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Abstract 

 

Development of a statistical model to 

detect pleiotropic loci shared by multiple 

traits 

 

Cue Hyunkyu Lee 

 

The Department of Biomedical Science 

The Graduate School of Medicine 

Seoul National University 

 

Introduction: GWAS have been used widely for mapping disease-associated 

genetic variants. Some of these variants exhibited pleiotropic effects in which a locus 

affects multiple traits simultaneously. Detecting and interpreting pleiotropic loci 

provides important information to understand the genetic structure shared between 

diseases and complex traits. A common approach to detecting pleiotropic loci is to 

perform a meta-analysis with multi-trait GWAS summary statistics. However, 

existing meta-analysis methods do not model complex genetic structures such as 

genetic correlations and heritability. In addition, these multi-trait analyses are often 
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difficult to interpret the analysis results due to the differences in units or scales in 

phenotypes across traits. 

  

Method: In this paper, I propose PLEIO, a summary statistics-based framework that 

can map and interpret pleiotropic loci by jointly analyzing diseases and complex 

traits. The method maximizes the performance of the association test by using a 

novel statistical model that comprehensively describes the genetic correlations and 

heritabilities of the traits. PLEIO uses standardized metrics to account for differences 

in phenotypic units and scales; This generalized model can seamlessly combine any 

sets of traits. To reduce the computation time for the multi-trait analysis, I used an 

optimization process using novel mathematical techniques such as importance 

sampling and eigenvalue decomposition. In addition, PLEIO provides an 

interpretation and visualization tool that supports downstream analysis of the 

identified loci.  

 

Results: To verify the performance of PLEIO, I carried out extensive simulations 

and real data analysis. Simulations, assuming various genetic correlations and 

heritabilities structures, have confirmed that PLEIO has good control over false-

positive rates and outperforms other multi-trait analysis methods. In the real data 

analysis, I applied PLEIO to 18 traits related to cardiovascular disease and detected 

13 novel (newly identified) pleiotropic loci showing four different association 

patterns. In terms of computational efficiency, the real data analysis that combines 

18 traits used less than 4 hours per one CPU unit to test 1,777,411 association tests.  
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Conclusion: PLEIO is a multi-trait analysis framework, which uses genetic structure 

between traits to detect pleiotropic loci. The statistical model implemented in PLEIO 

uses a generalized model that includes the assumptions used by the existing models. 

The software can be downloaded for free from the following Github webpage: 

https://github.com/cuelee/pleio. 
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‒ 

Keywords: multi-trait analysis, pleiotropy, association test, heritability, genetic 

correlation, meta-analysis, GWAS, variance component 

 

Student number: 2019-33070 

 

* This work has been published in the American Journal of Human Genetics. (Lee, 

C. H., Shi, H., Pasaniuc, B., Eskin, E., & Han, B. (2021). “PLEIO: a method to map 

and interpret pleiotropic loci with GWAS summary statistics.” Am J Hum Genet, 

108(1), 36-48. doi:10.1016/j.ajhg.2020.11.017)  



iv 

Contents 

 

Abstract ......................................................................................................... i 

Contents ....................................................................................................... iv 

List of Tables ............................................................................................... vi 

List of Figures ............................................................................................ vii 

List of Abbreviations ................................................................................ viii 

 Introduction .............................................................................. 1 

1.1 Study background .................................................................................. 1 

1.1.1 Mendelian and complex disorders ................................................................... 1 

1.1.2 Genetic liability-threshold model .................................................................... 2 

1.1.3 Genome-wide association studies (GWAS)..................................................... 2 

1.2 Purpose of research ................................................................................ 5 

 Material and method .............................................................. 10 

2.1 The whole process of PLEIO analysis ................................................ 10 

2.1.1 Step 1: Estimation of correlation matrices ..................................................... 10 

2.1.2 Step 2: Standardization of the input statistics ................................................ 11 

2.1.3 Step 3: A variance component model to identify pleiotropic loci using GWAS 

summary statistics ....................................................................................................... 14 

2.1.4 Step 4: P-value estimation using a novel importance sampling method ........ 19 

2.1.5 Step 5: Visualization of pleiotropic association pattern................................. 24 

2.2 Simulations ............................................................................................ 24 



v 

2.2.1 Evaluation method of false-positive rate ....................................................... 24 

2.2.2 Generation of effect sizes used in power simulation ..................................... 25 

2.3 Real data analysis ................................................................................. 27 

2.3.1 Data collection ............................................................................................... 27 

2.3.2 Quality control of the data ............................................................................. 31 

 Results ..................................................................................... 32 

3.1 Overview of the method ....................................................................... 32 

3.2 Evaluation of false-positive rates in null simulations ........................ 34 

3.3 Evaluation of power in alternate simulations .................................... 38 

3.4 Measuring computation time and memory usage ............................. 45 

3.5 Joint analysis of multiple traits related to cardiovascular disease ... 46 

3.6 Interpretation of the joint analysis results ......................................... 60 

3.7 Comparison of the association patterns between known and novel 

pleiotropic loci. ................................................................................................. 77 

 Discussion ................................................................................ 80 

Reference .................................................................................................... 87 

Appendix .................................................................................................... 95 

국문초록국문초록국문초록국문초록 ................................................................................................... 111 

 

  



vi 

List of Tables 

Table 1. The list of phenotypes included in the PLEIO's real data analysis. ......... 29 

Table 2 The detailed description of twelve UKB traits. The data above can be found 

at Neale lab’s UKB summary statistics portal. ............................................... 30 

Table 3. PLEIO’s FPR in various simulation conditions. ...................................... 36 

Table 4. PLEIO’s FPR at genome-wide thresholds. .............................................. 37 

Table 5. Comparison of the computational efficiency of PLEIO, MTAG, ASSET, 

and METAL. ................................................................................................... 45 

Table 6 The summary of 13 NOVEL GWAS hits identified by PLEIO. ............... 52 

Table 7. The functional analysis of the 13 GWAS novel hits using ENSEMBL VEP, 

Gene Cards, and GWAS catalog. .................................................................... 56 

Table 8. Comparison of the number of GWAS-TOP hits of PLEIO and MTAG 

identified in post GWAS analysis. .................................................................. 57 

Table 9 Disease prevalence of 13 UKB traits, updated based on a literature review.

 ........................................................................................................................ 58 

Table 10 Comparison of PLEIO p-value results for 13 new pleiotropic loci before 

and after adjusting for disease prevalence values. .......................................... 59 

 

  



vii 

List of Figures 

Figure 1 GWAS diagram from the NHGRI-EBI catalog ......................................... 4 

Figure 2 Proportion of pleiotropic trait-associated loci and SNP............................. 5 

Figure 3. Overview of the PLEIO framework. ......................................................... 8 

Figure 4. Simulation to verify the scaling of the effect sizes for binary traits. ...... 13 

Figure 5. Comparison of the computational efficiency between the proposed Newton 

Raphson (NR) technique and the pseudo-NR technique implemented in 

Python’s Scipy library. .................................................................................... 18 

Figure 6. Line plot comparing the computational time of the NR method proposed 

by PLEIO and the pseudo-NR method implemented in Scipy library. ........... 19 

Figure 7 PLEIO’s p-value distribution plot. ........................................................... 23 

Figure 8. A toy example designed to understand the association analysis carried out 

by PLEIO. ....................................................................................................... 34 

Figure 9 The results of the power test. ................................................................... 43 

Figure 10. Power test results assuming LDL as the focal trait. .............................. 44 

Figure 11. Genetic correlation and environmental correlation among 18 traits. .... 50 

Figure 12. The summary of the real data analysis. ................................................. 51 

Figure 13. Local Manhattan plots of the 13 novel loci identified by PLEIO. ........ 53 

Figure 14. Manhattan plots showing the association analysis results using real data.

 ........................................................................................................................ 54 

Figure 15. Pleiotropy plots of 13 novel loci identified by PLEIO. ........................ 75 

Figure 16 Distinct association patterns of 13 novel variants identified by PLEIO. 76 

Figure 17 A heatmap created using the p-values of 625 pleiotropic variants for a total 

of 18 traits. ...................................................................................................... 79 



viii 

List of Abbreviations 

< Sorted in A-Z order > 

Age_Smo (phenotype), Age at smoking 

ASSET (software), association analysis based on subsets  

BMI, body mass index 

CAD (phenotype), coronary artery disease 

CARDIo+C4D consortium, Coronary artery disease genome-wide replication and 

meta-analysis plus the coronary artery disease consortium 

CDF, cumulative density function 

CFTR, cystic fibrosis transmembrane conductance regulator 

cIQ (phenotype), childhood IQ 

EMMA, Efficient Mixed-Model Association 

FPR, false-positive rate 

GWAS, genome-wide association studies 

HbA1C (phenotype), hemoglobin 

LD, linkage disequilibrium 

LDL (phenotype), low-density lipoprotein 

LDSC (software), linkage disequilibrium score regression 

LRT, log-likelihood ratio test 

MAF, population minor allele frequency 

MAGIC consortium, the meta-analyses of glucose and insulin-related traits 

consortium 

MLE, maximum likelihood estimate 

MTAG (software), multi-trait analysis of GWAS 



ix 

PDF, probability density function 

PLEIO (software), Pleiotropic Locus Exploration and Interpretation using Optimal 

test  

RE2C (software), random effect 2 complement 

SNP, single nucleotide polymorphism 

TG (phenotype), triglyceride 

WHR (phenotype), waist-hip-ratio



1 

 Introduction 

1.1 Study background 

The thesis contains contents that require a high level of background in bioinformatics 

and statistics. This section is intended to provide background information that helps 

readers, especially non-majors. Throughout this chapter, I avoided the use of math 

equations and complicated jargon. 

1.1.1 Mendelian and complex disorders 

Genetic diseases are health problems caused by abnormalities in the genome, 

classified as Mendelian disorders or complex disorders. Mendelian (monogenic) 

disease is caused by a single mutated gene. This type of diseases includes Cystic 

fibrosis, Sickle cell disease, and Hemophilia diseases. For example, Cystic fibrosis 

is a recessive genetic disorder caused by mutations in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene[1]. Complex disease (or 

multifactorial disease) is the parlance of genomics, which denotes that a disease is 

not a simple Mendelian single-gene disorder but is caused by a combination of many 

genes and significant environmental contributions. One of the good examples of 

complex diseases is cardiovascular disease. The risk of cardiovascular disease can 

be increased by genetic factors[2], such as an ancestor’s medical history[3], and by 

environmental factors, such as long-term consumption of salty foods[4]. Similarly, 

some human traits such as height and body mass index (BMI) are multifactorial, of 

which phenotypes are determined by many genetic and environmental factors[5, 6].  
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1.1.2 Genetic liability-threshold model  

The liability-threshold model is a threshold model that describes categorical 

outcomes (usually binary) with liability scores obtained by summing over many 

variables. The model assumes that the observed outcome is determined by whether 

the latent score (�) is less than or greater than the threshold value (z). In a genetic 

context, the liability score can be described as the sum of two components: genetic 

(�) and environmental (�), and thus � = � + �, and the threshold z defines the limit 

by which the disease is determined by of genetic and environmental factors. For 

diseases (whose phenotypic outcomes are binary or categorical), the threshold can 

be estimated from the population prevalence of the disease (which is typically low). 

The threshold is defined relative to the population and environment, so the liability 

score is generally considered as a �(0,1) normally distributed random variable. 

1.1.3 Genome-wide association studies (GWAS) 

GWAS is a type of research design that identifies genetic variants associated with a 

trait by performing association tests at the whole genome level using the genotypes 

and phenotypes generated from many individuals in the general population. To date, 

GWAS has been performed on a large scale for several complex diseases (or traits) 

using single nucleotide polymorphisms (SNPs) as independent variables. Here, each 

SNP represents a single genetic variation that has a modest fraction of mutant alleles 

in the population (e.g., 1 % or more). Since a single nucleotide can be one of adenine 

(	), thymine (
 ), guanine (�), and cytosine (�), a SNP can be one of bi-, tri-, or 

tetra-allelic. Usually, however, SNPs are considered bi-allelic. Alternatively, GWAS 
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can be performed using genetic variations other than SNPs (e.g., deletions, insertions, 

copy number variations, CNVs). 

 

The traits used in GWAS can be broadly divided into two categories (binary and 

quantitative), and each type uses a different method to estimate the magnitude of 

individual SNP associations. For quantitative traits (e.g., height, BMI, fasting 

glucose concentration), we usually use a linear regression model that regresses the 

standardized phenotypes (continuous) on standardized genotypes. The term 

‘standardized’ here means that the phenotypes (or genotypes) are normalized to 

follow the standard distribution, �(0,1) . For binary traits (e.g., cardiovascular 

diseases or type 2 diabetes), we can use a logistic regression model that regresses 

the phenotypes (0 or 1) on genotypes. To perform the above regression analysis, we 

transform each genotype of an individual into a dosage (0/1/2) representing the 

frequency of the minor allele of the individual. 

 

Since 2005, the first successful GWAS study[7], to the present, GWAS have 

identified more than 55,000 significant ( 
 − ����� < 5 × 10−8 ; genome wide 

significance threshold, 2021-06-15) genome-wide associations between genetic 

variations and common diseases or traits collected from 5106 GWAS publications 

(Figure 1)[8]. These associations have led to many important scientific discoveries: 

understanding disease mechanisms by identifying novel associated loci causing the 

disease, identifying therapeutic targets of diseases, and developing methods for 

diagnosing and predicting prognosis[9].  
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Figure 1 GWAS diagram from the NHGRI-EBI catalog In this diagram, associations 

with p-values less than 5 × 10−8 are shown and colored according to trait categories.  

 

Despite these great successes, GWAS have several limitations[9]. A representative 

example is the problem of missing heritability, a phenomenon in which associations 

identified by GWAS explain only a small fraction of the heritability of complex traits 

(e.g., height)[10]. This may be because GWAS does not study all types of genetic 

variations that affect complex traits. For example, most GWAS does not include rare 

variants (or ultra-rare variants) and the effects due to epistasis[9]. In many cases, 

GWAS do not directly identify disease- or trait-causal variants. Instead, they detect 

tag-SNPs correlated with nearby causal variants through the genetic structure called 

linkage disequilibrium (LD)[11]. Some critics argue that GWAS associations may 

be spurious associations caused by the cryptic relatedness between individuals[12]. 
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1.2 Purpose of research 

GWAS (Genome-wide association studies) have discovered many genetic variants 

with pleiotropic effects that affect several traits simultaneously[13, 14]. For example, 

the GWAS catalog, a database that summarizes the associated variants identified by 

GWAS performed to date, contains several pleiotropic variants for which 

pleiotropic effects have been firmly established (e.g., hypertension and myocardial 

infarction)[15]. Recently, Watanabe et al. conducted a study to examine the GWAS 

catalog data collected up to 2019 to map pleiotropic variants' position and interpret 

their genetic structures[14]. In this study, Watanabe et al. found that a large part of 

the human genome is related to pleiotropy (Figure 2)[14]. 

 

 

Figure 2 Proportion of pleiotropic trait-associated loci and SNP. a. Each value is 

based on the summed length of the associated loci, and each associated locus represents a 

genomic segment correlated by linkage disequilibrium (LD). Here, each locus may contain 

more than one trait-associated SNP. The definition of an associated locus can be found 

elsewhere[14] b. Each percentage value uses the number of SNPs in the GWAS included in 

the analysis as the denominator. 
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Identifying pleiotropic loci is vital as they can understand the physiological 

mechanism of complex diseases or develop common therapeutic targets. Most of the 

resulting summary statistics of the GWAS performed to date are publicly available, 

which can be used to detect pleiotropic loci. Existing methods for detecting 

pleiotropic loci are based on a meta-analysis[16-18], trait-specific effect size 

estimation[19], or Bayesian approaches. Meta-analysis-based methods are suitable 

for variant mapping because they provide one p-value for each variant. However, 

the pooled statistics and p-values alone are insufficient to determine how much a 

gene is associated with each trait. In other words, there are limits to interpreting the 

results. The trait-specific methods are advantageous for interpretation and genetic 

risk prediction because they provide updated effect sizes and p-values for each trait 

and variant. However, variant mapping is difficult for trait-specific methods as 

additional multiple testing corrections may be required to obtain per variant p-values. 

In this thesis, I developed a meta-analysis-based method to detect pleiotropic loci.  

 

There are several problems with the strategy of naïve application of the existing 

meta-analysis method to multi-trait analysis. First, existing methods do not 

adequately model the genetic structure of diseases and complex traits. The problem 

can be ameliorated by explicitly modeling the genetic correlation and heritabilities 

and providing information about the magnitude and direction of effect sizes across 

traits. Second, conventional methods use the assumption that the phenotypic unit and 

scale are the same. In a multi-trait analysis, units can differ between quantitative 

traits, and the definitions of the effect size can vary between binary and quantitative 
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traits. Currently, most meta-analysis methods ignore these differences and use the 

observed effect size estimates as input, so multi-trait analysis using the existing 

meta-analysis methods does not provide optimal results. For the same reason, the 

interpretation of the analysis using a forest plot or m-value may not provide optimal 

results. Third, there may be environmental correlations between traits resulting from 

using the same sample in multiple GWAS. Without systemic estimation and 

correction for environmental correlations, the use of meta-analysis can inflate false 

positives.  

 

In this study, I propose a multi-trait method PLEIO (Pleiotropic Locus Exploration 

and Interpretation using Optimal test), which maps and interprets pleiotropic loci 

(Figure 3). PLEIO uses GWAS summary statistics as input. The multi-trait analysis 

begins with estimating the genetic correlations, heritabilities, and environmental 

correlations using whole-genome GWAS summary statistics. Then, it transforms the 

observed effect size estimates into standardized estimates. For quantitative traits, the 

standardization makes the phenotypes and genotypes follow a standard normal 

distribution. For binary traits, standardization means converting per sample genetic 

contributions into a liability. This process is necessary to analyze diseases and 

complex traits with different units and compare the magnitude of their effect sizes. 

PLEIO uses a variance component model and assumes genetic effects as a random 

variable. The model tests the non-zero genetic variance component where the 

covariance matrix is proportional to the cross-trait genetic covariance matrix. The 

statistical model can account for genetic correlations and heritabilities to maximize 

statistical power and control the false positive rate by taking environmental 
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correlations into account. To increase the computational efficiency in maximum 

likelihood estimation, PLEIO uses an optimization technique that applies spectral 

decomposition to the covariance matrix of the linearly transformed effect sizes. 

While using the proposed variance component model, I discovered bias in the p-

values in multi-trait analysis using a small number of traits due to the small sample 

problem. I addressed this problem by implementing a novel importance sampling 

method that accurately estimates the p-value. 

 

 

Figure 3. Overview of the PLEIO framework. a. One collects summary statistics of 

genetically correlated traits. b. One estimates genetic correlations, heritabilities, and 

environmental correlations across the traits using LDSC. c. PLEIO performs association 

analysis by modeling the effect sizes as the sum of genetic and environmental effects. 
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I have validated the power of PLEIO to detect pleiotropic loci through extensive 

simulations and real data analysis. The simulations assumed different cross-trait 

genetic correlation structures and compared the performance of several multi-trait 

methods. PLEIO outperformed almost all competitors in various simulation settings. 

The results showed that PLEIO, unlike other methods, can adapt flexibly to changes 

in genetic structures. Next, I collected summary statistics of 18 GWAS related to 

cardiovascular disease and performed real-data analysis. Through this joint analysis 

of 18 traits, PLEIO discovered 13 novel pleiotropic loci. I have divided these 13 

pleiotropic loci into four groups according to their association patterns, where each 

group may represent a distinct pathway. To visualize the association patterns of each 

pleiotropic locus, I used the visualization tool, “pleiotropicPlot” implemented in 

PLEIO. The software is available to the research community on the GitHub page: 

https://github.com/cuelee/pleio. 
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 Material and method 

2.1 The whole process of PLEIO analysis 

Below, I describe the framework, PLEIO (Pleiotropic Locus Exploration and 

Interpretation using Optimal test). To jointly analyze multiple traits, the user needs 

to select the � traits and collect 
  GWAS summary statistics. Each of T summary 

statistics is a SNP association test result of a trait in Q traits, and the traits can be any 

combination of binary and quantitative phenotypes. One can collect more than one 

GWAS for one trait so that 
  can be greater than �. PLEIO takes �  common SNPs 

shared by 
  summary statistics as input. The risk and reference alleles of each SNP 

should be matched across all 
  summary statistics. Let ��̂� be the observed effect 

size of the �th SNP and �th trait, SE["#̂$] be the corresponding standard error, and �$ 
is the number of the sample size of �th trait. PLEIO uses the 
  summary statistics as 

input and performs five analysis steps described below. 

2.1.1 Step 1: Estimation of correlation matrices 

PLEIO assumes that the correlation of GWAS marginal effect sizes is the summation 

of the correlation due to causal genetic effects and the correlation due to 

environmental effects. Here, each marginal effect size measures additive genetic 

effects. Let &' is a 
 × 
  matrix of the genetic correlation matrix, &( is a 
 × 
  

matrix of the environmental correlation, and )* is a 
 × 1 vector of narrow sense 

heritabilities. It is straightforward to obtain &'  and )*  by applying the linkage-

disequilibrium score regression (LDSC) to a pair of studies [19, 20]. For &', we use 
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the "Genetic Covariance" value in LDSC analysis output[21], and for &(, we use 

"Intercept of Genetic Covariance" as suggested by multi-trait analysis of GWAS 

(MTAG)[19]. 

 

Additionally, I suggest another method for estimating +,. The proposed method is 

a two-step procedure. First, a pair of traits are combined using the fixed-effects meta-

analysis method based on the inverse variance of the effect size. Then, I apply the 

single trait LDSC method to this pooled summary statistics, which gives a LDSC 

intercept. Let this LDSC intercept be -./$0 , the environmental correlation (1/) 

becomes 

1/ ≈ �3 + �52√�3�5 (-./$0 − 1) 
Equation 1 

where �3  and �5  are the sample sizes of the two studies. I found that the two 

approaches described above give similar estimates for +, . For details, see 

Estimation of environmental correlations using LDSC. 

2.1.2 Step 2: Standardization of the input statistics 

In the collection of 
  summary statistics (or traits), the scale of observed effect sizes 

can be heterogeneous. Instead of using the observed (reported) effect sizes, PLEIO 

uses the effect sizes in a standardized metric derived from each summary statistics. 

The standardized effect size of SNP � for trait � can be shown as follows: 



12 

8#̂$ =
√:$ "#̂$;<["#̂$]

⎷
√√√�$ + :$B$ [ "#̂$;<["#̂$]]

2 , and SE[8#̂$] = ;<["#̂$]"#̂$
8#̂$. 

Equation 2 

:$ is a scaling factor that is 1 for quantitative trait and 
KL2(1−KL)2OL(1−OL) ⋅ 1[Q(S−1(1−KL))]2 for 

a binary trait, where V$ refers to the disease prevalence, W$ = (�$|Y = 1)/�$ refers 

to the sample prevalence, [ refers to the probability density function (PDF) of the 

standard normal distribution, and \−1 refers to the inverse of the cumulative density 

function (CDF) of the standard normal distribution. B$ is a scaling factor that is 0 for 

quantitative trait and (�$ × OL−KL1−KL )(� − �$ × OL−KL1−KL ) for a binary trait, where �$ =
Q(S−1(1−KL))KL  refers to the mean liability of cases, and � = \−1�1 − V�� refers to the 

liability threshold for cases. For quantitative traits, 8#̂$ = _ ̂̀ Lab[_ ̂̀ L] ⋅ 1√cL , which 

corresponds to the regression coefficient of the simple linear regression model using 

the standardized phenotypes and the standardized genotypes. For binary traits, 8#̂$ is 

the standardized effect size with a liability scale derived from a linear model, 

assuming a non-randomly ascertained case-control study (by setting the phenotypes 

1 and 0). The use of the two scaling factors in Equation 2 was suggested by S.H Lee 

et al. For binary traits, the observed statistics are often obtained from logistic 

regression model rather than linear regression model, but it has been customary to 

assume that the statistics were obtained from the simple linear regression model[20]. 

The accuracy of the proposed scaling function was verified by performing extensive 

simulations with different d�  and e�  (Figure 4). The use of 8#̂$  is useful for 
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downstream analysis as it is convenient to interpret the pleiotropic association 

pattern across traits. Note that the proposed standardized effect size is independent 

of phenotypic and genotypic units.  

 

 

Figure 4. Simulation to verify the scaling of the effect sizes for binary traits. I 

generated liabilities of 2� individuals where f ~ �(0,1) and f = h + i where h is the random 

genetic effects and i is the random errors. In this simulation, I assumed h = j��kl( where 

��kl( is a 100 × 1 vector of causal SNPs and ��kl(~�(0, mn100), )* is fixed to 0.3, and q is the 

genotypes whose minor allele frequency (
) is fixed to 0.3. Then, I generated a case-control 

study whose total sample number is fixed to 20,000 and estimated the regression coefficients 
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of 100 variants using a linear regression model. Let �(r��s be the estimates of the effect 

sizes after transforming the observed estimate with the proposed scaling scheme. To show 

the validity of the scaling, we plotted �(r��s and ��kl( on a 2-D plane (total a hundred red 

dots). The test was repeated using 16 different combinations of population prevalence and 

sample prevalence 

2.1.3 Step 3: A variance component model to identify 

pleiotropic loci using GWAS summary statistics 

Below, I describe the statistical model of the PLEIO, which is optimized to identify 

pleiotropic loci. I assume that a phenotype is influenced by V causal SNPs whose 

individual contribution is very small. For simplicity, I assume that all V SNPs are 

shared by the 
  traits. Let u� be a 
 × 1 vector denoting the true effect sizes of �th 

causal SNP. Inspired by the LDSC model used in Step 1: Estimation of correlation 

matrices, I assume that all V  SNPs have equal contributions such that 

u� ~ MVN(z, {K)  where }  is the genetic covariance matrix whose diagonal 

elements are the narrow sense heritabilities. For non-causal SNPs, I assume u� = z. 

Let û�  is the observed effect sizes of �th SNP and ~�(û�) is the corresponding 

standard errors. I model û� as the sum of the true genetic effect and the error as 

follows: 

 û� = u� + i� Equation 3 

where i� is a random variable of the errors such that i�~MVN(z,�) where � =
����(~�[û�]) ⋅ +( ⋅ ����(~�[û�]) . Thus, û�~MVN(z, {K + �)  for causal SNP 

and û�~MVN(z,�) for non-causal SNPs. As described earlier, LDSC uses û� and 

~�[û�]  for M observed SNPs to estimate the genetic covariance matrix }̂  and 
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environmental correlation matrix �̂  (see Step 1: Estimation of correlation 

matrices for details).  

 

In the remaining half of this section, I demonstrate how to test the pleiotropic 

association using û�, ~�[û�], }̂, and �̂. First, I relax the assumption that V SNPs 

have equal contributions and model û�  as the sum of two random variables as 

follows 

û� = �� + i� Equation 4 

where �� is a new random variable of genetic effects that follows ��~MVN(z, �#2}), 
and �#2  is a scaling factor of the variance-covariance matrix } so that �#2 > 0 for 

causal SNPs and �#2 = 0 for non-causal SNPs. Note that, in a special case, ��  is 

equivalent to u�  when �#2  has the fixed value of 1K . In this model, PLEIO tests 

pleiotropic association by testing �#2 = 0 under the null hypothesis and �#2 > 0 under 

the alternative hypothesis.  

 

I describe intuitions of our model as follows. The key assumption is that the genetic 

component �� is a random variable whose variance is proportional to the genetic 

covariance matrix ��. This implies the following two: First, phenotypes with larger 

heritability show larger genetic effects. Second, phenotypes of multiple traits show 

genetic effects concordance to their genetic correlations. The statistical model is 

optimized to have maximized power with }̂ and �̂. The use of estimates obtained 
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using whole-genome data, such as }̂  and �̂ , is similar to the approach of the 

empirical Bayes approaches[22]. 

 

I can test the hypothesis by fitting the variance component model in Equation 4 and 

obtaining the maximum likelihood estimate (MLE) �#̂2  that maximize 

�(�#2∣û�; }̂, �̂). This can be done with numerical solution such as the pseudo-

Newton-Raphson method. However, updating the parameter �#2  in the likelihood 

function above requires a matrix inversion, [�#2}̂ + �̂]−�
, in every iteration, which 

has a polynomial time complexity. To solve this challenge, I developed an 

optimization technique that considerably reduces the computational burden for 

finding MLE (see Appendix A).  

 

In the suggested optimization technique, I apply a linear transformation to û#  as 

follows: 

}̂−12û# ~ MVN(z, �#2� + }̂−12�̂}̂−12).    
Equation 5 

The goal of the optimization is to find the MLE �#̂2  that maximize 

�(�#2∣}̂−12û�; }̂−12�̂}̂−12)  with �#̂2 > 0  as a constraint. By applying spectral 

decomposition, � = }̂−�n�̂}̂−�n = e�(��)e��  where �� is a diagonal matrix of 

the eigenvalues that are arranged in ascending order, and e�  is an eigenvector 

matrix whose �th column corresponds to the �th eigenvalue. Then, �−�  can be 

simplified as e�(�� + �#2�)−�e�� . Note that the computation of e�(�� +
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�#2�)−1e��  is much easier than the computation of (�#2}̂ + �̂)−1 . The log-

likelihood function obtained through the linear transformation (ℓ1′ ) can be shown as 

follows:  

ℓ1′ = − ��[
 ln(2�) + ∑ ln(�� + �#2)�
$=1

+ (e��[}̂']12û�)� [��+ ]−1 (e��[}̂']12û�)] 

= − 12 [
 ln(2�) + ∑ ln(�$ + �#2)�
$=1 + ∑  �*�$ + �#2

�
$=1

] 
Equation 6 

where ¢  is the number of non-zero eigenvalues,  ��+  is a ¢ × ¢  matrix that 

removed columns with zero diagonal elements of �� , �$ is the �th diagonal element 

of ��+ ,  �2 is the �th element of the vector e��}̂−12û�, and � is a diagonal matrix 

of which the first 
 elements are ones, and the rest are zeros. 

The first and second derivatives of ℓ1′  with respect to �#2 are: 

�ℓ1′��#2 = − 12[∑ 1�$ + �#2
�
$=1 − ∑  �2(�$ + �#2)2

�
$=1

] 

�2ℓ1′�(�#2)2 = −12[∑ 1(�$ + �#2)2
�
$=1 + 2∑  �2(�$ + �#2)3

�
$=1

] 
Equation 7 

With Equation 7, I can obtain optimal �#̂2 using the Newton Raphson method. the 

resulting log-likelihood ratio test (LRT) statistic can be shown as follows: 
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;O¤b¥¦ = [∑ ln( �$�$ + �#̂2)
�
$=1 ] + [∑ �2�$

�
$=1

− ∑  �*�$ + �#̂2
�

$=1
] 

Equation 8 

This technique can substantially reduce the time to complete the association tests 

where the amount of the time reduction increases with the increase of the number of 

traits (Figure 5 and Figure 6). The use of spectral decomposition was inspired by 

the technique used in the Efficient Mixed-Model Association (EMMA)[23]. Kang 

et al. applied eigendecomposition on the variance of a linear mixed model to reduce 

the time complexity of solving REML.  

 

 

Figure 5. Comparison of the computational efficiency between the proposed 

Newton Raphson (NR) technique and the pseudo-NR technique implemented in 

Python’s Scipy library.  I measured the time for a 10K SNP test with PLEIO, where I 

changed the number of traits from 5 to 200. The dark gray bar represents the NR method 

implemented in PLEIO, and the light gray bar represents the pseudo-Newton-Raphson 

method implemented in Python’s Scipy library. 
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Figure 6. Line plot comparing the computational time of the NR method proposed 

by PLEIO and the pseudo-NR method implemented in Scipy library. Each point 

indicates the ratio of computational time for testing 10K simulations using the NR 

implemented in PLEIO to the pseudo NR implemented in Scipy. 

2.1.4 Step 4: P-value estimation using a novel importance 

sampling method 

I describe how the statistical significance (p-value) of the LRT statistic, ;O¤b¥¦, is 

evaluated. PLEIO’s LRT statistic uses only one variance estimate as to the parameter. 

According to Self and Liang, the statistic asymptotically follows a 50:50 mixture of  

χ02 and χ12 under the null hypothesis[24]. However, the asymptotic approximation is 

inaccurate when the number of traits (T) is small. I found that the null p-values 

calculated from the asymptotic distribution deviate from the uniform distribution 

(the left column of Figure 7). ;O¤b¥¦  has a unique null distribution for every 

combination of }̂ and �̂. In this case, a reasonable solution is to estimate null 

distribution using by applying a simulation-based approach (e.g., Monte Carlo 
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method) to the analysis that uses those study-specific factors (}̂  and �̂ ). The 

suggested approach has to accurately approximate the p-value at a very small 

quantity (e.g., 5 × 10−8). For this reason, the use of the Monte Carlo method is not 

an optimal solution, as it will significantly increase the total analysis time.  

 

Below, I suggest a novel importance sampling method to assess the p-value of 

;O¤b¥¦. Let ª be a random variable of the standard effect sizes, and «(ª) be the 

probability density function (PDF) of ª  under the null hypothesis. Thus, 

«(¬) ~ MVN(z, �̂). By the definition of the probability distribution, ∫ «(ª) 
® �¬ =

1  when � = ℝ� . In this section, Below, I treat ;O¤b¥¦ as a function of ª given }̂ 

and �̂, and let B be the observed statistics of ;O¤b¥¦. Using definitions above, I 

define an indicator function °(ª, B) as follows: 

°(ª, B|�̂, }̂) = {1 �° ;O¤b¥¦(ª|�̂, }̂) ≥ B
0 �° ;O¤b¥¦(ª∣�̂, }̂) < B. Equation 9 

For simplicity, I replace °(¬, B|�̂, }̂) with °(¬). Then, the p-value of B can be 

shown as:  

³ = ∫ µ(ª)�ª 
�

 
Equation 10 

where µ(ª) = °(ª)«(ª). To estimate the value of ³ , one can use the importance 

sampling approaches. Let 
(ª) be a sampling distribution that differs from «(ª), and 

j¶~
(ª) denote a � × 
  matrix of the effect sizes sampled from 
(ª) where �  
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is the number of samples. Note that �  can be any number but is usually smaller than 

the number of samples using the Monte Carlo method. Then, the estimate ³  using 

j¶ can be shown as follows:  

³ ̂ = E¶ [°(ª)«(ª)
(ª) ] = 1� [∑°(q#¶)«(q#¶)
(q#¶)
·
#=1

] 
Equation 11 

where E¶[⋅] denotes the expectation over j¶, and j#¶ is the �th row vector of j¶. 

The challenge in the above importance sampling is to choose an 
(ª) that minimize 

the variance of ³ .̂ In GWAS, this can be more challenging because the range of ³  ̂is 

very wide, from 1.0 to 5 × 10−8. In other words, each B may have an optimal 
(ª) 
that minimizes the variance of ³ .̂ To solve this problem, I applied the importance 

sampling method suggested by Owen and Zhou[25]. The proposed method generates 

samples from a mixture distribution. Let 
3(ª)  be the ¸ th sampling distribution 

where ¸ = {1,2,… , »} . Unlike the conventional importance sampling method, 


3(ª)  can include «(ª) . Let 
½(ª)  be the mixture distribution of »  sampling 

distribution. In PLEIO, I assume 11 sampling distributions (» = 11) including «(ª) 
and assume the equal contribution of ¸th sampling distribution such that 
½(ª) =
 1¾ ∑ 
3(ª)¾3=1 . Detailed information on how I selected 
3(ª)  can be found in 

Appendix B. 

 

In the suggested importance sampling, Owen and Zhou used each 
3(ª) as a control 

variate of µ(ª) = °(ª)«(ª) to reduce the variance of ³ [̂25]. Let µ∗(ª, ") be an 

estimator of µ(ª) which can be shown as follows: 
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µ∗(ª, ") = µ(ª) − ∑ "3 (
3(ª) − ∫ 
3(ª) 
�

�ª)K
3=1  

Equation 12 

where E[µ∗] = E[µ] = ³ , and ∫ 
3(ª) 
® �ª = 1 . The control variate method 

minimizes the variance of ³  ̂with the optimal control variate coefficient (�∗) where 

�∗ = {"1, "2,… , "¾ }. Then, the variance Var(µ∗) is equivalent to or smaller than 

Var(µ). Following Equation 12, the p-value estimate of B can be shown as follows: 

³ ̂ = E¶Ä [µ∗] 
= 1� (∑°(q#¶)«(q#¶) − ∑ "3
3(q#¶)K3=1
½(q#¶)

· 
#=1

) + ∑ "5
K

5=1
 

Equation 13 

In PLEIO, I implemented the suggested importance sampling above as follows. 

Instead of estimating p-values of every variant being tested, I approximate the null 

distribution of ;O¤b¥¦ using 40 different B that roughly correspond to the p-values 

from 1.0 to 5 × 10−8 . Note that the p-value estimation in Equation 13 requires 

optimization of � to maximize the variance reduction of each p-value estimate. 

Using these 40 p-values, I interpolate p-values for B < 40 using B-spline fit and 

extrapolate p-values for B > 40 using the linear fit on the logarithmic p-value scale. 

A detailed description of how to get the optimal control variate coefficients (� ∗) can 

be found in Appendix B.  
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Figure 7 PLEIO’s p-value distribution plot. We compared the probability plots of p-

values obtained using the importance sampling method and asymptotic distribution under 

the null hypothesis. The p-values were sorted in ascending order and compared with the 

expected p-values. I have changed the number of traits from È to �zz. 
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2.1.5 Step 5: Visualization of pleiotropic association pattern 

PLEIO offers PleiotropyPlot, which visualizes the pleiotropic effects of a SNP in a 

circular plot[26]. Each plot contains information on the normalized effect sizes, the 

local heritability, the genetic correlation structure, and the local Manhattan plots of 

the SNP. The information in the outer part of the plot is as follows: 1. textual 

information of the effect sizes and p-values obtained from raw summary statistics of 

the traits. 2. per trait regional Manhattan plots showing the p-values of the SNPs 

within 1�  base-pair window. 3. bar plots whose length indicates the magnitude of 

the standard effect and whose color indicates the direction of the effects. The inner 

part of this plot is a ribbon plot where each ribbon connects two traits. The color of 

the ribbon indicates the magnitude of the genetic correlation between the two traits, 

and the width at the end of each ribbon indicates the locus heritability of the trait on 

a relative scale (square of the normalized effect size). 

2.2 Simulations 

2.2.1 Evaluation method of false-positive rate  

Below, I describe how to generate SNP effects in the false positive rate (FPR) 

simulation. In each simulation of the given �É#. and +(, I generated standard effect 

sizes ( ûÉ#. ) from MVN(z,�É#.)  where �sim = +( , and ~�[ûÉ#.] = 1 . I 

assumed a significance threshold level -  and estimated FPR at - = 0.05 as the 

proportion of simulations whose W ≤ -.  
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2.2.2 Generation of effect sizes used in power simulation 

I provide a detailed description of how I generate SNP effects used in the power 

simulation. I assumed a SNP whose minor allele frequency 
 is fixed to 0.3 under 

the Hardy Weinberg equilibrium. I performed a joint analysis of seven traits (
 = 7) 

for each simulation setting. Each setting differed following factors: heritability )*, 

the genetic correlation &', phenotypic unit (Ï ), and phenotypic type (either Ð or 

�). For simplicity, I treated the environmental correlation matrix, &(, as a diagonal 

matrix of ones. 

 

First, I describe how to generate effect sizes for quantitative traits (�). Let �� =
("#1, "#2, … , "#� ) be the 
 × 1 vector of true effect sizes of the SNP �. I generated 

�# ~ MVN(z, 1·LÑÒÓ }sim)  where }sim = diag(√)2) ⋅ &' ⋅ diag(√)2) , and 

�$×Ø/ is the number of causal variants. By default, �$×Ø/ = 1,000. Let �  be the 

number of samples, ℎ$2 is the �th element of )2, ¬� is a � × 1 vector of genotypes. 

For each trait, I simulated ¬� from Ð�ÚÛµ���(2, 
) and standardized them such that 

¬$,É$Ý = ÞL−2¶2¶(1−¶). Then, I generated ß�  from the linear model ß� = ���¬�,r�à + i� 

where i� = (á$1, á$2, … , á$c) is a vector of errors and i�â ~ N(0, 1 − 1·LÑÒÓ  ℎ$2). 

the observed effect size "#̂$ is the regression coefficient of the linear regression of 

ß� to ¬$,É$Ý.  

 

Second, I describe how to generate effect sizes for binary traits (Ð). I assumed that 

each binary study contains half cases (c2 ) and half controls (c2 ).  
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[Step 1: Sampling of true effect size under observed linear scale] 

Let �� be the 
 × 1  vector of true effect sizes of the SNP �  and 

��~MVN(z, 1·LÑÒÓ }ãäå). For binary traits, I treat �� as the true effect sizes under 

the liability scale. I converted this true effect size into the observed scale �#,æçÉ =
��/:$ . where :$  is a scaling factor and :$ = KL2(1−KL)2OL(1−OL) ⋅ 1[Q(S−1(1−KL))]2, where V$ 

refers to the disease prevalence of trait �, W$ refers to the sample prevalence (fixed 

to 0.5 in this power test), è refers to the probability density function of the standard 

normal distribution, and \−1 refers to the inverse of the cumulative density function 

of the standard normal distribution.  

 

[Step 2: Searching for relative risk corresponding to the true effect size] 

Now, I search for the value of the relative risk é giving �#,æçÉ under the observed 

linear scale. Suppose that é is any scalar value. Given the disease prevalence V$ and 

the population minor allele frequency (MAF) p (which is 0.5), the expected case 

MAF is 
+ = ê¶¶(ê−1)+1 and the expected control MAF is 
− = ¶−¶+KL1−KL . Assuming the 

Hardy-Weinberg equilibrium, I can construct a set of reference genotypes such that 

the case MAF is exactly 
+  and control MAF is exactly 
−  (after ignoring the 

integer rounding). Let ¬$̅̅̅̅̅̅ is a � × 1 vector of the reference genotypes and ¬$,É$Ý̅̅̅̅̅̅̅̅̅̅̅ ̅̅̅ =
ÞL̅̅̅ ̅̅ ̅̅−2¶2¶(1−¶). As mentioned earlier, the vector of phenotypes ß� consists of half ones and 

half zeros. Thus, I can perform a linear regression analysis of ß� on ß� to get the 

effect size under the observed linear scale �î,æçÉ̅̅̅̅̅̅̅̅̅̅̅ ̅̅̅. Finally, I search the relative risk 

estimate é̂ that satisfies �#,æçÉ = �î,æçÉ̅̅̅̅̅̅̅̅̅̅̅ ̅̅̅.  
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[Step 3: Generating genotypes] 

Now I can create the genotypes ¬� using the value of 
+̂  and 
̂−  that corresponds 

to é̂, I generated the case genotypes from ª$3 ~ Ð�ÚÛµ���(2, 
+̂) and the control 

genotypes from ª$3 ~ Ð�ÚÛµ���(2, 
−̂). 
 

[Step 4: Logistic regression] 

Commonly, the heritability calculations of binary traits are based on the (observed 

and liability scale) linear model. This was why I had to derive the relative risk and 

the case and control MAFs through the observed scale linear model. However, in 

association analyses, the logistic regression model is commonly used. To simulate a 

realistic situation, I applied logistic regression to ß� and the sampled ¬�. This way, 

I obtained the log odds ratios and the standard errors for T traits. This information 

was used as the final input for binary traits in our power analysis.  

2.3 Real data analysis 

2.3.1 Data collection 

I collected 18 public GWAS summary statistics on traits related to cardiovascular 

disease. These 18 traits include the diseases (binary phenotypes) and the complex 

traits (quantitative phenotypes).  

 

Table 1 provides a detailed summary of these 18 traits. I selected the most recent 

study where the consortium has more than one summary statistics for the same trait. 
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From the Global Lipid consortium[27], I collected summary statistics on four 

quantitative traits. Each summary statistics is the result of GWAS from 94,595 

individuals from 23 studies genotyped with GWAS array and 93,982 individuals 

from 37 studies genotyped with Metabochip array. From the GWAS results of the 

UK biobank, I collected summary statistics of twelve binary traits(Table 2)[28]. 

Each summary statistics is the result of GWAS from 361,193 individuals. From the 

CARDIo+C4D consortium[2], I collected summary statistics of one binary trait 

(coronary artery disease), which is the result of GWAS from 60,801 cases and 

123,504 controls of 48 studies. Finally, from the MAGIC consortium[29], I collected 

summary statistics of one quantitative trait (fasting glucose), GWAS from 46,186 

non-diabetic patients of 21 studies. All study subjects were of European ancestry. 
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Phenotype ïðñ,ò óðñ,ò Year Phenotype Database ôõöõ÷ø ôùöúõñöøã ôù÷ã,ã LDSC_h2 

Heart attack: 6150_1 0.024 0.024 2018 Binary UK Biobank 360419 352132 8287 0.14 

Hypertension: I9 0.003 0.003 2018 Binary UK Biobank 361193 359957 1236 0.11 

Essential (primary) hypertension: I10 0.002 0.002 2018 Binary UK Biobank 361193 360329 864 0.11 

Acute myocardial infarction: I21 0.018 0.018 2018 Binary UK Biobank 361193 354782 6411 0.13 

Myocardial infarction: I9 0.020 0.020 2018 Binary UK Biobank 361193 354175 7018 0.13 

Major coronary heart disease: I9 0.029 0.029 2018 Binary UK Biobank 361193 351037 10156 0.13 

Ischemic heart disease: I9 0.061 0.061 2018 Binary UK Biobank 361193 340337 20856 0.13 

Coronary atherosclerosis: I9 0.041 0.041 2018 Binary UK Biobank 361193 346860 14333 0.15 

Heart failure 0.004 0.004 2018 Binary UK Biobank 361193 359789 1404 0.16 

Obesity: E66 0.001 0.001 2018 Binary UK Biobank 361193 360752 441 0.36 

Type 1 diabetes: E4 0.002 0.002 2018 Binary UK Biobank 361193 360611 582 0.17 

Type 2 diabetes: E4 0.002 0.002 2018 Binary UK Biobank 361193 360305 888 0.17 

Coronary artery disease 0.492 0.050 2015 Binary CARDIo+C4D 184305 123504 60801 0.06 

High-density lipoprotein NA NA 2013 Quantitative Global Lipids 188577 NA NA 0.21 

Low-density lipoprotein NA NA 2013 Quantitative Global Lipids 188577 NA NA 0.20 

Total cholesterol NA NA 2013 Quantitative Global Lipids 188577 NA NA 0.21 

Triglycerides NA NA 2013 Quantitative Global Lipids 188577 NA NA 0.21 

Fasting glucose NA NA 2011 Quantitative Magic 46186 NA NA 0.09 

 

Table 1. The list of phenotypes included in the PLEIO's real data analysis. For binary phenotypes, ;¶×/û means sample prevalence, 

and W¶×/û means the population prevalence. 
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Phenotype Code Phenotype Description Sex File 

6150_1 Vascular/heart problems diagnosed by doctor: Heart attack both_sexes 6150_1.gwas.imputed_v3.both_sexes.tsv.bgz 

I9_HYPTENS Hypertension both_sexes I9_HYPTENS.gwas.imputed_v3.both_sexes.tsv.bgz 

I10 Diagnoses - main ICD10: I10 Essential (primary) hypertension both_sexes I10.gwas.imputed_v3.both_sexes.tsv.bgz 

I21 Diagnoses - main ICD10: I21 Acute myocardial infarction both_sexes I21.gwas.imputed_v3.both_sexes.tsv.bgz 

I9_MI Myocardial infarction both_sexes I9_MI.gwas.imputed_v3.both_sexes.tsv.bgz 

I9_CHD Major coronary heart disease event both_sexes I9_CHD.gwas.imputed_v3.both_sexes.tsv.bgz 

I9_IHD Ischaemic heart disease, wide definition both_sexes I9_IHD.gwas.imputed_v3.both_sexes.tsv.bgz 

I9_CORATHER Coronary atherosclerosis both_sexes I9_CORATHER.gwas.imputed_v3.both_sexes.tsv.bgz 

I9_HEARTFAIL Heart failure,strict both_sexes I9_HEARTFAIL.gwas.imputed_v3.both_sexes.tsv.bgz 

E66 Diagnoses - main ICD10: E66 Obesity both_sexes E66.gwas.imputed_v3.both_sexes.tsv.bgz 

E4_DM1 Type 1 diabetes both_sexes E4_DM1.gwas.imputed_v3.both_sexes.tsv.bgz 

E4_DM2 Type 2 diabetes both_sexes E4_DM2.gwas.imputed_v3.both_sexes.tsv.bgz 

Table 2 The detailed description of twelve UKB traits. The data above can be found at Neale lab’s UKB summary statistics portal. 
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2.3.2 Quality control of the data 

Each study underwent the following standard quality control protocols. For each 

summary statistics, I excluded SNPs not in the 1000 Genomes and checked the 

consistency of allele pair of each SNP with the corresponding allele pair of the SNP 

in 1000 Genomes. In addition, I removed all strand-ambiguous SNPs that have allele 

pair GC or AT. A total of 1,777,411 SNPs were included in the joint analysis of the 

18 traits. Summary statistics of these remaining SNPs were used to estimate the 

genetic covariance and error correlation.  
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 Results 

3.1 Overview of the method 

PLEIO is a multi-trait framework to identify and interpret pleiotropic loci. PLEIO 

uses genetic covariance and environmental correlation across these traits to optimize 

the statistical power. I described the statistical model used in PLEIO using a toy 

model of three traits (A, B, and C) in Figure 8. Let q1 be a SNP that has observed 

effect sizes of (2.2, 2.8,−1.2), and q2 be another SNP that has observed effect sizes 

of (−1.5, 0.4,−2.7). For simplicity, the variances of all estimates were assumed to 

be one. If I test the SNP association using the fixed-effects meta-analysis method, 

these SNPs have the exact p-value (W = 0.03) as the magnitude of the mean effect 

size is the same. However, suppose we know that A and B have a positive correlation, 

and C has a negative correlation with the rest. Then, taking into account the genetic 

correlation between traits, SNP q1 is more likely to be a true signal compared to q2. 

Additionally, suppose we know that B has the most significant heritability and C has 

the least heritability, which makes the association of q1 much more likely to be a 

true signal because the relative strength of the effect sizes is similar to the 

heritabilities. PLEIO accounts for the genetic covariance and environmental 

correlation and gives a more significant p-value at SNP q1 (W =  0.0006) than q2 

(W = 0.1). 
 

The complete analysis of PLEIO consists of five steps. First, PLEIO uses LD score 

regression (LDSC)[20] to estimate the genetic correlation &' , environmental 
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correlation &( , and the heritabilities )2 . Note that the genetic covariance }  is 

obtained by summarizing &' and )2. Second, it changes the scale of observed effect 

sizes � ̂into the standardized scale û. For quantitative traits, û corresponds to the 

regression coefficient of simple linear regression whose dependent and independent 

variables follow N(0,1). For binary traits, û  is the standardized effect sizes for 

liability. Third, PLEIO uses a variance component model û = h + ý  to map 

pleiotropic loci (Figure 3). The primary assumption of this statistical model is that 

the genetic effects h  follows the genetic covariance, Var(þ) = �2}. Each SNP 

association test, PLEIO performs hypothesis test of �0: �2 = 0 versus �1: �2 > 0. 

To increase the computational efficiency, an optimization technique using spectral 

decomposition of the variance, Var(h) + Var(ý), was applied. Fourth, PLEIO uses 

an importance sampling method to assess the one-tailed p-value per SNP. Lastly, 

PLEIO provides a visualized summary of the analysis results to help interpretation.  
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Figure 8. A toy example designed to understand the association analysis carried 

out by PLEIO. 

3.2 Evaluation of false-positive rates in null simulations 

I evaluated the false positive rate (FPR) of PLEIO using extensive simulations. I 

assumed the null hypothesis of no genetic effects at a SNP for all 
  traits. I tested 

FPR by differing the following four factors: 1. the number of traits 
 , 2. the 

heritabilities )2 , 3. the genetic correlation matrix &' , and 4. the environmental 

correlation matrix &(. Note that, the )2 and } are zeros under the null, but I treated 

)2 and } as input parameters generated from an external dataset. In other words, )2 

and } describe what PLEIO thought to be true. In a real data analysis, )2 and } 

(and &() are estimates generated from GWAS summary statistics. 
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I tested three different T= 5, 10, and 20. I set off-diagonal elements of &( to 0.0 and 

0.5 to simulate uncorrelated and correlated errors, respectively. I simulated two 

different )2 . For “equal )2”, I set the same heritability for all traits as 0.5. For 

“different )2”, I simulated heritabilities ranged from 0.1 to 0.5. I simulated two 

different &' . For “uniform &' ”, I set off-diagonal elements of &'  to 0.3 . For 

“partitioned &'”, I set up two sub-groups and set the off-diagonal elements to 0.3 

within a group and to 0 between groups. A total of 24 FPR tests were conducted. In 

each simulation, I generated one million null datasets for each situation and 

calculated FPR at � = 0.05. Table 3 shows that PLEIO’s FPR is well calibrated in 

all situations. 

 

Next, I examined if PLEIO’s FPR is well-calibrated at a very low threshold of 

5 × 10−8, which is used as the statistical significance of the conventional GWAS. I 

assumed three situations that use 
 = 5, 10, 20 and increased the number of null 

datasets to a billion (109). For each situation, I assumed that the equal )2, partitioned 

&', and no sample overlap (uncorrelated errors). Table 4 shows that PLEIO’s FPR 

is well calibrated for - down to - = 5 × 10−8. See Evaluation method of false-

positive rate for a detailed explanation for the simulation. 
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  � = È � = �z � = �z 

  Equal ��* Diff ��* Equal ��* Diff ��* Equal ��* Diff ��* 

Uniform 

+� 

No +, 0.0499 0.0497 0.0500 0.0497 0.0505 0.0499 

Uniform +, 0.0499 0.0499 0.0496 0.0499 0.0496 0.0500 

Partitioned 

+� 

No +, 0.0497 0.0498 0.0499 0.0498 0.0509 0.0502 

Uniform +, 0.0499 0.0500 0.0495 0.0499 0.0505 0.0502 

 

Table 3. PLEIO’s FPR in various simulation conditions. In this simulation, 107 null study 

sets were generated for each of the 24 situations, and the FPR was calculated at α = 0.05. 
Each test consisted of a unique combination of four parameters: T, �2 , &' , and &( . I 

changed the number of studies (T) to 5, 10, and 20. “Equal �*” denotes that the heritability 

is fixed to the value of 0.5, and “Diff �*” denotes that the values of the heritabilities increase 

from 0.1 to 0.5. “Uniform +�” denotes a genetic correlation matrix whose non-diagonal 

value is fixed to 0.3, and “partitioned +�” denotes a genetic correlation matrix consisting of 

two sub-groups where each non-diagonal value within a group is fixed to 0.3, and each non-

diagonal value between groups is fixed to 0. “No +,” denotes an environmental correlation 

matrix whose non-diagonal value is fixed to 0, and “Uniform +,” denotes an environmental 

correlation matrix whose non-diagonal value is fixed to 0.5. 
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	ó
 � = È � = �z � = �z 

È × �z−* È. z� × �z−* È. z� × �z−* È. z
 × �z−* 
È × �z−� È. z� × �z−� È. zÈ × �z−� È. z� × �z−� 

È × �z−� È. zz × �z−� È. z� × �z−� È. z� × �z−� 

È × �z−� È. z� × �z−� È. z� × �z−� �.

 × �z−� 

È × �z−� È. zz × �z−� �.
� × �z−� È. z� × �z−� 

È × �z−� �.�� × �z−� È.
� × �z−� È. È� × �z−� 

È × �z−� È. Èz × �z−� È.�z × �z−� �. zz × �z−� 

 

Table 4. PLEIO’s FPR at genome-wide thresholds. In this simulation, I generated 109 

null study sets to test FPR in different - ranging from 5 × 10−2 to 5 × 10−8. I changed the 

number of studies (T) to 5, 10, and 20, and the fixed �2,+�, and +, as follows: For �2, I 
used a 
 × 1 vector whose values increase in the range of (0.1, 0.5). For +�, I used a genetic 

correlation matrix consisting of two sub-groups where each non-diagonal value within a 

group is fixed to 0.3. Each non-diagonal value between groups is fixed to 0. For +,, I used 

a diagonal matrix. 
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3.3 Evaluation of power in alternate simulations 

I compared the power of PLEIO with conventional meta-analysis methods: the fixed 

effects meta-analysis and association analyses based on SubSETs (ASSET)[30]. For 

the fixed-effects method, I used the inverse variance weighted sum method 

implemented in METAL[31]. In addition, I applied Lin-Sullivan’s approach to the 

inverse variance weighted sum method above to explain the correlation due to 

sample overlap between traits. Finally, I generated a simple R test code of the fixed 

effect method above. For ASSET, I downloaded and used the R package “ASSET.” 

 

Additionally, I compared the power of PLEIO with a trait-specific approach 

(MTAG)[19]. MTAG jointly analyzes summary statistics of GWAS as in the meta-

analysis methods, but there are differences in identifying pleiotropic loci. A meta-

analytic method gives a single p-value per SNP, but MTAG gives multiple p-values 

per SNP (
  p-values per SNP). A straightforward solution is to choose a minimum 

p-value per SNP, but it leads to multiple testing problems. In the FPR test result, I 

observed inflated FPR in MTAG that uses the minimum p-value approach. To 

correct the multiple testing problem, I applied the Bonferroni correction by 

multiplying the minimum p-value by 
 . I observed that Bonferroni correction can 

control FPR but is conservative due to the correlation between 
  effect size 

estimates from MTAG. Therefore, I reported the powers of MTAG both before the 

Bonferroni correction (MTAG-U; uncorrected) and after the Bonferroni correction 

(MTAG-C; corrected). Since MTAG-U is anti-conservative and MTAG-C is 

conservative, they can be treated as the upper and lower bounds of the MTAG’s 
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power. I implemented the MTAG method using test code written in Python because 

The MTAG software thought the input was defective if the median z-score was far 

from zero, such as the input used in the power simulation.  

 

I evaluated the power of PLEIO, MTAG-U, MTAG-C, ASSET, and METAL using 

various simulation settings. For each simulation setting, I defined a specific genetic 

correlation structure (&'), heritability ()* ), phenotypic unit (Ï ), and trait type 

(quantitative; � or binary; Ð). In the power simulation, &' and )* given to PLEIO 

and MTAG are not estimates but true genetic correlation and heritability. I assumed 

the seven traits (
 = 7) and repeated the simulation 10,000 times. For each method, 

the statistical power was estimated as the proportion of simulations with estimated 

W < 5 × 10−8. In this power simulation, instead of directly sampling the effect sizes 

from a multivariate distribution, I generated the actual genotypes (See Generation 

of effect sizes used in power simulation).  

 

First, I assumed a fixed heritability of 0.4 and perfect correlation (�2 = 1.0) across 

seven traits. This represents the scenario that collects the multiple GWAS of the 

same traits. In this situation, PLEIO, METAL, MTAG-U performed better than 

MTAG-C and ASSET (Figure 9a). With a sample size of � = 50,000, the power 

of PLEIO, METAL, MTAG-U, MTAG-C, and ASSET were 63.79% , 63.81% , 

63.81%, 63.81%, and 61.67%. As expected, METAL performed well because it is 

optimized to aggregate multiple GWAS with the same trait. MTAG-U and METAL 

are analytically identical[19]; therefore, MTAG-U performed the same as the 

METAL. PLEIO attained similar (or slightly less) power of METAL and MTAG-U 
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as it can account for the genetic correlations. In this scenario with one trait, the 

multiple testing correction using Bonferroni is not necessary for MTAG-U. Because 

of this, the power of MTAG-C was overly conservative. 

 

Second, I changed the heritability for seven traits from 0.005 to 0.7. I assumed a 

uniform genetic correlation of � = 0.5 of all trait pairs. In this scenario, PLEIO 

outperformed other methods (Figure 9b). With a sample size of � = 50,000 , 

PLEIO attained a power of 77.6% , while the second-best method (MTAG-U) 

attained 67.2%, and the third-best method (MTAG-C) attained 62.7%. The result 

indicates that PLEIO is optimized for a joint analysis of multi-trait with different 

heritabilities.  

 

Third, I simulated a complex genetic correlation pattern with both positive and 

negative correlations. I divided seven groups into two groups (three traits and four 

traits). I set the within-group correlation of the first group to 0.95 and the second 

group to 0.9, and I set the correlation between groups to −0.9. I assumed a uniform 

heritability of 0.4 for all traits. PLEIO outperformed other methods (Figure 9c). 

With a sample size of � = 50,000, PLEIO attained a power of 78.6%, while the 

second-best method (MTAG-U) attained 66.3%, and the third-best method (MTAG-

C) attained 62.6%. The result indicates that PLEIO is optimized for a joint analysis 

of multi-trait with a complex correlation pattern.  

 

Fourth, I simulated a mixture of quantitative and binary traits. I assumed four 

quantitative traits and three binary traits. For quantitative traits, I assumed that 
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phenotypic units could differ between traits. When �  is the standard phenotypic unit 

I assumed, I changed the units of four traits from 0.1� to 10� . I assumed a uniform 

heritability of 0.4  and a uniform genetic correlation of 0.5 . Again, PLEIO 

outperformed other methods (Figure 9d). With a sample size of � = 50,000 , 

PLEIO attained a power of 80.1%, while the second-best method (MTAG-U) 

attained 63.4%, and the third-best method (MTAG-C) attained 57.3%. The result 

indicates that PLEIO systematically combines heterogeneous traits by standardizing 

the effect sizes.  

 

So far, I tested the power by changing one factor per simulation: different 

heritabilities, a complex genetic correlation pattern, different phenotypic units. In a 

real data analysis, all three can occur together. I tested such a combined situation 

(Figure 9e). With a sample size of � = 50,000, PLEIO attained a power of 49.2%, 

while the second-best method (MTAG-U) attained 59.3%. 

 

Next, I wanted to test a power simulation using real data-based parameters. In this 

simulation of seven studies, I assumed one focal trait and six non-focal traits where 

the focal trait shows strong genetic correlations with the non-focal traits. Here, I 

assumed that MTAG could selectively take the p-values of the focal trait only, which 

I call MTAG-F.  

 

Based on the information provided by LD-HUB[32], I chose LDL as the focal trait 

and selected six traits that are strongly correlated to LDL (0.35 ≥ ∣��∣ ≥ 0.17): 

triglyceride (TG), coronary artery disease (CAD), Age at Smoking (Age_Smo), 
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childhood IQ (cIQ), Hemoglobin A1c (HbA1C), and Waist-Hip-Ratio (WHR). For 

simplicity, I assumed that all seven traits share 1000 causal variants. Unlike MTAG-

F, PLEIO and MTAG-U can have strong associations driven by one or some non-

focal traits with the large )* if I assume the same sample size. To compensate for 

this difference in heritability, the samples sizes were adjusted so that �)*  is 

constant for all traits. Then, I doubled the sample size of the focal trait. 

 

Figure 10 shows the result of the power simulation above. Again, PLEIO 

outperformed other methods. With sample sizes that meet �)* = 10,000, PLEIO 

attained a power of 72.6% , while the second-best method (MTAG-U) attained 

52.8%, and the third-best method (ASSET) attained 37.3%. Note that MTAG-F is a 

trait-specific method, and the interpretation is different for MTAG-F than other 

methods. Therefore, a careful interpretation is required for other methods before 

concluding that the focal trait drives the association. 
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Figure 9 The results of the power test. I performed a total of five power tests. Each line 

shows the statistical power of a model gained from an association test using seven summary 

statistics: PLEIO (red), MTAG-U (blue), MTAG-C (light blue), METAL (green), and ASSET 

(yellow). At the bottom of the figure, I visualized the simulation setting of each test. The 

box plot shows the genetic correlation. �  and Ð  indicate whether the phenotype is 

quantitative or binary. The heritability values of the traits are shown on the left side of the 

boxplot. The trait phenotype units are shown at the bottom of the box plot. The line 

thickness indicates the 95% confidence interval. 
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Figure 10. Power test results assuming LDL as the focal trait. Each line shows the 

statistical power of a model gained from an association test using seven summary statistics: 

PLEIO (red), MTAG-U (blue), MTAG-F (light blue), METAL (green), and ASSET (yellow). Note 

that the x-axis is the product of the sample number and heritability. For example, the 

number of samples of a trait with a heritability value of 0.1 is 100,000 for �)2 = 10,000 and 

40,000 for �)2 = 4,000. At the bottom of the figure, I visualized the simulation setting of each 

test. The box plot shows the genetic correlation. The color of the trait name indicates 

whether the phenotype is quantitative (green) or binary (purple). Since the focal trait is the 

main interest of this analysis, I assumed that the focal trait collected twice as many samples 

as a non-focal trait. In other words, a point of the focal trait in the x-axis means cm22 . 
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3.4 Measuring computation time and memory usage 

Here, I compared the computation time and maximum memory usage of PLEIO, 

MTAG, ASSET, and METAL. I assumed the simulation setting used in the focal-

trait power simulation above. The source codes of MTAG and METAL are 

implemented in test codes and used for the simulation. For importance sampling, I 

used �É0.¶�/ = 100V. I generated two sets of simulation inputs for 10� and 1� 

association tests and tested each method with one CPU.  

Table 5 shows that all methods except ASSET can perform 1�  association tests in 

an hour with less than 4 �  of free memory usage.  

 10K association tests 1M association tests 

PLEIO 

MTAG ASSET METAL 

PLEIO 

MTAG ASSET METAL 
Prep.  

null. 

dist  

assoc. 

tests 

Prep.  

null. 

dist  

assoc. 

tests 

Total analysis time 

using 1 CPU (sec) 

1125.04 45.48 8.8 2150.7 3.71 1125.04 1607.1 967.6 N/A 46.6 

Maximum  

memory usage  

177.7 Mb 108 Mb 80.4 Mb 73.6 Mb 1.02 Gb 2.8 Gb N/A 0.7 Gb 

 

Table 5. Comparison of the computational efficiency of PLEIO, MTAG, ASSET, and 

METAL. I measured the runtime and maximum memory usage of each method required to 

perform �zd and �! association tests with one CPU. We used our own implementation of 

MTAG (python) and METAL (R). For PLEIO, we distinguished the time used for the association 

test (assoc. tests) and the time used for the importance sampling procedure (Prep. null. 

dist). By default, the importance sampling procedure performs �zz, zzz association tests to 

compute the probability distribution of the PLEIO statistics under the null hypothesis.  
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3.5 Joint analysis of multiple traits related to 

cardiovascular disease 

I used PLEIO to identify pleiotropic loci of cardiovascular disease (CVD) related 

traits. To this end, I reviewed several GWAS consortia open to the public and 

collected 18 GWAS summary statistics on disease status and complex traits (Table 

1). I reviewed the UK Biobank GWAS results of Neale Lab and selected twelve 

binary traits that included one or more of the following keywords: heart, 

hypertension, obesity, lipoprotein, cholesterol, and diabetes (Table 2)[28]. I selected 

four lipid traits from the Global Lipid consortium[27], one binary trait (coronary 

artery disease) from CARDIoGRAM+C4D consortium[2], and one quantitative trait 

(fasting glucose) from the MAGIC (Meta-Analysis of Glucose and Insulin-related 

traits Consortium)[29]. As a result, I collected a total of 13 binary traits and five 

quantitative traits. See Data collection for details of the trait selection procedure. 

For quantitative traits, I found differences in the phenotypic units. For example, 

Lipid traits had the unit of mg/dl, whereas the fasting glucose uses the unit of 

mmol/l[27, 29]. Below, I tested SNP associations of 1,777,412 SNPs shared by these 

18 summary statistics. In the pre-analysis phase with LDSC, 18 traits showed 

differing heritabilities and non-zero environmental and genetic correlations (Figure 

11). 

 

I perform SNP association tests of 1,777,412 SNPs using PLEIO and identified 625 

independent GWAS hits that exceeded the threshold W < 5 × 10−8  (Figure 12). 

Among those, I found 13 independent novel variants, each of which locus was not 

listed in the GWAS catalog and was not identified by one of the 18 GWAS (Table 
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6). Figure 13 shows local Manhattan plots of these 13 variants. Figure 12a shows a 

circular plot whose radial position denotes the genomic position and heights of 

points denote the statistical significance of variants. Figure 12b shows the genome-

wide Manhattan plot of the association test results. Next, I compared the results of 

PLEIO to input summary statistics using a mirrored Manhattan plot in Figure 14. 

Finally, I applied LDSC to the association results of PLEIO and estimated the LDSC 

intercept (- = 1.11 ) to see if PLEIO’s log-likelihood statistics had systematic 

inflation.  

 

To investigate the biological role of these identified variants, I conducted a 

functional analysis using Variant Effect Predictor (VEP v.97.2) in ENSEMBL 

GRCh37[33]. The 13 novel variants included six intronic variants, three non-coding 

transcript variants, three intergenic variants, one upstream gene variant (Table 7). 

The 625 top hits included 374 intronic variants, 112 intergenic variants, 41 upstream 

gene variants, 25 downstream variants, 23 missense variants, 21 3-prime UTR 

variants, 12 non-coding transcript exon variants, 12 synonymous variants, and five 

5-prime UTR variants.  

 

I did additional analysis on 625 top hits using DAVID v.6.8[34]. Here, the gene list 

obtained from the VEP was used as an input for DAVID to search for the existence 

of known trait-gene associations in the Genetic Association Database (GAD). I 

curated the results to get eight categories of traits: coronary artery disease, fasting 

glucose, high blood pressure, diabetes, high-density lipoprotein, low-density 

lipoprotein, total cholesterol, and total glycerides. In other words, I obtained eight 
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sets of genes where each gene set corresponds to a trait above. Finally, I visualized 

the results in the circular ribbon plot in Figure 12a. Each ribbon represents a pair of 

genes in the same phenotypic category. 

 

I performed an additional real data analysis using the same data for MTAG (Table 

8). Since MTAG produced as many p-values as the number of studies per SNP, I 

converted MTAG results to MTAG-U and MTAG-C and compared the results to 

PLEIO as in the power test. As a result, MTAG-U found 622 independent GWAS 

top hits variants, slightly fewer than the 625 variants found by PLEIO. As explained 

earlier, MTAG-U is one method of selecting the minimum p per SNP, which leads 

to multiple testing problems. Applying LDSC to MTAG-U confirmed the strong 

inflation in the LDSC intercept (- = 3.89). Next, I compared MTAG-C and PLEIO 

using Bonferroni correction on MTAG-U. MTAG-C found 493 GWAS top hits. In 

addition, as an alternative to solve the multiple testing problem in MTAG-U, I 

corrected the chi-square statistics χ2  of MTAG-U so that the LDSC-intercept 

estimate is the same as 1.10, which is the LDSC intercept estimated from PLEIO. I 

referred to the approach as MTAG- "  and compared MTAG- "  with other 

approaches. The number of GWAS top hits obtained from MTAG-α was only 102, 

confirming that using the LDSC section did not solve the multi-test problem well. 

 

I measured the computation time and maximum memory usage needed for this real 

data analysis using a single CPU core. The estimated time to run single-trait LDSC 

analysis took 0.2 hours and to run pairwise LDSC analysis for (
182 ) pairs took 1.5 

hours. Estimation of null distribution took 1.89 hours. Lastly, the association test 
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analysis of 1,777,141 SNPs took 1.83 hours. In total, PLEIO required 3.72 hours, 

excluding LDSC preprocessing using 2.1 GB memory at peak.  

 

In this real data analysis, I assumed that the samples used in each UKB GWAS 

represented the European population and used the frequency of the case sample 

among the total sample as both the sample prevalence and the disease prevalence. 

However, the UKB cohort consists of the individuals who volunteered for this study, 

not a random sampling process. Therefore, we cannot say that the cohort represents 

the European population. For some traits (e.g., coronary atherosclerosis, obesity, 

etc.), there is a possibility that an individual’s phenotype has not yet been explicitly 

diagnosed or expressed, in which case a control sample may later turn out to be a 

case sample. In this case, the disease prevalence and sample prevalence are not the 

same as the frequency of the case samples. 

 

To determine whether the issues described above influenced the results of the real 

data analysis, I performed an additional analysis. In this analysis, I conducted a 

literature review and updated the disease prevalence of the 13 UKB binary traits (see 

Table 9). I then completed the real data analysis again and compared the PLEIO’s 

p-values of the 13 novel loci between the two analyses (old and new). Table 10 

shows the resulting PLEIO’s p-values for 13 novel pleiotropic variants obtained 

from the two analyses, and I confirmed that there was no significant difference 

between the p-values.  
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Figure 11. Genetic correlation and environmental correlation among 18 traits. The 

18 × 18 matrix shows the genetic (upper triangular) and environmental (lower triangular) 

correlations among 18 traits. The labels on the left and the top are the names of the traits, 

and the labels on the right indicate the heritabilities along with the names of the database 

and the types of the phenotypes (green: binary, red: quantitative).  
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Figure 12. The summary of the real data analysis. a. The circular plot shows the 

locations and the statistical significances of the 13 novel variants (outer edge) and the 625 

GWAS top SNPs (inner edge). The inner ribbons connect the variants in the same functional 

category found by the DAVID analysis. b. The Manhattan plot of the PLEIO association 

results. Red triangles indicate the 13 novel loci.  
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SNP CHR BP A1 A2  ~#$%&'  e#$%&' HGNC Symbols 

rs7590392 2 148379602 T C 32.46 3.69E-09  

rs876320 4 15930961 A G 32.06 4.38E-09  

rs7693203 4 100500130 T C 27.77 3.27E-08 MTTP 

rs1979974 4 146800815 G A 27.5 3.76E-08 ZNF827 

rs6817572 4 151303318 A G 28.51 2.24E-08 LRBA 

rs1561105 8 23610799 G T 29.43 1.43E-08 RP11-175E9.1 

rs2891902 8 122422130 C T 36.36 6.18E-10  

rs2055014 11 29195732 A G 28.38 2.39E-08 RP11-466I1.1 

rs12787728 11 57069056 G A 29.25 1.56E-08 TNKS1BP1 

rs2278093 12 29534209 A C 27.48 3.80E-08 ERGIC2 

rs4393438 13 114821075 C T 27.76 3.28E-08 RASA3 

rs1039119 16 76946526 T C 27.08 4.71E-08 CTD-2336H13.2 

rs1688030 19 35556744 C T 33.53 2.30E-09 HPN 

 

Table 6 The summary of 13 NOVEL GWAS hits identified by PLEIO. ;O¤b¥¦ column 

contains the PLEIO’s log-likelihood ratio test statistics; WO¤b¥¦ column contains PLEIO’s p-

values. HGNC Symbols column gives the human genome nomenclature (HGNG) gene names 

of the genetic loci associated with the 13 novel variants. SNP denote rsID of SNPs, CHR 

denote chromosome number, BP denote a base position, A1 denote risk allele, A2 denote 

reference allele.   
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Figure 13. Local Manhattan plots of the 13 novel loci identified by PLEIO. 
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Figure 14. Manhattan plots showing the association analysis results using real data. 

The top shows the PLEIO’s p-values, and the bottom shows the minimum p-values of 18 

summary statistics included in the PLEIO analysis. I set the maximum value of the -log(p) 

to 15. 
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Location 

(CHR: BP) 

Allele 

(Ref/Risk) 

HGNC  

gene  

symbol 

VEP Consequence Alias  Cellular  

location 

(3-5; 

confidence  
level) 

Known function GWAS catalog 

(S):( < È × �z−� 
(W):( > È × �z−� 

2:148379602 C/T 
 

Intergenic     

4:15930961 G/A 
 

Intergenic     

4:100500130 C/T MTTP Intronic Microsomal 

Triglyceride 

Transfer Protein 

Endoplasmic 

reticulum(5) 

Golgi 

apparatus(5) 

Plasma 

membrane(4) 

Extracellular 
(3) 

 

Required for the 

assembly and 

secretion of 

plasma 

lipoproteins that 

contain 

apolipoprotein B 

triglyceride 

measurement(S), 
high-density 

lipoprotein 

cholesterol 

measurement(S) 

4:146800815 A/G ZNF827 Intronic Zinc Finger Protein 

827 

Nucleus(4) May be involved 

in transcriptional 

regulation 

sleep duration, 

low-density 

lipoprotein 

cholesterol 

measurement(S), 

coronary artery 

disease(S) 

4:151303318 G/A LRBA Intronic Lipopolysaccharide-
Responsive And 

Beige-Like Anchor 

Protein 

Plasma 
membrane(5) 

Cytosol(5) 

Endoplasmic 

reticulum(4) 

Lysosome(4) 

Golgi 

apparatus(4) 

Nucleus(3) 

May be involved 
in coupling 

signal 

transduction and 

vesicle 

trafficking to 

enable polarized 

secretion and/or 

membrane 

deposition of 
immune effector 

molecules. 

systolic blood 
pressure(S), 

peripheral arterial 

disease, traffic air 

pollution 

measurement(W),  

8:23610799 T/G RP11-175E9.1 Intronic 

non_coding_transcript 

Antisense RNA    

8:122422130 T/C 
 

Intergenic     

11:29195732 G/A RP11-466I1.1 Intronic 

non_coding_transcript 

LincRNA    

11:57069056 A/G TNKS1BP1 Intronic Tankyrase 1 

Binding Protein 1 

Cytoskeleton(5) 

Nucleus(5) 

Cytosol(5) 

Plasma 

membrane(3) 

Deadenylation-

dependent 

mRNA decay 

apolipoprotein A 1 

measurement(S) 
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12:29534209 C/A ERGIC2 Upstream ERGIC And Golgi 2 Nucleus(5) 

Golgi 

apparatus(5) 

Endoplasmic 
reticulum(4) 

Plasma  

Possible role in 

transport 

between 

endoplasmic 
reticulum and 

Golgi. 

low-density 

lipoprotein 

cholesterol 

measurement(S) 

13:114821075 T/C RASA3 Intronic RAS P21 Protein 

Activator 3 

plasma 

membrane(5) 

cytosol(5) 

Inhibitory 

regulator of the 

Ras-cyclic AMP 

pathway. 

Lymphocyte 

percentage of 

leukocytes(S), 

monocyte count(S) 

16:76946526 C/T CTD-2336H13.2 Intronic 

non_coding_transcript 

LincRNA    

19:35556744 T/C HPN Intronic Hepsin plasma 

membrane(5), 
extracellular(5) 

Plays a role in 

cell growth and 
maintenance of 

cell morphology 

triglyceride 

measurement(S) 

 

Table 7. The functional analysis of the 13 GWAS novel hits using ENSEMBL VEP[33], Gene Cards[35], and GWAS catalog[8]. 

The 13 variants are in ascending order by chromosomal position and then in ascending order according to by genomic position (BP) 
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 PLEIO MTAG-U MTAG-C MTAG-)  

#independent GWAS hits 625 622 493 102 

intercept (LDSC) 1.109 3.893 0.556 1.113 

*+,  1.5883 8.456 0.0367 2.413 

 

Table 8. Comparison of the number of GWAS-TOP hits of PLEIO and MTAG 

identified in post GWAS analysis. I applied real data of CVD-related traits to PLEIO, 

MTAG-U, MTAG-C, and MTAG-- and identified GWAS top hits. I obtained the intercept of the 

LDSC heritability estimate and the genomic inflation factor (-./) from the output of LDSC 

software. MTAG-U: Selecting minimum p-value among the multi-trait MTAG p-values; 

MTAG-C: Bonferroni correction applied to MTAG-U; MTAG-λ: Intercept correction applied to 

MTAG-U so that intercept can be comparable to PLEIO.  
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Trait name Sprev Pprev Pprev_literature phenotypic type Database 

Heart attack: 6150_1 0.023533 0.023533 0.043 Binary UK Biobank 

Hypertension: I9 0.003433 0.003433 0.436 Binary UK Biobank 

Essential (primary) hypertension: I10 0.002397 0.002397 0.4033 Binary UK Biobank 

Acute myocardial infarction: I21 0.018070 0.018070 0.043 Binary UK Biobank 

Myocardial infarction: I9 0.019815 0.019815 0.043 Binary UK Biobank 

Major coronary heart disease: I9 0.028931 0.028931 0.07 Binary UK Biobank 

Ischemic heart disease: I9 0.061280 0.061280 0.035 Binary UK Biobank 

Coronary atherosclerosis: I9 0.041322 0.041322 0.485 Binary UK Biobank 

Heart failure 0.003902 0.003902 0.06 Binary UK Biobank 

Obesity: E66 0.001222 0.001222 0.424 Binary UK Biobank 

Type 1 diabetes: E4 0.001616 0.001616 0.095 Binary UK Biobank 

Type 2 diabetes: E4 0.002464 0.002464 0.0628 Binary UK Biobank 

Coronary artery disease 0.492299 0.05 0.05 Binary CARDIo+C4D 

High density lipoprotein NaN NaN NaN Quantitative Global Lipids 

Low density lipoprotein NaN NaN NaN Quantitative Global Lipids 

Total cholesterol NaN NaN NaN Quantitative Global Lipids 

Triglycerides NaN NaN NaN Quantitative Global Lipids 

Fasting glucose NaN NaN NaN Quantitative Magic 

 

Table 9. Disease prevalence of 13 UKB traits, updated based on a literature review.  

Trait name; the name of the trait, Sprev; sample prevalence used in the real data analysis, 

Pprev; disease prevalence used in the real data analysis, Pprev_literature; disease 

prevalence obtained from a literature search, phenotypic type; the type of the phenotype 

(either binary or quantitative), Database; The source of the GWAS summary statistics. 
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SNP  e#$%&',1 e#$%&'  
rs7590392 2.418961e-09  2.91E-09 

rs1979974 2.500851e-08  3.65E-08 

rs6817572 2.150352e-08  2.19E-08 

rs12787728  1.627141e-08  1.50E-08 

rs2278093 3.807202e-08  3.69E-08 

rs1688030 1.823994e-09  1.67E-09 

rs7693203 3.789116e-08  3.19E-08 

rs4393438 3.281006e-08  3.21E-08 

rs876320  3.071378e-09  3.56E-09 

rs1561105 1.372890e-08  1.37E-08 

rs2891902 5.758588e-10  3.77E-10 

rs2055014 2.479782e-08  2.34E-08 

rs1039119 6.511051e-08  4.51E-08 

 

Table 10. Comparison of PLEIO p-value results for 13 new pleiotropic loci before 

and after adjusting for disease prevalence values. WO¤b¥¦; the p-value obtained from 

the real data analysis, WO¤b¥¦,1; The p-value obtained from the real data analysis to which 

the updated disease prevalence obtained from the literature search was applied. 
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3.6 Interpretation of the joint analysis results 

I interpreted the 13 novel multi-trait associations with the visualization tool 

implemented in PLEIO, called the “pleiotropy plot.” The R package software can 

produce a circular plot, which gives a detailed summary of the association pattern of 

the pleiotropic variant. The outer plot area includes the local Manhattan plots and 

the bar plots of the standard effect sizes. The inner ribbons show the genetic 

correlations as colors and the locus heritability as widths. I drew pleiotropic plots of 

the 13 novel variants identified by PLEIO (Figure 15). Based on the association 

patterns observed in these plots, I divided these 13 novel variants into four groups 

without overlapping (Figure 16). 

 

The first group of variants had associations with seven binary traits that include six 

traits (acute myocardial infarction, myocardial infarction, heart attack, major 

coronary heart disease, coronary atherosclerosis, and ischemic heart disease) from 

the UK Biobank and one trait from CARDIoGRAM+C4D. These seven traits 

showed high genetic correlations (Figure 15). The variants in this group showed the 

strongest association with one of the seven traits and had associations (W < 0.001) 

with at least three of the seven traits. The variants showing this pattern were 

rs7590392 near the ACVR2A gene (2q22.3) and rs1979974 in the ZNF827 gene 

(4q31.22). 

 

The second group of variants had an association with four lipid phenotypes 

(triglycerides, low-density lipoprotein; LDL, high-density lipoprotein; HDL, and 

total cholesterol). The variants in this group showed the strongest association with 
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one of four traits and had associations (W < 0.001) with at least two of the four traits. 

The variants showing this pattern were rs6817572 in the LRBA gene (6p22.3), 

rs12787728 in the TNKS1BP1 gene (11q12.1), rs2278093 in the ERGIC2 gene 

(12p11.22), and rs1688030 in the HPN gene (19q13.12). These variants were 

associated with some (but not all) of the lipid phenotypes. rs6817572 showed the 

strongest associations to the total cholesterol and LDL. rs12787728 showed the 

strongest associations to the total cholesterol and HDL. rs2278093 and 1688030 

showed the strongest associations to the total cholesterol and triglycerides.  

 

The third group of variants had associations with both coronary artery disease and 

lipid phenotypes. These variants in this group showed association (W < 0.001) with 

both coronary artery disease and one of the lipid traits at the same time. These 

variants met both the condition for group 1 and the condition for group 2, but I 

categorized them separately into the third group. The variants showing this pattern 

were rs7693203 in the MTTP gene (4q23) and rs4393438 in the RASA3 gene (13q34). 

The variants in this group showed strong associations (W < 0.0001) to the total 

cholesterol and LDL. 

 

The fourth group of variants was a set of not categorized variants into the three 

aforementioned groups. The variants in this group were rs876320 near the FGFBP1 

gene (4p15.32), rs1561105 in the RP11-175E9.1 gene (8p21.2), rs2891902 near the 

RPL35AP19 gene (8q24.12), rs2055014 in the RP11-466I1.1 gene (8q24.12), and 

rs1039119 in the AC106729.1 gene (16q23.1). rs2891902 showed the strongest 

association to obesity (W < 0.001) and weak associations to type 2 diabetes and 
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hypertension. Rs876320, rs1561105, and rs1039119 were interesting because their 

associations to all traits were weak (W > 0.01) . The strongest associations of 

rs1039119 were to coronary atherosclerosis (W = 0.02) and triglycerides (W =
0.08). However, this SNP’s effect size directions to the seven binary traits in the first 

group were all concordant to the genetic correlations of these traits. The strongest 

associations of rs1561105 were to triglycerides (W = 0.005) and major coronary 

heart disease (W = 0.03), acute myocardial infarction (W = 0.04), and myocardial 

infarction (W = 0.05). This SNP’s effect size directions to these three traits were all 

concordant to the genetic correlations. The strongest associations of rs876320 were 

to acute myocardial infarction (W = 0.01), myocardial infarction (W = 0.04), and 

heart attack (W = 0.04). This SNP’s effect size directions to these three traits were 

all concordant to the genetic correlations. Thus, PLEIO seems to have captured the 

aggregate information in multiple weak associations by considering the fact that the 

effect size directions were concordant to the genetic correlations. Follow-up studies 

will be needed to determine whether loci with weak associations for all traits are true 

associations or false positives. 

 

 

  



63 

A. rs7590392. 

[Group 1: Driven by seven binary traits]   
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B. rs1979974 

[Group 1: Driven by seven binary traits]   
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C. rs6817572. 

[Group 2: Driven by lipid phenotypes (triglycerides, LDL, HDL, and total cholesterol)]   
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D. rs12787728 

[Group 2: Driven by lipid phenotypes (triglycerides, LDL, HDL, and total cholesterol)]   
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E. rs2278093. 

[Group 2: Driven by lipid phenotypes (triglycerides, LDL, HDL, and total cholesterol)]   
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F. rs1688030 

[Group 2: Driven by lipid phenotypes (triglycerides, LDL, HDL, and total cholesterol)]   

 



69 

G. rs7693203. 

[Group 3: Driven by both coronary artery disease and lipid]   
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H. rs4393438. 

[Group 3: Driven by both coronary artery disease and lipid]   
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I. rs876320. 

[Group 4: Others]   
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J. rs1561105. 

[Group 4: Others]   

 



73 

K. rs2891902. 

[Group 4: Others]   
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L. rs2055014. 

[Group 4: Others]   
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M. rs1039119. 

[Group 4: Others]   

 

Figure 15. Pleiotropy plots of 13 novel loci identified by PLEIO. 
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Figure 16. Distinct association patterns of 13 novel variants identified by PLEIO.  

Each box represents the association of a variant with a trait, where the size of the box 

indicates the magnitude of the standardized effect size (η) and the color of the box indicates 

the statistical significance. The right-side heatmap shows the genetic correlations. We 

divided the variants into four groups based on their association patterns. 
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3.7 Comparison of the association patterns between 

known and novel pleiotropic loci. 

Of the 625 GWAS hits identified by PLEIO, I performed additional analysis on 612 

known pleiotropic loci previously identified and reported in a GWAS study. In this 

analysis, I visualized the association patterns of the 625 variants. Then I compared 

the similarities and differences in association patterns between the known 612 

pleiotropic loci and the 13 novel pleiotropic loci. For visualization, I collected p-

values of 625 variants for 18 GWAS summary statistics used in my real data analysis 

and generated a heatmap with the −�Û� scaled p-values. 

 

Figure 17 shows distinct association patterns of 625 pleiotropic variants for a total 

of 18 traits. In this analysis, I first divided these 625 variants into 16 categories using 

k-mean clustering. The majority of the pleiotropic loci identified by PLEIO showed 

strong associations (
 ≅ 1 × 10−6)  with either four lipid traits (low-density 

lipoproteins, high-density lipoproteins, triglycerides, total cholesterol) or three 

cardiovascular diseases (coronary artery disease, ischemic heart disease, coronary 

atherosclerosis). This observation appears to be related to the number of samples 

used in each GWAS. For example, the summary statistics of the four lipid traits 

include more than 180,000 samples, which is three times the number of GWAS 

samples for fasting glucose (� = 46,186). The three cardiovascular disease traits 

from the UKB include many case samples over 10,000. In contrast, the number of 

case samples for other UKB traits, including hypertension, type 1 diabetes, type 2 

diabetes, and obesity, was less than 1,500. For some pleiotropic loci, I found no 

strong associations with any of the 18 traits. 
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In summary, I found that the association patterns between known and novel 

pleiotropic loci were similar. As observed in the analysis above, PLEIO have 

identified some novel pleiotropic loci that have strong associations with either four 

lipid traits or three cardiovascular diseases (see Figure 16). However, I also 

confirmed that the magnitudes of the trait-specific associations of 13 novel 

pleiotropic loci were small compared to 612 known pleiotropic loci; therefore, they 

have not been identified as associated loci to date. 

 



79 

 

Figure 17. A heatmap created using the p-values of 625 pleiotropic variants for a total of 18 traits.  The x-axis represents genetic variants, and the y-axis 

represents traits. Since the x-axis contains both known and novel pleiotropic variations, I added an annotation at the bottom of the heatmap to distinguish the two. 

To identify association patterns, I performed k-mean clustering on each axis. To find an optimal k for an axis, I tested several k values and selected one that would 

allow for a straightforward interpretation of the heatmap. 

 



80 

 Discussion 

In this study, I proposed PLEIO, a statistical framework that identifies and interprets 

pleiotropic loci using GWAS summary statistics of multiple traits as input. PLEIO 

increases its statistical power by using a variance component model, which can 

account for genetic correlations and heritabilities across traits. Furthermore, PLEIO 

can seamlessly combine any set of quantitative and binary traits whose phenotypic 

units and scales can vary and provides an interpretation of the analysis results. This 

can be possible through the process of converting the observed effect sizes into 

standardized metrics. Finally, we provide an extension (R package) named 

'pleiotropyPlot' to visualize and interpret the results of PLEIO’s analysis.    

 

PLEIO is a generalized method that can replace the traditional meta-analysis in 

special cases. If I set the genetic covariance matrix to a matrix of ones and the 

environmental correlation to zeros, the test is almost identical to the fixed effects 

meta-analysis method. If we assume non-zero environmental correlations, the test is 

nearly identical to the Lin-Sullivan method[36]. Suppose I set the genetic covariance 

matrix to the identity matrix and the environmental correlation to zeros. In that case, 

it is similar to the heterogeneity test in the Han-Eskin random-effects model[37]. If 

we assume non-zero environmental correlations, it is similar to the heterogeneity test 

in the RE2C model[38]. In contrast to the conventional meta-analysis methods, 

PLEIO optimizes model performance by learning genetic covariances and 

environmental correlations based on data (GWAS summary statistics). For example, 



81 

suppose you have a collection of multiple GWAS summary statistics on the same 

trait. In that case, PLEIO will learn the information and work as if it were a fixed-

effects meta-analysis method. 

 

We can do a fine-mapping analysis to test whether an identified pleiotropic locus 

has a true signal[39]. However, PLEIO does not tell us which traits were attributed 

to the pleiotropic association of the variant we tested. One way is to do a fine-

mapping analysis for each trait, which requires a lot of labor. To reduce the number 

of traits to analyze, we can use a screening strategy to select strongly associated traits. 

One option is to use ASSET and select traits having strong signals, or one can 

manually select traits by interpreting the pleiotropy plot. 

 

PLEIO can be extended to a single trait analysis that spans multiple ethnic groups. 

Assuming that each GWAS is carried out on one ethnic group, the genetic 

correlations can be estimated by considering the population-specific LD structures 

[40, 41]. In this case, the estimated genetic correlation between two GWAS summary 

statistics of the same trait from an ethnic group is 1. However, the estimated genetic 

correlation between the two GWAS summary statistics obtained from two different 

ethnic groups is generally positive but imperfect (0 < �� < 1).  

 

In a Multi-trait analysis, one must make a careful decision when choosing which 

traits to include in the analysis. This process can be performed based on literature 

describing comorbidities, shared candidate genes, or observed genetic correlations. 

Choosing a trait that does not have pleiotropic correlations with other traits reduces 
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the power to identify pleiotropic loci. In the real data analysis, the trait selection 

process was based on the literature search, and the observed ��  between selected 

traits was greater than 0.15. The method of selecting traits based on �� estimated 

from the whole genome has a potential risk that can neglect the region-specific 

pleiotropic effects. This can happen when there are certain regions in which the 

regional co-heritabilities are greater than in other regions.  

 

During the data collection, we may collect two or more GWAS that share 

overlapping samples. Failure to adequately account for the sample overlap between 

these summary statistics can inflate the error of the pooled estimates. For PLEIO, 

the proposed variance component model can account the sample overlaps across 

traits with an environmental correlation matrix. For example, our real data analysis 

showed strong environmental correlations between some traits collected by the UK 

Biobank and the Global Lipid Consortium that contains many overlapping samples. 

 

There are two types of multi-trait analysis. The first type is a joint meta-analysis, in 

which statistics of several traits are combined into one. The goal of this type of 

analysis is to find pleiotropic loci that have associations with several traits. This type 

shares the advantages and disadvantages of conventional meta-analysis methods. 

Aggregating more traits can provide additional power, but modeling the 

heterogeneity between traits and interpreting results can often be challenging. The 

second type is a trait-specific analysis, in which multiple related traits are used to 

help with association tests of a specific trait. This type of analysis aims to maximize 

the statistical power of the analysis of individual traits. PLEIO is an analysis method 
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using a meta-analytic approach. Utilizing the visualization tool to facilitate 

interpretations, PLEIO can minimize the weaknesses of the joint meta-analysis. 

 

PLEIO has similarities and differences to MTAG, which is used as the gold standard 

for multi-trait analyses. For example, both methods model genetic correlations, 

heritabilities, and environmental correlations. Although each has applied a different 

strategy, both methods can combine binary and quantitative traits of different units 

seamlessly. The main difference is that PLEIO is a meta-analysis approach, whereas 

MTAG is a trait-specific approach. For example, for a set of 
  traits, PLEIO 

provides one p-value per SNP, whereas MTAG provides 
  p-values per SNP. 

Therefore, if one aims to estimate a single p-value per SNP to map pleiotropic 

associations throughout the genome, PLEIO will be the optimal choice. On the other 

hand, one advantage of MTAG is the ability to assess the polygenic risk predictions 

more accurately using updated trait-specific effect sizes.  

 

For PLEIO, the trait-specific effect sizes can be updated manually with the results 

of the PLEIO analysis by estimating BLUP (best linear unbiased predictor)[42]. 

Using }̂, �̂, and standardized effect sizes(û�), the updated trait-specific effect sizes 

can be estimated as follows:  

4� = [(�#̂2}̂)−� + �̂−�]−� �̂−�û� 

and 

7��(4�) = [(�#̂2}̂)−� + �̂−�]−�
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where the 4� is a 
 × 1 vector representing the BLUP estimators of the observed 

effect sizes ��̂. Note that the estimates of �#̂2 for �th association test can be found in 

PLEIO’s output file. 

 

The pleiotropic loci found by PLEIO can be attributed to biological or mediated 

pleiotropy[43]. In the former case, the variant has an independent association for 

each trait tested. However, the variant will have non-independent associations in the 

latter case due to the causal relationship of two or more traits being tested. In the 

case of PLEIO, the association test results identify both biological and mediated 

pleiotropic associations, and the model does not discriminate the type of pleiotropy 

of the identified pleiotropic loci. Later, examining the extent of the pleiotropic 

association due to biological pleiotropy using the analysis results of PLEIO will be 

an exciting research direction.  

 

Although not mentioned in this study, there exist multi-trait analysis methods that 

apply individual levels of genotyping data to a multivariate regression model[44-46]. 

These methods can utilize individual-level information to control confounding 

factors consistently across traits. However, to use this model, sample data for all 

traits must be collected in one place. Furthermore, the transmission of the genotyping 

data itself is becoming more and more difficult due to privacy concerns, hindering 

the use of these methods[47, 48]. In addition, models that use individual genotypes 

typically require a lot of computing resources. In terms of statistical power, Lin and 

Zeng[49] have shown that using data at the individual level does not significantly 

improve statistical power over using summary statistics in the context of traditional 
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meta-analysis. It would be interesting to compare the power between the two types 

of methods in future studies. 

 

In this study, I assume that the additive effects can explain a large part of the genetic 

contribution of a locus. However, an average gene effect can also be modulated by 

either dominance effects or epistasis (how genes interact with genes at other loci). 

In PLEIO, I used a variance component model of two random effects (genetic and 

environmental). Here, the variance-covariance matrices were obtained from a 

method that only models additive genetic effects. To add a new variance component 

(either dominance effects or epistasis) into the variance component model of PLEIO, 

it might be required to estimate each variance component's covariance matrix and 

collect summary statistics for each genetic effect and variant. 

 

PLEIO can be extended as a web application that helps many researchers around the 

world. Below, I provide the details of the proposed web application. The suggested 

web application includes a database capable of storing several GWAS summary 

statistics for various complex diseases and traits. Here, we consolidate the format of 

each summary statistics to simplify the analysis in the backend. The front end 

provides the user with the following functions: navigation and selection of the traits 

to be analyzed and various options for interpreting the analysis results. Finally, the 

back end provides core algorithms required for the PLEIO analysis and the 

interpretation of the analysis results. 
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In summary, I proposed a general and flexible meta-analysis framework to identify 

and interpret pleiotropic loci. I expect that our framework can help discover core 

genes that contribute to multiple phenotypes, leading us to a better understanding of 

the common etiology of traits and the development of shared drug targets. 
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Appendix  

 

Appendix A Optimization strategy for variance 

component test 

a) LRT statistic 

Below, I describe our optimization strategy that increases the computational 

efficiency for determining the maximum likelihood estimate (MLE) in the variance 

component test of PLEIO. Note that I use the letter L to denote the number of traits 

in the multi-trait joint analysis (not 
 , because I use the letter 
  to denote the matrix 

transpose). Let û�  denote a 8 × 1  vector representing the observed standardized 

effect sizes for SNP � and ~�(û�) denote the vector of the corresponding standard 

errors. Let }̂ denote a 8 × 8 matrix representing the genetic covariance matrix of 

8 traits, and �̂ denote a 8 × 8 matrix representing the environmental covariance 

matrix. Note that �̂ = ����(~�(û�)) ⋅ +,̂ ⋅ ����(~�(û�)), where +(̂ is a 8 × 8 

matrix representing the environmental correlation matrix, and ����(~�(û�)) is a 

diagonal matrix whose diagonal values are ~�(û�). As described, �̂ is independent 

of SNP � under the standardized scale. The PLEIO’s statistic is a log-likelihood ratio 

test statistic (LRT). The likelihood functions under the null and alternative 

hypotheses can be shown as follows: 

ℒ0(⋅ ∣û�; �̂) = 1
(2�)¤/2∣�̂∣1/2 exp(−12 û�� �̂−1û� ) 



96 

ℒ1(�2∣û�; }̂, �̂) = 1
(2�)¤/2∣}̂�#2 + �̂∣1/2 =>?(−12 û�� (}̂�#2 + �̂)−1û� ), 

and the corresponding LRT statistic is 

;O¤b¥¦ = −2 ln [ ℒ0(⋅ ∣û�; �̂)
sup{ℒ1(�#2∣û�; }̂, �̂): �2 ≥ 0}] . 

 

b) Efficient optimization 

Our goal is to find D*  that satisfies sup{ℒ1(�#2∣û�; }̂, �̂): �#2 ≥ 0}  under the 

alternative model, û� ~ MVN(z, �2}̂ + �̂), to obtain the LRT statistic. To find 

MLE � ̂2, one possible way is to use an iterative optimization technique (e.g., quasi 

Newton’s method). This optimization, however, requires a burdensome calculation 

of the matrix inversion of the variance-covariance matrix in the function ℒ1 for each 

iteration. Instead, I propose a novel optimization technique that avoids the repeated 

inversions.  

 

I first define a spectral (eigen) decomposition of a symmetric and positive 

semidefinite matrix A of size 8 × 8 as follows: let �E  denote the 8 × 1  vector 

representing eigenvalues of A, and eE denote the 8 × 8 matrix whose �th column 

vector indicates the corresponding eigenvector. By definition, eE is an orthonormal 

matrix so that eE−1 = eE� . Suppose the values of �E are sorted in descending order, 

and the corresponding column order of eE is also sorted as well. Let �F,# be the �th 

eigenvalue. Then, �F,# ≥ 0 where � = {1,2,… ,8}.  
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Note that any covariance matrix (including }̂ and �̂�) is symmetric and positive 

semidefinite by definition. Let }̂' be the generalized (pseudo) inverse of }̂. Since 

1IΩ̂,` > 0 for all non-zero �Ω̂,#, }̂' is also positive semidefinite (PSD) and symmetric, 

as is [}̂']12 . Then, I apply the following linear transformation to û�: 

[}̂']12û� ~ �7� (z, [}̂']12�̂[}̂']12 + �#2�) 

whose log-likelihood functions under the null and alternative hypotheses can be 

shown as: 

ℓ0′ (⋅ ∣[}̂']12û�; �)

= −12[8 ln(2�) + ln(|�|) + ([}̂']12û�)� �−1 ([}̂']12û�)] 
and 

ℓ1′ (�#2∣[}̂']12û�;d)

= −12[8 ln(2�) + ln(|d|) + ([}̂']12û�)� d−1 ([}̂']12û�)], 

where � = [}̂']12�̂[}̂']12
 and d = � + �#2� . The product of two symmetric real 

PSD matrices, O− 12PO− 12 , is also symmetric real PSD, and the value of �#2  is 

strictly non-negative. Therefore, �  and d  are symmetric real PSD, and are 

covariance matrices. Note that by applying this transformation, I made the second 

term in d  a diagonal matrix. Under this condition, I can apply an optimization 

technique similar to ones used in EMMA[50] or RE2C[38]. The following equalities 

hold: 
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de� = (� + �2�)e� 
= (�e� + e��2) = e��� + e��2 
= e�(�� + �2�), 

and 
d = e�(�� + �#2�)e��  

where �� is a 8 × 8 diagonal matrix whose �th element is ��,#. By the definition 

of spectral decomposition, the following statements are true: 

For a real symmetric PSD matrix Q, |Q| = ∏ �F,#¶#=1 . 

Q' = (eE�)� [�E+ ]−1(eE�) 
where p is the number of positive eigenvalues of A, � is a diagonal matrix whose 

first p diagonal elements are 1 and 0 otherwise, and �E+  is a 
 × 
 diagonal matrix 

whose �th diagonal element is �F,#. Then, I can rewrite ℓ1′  as follows: 

ℓ1′ = − 12[8 �Ú(2�) + ∑ �Ú(�®,$ + �#2)¶
$=1

+ ([Ŝ']12û�)� (e��)� [T�+ ]−1(e��)([Ŝ']12û�)] 

= −12[8 �Ú(2�) + ∑ �Ú(�®,$ + �#2)¶
$=1

+ (e��[Ŝ']12û�)� [T�+ ]−1 (e��[Ŝ']12û�)] 

= −12 [8 �Ú(2�) + ∑ �Ú(�®,$ + �#2)¶
$=1 + ∑  �*�®,$ + �#2

¶
$=1

] 

where  �* is the �th element of the vector e��[}̂']12û�. Using the equation above, 

I can derive the first and second derivative of the likelihood function ℓ1′  as: 
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�ℓ1′��#2 = − 12[∑ 1�®,$ + �#2
¶
$=1 − ∑  �*(�®,$ + �#2)2

¶
$=1

] 

�2ℓ1′�(�#2)2 = − 12[∑ 1(�®,$ + �#2)2
¶
$=1 + 2∑  �*(�®,$ + �#2)3

¶
$=1

]. 
In PLEIO, I use 

Ýℓ1′ÝV 2̀ as the root function of the Newton Raphson algorithm and 
Ý2ℓ1′Ý(V 2̀)2 

as its first derivative function. The initial value of the algorithm can be found using 

a grid search algorithm. I generate multiple values of �#2 ranged from 10−9 to 106 

and use �#2 that maximizes the likelihood as an initial value. Finally, I estimate the 

value of PLEIO as follows: 

;O¤b¥¦ = [∑ ln( �®,$�®,$ + �#̂2)
¶
$=1 ] + [∑  �*�®,$

¶
$=1

− ∑  �*�®,$ + �#̂2
¶

$=1
] 

This simple form of ;O¤b¥¦ shows that our method can optimize �#2 with a single 

matrix inversion of �. Recall that optimization of �#2 using a naïve quasi-Newton 

Raphson approach would have required multiple matrix inversions. I tested the 

computing efficiency of our method by comparing it to that of the standard approach 

using the optimization function implemented in the python Scipy library 

(scipy.optimize.minimize), taking into account the two variance-covariance matrices. 

Figure 5 and Figure 6 show that the computational time of the proposed model was 

faster than the time of the standard optimization. The reduction rate of computational 

time was approximately linear in relation to the number of studies, where the 

reduction rate increased approximately 8% per number of studies. In other words, 

the proposed model can compute 16-fold (1600%) faster than scipy.optimization for 

cross-disease joint analysis of 200 studies (8% × 200 = 1600%) (Figure 6).  

  



100 

Appendix B P-value estimation 

a) Problem definition 

I describe how PLEIO estimates the p-value. Suppose I have an observed statistic 

;Ô¤b¥¦. Then, the p-value is P(;O¤b¥¦ ≥ ;Ô¤b¥¦∣�0). Let ª denote a random 

variable representing the standardized effect size u, }̂ denote the 8 × 8 genetic 

covariance matrix, and �̂ denote the 8 × 8 environmental covariance matrix. In the 

following, I will assume that the estimated �̂ represents the true environmental 

variance. Under the null, ª  will follow MVN(z, �̂) . Let the statistic ;O¤b¥¦ 

denote a function of ª given }̂ and �̂. I can define an indicator function  

°(ª, B|Σ̂, Ω̂) = {1 �° ;O¤b¥¦(ª|Σ̂, Ω̂) ≥ B
0 �° ;O¤b¥¦(ª∣Σ̂, Ω̂) < B. 

For simplicity, I replace °(ª, B|Σ̂, Ω̂) with a simpler expression, °(ª). Let «(ª) be 

the probability density function of MVN(0, Σ̂). For a given observed LRT statistic 

B, the p-value can be defined as the expected value of the integrand °(ª)«(ª) as 

follows,  

³ = ∫ °(ª)«(ª)�ª 
�

 

where � = ℝ$. Our goal is to estimate �  accurately and efficiently.  

 

b) Asymptotic approach 

The simplest way to approximate the p-value ³  is to use the asymptotic distribution. 

In general, an LRT statistic using the value of the likelihood for random components 

in a linear mixed model asymptotically follows a mixture of Chi-squared 
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distributions under the null. In our situation, since �2  is a non-negative variance 

estimate, the statistics asymptotically follow a 50: 50  mixture of zero and one 

degrees of freedom Chi-square distributions[24]. In a cross-disease joint analysis, 

however, the validity of this asymptote holds if only if the number of combined 

studies is large. In practice, it is uncommon to combine more than 100 statistics. 

Therefore, the asymptotic approach will not be an exact solution for us. 

 

c) Standard Monte Carlo approach 

A possible alternative is the Monte Carlo approach. In the Monte Carlo method, I 

repeatedly draw samples from «. Let j[ denote a set of samples generated from «. 

Then, ³ = E q[°(q[)] where E q[⋅] denotes expectation for j[ ~ «. Assume that I 

have sampled �  observations and let j#[ be the �th observation. The Monte Carlo 

estimator of ³  is ³ ̂ = 1c ∑ °(j#[)c#=1 . However, the use of Monte Carlo integration 

can be computationally intensive if the region of interest in j is located at the tails 

of « distribution. In genome-wide analyses, the p-value of interest is often as small 

as 5 × 10−8. To get reasonable accuracy for such a small value, more than 10 million 

samples are required. This can be computationally intensive since the maximum 

likelihood estimation must be carried out for each sample to calculate ;O¤b¥¦.  

In previous studies, the standard Monte Carlo approach was used in the context of 

meta-analysis of GWAS. Han and Eskin adapted a strategy to pre-calculate ³  for 

every B using the Monte Carlo sampling[17]. For each possible number of studies 

(8), they generated 10�  null samples and tabulated the relationship between ³  and 

B.  This was possible because they need not assume any genetic correlation or 
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environmental correlation. Since their statistical model did not include any 

correlations, the standard MVN with mean zero and variance ³  (identity matrix) 

represented the null distribution of various situations well; therefore, pre-sampling 

from that distribution was sufficient. In a subsequent study, Cue et al.[38] extended 

the model to include the environmental correlation caused by sample overlap. 

Because the environmental correlation can vary from situation to situation, it was 

not possible to calculate the table in advance for all possible situations. Fortunately, 

the environmental correlation always becomes positive if it is due to a sample 

overlap of controls. Inspired by this, Cue et al. [38] developed a heuristic to 

summarize the strength of overall positive correlations between studies in one value 

(the average correlation �̅), and tabulated ³  for each possible �̅. Although these 

previous studies have used the standard Monte Carlo approach or its variation, I 

cannot apply these approaches directly in our context. This is because every analysis 

will have unique }̂ and �̂, and it is not possible to pre-calculate the p-value table 

for every possible }̂ and �̂. 

 

d) Importance sampling approach 

I have developed an importance sampling approach to solve this challenge. Since 

each analysis study with our method will have unique }̂ and �̂, our strategy is to 

calculate the p-value table in a study-specific manner. The use of the standardized 

effect size u helps in this situation, because ~�(u) is independent of the SNPs. 

Therefore, under the null, u  always follows �7�(z, �̂), regardless of SNPs. Thus, 
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once I successfully build the null distribution of ;O¤b¥¦, I can use the distribution 

repeatedly for all SNPs.  

 

In importance sampling, I define the sampling distribution 
(ª), which is a positive 

probability density function in �. Then,  

³ = ∫ °(ª)«(ª)�ª 
®

= ∫ °(ª)«(ª)
(ª) 
(ª)�ª 
®

= < ¶ [°(j¶)«(j¶)
(j¶) ] 
^_` 
³ ̂ = 1� ∑ °(j#¶)«(j#¶)
(j#¶)

·
#=1

, 
where E p[⋅]  denotes expectation for j¶ ~ 
 . The two practical constraints on 

importance sampling are; it must be feasible to generate j¶, and I must be able to 

compute 
b(Þ)[(Þ)¶(Þ) . In the importance sampling method, the variance of ³  ̂can be shown 

as Var(³)̂ = cd2·  where e¶2 is the standard deviation of the random variable ∫ b(Þ)[(Þ)¶(Þ)  

where  

e¶2 = ∫ (°(ª)«(ª)
(ª) − ³)2 
�


(ª)�ª 

= ∫ °(ª)2«(ª)2

(ª) �ª 

�
− 2∫ °(ª)«(ª)�ª 

�
+ ³2 

= ∫ °(ª)2«(ª)2

(ª) �ª 

�
− ³2. 

Suppose °(ª) > 0  and ³ > 0 . In this case, the optimal 
(ª)  can be defined as 


∗(ª) = b(Þ)[(Þ)¥  where this density gives e¶2 = 0. Since ³  is an unknown constant 

that depends on the value of B, I cannot use 
∗(ª). However, it is clear that a good 
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sampling density of the importance sampling method will be roughly proportional 

to °(ª)«(ª).  
 

In PLEIO, it is challenging to choose a good sampling distribution 
. In GWAS, the 

p-values can be as big as 1.0 or as small as 5 × 10−8, or can be even smaller. Thus, 

I have a wide range of B. Depending on B, °(ª) changes. If I choose 
 that resembles 

°(ª)«(ª) for a large B, it can give a large variance for a small B. Reversely, if I 

choose 
 that resembles °(ª)«(ª) for a small B, it can give a large variance for a 

large B. To solve this challenge, I decided to use multiple sampling distributions 


3(ª) where ¸ = {1,2,…V}. 
1(ª) is «(ª), the probability density function of the 

original null distribution that follows MVN(z, �̂). Then I increase the variance of 

each coordinate by a factor of f2 , where f ∈
{1.1, 1.2, 1.3, 1.4, 1.7, 2, 2.5, 3.0, 4.0, 5.0} . Thus, in total, I use 11  sampling 

distributions such that each 
3(ª) follows MVN(z, cj2�̂), where j3  is a constant 

value ranged from 1 to 5. Let j¶k  denote a matrix representing samples generated 

from the ¸th sampling distribution, and let -3  denote the proportion of samples 

generated from the ¸th sampling distribution. Then, the matrix j¶k  has a size of 

-3� × 
 . In PLEIO, I generate j¶ from each 
3(ª) uniformly, so that -3 ≈ 1K. In 

the importance sampling method using multiple sampling distributions, the p-value 

of a given B can be estimated by follows: 

³ ̂ = 1� ∑°(j#¶)«(j#¶)
½(j#¶)
·
#=1

, 
where 
½(j#¶) = ∑ -3
3(j#¶)K3=1 , and ∑ -3K3=1 = 1.  
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Recently, Owen and Zhou (2000) [25] proposed a novel importance sampling 

approach to minimize the variance of the estimate in the situation where multiple 

sampling distributions are used. I employed this approach. The method generates 

j¶ from 
3(ª) and uses 
3(j¶)/
½(j¶) as the control variates of °(j¶)«(j¶)/

½(j¶). Assuming high correlations between °(ª)«(ª) and 
3(ª), I expect a large 

reduction in variance when estimating E(°(ª)) using the control variate method. 

Note that 
3(ª) is a probability density function and therefore has the expected value 

∫ 
3(ª)�ª 
� = 1. The expression of the importance sampling with the control variate 

method can be shown as follows:  

³ ̂ = 1� (∑°(j#¶)«(j#¶) − ∑ "3
3(j#¶)K3=1
½(j#¶)
· 
#=1

) + ∑ "5l¶m

K
5=1

 

where l¶k = E ¶[
3(j#¶)/
½(j#¶)] = ∫ 
3(ª)�ª = 1  for any ¸ . Define µ∗ =
b(Þ)[(Þ)−∑ _k¶k(Þ)p

k=1¶Ä(Þ) + ∑ "5l¶m
K5=1  such that E[µ∗] = ³ . The variance of µ∗ is then,  

Var(µ∗) = −"1Cov(°(ª)«(ª)
½(ª) , 
1(ª)
½(ª)) + ∑ "1"�Cov(
1(ª)
½(ª) , 
�(ª)
½(ª))
K
�=1

 

−"2Cov(°(ª)«(ª)
½(ª) , 
2(ª)
½(ª)) + ∑ "2"�Cov(
2(ª)
½(ª) , 
�(ª)
½(ª))
K
�=1

 

−"3Cov(°(ª)«(ª)
½(ª) , 
3(ª)
½(ª)) + ∑ "3"�Cov(
3(ª)
½(ª) , 
�(ª)
½(ª))
K
�=1

 
⋮ 
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−"KCov(°(ª)«(ª)
½(ª) , 
K(ª)
½(ª)) + ∑ "K"�Cov(
K(ª)
½(ª) , 
�(ª)
½(ª))
K
�=1

+ Var(°(ª)«(ª)
½(ª) ) 

because Var("5l¶m) = 0. By definition, the optimal � can be found by solving the 

following partial derivatives. 

∂Var(µ∗)
∂"3 = −Cov(°(ª)«(ª)
½(ª) , 
3(ª)
½(ª)) + ∑ "�Cov(
3(ª)
½(ª) , 
�(ª)
½(ª))

K
�=1

 
which generates V(= 11) equations and V unknown variables (") as follows: 

∂Var(µ∗)
∂"1 = −Cov(°(ª)«(ª)
½(ª) , 
1(ª)
½(ª)) + ∑"�Cov(
1(ª)
½(ª) , 
�(ª)
½(ª))

K
�=1

 
∂Var(µ∗)

∂"2 = −Cov(°(ª)«(ª)
½(ª) , 
2(ª)
½(ª)) + ∑"�Cov(
2(ª)
½(ª) , 
�(ª)
½(ª))
K
�=1

 
⋮ 
∂Var(µ∗)

∂"K = −Cov(°(ª)«(ª)
½(ª) , 
K(ª)
½(ª)) + ∑ "�Cov(
K(ª)
½(ª) , 
�(ª)
½(ª))
K
�=1

. 
Here, the function of Var(µ∗) is a quadratic function for "3 . Therefore, the "∗ 

which maximizes the variance of Var(µ∗) satisfies 
∂Var(.∗)

∂_k∗ = 0, the root of the 

partial derivative. Thus, the optimal " ∗ ("∣ ∂Var(.∗)
z_k = 0 and q#¶) can be obtained 

by solving the linear equation: 

Var(W1 )"1∗ + Cov(W1 , W2 )"2∗ + ⋯+ Cov(W1 , WK )"K∗ = Cov(»� , W1 ) 
Cov(W2 , W1 )"1∗ + Var(W2 )"2∗ + ⋯+ Cov(W2 , WK )"K∗ = Cov(»� , W2 ) 

⋮ 
Cov(WK , W1 )"1∗ + Cov(WK , W2 )"2∗ + ⋯+ Var(WK )"K∗ = Cov(»� , WK ) 
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which can be shown as follows: 

⎣
⎢⎢
⎡ Var(W1 ) Cov(W1 , W2 )Cov(W2 , W1 ) Var(W2 )

… Cov(W1 , WK )
⋯ Cov(W2 , WK )

⋮ ⋮
Cov(WK , W1 ) Cov(WK , W2 ) ⋱ ⋮… Var(WK ) ⎦

⎥⎥
⎤
⎣
⎢⎢
⎡"1∗"2∗⋮"K∗ ⎦

⎥⎥
⎤ =

⎣
⎢⎢
⎡Cov(»� , W1 )Cov(»� , W2 )⋮
Cov(»� , WK )⎦⎥

⎥⎤ 

and 

⎣
⎢⎢
⎡"1∗"2∗⋮"K∗ ⎦

⎥⎥
⎤ =

⎣
⎢⎢
⎡ Var(W1 ) Cov(W1 , W2 )Cov(W2 , W1 ) Var(W2 )

… Cov(W1 , WK )
⋯ Cov(W2 , WK )

⋮ ⋮
Cov(WK , W1 ) Cov(WK , W2 ) ⋱ ⋮… Var(WK ) ⎦

⎥⎥
⎤

−1

⎣
⎢⎢
⎡Cov(»� , W1 )Cov(»� , W2 )⋮
Cov(»� , WK )⎦⎥

⎥⎤ , 

where W� = ¶k(�`d)¶Ä(�`d), and »� = b(�d̀)[(�d̀)¶Ä(�`d) . Owen and Zhou[25] showed that If at 

least one of 
3(ª) > 0  whenever °(ª)«(ª) > 0 , then ³½̂,_  is unbiased and 

Var(³½̂,_) ≤ Var(³½̂k¶k) for any ¸ where ³½̂k¶k = 1�k ∑ b(�d̀)[(�d̀)¶k(�`d)�k#=1 . 

 

e) Implementation  

The implementation of the p-value estimation in PLEIO is as follows. After 

calculating }̂ and �̂ using LDSC, I assume that these values are true values and 

generate the null samples by using an importance sampling method. The default 

number of sampling is 100V, where each of 11 distributions being used equally. For 

each sample, I use our efficient transformation technique for the Newton Raphson 

method to determine the maximum likelihood estimate � ̂2  and calculate ;O¤b¥¦. 

Then, I calculate p-values of 40 different B that are in the range (0, 40). For each B, 

I calculate the optimal � for the control variate method and use the method to 

calculate the p-value from our null samples. Using these 40 points, I interpolate p-

values for B < 40 using B-spline fitting and extrapolate p-values for B > 40 using 

linear fitting on the log p-value scale.   
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Appendix C Estimation of environmental correlations 

using LDSC 

I first describe the LDSC framework of Bulik-Sullivan et al. (2015)[20, 21]. Let 	 

and Ð denote two different traits. I assume that we genotyped �F and �� samples 

at �  SNPs. Let ßE and ß� denote �F × 1 and �� × 1 vectors of phenotypes, and 

let �E  and ��  denote �F × �  and �� × �  genotype matrices. �E  and �� 

are standardized so that each column follows �(0,1). The z-scores of the SNP ¸ can 

be obtained as �F,3 ≔ �E,3� ßE/√�F and ��,3 ≔ ��,3� ß�/√��. Let �E and �� 

denote � × 1 vectors of z-scores of traits Q and P. 

Bulik-Sullivan et al., (2015) derived the following equations[20, 21]: 

<[�F,32 |ℓ3] = �FℎF2� ℓ3 + �F-F + 1 
<[��,32 |ℓ3] = ��ℎ�2� ℓ3 + ��-� + 1           (1) 

where ℎF2  and ℎ�2  are narrow sense heritabilities, and ℓ3 is the value of the LD-score 

of ¸th SNP, which can be obtained from an external reference. LDSC uses both 

summary statistics and LD-score information to estimate the trait heritability 

(ℎF2  and ℎ�2 ) along with the intercepts (�F-F + 1 and ��-� + 1). To estimate 

genetic correlation, LDSC uses the following equality: 

<[�F,3��,3∣ℓ3] = √�F��e�� ℓ3 + e�F�√�F��
       (2) 

where e� denotes the genetic covariance between trait A and B, �F� denotes the 

shared individuals between samples �F  and �� , and e  denotes phenotypic 

correlations.  
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To estimate environmental correlation, I apply genomic control to both traits to make 

intercept one. After the genomic-control correction, the second term in equation (2) 

reflects the environmental correlation of z-scores attributable to shared individuals. 

Another similar approach is to use the weighted sum of z-scores to combine z-scores 

of A and B,  

�F�,3 = √�F�F,3� + √����,3�
√�F + �� 

      (3) 
where the superscript j denotes that the z-score was corrected with genomic control. 

The weighted sum of z-scores is approximately equivalent to the popular inverse-

variance weighted method[51].  

I can decompose z-scores to the genetic effect and the environmental error, such that 

�F,3� = �F,3 + áF,3 �Ú� ��,3� = ��,3 + á�,3 . Let 1/  denote the environmental 

correlation. That is, 1/ = Cor(áF,3, á�,3) . Note that Var[�F,3] = c�ℎ�2· ℓ3  and 

Var[��,3] = c�ℎ�2· ℓ3. 

If there is a sample overlap,  

<[(�F�,3 ∣�F� ≠ 0)2|ℓ3] 
= < [(√�F(�F,3 + áF,3) + √��(��,3 + á�,3)√�F + �� 

|�F� ≠ 0)2 |ℓ3] 

= °(ℓ3) + [ �F�F + �� 7��(áF,3) + ���F + �� Var(á�,3)
+ 2√�F��Cov(áF,3, á�,3)] 

=  °(ℓ3) + [1 + 2 √�F���F + �� 1/] 
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where °(ℓ3)  is a first-order function of ℓ3  without a constant term. Therefore, 

éF� = 2 √c�c�c� +c� 1/  is the inflation of the intercept caused by environmental 

correlation. Since I can estimate éF� from LDSC, I can estimate the environmental 

correlation as follows:  

1/ = �F + �� 2√�F �� 
éF�. 
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국문초록 

전장 유전체 연관성 분석 연구(GWAS)는 질병과 관련된 유전변이들의 위치를 

탐색하는 방법으로 널리 사용되어왔습니다. 수행된 여러 전장 유전체 연관성 

분석의 결과를 해석하여 연구자들은 질병과 연관된 유전자의 일부가 여러 

특성과 동시에 연관성을 보이는 다발성 효과(pleiotropic effects)를 가짐을 

확인했습니다. 이 다발성 유전자(pleiotropic loci)를 탐색하고 해석하는 것은 

질병과 복잡한 특성간에 공유되는 유전적 생리기전을 이해하는 데 매우 

중요합니다. 일반적인 다발성 유전자의 탐색은 여러 특성에 대한 GWAS 

요약통계를 메타 분석수행하여 진행되었습니다. 그러나 기존의 방법들은 

유전 적 상관 관계(genetic correlation) 및 유전율(heritability)과 같은 형질의 

복잡한 유전 적 구조를 설명하지 않으며, 특성들간 표현형의 단위(unit) 및 

척도(scale)가 다를 수 있음을 고려하지 않아 그 통계적 검사의 힘이 

떨어집니다. 

 

본 연구에서는 여러 질병과 복합 형질을 공동 분석하여 다발성 유전자좌를 

탐색하고 해석 할 수있는 요약 통계 기반 분석 프레임 워크 인 PLEIO 를 

제안합니다. 이 방법론은 형질의 유전 적 상관 관계와 유전성을 체계적으로 

설명하여 연관성 검사의 성능을 극대화하며 이 과정에서 단위 및 척도가 다른 

특성들을 원활하게 공동 분석 할 수 있도록 만들어 졌습니다. 추가적으로, 결과 

해석을 지원하는 시각화 도구인 pleiotropyPlot을 제공합니다. 
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PLEIO 의 성능을 확인하기 위해 본 연구자는 광범위한 시뮬레이션과 실제 

데이터 분석을 수행했습니다. 7개의 연구에서 서로 다른 유전 적 상관 관계 

구조와 유전성을 가정 한 시뮬레이션을 수행하여 PLEIO의 오탐율(FPR)이 잘 

조정됨을 확인했고, 경쟁 방법론보다 뛰어난 통계적 힘을 가짐을 

확인했습니다. 실제 데이터 분석에서는 심혈관 질환과 관련된 18 가지 특성을 

PLEIO에 적용했습니다. 그 결과 PLEIO는 4 개의 서로 다른 연관 패턴을 가진 

13 개의 새롭게 발견된 다발성 유전자좌를 식별했습니다. 계산 효율성 

측면에서 PLEIO는 100 개의 특성을 공동분석하여 1M개의 SNP를 1일 내로 

검사 할 수 있도록 최적화 되어 있습니다. 

 

요약해서, PLEIO는 형질간에 공통적으로 연관되는 다발성 유전자좌를 찾기 

위해 형질 간의 유전 적 구조를 사용하는 공동 분석 다중 형질의 통계 프레임 

워크입니다. PLEIO 에서 구현 된 통계 모델은 기존의 공동분석 모델에서 

사용하는 가정들을 포괄하는 일반화 된 모델을 사용하며, Importance sampling 

및 eigenvector decomposition와 같은 수학적 기법을 사용하여 모델 최적화를 

수행했습니다. PLEIO 소프트웨어는 다음 Github 웹 페이지에서 무료로 

다운로드 할 수 있습니다: https://github.com/cuelee/pleio. 
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