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Abstract

Recently, several studies proposed methods to utilize some classes of optimization

problems in designing deep neural networks to encode constraints that conventional

layers cannot capture. However, these methods are still in their infancy and require

special treatments, such as analyzing the KKT condition, for deriving the backpropa-

gation formula. In this paper, we propose a new layer formulation called the fixed-point

iteration (FPI) layer that facilitates the use of more complicated operations in deep

networks. The backward FPI layer is also proposed for backpropagation, which is mo-

tivated by the recurrent back-propagation (RBP) algorithm. But in contrast to RBP, the

backward FPI layer yields the gradient by a small network module without an explicit

calculation of the Jacobian. All components of our method are implemented at a high

level of abstraction, which allows efficient higher-order differentiations on the nodes.

In addition, we present two practical methods, FPI NN and FPI GD, where the update

operations of FPI are a small neural network module and a single gradient descent step

based on a learnable cost function, respectively. FPI NN is intuitive and simple, while

FPI GD can be used for efficient training of energy networks that have been recently

studied. While RBP and its related studies have not been applied to practical examples,

our experiments show the FPI layer can be successfully applied to real-world problems

such as image denoising, optical flow, multi-label classification and image generation.

Keywords: Fixed-point iteration, gradient descent, differentiable layers, recurrent back-

propagation, energy network, deep learning architecture
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Chapter 1

Introduction

Recently, several papers proposed to compose a deep neural network with more com-

plicated algorithms rather than with simple operations as it had been used. For ex-

ample, there have been methods using certain types of optimization problems in deep

networks such as differentiable optimization layers [5] and energy function networks

[6, 12]. In these methods, the inputs or the weights of the layers are used to define

the cost functions of the optimization problems, and the solutions of the problems

become the layers’ output. For certain classes of optimization problems, these layers

are differentiable. These methods can be used to introduce a prior in a deep network

and provide a possibility of bridging the gap between deep learning and some of the

traditional methods. However, they are still premature and require non-trivial efforts

to implement in actual applications. Especially, the backpropagation formula has to

be derived explicitly for each different formulation based on some criteria like the

Karush–Kuhn–Tucker (KKT) conditions, etc. This limits the practicality of the ap-

proaches since there can be numerous different formulations depending on the actual

problems.
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As far as we know, this is the first attempt to address these issues. Unlike the

aforementioned differentiable optimization layers, the proposed method can embed

an optimization problem into a neural network without the need to derive a separate

backpropagation formula depending on the problem. Also, energy function networks

can be trained efficiently by our method.

Meanwhile, there has been an algorithm called recurrent back-propagation (RBP)

proposed by Almeida [4] and Pineda [51] several decades ago. RBP is a method to

train an recurrent neural network (RNN) that converges to the steady state. The ad-

vantages of RBP are that it can be applied universally to most operations that consist

of repeated computations and that the whole process can be summarized by a single

update equation. Even with its long history, however, RBP and related studies [9, 44]

have been tested only for verifying the theoretical concept and there has been no ex-

ample that applied these methods to a practical task. Moreover, there have been no

studies using RBP in conjunction with other neural network components to verify the

effect in more complex settings.

We take the advantages of RBP in the backpropagation process with several im-

provements. Our formula can be applied to general problems and combined with other

network components. Unlike RBP-based studies, our method shows good performance

on practical tasks.

In this paper, to facilitate the use of more complicated operations in deep networks,

we introduce a new layer formulation that can be practically implemented and trained

based on RBP with some additional considerations. To this end, we employ the fixed-

point iteration (FPI), which is the basis of many numerical algorithms including most

gradient-based optimizations, as a layer of a neural network. In the FPI layer, the

layer’s input and its weights are used to define an update equation, and the output of

the layer is the fixed-point of the update equation. Under mild conditions, the FPI layer

is differentiable and the derivative depends only on the fixed point, which is much more
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efficient than adding all the individual iterations to the computational graph.

Figure 1.1: Example FPI layer.

Figure 1.1 shows the example for simple FPI layer.

We also propose a backpropagation method called backward FPI layer based on

RBP [4, 51] to compute the derivative of the FPI layer efficiently. We prove that if the

aforementioned conditions for the FPI layer hold, then the backward FPI layer also

converges. In contrast to RBP, the backward FPI layer yields the gradient by a small

network module which allows us to avoid the explicit calculation of the Jacobian.

The derivative can be easily calculated based on another independent computational

graph that describes a single iteration of the update equation. In other words, we do

not need a separate derivation for the backpropagation formula and can utilize existing

autograd functionalities. Especially, we provide a modularized implementation of the

partial differentiation operation, which is essential in the backward FPI layer but is
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absent in regular autograd libraries, based on an independent computational graph.

This makes the proposed method very simple to apply to various practical applications.

Since FPI covers many different types of numerical algorithms as well as optimization

problems, there are a lot of potential applications for the proposed method. FPI layer

is highly modularized so it can be easily used together with other existing layers such

as convolution, rectified linear unit (ReLU), etc., and has a richer representation power

than the feedforward layer with the same number of weights. Contributions of the

paper are summarized as follows.

• We propose a method to use an FPI as a layer of neural network. The FPI layer

can be utilized to incorporate the mechanisms of conventional iterative algo-

rithms, such as numerical optimization, to deep networks. Unlike other exist-

ing layers based on differentiable optimization problems, the implementation is

much simpler and the backpropagation formula can be universally derived.

• For backpropagation, the backward FPI layer is proposed based on RBP to com-

pute the gradient efficiently.Under the mild conditions, we show that both for-

ward and backward FPI layers are guaranteed to converge. All components are

highly modularized and a general partial differentiation tool is developed so that

the FPI layer can be used in various circumstances without any modification.

• Two types of FPI layers (FPI NN, FPI GD) are presented. The proposed net-

works based on the FPI layers are applied to practical tasks such as image de-

noising, optical flow, and multi-label classification, which have been largely ab-

sent in existing RBP-based studies, and show good performance.

The remainder of this paper is organized as follows: We first introduce related

works in Chapter 2. Preliminary definitions and theorems are explained in Chapter 3.

The proposed FPI layer is explained in Chapter 4, the experimental results follow in

4



Chapter 5 and 6. Finally, we conclude the paper in Chapter 7.
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Chapter 2

Related Work

2.1 Energy function networks

Scalar-valued networks to estimate the energy (or error) functions have recently at-

tracted considerable research interests. The energy function network (EFN) has a dif-

ferent structure from general feed-forward neural networks, and the concept was first

proposed in [42]. After training an EFN for a certain task, the answer to a test sample is

obtained by finding the input of the trained EFN that minimizes the network’s output.

The structured prediction energy network (SPEN) [12] performs a gradient descent

on an energy function network to find the solution, and a structured support vector ma-

chine [61] loss is applied to the obtained solution. The input convex neural networks

(ICNNs) [6] are defined in a specific way so that the networks have convex structures

with respect to (w.r.t.) the inputs, and their learning and inference are performed by

the entropy method which is derived based on the KKT optimality conditions. The

deep value networks [29] and the IoU-Net [37] directly learn the loss metrics such

as the intersection over union (IoU) of bounding boxes and then perform inference
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Figure 2.1: Structure of the energy function network.

by gradient-based optimization methods. However, these methods generally require

complex learning processes and each method is specialized to a limited range of ap-

plications. Moreover, they require various approximations/relaxations or constraints

such as bounded conditions. On the other hand, the end-to-end SPENs [13] directly

backpropagate the whole gradient-based inference process that has a fixed number of

gradient steps. However, the memory requirement increases as the number of steps in-

creases and if the number of steps is small, there is a high possibility of not converging

to the optimal solution.

Although the above approaches provide novel ways of utilizing neural networks

in optimization frameworks, they have not been combined with other existing deep

network components to verify their effects in more complicated problems. Moreover,

they are mostly limited to a certain type of problems and require complicated learning
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processes. Our method can be applied to broader situations than EFN approaches, and

these approaches can be equivalently implemented by the proposed method once the

update equation for the optimization problem is derived.

2.2 Differentiable optimization layers

Recently, a few papers using optimization problems as a layer of a deep learning archi-

tecture have been proposed. Such a structure can contain a more complicated behavior

in one layer than the usual layers in neural networks, and can potentially reduce the

depth of the network. OptNet [5] presents how to use the quadratic program (QP) as a

layer of a neural network. They also use the KKT conditions to compute the derivative

of the solution of QP. Agrawal et al. [2] propose an approach to differentiate disci-

plined convex programs which is a subclass of convex optimization problems. There

are a few other researches trying to differentiate optimization problems such as sub-

modular models [22], cone program [3], semidefinite program [63], and so on. How-

ever, most of them have limited applications and users need to adapt their problems to

the rigid problem settings. On the other hand, our method makes it easy to use a large

class of iterative algorithms as a network layer, which also includes the differentiable

optimization problems.

2.3 Recurrent back-propagation

RBP is a method to train a special case of RNN proposed by Almeida [4] and Pineda

[51]. RBP computes the gradient of the steady state for an RNN with constant memory.

Although RBP has great potential, it is rarely used in practical problems of deep learn-

ing. Some artificial experiments showing its memory efficiency were performed, but

it was difficult to apply in complex and practical tasks. Recently, Liao et al. [44] tried

to revive RBP using the conjugate gradient method and the Neumann series. How-
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ever, both the forward and backward passes use a fixed number of steps (maximum

100), which might not be sufficient for convergence in practical problems. Also, if the

forward pass does not converge, the equilibrium point is meaningless so it can be un-

stable to train the network using the unconverged final point, which is a problem not

addressed in the paper. Deep equilibrium models (DEQ) [9] tried to find the equilib-

rium points of a deep sequence model via an existing root-finding algorithm. Then,

for back-propagation, they compute the gradient of the equilibrium point by another

root-finding method. In short, both the forward and backward passes are implemented

via quasi-Newton methods. DEQ can also be performed with constant memory, but it

can only model the sequential (temporal) data, and the aforementioned convergence

issues still exist.

RBP-based methods mainly perform experiments to verify the theoretical con-

cepts and have not been well applied to practical examples. Our work incorporates

the concept of RBP in the FPI layer to apply complicated iterative operations in deep

networks, and presents two types of algorithms accordingly. The proposed method is

the first RBP-based method that shows successful applications to practical tasks in

machine learning or computer vision, and can be widely used for promotion of the

RBP-based research in the deep learning field.

2.4 Learning objective functions

Using our method, we can learn the objective function without empirical knowledge.

Therefore, it can be used in combination with studies in various fields that require an

objective function. This section introduces the studies that use the objective function

as the core.

Optimization: Mathematical optimization based on objective functions are impor-

tantly used in many fields. There have been lots of studies on optimization techniques
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to find an optimal value for a given objective function [23, 31, 40, 66]. Recently, sev-

eral researches have emerged to find an efficient optimization strategy via machine

learning [7, 43].

Inverse reinforcement learning: Studies on inverse reinforcement learning are

also somewhat related to our method [1, 48, 52, 67]. The goal of reinforcement learn-

ing is to learn the policy that maximizes the sum of all rewards. On the other hand,

inverse reinforcement learning aims to find a good reward function that explains a

given policy well.

Optical flow: Optical flow is one of the major branches of computer vision which

aims to acquire motions by matching pixels in two images. Figure 2.2 shows optical

flow examples from Flying Chair dataset [24].

Figure 2.2: Optical flow examples.

Significant progress has been made since the study of Horn and Schunck [33], and

many recent studies are based on this. They proposed an objective function consisting

of a data term and a smoothness (regularization) term to solve optical flow. Since the

performance was not so good at the time, various studies were conducted to improve
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either the objective function or the optimization method [14, 17, 49, 59, 65]. Although

performance has improved considerably thanks to these studies, their modifications

solve only some partial issues by heuristics and a number of hyper-parameters must

be fine-tuned. Moreover, it is hard to compare the superiority between the objective

functions. Meanwhile, it has not been long since the introduction of neural networks

in the optical flow area. Beginning with FlowNet [24] and FlowNet2 [36], many re-

searches have been carried out to apply neural network to optical flow [35, 60]. These

methods have relatively less computational loads and they have recently improved the

level of performance greatly, but designing an overall structure is very difficult and re-

quires many empirical experiences. Unlike the traditional methods, they obtain optical

flow directly from the output of the network without any energy function. Using the

proposed method, optical flow can be estimated by two ways.

• Combining our method with the existing optical flow networks (using FPI NN).

• Learning the objective function and performing optimization (using FPI GD).

Each result is described in the Chapter ??.

2.5 Autoencoders

Image generation is largely divided into a field based on generative adversarial network

(GAN) [16, 26–28, 56] and a field based on autoencoder [32, 41]. Here we focus on

the latter one.

One advantage of our method is that we can calculate the inverse function more in-

tuitively and easily. There are various fields in deep learning that require inverse func-

tion or inverse transformation. One of the representative cases is the autoencoder [32].

Figure 2.3 shows the structure of autoencoder. The purpose of the autoencoder is to re-

duce the dimension, extract important information, and encode it into a latent variable
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Figure 2.3: Structure of the autoencoder.

z. The decoder restores the latent variable back to high-dimensional data close to the

input data. Therefore, output layer of the autoencoder has the same size as input layer

and decoder is required for learning of the encoder.

Variational autoencoder (VAE) [41] has a similar structure to autoencoder, but con-

trary to the original autoencoder, encoder is required to train the decoder. In VAE,

mean and standard deviation vectors are output of the encoder. These two vectors are

combined to form a normal distribution, and latent variable z is created through sam-

pling. When z passes through the decoder, new data similar to the existing input data

can be generated. Therefore, VAE aims to generate some new data using a probability

distribution and is called a generative model.

Although there are many variants [8, 15, 20, 46, 47, 53, 57, 62] of autoencoder and

VAE, we show that FPI layer can effectively represent the inverse function by applying

our method to the original VAE.
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Chapter 3

Preliminaries

We introduce the background knowledge and preliminaries used in this dissertation.

3.1 Fixed-point iteration

For a given function g and a sequence of vectors, {xn ∈ Rd}, the fixed-point iteration

[18] is defined by the following update equation

xn+1 = g(xn), n = 0, 1, 2, · · · , (3.1)

that converges to a fixed point x̂ of g, satisfying

x̂ = g(x̂). (3.2)

The gradient descent method (xn+1 = xn − γ∇f(xn)) is a popular example of fixed-

point iteration. Many numerical algorithms are based on fixed-point iteration, and there

are also many examples in machine learning. Here are some important concepts about

fixed-point iteration.
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3.2 Contraction mapping

Definition 1 (Contraction mapping) [39]. On a metric space (X, d), the function

f : X → X is a contraction mapping if there is a real number 0 ≤ k < 1 that satisfies

the following inequality for all x1 and x2 in X .

d(f(x1), f(x2)) ≤ k · d(x1, x2). (3.3)

Any such k is referred to as a Lipschitz constant for the function f . The smallest k that

satisfies the above condition is called the (best) Lipschitz constant of f . One of the

simple example of the contraction mapping is f(x) = 1
2x. Here, the Lipschitz constant

of f is 1
2 . Otherwise f(x) =

√
x is not contraction mapping because ∥√x1 −

√
x2∥>

∥x1 − x2∥ when x1, x2 <
1
4

The distance metric is defined to be an arbitrary norm ∥·∥ in this paper. Based on

the above definition, the Banach fixed-point theorem [10] states the following.

3.3 Banach fixed-point theorem

In this section, we explain the Banach fixed-point theorem (contraction mapping the-

orem). To this end, we first introduce several definitions which are necessary for the

theorem.

Definition 2 (Cauchy sequence). A sequence x0, x1, x2, . . . on a metric space

(X, d) is Cauchy sequence if for any positive real number ϵ there is a natural number

N satisfies the following condition:

d(xi, xj) < ϵ ∀i, j ≥ N. (3.4)

Figure 3.1 shows the comparison of Cauchy and non-Cauchy sequences. The Cauchy

sequence converges to a point as the distance between two adjacent points gradually

16



(a) Cauchy (b) Not Cauchy

Figure 3.1: Example for Cauchy sequence.

decreases.

Definition 3 (Complete metric space). A metric space (X, d) is a complete metric

space if any of the following equivalent conditions are satisfied:

• Every Cauchy sequence of points in X has a limit that is also in X .

• Every Cauchy sequence in X converges in X .

• · · ·

There are many other equivalent conditions but here we only introduce conditions

based on the Cauchy sequence. To explain the complete metric space in an easy to

understand way, it is a metric space with no missing points in it or its boundaries.

Banach fixed-point theorem is described based on the definition of the complete metric

space.

Lemma 1. For a contraction mapping f with a Lipschitz constant k and a sequence

xn+1 = f(xn), the following inequality holds for any positive integer n:

d(xn, xn+1) ≤ kn · d(x0, x1) (3.5)
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Proof. For n = 0, inequality holds as follows:

d(x0, x1) ≤ k0 · d(x0, x1). (3.6)

Let assume the inequality holds when n = m:

d(xm, xm+1) ≤ km · d(x0, x1) (3.7)

Then by the definition of contraction mapping,

d(xm+1, xm+2) = d(f(xm), f(xm+1))

≤ k · d(xm, xm+1)

≤ k · km · d(x0, x1)

= km+1 · d(x0, x1),

(3.8)

which implies that the inequality holds when n = m+ 1. By the mathematical induc-

tion, the inequality holds for all positive integer n.

Using this lemma, the following Banach fixed-point theorem is proved.

Theorem 1 (Banach fixed-point theorem) [10]. A contraction mapping f : X →

X on a complete metric space (X, d) has exactly one fixed point and it can be found

by starting with any initial point and iterating the update equation until convergence.

Proof. By the Lemma 1,

d(xn, xn+1) ≤ kn · d(x0, x1). (3.9)
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For any positive integer i, j that satisfies i < j,

d(xi, xj) ≤
j−1∑
n=i

d(xn, xn+1)

≤
j−1∑
n=i

kn · d(x0, x1)

= d(x0, x1) ·
j−1∑
n=i

kn

≤ d(x0, x1) ·
∞∑
n=i

kn

= d(x0, x1) ·
ki

1− k
.

(3.10)

For any positive real number ϵ we can find a large number N that satisfies

ki <
(1− k)ϵ

d(x0, x1)
. (3.11)

If we choose i, j > N ,

d(xi, xj) ≤ d(x0, x1) ·
ki

1− k

≤ d(x0, x1) ·
1

1− k
· (1− k)ϵ

d(x0, x1)

= ϵ.

(3.12)

So {xn} is a Cauchy sequence and the limit x̂ is fixed point and x̂ is in X by com-

pleteness:

x̂ = lim
n→∞

xn

= lim
n→∞

f(xn−1)

= f( lim
n→∞

xn−1)

= f(x̂).

(3.13)
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By the definition of contraction mapping, f has only one fixed point by contradiction:

d(f(x̂), f(x̂′)) = d(x̂, x̂′)

> k · d(x̂, x̂′)
(3.14)

Therefore, if g is a contraction mapping, it converges to a unique point x̂ regardless

of the starting point x0. The above concepts are important in deriving the proposed FPI

layer in this paper.

3.4 Contraction property

Here we introduce the known contraction property for the Jacobian Jg(x) of the func-

tion g(x).

Theorem 2. For the convex set A and the function g : A → Rn, if the matrix norm

of Jacobian satisfies

∥Jg(x̂)∥ ≤ k < 1, (3.15)

g is a contraction mapping.

Proof. Let G(t) = g(x+ t(y − x)) for t ∈ [0, 1]. Then we have

g(y)− g(x) = G(1)−G(0)

=

∫ 1

0
G′(t) dt

=

∫ 1

0
Jg(x+ t(y − x))(y − x) dt.

(3.16)

By the triangle inequality,
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∥g(y)− g(x)∥ ≤
∫ 1

0
∥Jg(x+ t(y − x))(y − x)∥ dt

≤
∫ 1

0
∥Jg(x+ t(y − x))∥·∥y − x∥ dt

≤ k ∥y − x∥.

(3.17)

By the definition of the contraction mapping, g is a contraction mapping.

We prove the inverse of Theorem 2 in Section 4.4 which is included in Proposition

1. (If g is a contraction mapping, the matrix norm of Jacobian is less than k < 1).
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Chapter 4

Proposed Method

The fixed-point iteration formula contains a wide variety of forms and can be applied

to most iterative algorithms. Section 4.1 describes the basic structure and principles of

the FPI layer. Section 4.2 and 4.3 explains the differentiation of the layer for backprop-

agation. Section 4.4 describes the convergence of the FPI layer. Section 4.5 presents

two exemplar cases of the FPI layer.

4.1 Structure of the FPI layer

Here we describe the basic operation of the FPI layer. Let g(x, z; θ) be a parametric

function where x and z are vectors of real numbers and θ is the parameter. We assume

that g is differentiable for x and also has a Lipschitz constant less than one for x, and

the following fixed point iteration converges to a unique point according to the Banach
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fixed-point iteration theorem:

xn+1 = g(xn, z; θ), (4.1)

x̂ = lim
n→∞

xn (4.2)

The FPI layer can be defined based on the above relations. The FPI layer F receives an

observed sample or output of the previous layer as input z, and yields the fixed point

x̂ of g as the layer’s output, i.e.,

x̂ = g(x̂, z; θ)

= F(x0, z; θ)

= lim
n→∞

g(n)(x0, z; θ)

= (g ◦ g ◦ · · · ◦ g)(x0, z; θ)

(4.3)

where ◦ indicates the function composition operator. The layer receives the initial point

x0 as well, but its actual value does not matter in the training procedure because g has

a unique fixed point. Hence, x0 can be predetermined to any value such as zero matrix.

Accordingly, we will often express x̂ as a function of z and θ, i.e., x̂(z; θ). When using

an FPI layer, the first equation in (4.1) is repeated until convergence to find the output

x̂. We may use some acceleration techniques such as the Anderson acceleration [50]

for faster convergence.

In multi-layer networks, z from the previous layer is passed onto the FPI layer, and

its output can be passed to another layer to continue the feed-forward process. Note

that there is no apparent relation between the shapes of xn and z. Hence the sizes of

the input and output of an FPI layer do not have to be same.

4.2 Differentiation of the FPI layer

Similar to other network layers, learning of F is performed by updating θ based on

backpropagation. For this, the derivatives of the FPI layer has to be calculated. One
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simple way to compute the gradients is to construct a computational graph for all the

iterations up to the fixed point x̂. For example, if it converges in N iterations (xN = x̂),

all the derivatives from x0 to xN can be calculated by the chain rule. However, this

method is not only time consuming but also requires a lot of memory.

In this section, we show that the derivative of the entire FPI layer depends only

on the fixed point x̂. In other words, all the xn before convergence are actually not

needed in the computation of the derivatives. Hence, we can only retain the value of x̂

to perform backpropagation, and consider the entire F as a node in the computational

graph.Note that

x̂ = g(x̂, z; θ). (4.4)

is satisfied at the fixed point x̂. If we differentiate both sides of the above equation

w.r.t. θ, we have
∂x̂

∂θ
=

∂g

∂θ
(x̂, z; θ) +

∂g

∂x
(x̂, z; θ)

∂x̂

∂θ
. (4.5)

Here, z is not differentiated because z and θ are independent. Rearranging the above

equation gives

∂x̂

∂θ
=

I −
∂g

∂x
(x̂, z; θ)


−1

∂g

∂θ
(x̂, z; θ), (4.6)

which confirms the fact that the derivative of the output of F(x0, z; θ) = x̂ depends

only on the value of x̂. One downside of the above derivation is that it requires the

calculation of Jacobians of g, which may need a lot of memory space (e.g., convolution

layers). Moreover, calculating the inverse can also be a burden. In the next section, we

will provide an efficient way to resolve these issues.

4.3 Backward FPI layer

To train the FPI layer, we need to obtain the gradient w.r.t. its parameter θ. In contrast

to RBP [4, 51], we propose a computationally efficient layer, called the backward
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FPI layer, that yields the gradient without explicitly calculating the Jacobian. Here,

we assume that an FPI layer is in the middle of the network. If we define the loss of

the entire network as L, then what we need for backpropagation of the FPI layer is

∇θL(x̂). According to (4.6), we have

∇θL =

∂x̂

∂θ


⊤

∇x̂L

=

∂g

∂θ
(x̂, z; θ)


⊤I −

∂g

∂x
(x̂, z; θ)


−⊤

∇x̂L.

(4.7)

This section describes how to calculate the above equation efficiently. (4.7) can be

divided into two steps as follows:

c =

I −
∂g

∂x
(x̂, z; θ)


−⊤

∇x̂L, (4.8)

∇θL =

∂g

∂θ
(x̂, z; θ)


⊤

c. (4.9)

Rearranging (4.8) yields c =

∂g

∂x
(x̂, z; θ)


⊤

c +∇x̂L, which can be expressed

as an iteration form, i.e.,

cn+1 =

∂g

∂x
(x̂, z; θ)


⊤

cn +∇x̂L, (4.10)

which corresponds to RBP. This iteration eliminates the need of the inverse calculation

but it still requires the calculation of the Jacobian of g w.r.t. x̂. Here, we derive a new

network layer, i.e. the backward FPI layer, that yields the gradient without an explicit
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calculation of the Jacobian. To this end, we define a new function h as

h(x, z, c; θ) = c⊤g(x, z; θ), (4.11)

then (4.10) becomes

cn+1 =
∂h

∂x
(x̂, z, cn; θ) +∇x̂L. (4.12)

Note that the output of h is scalar. Here, we can consider h as another small network

containing only a single step of g (with an additional inner product). The gradient of

h can be computed based on existing autograd functionalities with some additional

considerations. Similarly, (4.9) is expressed using h:

∇θL =
∂h

∂θ
(x̂, z, c; θ), (4.13)

where c is the fixed point obtained from the fixed-point iteration in (4.12). In this way,

we can compute ∇θL by (4.13) without any memory-intensive operations and Jacobian

calculation. c can be obtained by initializing c to some arbitrary value and repeating

the above update until convergence. If the forward iteration g is a contraction mapping,

we can prove that the backward FPI layer is also a contraction mapping, which is

guaranteed to converge to a unique point. The proof of convergence is discussed in

detail in the next section.

Note that this backward FPI layer can be treated as a node in the computational

graph, hence the name backward FPI layer. However, care should be taken about the

above derivation in that the differentiations w.r.t. x and θ are partial differentiations. x

and θ might have some dependency with each other, which can disrupt the partial dif-

ferentiation process if it is computed based on a usual autograd framework. Let ϕ(a, b)

hereafter denotes the gradient operation in the conventional autograd framework that

calculates the derivative of a w.r.t b where a and b are both nodes in a computational

graph. Here, b can also be a set of nodes, in which case the output of ϕ will also be a

set of derivatives.
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In order to resolve the issue, we implemented a general partial differentiation op-

erator

P (s; r) ≜
∂r(s)

∂s
(4.14)

where s is a set of nodes, r is a function (a function object, to be precise), and ∂r(s)/∂s

denotes the set of corresponding partial derivatives: Let I(t) denotes an operator that

creates a set of leaf nodes by cloning the nodes in the set t and detaching them from

the computational graph. P first creates an independent computational graph having

leaf nodes s′ = I(s). These leaf nodes are then passed onto r to yield r′ = r(s′), and

now we can differentiate r′ w.r.t. s′ using ϕ(r′, s′) to calculate the partial derivatives,

because the nodes in s′ are independent to each other. Here, the resulting derivatives

∂r′/∂s′ are also attached in the independent graph as the output of ϕ. The P operator

creates another set of leaf nodes I(∂r′/∂s′), which is then attached to the original

graph (where s resides) as the output of P , i.e., ∂r(s)/∂s. In this way, the whole

process is completed and the partial differentiation can be performed accurately. If

some of the partial derivatives are not needed in the process, we can simply omit them

in the calculation of ∂r′/∂s′.

Note that the above independent graph is preserved for backpropagation. Let H(v;u)

be an operator that creates a new function object that calculates
∑

i ⟨vi, ui⟩, where the

node vi is an element of the set v and ui is one of the outputs of the function object u.

In the backward path of P , the set δ of gradients passed onto P by backpropagation is

used to create a function object

η = H(δ; ρ) (4.15)

where ρ(s) is a function object that calculates P (s; r) = ∂r(s)/∂s. The backpropa-

gated gradients for s can be calculated with another P operation, i.e., P (δ∪s; η) (here,

the derivatives for δ do not need to be calculated). In practice, the independent graph

created in the forward path is reused for ρ in calculating η.
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The backward FPI layer can be highly modularized with the above operators, i.e.,

P , H , and a plus operator can construct (4.12) and (4.13) entirely, and the iteration

of (4.12) can be implemented with another forward FPI layer. This allows multiple

differentiations of the forward and backward FPI layers. A picture depicting all the

above processes is provided in the Appendix section. All the forward and backward

layers are implemented at a high level of abstraction, and therefore, it can be easily

applied to practical tasks by changing the structure of g to one that is suitable for each

task.

4.4 Convergence of the FPI layer

The forward path of the FPI layer converges if the bounded Lipschitz assumption

holds. For example, to make a fully connected layer a contraction mapping, simply di-

viding the weight by a number greater than the maximum singular value of the weight

matrix will suffice. In practice, we empirically found out that setting the initial values

of weights (θ) to small values is enough for making g a contraction mapping through-

out the training procedure.

Convergence of the backward FPI layer. The backward FPI layer is composed

of a linear mapping based on the Jacobian ∂g/∂x on x̂. Convergence of the backward

FPI layer can be confirmed by the following proposition.

Proposition 1. If g is a contraction mapping, the backward FPI layer (4.10) con-

verges to a unique point.

Proof. For simplicity, we omit z and θ from g. By the definition of the contraction

mapping and the assumption of the arbitrary norm metric,

∥g(x2)− g(x1)∥
∥x2 − x1∥

≤ k (4.16)

is satisfied for all x1 and x2 (0 ≤ k < 1). For a unit vector v, i.e., ∥v∥= 1 for the
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aforementioned norm, and a scalar t, let x2 = x1 + tv. Then, the above inequality

becomes
∥g(x1 + tv)− g(x1)∥

∥t∥
≤ k. (4.17)

For another vector u with ∥u∥∗≤ 1 where ∥·∥∗ indicates the dual norm, it satisfies

u⊤(g(x1 + tv)− g(x1))

|t|
≤

∥g(x1 + tv)− g(x1))∥
|t|

≤ k

(4.18)

based on the definition of the dual norm. This indicates that

lim
t→0+

u⊤(g(x1 + tv)− g(x1))

|t|
= ∇v(u

⊤g)(x1)

≤ k.

(4.19)

According to the chain rule,

∇(u⊤g) = (u⊤Jg)
⊤ (4.20)

where Jg is the Jacobian of g. That gives

∇v(u
⊤g)(x1) = (∇(u⊤g)(x1))

⊤ · v

= u⊤Jg(x1) v

≤ k.

(4.21)

Let x1 = x̂ then

u⊤Jg(x̂) v ≤ k (4.22)

for all u, v that satisfy

∥u∥∗ ≤ 1,

∥v∥ = 1.
(4.23)
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Therefore,

∥Jg(x̂)∥ = sup
∥v∥=1

∥Jg(x̂)v∥

= sup
∥v∥=1,∥u∥∗≤1

u⊤Jg(x̂)v

≤ k < 1

(4.24)

which indicates that the linear mapping by weight Jg(x̂) is a contraction mapping.

By the Banach fixed-point theorem, the backward FPI layer converges to the unique

fixed-point.

4.5 Two representative cases of the FPI layer

As mentioned before, FPI can take a wide variety of forms. We present two represen-

tative methods that are easy to apply to practical problems.

4.5.1 Neural net FPI layer (FPI NN)

The most intuitive way to use the FPI layer is to set g to an arbitrary neural network

module. In FPI NN, the input variable recursively enters the same network module

until convergence. g can be composed of layers that are widely used in deep networks

such as convolution, ReLU, and linear layers. Algorithm 1 shows the process of sin-

gle FPI NN network. ai is a training sample and pi is its corresponding ground truth

(answer).

Convergence threshold τ can be differ for forward and backward layer. Note that

the same fixed-point iteration module is used for both forward and backward FPI.

The performance of our algorithm is most affected by the τ value as there are few

hyperparameters. Smaller τ value usually results in better performance, but takes a lot

of time (especially for learning). In experiments, the maximum number of iterations is

set in order to prevent the code from taking too much time in real experiments. FPI NN
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Algorithm 1: Single FPI NN network

1 Input: Training set S = {(ai, pi)|1 ≤ i ≤ N}, mini-batch size b,

convergence criterion β, convergence threshold τ

2 Initialize: Parameters θ of neural network f

3 for number of training epochs do

4 Initialize B̄ = {B|B is a partition of S with size b}.

5 for B ∈ B̄ do

6 for (aj , pj) ∈ B do

7 Initialize x0, n = 0.

8 while β(xn, xn+1) < τ do

9 g(x, aj ; θ) = f(x, aj ; θ).

10 xn+1 = g(xn, aj ; θ), n = n+ 1.

11 end

12 x̂j = xn, Initialize c0, n = 0.

13 while β(cn, cn+1) < τ do

14 h(x, aj , c; θ) = c⊤g(x, aj ; θ).

15 cn+1 =
∂h

∂x
(x̂j , aj , cn; θ) +∇x̂j

L, n = n+ 1.

16 end

17 ĉj = cn, ∇θLj =
∂h

∂θ
(x̂j , aj , ĉj ; θ)

18 end

19 Update θ by 1
b

∑
(aj ,pj)∈B ∇θLj

20 end

21 end
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can perform more complicated behaviors with the same number of parameters than

using g directly without FPI, as demonstrated in the experiments section.

4.5.2 Gradient descent FPI layer (FPI GD)

The gradient descent method can be a perfect example for the FPI layer. This can

be used for efficient implementations of the energy function networks like ICNN [6].

Energy function networks are scalar-valued networks for estimating the energy (or

error) functions. Unlike a typical network which obtains the answer directly as the

output of the network (i.e., f(a; θ) is the answer of the query a), an energy func-

tion network retrieves the answer by optimizing an input variable of the network (i.e.,

argminx f(x, a; θ) becomes the answer). The easiest way to optimize the network f

is gradient descent

xn+1 = xn − γ∇f(xn, a; θ). (4.25)

This is a form of FPI and the fixed point x̂ is the local minimum of f , i.e.,

∇f(x̂, a; θ) = 0. (4.26)

If f is convex, x̂ becomes the global optimum of f(x).

x̂ = argmin
x

f(x, a; θ). (4.27)

We can enforce f to be a convex function using special structure like [6]. However in

the experiments, it has better performance to use the local minimum.

In case of a single FPI layer network with FPI GD, x̂ becomes the final output

of the network. Accordingly, this output is fed into the final loss function L(x∗, x̂) to

train the parameter θ during the training procedure as follows:

min
θ

L(x∗, x̂). (4.28)
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This behavior conforms to that of an energy function network. However, unlike the

existing methods, the proposed method can be trained easily with the universal back-

propagation formula. Therefore, the proposed FPI layer can be an effective alternative

to train energy function networks.

Algorithm 2 shows the process of single FPI GD network. An advantage of FPI GD

is that it can easily satisfy the bounded Lipschitz condition by adjusting the step size γ.

In other words, it does not matter how the network that creates the objective function

is configured.
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Algorithm 2: Single FPI GD network

1 Input: Training set S = {(ai, pi)|1 ≤ i ≤ N}, mini-batch size b,

convergence criterion β, convergence threshold τ , step size γ

2 Initialize: Parameters θ of energy function network f

3 for number of training epochs do

4 Initialize B̄ = {B|B is a partition of S with size b}.

5 for B ∈ B̄ do

6 for (aj , pj) ∈ B do

7 Initialize x0, n = 0.

8 while β(xn, xn+1) < τ do

9 g(x, aj ; θ) = x− γ∇f(x, aj ; θ).

10 xn+1 = g(xn, aj ; θ), n = n+ 1.

11 end

12 x̂j = xn, Initialize c0, n = 0.

13 while β(cn, cn+1) < τ do

14 h(x, aj , c; θ) = c⊤g(x, aj ; θ).

15 cn+1 =
∂h

∂x
(x̂j , aj , cn; θ) +∇x̂j

L, n = n+ 1.

16 end

17 ĉj = cn, ∇θLj =
∂h

∂θ
(x̂j , aj , ĉj ; θ)

18 end

19 Update θ by 1
b

∑
(aj ,pj)∈B ∇θLj

20 end

21 end
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Chapter 5

Applications to optimization and
classification tasks

Since several studies [4, 9, 44, 51] have already shown that RBP-based algorithms

require only a constant amount of memory, we omit memory-related experiments. In-

stead, we focus on applying the proposed method to practical tasks in this paper. It is

worth noting that both the forward and backward FPI layers were highly modularized,

and the exactly same implementations were shared across all the experiments without

any alteration. The only difference was the choice of g where we could simply plug in

its functional definition, which shows the efficiency of the proposed framework. For

all experiments, the detailed structure of g and the hyperparameters for training are

described in the Appendix section. Although the performance is not recorded in this

section, we can also use Anderson [50] acceleration for fast convergence although it

has a slight performance penalty. We used a small number of layers when constructing

g in all experiments. This is because even if the number of layers is different, if the to-

tal number of parameters is the same, the performance is almost the same. All training

was performed using the Adam [40] optimizer.

37



5.1 Toy examples: optimization problems

Here, we show the feasibility of our algorithm by learning optimization problems. The

goal of the problem is to learn the functional relation based on training samples (a, t),

where t is the ground truth solution of the problem.

5.1.1 Training objective functions by FPI GD

FPI GD method learns the form of the objective function in the training phase so that

optimizing the objective function for each sample input a yields x∗ ≈ t. Accordingly,

in the test phase, we optimize the trained objective function for a new sample input

and compare the result to the ground truth target. In other words, this problem can

be seen as finding an unconstrained objective function that gives a similar answer to

the given constrained problem. Of course, the more complex the problem, the more

difficult it is to find the objective function. However it learns the objective function

quite accurately about the four optimization problems in this section. We used single

FPI layer networks for this problem.

5.1.1.1 Translation

This is the simplest toy example where the desired solution for a sample input a is

t = a + d for some vector d. d is randomly picked and fixed for the whole process.

One of ideal objective functions for this problem is ∥x− (a+ d)∥2.

5.1.1.2 Linear equation

Here we consider the case of linear equation Wx = a where W is a 10 × 10 matrix

with full rank. It can be considered as a convex optimization problem:

minimize
x

∥Wx− a∥2 . (5.1)

The desired value should be t = W−1a.
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5.1.1.3 Constrained problem 1. Box constraint

This is a box-constrained problem:

minimize
x

∥x− a∥2 ,

subject to − 1 ≤ x ≤ 1.

(5.2)

Here, the inequalities are element-wise. This can be reformulated as an unconstrained

problem with an extended-real-valued function ∥x− a∥2 + Ibox(x), where Ibox(x) is

zero for −1 ≤ x ≤ 1 and infinity otherwise. Target t can be found by clipping the

elements of a into the range [−1, 1].

5.1.1.4 Constrained problem 2. Standard simplex

This is another constrained problem that finds the closest discrete probability distribu-

tion from a given vector:

minimize
x

∥x− a∥2 ,

subject to 1Tx = 1,

x ≥ 0.

(5.3)

Likewise, this can be reformulated as an unconstrained problem with ∥x− a∥2 +

Isimp(x) where Isimp(x) is analogously defined as in the previous problem. The de-

sired solution can be calculated based on [64].

All the toy examples were evaluated under the following settings: Training and

test sample inputs were randomly generated by zero-mean Gaussian distribution with

standard deviation 2 and 1, respectively. For training, 10,000 random samples were

generated in every epoch. For test, 1,000 samples were generated and fixed for the

entire procedure. The dimensions of x, a, and t were 10, and the size of mini-batch

was 100. For all problems, mean squared error (MSE) was used as the loss metric L.
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Figure 5.1: Training loss per epoch in toy examples.

The step size γ was set to 103 and the number of gradient steps N to 1,000. We used a

simple two-layer network, i.e.,

[vector input] - (20× 64 FC) - (ReLU) - (64× 64 FC) - (MS) - [scalar output].

Here, the input is the concatenation of x and a, and FC and MS represent the fully-

connected and the mean square operations, respectively. This structure was applied to

every toy example and the Adam [40] optimizer was used in the outer process.

Figure 5.1-5.4 shows the experimental results for the toy examples. Here, we can

confirm that the losses of each problem decrease nicely along the training epochs as

well as the gradient descent steps. The shape of a learned objective function was drawn

by perturbing the variable input near the target for a fixed sample input. We randomly

picked 10 directions for perturbation and displayed the average and standard deviation
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Figure 5.2: Test loss per epoch in toy examples.

of the objective function for each length of perturbation. Here, the figure shows that

the learned objective functions have ideal shapes for optimization.

5.1.2 Additional experiment on optimization problem

Here, we show the feasibility for both of the FPI GD and FPI NN by learning a con-

strained optimization problem with a box constraint. The performance was evaluated

for the FPI NN network, the FPI GD network, and a non-FPI network which has the

same structure with g of FPI NN. The structures of g of FPI NN and the energy func-

tion of FPI GD were both linear-ReLU-linear. The dimension of a, x, and the number

of hidden nodes were 10, 10, and 32, respectively. We randomly generated a from

zero-mean Gaussian distributions. 10,000 training samples were generated with σ = 2
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Figure 5.3: Test loss per gradient descent step.

and 1,000 test samples with σ = 1. The convergence threshold was set to 10−6 for

both FPI NN and FPI GD layers and the step size of the gradient descent in FPI GD

was fixed to 0.01. All the models were trained for 40 epochs with batch size 100, and

the training and test losses (MSE) were reported.

Figure 5.5 shows the train and test losses per epoch. Here, we can see that FPI NN

outperforms the other networks for both the train and the test losses.

5.2 Multi-label classification

The multi-label text classification dataset (Bibtex) was introduced in [38]. The goal of

the task is to find the correlation between the data and the multi-label features. Both

the data and features are binary with 1836 indicators and 159 labels, respectively. The
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Figure 5.4: Objective function.

numbers of indicators and labels differ for each data, and that of labels is unknown

during the evaluation process. We used the same train and test split as in [38] and

evaluated the F1 scores. Here, we used two single FPI layer networks with FPI GD

and FPI NN. We set g of FPI NN and f of FPI GD to similar structures which contain

one or two fully-connected layers and activation functions. As mentioned, the detailed

structures of the networks are described in Appendix section.

Table 5.1 shows the F1 scores. GT stands for ground truth. Here, DVN(Adversarial)

achieves the best performance, however, it generates adversarial samples for data aug-

mentation. Both FPI GD layer and FPI NN layer achieves better performance than

DVN(GT) under the same condition. Despite their simple structures, our algorithms

perform the best among those using only the training data, which confirms the effec-
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Method F1 score

MLP [12] 38.9

Feedforward net [6] 39.6

SPEN [12] 42.2

ICNN [6] 41.5

DVN(GT) [11] 42.9

DVN(Adversarial)[29] 44.7

FPI GD layer (Ours) 43.2

FPI NN layer (Ours) 43.4

Table 5.1: F1 score of multi-label text classification (higher is better). Our method

shows the best performance among those using only the training data.

tiveness of the proposed method.

5.3 Implementation details

In all experiments, we used the following criterion to determine the convergence of the

FPI layer:

β =
∥xn+1 − xn∥2

∥xn∥2
(5.4)

using the L2-norm. When β went below a certain threshold, xn+1 was considered

converged and we stopped the iteration. For all the experiments, we used two types of

network modules for g of the FPI layer:

1. FPI NN layer: To see the full potential of the FPI layer, we tested an FPI layer

with g being a general (small) neural network module. In this case, g can be-
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come an arbitrary function and we can explore more diverse possibilities of the

FPI layer. The only issue here is that the Lipschitz constant of g might not be

bounded. In practice, using small initial weights for g was sufficient in our em-

pirical experience.

2. FPI GD layer: Inspired by the energy function networks [6, 12, 29], this layer

performs a simple numerical optimization and yields the solution as the out-

put of the layer. We define the energy function as a small neural network with

a scalar output, and based on this energy function, g is defined to be a simple

gradient descent step with a fixed step size. Unlike most existing energy func-

tion networks, our version can perform backpropagation easily with the existing

autograd functionalities.

For the multi-label classification, the performance was evaluated for both the FPI NN

and FPI GD. Note that, for all the above layers, the fixed-point iteration variable x was

concatenated with the layer input z, and is passed onto g, e.g., for vector inputs

g(x, z; θ) = g([xT zT ]T ; θ). (5.5)

Accordingly, the size of the input of g was bigger than that of the output. x0 was either

a zero vector or a zero matrix in all the experiments.

All the training was performed using the Adam optimizer with learning rate 10−3,

and no weight decay was used. In the following experiments, we used the ReLU ac-

tivation function most of the time. Although this does not exactly align with the as-

sumption in the paper, we used it anyway as in many practices of deep learning and

confirmed that the FPI layer still performs nicely.

5.3.1 Multi-label classification

For this experiment, all the training settings of the proposed methods were the same as

the other compared algorithms, except for the network structure. The network struc-
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ture of FPI NN was composed of two fully-connected (FC) layers with 512 hidden

nodes, a ReLU activation after the first FC layer, and an additional sigmoid layer after

the second FC layer to normalize the output between zero and one. In this case, the

convergence threshold was 10−8. For FPI GD, the energy function had only one FC

layer with ReLU activation and a mean squared term to have a scalar output. Here,

the number of hidden nodes were also 512, and an additional sigmoid layer was added

after the FPI GD layer. We fixed the step size to 1.0 for the gradient descent in FPI GD

and used a different convergence criterion as follows:

β′ = ∥xn+1 − xn∥2 (5.6)

where the convergence threshold was 10−4. The sizes of both the networks’ inputs

and outputs were 1836 and 159, respectively, which is the same as the numbers of

indicators and labels.
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Figure 5.5: Training and test loss per epoch in constrained problem. The FPI GD and

FPI NN networks perform better than the feedforward network with the same number

of parameters.
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Chapter 6

Applications to computer vision tasks

6.1 Image denoising

Here, we compare the image denoising performance for gray images perturbed by

Gaussian noise with variance σ2. Image denoising has been traditionally solved with

iterative, numerical algorithms, hence using an iterative structure like the proposed FPI

layer can be an appropriate choice for the problem. To generate the image samples, we

cropped the images in the Flying Chairs dataset [24] and converted it to gray scale

(400 images for training and 100 images for testing). We constructed a single FPI NN

layer network for this experiment. For comparison, we also constructed a feedforward

network that has same structure as g. The performance is reported in terms of peak

signal-to-noise ratio (PSNR) in Table 6.1.

Table 6.1 shows that the single FPI layer network outperforms the feedforward

network in all experiments.

The performance gap between the two algorithms is larger in more noisy circum-

stances as shown in Table 6.2. Since both the networks are trained to yield the best
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Method σ = 15 σ = 20 σ = 25

Feedforward 32.18 30.44 29.09

FPI NN 32.43 31.00 29.74

Table 6.1: Denoising performance (PSNR, higher is better). The single FPI NN net-

work outperforms the feedforward network.

σ = 15 σ = 20 σ = 25

PSNR gap 0.25 0.56 0.65

Table 6.2: Performance gap between feedforward and FPI NN method. The gap is

larger for noisier (difficult) circumstances.

performance in their given settings, this confirms that a structure with repeated opera-

tions can be more suitable for this type of problem. An advantage of the proposed FPI

layer here is that there is no explicit calculation of the Jacobian, which can be quite

large in this image-based problem, even though there was no specialized component

except the bare definition of g thanks to the highly modularized nature of the layer.
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Figure 6.1: Image denoising examples. The left column shows the noisy input and the

right column is the ground truth. The denoised images are shown in the middle.
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Figures 6.1 and 6.2 show the image denoising examples.

6.2 Optical flow

6.2.1 Estimation by neural network

Optical flow is one of the major research areas of computer vision that aims to acquire

motions by matching pixels in two images. First, we demonstrate the effectiveness

of the FPI layer by a simple experiment, where the layer is attached at the end of

FlowNet [24]. The Flying Chairs dataset [24] was used with the original split which

has 22,232 training and 640 test samples. Figure 6.3 shows example images for Flying

Chair dataset. In this case, the FPI layer plays the role of post-processing. We attached

a very simple FPI layer consisting of conv/deconv layers and recorded the average end

point error (aEPE) per epoch as shown in Figure 6.4. Although the number of addi-

tional parameters is extremely small (less than 0.01%) and the computation time is

nearly the same with the original FlowNet, it shows noticeable performance improve-

ment.

6.2.2 Estimation by objective function

There have been suggested a lot of objective functions to find optical flow [17, 33, 55,

65]. Many of them are based on the widely-used Horn-Schunck (HS) energy function

[33]. The usual implementation of the HS method is based on an approximated version

of the original objective function, i.e.,

E(I1, I2, u, v) =∫∫ [
(I1(x, y)− I2(x+ u, y + v))2 + λ

(
∥∇u∥2 + ∥∇v∥2

)]
dxdy,

(6.1)

where x and y are horizontal and vertical coordinates, respectively, I1 and I2 are

the two images, and (u, v) is an optical flow vector at pixel (x, y). The first term
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(I1(x, y) − I2(x + u, y + v))2 represents the photometric consistency and the sec-

ond term implies the similarity of flow vectors between nearby pixels. This manually

designed energy function has been modified by numerous studies to overcome its poor

performance. However, many of these modifications were designed heuristically and

it is difficult to know which is exactly better. The motivation of this experiment is

what if we learn the objective function itself instead of manually designing it. In most

cases, objective functions are handcrafted with some unrealistic assumptions, heuris-

tics, and approximations, and they are constantly modified by trial-and-error. Thus, it

is hard to validate the effectiveness of a given design and is also difficult to compare

different choices, because in most cases it requires a fair amount of actual evaluations.

Moreover, there are usually a number of hyper-parameters such as λ in equation (6.1)

that must be fine-tuned, so it is difficult to guarantee consistent performance in various

environments.

It is well-known that it is possible for neural networks to approximate variety

of functions, according to the universal approximation theorem [21, 34], if we have

enough resources such as computation power, memory, and training data. However, in

reality, resources are limited and it requires some efforts to apply the proposed method

efficiently in practical applications. Most importantly, one has to consider the charac-

teristics of the application and choose an adequate structure to reduce the search space.

For example, one can design a network structure that is similar to, but more general

than, an existing handcrafted objective function for a particular application.

To apply the proposed method to optical flow, we design a neural network for

the inner objective utilizing the basic form of the HS energy function (6.1), instead

of using a black-box neural network. Let us assume that J ≜ fe(I; θ) is a feature

extraction network for images, where its result J is an image with the same width and

height as I , but with different channels. Then the inner objective for optical flow is
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defined as follows:

fop(u, v, I1, I2; θ) ≜ E(u, v, J1, J2) =∫∫ [
(J1(x, y)− J2(x+ u, y + v))2 + λ

(
∥∇u∥2 + ∥∇v∥2

)]
dxdy,

(6.2)

where J1 ≜ fe(I1; θ) and J2 ≜ fe(I2; θ). Hence, this is basically an HS energy func-

tion applied to feature images extracted by a neural network. An important thing here

is that the feature extraction network itself will be trained during the procedure of

the proposed method. In this paper, U-net [54] is used as fe, with additional padding

operations to maintain the size of an image.

U-net is based on a pyramid-like structure as described in Figure 6.5, which can

be helpful for finding optical flow as long discussed in the literature. In the proposed

framework, (u, v), the optical flow vector, are the inner variables, and I1 and I2, the

images, are the coefficients. Note that these terms are shown in the above equation as

if they are 2-dimensional functions, but in reality, they are handled as 2-dimensional

arrays with the same size in the proposed method. Accordingly, J2(x + u, y + v) in

the above equation is regarded as a warping operation, where the bilinear interpolation

is used. Likewise, the image gradients in the above equation are approximated based

on finite differences.

For this problem, the training set K contains M bundles of (I1, I2, ugt, vgt), where

ugt and vgt are ground truth optical flow for I1 and I2. The average end point error

(EPE) is used as the outer loss, i.e.,

Lop(u, v, u
′, v′) =

1

V

∫∫ √
(u− u′)2 + (v − v′)2 dxdy (6.3)

where V is the area of the images (of course, Lop(u, v, u
′, v′) is also computed based

on discrete approximation). Algorithm 3 summarizes the whole procedure of the pro-

posed method for optical flow.

Since optical flow is a complicated problem, having good initial points u0 and v0

can be vital for the success of the proposed method. If we do not have good initial
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Algorithm 3: Learning Objective Function for Optical Flow

1 Input: Training set S, mini-batch size b, step size γ, regularization constant λ

2 Initialize: Network parameters θ

3 for number of training epochs do

4 Initialize B̄ = {B|B is a partition of S with size b}.

5 for B ∈ B̄ do

6 Initialize Y to an empty set.

7 for (I1, I2, ugt, vgt) ∈ B do

8 Initialize u0 and v0.

9 while convergence do

10 J1 = fe(I1, θ).

11 J2 = fe(I2, θ).

12 un+1 = un − γ
∂E(un, vn, J1, J2)

∂un
.

13 vn+1 = vn − γ
∂E(un, vn, J1, J2)

∂vn
.

14 end

15 Add (û, v̂, ugt, vgt) to Y .

16 Calculate ∇θLop(û, v̂, ugt, vgt) by backward FPI layer.

17 end

18 Update θ by 1
b

∑
(û,v̂,ugt,vgt)∈Y ∇θLop(û, v̂, ugt, vgt).

19 end

20 end
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points, then the possible ranges of u and v that the proposed method has to learn the

objective function for can be too large. To avoid this issue, we use existing algorithm,

PWC-net [60], as an initializer. In this regard, the product of the proposed method can

be viewed as a post-processing scheme to improve the performance further.

U-Net [54] with depth 3 was used as the feature extraction network, which gives

the effect of using a 3-level image pyramid. The step size was set to γ = 1.0, the

regularization constant to λ = 180, and the mini-batch size to h = 10.

We used the MPI-Sintel clean dataset [19] which is a 3D animation dataset for

optical flow. Figure 6.7 shows example images for MPI-Sintel dataset. Its training

dataset consists of 23 scenes, 1, 064 image frames, and 1041 ground truth flows, which

has been additionally separated to a training set (908) and a validation set (133) in

an existing work [24]. In our experiment, this validation set was used as the test set

because the original test set does not have any ground truth.

The average EPE of PWC-net for the test set is 2.534 which is the initial error of

(u0, v0) in our algorithm. We set the number of steps N to 10 which was the maximum

possible number we could afford in the GPU memory. The 10 iteration steps improved

the average EPE to 2.502 as shown in Figure 6.6. The average EPE decreases smoothly

as the iteration proceeds, which suggests that this improvement is not accidental and

the proposed method learns a meaningful objective function. If future advances in

deep learning hardware allow more memory space, than there is a chance that better

performance can be achieved with more gradient descent steps.

Learning Hyperparameters:

When designing the objective function, other traditional methods spend a lot of

time tuning hyper-parameters. On the other hand, our algorithms are less sensitive

since the network automatically learns a proper objective function. Moreover, we can

also attempt to learn the hyper-parameters in the proposed framework, considering

them as network parameters. For example, the regularization constant λ in (6.2) can be
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included in θ as a parameter. Although omitted in this section, we have actually tried

training λ several times in this way and have fixed λ to the converged value for every

other training attempts. Hyperparameters can be easily chosen in this way or it is also

possible to learn them together with other network parameters in each iteration.

6.3 Image generation

Here we show the inverse operation can be easily performed using FPI GD layer by

improving the variational autoencoder. Figure 6.8 shows the structure of variational

autoencoder (VAE). In VAE, encoder and decoder are inverse operations with each

other. The encoder converts the input data into a smaller dimensional latent variable

z, and the decoder generates high-dimensional data similar to the input data from z.

For this, the encoder is composed using conv layers and the decoder is composed using

deconv layers. However, conv and deconv layers are not strictly inverse transforms, and

ReLU or batch normalization in the middle are not considered. We directly compute

the inverse operation of f for given y as follows:

x̂ = argmin
x

∥y − f(x)∥2. (6.4)

To find x̂ that satisfies the above equation, we optimize through FPI GD as follows:

f̄(x) = ∥y − f(x)∥2,

xn+1 = xn − γ∇f̄(xn).
(6.5)

Since the purpose of VAE is to train a decoder that generates images well, we design

the FPI to be in the form of the inverse operation of the decoder in order to replace the

existing encoder. That is, we replace encoder E(x) to F (D(x)) for decoder D(x).

However, since the VAE is also a large network, if you start training at zero base,

it takes too much time for training with the current GPU and the number of steps to

converge the FPI must be large. So, we conduct an experiment to check feasibility. We
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limited the maximum number of steps for convergence to 30 for both forward FPI and

backward FPI, but instead trained first with the original VAE for a certain epoch to

give a guideline. In addition, the latent variable extracted from the original VAE was

given for the start input variable x0 of FPI GD.
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Figure 6.3: Examples for Flying Chair dataset.
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Figure 6.5: Structure of U-Net.
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Figure 6.6: Result for Optical Flow. Average EPE for test set decreases through the

gradient steps.
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Figure 6.7: Examples for MPI-Sintel dataset.
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Figure 6.8: Structure of the variational autoencoder. The encoder acts as inverse oper-

ation of the decoder.
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Figure 6.9 shows the entire process of our method combined with VAE. The de-

coder is trained in two ways and the results of each are compared.

• 60 epochs with original VAE

• 30 epochs with original VAE + 30 epochs with VAE combined with our method

The results for the initial 30 epochs are the same, so we report the results for the later 30

epochs. As a measure, we use the Fréchet inception distance (FID) [30] score, which

is widely used to evaluate image generation performance. We use CelebA dataset [45]

for evaluation. Figure 6.11 shows the FID score of the original VAE and our method.

Despite using a maximum of 30 steps for FPI GD, our method outperforms the original

VAE for every epoch.

Figures 6.14, 6.15 describe image reconstruction and generation results of our

method. Our method needs much more training time than original VAE so comparison

by epochs may be meaningless. However, since the decoder uses the same structure,

the test time is the same. The best performance of our method is 155.324 and the orig-

inal VAE is 157.717, so it can be seen that our method represents the inverse operation

better.

The conv layer and the deconv layer are known to perform the role of inverse

transformation between each other well, but our method can be more effective when

inverse transformation for various and complex networks or functions is required.

6.4 Implementation details

For the experiments on image denoising and optical flow, only the FPI NN layer was

tested. For the energy function network of the FPI GD layer to have a scalar output,

we attached a mean squared layer at the end of the network. Note that, for all the above

layers, the fixed-point iteration variable x was concatenated with the layer input z, and
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is passed onto g, e.g., for vector inputs

g(x, z; θ) = g([xT zT ]T ; θ). (6.6)

All the training was performed using the Adam optimizer with learning rate 10−3,

and no weight decay was used.

6.4.1 Image denoising

The first 500 images of the flying chair dataset [24] were cropped to 180× 180 around

the center, of which the former 400 images were used to train the networks and the

latter 100 were used as test samples. All images were converted to gray scale. All the

network modules consisted of two 2D convolution layers with 32 intermediate chan-

nels and a ReLU activation after the first convolution layer in the proposed method,

and the baseline (non-FPI) feedforward network also shared the same structure. The

channel sizes of the network’s input and output were both one since the input and the

output were gray-scale images. All the models were trained for 20 epochs, and the fi-

nal results were reported based on the best epoch for each method. Gradient clamping

with max norm 0.1 was used to prevent the divergence of the FPI layers and The con-

vergence threshold of the FPI layer was set to 10−7. The initial values of the network

weights were set ten times smaller than the default initialization of PyTorch [25].

6.4.2 Optical flow

We used the FlowNetS [24] structure for this experiment. As in [24], we tested the

performance on the flying chair dataset with the same training/test split. The number

of channels in FlownetS starts at 6 and increases to 1024 using 10 conv layers, which

are followed by several deconv layers. We attached an FPI layer at the end of the

FlowNetS, where g consists of one conv layer with four input and output channels

and one deconv layer with four input and two output channels. The strides of the
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conv and deconv layers were both set to two for downsampling and upsampling. The

final output of the proposed model was the summation of the output of the FPI layer

and that of the original FlowNetS. Note that both the FlowNetS and the FPI layer

were trained end-to-end in this experiment. The convergence threshold of the FPI layer

was set to 10−13. The initial values of the network weights was set 100 times smaller

than the default initialization of PyTorch. All other training settings were identical

to the original FlowNet. Note that, for this experiment, the performance was worse

than that of the original FlowNetS when a (non-FPI) feedforward module of the same

structure was attached at the end of FlowNetS, and thus this result is omitted from the

experimental results.

6.4.3 Image generation

In this experiment, we used the PyTorch implementation from GitHub [58]. The energy

function network structure of FPI GD was exactly same as the decoder. Unnormalized

convergence criterion 5.6 was used. The convergence threshold was 10−4 and step size

of gradient descent was 0.1. In experiments, the standard deviation was shared between

the two methods in order to focus on the overall performance. Hidden dimensions of

encoder were 32, 64, 128, 256, 512 and the latent dimension was 128. For evaluation

we randomly picked 10,000 images from CelebA dataset and computed the FID score

with generated 10,000 images. Size of each images were 64 by 64. The initial values

of the energy function network weights of FPI GD were set 1,000 times smaller than

the default initialization of PyTorch.
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Figure 6.10: Examples of CelebA dataset.
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Figure 6.11: FID score for variational autoencoder and our method (lower is better).
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Figure 6.12: Image reconstruction results of original VAE.
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Figure 6.13: Image generation results of original VAE.
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Figure 6.14: Image reconstruction results of our method.
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Figure 6.15: Image generation results of our method.
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Chapter 7

Conclusion

7.1 Concluding remarks

This paper proposed a novel architecture that uses the fixed-point iteration as a layer

of the neural network. The backward FPI layer was also proposed to backpropagate

the FPI layer efficiently. We proved that both the forward and backward FPI layers are

guaranteed to converge under mild conditions. All components are highly modularized

so that we can efficiently apply the FPI layer for practical tasks by only changing the

structure of g. Two representative cases of the FPI layer (FPI NN and FPI GD) have

been introduced. Experiments have shown that our method has advantages for several

problems compared to the feedforward network. For some problems like denoising, the

iterative structure of the FPI layer can be more helpful, and in some other problems,

it can be used to refine the performance of an existing method. Finally, we have also

shown in the multi-label classification example that the FPI layer can achieve the state-

of-the-art performance with a very simple structure.
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7.2 Broader impact

This work does not present any foreseeable societal consequence for now because it

proposes theoretical ideas that can be generally applied to various deep learning struc-

tures. However, our method can provide a new direction for various fields of machine

learning or computer vision.

Recently, a huge portion of new techniques is developed based on deep learning

in various research fields. In many cases, this leads to rewriting a large part of the

traditional methodologies, because deep networks bear quite different structures from

traditional algorithms. During the process, much of the conventional wisdom found in

existing theories are being re-discovered based on raw datasets. This induces a high

economic cost in developing new technologies. Our method can provide an alternative

to this trend by incorporating the existing mechanisms in many iterative algorithms,

which can reduce the development costs. There already have been many studies that

combine deep learning with more complicated models such as SMPL, however, one

usually has to derive the backpropagation formula separately for each method, which

introduces considerable difficulties and, as a result, development costs. However, our

method can be applied universally to many types of iterative algorithms, so the con-

silience between various models from different fields can be stimulated.

Another possible consequence of the proposed method is that it might also expand

the application of deep learning in non-GPU environments. As demonstrated in the

experiments, the introduction of an FPI operation in a deep network can achieve similar

performance with a much simpler structure, at the expense of an iterative calculation.

This can be helpful for using deep networks in many resource-limited environments

and may accelerate the trend of ubiquitous deep learning.
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7.3 Limitations and future work

As the structure of g becomes more complex, it is difficult to make g contraction

mapping and the probability of divergence increases. However, if we make it a layer-

by-layer contraction mapping, the performance decreases. In other words, it seems

necessary to consider the structure of the components of g in order to obtain good

performance while using a complex structure in future studies. In addition, there were

many experiments that could not be performed because of the long training time, and

the number of iterations had to be limited. However, if the hardware develops, various

results will be obtained.

Since this research area has not been studied much yet, there is a lot of potential for

improvement. First of all, new structures of g and their applications are worth studying.

For a simple and intuitive example, we can use another gradient-based algorithm like

Adam [18] instead of gradient descent in FPI GD. Using multiple input sources can

be an interesting future research direction. We use single input source x in this work

but multiple input sources and alternate optimizations using multiple g can yield new

effects. Learning the initial value x0, which is initialized to a zero matrix (or zero

vector) for now, based on z for improving the efficiency can also be an interesting

research direction.

The purpose of this paper is to propose a new structure and to show that it can

be learned through the universal backpropagation formula. However, if we want to

apply this study in the future to obtain state-of-the-art performance in a specific field,

it would be better to use empirical information such as KKT conditions.
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Chapter 8

Appendix

8.1 Figures of partial differentiation and the backward FPI
layer

The following figures (Figure 8.1, 8.2, 8.3) show the structures of the proposed par-

tial differentiation operator and the backward FPI layer. Here, we can see that all the

operations are highly modularized, which allow multiple differentiations in a usual

autograd framework without any explicit Jacobian computation.
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Figure 8.1: Forward operation of partial differentiation.
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Figure 8.3: The backward FPI layer.

8.2 Additional lemma for the convergence of backward FPI
layer

Here, we use an arbitrary norm metric for all the vector and matrix norms. The follow-

ing lemma holds for vectors x and b, matrix A, and scalar k < 1.

Lemma 2. If the matrix norm ∥A∥< 1, then the linear transform by weight A, i.e.,

f(x) = Ax+ b, is a contraction mapping.
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Proof.

∥f(x1)− f(x2)∥
∥x1 − x2∥

=
∥Ax1 −Ax2∥
∥x1 − x2∥

=
∥A(x1 − x2)∥
∥x1 − x2∥

≤
∥A∥·∥x1 − x2∥

∥x1 − x2∥

= ∥A∥

≤ k < 1

(8.1)

By the definition, f is a contraction mapping.

In section 3.4,

∥Jg(x̂)∥≤ k < 1, (8.2)

which means that the linear transform with weight matrix Jg(x̂) is a contraction map-

ping by Lemma 2. Therefore, (10) of the backward FPI in the main paper is a contrac-

tion mapping.
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초록

최근여러연구에서기존신경망레이어들이이용할수없던제약조건들을인코딩

하기 위해, 심층 신경망을 설계할 때 최적화 문제를 활용하는 방법을 제안하였다.

그러나 이러한 방법들은 아직 초기 단계이며 역전파 공식을 도출하기 위해 KKT

조건 분석과 같은 특별한 처리가 필요하다. 본 논문에서는 딥 네트워크에서 더 복

잡한 연산을 쉽게 사용할 수 있도록 고정점 반복 레이어라고 하는 새로운 형태의

레이어을제안한다.반복적역전파방법에기반하여,역방향고정점반복레이어도

제안한다.그러나반복적역전파와달리,역방향고정점반복레이어는야코비행렬

을직접계산하지않고작은네트워크모듈을이용하여그래디언트를얻는다.또한

본 논문에서는 두 가지 실용적인 방법(FPI NN과 FPI GD)을 제안한다. FPI NN은

작은신경망모듈을반복하여업데이트하며,직관적이고간단하다. FPI GD는경사

하강법을반복하여업데이트하며,최근들어연구된에너지네트워크들의효율적인

학습 방법이다. 반복적 역전파 방법 및 관련 연구들이 실제 사례에 적용된 경우가

거의 없었는데, 본 논문의 실험은 고정점 반복 레이어가 이미지 노이즈 제거, 광학

흐름 측정, 다중 라벨 분류 및 이미지 생성과 같은 실제 문제에 성공적으로 적용될

수있음을보여준다.

Keywords: 고정점 반복, 경사 하강법, 미분가능 레이어, 반복적 역전파, 에너지 네

트워크,딥러닝아키텍쳐

Student Number: 2014-21619

97


	Chapter 1 Introduction
	Chapter 2 RelatedWork
	2.1 Energy function networks        
	2.2 Differentiable optimization layers     
	2.3 Recurrent back-propagation       
	2.4 Learning objective functions      
	2.5 Autoencoders          

	Chapter 3 Preliminaries
	3.1 Fixed-point iteration        
	3.2 Contraction mapping        
	3.3 Banach fixed-point theorem       
	3.4 Contraction property        

	Chapter 4 Proposed Method
	4.1 Structure of the FPI layer        
	4.2 Differentiation of the FPI layer       
	4.3 Backward FPI layer         
	4.4 Convergence of the FPI layer      
	4.5 Two representative cases of the FPI layer    
	4.5.1 Neural net FPI layer (FPI NN)     
	4.5.2 Gradient descent FPI layer (FPI GD)   


	Chapter 5 Applications to optimization and classification tasks
	5.1 Toy examples: optimization problems     
	5.1.1 Training objective functions by FPI GD    
	5.1.2 Additional experiment on optimization problem  

	5.2 Multi-label classification        
	5.3 Implementation details       
	5.3.1 Multi-label classification      


	Chapter 6 Applications to computer vision tasks
	6.1 Image denoising         
	6.2 Optical flow         
	6.2.1 Estimation by neural network     
	6.2.2 Estimation by objective function    

	6.3 Image generation        
	6.4 Implementation details       
	6.4.1 Image denoising        
	6.4.2 Optical flow         
	6.4.3 Image generation        


	Chapter 7 Conclusion
	7.1 Concluding remarks         
	7.2 Broader impact         
	7.3 Limitations and future work      

	Chapter 8 Appendix
	8.1 Figures of partial differentiation and the backward FPI layer 
	8.2 Additional lemma for the convergence of backward FPI layer 

	초록


<startpage>16
Chapter 1 Introduction 1
Chapter 2 RelatedWork 7
 2.1 Energy function networks         7
 2.2 Differentiable optimization layers      9
 2.3 Recurrent back-propagation        9
 2.4 Learning objective functions       10
 2.5 Autoencoders           12
Chapter 3 Preliminaries 15
 3.1 Fixed-point iteration         15
 3.2 Contraction mapping         16
 3.3 Banach fixed-point theorem        16
 3.4 Contraction property         20
Chapter 4 Proposed Method 23
 4.1 Structure of the FPI layer         23
 4.2 Differentiation of the FPI layer        24
 4.3 Backward FPI layer          25
 4.4 Convergence of the FPI layer       29
 4.5 Two representative cases of the FPI layer     31
  4.5.1 Neural net FPI layer (FPI NN)      31
  4.5.2 Gradient descent FPI layer (FPI GD)    33
Chapter 5 Applications to optimization and classification tasks 37
 5.1 Toy examples: optimization problems      38
  5.1.1 Training objective functions by FPI GD     38
  5.1.2 Additional experiment on optimization problem   41
 5.2 Multi-label classification         42
 5.3 Implementation details        44
  5.3.1 Multi-label classification       45
Chapter 6 Applications to computer vision tasks 49
 6.1 Image denoising          49
 6.2 Optical flow          53
  6.2.1 Estimation by neural network      53
  6.2.2 Estimation by objective function     53
 6.3 Image generation         58
 6.4 Implementation details        67
  6.4.1 Image denoising         68
  6.4.2 Optical flow          68
  6.4.3 Image generation         69
Chapter 7 Conclusion 77
 7.1 Concluding remarks          77
 7.2 Broader impact          78
 7.3 Limitations and future work       79
Chapter 8 Appendix 81
 8.1 Figures of partial differentiation and the backward FPI layer  81
 8.2 Additional lemma for the convergence of backward FPI layer  84
초록 97
</body>

