition
of spectral decomposition, the following statements are true:
For a real symmetric PSD matrix A, [A| = [["_ &4 ;.
A% = (PoE)" [AL] 7 (P, E)
where p is the number of positive eigenvalues of A, E is a diagonal matrix whose
first p diagonal elements are 1 and 0 otherwise, and A, is a p x p diagonal matrix

whose ith diagonal element is £ 4 ;. Then, I can rewrite £} as follows:

2] ———[Lln?ﬁ +Z In(ép 4+ 77)

T

) (PoE) (AR (PoE) ([fzg]%mﬂ

+
VS
)
S,
D=
>

:——[Lanw —I—Z th—I—T)

() b (Pop]]

l\)l»—t
N~

(PDE [029]°7

p 52
{LanW —I—Z EDt—I—T +pr +T]
t

1
where 67 is the ¢th element of the vector P E [Qg] *7);. Using the equation above,

I can derive the first and second derivative of the likelihood function £ as:
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p

dt} 1 P
W__2|:Zt 1§Dt+7— Zth+T ]

t=

e __1{210 oy # ]
d(1?)? S22 t=1 (fD,t +177)? =1 (§D,t +717)3]

dt’l

d 2 as the root function of the Newton Raphson algorithm and 5
as its first derivative function. The initial value of the algorithm can be found using
a grid search algorithm. I generate multiple values of 77 ranged from 10~ to 10°

and use 77 that maximizes the likelihood as an initial value. Finally, I estimate the

value of PLEIO as follows:

[l [
PLEIO = Ep, + th ~Epy+ 77

This simple form of Sp; ;7o shows that our method can optimize 772 with a single
matrix inversion of D. Recall that optimization of 77 using a naive quasi-Newton
Raphson approach would have required multiple matrix inversions. I tested the
computing efficiency of our method by comparing it to that of the standard approach

using the optimization function implemented in the python Scipy library

(scipy.optimize.minimize), taking into account the two variance-covariance matrices.

Figure 5 and Figure 6 show that the computational time of the proposed model was
faster than the time of the standard optimization. The reduction rate of computational
time was approximately linear in relation to the number of studies, where the
reduction rate increased approximately 8% per number of studies. In other words,
the proposed model can compute 16-fold (1600%) faster than scipy.optimization for

cross-disease joint analysis of 200 studies (8% x 200 = 1600%) (Figure 6).
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Appendix B P-value estimation
a) Problem definition

I describe how PLEIO estimates the p-value. Suppose I have an observed statistic

‘§PLEIO' Then, the p-value is P(SPLEIO > §PLEIO’HO). Let x denote a random

variable representing the standardized effect size 7, Q denote the L x L genetic
covariance matrix, and S denote the I x L environmental covariance matrix. In the
following, I will assume that the estimated 3! represents the true environmental

variance. Under the null, x will follow MVN(O,E). Let the statistic Sp; 5o

denote a function of = given Q and . I can define an indicator function

o oy J1if Sprpio(zlZ,9) >
eoma) ={) e

For simplicity, I replace f (:c, 9|3, ﬁ) with a simpler expression, f(z). Let g(x) be
the probability density function of MVN (0, /E\) For a given observed LRT statistic

0, the p-value can be defined as the expected value of the integrand f(x)q(x) as

follows,
I = d
/ f(z)q(x)dx

where D = RE. Our goal is to estimate I accurately and efficiently.

b) Asymptotic approach
The simplest way to approximate the p-value I is to use the asymptotic distribution.
In general, an LRT statistic using the value of the likelihood for random components

in a linear mixed model asymptotically follows a mixture of Chi-squared
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distributions under the null. In our situation, since 72 is a non-negative variance
estimate, the statistics asymptotically follow a 50: 50 mixture of zero and one
degrees of freedom Chi-square distributions[24]. In a cross-disease joint analysis,
however, the validity of this asymptote holds if only if the number of combined
studies is large. In practice, it is uncommon to combine more than 100 statistics.

Therefore, the asymptotic approach will not be an exact solution for us.

¢) Standard Monte Carlo approach
A possible alternative is the Monte Carlo approach. In the Monte Carlo method, I
repeatedly draw samples from q. Let X7 denote a set of samples generated from q.

Then, I = E4[f(X?)] where E9[-] denotes expectation for X7 ~ ¢. Assume that I

have sampled N observations and let X! be the ith observation. The Monte Carlo
estimator of [ is I = % Zfi v (X?). However, the use of Monte Carlo integration

can be computationally intensive if the region of interest in X is located at the tails
of ¢ distribution. In genome-wide analyses, the p-value of interest is often as small
as 5 x 1078, To get reasonable accuracy for such a small value, more than 10 million
samples are required. This can be computationally intensive since the maximum
likelihood estimation must be carried out for each sample to calculate Sp; 5 70-

In previous studies, the standard Monte Carlo approach was used in the context of
meta-analysis of GWAS. Han and Eskin adapted a strategy to pre-calculate I for
every 0 using the Monte Carlo sampling[17]. For each possible number of studies
(L), they generated 10 null samples and tabulated the relationship between I and

0. This was possible because they need not assume any genetic correlation or
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environmental correlation. Since their statistical model did not include any
correlations, the standard MVN with mean zero and variance [ (identity matrix)
represented the null distribution of various situations well; therefore, pre-sampling
from that distribution was sufficient. In a subsequent study, Cue et al.[38] extended
the model to include the environmental correlation caused by sample overlap.
Because the environmental correlation can vary from situation to situation, it was
not possible to calculate the table in advance for all possible situations. Fortunately,
the environmental correlation always becomes positive if it is due to a sample
overlap of controls. Inspired by this, Cue et al. /38]/ developed a heuristic to
summarize the strength of overall positive correlations between studies in one value
(the average correlation r), and tabulated / for each possible 7. Although these
previous studies have used the standard Monte Carlo approach or its variation, I
cannot apply these approaches directly in our context. This is because every analysis

will have unique Q and /Z\), and it is not possible to pre-calculate the p-value table

for every possible Qand 3.

d) Importance sampling approach
I have developed an importance sampling approach to solve this challenge. Since
each analysis study with our method will have unique Q and i, our strategy is to
calculate the p-value table in a study-specific manner. The use of the standardized

effect size 1 helps in this situation, because SE(n) is independent of the SNPs.

Therefore, under the null,  always follows MVIN (0, i)\) , regardless of SNPs. Thus,
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once I successfully build the null distribution of Sp; 7, I can use the distribution

repeatedly for all SNPs.

In importance sampling, I define the sampling distribution p(z), which is a positive

probability density function in D. Then,

1= [t = [ S ptone - e [

and

-1~ f(XD)a(XT)
T=3

where EP[-] denotes expectation for X? ~ p. The two practical constraints on
importance sampling are; it must be feasible to generate X?, and I must be able to

compute ===, In the importance sampling method, the variance of I can be shown

f(z)q(z)
p(z)

as Var(f ) = Uﬁ’z’ where 012) 1s the standard deviation of the random variable f f)a(z)
p(z)

where

[ f@Pae?
_/D o) dr — I2.

Suppose f(xz) >0 and I > 0. In this case, the optimal p(x) can be defined as
_ @)

p*(x) # where this density gives 012, = (. Since [ is an unknown constant

that depends on the value of #, I cannot use p*(z). However, it is clear that a good

103 :|_=-' _k'.f_]-!i =1



sampling density of the importance sampling method will be roughly proportional

to f(x)q(x).

In PLEIO, it is challenging to choose a good sampling distribution p. In GWAS, the
p-values can be as big as 1.0 or as small as 5 x 10~%, or can be even smaller. Thus,
I have a wide range of . Depending on 6, f(x) changes. If I choose p that resembles
f(z)q(x) for a large 0, it can give a large variance for a small . Reversely, if I
choose p that resembles f(x)q(x) for a small 6, it can give a large variance for a
large 6. To solve this challenge, I decided to use multiple sampling distributions
p;(w) where j = {1,2,... K'}. p;(z) is q(z), the probability density function of the
original null distribution that follows MVN (0, i) Then I increase the variance of

each coordinate by a factor of where  p €

{1.1,1.2,1.3,1.4,1.7,2,2.5,3.0,4.0,5.0} . Thus, in total, I use 11 sampling
distributions such that each p,(z) follows MVN(O, cjz/f)), where ¢; is a constant

value ranged from 1 to 5. Let XP; denote a matrix representing samples generated

from the jth sampling distribution, and let o; denote the proportion of samples

generated from the jth sampling distribution. Then, the matrix X?s has a size of

1

a;M x T.InPLEIO, I generate X* from each p,(z) uniformly, so that a; ~ 7. In

the importance sampling method using multiple sampling distributions, the p-value
of a given 6 can be estimated by follows:

1A f(XD)e(XD)
M4 po(X7)

=1

~)

where p,, (X?) = Zf; a;p;(X7), and Zf; a; = 1.
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Recently, Owen and Zhou (2000) [25] proposed a novel importance sampling
approach to minimize the variance of the estimate in the situation where multiple
sampling distributions are used. I employed this approach. The method generates

XP from p;(x) and uses p;(X?)/p,(XP?) as the control variates of f(X?)q(X?)/
Do (XP). Assuming high correlations between f(z)q(x) and p;(z), I expect a large
reduction in variance when estimating E( f (m)) using the control variate method.
Note that p;(z) is a probability density function and therefore has the expected value
f p;(w)dz = 1. The expression of the importance sampling with the control variate

method can be shown as follows:

L1 (M A(XT)e(XT) — Z ﬁ]p]
(% o),

=1
where 11, = EP[p;(X?)/po(X?)] = [p;j(x)dr =1 for any j. Define m* =

f(w)Q(w)*Z 1Bpj(

e i S By, such that E[m*] = I. The variance of m" is then,
vt = o (85 205) S v (2 25
-sicor (B E) 3 oo (25 25)

o () + o (265 2150
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B, Cov (f(fr)q(w) 7pK(w))> N iﬁKﬁzCOV (pK(w) py (fr)>

Pa(®) " po (T — Po(T) "po(w)
f(@)q(x)
+ Var <7pa @) )

because Var(f,u, ) = 0. By definition, the optimal 3 can be found by solving the

following partial derivatives.

oVar(m*) Y f(z)q(z) p;(x) - . pi(z) py(x)
B, co <pa(fﬂ) ’pa(fv)>+;ﬂlco (pa( )’m(@)

8

which generates K (= 11) equations and /& unknown variables (3) as follows:

OVar(m®) ., (f(@)q(z) p(x) . (@) pi(z)
08, Co (pa(ff) ’pa(w)>+gﬂlco (m(@’m(@)

oVar(m®) _ . (f@)a(x) p2(0)) | N~ g oo (P200) 2i(2)
o5,  © <pa<as> ’pa@s))*;ﬁlc <pa<x>’pa<x>>

OVar(m) ., (F@a(e) prele)) S, (k@) pue)
o= (5,0 ’pa<x>>+;ﬁlco )

Here, the function of Var(m*) is a quadratic function for 3;. Therefore, the 3*

which maximizes the variance of Var(m*) satisfies avggz_"” = 0, the root of the
J

partial derivative. Thus, the optimal 3* ( B | wg;;”*) =0 and X7 ) can be obtained
J

by solving the linear equation:
Var(P))S8; + Cov(Py, Py) S5 + -+ Cov(Py, Py )% = Cov(FQ , P)

Cov(Py, P)B] + Var(Py)p5 + - + Cov(Py, Py ) By = Cov(FQ , Py)

Cov(Py, Py)B} + Cov(Py, Py)B5 + -+ + Var(Py ) By = Cov(FQ , Pr)
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which can be shown as follows:

Var(P,) Cov(Py,Py) ... Cov(P,Pg)] 15 Cov(FQ ,P;)
Cov(Py, Py) Var(P,) o Cov(Py, Py) | | B3 ’VCOV(FQ 5P2)“
Cov(Pe,P) Cov(Pe.Py) o Var(Pe) | Lgicd  LoovFQ Pl
and
B Var(P,)  Cov(P,,P,) .. Cov(P,,Pg)] ' [Cov(FQ ,P,)
5 Cov(P,, P)) Var(P,) <« Cov(Py, Pg) "COV(FQ,PQ)“
gi) lcov(Pe.P) Cov(Pe.Py) .. VarPo) | LCov(FQ Py

where P, = ;:j 8?;)), and F'Q) = %. Owen and Zhou[25] showed that If at

least one of p;(z) >0 whenever f(x)q(z) >0, then fa”@ is unbiased and

~ ~ . = _ 1 vy f(XD)a(XT)
Var(Iaﬂ) < Var([ajpj) for any j where Iajp, = >0 5 (X7)

J

e) Implementation
The implementation of the p-value estimation in PLEIO is as follows. After
calculating Qand & using LDSC, 1 assume that these values are true values and
generate the null samples by using an importance sampling method. The default
number of sampling is 100K, where each of 11 distributions being used equally. For
each sample, I use our efficient transformation technique for the Newton Raphson
method to determine the maximum likelihood estimate 72 and calculate Sp; /0.
Then, I calculate p-values of 40 different € that are in the range (0, 40). For each 6,
I calculate the optimal 8 for the control variate method and use the method to
calculate the p-value from our null samples. Using these 40 points, | interpolate p-
values for § < 40 using B-spline fitting and extrapolate p-values for § > 40 using

linear fitting on the log p-value scale.
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Appendix C Estimation of environmental correlations
using LDSC

I first describe the LDSC framework of Bulik-Sullivan et al. (2015)[20, 21]. Let A
and B denote two different traits. I assume that we genotyped N, and N samples
at M SNPs. Let y 4 and yz denote N, x 1 and Nz Xx 1 vectors of phenotypes, and
let G4 and G g denote N, x M and Nz x M genotype matrices. G4 and G g
are standardized so that each column follows N (0,1). The z-scores of the SNP j can
be obtained as z, ; := G y,/\/N,and zp ; := GE jyp/\/Np.Let z, and zp

denote M x 1 vectors of z-scores of traits A and B.

Bulik-Sullivan et al., (2015) derived the following equations[20, 21]:

N h?
Ngh?

where h? and h% are narrow sense heritabilities, and ¢ ; 1s the value of the LD-score

of jth SNP, which can be obtained from an external reference. LDSC uses both
summary statistics and LD-score information to estimate the trait heritability
(h? and h%) along with the intercepts (N 44 + 1 and Ngag + 1). To estimate

genetic correlation, LDSC uses the following equality:

Blepsenlt) = YoAre sy y Nan )
5J VAR M J \/m

where o, denotes the genetic covariance between trait A and B, N, denotes the

shared individuals between samples N, and Ny, and o denotes phenotypic

correlations.
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To estimate environmental correlation, I apply genomic control to both traits to make
intercept one. After the genomic-control correction, the second term in equation (2)
reflects the environmental correlation of z-scores attributable to shared individuals.
Another similar approach is to use the weighted sum of z-scores to combine z-scores

of A and B,

C C
VNaZa,; + VN2,

z .=
AB.j N

where the superscript ¢ denotes that the z-score was corrected with genomic control.

(3)

The weighted sum of z-scores is approximately equivalent to the popular inverse-
variance weighted method[51].
I can decompose z-scores to the genetic effect and the environmental error, such that

C

— C i 1
24, =9ajT€s;and 2, =gp,;+e€g; . Let p, denote the environmental

2
correlation. That is, p, = Cor(ey j,€p ;). Note that Var[g, ;| = %fj and

Var[gBJ] = N’j{f% ?;.

If there is a sample overlap,

E[<ZAB,j|NAB - 0)2 |£j]

2
VA +€a) +VNplgn, +€n,
- B A(gA,_] 614,_]) B(gB,_] 63,]) |NAB # O |£j
VN4 + Np
Ny Ng
- f(fj) + —NA N, Var(eA,j) —I——NA N, Var(eB,j)

+ 2\/NANBCOV<6AJ-, eB,j)]

= f(ﬁj)+[1+2 NalVp ]

7]\714 N, Pe
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where f (fj) is a first-order function of ¢, without a constant term. Therefore,

i2\/ AB

NN, Pe is the inflation of the intercept caused by environmental
correlation. Since I can estimate vy, 5 from LDSC, I can estimate the environmental

correlation as follows:

NA—l—NB

Pe = /—N N
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