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Abstract

Effect of Swirl Control Valve and High Pressure Exhaust

Gas Recirculation on Diesel/Gasoline Dual-fuel Combustion

Hyungjin Shin
Department of Mechanical Engineering
The Graduate School

Seoul National University

As the emissions regulations become stricter, various studies have been
conducted to reduce the emissions. Dual-fuel combustion, which uses two fuels with
different reactivity, can reduce nitrogen oxides (NOx) and particle matter (PM)
emissions by increasing air-fuel premixing ratio. It can also achieve higher thermal
efficiency by compression ignition process. In contrast, dual-fuel combustion
involves difficulty to ensure combustion stability at low load condition as low
reactivity fuel leads to less auto-ignition tendency.

In this study, the effect of swirl control valve (SCV) and high pressure exhaust
gas recirculation (HP-EGR) have been investigated to find the optimal operating
strategy which can improve the incomplete combustion and combustion stability at
low load condition. Total Hydrocarbon (THC) and Carbon Monoxide (CO)
emissions can be reduced by applying SCV and HP-EGR. It can be concluded that

swirl flow motion and high intake temperature improved the incomplete combustion



and combustion stability. However, fast combustion with high swirl ratio and intake
temperature increased NOx emission and max pressure rise rate (mPRR).

Based on experimental results, the optimization experiment can derive the
optimal operating strategy of SCV and HP-EGR at the four operating conditions. At
low load conditions, incomplete combustion and low combustion stability is major
challenge of dual-fuel combustion. High swirl ratio and HP-EGR can improve
combustion stability and thermal efficiency at low load conditions. At high load
conditions, satisfying mPRR and NOx emission is important to optimize dual-fuel
combustion. Low swirl ratio and LP-EGR to decrease mPRR and NOx emission can
be considered at the high load conditions. The experimental results show that
applying the SCV and HP-EGR can improve the incomplete combustion and

combustion stability on dual-fuel combustion at the low load condition.

Keywords: Dual-fuel Combustion, Swirl Control Valve, High Pressure
Exhaust Gas Recirculation, Combustion Stability, Gross Indicated
Thermal Efficiency
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Chapter 1. Introduction

1.1 Research Background

Diesel engine has the advantage of fuel efficiency and Carbon Dioxides (CO>)
emission compared to gasoline engine. However, compression ignition on diesel
engine generates the Nitrogen Oxides (NOx) and Particle Matter (PM) emissions
which are harmful to human health. As the concern of environment and health
increases, the recognition of diesel engine has been worse. Furthermore, emissions
and fuel efficiency regulations are becoming stricter worldwide due to the global
warming. EURO 6 has been applied as an emissions regulation for passenger
vehicles, adding the WLTP (World harmonized Light vehicle Test Procedure) and
RDE (Real Driving Emission) test, and the future regulation should be more

strengthened [1].

After-treatment systems were developed and applied to satisfy the emissions
regulations. Although the after-treatment system such as DPF (Diesel Particle Filter),
LNT (Lean NOx Trap) and SCR (Selective Catalyst Reduction) can reduce the NOx
and PM emissions, they increase the manufacturing cost, vehicle weight and
pumping loss of engine. Thus, the research of the advanced combustion technology

is necessary for the high thermal efficiency with low emissions.



1.2 Previous Research

Various concepts of the advanced combustion were suggested to achieve low
emissions with high thermal efficiency. HCCI (homogeneous charge compression
ignition) is the compression ignition with homogeneous mixture by early injection.
Fuel is injected before intake valve open to reinforce the mixing of air and fuel. Well-
premixed and low temperature combustion can achieve very low NOx and PM
emissions. However, controllability of combustion phase is difficult due to

homogeneous auto-ignition with high max pressure rise rate [2-3].

PCCI (premixed charged compression ignition) was introduced to improve the
controllability compared with HCCI. Early injection of PCCI increases the ignition
delay to achieve well air-fuel mixing and low NOx and PM emissions. However,
PCCI also occurs high peak pressure and pressure rise rate due to using single fuel.

PCCI has limitation of operating range same as HCCI [4-5].

To resolve the limitation of PCCI and HCCI, many researchers were suggested
the combustion with two different fuels. Dual-fuel combustion, which uses two fuels
with different reactivity, can increase air-fuel premixing ratio by early injection of
low reactivity fuel. It can work compression ignition process by auto-ignition of high
reactivity fuel. As a results, dual-fuel combustion can reduce NOx and PM emissions

with high thermal efficiency [6-7].

Dual-fuel combustion has variable operating parameter such as injection timing,
fuel substitution rate, fuel properties and EGR rate, etc. Researchers have
investigated optimal operating strategies for dual-fuel combustion. Lee et al. insisted
that different injection strategies are needed in low-load and high-load conditions [8].
Mousavi et al. investigated the effect and characteristic of pilot injection strategy on

part load condition [9]. Benajes et al. suggested that early injection, multiple

2



injection and single injection around TDC can improve dual-fuel combustion in the
order of low, middle and high load condition [10]. Injection strategies has trade-off
between air-fuel premixing and pressure rise rate. Thus, injection timing and
strategies are different with conventional diesel combustion at each operating

condition.

The use of varying fuel substitution rate and property was introduced by many
researchers. Yang et al. changed the fuel blending ratio for low emissions and high
thermal efficiency under wide operating range [11]. Hanson et al. found that
combustion phase of dual-fuel combustion can be controlled by adjusting the fuel
substitution rate. Combustion speed is decreased with high fuel substitution rate [ 12].
Benajes et al. explained the effects of the diesel/gasoline fuel ratio on the RCCI. As
the diesel/gasoline fuel ratio decreases, the ignition delay increases; the first
combustion stage period shortens, and the second combustion stage is enhanced [ 13].
Tong et al. achieved low emissions level by using PODE (polyoxymethylene
dimethyl ethers) with high cetane number. But high reactivity fuel of high cetane
number occurred the combustion with the high pressure rise rate [14]. Derek et al.
have used CNG as low reactivity fuel. They found that CNG can reduce the pressure
rise rate compared with gasoline on dual-fuel combustion [15]. Kang et al.
introduced propane gas with low reactivity and insisted that it can be useful in high-
load conditions or for a high-compression-ratio engine with dual-fuel combustion

with a knocking problem [16].

EGR rate is also the major parameter that can controlled the combustion phase
by reducing reactivity of dual-fuel combustion with the NOx reduction. High EGR
rate prolongs the ignition delay and increases the premixed combustion phase [17].
Splitter et al. insisted that EGR rate was increased to reduce the peak pressure and

pressure rise rate at high load condition [18].



However, dual-fuel combustion has narrow operating range compared with
conventional diesel combustion [19]. At low load condition, substitution of low
reactivity fuel occurs the incomplete combustion with low combustion stability. At
high load condition, improving air-fuel premixing ratio of dual-fuel combustion
causes higher pressure rise rate which affects engine noise, vibration and knocking
problem [20]. Therefore, considerable research has been conducted to expand the
operating range of the dual-fuel combustion. Kokjohn S. et al. used the various fuel
reactivity to control the combustion phase with reasonable pressure rise rate for part
and high load condition [21]. Chu et al. applied low tumble flow head and intake to
expand the high load condition. Low tumble flow head and intake reduced relatively
low pressure rise rate and achieve the expansion of high load condition [22]. Wang
H et al. suggested the late intake valve closing(LIVC) strategy which reduces the
effective compression ratio for high load expansion. Reducing effective compression
ratio occurred combustion phase with low pressure rise rate and expand the high load
condition [23]. Park et al. introduced the mixture stratification by multiple injection
strategy to improve the thermal efficiency with low THC and CO emissions at low

load conditions [24].

Various operating strategies were investigated to reduce NOx and PM emissions
with improving thermal efficiency. However, dual-fuel combustion has disadvantage
of operating range compared with conventional diesel combustion. Most of the
research about expanding operating were focused on high load condition. Thus,
additional optimization of operating strategies is necessary to expand the low load

condition.



1.3 Research Objective

From the previous researches, the dual-fuel combustion can achieve low NOx
and PM emissions and high thermal efficiency. Various operating strategies were
suggested to increase the thermal efficiency. However, dual-fuel combustion has
narrow operating range compared with conventional diesel combustion. Expanding
the operating range has limitations in optimizing operating strategies. Additional
hardware optimization on dual-fuel combustion is necessary to expand the operating

range effectively.

In this study, swirl control valve and HP-EGR were considered to improve the
incomplete combustion and combustion stability. The effect of swirl control valve
and HP-EGR was evaluated at low load condition (1,500 rpm / gIMEP 5.2 bar).
Based on previous experimental results indicating the tendency of combustion
characteristic, the optimization experiment can derive the optimal operating strategy

of SCV and HP-EGR at the four operating condition.



Chapter 2. Experimental Setup and Conditions

2.1 Experimental Setup

This research was implemented on a single cylinder engine with 395cc
displacement. The dual-fuel single cylinder engine was manufactured by Seoul
National University. Detail engine specifications are shown in Figure 1 and Table 1
[25]. The compression ratio of 14 was appropriate to satisfy the max pressure rise
rate and reduce NOx and PM emissions compared with the compression ratio of 16.
The bathtub-shaped piston bowl was selected to reduce heat loss of dual-fuel
combustion. The head and intake port of the dual-fuel engine was manufactured to
generate low tumble flow motion for high load expansion. A 37 kW DC
dynamometer was used to operate the engine. Diesel fuel was directly injected by a
solenoid injector with 6 nozzle holes. It was injected at low pressure (450 bar) due
to earlier injection timing of duel-fuel combustion compared with conventional
diesel combustion. Gasoline fuel was injected by port injection system with two
solenoid injectors. Two Coriolis type fuel flow meters (OVAL Altimass CA001)

were used to measure the fuel flow rates.

The concentrations of carbon monoxide (CO), CO,, oxygen (02), NOx and
total-hydrocarbon (THC) were measured at an exhaust gas analyzer (HORIBA,
MEXA 7100DEGR). The soot was measured by a smoke-meter (AVL, 415S). The
intake pressure and in-cylinder pressure were measured every 0.1 crank angle by a
combustion analyzer (Kistler, Kibox To Go 2893). A schematic diagram of the

experimental setup was shown in Figure 2 [25].

The EGR rate was defined based on the concentration of the CO; in the intake
and exhaust mixtures. The properties of fuels are presented in Table 2. The ratio of

6



each fuel was calculated based on the fuel energy flow by considering low heating

value of fuels.
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Table 1. Engine specifications

Bore x Stroke [mm] 77.2 x 84.5
Displacement [cc] 395.5
Compression Ratio [-] 14
Con. Rod Length [mm] 140
IVO : 8° BTDC

Valve Timing

IVC :36° ABDC
EVO : 46° BBDC
EVC: 4° ATDC




Diesel

Kistler Ki-Box

R—=—=0

S)
X: O;i:;; G In-cylinder | Intake OVAL Fuel
MIEKA-TIDO BEGR Pressure | Pressure flowmeter

L
> <«

Back pressure J|Gasoline | Heater I\' 2 v
valve : ! ]
Swirl Control A
Valve =
AL 2 T
Smokemeter EN - ; £
415S ! 4 Intercooler —

OVAL Fuel
flowmeter

Supercharger
Figure 2. Schematic diagram of the experimental setup [25]
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Table 2. Properties of diesel and gasoline

Diesel Gasoline

Chemical Formula CxH2.0x CxH2.0x
Density [g/cm’] 0.831 0.724
Low heating value [MJ/kg] 42.5 42.8

Cetane/Octane number 54 (CN) 91 (RON)
St01ch10me[21‘r]1t<.: 0/1:)2]1t10 of AFR 146 14.5
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2.2 Swirl Control Valve and HP-EGR System

A swirl control valve(SCV) presented in Figure 3 was located between the
intake manifold and the intake port. The swirl control valve controls the intake flow
motion by valve opening rate. Swirl flow motion was generated when the valve was
closed. The experiment was conducted at two valve opening rates: 0 (fully closed,
SCV on, swirl) and 100 % (fully open, SCV off, no swirl). Figure 4 shows the swirl
ratio of each valve opening rate calculated by 3D-CFD at 1,500 rpm / gIMEP 5.2 bar
condition. The number of full-mesh grid is 840,000 at cylinder and ports. Additional
valve geometry is inserted at full-mesh intake port to simulate actual swirl control

valve.

After EGR and air mixture was compressed by a supercharger which controls
the intake pressure, it was cooled at constant temperature by an intercooler. Thus,
basic EGR system of the single cylinder engine was similar to low pressure exhaust
gas recirculation(LP-EGR). Implementing the actual HP-EGR system in the single
cylinder engine was challenging because it was difficult to maintain a certain level
of back pressure for HP-EGR application. In this study, HP-EGR was used to
increase the intake gas temperature for improving the combustion stability. Thus,
the effect of HP-EGR increasing the intake gas temperature was simulated by heating

the intake air with a heater located before the intake manifold.

12
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Figure 4. Swirl ratio of each valve opening rate
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2.3 Experimental Condition

The experiment consisted of three parts. The diesel injection timing swing
experiments conducted to determine the effect of swirl flow motion at 1,500 rpm /
gIMEP 5.2 bar and DIT of 16°, 26°, and 36° BTDC. The swirl ratio was controlled
by turning the SCV off (low swirl) and on (high swirl). The intake pressure was 1.1

bar and the gasoline ratio was 40%. EGR was not used.

The intake temperature swing experiments conducted to identify the effect of
HP-EGR at 1,500 rpm / gIMEP 5.2 bar with EGR rate 40%. MFB50 was 6° ATDC.
The intake pressure was 1.1 bar and the gasoline ratio was 50%. The intake
temperature was controlled 25°C (LP-EGR), 60°C and 80°C by heater to determine

the effect of HP-EGR.

Based on the previous experimental results, optimization experiments were
conducted at four operating points (1,500 rpm / gIMEP 5.2 bar, 1,750 rpm / gIMEP
7.2 bar, 2,000 rpm / gIMEP 9.3 bar and 11.7 bar) with different SCV and EGR states
in dual-fuel combustion. Table 3 shows the four operating conditions. For the
optimized points, NOx and PM should be less than 40 ppm and 0.2 FSN, respectively.
The coefficient of variation must be less than 5%, and the mPRR must be less than

10 bar/deg. The target constraints were shown in Table 4.

15



Table 3. Operating conditions on optimization experiment

Operating Conditions
Engine Speed [RPM] 1,500 1,750 2,000
gIMEP [bar] 5.2 7.2 9.3 11.7
Boost Pressure [bar] 1.06 1.26 1.39 1.69
16

“
- 7
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Table 4. Target constraints of optimizing points

Target Constraints

NOx [ppm] Below 40
PM [FSN] Below 0.2
mPRR [bar /deg] Below 10
CoV [%] Below 5
17



Chapter 3. Experimental Results and Discussion

3.1 Effect of Swirl Control Valve with Varying DIT

Figure 5 shows the in-cylinder pressure and heat release rate of the swirl on/off
experimental results at DIT of 16°, 26°, and 36° BTDC. The results were compared

when the SCV was opened and closed at 1,500 rpm, gIMEP 5.2 bar.

In both cases, the combustion phase, including the MFB 50 point, became
transient condition from advancing to retarding. This was related to the leaner local
equivalence ratio due to an earlier DIT, resulting in a prolonged ignition delay. This
phenomenon was well known from previous research on RCCI combustion. The
combustion phase was advanced with faster combustion speed at the swirl on
condition. It can be concluded that increasing the swirl motion in the cylinder
enhanced the spreading of diesel spray, shortening the first stage of burning. Because
the influence of swirl flow motion was strong in highly premixed conditions, the

combustion stability can be improved by swirl flow motion.

Figures 6 and 7 show the THC and CO emissions for different DITs. THC
formation is determined by the oxidation rate related to the combustion temperature.
Enhancing the premixed air—fuel mixture condition resulted in a faster burning rate.
Increasing the combustion temperature improved THC oxidation rate so that
increasing swirl ratio resulted in lower THC emission. CO emission is related to the
air—fuel local equivalence ratio. If air—fuel becomes rich, CO emission increases due
to a lack of oxygen to react. As swirl flow motion can make the local equivalence

ratio leaner, increasing the swirl ratio significantly contributes to the reduction in CO

18



emission. In all cases, increasing the swirl ratio advanced MFB 50 closer to the

compression stroke, resulting in decrease in THC and CO emissions.

Figures 8 and 9 show the NOx and PM emissions for different DIT. NOx
generation is mainly affected by combustion temperature and oxygen concentration.
The well-premixed condition with swirl flow motion increased the NOx emission by
higher combustion temperature. Thus, swirl flow motion improved the combustion
stability, but NOx emission should be controlled by additional EGR supply. PM is
generated by incomplete combustion in rich equivalent ratio region. Swirl flow
motion enhanced the premixed air-fuel mixture condition, which can decrease the
PM emission. Furthermore, increasing the swirl ratio may shorten the diesel spray
length by spreading the spray to reduce wall impingement which is the major reason
of PM reduction with DIT 36° BTDC. The result is suggested that increasing the
swirl ratio is appropriate for dual-fuel PCI based on the earlier DIT strategy to avoid

wall-impingement.

19
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Figure 7. CO emission for different DITs with swirl on and off at 1,500
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Figure 8. NOx emission for different DITs with swirl on and off at 1,500

rpm / gIMEP 5.2 bar
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Figure 9. PM emission for different DITs with swirl on and off at 1,500
rpm / gIMEP 5.2 bar
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3.2 Effect of HP-EGR

Figure 9 shows the in-cylinder pressure and heat release rate at intake
temperature 25°C, 60°C, 80°C with EGR rate 40% and 25°C with EGR rate 0%
condition. In same intake temperature cases, EGR supplement increased the
heat capacity of air-fuel mixture so that combustion speed and pressure rise rate
decreased at EGR rate 40% condition. Increasing the intake temperature
affected in-cylinder condition which enhanced the initial ignition condition and
burning rate. The combustion phase with the faster combustion speed was
advanced by increasing the intake temperature. Because applying HP-EGR
increased the intake temperature, combustion stability can be improved by HP-

EGR.

Figures 10 and 11 show THC and CO emissions with various intake
temperature. EGR supplement decreased overall combustion temperature so
that THC and CO emissions were increased at EGR 40% condition. However,
increasing the intake temperature with the same EGR rate can improve the THC
oxidation rate by higher combustion temperature. CO produced by the
incomplete combustion can be oxidized under high temperature condition.
Even if the equivalent ratio, the main cause of CO formation, was the same,
high combustion temperature reduced CO emission. Thus, increasing the intake
temperature by applying HP-EGR can reduce the products of incomplete

combustion, THC and CO emissions.

Figures 12 and 13 show NOx and PM emissions with various intake

temperature. EGR can reduce NOx emission by decreasing the combustion
23
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temperature. NOx emission was reduced by 86~92% with EGR rate 40%
condition. However, increasing the intake temperature generated low levels but
relatively high NOx emission by higher combustion temperature. PM formation
is related to the local air-fuel equivalent ratio. The mass of intake air is reduced
at higher intake temperature condition with the same intake pressure. PM
emission increased due to the lack of oxygen to react by increasing the intake
temperature. Thus, increasing the intake temperature by applying HP-EGR can
reduce the THC and CO emissions, but the substitution rate of the low reactivity

fuel should be adjusted to reduce PM emission.
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Figure 10. In-cylinder pressure and heat release rate with various intake temperature at 1,500 rpm / gIMEP 5.2 bar
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3.3 Optimal Strategy of SCV and HP-EGR on Dual-fuel

Combustion

Figure 15,16,17 and 18 show the in-cylinder pressure and heat release rate in
the optimized dual-fuel combustion with a compression ratio of 14 and a bathtub
piston at 4 operating condition. The criteria for optimization were presented in

experimental condition part.

The HRR curve shape became narrow and sharp with increasing swirl ratio and
intake temperature. Increasing swirl ratio and intake temperature generated more
combustible air—fuel mixture; thus, additional EGR should be supplied to meet the
NOx emission and mPRR limits. Higher intake temperature also caused rich
equivalent ratio condition. Gasoline fraction should be increased to satisfy the PM
emission limit. Advancing the DIT was attempted. Advancing the DIT to decrease
the NOx emission produced insufficient reduction, and the slower combustion phase
led only to decrease in GIE. As a result, the limit was satisfied by supplying
additional EGR and gasoline fraction. Figure 19 shows the gross indicated thermal
efficiency of each operating condition. At low-load condition, it is important to
improve thermal efficiency through improving incomplete combustion and
combustion stability. Improvement of incomplete combustion and combustion
stability was possible with increasing swirl ratio and intake temperature. For 1,500
rpm / gIMEP 5.2 bar and 1,700 rpm / gIMEP 7.2 bar, the coefficient of variation with
high swirl and intake temperature was the lowest. The GIE with high swirl and intake
temperature increased 3.2%p and 1.6%p compared with the GIE at the base

condition
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In contrast, at the high load condition, satisfying the mPRR and NOx emission
is major challenge to optimize dual-fuel combustion. To prevent an increase in
mPRR and NOx emission, additional EGR should be supplied at high swirl and
intake temperature condition. Additional EGR supplement may lead to poor
ignitibility and rich equivalent ratio. For 2,000 rpm / gIMEP 9.3 bar, the GIE with
low swirl and high intake temperature was highest. Max pressure rise rate was near
10 bar/deg with operating strategies with LP-EGR at 2,000 rpm / gIMEP 11.7bar
condition. Any operating strategies with HP-EGR cannot satisfy the target constraint
of max pressure rise rate. For 2,000 rpm / gIMEP 11.7 bar, the GIE with low swirl
and intake temperature was highest. The optimal strategies of each condition were

presented in Table 5.

High swirl motion and HP-EGR is suitable to improve combustion stability at
low load condition. Low swirl motion or LP-EGR to decrease mPRR and NOx
emission can high thermal efficiency with satisfying the target constraint at the high
load condition. SCV and HP-EGR system can be considered to expand the low load

condition on dual-fuel combustion.
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Figure 15. In-cylinder pressure and heat release rate of optimized dual-fuel combustion at 1,500 rpm / gIMEP 5.2
bar
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Figure 16. In-cylinder pressure and heat release rate of optimized dual-fuel combustion at 1,750 rpm / gIMEP 7.2
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Table 5. optimal strategies of four operating conditions

(Engine ssei:s(; / gIMEP) Optimal Strategy
1500 rpm / 5.2 bar Swirl + HP-EGR
1750 rpm / 7.2 bar Swirl + HP-EGR
2000 rpm / 9.3 bar No Swirl + HP-EGR

2000 rpm / 11.7 bar No Swirl + LP-EGR
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Chapter 4. Conclusion

In this study, the effect of SCV and HP-EGR was analyzed to improve
incomplete combustion and combustion stability. Based on the experimental results,

optimization experiment was conducted varying the SCV and EGR state.

The combustion phase was advanced with faster combustion speed with swirl
flow motion. THC, CO and PM emissions also are reduced by enhancing the air-fuel
premixing with swirl flow motion. It can be concluded swirl flow motion improved
the incomplete combustion and combustion stability. However, fast combustion with

high swirl increased NOx emission and mPRR

Applying HP-EGR increased the intake temperature. Increasing intake
temperature affected in-cylinder condition enhancing the ignition and burning rate.
Thus, the combustion phase was advanced with faster combustion speed. THC and
CO emissions can be reduced by improving oxidation with higher combustion
temperature. But higher intake temperature increased the NOx emission. PM
emission increased due to the lack of oxygen to react by increasing the intake

temperature.

At low load condition, incomplete combustion and low combustion stability is
major challenge of dual-fuel combustion. High swirl and intake temperature can
improve the combustion stability. High swirl and intake temperature improved the
combustion stability. For 1,500 rpm / gIMEP 5.2 bar and 1,700 rpm / gIMEP 7.2 bar,

the high swirl and intake temperature condition achieved the highest GIE.

At high load condition, satisfying mPRR and NOx emission is important to
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optimize dual-fuel combustion. Additional EGR supplement required at high swirl
and intake temperature condition may lead to poor ignitibility and rich equivalent
ratio. For 2,000 rpm / gIMEP 9.3 bar, low swirl and high intake temperature
condition achieved the highest GIE. For 2,000 rpm / gIMEP 11.7 bar, both low swirl

and intake temperature condition achieved the highest GIE.

The experimental results show that applying the SCV and HP-EGR can improve
the incomplete combustion and combustion stability. This research can contribute to
the thermal efficiency improvement at low load condition and the low load expansion

of dual-fuel combustion.
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