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Graph isomorphism is a core problem in graph analysis of various domains

including social networks, bioinformatics, chemistry, and so on. As real-world

graphs are getting bigger and bigger, applications demand practically fast al-

gorithms that can run on large-scale graphs. Existing approaches, however,

show limited performances on large-scale real-world graphs either in time or

space. Also, graph isomorphism query processing is often required in many ap-

plications, which is a natural generalization of graph isomorphism for multiple

graphs. In this thesis we present fast algorithms for graph isomorphism and

graph isomorphism query processing.

First, we present a new approach to graph isomorphism, which is the frame-

work of pairwise color refinement and efficient backtracking. Within the frame-

work, we introduce three efficient techniques, which together lead to a much

faster and scalable algorithm for graph isomorphism. Experiments on real-world

i



datasets show that our algorithm outperforms state-of-the-art solutions by up

to several orders of magnitude in terms of running time.

Second, We develop an efficient algorithm for graph isomorphism query

processing. We use a two-level index using degree sequences and color-label

distributions. Experimental results on real datasets show that our algorithm

is orders of magnitude faster than the state-of-the-art algorithms in terms of

index construction time, and it runs faster than existing algorithms in terms of

query processing time as the graph sizes increase.

Keywords: graph isomorphism; graph isomorphism query processing; pairwise

color refinement; backtracking; partial failing set

Student Number: 2014-21758
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Chapter 1

Introduction

1.1 Background

In 1979, Garey and Johnson [19] remarked 12 open problems that were not

known to be in P or NP-complete. Graph isomorphism is included in the open

problems, and while most of the open problems are resolved, graph isomorphism

remains open till today. That is, there is no polynomial-time algorithm for

graph isomorphism, which makes it very challenging to deal with the problems

on large-scale graphs.

Graph isomorphism is a core problem in graph analysis of various domains

including social networks [67, 81], bioinformatics [15], chemistry [58, 46], me-

chanics [76, 33], and so on [69]. As real-world graphs are getting bigger and

bigger, applications demand practically fast algorithms that can run on large-

scale graphs. Social network anonymization [80, 67] and circuit verification in

VLSI design [69, 41] are examples of such applications.

In the area of social network anonymization, k-anonymity [61, 80] means
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that there exist at least k candidate users in the released data for any user in

the original social network. To obtain k-anonymity, graph isomorphism tests

are frequently conducted on the d-neighborhood graph for each vertex in the

anonymized social network [67, 80], which is a subgraph induced by the vertex

and its d-hop neighbors. The previous work [67, 80] handles only 1-neighborhoods

(i.e., d = 1), and Zhou and Pei [80] mention that it is very challenging to test

graph isomorphism when d > 1 because the neighborhood size increases expo-

nentially as d increases.

In circuit design, an electronic design verification software determines whether

an integrated circuit layout corresponds to the original schematic circuit de-

sign. For the verification, the integrated circuit layout and the original design

are transformed into graphs, on which graph isomorphism testing is performed

[69]. The software has to process large-scale graphs when verifying large circuits,

for example, in VLSI design [41].

There are mainly two existing approaches to graph isomorphism. One is

reducing graph isomorphism to the graph canonization problem [50, 51, 30, 72],

and another is using subgraph isomorphism algorithms [78, 25, 8, 24, 57, 31, 68].

Existing approaches, however, show limited performances on large-scale real-

world graphs either in time or space. We will summarize the two approaches in

Section 2.3 and discuss the limitations in Chapter 3.

In this thesis we propose a new approach to graph isomorphism, which is

the framework of pairwise color refinement and efficient backtracking. Within

the framework, we use three efficient techniques, which together lead to a much

faster and scalable algorithm for graph isomorphism. We conduct experiments

comparing our algorithm and existing solutions on real-world datasets from

various domains. Experimental results show that our algorithm outperforms

state-of-the-art solutions by up to several orders of magnitude in terms of run-
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ning time.

We also present an efficient algorithm for graph isomorphism query pro-

cessing, which is a natural generalization of graph isomorphism for multiple

graphs. We use a two-level index based on degree sequences and color-label

distributions. Experimental results on real datasets show that our algorithm

is orders of magnitude faster than the state-of-the-art algorithms in terms of

index construction time, and it runs faster than existing algorithms in terms of

query processing time as the graph sizes increase.

1.2 Organization

The remainder of the thesis is organized as follows. Chapter 2 provides problem

definitions and related work. Chapter 3 describes a fast and scalable algorithm

for graph isomorphism. Chapter 4 presents an efficient algorithm for graph

isomorphism query processing. Finally, Chapter 5 concludes the thesis and dis-

cusses future directions.
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Chapter 2

Preliminaries

2.1 Notation

We assume that graphs are simple, undirected, connected, and vertex-labeled,

unless otherwise specified. However, all techniques in this thesis can be extended

to handle more general cases (e.g., directed, disconnected, multiple edges, mul-

tiple labels on vertex/edge). Let G = (V (G), E(G), LG) be a graph consist-

ing of a set V (G) of vertices, a set E(G) of edges, and a labeling function

LG : V (G) → Σ, where Σ is a set of labels. The set of neighbors of u in G is

denoted by NG(u) = {v ∈ V (G) : (u, v) ∈ E(G)}. The degree of u is |NG(u)|
and denoted by degG(u). The degree sequence of G is denoted by dsG, which is

|V (G)| plus the nonincreasing sequence of the vertex degrees of G. For example,

the degree sequence of G in Figure 2.1a is dsG = (5, 4, 3, 3, 2, 2). For a subset

of vertices S ⊆ V (G), the vertex-induced subgraph G[S] of G is a subgraph of

G whose vertex set is S and edge set consists of the edges in E(G) that have

both endpoints in S.
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(a) G (b) H (c) (G, πG)

Figure 2.1: (a–b) G and H are isomorphic. (c) Colored graph (G, πG) has a

stable coloring.

An isomorphism of graphs G and H is a bijective mapping f : V (G) →
V (H) such that (1) for each vertex u ∈ V (G), LG(u) = LH(f(u)) and (2)

(u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H). We say that G and H are

isomorphic if an isomorphism exists between them, and denote this fact by

G ∼= H. For example, G and H in Figure 2.1 are isomorphic.

An embedding of G in H is an injective mapping M : V (G) → V (H) such

that (1) for each vertex u ∈ V (G), LG(u) = LH(M(u)) and (2) (M(u),M(v)) ∈
E(H) for every (u, v) ∈ E(G). If an embedding of G in H exists with |V (G)| =
|V (H)| and |E(G)| = |E(H)|, then G ∼= H. An embedding of a vertex-induced

subgraph of G in H is called a partial embedding of G in H.

A coloring of graph G is a function πG : V (G) → {1, 2, . . . , |V (G)|}, and
a pair (G, πG) is called a colored graph. For a vertex u ∈ V (G), we say that

πG(u) is the color of u. The number of used colors in πG is denoted by |πG|.
If |πG| = 1, then πG is called a unit coloring. For a color c, the cell of πG

corresponding to c is the set of vertices π−1
G (c) = {u ∈ V (G) : πG(u) = c}. A

coloring πG of G is stable if, for any color c and two vertices u, v ∈ V (G) such

that πG(u) = πG(v), |NG(u) ∩ π−1
G (c)| = |NG(v) ∩ π−1

G (c)|. For example, πG in
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(a) Data graphs

(b) Query graph

Figure 2.2: Example instance of graph isomorphism query processing.

Figure 2.1c is a stable coloring.

A directed acyclic graph (DAG) g is a directed graph that contains no cycle.

We say that u ∈ V (g) is a parent of v ∈ V (g) (and v is a child of u) if a directed

edge u → v is in E(g). A vertex is a root of a DAG if it has no incoming edges.

2.2 Problem Definitions

In this thesis we tackle the following two problems.

Graph Isomorphism. Given two graphs G and H, the graph isomorphism

problem is to determine whether G and H are isomorphic or not.

Graph Isomorphism Query Processing. Given a set of data graphs D =

{G1, G2, . . . , Gk} and a query graph q, the graph isomorphism query processing

(GIQP) problem is to find all the data graphs in D that are isomorphic to q.

That is, GIQP is to compute the answer set Aq = {Gi ∈ D : Gi
∼= q}. For

example, the answer set for the data graphs and the query graph in Figure 2.2

is Aq = {G2}.
Graph isomorphism is not known to be in P or NP-complete. That is, time
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complexities of existing algorithms are not bounded by polynomial time, and

each algorithm can have an instance that takes exponential time in the worst

case. GIQP is a natural generalization of graph isomorphism, and thus there is

no polynomial time algorithm for GIQP as well.

Note that we consider vertex-labeled graphs, but all techniques in this paper

can be easily applied to unlabeled graphs by setting every vertex to an identical

label.

2.3 Related Work

Graph isomorphism can be reduced to other problems such as the graph canon-

ization problem and the subgraph isomorphism problem. GIQP can be reduced

to the graph similarity search problem. In this section we summarize related

work on these problems. We also briefly summarize previous work of graph

isomorphism on some graph classes.

Graph Canonization. Graph canonization [50, 30, 51] is the task of finding

a canonical form of an input graph G. The canonical form of G is a unique

representation of G such that for every H that is isomorphic to G, H has an

identical canonical form as that of G. Graph isomorphism can be solved using

graph canonization as two graphs are isomorphic if and only if their canonical

forms are identical. A common approach to graph canonization is repeatedly

performing color refinement and individualization [51]. Color refinement has

been widely used in graph canonization, and it takes O((E + V ) log V ) time

(while individualization takes constant time) [7], where E is the number of edges

and V is the number of vertices in an input graph. One of the best-known graph

canonization algorithms is nauty [50, 51], and the implementation of nauty

has been developed for over 30 years since it was proposed. Recently, Traces
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[51] was proposed with updated nauty, where Traces outperforms existing

algorithms on many graph classes. In addition, the minimum DFS code [72] of

a graph is a kind of graph canonization.

Subgraph Isomorphism. Given a query graph and a data graph, the sub-

graph isomorphism problem is to determine whether the data graph contains a

subgraph that is isomorphic to the query graph [78]. Since graph isomorphism

is a special case of subgraph isomorphism, one may use subgraph isomorphism

algorithms to cope with graph isomorphism. The problem is called subgraph

matching (or subgraph enumeration) if it is required to find all such subgraphs

[25, 8, 24, 57]. Extensive research has been done to develop practical solutions

for subgraph matching. Most practical solutions (such as VF2++ [31], TurboISO

[25], CFL-Match [8], and DAF [24]) are based on the backtracking approach [68],

which recursively maps a query vertex to a data vertex. While performing back-

tracking, one may use search space pruning techniques.

Graph Similarity Search. Given a set of data graphs, a query graph, and a

threshold τ , the graph similarity search problem [44, 79, 13, 12] is to find all

the data graphs which have graph edit distance [62] less than or equal to τ from

the query graph. If the graph edit distance between two graphs is zero, then

the graphs are isomorphic. Thus, GIQP can be viewed as an exact version of

graph similarity search.

Graph Isomorphism on Some Graph Classes. Graph isomorphism is not

known to be in P or NP-complete for general graphs. However, linear-time

algorithms exist for planar graphs [29] and interval graphs [9]. Also, the problem

is solvable in polynomial time for bounded-degree graphs [47] and trivalent

graphs [18]. For general graphs, there is a quasi-polynomial time algorithm

[3, 27]. We refer the reader to [38, 39] for a comprehensive survey of the problem.
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Chapter 3

Graph Isomorphism

Given two graphs G and H, the graph isomorphism problem is to determine

whether G and H are isomorphic or not. We assume that G and H are the same

size, because otherwise it is trivial to determine that they are not isomorphic.

Throughout this chapter we use V and E to denote the number of vertices and

the number of edges of G, respectively.

There are challenges when we deal with graph isomorphism on large-scale

graphs. First, existing approaches show limited performances on large-scale

graphs. Regarding the graph canonization approach, the number of iterations

of color refinement is not small on large-scale real-world graphs, and existing

solutions struggle on those graphs. Regarding the subgraph isomorphism ap-

proach, since the query graph is usually smaller than the data graph, algorithms

are often optimized for small query graphs and thus they cannot handle graph

isomorphism on large-scale graphs. Second, designing a time and space efficient

data structure is challenging. TurboISO, CFL-Match, and DAF use auxiliary data

structures based on the query graph and the data graph. Their data structures
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have at least quadratic time and space complexities, and it is infeasible to use

them in graph isomorphism. Lastly, implementing pruning techniques for large-

scale graphs is challenging. Pruning by failing sets [24] is a technique used to

prune out redundant search space during backtracking. The technique has been

shown to be very effective in subgraph matching as the query size increases

[24, 65]. However, the technique requires O(|V (q)|2/w) space, where q is the

query graph and w is the word size, and thus the technique is impracticable

when we deal with large-scale graphs.

In this chapter, we propose a new approach to graph isomorphism, which

combines pairwise color refinement and efficient backtracking. In our frame-

work, a color refinement algorithm is used to compute the stable coloring of

the disjoint union of two input graphs. After the stable coloring, we perform

a backtracking procedure that makes good use of the stable coloring and an

efficient pruning technique to find an isomorphism of the input graphs. The

main features of our approach are as follows:

1. Pairwise color refinement and binary cell mapping. Throughout our ap-

proach, we make use of the stable coloring computed by the pairwise color

refinement. First of all, we define a binary cell for the stable coloring,

which is a cell of size two containing one vertex from each input graph.

We show that stable colorings of real-world datasets contain large num-

bers of binary cells. We compute an initial partial embedding by mapping

the two vertices in every binary cell, which is an effective way to start

backtracking.

2. A linear-space data structure that can serve as a complete search space for

backtracking. To conduct backtracking on large input graphs, an essential

job is to transfer the result of color refinement to backtracking in an

10



efficient way. Accordingly, we develop a new data structure that exploits

the stable coloring of the pairwise color refinement, called the compressed

CS (candidate space). The compressed CS uses O(V + E) space, and

we propose an algorithm to build the compressed CS in O(V + E) time.

The compressed CS improves upon DAF’s CS [24] both in time and space,

which has O(V 2 + E2) time and space complexities.

3. An effective pruning technique feasible for large-scale graphs. We intro-

duce the partial failing set, which has the same pruning effect as DAF’s

failing set in [24], while it is much smaller than DAF’s failing set. Through

the partial failing set, the pruning technique can be efficiently applied to

graph isomorphism even on large-scale graphs.

We conduct experiments comparing our algorithm and existing solutions on

real-world datasets from various domains. The datasets consist of 23 large-scale

graphs that contain thousands to millions of vertices, and PubChem [66] chem-

istry database that contains 499,963 graphs with less than a thousand vertices.

For the 23 large-scale datasets, experimental results show that our algorithm

outperforms state-of-the-art solutions by up to several orders of magnitude in

terms of running time. For isomorphic datasets, our algorithm outperforms ex-

isting solutions on 19 datasets, and runs about 2,430 times faster than the

fastest existing solutions on average. For the remaining 4 datasets, our algo-

rithm is the runner-up and about 1.3 times slower than the fastest solution

on average. For nonisomorphic datasets, our algorithm is always the best and

runs about 3,160 times faster than the fastest existing solutions on average. For

PubChem, we conduct a parameter sensitivity analysis to evaluate the effect of

input parameters (i.e., the number of vertices and average degrees). Overall in

the analysis, our algorithm is faster than existing solutions.
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Algorithm 1: Algorithm for Graph Isomorphism

Input : graphs G and H

Output: “YES” if G ∼= H, “NO” otherwise

1 GH ← G ∪H;

2 πGH ← color vertices by degrees and labels;

3 π′
GH ← Refine(GH, πGH);

4 if CheckColoring(π′
GH) = false then

5 return “NO”;

6 M ← BinaryCellMapping(GH, π′
GH);

7 CS ← BuildCompressedCS(G,H, π′
GH);

8 GD ← BuildDAG(G, π′
GH);

9 Backtrack(GD,CS,M);

10 if an embedding of G in H is found then

11 return “YES”;

12 else

13 return “NO”;

3.1 Algorithm Overview

Algorithm 1 shows the overview of our solution that outputs whether two input

graphs G and H are isomorphic. We begin with computing a stable coloring of

the disjoint union of two input graphs (Lines 1 to 3). Initially, we color vertices

in the disjoint union GH of input graphs according to degrees and labels of

vertices. That is, two vertices u, v ∈ V (GH) have the same color if and only

if degGH(u) = degGH(v) and LGH(u) = LGH(v). Then, a stable coloring of

the initial coloring is obtained by a color refinement algorithm. In order for

12



G and H to be isomorphic, the stable coloring must consist of the cells such

that each cell contains the same number of vertices from each graph. Thus,

if there exists a cell that contains a different number of vertices from G and

H, then the graphs are not isomorphic (Lines 4 to 5). Otherwise G and H

may be isomorphic, and we search for an isomorphism by using a backtracking

approach, which recursively extends a partial embedding of G in H (Lines 6 to

13). Our backtracking approach consists of the following steps:

1. An initial partial embedding M is computed by mapping the two vertices

in every binary cell. We will prove that the initial partial embedding is a

unique partial embedding with respect to the binary cells that could lead

to an embedding of G (Section 3.2).

2. A data structure, called the compressed CS, is computed, which serves as

a complete search space for all embeddings of G in H. The compressed

CS uses O(V + E) space and it is built in O(V + E) time (Section 3.3).

3. A DAG GD of G is used to compute a matching order of vertices. We

adopt an adaptive matching order with DAG ordering [24] (Section 3.4).

4. Finally, Backtrack is invoked to find an embedding of G inH by extending

M . During backtracking, we use the pruning technique based on the failing

set [24]. We introduce the partial failing set, which enables us to apply

the pruning technique to large-scale graphs (Section 3.4).

3.2 Pairwise Color Refinement and Binary Cell Map-

ping

In this section we describe the pairwise color refinement, which outputs a stable

coloring of G∪H. Our graph isomorphism algorithm begins backtracking with

13



an initial partial embedding of G in H that is obtained by mapping every

two vertices in the binary cell of the stable coloring. We will show that the

initial partial embedding is a unique partial embedding that could lead to an

embedding of G in H.

Pairwise Color Refinement. Given a colored graph (G, πG), color refinement

[50, 10, 56, 40, 7] is the problem of finding the coarsest stable coloring π′
G that

is finer than πG. Let π, π′ be two colorings of a graph. We say that π′ is finer

than π (and π is coarser than π′) if every cell of π′ is a subset of some cell of

π. A coloring π′ is the coarsest stable coloring finer than π if there is no stable

coloring π′′ such that π′′ is finer than π and strictly coarser than π′.

Given two graphs G and H as an input of graph isomorphism, the pairwise

color refinement is the process that outputs a stable coloring of π′
GH as follows.

First, make a disjoint union GH of G and H, and compute a coloring πGH of

GH such that, for any two vertices u, v ∈ V (GH), πGH(u) = πGH(v) if and only

if degGH(u) = degGH(v) and LGH(u) = LGH(v). Then, compute the coarsest

stable coloring of π′
GH that is finer than πGH using a color refinement algorithm.

Berkholz, Bonsma, and Grohe [7] presented an O((E+V ) log V ) time color

refinement algorithm. They proved that the time complexity of the algorithm

is optimal if it starts with a unit coloring. In the pairwise color refinement, we

adopt their color refinement algorithm (see Color Refinement Algorithm in

Section 4.1 for a brief description of the algorithm).

Binary Cell Mapping. Suppose that we refined the initial colored graph

(GH, πGH) and obtained the coarsest stable coloring π′
GH. We say that a cell of

π′
GH is binary if the cell consists of two vertices u, x such that u ∈ V (G) and

x ∈ V (H).

We show that vertices in the binary cells can be mapped to each other to

produce a partial embedding of G in H.
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Lemma 3.2.1. Let B be the set of binary cells of π′
GH. The mapping M that

maps u ∈ V (G) to x ∈ V (H) for every {u, x} ∈ B is a partial embedding of G

in H.

Proof. Since π′
GH is finer than πGH, each cell of π′

GH is a subset of some cell in

πGH. Thus, any two vertices in the same cell in π′
GH have the same labels.

For any two binary cells {u, x}, {v, y} ∈ B such that u, v ∈ V (G) and

x, y ∈ V (H), we have |NGH(u) ∩ {v, y}| = |NGH(x) ∩ {v, y}| because π′
GH is

stable. Thus, x is adjacent to y if u is adjacent to v.

Therefore, M is a partial embedding of G in H.

If G and H have the same numbers of vertices and edges, then M in Lemma

3.2.1 is a unique partial embedding with respect to binary cells that could lead

to an embedding of G in H.

Lemma 3.2.2. If |V (G)| = |V (H)| and |E(G)| = |E(H)|, then there is no

embedding of G in H that maps u ∈ V (G) to x ∈ V (H) such that u and x are

in different cells of π′
GH.

Proof. We prove by contradiction. Assume that there exists an embedding M

of G in H that maps u to x.

Let π′′
GH be the coloring of GH obtained by merging cells of π′

GH in the

following way: initially, π′′
GH is equal to π′

GH; for each v ∈ V (G), if v and M(v)

belong to different cells of π′′
GH, then we merge these two cells. Since at least

two cells (i.e., cells that u and x belong to) are merged, π′′
GH is strictly coarser

than π′
GH.

By the assumption of the lemma, M is an isomorphism of G and H. Thus,

v and M(v) have the same labels and degrees for each v ∈ V (G), and in each

merged cell of π′′
GH, any two vertices have the same labels and degrees. Thus,

each merged cell is a subset of some cell of πGH, and so π′′
GH is finer than πGH.
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Let a, b be two vertices in the same cell of π′′
GH. We will denote a ≡π′′

GH
b if

|NGH(a) ∩ π′′−1
GH (c)| = |NGH(b) ∩ π′′−1

GH (c)| for any color c. If a and b belong to

the same cell in π′
GH, then we have a ≡π′′

GH
b because π′

GH is a stable coloring.

Otherwise, a and b are put into the same cell due to some vertices v and M(v)

such that (1) π′
GH(v) 
= π′

GH(M(v)) and (2) π′
GH(a) = π′

GH(v) and π′
GH(b) =

π′
GH(M(v)). For each neighbor w of v, we have that π′′

GH(w) = π′′
GH(M(w)),

and that M(w) is a neighbor of M(v) since M is an isomorphism. Thus, we

get v ≡π′′
GH

M(v). Since we have π′
GH(a) = π′

GH(v) and π′
GH(b) = π′

GH(M(v)),

we get a ≡π′′
GH

v and b ≡π′′
GH

M(v). It follows that a ≡π′′
GH

b, i.e., |NGH(a) ∩
π′′−1
GH (c)| = |NGH(b) ∩ π′′−1

GH (c)| for any color c.

Therefore, π′′
GH is a stable coloring that is finer than πGH and strictly coarser

than π′
GH. This contradicts that π′

GH is the coarsest stable coloring finer than

πGH.

Due to Lemmas 3.2.1 and 3.2.2, we first compute the partial embedding

by mapping the two vertices in every binary cell, and then we search for an

embedding of G in H by extending the partial embedding using a backtracking

procedure. This strategy is effective because we do not need to check adjacencies

among the vertices in the binary cells. Also, in many real-world graphs, stable

colorings contain large numbers of binary cells as shown in our experiments (see

Effect of Binary Cell Mapping in Section 3.5.2).

3.3 Compressed Candidate Space

Candidate space (CS) [24] is a data structure that stores mapping relation-

ships between a query graph and a data graph. In this section we define a CS

associated with the stable coloring, which is thus called colored CS. To store

the colored CS compactly, we design a new data structure called compressed
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CS, which has O(V + E) space complexity, and we present an O(V + E) time

algorithm to compute it.

Throughout this section, we assume that a stable coloring πGH of G ∪ H

is computed by the pairwise color refinement, and each cell of πGH contains

the same numbers of vertices from G and H (otherwise G and H are not

isomorphic).

Colored CS. Given graphs G and H, and a stable coloring πGH of G ∪H, a

colored CS is defined as follows.

Definition 3.3.1. (Colored CS) A colored CS on G and H for πGH consists

of the candidate set C(u) for each u ∈ V (G) and edges between the candidates

as follows.

1. For each u ∈ V (G), there is a candidate set C(u), where C(u) = {x ∈
V (H) : πGH(x) = πGH(u)}.

2. There is an edge between x ∈ C(u) and y ∈ C(v) if and only if (u, v) ∈
E(G) and (x, y) ∈ E(H).

By Lemma 3.2.2, if there is an embedding M of G in H such that M(u) = x,

then x must be in C(u) of the colored CS. As in the CS [24], the colored CS

serves as a complete search space for all embeddings of G in H. Figure 3.1

illustrates an example of a colored CS. Note that GD is a DAG of G in the

example.

For a candidate x ∈ C(u), let Nu
v (x) denote the set of vertices y ∈ C(v) that

are adjacent to x in the colored CS. For example, in Figure 3.1c, Nu1
u3
(x1) =

{x3, x4} and Nu4
u5
(x3) = {x2}. Recall that C(v) is a set of vertices in V (H)

whose colors are the same as v’s. Thus, Nu
v (x) is the set of x’s neighbors in H

whose colors are the same as πGH(v).
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(a) GD

(b) H

(c) Colored CS on G and H

(d) Compressed CS

Figure 3.1: (a–b) Colors appear within the vertices. (c) Colored CS. (d) Com-

pressed form of the colored CS.
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Suppose that we are given a colored CS on G and H for πGH. By definition

of the colored CS, we have the following properties.

Property 3.3.1. For any u, v ∈ V (G) such that πGH(u) = πGH(v), the candi-

date set of u is the same as that of v, i.e., C(u) = C(v).

Property 3.3.2. For any (u, v), (u′, v′) ∈ E(G) and x ∈ V (H) such that

πGH(u) = πGH(u
′), πGH(v) = πGH(v

′), x ∈ C(u), and x ∈ C(u′), we have

Nu
v (x) = Nu′

v′ (x) (e.g., N
u3
u9
(x3) = Nu4

u10
(x3) = {x9, x10} in Figure 3.1c).

According to the two properties, we can see that some parts of the colored

CS are duplications. By removing the duplications, we can store the colored CS

in linear space.

Compressed CS. We present a new data structure, called compressed CS,

which is a compressed form of the colored CS.

Definition 3.3.2. (Compressed CS) A compressed form of the colored CS

on G and H for πGH consists of the following.

• For each color c of πGH, there is a representative vertex rep(c) of c, which

is a vertex in V (G) that belongs to π−1
GH(c). The candidate set C(rep(c))

is stored for each color c.

• For any two (possibly non-distinct) representative vertices r and r′, there

is an edge between x ∈ C(r) and y ∈ C(r′) in the compressed CS if and

only if there exists an edge between x ∈ C(u) and y ∈ C(v) in the colored

CS such that rep(πGH(u)) = r and rep(πGH(v)) = r′.

Figure 3.1d shows the compressed CS with respect to the colored CS in

Figure 3.1c. In the example, u1, u2, u3, u6, u8, and u9 are representative vertices.

Lemma 3.3.1. The compressed CS uses O(V + E) space.
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Algorithm 2: BuildCompressedCS(G,H, πGH)

1 for each color c ∈ πGH do

2 rep(c) ← select a vertex from π−1
GH(c) that is from V (G);

3 C(rep(c)) ← {u ∈ π−1
GH(c) : u ∈ V (H)};

4 Sort NH(x) for every x ∈ V (H) by color;

5 for each x ∈ V (H) do

6 idx ← 1; Px[idx] ← 1;

7 for i ∈ {2, . . . , degH(x)} do

8 if πGH(NH(x)[i]) 
= πGH(NH(x)[i− 1]) then

9 idx ← idx+ 1; Px[idx] ← i;

Proof. In the compressed CS, each vertex in V (H) appears at most once as a

candidate because for any two distinct colors c and c′, C(rep(c))∩C(rep(c′)) =

∅. Thus, an edge in E(H) appears at most once in the compressed CS. The

compressed CS does not have an edge that is not in E(H) by Condition (2) in

the definition of the colored CS.

We present an O(V +E) time algorithm to build the compressed CS when

graphs G and H, and a stable coloring πGH of G ∪ H are given as input. Al-

gorithm 2 shows a high-level description of the algorithm. For each color c in

πGH, we select the first vertex in π−1
GH(c) that is from V (G) as the representa-

tive vertex, and compute the candidate set C(rep(c)) by checking each vertex

in π−1
GH(c) whether the vertex is from V (H). After the candidate sets are con-

structed, we compute edges between candidates as follows. For each x ∈ C(r)

of a representative vertex r, we first sort neighbors in NH(x) by their colors.

Let NCx = (c1x, c
2
x, . . . , c

kx
x ) denote the ordered set of unique colors in the sorted
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NH(x). The sorted NH(x) can be partitioned into kx subarrays by the colors in

NCx. Hence, the i-th subarray of the sorted NH(x) stores N r
rep(cix)

(x). (N r
r′(x)

in the compressed CS is defined just like Nu
v (x) in the colored CS.) To access

N r
rep(cix)

(x) directly, we maintain an array Px such that Px[i] is the start position

of color cix in the sorted NH(x).

Example 3.3.1. In Figure 3.1d, consider a candidate x1 ∈ C(u1). The neigh-

bors of x1 are in ascending order of their colors, i.e., NH(x1) = (x6, x7, x2, x5,

x3, x4). There are three subarrays (x6, x7), (x2, x5), (x3, x4) in NH(x1), which

correspond to Nu1
u6
(x1), N

u1
u2
(x1), N

u1
u3
(x1), respectively.

It takes O(V ) time to compute the candidate sets in the compressed CS.

Sorting NH(x) for every x ∈ V (H) takes O(V + E) time as follows: for each

edge (x, y) ∈ E(H), make a pair (x, πGH(y)); sort all edges in E(H) by the

lexicographic order of the pairs using the radix sort; get the sorted NH(x) for

each x ∈ V (H) from the sorted edges. Computing Px for every x ∈ V (H)

takes O(E) time because once NH(x) is sorted, we can compute Px by scan-

ning NH(x). Therefore, the time complexity of building the compressed CS is

bounded by O(V + E).

3.4 Backtracking and Partial Failing Sets

Backtracking is a recursive process that maps vertices in G to vertices in H so

as to find an embedding of G in H. Extensive work has been done to develop

a fast backtracking procedure, since it is the most time consuming part of the

algorithms for subgraph isomorphism. Many practical solutions [25, 8, 31, 24]

concern the two key issues in backtracking.

The first key issue is a matching order of vertices. We adopt the candidate-

size order [24] as the matching order of our backtracking procedure.
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Another key issue in backtracking is a search-space pruning technique. In

DAF [24], a notion called failing set is introduced, which is used to prune out

some parts of the search space. This pruning technique shows a good perfor-

mance for subgraph isomorphism as the query size increases [24, 65]. However,

since DAF’s failing set is usually a large part of the query graph, it is implemented

using bit-arrays (|V (q)| bits per vertex in query graph q), and the pruning tech-

nique requires O(|V (q)|2/w) space in total, where w is the word size. Thus, the

technique may incur a big overhead especially in space when we deal with graph

isomorphism on large-scale graphs. We introduce the partial failing set, which

works in the same way as DAF’s failing set, while it is much smaller than DAF’s

failing set. Therefore, the partial failing set enables us to apply the pruning

technique to large-scale graphs without significant overheads.

Build DAG. A DAG GD of G is used to compute a matching order in our

backtracking procedure. We build the DAG by performing a breadth-first search

(BFS). Since the vertices in the binary cells are mapped first, we execute a BFS

from the vertices of G that belong to the binary cells of πGH. In case there are

no binary cells, we select a root r of GD as

r ← arg min
u∈V (G)

|π−1
GH(πGH(u))|
degG(u)

,

and perform a BFS from the root. During BFS, we direct all edges from earlier

to later visited vertices. Regarding the vertices in the same level, vertices are

visited in descending order of vertex degrees.

Adaptive Matching Order with DAG Ordering. DAG ordering [24] is a

matching order that follows a topological order of DAG GD of G. Initially we

have a partial embedding obtained by the binary cell mapping.

Definition 3.4.1. An unmapped vertex u of GD in a partial embedding M is
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called extendable with respect to M if all parents of u are mapped in M . A DAG

ordering always selects an extendable vertex as the next matching vertex.

For example, suppose that the current partial embedding of G in H is

M = {(u1, x1), (u4, x4)} in Figure 3.1. Extendable vertices are u3, u5, and u6.

There can be multiple extendable vertices with respect to the current par-

tial embedding. An adaptive matching order selects an extendable vertex that

minimizes a certain value.

Definition 3.4.2. Given a partial embedding M and an extendable vertex u,

let p1, . . . , pk be the parents of u in GD. The set of extendable candidates of u

with respect to M is defined as CM (u) =
⋂k

i=1N
pi
u (M(pi)).

For example, suppose that the current partial embedding is M = {(u1, x1),
(u4, x4)} in Figure 3.1. The extendable candidates of u5 is CM (u5) = Nu1

u5
(x1)∩

Nu4
u5
(x4) = {x2, x5} ∩ {x5} = {x5}.
The candidate-size order [24, 36] selects an extendable vertex u such that

|CM (u)| is the minimum. Since CM (u) is computed with respect to the partial

embedding M , the next vertex selected in the candidate-size order may vary by

different partial embeddings.

Search Tree. The process of a backtracking procedure can be illustrated as a

search tree such that each internal node corresponds to a partial embedding,

and each leaf node corresponds to an embedding of G in H or a mapping failure.

There can be two types of mapping failures when trying to map the current

matching vertex u ∈ V (G): (1) a mapping conflict occurs when trying to map

u to a candidate x ∈ C(u) that is already mapped to another vertex in G; (2)

there are no extendable candidates of u. According to the cases, the leaves are

categorized into the following classes [24].

• A leaf belongs to the conflict-class if it corresponds to a conflict of map-
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ping that tries to map the current matching vertex u to an already mapped

candidate x. A conflict-class node is represented by M = {. . . , (v, x), . . . ,
(u, x)!}.

• A leaf belongs to the emptyset-class if it corresponds to the case that there

are no extendable candidates of u. An emptyset-class node is represented

by M = {. . . , (u, ∅)}.

• A leaf belongs to the embedding-class if it corresponds to an embedding

of G in H.

In what follows, we use M to represent a node in the search tree as well as the

corresponding partial embedding of G in H.

Example 3.4.1. Figure 3.2c is a part of the search tree for DAG GD in Figure

3.2a and graph H in Figure 3.2b. In Figure 3.2c, only the last mapping or

the mapping failure is shown for each search tree node. Suppose that we just

came back to node M = {. . . , (u2, x101), (u3, x103), (u4, x104), (u1, x1)} after the

exploration of the subtree rooted at M . During the exploration, we have tried all

possible extensions to map u5 and u6, and all attempts to map u6 have failed

because there are no extendable candidates of u6. Note that no matter how we

change the mapping of u1 in the current partial embedding M , it cannot lead to

an embedding of G because all possible extensions will end up with failures in

the same way.

Failing Set. For a set of vertices S ⊆ V (G) and a partial embedding M , let

M [S] denote the subset of M such that (u, x) ∈ M [S] if and only if (u, x) ∈ M

and u ∈ S.

Definition 3.4.3. A failing set of a node M in the search tree is a set of

vertices FM ⊆ V (G) such that M [FM ] cannot lead to an embedding of G by
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(a) GD

(b) H

(c) Search tree

Figure 3.2: Running example of the partial failing set. (a–b) Colors appear

within the vertices. (c) Shaded parts are redundant.

25



extending M [FM ].

Lemma 3.4.1 ([24]). Let M be a node in the search tree whose last mapping

is (u, x) in the corresponding partial embedding, and let FM be a non-empty

failing set of node M . If u 
∈ FM , then all siblings of node M (including itself)

cannot lead to an embedding of G.

Partial Failing Set. We define the partial failing set FM for a leaf in the

search tree as follows:

• For a conflict-class node M = {. . . , (v, x), . . . , (u, x)!}, the partial failing

set is FM = {u, v}.

• For an emptyset-class node M = {. . . , (u, ∅)}, the partial failing set is

FM = {u}.

• For an embedding-class node M , the partial failing set is the empty set.

The partial failing set FM of an internal node is computed by the partial

failing sets of its children. Suppose that an internal node M has k children

M1, . . . ,Mk that are all extensions of M to the next vertex uc. Assume that we

have computed the failing sets FM1 , . . . , FMk
of M1, . . . ,Mk, respectively. We

compute the partial failing set FM of node M according to the following cases:

Case 1. If there exists a child node Mi such that FMi = ∅, we set FM = ∅.

Case 2. Otherwise,

Case 2.1. If there exists a child node Mi such that uc 
∈ FMi , we set

FM = FMi .

Case 2.2. Otherwise, we set FM = (
⋃k

i=1 FMi−{uc})∪parent(uc), where
parent(uc) denotes the set of parents of uc in GD.
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The partial failing set of M is designed to contain only the vertices in DAF’s

failing set of M that are necessary to check the condition in Lemma 3.4.1.

Let M be a node in the search tree whose last mapping is (u, x) in the

corresponding partial embedding, and let FM be a non-empty partial failing set

of node M . If u 
∈ FM , we prune the siblings of node M .

Example 3.4.2. In the search tree in Figure 3.2c of Example 3.4.1, the partial

failing set of a leaf (u5, x103)! is {u3, u5}, that of (u5, x104)! is {u4, u5}, and

that of (u6, ∅) is {u6}. The partial failing set of each internal node (u5, xi) for

105 ≤ i ≤ 202 is ({u6}−{u6})∪{u2, u5} = {u2, u5}. The partial failing set FM

of M is (({u3, u5} ∪ {u4, u5} ∪ {u2, u5})−{u5})∪ {u2} = {u2, u3, u4}. Since u1

is not in FM , we do not extend all other siblings of node M that maps u1 to

another candidate (shaded in Figure 3.2c), and we set the partial failing set of

the internal node (u4, x104) to {u2, u3, u4} by Case 2.1.

Lemma 3.4.2. The partial failing set has the same pruning effect as DAF’s

failing set (i.e., Lemma 3.4.1 holds for the partial failing set).

Proof.Given a search tree nodeM , let FM and F ′
M denote the partial failing set

of M and DAF’s failing set of M , respectively. The differences between FM and

F ′
M are as follows: (1) If M = {. . . , (v, x), . . . , (u, x)!} belongs to the conflict-

class, F ′
M is set to anc(u)∪anc(v), where anc(u) denotes the set of all ancestors

of u in GD including u itself; (2) if M = {. . . , (u, ∅)} belongs to the empty-set

class, F ′
M is set to anc(u); (3) In Case 2.2 of the definition of the partial failing

set, F ′
M is set to

⋃k
i=1 F

′
Mi

. In other cases, F ′
M is set just like FM .

Consider a search tree node M whose last mapping is (u, x), and suppose

that FM and F ′
M are not empty. Since DAF’s failing set was proved to be a

failing set [24], siblings of M are pruned out if u is not in F ′
M due to Lemma

3.4.1. To prove the lemma, therefore, we need to prove that u /∈ FM if and only
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if u /∈ F ′
M .

For a set of vertices S ⊆ V (G) and a search tree node M , let S[M ] denote

the subset of S such that v ∈ S[M ] if and only if v ∈ S and (v, y) ∈ M for some

y. Given a DAG g and a set of vertices A ⊆ V (g), let Leafg(A) denote the set of

leaves in g[A]. For each search tree node M , the following invariant is satisfied:

(1) FM ⊆ F ′
M , and (2) LeafGD

(F ′
M [M ]) ⊆ FM .

We prove that u /∈ FM if and only if u /∈ F ′
M as follows.

• If u /∈ F ′
M , then u /∈ FM because FM ⊆ F ′

M .

• If u ∈ F ′
M , then u ∈ LeafGD

(F ′
M [M ]) because we use the DAG ordering

and (u, x) is the last mapping of M . Since LeafGD
(F ′

M [M ]) ⊆ FM , we get

u ∈ FM .

Therefore, the partial failing set has the same pruning effect as DAF’s failing set.

Let M denote a search tree node. We prove the invariant by an induction on

M . IfM is a leaf, there are three cases as follows: IfM = {. . . , (v, x), . . . , (u, x)!}
is a conflict-class node, LeafGD

(F ′
M [M ]) ⊆ {u, v}; If M = {. . . , (u, ∅)} is an

emptyset-class node, LeafGD
(F ′

M [M ]) = {u}; If M is an embedding-class node,

LeafGD
(F ′

M [M ]) = ∅. Thus, the invariant holds when M is a leaf. Consider an

internal node M in the search tree. Let’s assume that the invariant holds for

the search tree nodes that are proper descendants of M , and we show that

it holds for M . We consider only Case 2.2 because FM is set just like F ′
M in

other cases and thus the proof is trivial. In Case 2.2, note that uc ∈ F ′
Mi

for

every 1 ≤ i ≤ k, so we have uc ∈ F ′
M . We first show that FM ⊆ F ′

M (the first

item of the invariant). By induction hypothesis, we have
⋃k

i=1 FMi ⊆ F ′
M . Since

uc ∈ F ′
M , we have anc(uc) ∈ F ′

M , and thus parent(uc) ⊆ F ′
M . Therefore, we get

FM ⊆ F ′
M . For the second item of the invariant, we rewrite the left hand side
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by substituting F ′
M :

LeafGD
(F ′

M [M ]) = LeafGD
((

k⋃

i=1

F ′
Mi

)[M ])

= LeafGD
(

k⋃

i=1

(F ′
Mi

[M ])).

(3.1)

For a DAG g and two sets of vertices A,B ⊆ V (g), we can derive that Leafg(A∪
B) ⊆ Leafg(A) ∪ Leafg(B) by definition of Leafg. Thus,

LeafGD
(

k⋃

i=1

(F ′
Mi

[M ])) ⊆
k⋃

i=1

LeafGD
(F ′

Mi
[M ]). (3.2)

Since M = Mi−{(uc, x)} for some x, we have that uc /∈ F ′
Mi

[M ] and that some

vertices of parent(uc) may be included in LeafGD
(F ′

Mi
[M ]). Thus,

RHS3.2 ⊆ (

k⋃

i=1

LeafGD
(F ′

Mi
[Mi])− {uc}) ∪ parent(uc), (3.3)

where RHS3.2 is the right hand side of Equation (3.2). Lastly, by induction

hypothesis, we get

RHS3.3 ⊆ (

k⋃

i=1

FMi − {uc}) ∪ parent(uc)

= FM ,

(3.4)

where RHS3.3 is the right hand side of Equation (3.3).

Therefore, we have proved that the invariant holds for each search tree node

M .

Algorithm 3 shows the recursive backtracking procedure using adaptive

matching order and the pruning technique by the partial failing sets. In our
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Algorithm 3: Backtrack(GD, CS,M)

1 if |M | = |V (GD)| then
2 /* Found an embedding */

3 return ∅;
4 else

5 uc ← select an extendable vertex with min |CM (uc)|;
6 if CM (uc) = ∅ then

7 FM ← parent(uc);

8 else

9 FM ← ∅;
10 for each x ∈ CM (uc) do

11 if x is unvisited then

12 Mc ← M ∪ {(uc, x)};
13 Mark x as visited;

14 FMc ← Backtrack(GD, CS,Mc);

15 Mark x as unvisited;

16 if FMc = ∅ then

17 return ∅;
18 else

19 if uc /∈ FMc then

20 FM ← FMc ;

21 break;

22 else

23 FMc ← {uc,M−1(x)};
24 FM ← FM ∪ FMc ;

25 if uc ∈ FM then

26 FM ← (FM − {uc}) ∪ parent(uc);

27 return FM ;
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implementation, the recursive procedure is realized by an iterative procedure

that traverses the search tree in depth-first order. Thus, as soon as an embed-

ding of G in H is found (Line 2), we can immediately terminate the procedure.

The partial failing set of a search tree node is implemented using a sorted

array. For a partial embedding M , we need |FM | space to store the partial

failing set, and membership operation can be done in O(log |FM |) time. Union

operation for two partial failing sets FM1 and FM2 can be done in O(|FM1| +
|FM2|) time.

3.5 Performance Evaluation

We compare our algorithm with state-of-the-art GI solutions on real-world

datasets. The following algorithms are evaluated.

• Traces [51]: graph canonization algorithm.

• nauty [51]: graph canonization algorithm.

• DAF [24]: subgraph isomorphism algorithm.

• CFL-Match [8]: subgraph isomorphism algorithm.

• VF2++ [31]: subgraph isomorphism algorithm.

• CRaB: our algorithm (Color Refinement and Backtracking).

All the source codes were obtained from the authors of previous papers. Traces

and nauty are implemented in C, while DAF, CFL-Match, VF2++, and CRaB are

implemented in C++. We use version 2.6r12 of Traces and nauty. Experiments

are conducted on a machine with two Intel Xeon E5-2680 v3 2.50GHz CPUs

and 256GB memory running CentOS Linux.
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Table 3.1: Characteristics of datasets.

Dataset (G) |V (G)| |E(G)| |Σ| avg-deg(G)

Yeast 2,974 12,442 71 8.37

HPRD 9,045 34,853 307 7.71

Human 4,271 84,890 44 39.75

YAGO 4,202,965 11,354,645 49,676 5.40

Hamster 1,788 12,476 - 13.96

GrQc 4,158 13,422 - 6.46

HepTh 8,638 24,806 - 5.74

Facebook 4,039 88,234 - 43.69

CondMat 21,363 91,286 - 8.55

HepPh 11,204 117,619 - 21.00

Email 33,696 180,811 - 10.73

AstroPh 17,903 196,972 - 22.00

Brightkite 56,739 212,945 - 7.51

Plus 283,872 428,384 - 3.02

Amazon 334,863 925,872 - 5.53

Gowalla 196,591 950,327 - 9.67

DBLP 317,080 1,049,866 - 6.62

Adaptec 870,532 1,874,507 - 4.31

RoadNet 1,957,027 2,760,388 - 2.82

Youtube 1,134,890 2,987,624 - 5.27

Bigblue 3,795,055 8,712,138 - 4.59

Skitter 1,694,616 11,094,209 - 13.09

LiveJournal 3,997,962 34,681,189 - 17.35

We note that the minimum DFS code [72] has been used to test graph iso-

morphism between subgraphs of a social network [80], and gSpan [72] is an

available solution to compute the minimum DFS code. In our experiment, how-

ever, gSpan could run only on graphs with a few dozens of vertices since its

memory usage was very high. Thus, we do not include gSpan in our compre-

hensive experiments.

Datasets. We use 23 real-world graphs in Table 3.1. If a graph is disconnected,

we extract the largest connected component of the graph and record the char-
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(a) Yeast (b) HPRD

(c) Human (d) YAGO

Figure 3.3: Label distributions of datasets.

acteristics of the component. Yeast, HPRD, and Human [8, 25, 24] are protein-

protein interaction (PPI) networks, where vertices represent proteins and edges

represent interactions between proteins. Vertices in the PPI networks are la-

beled by Gene Ontology information [26]. YAGO [63] is a resource description

framework (RDF) dataset, which is transformed into a graph dataset by apply-

ing the type-aware transformation [37]. Figure 3.3 shows the label distributions

of Yeast, HPRD, Human, and YAGO, where the labels on the x-axis are sorted

by the number of vertices. We can see that some labels are assigned to many

vertices, while most of the labels are assigned to a few vertices.

We also cover unlabeled graphs from various domains: Hamster, Facebook,

Brightkite, Gowalla, Youtube, and LiveJournal [42, 43] are online social net-
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works, where edges represent interactions between users. GrQc, HepTh, Cond-

Mat, HepPh, AstroPh, and DBLP [43] are collaboration networks, where ver-

tices represent scientists and edges represent collaborations (co-authoring a pa-

per). Plus and Skitter [43, 49] are router interconnection networks and inter-

net topology graph, respectively. Email, Amazon, and RoadNet [43] are email

communication network, product co-purchasing network, and road network, re-

spectively. Adaptec and Bigblue [49] are graphs derived from circuits, where

vertices represent electronic components and nodes in circuits, and edges rep-

resent connections between components and nodes.

Isomorphic Pairs. We generate five isomorphic graphs for each dataset by ran-

domly permuting the vertices. An isomorphic graph pair consists of an original

dataset and a generated isomorphic graph.

Nonisomorphic Pairs. We generate five nonisomorphic graphs for each dataset

in the following way. For each isomorphic graph generated above, we randomly

swap two edges until it becomes nonisomorphic, while maintaining the degree

sequence so that the nonisomorphism is not revealed by a simple check. A

nonisomorphic graph pair consists of an original dataset and a generated noni-

somorphic graph.

Metrics. To evaluate an algorithm on isomorphic (or nonisomorphic) graph

pairs of a dataset, we measure the average running time for processing each

graph pair. Since Traces is a randomized algorithm, we run each of the five

graph pairs three times and measure the average running time of 5 × 3 runs

when we evaluate Traces. We set the time limit for processing a graph pair to 5

hours. If an algorithm on a pair does not finish within the time limit, we regard

the running time of the run as 5 hours and include it to the average time.
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Figure 3.4: Running time of VF2++, DAF, CFL-Match, nauty, Traces, and CRaB

for isomorphic graph pairs.

3.5.1 Comparing with Existing Solutions

In this section we compare our algorithm to existing solutions on real-world

graphs. In Figures 3.4 and 3.5, missing bars indicate that an algorithm ran out

of memory (256GB).

Isomorphic Pairs. Figure 3.4 shows the results on the isomorphic graph pairs.

Our algorithm outperforms state-of-the-art solutions in almost all datasets by

up to 4 orders of magnitude (see DBLP in Figure 3.4), and finishes all 23

datasets within the time limit. Our algorithm outperforms existing solutions

on 19 datasets, and runs about 2,430 times faster than the fastest existing

solutions on average. For the remaining 4 datasets (Yeast, HPRD, Adaptec,
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Bigblue), our algorithm runs marginally slower (about 1.3 times) than Traces,

but much faster than other algorithms. In each of these 4 datasets, Traces

computes the canonical form after one color refinement. In such a case, CRaB

runs slightly slower than Traces because CRaB performs backtracking after the

pairwise color refinement. In other datasets, however, the average number of

iterations of color refinement in Traces is much higher (about 418,680).

Subgraph isomorphism algorithms can solve small datasets, but they are

unable to handle large datasets as they run out of memory or exceed the time

limit. DAF and CFL-Match fail to process large-scale datasets due to out-of-

memory errors (e.g., YAGO, Plus, LiveJournal). VF2++ does not finish within

the time limit for most of the datasets. The results show that the standard

backtracking approach for subgraph isomorphism is unable to handle large real-

world graphs.

Regarding the graph canonization approach, Traces solves 20 datasets within

the time limit, while nauty solves 11 datasets. Sometimes nauty is faster than

Traces (e.g., Human, GrQc, HepPh, AstroPh), but in many datasets Traces

outperforms nauty.

To analyze the performance of the backtracking procedure of CRaB, we mea-

sure the average number of candidates of a vertex, the number of search tree

nodes, and the time used for backtracking in Table 3.2. Since the vertices that

belong to the binary cells are mapped before backtracking, they are excluded

when computing the average number of candidates.

In general, the backtracking takes more time when the number of candi-

dates is large (see YAGO, Skitter, Plus, and Youtube) because the number of

search tree nodes can be large. When two datasets have similar numbers of

search tree nodes, the backtracking takes more time on the dataset with higher

average degree because more edges should be checked for mapping a vertex. For
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Table 3.2: Analysis of backtracking procedure of CRaB.

Dataset (G) avg. |C(u)| #search tree nodes running time (ms)

Yeast 3.49 282 0.08

HPRD 2.00 167 0.05

Human 62.27 84,480 172.44

YAGO 787.69 513,024,341 34777.32

Hamster 3.18 1,100 0.43

GrQc 5.13 2,398 3.68

HepTh 3.45 3,107 2.38

Facebook 2.99 381 0.28

CondMat 2.97 13,582 8.43

HepPh 8.44 6,414 123.78

Email 3.51 18,026 9.05

AstroPh 4.91 9,302 28.75

Brightkite 4.58 5,337 1.86

Plus 99.59 1,011,479 101.39

Amazon 2.77 128,207 47.24

Gowalla 3.69 20,626 5.13

DBLP 3.22 227,180 126.64

Adaptec 2.57 84,263 5.98

RoadNet 2.01 44,110 11.21

Youtube 29.17 592,730 51.20

Bigblue 3.59 81,940 22.59

Skitter 18.37 269,773,419 18304.72

LiveJournal 4.62 349,633 454.62

example, Human and Adaptec have similar numbers of search tree nodes, but

the backtracking on Human takes more time than that on Adaptec, where the

average degree of Human (39.75) is much higher than that of Adaptec (4.31).

Nonisomorphic Pairs. Figure 3.5 shows the results on the nonisomorphic

graph pairs, which are generally analogous to the results on the isomorphic

pairs. After color refinement, our algorithm immediately determined that two

graphs are not isomorphic. In fact, it is known that color refinement can well

distinguish nonisomorphic graphs [4, 7, 1]. Our algorithm is always the best
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Figure 3.5: Running time of VF2++, DAF, CFL-Match, nauty, Traces, and CRaB

for nonisomorphic graph pairs.

for nonisomorphic graph pairs, and outperforms the fastest existing solutions

by up to 4 orders of magnitudes (see Amazon and DBLP in Figure 3.5). Our

algorithm runs about 3,160 times faster than the fastest existing solutions on

average.

Since nauty and Traces are graph canonization algorithms, they can de-

termine that two graphs are not isomorphic after computing canonical forms

of the graphs. Thus, the running times of these algorithms on nonisomorphic

pairs are similar to those on isomorphic pairs.
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3.5.2 Effectiveness of Individual Techniques

In this section we evaluate the practical impact of each of the new techniques

introduced in this paper. Since the techniques are relevant to the backtracking,

only the isomorphic graph pairs are used in these experiments.

Effect of Compressed CS. To evaluate the effect of the compressed CS, we

compare the size of the compressed CS against the size of the CS computed by

DAF [24]. We also compare the compressed CS with the colored CS in terms of

the size. The size of a CS is the number of vertices and edges in the CS.

Table 3.3 shows the compression ratios, where CR1 is the size of DAF’s CS

over the size of the compressed CS, and CR2 is the size of the colored CS

over the size of the compressed CS. The highest compression ratio is 476.47 on

YAGO.

The compression ratio is related to the number of colors in the stable color-

ing. The fewer colors the coloring has, the higher compression ratio is achieved.

When there is a small number of colors, many vertices are colored by a color

and thus there are many duplications in the colored CS. In the compressed CS,

however, there are no duplications because it stores a candidate set only once

for each color. CR1 is always larger than or equal to CR2 because the colored

CS cannot be further refined by the CS refinement technique in DAF. In Table

3.3, we use ρ = |πGH|/|V (G)| to measure the number of colors over the num-

ber of vertices. The compression ratios on Human, YAGO, Email, Plus, and

Youtube are high (CR1 ranges from 14.80 to 476.47) as the numbers of colors

in the datasets are small (ρ ranges from 0.46 to 0.60). On HPRD, Facebook,

and RoadNet, compression ratios are lower than 1.07 as the numbers of colors

are large (ρ ranges from 0.96 to 0.99).

Effect of Binary Cell Mapping. In many real-world graphs, stable colorings
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Table 3.3: Effect of the compressed CS (columns 2–4) and the binary cell

mapping (columns 5–6). CR1 = (DAF’s CS size)/(compressed CS size), CR2 =

(colored CS size)/(compressed CS size), ρ = |πGH|/|V (G)|, and β is the pro-

portion of vertices that belong to binary cells.

Dataset (G) CR1 CR2 ρ β speedup

Yeast 1.07 1.05 0.95 92% 1.31

HPRD 1.01 1.01 0.99 98% 1.74

Human 54.48 11.19 0.46 32% 1.19

YAGO 476.47 340.81 0.57 53% 1.02

Hamster 1.61 1.29 0.81 71% 1.75

GrQc 49.43 3.98 0.78 64% 2.00

HepTh 12.91 1.85 0.86 76% 2.05

Facebook 1.06 1.03 0.96 94% 5.13

CondMat 2.63 1.52 0.79 66% 2.18

HepPh 68.26 6.45 0.78 68% 2.64

Email 19.27 14.57 0.60 50% 2.16

AstroPh 10.06 2.08 0.82 72% 2.15

Brightkite 1.63 1.47 0.83 75% 1.97

Plus 14.80 10.70 0.57 43% 1.08

Amazon 1.44 1.27 0.90 83% 1.46

Gowalla 8.52 6.64 0.89 83% 1.92

DBLP 7.31 1.98 0.74 58% 1.42

Adaptec 1.12 1.09 0.94 90% 1.57

RoadNet 1.04 1.03 0.98 96% 1.36

Youtube 59.24 44.63 0.60 52% 1.92

Bigblue 1.18 1.13 0.95 91% 1.62

Skitter 4.01 3.02 0.80 74% 2.27

LiveJournal 4.58 1.25 0.93 88% 3.13
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Table 3.4: Average number of vertices and space usages of DAF’s failing set and

the partial failing set.

Dataset
average #vertices

space usage

(in KB)

DAF CRaB DAF CRaB

Yeast 17.64 1.89 1,080 22

HPRD 2.62 1.13 9,987 40

Human 220.04 2.91 2,227 49

Hamster 50.43 1.85 390 13

GrQc 27.15 0.19 2,110 3

HepTh 21.83 0.33 9,108 11

Facebook 7.86 0.45 1,991 7

CondMat 154.61 0.12 55,710 10

HepPh 312.11 0.17 15,323 7

AstroPh 746.23 0.08 39,126 6

Brightkite 58.94 1.89 392,983 419

contain large numbers of binary cells. In Table 3.3, we use β to denote the

proportion of vertices that belong to the binary cells.

To see the effect of binary cell mapping, we compare our algorithm and

another version of our algorithm that does not use binary cell mapping. The

results are shown in Table 3.3 (see speedup). The technique improves the per-

formance of our algorithm by up to 5.13 times (see Facebook in Table 3.3) and

1.96 times on average. The improvement is related to the number of binary cells

of a dataset. For instance, on Facebook, HepPh, and LiveJournal, the improve-

ment is high because their proportions of vertices that belong to the binary

cells are high. The proportions on Facebook, HepPh, and LiveJournal are 94%,

68%, and 88%, respectively. On Human and Plus, the improvement is small

because the proportion is small. The proportions on Human and Plus are 32%

and 43%, respectively.
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Effect of Partial Failing Set. To see the effect of the partial failing set, we

compare it with DAF’s failing set in terms of (1) the average number of vertices

in the (partial) failing set of a search tree node and (2) the space usage. The

space usage of DAF’s failing set is V 2/w bits, where w = 32 is the word size,

and that of the partial failing set is V · |FM | ·4 bytes, where |FM | is the average
number of vertices in the partial failing set. Table 3.4 shows the results for the

datasets that are solved by both DAF and CRaB. The average number of vertices

and the space usage of the partial failing set are much smaller than those of

DAF’s failing set.

3.5.3 Analysis with Varying Degrees of Similarity

In this section we analyze the performances of the algorithms with varying

degrees of similarity between two input graphs. For each dataset in Table 3.1,

we generate a nonisomorphic graph by randomly swapping two edges k times.

We set k = 20, 40, 60, 80, 100. A generated graph is less similar to the original

graph if more edges are swapped. We do not maintain the degree sequence of

the original graph when generating nonisomorphic graphs, and each algorithm

runs without checking the degree sequence. We set a time limit of one hour for

processing a graph pair.

Figures 3.6, 3.7, and 3.8 show the running time of the comparing algorithms

with different value of k. Missing lines indicate that an algorithm ran out of

memory (256GB). Similar to the results of main experiments in Section 3.5.1,

CRaB outperforms state-of-the-art algorithms for all the datasets. Overall, the

performances of the algorithms do not significantly affected by k in all the

datasets except for VF2++ on three datasets.

On GrQc, CondMat, and RoadNet, the running time of VF2++ visibly de-

creases as k increases. VF2++ computes the candidate set of a vertex during
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Figure 3.6: Analysis with varying degrees of similarity I.

backtracking. When k increases, the number of candidates decreases, and thus

the backtracking time of VF2++ significantly decreases in these datasets. In

contrast, CRaB, DAF, and CFL-Match compute the candidate set of every ver-

tex before backtracking. After computing the candidate sets, all of these three

algorithms determined that two graphs are not isomorphic since there was a

vertex with an empty candidate set. Therefore, the running time of CRaB, DAF,

and CFL-Match does not change significantly with different value of k. Since the

nonisomorphic graphs share common parts with the original graph, computing

the canonical form of a nonisomorphic graph and computing the canonical form

of the original graph take more or less the same time.
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Figure 3.7: Analysis with varying degrees of similarity II.
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Figure 3.8: Analysis with varying degrees of similarity III.
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3.5.4 Sensitivity Analysis

In this section we conduct a sensitivity analysis to see how the changes in input

parameters affect the running time of the algorithms using real-world graphs.

We obtain 499,963 chemical compound structures from PubChem [66], the open

chemistry database at the National Institutes of Health. A dataset has up to

801 vertices and 19 labels. We vary two parameters:

• number of vertices in the graph: 1–99, 100–199, 200–299, 300–399, 400

and more,

• average degree of the graph: [1.9, 2.0), [2.0, 2.1), [2.1, 2.2), [2.2, 2.3).

The default values for |V (G)| and the average degree are 100–199 and [2.0, 2.1),

respectively. For each interval, we generate 500 isomorphic/nonisomorphic graph

pairs as follows: We randomly sample a graph 100 times and generate five iso-

morphic graphs and five nonisomorphic graphs for each sampled graph as be-

fore. We set the time limit for processing a graph pair to 10 minutes in this

experiment.

Figures 3.9a and 3.9b show the results on the isomorphic graph pairs. In

Figure 3.9a, a general trend is that the running time grows as |V (G)| increases.
When there are less than 200 vertices, VF2++ outperforms all the other algo-

rithms since it is a much simpler algorithm than the others. However, when

there are 200 vertices or more, its running time grows exponentially. This is be-

cause VF2++ lacks the ability to reduce the candidate space, compared to other

backtracking-based solutions. Unlike VF2++, the running time of our algorithm

grows gradually, being the runner-up for the first two intervals, and the winner

for the rest. Figure 3.9b shows that different average degrees have little effect

on the running time. In all intervals of degrees, VF2++ and CRaB outperform all

46



VF2++ DAF CFL-Match

    nauty Traces CRaB

10-2

100

102

104

10 m

1-99 100-199200-299300-399 400-

Ru
nn

in
g 

Ti
m

e 
(m

s)

(a) Isomorphic (varying |V (G)|)

10-2

10-1

100

101

102

103

[1.9, 2.0) [2.0, 2.1) [2.1, 2.2) [2.2, 2.3)

Ru
nn

in
g 

Ti
m

e 
(m

s)

(b) Isomorphic (varying avg. degrees)

10-2

100

102

104

10 m

1-99 100-199200-299300-399 400-

Ru
nn

in
g 

Ti
m

e 
(m

s)

(c) Nonisomorphic (varying |V (G)|)

10-2

10-1

100

101

102

103

[1.9, 2.0) [2.0, 2.1) [2.1, 2.2) [2.2, 2.3)

Ru
nn

in
g 

Ti
m

e 
(m

s)

(d) Nonisomorphic (varying avg. degrees)

Figure 3.9: Sensitivity analysis.

the other algorithms, as in the interval 100–199 of the experiment on varying

|V (G)|.
Figures 3.9c and 3.9d show the results on the nonisomorphic graph pairs,

where CRaB outperforms all the other algorithms in every interval. When in-

put graphs are not isomorphic, a backtracking-based algorithm must traverse

its whole search space to solve the problem. Nevertheless, CRaB, DAF, and

CFL-Match still performs well, since they use techniques to reduce the search

space. In contrast, the average running time of VF2++ is significantly increased

due to its lack of such techniques.

47



Chapter 4

Graph Isomorphism
Query Processing

Given a set of data graphs D = {G1, G2, . . . , Gk} and a query graph q, the graph

isomorphism query processing (GIQP) problem is to find all the data graphs in

D that are isomorphic to q. That is, graph isomorphism query processing is to

compute the answer set Aq = {Gi ∈ D : Gi
∼= q}.

GIQP can be applied by an adversary of social network anonymization to

find a target user in the anonymized social network. The adversary identifies the

target user by testing graph isomorphism between the d-neighborhood graph of

the target user and the d-neighborhood graph of each vertex in the anonymized

social network. In this situation, the number of data graphs increases as the

size of the social network increases, and the size of a data graph increases as

d grows. Since there is no polynomial time algorithm for graph isomorphism,

there is no polynomial time algorithm for GIQP as well. Therefore, GIQP is

very challenging when there are large numbers of data graphs and/or large-scale

data graphs.
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The canonical form [59] of a graph G is a unique representation of G such

that any graph isomorphic to G has an identical canonical form as that of

G. Canonical forms lead to a natural solution for GIQP: build an index that

contains the canonical forms of the data graphs. Then, searching the index

for the canonical form of the query graph gives the answer to the problem.

This approach is suitable when there is a large number of data graphs, as the

search can be quickly done once the index and the canonical form of the query

graph are computed. However, computing the canonical form of a graph is

computationally expensive, and sometimes it is impossible to build an index of

large-scale graphs within a reasonable time.

Another approach is conducting a graph isomorphism algorithm multiple

times (as many as the number of data graphs). On one hand, this approach is

simple and easy to extend existing graph isomorphism algorithms [22, 11, 24]

to handle GIQP. On the other hand, a lot of graph isomorphism tests may be

conducted if there is a large number of data graphs.

Lastly, one may use subgraph/supergraph search [14, 20, 48, 64, 36, 35]

algorithms to deal with GIQP. Given a set of data graphs and a query graph,

subgraph search (resp. supergraph search) is the problem of finding all the data

graphs that contain (resp. are contained in) the query graph as a subgraph.

These problems are more general than GIQP, and thus subgraph/supergraph

approach is slower than aforementioned approaches in general.

In this chapter we propose a fast graph isomorphism query processing algo-

rithm, which consists of index construction stage and query processing stage.

Our algorithm make use of the canonical coloring as follows.

1. We present a coloring method that outputs the canonical coloring of a

vertex-labeled graph. If there exists an isomorphism between any two

graphs, then every two vertices mapped in the isomorphism get the same
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color in their canonical colorings. We define the color-label distribution to

represent the canonical coloring, and we show that any two graphs are

not isomorphic if their color-label distributions are different.

2. In the index construction stage, we construct a two-level index based on

the degree sequences and the canonical colorings of the data graphs. The

index helps us quickly filter out data graphs that are not isomorphic to

the query graph during the query processing stage. The index can be built

in O(
∑

G∈D(|V (G)|+ |E(G)|) log |V (G)|+ |V (G∗)||D| log |D|) time, where

D is the set of data graphs and G∗ is a data graph with the maximum

number of vertices.

3. In the query processing stage, we retrieve data graphs from the index

according to the degree sequence and the canonical coloring of the query

graph. For each retrieved data graph, we verify whether it is isomorphic to

the query graph. Specifically, we show that we can obtain a coarsest stable

coloring of the disjoint union of two graphs from their canonical colorings,

and thus we can skip the pairwise color refinement once the canonical

colorings of a data graph and the query graph are computed. Utilizing

the coarsest stable coloring, we perform backtracking to verify whether

an isomorphism of the two graphs exists. We also present a method to

determine whether a coloring of a graph is stable or not in linear time.

We conduct experiments comparing our algorithm with state-of-the-art al-

gorithms on real-world datasets. We vary two types of parameters, i.e., the

number of data graphs and the size of data graphs. Experimental results show

that our algorithm consistently outperforms existing algorithms in terms of in-

dex construction time, and it runs faster than existing algorithms in terms of

query processing time as graph sizes increase.
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4.1 Canonical Coloring

In this section we present an initial coloring method, and briefly describe the

color refinement algorithm proposed by Berkholz, Bonsma, and Grohe [7]. Let

π′
G be the coloring of a graph G obtained by applying the above color refinement

algorithm on the initial coloring of G. We call π′
G the canonical coloring of G,

and we will show that the canonical coloring is isomorphism-invariant. Then,

we define the color-label distribution of a canonical coloring, and show that any

two graphs are not isomorphic if the color-label distributions of their canonical

colorings are different.

In what follows, a coloring algorithm or method outputs a coloring of an

input (colored) graph.

Definition 4.1.1. We say that a coloring algorithm (or method) is isomorphism-

invariant if, for any two graphs G and H with their output colorings πG and

πH of the algorithm, respectively, the following statement holds: If there is an

isomorphism f : V (G) → V (H), then πG(u) = πH(f(u)) for every u ∈ V (G).

For example, a coloring method that sets πG(u) to u’s degree for each u ∈ V (G)

is isomorphism-invariant, because any two vertices mapped in an isomorphism

have the same degree.

Initial Coloring Method. Given a graph G, our initial coloring method out-

puts a coloring πG of G as follows. First compute an array S of vertices in V (G)

such that the vertices are sorted by the lexicographic order of (degree, label).

Then, set the color of S[i] from i = 1 to |V (G)| as follows. Initially, πG(S[1]) is
set to 1. For each S[i] with i > 1, if S[i] has the same degree and label as those

of S[i− 1], then πG(S[i]) is set to πG(S[i− 1]). Otherwise, πG(S[i]) is set to i.

That is, πG(u) for each u ∈ V (G) is set to the position of the leftmost vertex

in S which has the same degree and label as those of u.
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(a) Set of data graphs.

(b) Initial colorings

(c) Canonical colorings

Figure 4.1: Running example for graph isomorphism query processing.
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Example 4.1.1. Figure 4.1b shows the initial colorings of the data graphs in

Figure 4.1a. Consider the initial coloring of G2 as an example. S = (w2, w5, w1,

w3, w4, w6) according to the degrees and labels. We have πG2(w6) = 5 because

S[5] = w4 is the leftmost vertex in S which has the same degree and label as

those of w6.

Lemma 4.1.1. The initial coloring method is isomorphism-invariant.

Proof. Given two graphs G and H with their initial colorings πG and πH ,

respectively, suppose that there exists an isomorphism f : V (G) → V (H).

Since G and H are isomorphic, for any pair of degree d and label l, the number

of vertices in V (G) whose degree is d and label is l is equal to the number of

vertices in V (H) whose degree is d and label is l. Since u and f(u) for every

u ∈ V (G) have the same degree and label, πG(u) (the position of the leftmost

vertex in S which has the same degree and label as those of u) is equal to

πH(f(u)).

Color Refinement Algorithm. Given a colored graph (G, πG) as an input,

color refinement [50, 10, 56, 40, 7] is the problem of finding a coarsest stable

coloring π′
G that is finer than πG. A coloring πG of G is stable if, for any color

c and two vertices u, v ∈ V (G) such that πG(u) = πG(v), |NG(u) ∩ π−1
G (c)| =

|NG(v) ∩ π−1
G (c)|. Let πG, π′

G be two colorings of a graph G. We say that π′
G is

finer than πG (and πG is coarser than π′
G) if every cell of π′

G is a subset of some

cell of πG. A coloring π′
G is a coarsest stable coloring finer than πG if there is

no stable coloring π′′
G such that π′′

G is finer than πG and strictly coarser than

π′
G. For example, in Figure 4.1c, each coloring π′

Gi
for 1 ≤ i ≤ 6 is a coarsest

stable coloring finer than πGi in Figure 4.1b.

Berkholz, Bonsma, and Grohe [7] presented an O((|V (G)| + |E(G)|)
log |V (G)|) time color refinement algorithm (BBG color refinement algorithm
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for short), which is briefly described as follows. The algorithm uses a stack con-

taining colors. Initially, the stack contains all colors used in the input coloring

in increasing order. For each color c in the stack, check if there exist x, y ∈ V (G)

such that πG(x) = πG(y) and |NG(x) ∩ π−1
G (c)| 
= |NG(y) ∩ π−1

G (c)|. In the af-

firmative case, πG is not stable, and thus recolor the vertices in π−1
G (πG(x)).

When there are two or more such cells, the cell corresponding to the smallest

color is recolored first. Suppose that the vertices in π−1
G (πG(x)) are divided

into n groups according to the number of neighbors in π−1
G (c). The group with

the smallest number of neighbors in π−1
G (c) maintains the original color. Each

of the rest n − 1 groups introduces a new color, where the new color is the

smallest color among the unused colors. The group with the smaller number of

neighbors in π−1
G (c) gets the smaller new color. After recoloring the vertices in

π−1
G (πG(x)), the colors involved in the recoloring (except one color) are pushed

into the stack in increasing order. The whole process is repeated until the stack

is empty. We refer the reader to [7] for the details of the algorithm.

Lemma 4.1.2 ([7]). Let π′
G and π′

H be the outputs of the BBG color refine-

ment algorithm on (G, πG) and (H,πH), respectively, where G ∼= H. For any

isomorphism f : V (G) → V (H), if πG(u) = πH(f(u)) for every u ∈ V (G), then

π′
G(u) = π′

H(f(u)) for every u ∈ V (G).

Canonical Coloring and Color-Label Distribution. Given a graph G, let

π′
G be the output of the BBG color refinement algorithm on (G, πG), where πG

is the initial coloring of G computed by our initial coloring method. We call π′
G

the canonical coloring of G.

Lemma 4.1.3. The coloring method that applies the initial coloring method

and then the BBG color refinement algorithm is isomorphism-invariant.
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Proof. Given two graphs G and H, let πG and πH be the initial colorings

of G and H, respectively, and let π′
G and π′

H be the outputs of the BBG

color refinement algorithm on (G, πG) and (H,πH), respectively. If there ex-

ists an isomorphism f : V (G) → V (H), then πG(u) = πH(f(u)) for every

u ∈ V (G) (because the initial coloring method is isomorphism-invariant), and

thus π′
G(u) = π′

H(f(u)) for every u ∈ V (G) by Lemma 4.1.2. Therefore, the

coloring method of the lemma is isomorphism-invariant.

Example 4.1.2. Figure 4.1c shows the canonical colorings of the data graphs

in Figure 4.1a. For an isomorphism f = {(u1, v6), (u2, v5), (u3, v4), (u4, v3),
(u5, v2), (u6, v1)} of G1 and G4, we can see that π′

G1
(u) = π′

G4
(f(u)) for ev-

ery u ∈ V (G1).

For a graph G and its canonical coloring π′
G, the color-label distribution of

(G, π′
G) is denoted by CLD(G, π′

G), which is the sequence of pairs (π′
G(u), LG(u))

for u ∈ V (G) such that the pairs are lexicographically ordered. For example, the

color-label distribution of (G2, π
′
G2

) in Figure 4.1c is CLD(G2, π
′
G2

) = ((1, A),

(2, B), (3, A), (3, A), (5, C), (5, C)).

Lemma 4.1.4. Suppose that we are given two graphs G and H with their

canonical colorings π′
G and π′

H , respectively. If there exists an isomorphism

f : V (G) → V (H), then CLD(G, π′
G) = CLD(H,π′

H).

Proof. We have π′
G(u) = π′

H(f(u)) for every u ∈ V (G) because the canoni-

cal coloring method is isomorphism-invariant. Since f is an isomorphism, we

have LG(u) = LH(f(u)) for every u ∈ V (G). Thus, we get (π′
G(u), LG(u)) =

(π′
H(f(u)), LH(f(u))) for every u ∈ V (G). It follows that the sorted sequence

of pairs (π′
G(u), LG(u)) for u ∈ V (G) is equal to the sorted sequence of pairs

(π′
H(v), LH(v)) for v ∈ V (H). Therefore, CLD(G, π′

G) = CLD(H,π′
H).
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Figure 4.2: Index I of the data graphs.

Corollary 4.1.1. Suppose that we are given two graphs G and H with their

canonical colorings π′
G and π′

H , respectively. If CLD(G, π′
G) 
= CLD(H,π′

H),

then G and H are not isomorphic.

4.2 Index Construction

In this section we define an index for the data graphs and present an algorithm

to compute it.

Index. We define the index I for a set D = {G1, G2, . . . , Gk} of data graphs,

which consists of two levels as follows.

• The second level is an array of triples (CLD(Gi, π
′
Gi
), i, π′

Gi
) for 1 ≤ i ≤ k,

where π′
Gi

is the canonical coloring of Gi. The triples are sorted in the

order as follows. Let ti = (CLD(Gi, π
′
Gi
), i, π′

Gi
) and tj = (CLD(Gj , π

′
Gj

),

j, π′
Gj

) be two triples. ti precedes tj if (1) dsGi is lexicographically smaller

than dsGj ; or (2) dsGi = dsGj and CLD(Gi, π
′
Gi
) is lexicographically

smaller than CLD(Gj , π
′
Gj

).

• The first level is an array of pairs (ds, p), where ds is a unique degree

sequence within D, p is an integer that indicates the position of the first
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triple (CLD(Gi, π
′
Gi
), i, π′

Gi
) in the second level such that dsGi = ds, and

the pairs are sorted by the lexicographic order of the degree sequence.

All distinct degree sequences of the data graphs in D are stored with

associated positions, and a sentinel (∅, |D|+1) is stored at the end of the

first level.

Since the set of data graphs is static, we implement each level of the index by a

sorted array. In case that the set is dynamic, each level should be implemented

by a balanced search tree such as the red-black tree.

Example 4.2.1. Figure 4.2 illustrates the index of the data graphs in Figure

4.1a. See Figure 4.1c for the canonical colorings of the data graphs. In the first

level, ((6, 3, 3, 3, 3, 3, 3), 5) means that G1 (which is stored in the 5th position

of the second level) is the first graph stored in the second level whose degree

sequence is (6, 3, 3, 3, 3, 3, 3).

Index Construction Algorithm. Algorithm 4 describes our index construc-

tion algorithm, which constructs an index I for D. We compute the second level

and then the first level as follows. For each data graph Gi ∈ D, compute the

degree sequence dsGi and the canonical coloring π′
Gi

of Gi, and make a 4-tuple

(dsGi ,CLD(Gi, π
′
Gi
), i, π′

Gi
). Sort the 4-tuples for all the data graphs by the lexi-

cographic order of (dsGi ,CLD(Gi, π
′
Gi
)). Scan the sorted 4-tuples, and store the

triples (CLD(Gi, π
′
Gi
), i, π′

Gi
) into the second level in the sorted order. Find all

distinct degree sequences with their associated positions by scanning the sorted

4-tuples, and add them to the first level. Finally, add a sentinel (∅, k+1) to the

end of the first level to denote the last position of the second level.

Lemma 4.2.1. Given a set D of data graphs, the time complexity of the index

construction of D is O(
∑

G∈D(|V (G)|+|E(G)|) log |V (G)|+|V (G∗)||D| log |D|),
where G∗ is a data graph with the maximum number of vertices.
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Algorithm 4: BuildIndex

Input : a set of data graphs D = {G1, G2, . . . , Gk}
Output: an index I

1 I.first-level ← an empty array;

2 I.second-level ← an empty array;

3 Q ← an empty array of 4-tuples (ds,CLD, i, π′);

4 for i from 1 to k do

5 dsGi ← degree sequence of Gi;

6 π′
Gi

← CanonicalColoring(Gi);

7 Q.Append(dsGi ,CLD(Gi, π
′
Gi
), i, π′

Gi
);

8 Sort Q by (dsGi ,CLD(Gi, π
′
Gi
));

9 I.second-level.Append(Q[1].CLD, Q[1].i, Q[1].π′);

10 I.first-level.Append(Q[1].ds, 1);

11 ds ← Q[1].ds;

12 for p from 2 to k do

13 I.second-level.Append(Q[p].CLD, Q[p].i, Q[p].π′);

14 if Q[p].ds 
= ds then

15 I.first-level.Append(Q[p].ds, p);

16 ds ← Q[p].ds;

17 I.first-level.Append(∅, k + 1);

18 return I;
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Proof. The running time of the index construction algorithm is dominated by

the time to compute the canonical colorings and the time to sort the 4-tuples

for the data graphs. It takes O(
∑

G∈D(|V (G)| + |E(G)|) log |V (G)|) time to

compute the canonical colorings of the data graphs by the BBG color refine-

ment algorithm. Sorting the 4-tuples takes O(|V (G∗)||D| log |D|) time because

there are |D| 4-tuples and the comparison of degree sequences and color-label

distributions in two 4-tuples can be done in O(|V (G∗)|) time.

4.3 Query Processing

In this section we present the query processing algorithm and give a method to

determine whether a coloring of a graph is stable or not in linear time.

Query Processing Algorithm. Algorithm 5 describes our query processing

algorithm, which takes a query graph q and an index I of D, and finds an answer

set Aq for q. We first compute the degree sequence dsq of the query graph, and

check whether it is in the first level of the index. If not, we can easily conclude

that Aq = ∅. Otherwise, we compute the canonical coloring π′
q of q, and retrieve

a list C of triples (CLD(Gi, π
′
Gi
), i, π′

Gi
) such that CLD(Gi, π

′
Gi
) = CLD(q, π′

q).

Other data graphs are not isomorphic to q by Corollary 4.1.1. The retrieval is

done as follows:

1. Find the pair (dsq, p) from the first level of I by the binary search. Let

(ds, p′) be the pair right after (dsq, p).

2. Retrieve the triples from the second level by the binary search between p

and p′.

The rest of the query processing is done based on the following lemmas.

Suppose that we are given two colored graphs (G, π′
G) and (H,π′

H) such that
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Algorithm 5: ProcessQuery

Input : a query graph q and an index I
Output: Aq

1 Aq ← ∅;
2 dsq ← degree sequence of q;

3 if dsq is not in I.first-level then
4 return Aq;

5 π′
q ← CanonicalColoring(q);

6 C ← I.Retrieve(dsq,CLD(q, π′
q));

7 for each triple (CLD(Gi, π
′
Gi
), i, π′

Gi
) ∈ C do

8 if CheckStableColoring(π′
q ∪ π′

Gi
, q ∪Gi) then

9 if Isomorphic(q,Gi, π
′
q ∪ π′

Gi
) = “YES” then

10 Insert Gi to Aq;

11 return Aq;

(1) π′
G and π′

H are the canonical colorings of G and H, respectively, and (2)

CLD(G, π′
G) = CLD(H,π′

H).

Lemma 4.3.1. If π′
G ∪ π′

H is not stable on G ∪ H, then G and H are not

isomorphic.

Proof. We prove by contradiction. Assume that there is an isomorphism f :

V (G) → V (H). Since π′
G ∪ π′

H is not stable, there are two vertices u ∈ V (G),

v ∈ V (H) and a color c such that π′
G(u) = π′

H(v) and |NG(u) ∩ π′−1
G (c)| 
=

|NH(v)∩π′−1
H (c)|. Since π′

G and π′
H are canonical colorings, π′

G(w) = π′
H(f(w))

for every w ∈ V (G). Therefore, we have |NG(u) ∩ π′−1
G (c)| = |NH(f(u)) ∩

π′−1
H (c)|. Since π′

G(u) = π′
H(f(u)) = π′

H(v) and π′
H is stable on H, we get

60



|NH(f(u)) ∩ π′−1
H (c)| = |NH(v) ∩ π′−1

H (c)|, and thus we get |NG(u) ∩ π′−1
G (c)| =

|NH(v) ∩ π′−1
H (c)| which is a contradiction.

Lemma 4.3.2. If π′
G∪π′

H is stable on G∪H, then π′
G∪π′

H is a coarsest stable

coloring of G ∪H.

Proof. We prove by contradiction. Assume that there exists a stable coloring

π′′ of G∪H that is strictly coarser than π′
G∪π′

H . Given a coloring πQ of a graph

Q and a vertex set S ⊆ V (Q), let πQ|S denote the restriction of πQ to S such

that πQ|S(u) = πQ(u) for each u ∈ S. Given π′′
G = π′′|V (G) and π′′

H = π′′|V (H),

we will show that π′′
G and π′′

H are stable and strictly coarser than π′
G and π′

H ,

respectively, which contradicts that π′
G and π′

H are coarsest stable colorings.

Since π′′ is stable on G ∪H, and G and H are disconnected in G ∪H, π′′
G

and π′′
H are stable colorings of G and H, respectively.

Now we show that π′′
G is strictly coarser than π′

G (the proof for π′
H is sym-

metric). Since π′′ is strictly coarser than π′
G ∪ π′

H , each cell of π′
G is a subset

of some cell of π′′
G. Also, there exist two distinct colors c1 and c2 in π′

G ∪ π′
H

such that (π′
G ∪ π′

H)−1(c1) and (π′
G ∪ π′

H)−1(c2) are subsets of a cell of π′′. It

follows that there exists a cell of π′′
G that contains π′−1

G (c1) and π′−1
G (c2), where

π′−1
G (c1) 
= ∅ and π′−1

G (c2) 
= ∅ because CLD(G, π′
G) = CLD(H,π′

H).

Therefore, π′′
G and π′′

H are stable and strictly coarser than π′
G and π′

H , re-

spectively, which is a contradiction.

For each triple (CLD(Gi, π
′
Gi
), i, π′

Gi
) ∈ C, we check if π′

q ∪ π′
Gi

is stable on

q ∪ Gi. If the coloring is not stable, then Gi is not isomorphic to q by Lemma

4.3.1. If the coloring is stable, we verify whether q and Gi are isomorphic based

on the backtracking approach. In this case, π′
q∪π′

Gi
is a coarsest stable coloring

of q∪Gi by Lemma 4.3.2, which is equivalent to the output of the pairwise color

refinement. Thus, utilizing the coarsest stable coloring, we perform backtracking
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(a) q (b) π′
q

Figure 4.3: Query graph q and its canonical coloring π′
q.

to find an isomorphism of q and Gi just like CRaB does in Chapter 3. (Note that

we do not explicitly conduct the pairwise color refinement.) If an isomorphism

of q and Gi is found during backtracking, then insert Gi to Aq.

Example 4.3.1. Figure 4.3b shows the canonical coloring π′
q of the query graph

q in Figure 4.3a. The degree sequence of q is (6, 3, 3, 3, 3, 2, 2) and the color-label

distribution of (q, π′
q) is {(1, A), (2, B), (3, A), (3, A), (5, C), (5, C)}. Consider

the index in Figure 4.2. (G2, π
′
G2

) and (G3, π
′
G3

) have identical degree sequences

and color-label distributions as those of (q, π′
q). We check whether π′

q ∪ π′
G2

and

π′
q ∪ π′

G3
are stable on q ∪G2 and q ∪G3, respectively. Only π′

q ∪ π′
G2

is stable,

and thus we verify whether q and G2 is isomorphic by performing backtracking.

G2 is indeed isomorphic to q, and the answer set is Aq = {G2}.

Check Stable Coloring. Given a coloring πG of G, we present a method

to check whether πG is stable on G. For each color c of πG, check whether

there exist two vertices u, v such that πG(u) = πG(v) and |NG(u) ∩ π−1
G (c)| 
=

|NG(v) ∩ π−1
G (c)|. The coloring is stable if and only if there is no such vertices.

We use one array CNT of length |V (G)| to check the above condition as follows.

Initially CNT[u] = 0 for every u ∈ V (G). Given a color c, we set CNT[u] =

CNT[u] + |NG(u)∩ π−1
G (c)| by scanning the neighbors of the vertices in π−1

G (c).

Then, we check if there exist two vertices u, v among the visited neighbors such

62



that πG(u) = πG(v) and CNT[u] 
= CNT[v]. If such vertices exist, the coloring

is not stable, and we immediately finish the algorithm. Otherwise, we move

on to the next color in πG. Note that by adding |NG(u) ∩ π−1
G (c)| to CNT[u],

we can avoid resetting CNT[u] = 0 for each time a color c is considered. This

algorithm runs in O(|V (G)|+ |E(G)|) time because it scans adjacency list of G

at most once to compute CNT.

4.4 Performance Evaluation

We conduct experiments to evaluate the performance of the proposed algorithm

against the state-of-the-art algorithms from the existing approaches mentioned

in Introduction. The following algorithms are evaluated.

• Traces [51]: graph canonization algorithm.

• CRaB [22]: graph isomorphism algorithm.

• IDAR [36]: supergraph search algorithm.

• Ours: our algorithm.

The index of Ours consists of two levels, where the first level filters data

graphs using the degree sequence and the second level filters data graphs using

the color-label distribution. Since the first level is simple to implement, we make

a variant of Traces by adding the first level of our index to the index of Traces,

and include it (which will be called DS-Traces) in our evaluation. We couldn’t

apply the first level to CRaB and IDAR because CRaB does not construct an index

and IDAR constructs an index called the IDAG, which is an integrated DAG of

the DAGs of the data graphs.

All the source codes were obtained from the authors of previous papers,

where we use version 2.6r12 of Traces. All algorithms are implemented in
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Table 4.1: Characteristics of datasets.

Dataset (G) |V (G)| |E(G)| |Σ| avg-deg(G)

Human 4,271 84,890 44 39.75

HPRD 9,045 34,853 307 7.71

HepTh 8,638 24,806 - 5.74

CondMat 21,363 91,286 - 8.55

HepPh 11,204 117,619 - 21.00

Plus 283,872 428,384 - 3.02

Amazon 334,863 925,872 - 5.53

DBLP 317,080 1,049,866 - 6.62

Bigblue 3,795,055 8,712,138 - 4.59

LiveJournal 3,997,962 34,681,189 - 17.35

C++. Experiments are conducted on a machine with two Intel Xeon E5-2680

v3 2.50GHz CPUs and 256GB memory running CentOS Linux.

Datasets. We use 10 real-world graphs in Table 4.1, which are benchmark

datasets used in [51, 22, 35]. Human and HPRD are protein-protein interaction

(PPI) networks, where vertices represent proteins and edges represent interac-

tions between proteins. Vertices in the PPI networks are labeled by Gene On-

tology information [26]. The rest of the graphs are unlabeled graphs. HepTh,

CondMat, HepPh, and DBLP are collaboration networks, where vertices repre-

sent scientists and edges represent collaborations (co-authoring a paper). Plus

and Amazon are router interconnection network and product co-purchasing

network, respectively. Bigblue is a graph derived from a circuit, where vertices

represent electronic components and nodes in the circuit, and edges represent

connections between components and nodes. LiveJournal is an online social

network, where edges represent interactions between users.

We generate a set D = {G1, G2, . . . , Gk} of data graphs for a dataset in the

following way: randomly choose k distinct vertices in the dataset and extract
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Table 4.2: Average number of vertices and edges of a data graph for each value

of d, where d is the number of hops.

d = 1 d = 2 d = 3

Dataset (G) avg. |V | avg. |E| avg. |V | avg. |E| avg. |V | avg. |E|
Human 40.9 1,555.3 367.0 11,139.8 1,097.6 29,268.0

HPRD 8.9 14.8 189.8 735.9 1,798.2 9,346.2

HepTh 6.8 15.5 47.3 128.6 297.2 971.5

CondMat 9.3 31.6 111.6 526.4 1,008.9 5,616.5

HepPh 21.9 893.1 282.2 10,790.4 1,733.1 42,332.4

Plus 4.0 6.5 60.1 165.5 394.6 1,715.9

Amazon 6.4 11.3 42.4 95.6 156.8 360.2

DBLP 7.6 32.8 87.1 360.2 1,139.3 5,311.3

Bigblue 5.6 4.6 115.7 124.8 890.5 1,071.6

LiveJournal 17.3 123.6 1,214.9 17,265.8 40,278.8 632,495.0

the d-neighborhood graph of each chosen vertex. To see how the size and the

number of data graphs affects the performance of GIQP, we varied two types

of parameters:

• number of data graphs: |D| = 1000, 2000, 4000, 8000,

• number of hops: d = 1, 2, 3,

where the neighborhood size increases exponentially as d grows [80]. The default

parameter settings are |D| = 4000 and d = 2. Table 4.2 shows the average

number of vertices and edges of a data graph for different d values. For each

value of d, we generate a query set that contains 200 query graphs, where a

query graph is generated in the same way as the data graph.

Metrics. Since there is no polynomial time algorithm for GIQP, an algorithm

may not construct an index or process a query set within a reasonable time.

Thus, we set a time limit of 1 hour for constructing an index or processing a

query set. If an algorithm does not construct an index or process a query set
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within the time limit, we regard the construction time or processing time as 1

hour. To evaluate an algorithm with respect to a set of data graphs and a query

set, we measure the following metrics:

• Index construction time: we measure the total running time in millisec-

onds to build an index of the data graphs.

• False positive ratio FPq =
|Cq |−|Aq |

|Cq | for query graph q: we measure the

average false positive ratio for a query graph, where Cq is the set of data

graphs retrieved by an index that are required to be verified whether they

are isomorphic to q, and Aq is the set of answer graphs for q (i.e., data

graphs that are isomorphic to q). We evaluate three versions of our index:

(1) one that uses only the first level (degree sequence); (2) one that uses

only the second level (color-label distribution); and (3) one that uses both

of the two levels (combination).

• Number of items: we measure the number of items in our index.

• Query processing time: we measure the average running time in millisec-

onds to process a query graph.

• Breakdown of query processing time: we break up the query processing

time into smaller parts, and measure the proportion of each part. The

query processing time of Ours breaks up into the time used in the first

level, the second level, and the verification. The query processing time of

DS-Traces breaks up into the time used in the first level, graph canon-

ization, and the search for the canonical form, and that of Traces breaks

up into the time used in graph canonization and the search.

66



IDAR Traces DS-Traces Ours

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(a) Human

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(b) HPRD

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(c) HepTh

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(d) CondMat

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(e) HepPh

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(f) Plus

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(g) Amazon

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(h) DBLP

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(i) Bigblue

10-1

101

103

105
1 hour

1 2 3In
de

xi
ng

 T
im

e 
(m

s)

(j) LiveJournal

Figure 4.4: Index construction time for varying number of hops.

4.4.1 Varying Number of Hops.

First, we vary the number of hops, i.e., we set d = 1, 2, 3 with |D| = 4000.

Index Construction Time. Figure 4.4 shows the index construction time of

the algorithms. Since CRaB does not build an index, the result of CRaB is omitted.

On some datasets, we were not able to run IDAR due to memory errors. Missing

bars of IDAR indicates such failures.

In Figure 4.4, Ours is the fastest algorithm for all the datasets. The in-

dex construction time of Ours is bounded by polynomial time, whereas that
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Figure 4.5: False positive ratio for varying number of hops.

of Traces is not. Thus, Ours runs orders of magnitude faster than Traces.

Specifically, Ours runs up to 4 orders of magnitude faster than Traces (HepPh

with d = 2 in Figure 4.4e), and overall 580 times faster on average. The index

construction time of Traces exceeds the time limit on 4 datasets when d = 3.

Although DS-Traces constructs an additional part of the index based on the

degree sequence, DS-Traces is only marginally slower than Traces because de-

gree sequences can be computed much faster than canonical forms. IDAR fails

to build an index for most of the datasets, and its index construction time is
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Table 4.3: Number of items in the first level of our index (|D| = 4000).

Dataset d = 1 d = 2 d = 3

Human 1130 1325 1235

HPRD 923 3403 3680

HepTh 1004 3149 3412

CondMat 1223 3502 3650

HepPh 1364 3194 3275

Plus 245 1909 3373

Amazon 875 3807 3963

DBLP 877 3631 3937

Bigblue 56 2555 3895

LiveJournal 1863 3870 3992

comparable to that of Traces.

False Positive Ratio. Figure 4.5 shows the false positive ratio of the filtering

techniques used in our index. On Human and HPRD, which are labeled graphs,

the false positive ratio of color-label distributions is smaller than that of degree

sequences due to vertex labels. In unlabeled graphs, however, the false positive

ratio of degree sequences is smaller. When we apply both degree sequences and

color-label distributions in the filtering (i.e., combination), false positive ratios

in most cases are zero or close to zero, which shows the effectiveness of our index.

Average false positive ratios for degree sequences, color-label distributions, and

the combination are 0.0846, 0.0895, and 0.0040, respectively.

Number of Items. In our two-level index, the number of items in the first

level is equal to the number of distinct degree sequences of the data graphs, and

the number of items in the second level is equal to the number of data graphs.

Note that the number of data graphs is 4000 in this subsection. Table 4.3 shows

the number of items in the first level of our index.

On Bigblue and Plus with d = 1, the numbers of items in the first level
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are relatively small. On these datasets, data graphs have a small number of

vertices as shown in Table 4.1, which leads to a small number of distinct de-

gree sequences. In general, if a dataset has a low average degree, small-scale

data graphs are generated because data graphs are d-neighborhood graphs. On

LiveJournal and HepPh with d = 1, the numbers of items in the first level is

relatively large, because data graphs have a large number of vertices due to

high average degrees.

When d grows, the average number of vertices of a data graph increases

as shown in Table 4.1, and thus the number of distinct degree sequences in-

creases in all datasets except Human. Human has a high average degree and

a small number of vertices, so two vertices are likely to have an identical d-

neighborhood. Therefore, many data graphs are isomorphic to each other on

Human, and the number of distinct degree sequences is steady even if graph

sizes increase.

Query Processing Time. Figure 4.6 shows the query processing time of the

algorithms. For IDAR, Traces, and DS-Traces, if an index is not constructed,

the query processing is not possible. Missing bars indicate such cases.

In Figure 4.6, the performances of the algorithms vary depending on d.

When d = 3, Ours is the best for 7 datasets and CRaB is the best for 3 datasets.

When d = 2, Ours is the best for 7 datasets and DS-Traces is the best for 3

datasets. When d = 1, DS-Traces is the best for 9 datasets and Ours is the

best for 1 dataset. This results show that Ours is more scalable than other

algorithms in terms of d.

The varying performances can be explained by the average size of a data

graph and the average size of an answer set. When d = 2 or d = 3, the average

size of a data graph is large as shown in Table 4.2, and the average size of

an answer set for a query graph over the 10 datasets is small (11.4 for d = 2
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Figure 4.6: Query processing time for varying number of hops.

and 7.2 for d = 3). In this case, Traces takes a lot of time to compute the

canonical form of a (big) query graph, whereas Ours verifies only a few data

graphs since the false positive ratio of Ours is close to 0 as shown in Figure 4.5.

Therefore Ours runs faster than Traces when d = 2 and d = 3. When d = 1,

the average size of a data graph is very small, and the average size of an answer

set for a query graph is 307.9. In this case, Traces (and DS-Traces) has an

advantage because (1) computing the canonical form of a small query graph

takes reasonably small time and (2) once the canonical form of a query graph is
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computed, the answer set can be found by the binary search. In addition, Ours

runs the best even when d = 1 on HPRD because the average size of an answer

set is very small (i.e., 0.9) due to the plenty of labels.

Among the 2 × 10 cases when d = 2 and d = 3, Ours outperforms CRaB

for 15 cases, and Ours runs 10 times faster than CRaB on average. For the

remaining 5 cases, CRaB runs marginally faster (about 1.1 times) than Ours.

The performance gain of Ours comes from (1) the low false positive ratio,

which leads to fewer executions of backtracking, and (2) the way we compute

the output of the pairwise color refinement. Suppose that we have k data graphs

to verify whether they are isomorphic to the query graph. In CRaB, k explicit

pairwise color refinements are required, while Ours performs one canonical color

refinement for the query graph and k checks of stable coloring. Among the 16

cases excluding the 4 cases that DS-Traces and Traces could not build indexes,

Ours outperforms both DS-Traces and Traces for 14 cases, and it runs 18 times

and 130 times faster than DS-Traces and Traces, respectively.

Among the 10 cases when d = 1, DS-Traces and Traces outperforms Ours

for 9 cases and 8 cases, respectively, due to the small-scale graphs and a large

number of answer graphs. DS-Traces always runs faster than or similar to

Traces in these 10 cases, and it runs about 2.7 times faster than Traces on

average.

Breakdown of Query Processing Time. Table 4.4 shows the proportion of

each part of the query processing time of Ours, DS-Traces, and Traces. The

verification time of Ours and the graph canonization time of DS-Traces and

Traces take exponential time in the worst case, while other parts take poly-

nomial time. When d = 1, Ours uses most of the time in verification (except

HPRD) because there are many answer graphs. In general, the proportion of

the verification time decreases as d grows, since the number of answer graphs
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Table 4.4: Average proportions of the parts of the query processing time

(%). Ours = first level : second level : verification, DS-Traces = first level :

graph canonization : search, Traces = graph canonization : search.

Dataset d Ours DS-Traces Traces

Human 1 0.01 : 0.07 : 99.92 0.01 : 99.96 : 0.03 99.97 : 0.03

2 0.00 : 0.01 : 99.99 0.00 : 99.99 : 0.01 99.99 : 0.01

3 0.00 : 0.02 : 99.98 N/A N/A

HPRD 1 8.12 : 37.99 : 53.90 1.93 : 95.77 : 2.30 96.43 : 3.57

2 6.93 : 21.92 : 71.15 5.33 : 93.98 : 0.69 99.12 : 0.88

3 4.57 : 16.48 : 78.94 5.09 : 94.19 : 0.72 99.50 : 0.50

HepTh 1 0.11 : 0.39 : 99.50 1.66 : 97.24 : 1.11 94.86 : 5.14

2 2.01 : 5.88 : 92.11 3.60 : 95.93 : 0.47 98.56 : 1.44

3 4.56 : 18.36 : 77.09 2.04 : 97.67 : 0.29 99.46 : 0.54

CondMat 1 0.22 : 0.57 : 99.22 2.04 : 97.03 : 0.93 97.96 : 2.04

2 8.35 : 16.35 : 75.29 0.39 : 99.58 : 0.04 99.94 : 0.06

3 10.30 : 15.44 : 74.27 0.14 : 99.85 : 0.01 100.00 : 0.00

HepPh 1 0.06 : 0.18 : 99.75 0.91 : 98.46 : 0.62 99.90 : 0.10

2 0.01 : 0.09 : 99.90 0.00 : 99.99 : 0.00 100.00 : 0.00

3 0.10 : 0.62 : 99.29 N/A N/A

Plus 1 0.02 : 0.11 : 99.87 1.56 : 97.04 : 1.40 97.80 : 2.20

2 0.03 : 0.06 : 99.90 6.27 : 92.57 : 1.16 98.46 : 1.54

3 9.70 : 12.98 : 77.32 11.27 : 87.93 : 0.80 99.10 : 0.90

Amazon 1 0.37 : 1.16 : 98.47 2.38 : 96.22 : 1.40 96.62 : 3.38

2 30.92 : 11.18 : 57.89 24.29 : 75.08 : 0.63 98.02 : 1.98

3 44.94 : 13.36 : 41.70 41.68 : 57.78 : 0.54 98.97 : 1.03

DBLP 1 0.09 : 0.30 : 99.62 1.71 : 97.26 : 1.04 97.72 : 2.28

2 20.46 : 8.91 : 70.63 0.31 : 99.68 : 0.01 99.95 : 0.05

3 23.01 : 3.16 : 73.83 N/A N/A

Bigblue 1 0.05 : 0.32 : 99.63 1.28 : 97.22 : 1.50 97.29 : 2.71

2 4.28 : 5.42 : 90.30 7.24 : 91.50 : 1.25 97.30 : 2.70

3 91.22 : 1.35 : 7.43 82.57 : 16.78 : 0.66 99.11 : 0.89

LiveJournal 1 0.33 : 0.41 : 99.26 5.52 : 93.33 : 1.15 98.06 : 1.94

2 97.50 : 0.47 : 2.03 94.81 : 5.07 : 0.12 99.84 : 0.16

3 37.05 : 2.51 : 60.43 N/A N/A
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decreases and the false positive ratio of Ours is low. Regarding DS-Traces, if

no data graph has an identical degree sequence as that of a query graph, it can

determine that the answer set is an empty set without computing the canoni-

cal form of the query graph. When there are many such cases in a query set,

the proportion of graph canonization time of DS-Traces significantly decreases

(e.g., Amazon with d = 3, Bigblue with d = 3, Livejournal with d = 2). Re-

garding Traces, we can see that most of the time is used in graph canonization,

and the search time is minor.

4.4.2 Varying Number of Data Graphs.

Next, we vary the number of data graphs, i.e., we set |D| = 1000, 2000, 4000, 8000

with d = 2. We omit the results of false positive ratios and the breakdown of

query processing time as the general trends are similar to those in Section 4.4.1.

Index Construction Time. Figure 4.7 shows the index construction time of

the algorithms. As in Figure 4.4, the result of CRaB is omitted and missing

bars of IDAR indicates that it fails to construct an index due to the memory

error. Ours is the fastest for all the datasets, and it runs up to 3 orders of

magnitude faster than Traces (HepPh in Figure 4.7e). On average Ours runs

759 times faster than Traces. Overall, the index construction time increases

linearly regarding the number of data graphs.

Number of Items. Table 4.5 shows the number of items in the first level of our

index. In general, the number of items increases linearly regarding the number

of data graphs. The number of items in the first level is related to the average

number of vertices of a data graph as we discussed in Section 4.4.1. Note that

we set d = 2 in this section, and thus the average number of vertices merely

changes with different number of data graphs.

Query Processing Time. Figure 4.8 shows the query processing time of the
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Figure 4.7: Index construction time for varying number of data graphs.

algorithms. Missing bars indicate that an index is not constructed for IDAR,

DS-Traces, and Traces. We exclude the case of |D| = 8000 for Human because

the number of vertices in Human is less than 8000. Among the total 39 cases,

Ours is the fastest for 31 cases, and DS-Traces is the fastest for 6 cases. For

the 31 cases, Ours runs up to 74 times faster than DS-Traces (CondMat with

|D| = 4000 in Figure 4.8d) and runs 10 times faster than DS-Traces on average.

Ours outperforms Traces for 32 cases, where it runs up to 889 times faster

(DBLP with |D| = 1000 in Figure 4.8h), and runs 112 times faster than Traces
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Table 4.5: Number of items in the first level of our index (d = 2).

Dataset |D| = 1000 |D| = 2000 |D| = 4000 |D| = 8000

Human 322 575 1325 -

HPRD 918 1776 3403 6529

HepTh 900 1684 3149 5789

CondMat 952 1837 3502 6459

HepPh 922 1725 3194 5856

Plus 565 1066 1909 3499

Amazon 976 1935 3807 7455

DBLP 941 1860 3631 7092

Bigblue 724 1377 2555 4734

LiveJournal 983 1952 3870 7675

on average. DS-Traces runs 51 times faster than Ours on average for 6 cases.

Overall DS-Traces is faster than Traces, and it runs 22 times faster than

Traces on average.

In general, the query processing time of the algorithms increases as |D|
grows. The query processing time of Traces is less sensitive to the number of

data graphs, because the graph canonization time dominates the query pro-

cessing time of Traces as shown in Table 4.4. The query processing time of

DS-Traces sometimes visibly increases as |D| grows (e.g., DBLP in Figure 4.8h

and CondMat in Figure 4.8d). As the number of data graphs increases, D is

more likely to contain a data graph that has an identical degree sequence as

that of a query graph, and thus less queries are determined to have empty

answer-sets before graph canonization. That is why the query processing time

of DS-Traces visibly increased in these datasets.
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Figure 4.8: Query processing time for varying number of data graphs.
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Chapter 5

Conclusion

5.1 Summary

We have proposed efficient algorithms for graph isomorphism and graph iso-

morphism query processing. The performances of the proposed algorithms were

investigated using real-world datasets from various aspects.

In Chapter 2, we define the two main problems, i.e., graph isomorphism

and graph isomorphism query processing. We also survey previous works on

related problems including graph canonization, subgraph isomorphism, graph

similarity search, and graph isomorphism on some graph classes.

In Chapter 3, we present a new approach to graph isomorphism, which com-

bines the pairwise color refinement and efficient backtracking. Three techniques

are introduced in our approach, which are (1) pairwise color refinement and bi-

nary cell mapping, (2) compressed candidate space, and (3) partial failing set,

which together lead to a much faster and scalable algorithm for graph isomor-

phism. Extensive experiments are conducted to compare the performance of
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our algorithm against state-of-the-art algorithms on real-world datasets. The

number of vertices in the datasets varies from tens to millions, and we classify

the input instances into the case when two input graphs are isomorphic and the

case when they are not isomorphic. Overall, our algorithm runs up to orders of

magnitude faster than existing algorithms including nauty/Traces, which have

been the best algorithms in the last decades. We also evaluate the effectiveness

of each of the three new techniques by experiments.

In Chapter 4, we present an efficient algorithm for graph isomorphism query

processing, which utilizes degree sequences and color-label distributions. We

introduce (1) a two-level index based on the degree sequences and the canonical

colorings of the data graphs and (2) an efficient query processing algorithm

using the index. We evaluate our algorithm against state-of-the-art algorithms

by experiments in terms of index construction time and query processing time.

Experimental results on real datasets show that the index construction time

of our algorithm is much smaller than that of existing algorithms, and our

algorithm outperforms existing algorithms in terms of query processing time as

the graph sizes increase. We also analyze the experimental results using false

positive ratio and breakdown of query processing time.

5.2 Future Directions

Graph isomorphism and graph isomorphism query processing can be applied

to various application domains including social networks, bioinformatics, chem-

istry, and so on. It is an interesting future work to develop an application-specific

solution based on the proposed algorithms in this thesis.

Furthermore, applying our techniques to other problems is an interesting

future work. In this section we discuss two problems related to graph isomor-
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phism and graph isomorphism query processing. We also leave an open problem

regarding the probability that two graphs are isomorphic.

Graph Homomorphism. A homomorphism [23, 17] from a graph G to a

graph H is a function f : V (G) → V (H) such that u and f(u) have the same

label for every u ∈ V (G), and (f(u), f(v)) ∈ E(H) for every (u, v) ∈ E(G).

Note that homomorphisms are not one-to-one functions, and thus two vertices

u, v ∈ V (G) can be mapped to one vertex in V (H). Given two graphs G and

H, the graph homomorphism problem is to find a homomorphism from G to

H. The decision version of the problem that asking whether there exists any

homomorphism from G to H is NP-complete [28].

Graph homomorphism can be applied to RDF query processing [53, 16, 37,

71], where RDF (Resource Description Framework) is a standard for represent-

ing knowledge on the web. Extensive research has been done to develop efficient

RDF query processing algorithms [54, 2, 82, 75, 77, 37]. A recent approach to

RDF query processing is utilizing subgraph isomorphism algorithms based on

backtracking by removing the injective condition in the matching conditions of

subgraph isomorphism [82, 37].

Since the matching condition of graph isomorphism is different from that

of graph homomorphism, modifications are needed to apply the techniques in-

troduced in this paper to handle graph homomorphism. First of all, we need to

modify the pairwise color refinement in such a way that two vertices are colored

by a color in the resulting coloring if there is an homomorphism that maps the

two vertices. Then, in order to use the binary cell mapping with respect to the

above coloring, a new proof is required. We cannot use the compressed candi-

date space for the above coloring because Property 3.3.2 in Chapter 3 no longer

holds, since u ∈ V (G) can be mapped to v ∈ V (H) in a homomorphism even

if the degree of u is not equal to that of v. We also need to modify the back-
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tracking procedure in order that a vertex in V (H) can be mapped to multiple

vertices in V (G). While partial failing sets can still be used in backtracking for

graph homomorphism, conflict-class will not be exist in the search tree because

multiple vertices in V (G) can be mapped to a vertex in V (G), i.e., there are no

conflicts of mappings.

Network Motif Discovery. Given a graph G, a network motif in G is a

subgraph g of G such that g appears much more frequently in G than in random

graphs whose degree distributions are similar to that of G [52, 73]. The Z-score

of g is Z-score(g) =
Ng−Nr

g

σr
g

, where Ng is the number of occurrences of g in

G, and N r
g and σr

g are the mean number of occurrences of g and the standard

deviation in random networks, respectively. Network motifs can be applied to

graph analysis in various applications [74].

Given a real graph G, a set of random graphs G = {G1, G2, . . . , Gr}, a
natural number k > 2, and a threshold α > 0, network motif discovery is

the problem of finding all network motifs in G which have k vertices and Z-

score higher than α. In real applications a user hardly has random graphs

for the real graph. Thus, most network motif discovery algorithms [70, 55,

32, 60, 34, 45] are designed to generate random graphs and compute Z-score

with respect to the real graph and the generated random graphs. A common

approach to network motif discovery is enumerating all subgraphs of G having k

vertices (enumeration) and counting the number of occurrences for each distinct

subgraph (classification), where the classification is known to be the most time-

consuming part [21, 34].

Our techniques for graph isomorphism query processing can be applied

to the classification task of network motif discovery, where we need to check

whether an enumerated subgraph is isomorphic to any of the previously enu-

merated subgraphs. If no previously enumerated subgraphs are isomorphic to
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the newly enumerated subgraph, then the new subgraph should be stored for

the next check. This requires the set of data graphs in graph isomorphism query

processing to be dynamic. Therefore, we need to implement each level of our

index for graph isomorphism query processing by a balanced search tree to

handle the classification task.

Probability that Two Graphs are Isomorphic. Given two graphs with an

identical degree sequence ds, what is the probability that the two graphs are

isomorphic? The probability can be expressed as follows:

Pds =
ΣS∈Ids |S|2
|Gds|2 ,

where Gds is the set of graphs having degree sequence ds, and Ids is the set

of subsets of Gds in which graphs are pairwise isomorphic. For example, Gds

with ds = (2, 2, 2, 1, 1) is shown in Figure 5.1, where Ids consists of two subsets

marked by A and B. The number of graphs in Gds is 40, and the number of

graphs in A and B are 30 and 10, respectively. Thus, we have Pds =
302+102

402
=

0.625.

An asymptotic estimation of the number of graphs with a given degree

sequence (i.e., |Gds|) has been studied [5, 6], but no research carried out to count

(or estimate) the number of isomorphic graphs in Gds. If we find a formula of Pds

in terms of the given degree sequence, then we can answer interesting questions

arise in graph analysis, e.g., in which case Pds is higher? (when degrees are

evenly distributed like in regular graphs or when degrees are distributed like in

Hub-and-Spoke networks?) Therefore, it is an interesting open problem to find

a formula for Pds in terms of the degree sequence.
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Figure 5.1: Graphs with degree sequence (2, 2, 2, 1, 1).
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[39] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem:

Its Structural Complexity. Birkhäuser Boston, 1993.
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요약

그래프 동형 문제는 소셜 네트워크 서비스, 생물정보학, 화학정보학 등등 다양한

응용분야에서그래프분석을위해다루고있는핵심문제이다.실생활에서다루는

그래프 데이터의 크기가 커져 감에 따라, 대용량의 그래프를 처리할 수 있는 그래

프 동형 알고리즘의 필요성이 높아지고 있다. 그러나 현재 존재하는 그래프 동형

알고리즘들은 대용량의 그래프에 대해서 시간 혹은 공간 측면에서 한계를 보여준

다. 응용 분야 중에서는 여러 개의 그래프들 중에서 하나의 쿼리 그래프와 동형인

그래프를 모두 찾는 문제, 즉 그래프 동형 쿼리 프로세싱을 종종 요구하기도 한다.

본 논문에서는 대용량의 실제 그래프 데이터에 대해서 그래프 동형 문제와 그래프

동형 쿼리 프로세싱 문제를 빠르게 푸는 알고리즘들을 제안한다.

첫 번째로, 본 논문에서는 그래프 동형 문제를 위한 빠르고 확장성 있는 알고

리즘을 제안한다. 이를 위해 쌍별 색 개선(pairwise color refinement)과 효율적인

백트래킹으로 구성된 프레임워크를 소개한다. 이 프레임워크 내에서 세 가지 효율

적인 테크닉을 사용한다. 실제 그래프 데이터에 대한 실험을 통해 본 알고리즘이

현존하는 가장 빠른 알고리즘들보다 평균 수천 배 빠름을 보였다.

두 번째로, 본 논문에서는 그래프 동형 쿼리 프로세싱을 위한 효율적인 알

고리즘을 개발한다. 본 알고리즘은 차수열과 색-레이블 분포를 이용한 인덱스를

이용한다. 실제 그래프 데이터에 대한 실험을 통해 본 알고리즘이 현존하는 알고

리즘들보다 인덱싱 시간에서는 항상 평균 수천 배 빠르고, 쿼리 처리 시간에서는

중·대용량의 그래프들에 대해서 평균 수십 배 빠르게 동작하는 것을 보였다.

주요어: 그래프 동형; 그래프 동형 쿼리 프로세싱; 쌍별 색 개선; 백트래킹; 부분

실패 집합

학번: 2014-21758
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