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Abstract

Gravitational wave as a probe of dark matter physics

Han-Gil Choi
Department of Physics and Astronomy
The Graduate School

Seoul National University

In this dissertation, we present novel ways of probing dark matter(DM) physics
through gravitational waves(GWs). We find that if a light scalar dark matter interacts
with neutron and induces time-oscillating mass shift of it, GW chirps radiated by
neutron star binary inspiral can be sensitive probe to such effects. The sensitivity
comes from a large number of GW cycles during year-long measurements in broadband
(0.01 Hz — 1000 Hz). Such broadband measurements that can be realized by a future
detector network including LIGO and mid-band detectors will probe unconstrained

parameter space of the light scalar DM.

We also show that gravitational lensing(GL) of GW can be a probe of dark matter
subhalos at subgalactic scales(M < 107 Mg). It has been very challenging for GL of
light to probe the scale. What special to GW is its parsec scale Fresnel Length which
comes from its long wavelength and cosmological distance to the GW source. It makes
possible GW chirps to be diffracted by the parsec-scale subhalos. We show that the
diffractive lensing signal is equivalent to a shear distribution of a lens object, and
therefore, it can be used for reconstruction of the lens profile. The event rate of such

GW lensing is estimated to O(10) per year at BBO.
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Student Number: 2015-20356
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Chapter 1

Introduction

Gravitational wave(GW) is a completely new window to the cosmos. GW is the ripple
of the space-time curvature propagating with the speed of light, and is one of the main
predictions of the Einstein’s General relativity(GR). Same as electromagnetic waves
which are radiated by acceleration of electric charge, GWs are radiated by acceleration
of mass. Due to weak coupling between matter and gravity, the amplitude of GWs
radiated by daily-size objects is completely ignorable. Even GWs sourced by violent
astrophysical events such as binary star coalescence and supernovae explosion have
extremely small amplitudes, detection of GW has been one of major challenges of
modern physics. Despite it’s smallness, GWs can carry the information on bulk motion
of matters deep inside the astrophysical phenomena to an observer, and are expected

to give us new insight on the universe.
Finally in 2015, after the centennial of the birth of GR, LIGO collaboration suc-

ceeded in direct detection of GW signal |2,3]. The GW signal was radiated by the

merger event of 30 solar masses binary black holes which occurred at a billion years



ago. Until now (2021), LIGO-VIRGO collaboration has been detected 20 GWs sig-
nals [4] which include completely new phenomena such as the coalescence of neutron
star binary [5] and the formation of intermediate black hole [6]. The potential of GW
astrophyics just have begun to be revealed. In the near future, as more GW detectors
such KAGRA and LIGO-india join for GW observation, the number of GW signals
and sensitivity to them will drastically improved, which is expected to revolutionize

astrophyics.

Meanwhile, the realization of GW observation triggers the rise of interest in the
application of GW to dark matter physics. Dark matter, the old mysteries, has re-
vealed its existence only through gravitational interaction, which make its properties
not much known until today. Although electromagnetic observation has been very
powerful means for dark matter research, it has a clear limitation coming from high
systematic errors due to strong interaction with ordinary matters. However, GW, as
a pure gravitational probe, might become a game changer for dark matter hunting.
In this dissertation, we propose the new way of probing dark matter physics by utiliz-
ing the unique properties of GW signals. The following sections of this introduction

reviews the basics of gravitational wave.

1.1 Gravitational waves in Linearized GR

Although everything of general relativity(GR) are encoded in the Einstein’s field
equations

1 8rG
G,LLI/ER;LI/_§gpl/R:K/T/Jl/7 R = ?, (11)

where g, is space-time metric, I, and R are Ricci tensor and scalar, and T}, is
energy-stress tensor, it is almost impossible to solve the equations without simplifying
assumptions due to their non-linearity. In this case, the most natural strategy is to

find out their linear component by assuming small perturbations to simple and well-



known solutions. Gravitational waves are also well-understood in this context which
is enough for most cases. In this section, we consider linearized GR on flat metric
N = diag(—1,1,1,1), and will see that GR allow only two degree of freedom which
propagate with speed of light.

We start with defining metric perturbation A, as
g,u,l/ - np,z/ + Ehp,y, e K 1 , (12)

where € is introduced as a book-keeping parameter which eventually will be set to
1. Dealing with them with Lorentz covariant way is more conventional, but resulting
gauge dependence somewhat dilute the fact that the true number of propagating
degree of freedom is two. Therefore, instead, we adopt the decomposition of h,,
according to the transformation property with respect to SO(3). The decomposition

is given by
hoo = A
ho; = 0;B + B; (1.3)
iy = 5 D6 + 04+ O3V + Vi + K

where the Latin indices take 1 to 3, and the newly introduced 3D vectors and tensor

satisfy
O'B; =0'V; =0'hl; =0,hi;" 6" =0. (1.4)

Assuming appropriate fall of condition for r — oo, one can show that this decompo-



sition is uniquely determined as
B =A"10'hy;
B; = hoi — AT & h;
3 g
D=3 (hg — A9 hyj) (1.5)
E= 1Ay 1 SA 2000,
2 3 9 i
Vi = A7'0h;; — 9,720y,
hg;-T = hj; — (remains),
where A = 90, and h3 = hijéij. As one can see, suffering from non-local definition,

this formalism is not preferable option for real-problem solving. However, we shall see

that this method will clearly show the formal structure of linearized GR.

By the definition of h,, h,, should be properly redefined under a transformation

of 1. Especially when the coordinate transformation
ot — o't = h + e (1.6)

does not significantly distort the background, it is the so-called gauge transformation

of hy. Under Eq. (1.6), hy, should transform as



Correspondingly, the transformations of Eq. (1.5]) are
A=A+ 200&0
B'= B+ &t" + &

B} = B; + 0o&]

D =D (1.8)
E' =E+2¢¢
Vi=Vi+¢l

h/TT hTT

ij >
where ¢& = A719%¢;, and 0¢l’ = 0. Note that one can find gauge-invariant scalar,
vector, and tensor field by rearranging Eq. 1) While D and hg;T are already gauge-

invariant, the others are given by

®=A-200B+RE
(1.9)
Ki = Bz — a[)‘/l .
In short, h,, have two gauge-invariant degrees of freedom(DOF) for each scalar,

vector, tensor component.

The linearized version of Riemann curvature tensor is given by
1
Ra675 = 5 (aﬁ5how - aﬁah'y(s - a’y&haﬁ =+ 8a'yhB5) . (110)

One can show that R,g+s is invariant under Eq. (1.7)). This implies it can be expressed
in terms of ®, D, K;, and hg;T. Actually, we can write the Einstein tensor G, as

1
GOO :gAD

Go; (9()ZD + AK
(1.11)
< AD + OOD — AD) 5ij

TT

5 A =T CLET



Before equating these results with 7),,, note that 7T}, allows same decomposition :
Too=p
Toi = 0iS + S; (1.12)
Tij = Pdij + 050 + 0o + 0jo; + 035,

where 9'S; = 0'o; = 8’&2-]- = aijéij = 0. Not all the components are independent due

to the conservation law 0#T),,, = 0. Their relations are given by

Ogp = AS
Ao = §yS — P (1.13)
AO’j = 8()Sj 5

and removes 4 DOF from T},,,. The remaining 6 DOF match with the 6 gauge-invariant
DOF of hy,, through the Eq. (1.1). Finally, the Einstein equation with 7}, of order e

gives

1
gAD = Kp

AP =r(p+2P —20)S
G ) (1.14)
T
Therefore, we can clearly see that only transverse-traceless(TT) tensor components
can propagate, and the scalar and vector are constrained by matter distribution,

which can be connected to the conservation of energy and linear momentum of the

whole system.

1.2 Gravitational wave radiation from a binary star

While the T'T decomposition clearly shows radiative degree of freedom of gravitational

fields, it is lack of practical usefulness due to its non-local properties. Solving the



Einstein equation with a specific gauge choice become the standard which can be
found in many literature. We are going to follow the conventional steps to present

the gravitational wave radiation of a binary star.

The Lorenz gauge of the linearized Einstein gravity is defined as
OMhy =0, (1.15)

where

— 1
hw/ = h,uu - ihnuu7 (116)

is the trace-reversed metric. In this gauge, the Einstein’s field equation is reduced to
Ohw = —26Ty, (1.17)

and it is solved by

-~ T]/ t_ _ /7 /
Py (t, ) = ;T/d%’ plct = |z — 2|, @) (1.18)

|z — ']

At large distance which is far larger than a characteristic dimension, the solution is

approximately
_ K 3 K e
hyu(t, ) ~ M/d Ty (ct —rx’) = Hfij(ct —r), (1.19)
where
Lij(t) = /dgzv'p(t,:c')wga:;. (1.20)

To arrive at the last expression, we used the conservation law 0#T),,, = 0 and in-
tegration by parts. After taking out the TT component by the projection operator
Pyj = 65 — wixj/ 2, the expression is the famous quadrupole formula of gravitational

wave

T _ K T
hii (t,z) = H[Iij(d — )]

K d?
 4qrr dt?

. (1.21)
Ty(ct —r) | PPy — 2PklPij:| ,

7 A 2 ‘_ll &k 3
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where

1
Tia = I — goul (1.22)

Remaining part is finding out the energy flux due to the gravitational wave ra-
diation. However, it is revealed to be highly non-trivial task which requires second
order perturbations and spatial/time averaged quantities. The difficulty is mainly
originated from the heart of general relativity, the equivalence principle which states
that observer that lying on a point on space-time cannot distinguish a gravitation

and acceleration(which is not a feature of gravitation) only with local measurements.

The localized energy of GW, although it is an effective and approximate concept,
can be found to be [7]

T = i(aﬂh?ayhéiﬂ : (1.23)
where the (-) denotes the spatial/time average over few wavelength of GW. One
can show that ngw satisfies the conservation laws and the gauge independence. The
energy flux due to the quadrupole radiation is given by 7| OC;’W. Plugging Eq.
into Eq. and integrating TOC;’W over the sphere, one find that

= Ty (129
Now we are on the stage of calculating GW radiation from a binary star. Let the
mass of binary star as m; and mg, and also define M = m; + mg and p = mymgy/M.

The energy density can be written by
p(t, ) = mic283(x — x1(t)) + mac®®(x — xo(1)), (1.25)

where x1(t) and x4(t) are the position vectors of the stars. We assume the binary has

circular orbit which is given by

x] = %a(cos Qt T +sinQtg)

[ (1.26)
Ty = _ﬁla(cos Ot & +sinQtg),



where ) is orbital frequency and a is separation of the binary. Then, the inertia tensor

I;; can be found to be

2 2 2 2
;=2 (14 cos2Qt), Ip = pe a (1 —cos2Qt),

2 2
Lo = 2C% Gin 20t (1.27)
Iig =133 =0.

Combining those quantities with Eq. (1.24)), we have

7
E 2 2Gs
1B _ 326 bpge — 3 G;;FM%Q : (1.28)
C

wls

a5 M 5

up to the Newtonian order, where a® = GMQ™2 and E = Mc? — pM/(2a). If we

rewrite the equation in terms of the GW frequency f = Q /7, the equation becomes

df  (dE\'dE 96G3 5 s .u
df _ (dE\ " dE _ 1.2
dt <df> @ = s M (1.29)

where

M= M3us, (1.30)
is the chirp mass which takes the central role of GW astrophysics as well as this
dissertation. Those aspects will be discussed shortly. Integrating Eq. (1.29)) up to the

cut-off frequency f.(usually set to be inner-most-circular orbit frequency), the time

evolution of frequency can be found as

5, (1.31)

where t. is the time at GW frequency being f., or by inverting the relation approxi-
mately with f. > f,
Fl)~ G Scs M S(t.—t)s (1.32)
i

Accordingly, the phase of GW is

te
o(t) = / 2 f(t)dt = B — 25 /3G RcT M5 (t, — )8 (1.33)
t

9 A 2 ‘_ll &k 3

'||



where ®. is the GW phase at t. which can be arbitrary chosen.

To obtain GW waveform, one need to calculate the T'T projection of the inertia
tensor. The TT projection with respect to the radial direction z;/r can be easily

obtained in spherical coordinate (6, ¢). In the coordinates, one can find
1
[Too)"" = —[Ls)"" = 5 cos® 0 — Inz), [Ip,]"" = L1z cos 6. (1.34)

Using Eqs. (1.21)), (1.27)), (1.33)), and (1.34)), one can obtain GW waveform as follows:

helt) === MG (mf(£))3 (1 + cos? 0) cos B(t)
s (1.35)
hy(t) = — i M3 (mf(t))3(2cos8)sin d(t).

As one can see in Egs. ([1.33) and ([1.35]), the dynamics of a binary star is almost

completely determined by the single mass parameter. As a consequence, a binary star
coalescence has a high predictability in spite of currently operating GW detectors
being only sensitive to GW frequency. The unique property has been utilized to infer
the population of binary black holes, to measure distance to binary neutron star
merger, and etc. Until now, the application of GW measurement has been restricted
to astronomy due to limitation of current GW detectors, however, the opportunity
for probing fundamental physics will be widely open as soon as the next-generation
GW detectors begin their operation. In this dissertation, we are going to explore the
potential of GW physics in the aspect of its application to particle physics. In the
first part of main text, we will show how GW measurement can become a sensitive
probe to new forces, which are possibly byproducts of dark matter. In the second
part, we will introduce how gravitational lensing of GW can be used to detect dark

matter substructure at subgalactic scale.
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Chapter 2

A New Probe of Dark
Matter-Induced Fifth Force with
Neutron Star Inspirals

This chapter was published as New probe of dark matter-induced fifth force with neu-
tron star inspirals. Phys. Rev. D 99, 015013 (2019).

2.1 Introduction

The Gravitational Wave (GW) from compact binary mergers are finally discovered [1].
The discovery has convinced the existence of solar-mass black holes for the first
time [2] and tested General Relativity in a new way [3]. But more and foremost
excitingly, in the upcoming years with next-generation GW detectors, its physics

potential is bound to grow significantly and extend outside astrophysics.

In particular, binary neutron stars (NS) [5] are becoming new precision observato-

ries. Their final years of inspirals can be tracked very precisely through the observation
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of GW radiation. The final inspiral is strongly governed by general relativity, produc-
ing a well-predicted particular type of evolution called the “chirping”. The chirping
inspiral is thus naturally immune to small perturbations from their environments or
backgrounds. This allows not only the detection of binary GWs as tiny as 10™2! frac-
tional oscillation of the metric but also precision cosmology combined with optical

counterparts [8].

But the immunity does not mean that small perturbations are irrelevant or un-
observable. Often, they do leave important traces on the binary inspiral from which
we can observe the binary environments — the Universe. One of the most exciting
environmental effects would be from the dark matter (DM). For example, DM can
accumulate at the core of NS, strongly modifying NS binary mergers [9-12]. A DM
locus nearby the binary may be also able to perturb the binary orbit in such a way
to enhance the instability or ellipticity [13]. The high-precision observation of NS
inspirals with GW may have broader (unexplored) sensitivities to milder DM effects

from more varieties of DM.

Dark matter is one of the biggest mysteries of the Universe. In spite of its un-
precedented evidence, it has not been discovered yet. For decades, Weakly Interacting
Massive Particle — WIMP — has been a main paradigm of DM, but all DM detection
experiments so far have failed to discover it. Today, it became essential to explore
broader possibilities of DM interactions and masses both theoretically and experi-

mentally.

A light scalar DM is one important candidate that receives much attention these
days. A wide range of its mass as light as 10723 eV is unconstrained. Various types of
its couplings to matter are possible. There are also several well-motivated examples
such as axions [14], fuzzy dark matter [15], relaxions |16] as well as simple scalar

DM. These scalars might be relevant to the solution of important particle physics
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problems such as strong QCD problem and the Planck-weak hierarchy. Thus, many
direct detection experiments are proposed and ongoing; a good survey of them is in
Ref. [17]. But to probe a complete range of possible masses and interactions of the

DM, more new and complementary ideas are needed.

In this paper, we show that final years of NS-NS inspirals may be sensitive to
light scalar DM-induced perturbations in a new way. We give an overview of the new
observable and possible experimental setup in Sec. then we introduce DM models
in Sec. discuss new observables and other existing ones in Sec. experimental
setup and calculation in Sec. finally show and analyze results in Sec. and
and conclude at the end.

2.2 Overview

We give an overview of the new DM-induced signal on the NS-NS inspiral, a signal that
can be observed through the last years of inspiral at, e.g., LIGO plus mid-frequency

detectors.

e Signal with the oscillating NS mass. The light scalar DM (not just light scalars)
interacting with neutrons can induce the time-oscillating mass-shift of NS-NS
binaries. The oscillation is due to the lightness of DM with long phase coherence.
The phase coherence is kept for long enough periods ~ 1/ mpmv? > 1 /mpum be-
cause DM is non-relativistic v ~ 1073, Thus, the lightest possible DM oscillates
coherently at its Compton frequency, mpy = 10722eV = 0.76/year, which is

about 1 per year.

e Enhanced sensitivity to the chirp-mass. The oscillation in time is a key property
that provides a time-dependent change to detect the mass shift. As long as the

DM Compton period is within inspiral measurement time, the oscillation is
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detectable, through the exquisite chirp-mass measurement from GW waveform
evolution. The sensitivity benefits from a large number of GW cycles during a
long measurement, which can accumulate a tiny phase shift (from the chirp-mass
shift) in each cycle to a detectably large one. Thus, the chirp-mass accuracy is

augmented by ~ N¢y. - SNR (not just SNR).

Highest-frequency broadband. The broadband f ~ 0.01 — 1000 Hz (e.g. with
LIGO + mid-frequency detectors) is ideal to detect the DM effects, as it is the
highest-frequency band with year-long lifetime of NS-NS binaries. Not only can
a long measurement enhance Ny and SNR, but the highest-frequency end can
also resolve important parameter degeneracies, partly by utilizing the Doppler
effects around the Sun. In addition, as mentioned, the year-long measurement

is also a proper time scale to probe the lightest scalar DM.

NS-NS. The NS-NS is the type of binaries that can test the DM induced effect.
Here, non-DM light-scalar effects (such as dipole radiation of the scalar and
Yukawa force) is absent or at least suppressed. We focus on the NS-NS case in

this paper.

Other probes. There are existing and proposed experiments that can be sensitive
to light-scalar DM effects: pulsar timing arrays, lunar laser ranging, atomic
clocks, GW interferometers, and torsion balance experiments. These can search
for the DM-induced time-varying clock rate, «, acceleration, and equivalence-
principle (EP) violation. Our new probe — looking for the DM-induced absolute

mass-shift — can be competitive or complementary to those.
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2.3 Models of DM-induced fifth force

A light scalar DM shows its wave nature through its long phase coherence. Although
background DM is an incoherent superposition of individual DM waves, their phase
coherence is retained for a long time ~ 1/(mpyv?) > 1/mpy. Within that time, DM
then coherently oscillates at the Compton frequency mpy = 2.42 x 10~8Hz (15’_‘%),

and its background effect can be collectively enhanced.

Testable signals arise when the light scalar DM interacts with the visible matter
(hence, the fifth force), in particular with the neutron in this paper. We introduce

benchmark models for this phenomena:

e Higgs portal DM. The mixing between the DM ¢ and the Higgs h induces the

coupling to the neutron n

b
L£> %<h>ghnnﬁn — %CNmnﬁn, (2.1)
mh mh

where the non-perturbative QCD effects on the nucleon coupling is captured by
cn =~ 200 MeV /m,, with significant uncertainties [18]. The DM wave almost co-
herently oscillates in time and space with the amplitude set by the DM density:
#(t) = (/ppMm/mg) cos(mgt). The coefficient b is our free parameter.

The couplings to protons and electrons are also generated by the mixing; since
these couplings are not proportional to the masses due partly to QCD confine-
ment effect, they generally break the (weak) equivalence principle (EP) [18].
For constraints on the weak EP-violation, we take the results in Ref. [17]. Cou-
plings to photons and gluons can also be generated (at least through loops
of charged/colored particles). But searches of such couplings from the lightest

possible DM is absent. We focus on the coupling to the neutron in this paper.
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e Scalar DM coupled to the trace of the stress-energy tensor 7' = T},
LD gs¢T, (2.2)

where gy is a universal coupling constant. In the long-wavelength limit of ¢, the

interaction term for the neutron is effectively equivalent to
LD 9énn cZ)ﬁn, (23)

where ggnn = ggmy, is our free parameter specialized to the neutrons. We assume
no other modifications in the gravitational sector. This model does not violate
the weak EP, but the strong EP is still broken. One can find that ¢ violates
the strong EP in the following two ways: (1) the outcome of the elementary
particle mass measurements depend on the space-time varying intensity of ¢,
(2) the self-energy dependence (due to the self-energy of ¢) of the free-falling
acceleration under the external fields (g,, and ¢). The effect of the scalar field
¢ can be constrained by not only the tests of the fifth force but also by the tests
of the general relativity, such as the Shapiro delay measurement from Cassini
spacecraft [19] and strong-EP tests by the observation of stellar binary or triple
systems containing a pulsar [20}21]. The Cassini constraints are stronger and

will be shown in our results.

2.4 Signals in Neutron Star inspirals

We introduce the new observable in Sec. then we review non-DM signals in
NS-NS in Sec. other mass-shift effects in Sec. other light scalar non-DM
effect Sec. and equivalence-principle violating effects in Sec.
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2.4.1 Oscillating NS-NS mass-shift

The neutron-star(NS) inspiral interacts with the background DM distributed over the
space through which it moves. This interaction can leave tracesﬂ as (1) the oscillating
mass-shift of NS, (2) oscillating external forces on the NS. The former one is our focus

in this paper, and we show that NS-NS inspirals can be used to test this DM effect.

The (oscillating) fractional neutron mass-shift from the two benchmark models is

b b\/ / _ -7
omy, CNmi‘% - CN#:;\%I ~ 8.0 x 107 (107%ev) (1Om¢HZ> cos(mgt) (2.4)
- 9pnn® 9enn/P — 9pnn 10-7H '
My fnn = ¢m¢mfjw ~ 6.3 x 10 13 (H;bf%) <T¢Z> COS(md)t)

The effect is proportional to ¢ oc \/ppm so that galactic centers where the majority
of both DM and NS-NS reside are good places to detect the DM effect. We base our
numerical calculation on the value of ppyy = 77.3 GeV/ cm? from the 0.8 kpc flat-core
value of Burkert profile, but we also consider variations later. The neutron mass-shift

will induce the NS mass-shift, hence the NS-NS chirp-mass shift

oM omy,
- 2.5

M “ My, (2:5)

with ¢ = 1 for NS-NS binary, but there can be a mild suppression from the neutron

fraction in the NS.

The mass-shift becomes observable as it oscillates in time: M (t)/M o \/ppm cos(mgt).
The time-oscillation of the chirp mass induces a characteristic change of the GW evo-
lution that cannot be mimicked by GR effects. As a proxy of sensitivity, we will
calculate the parameter space where the oscillation amplitude equals to the chirp-
mass measurement accuracy; we discuss our calculation in the next section and show
results in Fig. 2.I]and 2.2} The chirp mass can be exquisitely well measured through a
huge number of GW cycles and highest-frequency data, as will be discussed. For the

!Similar DM effects on binary pulsars have been studied in Ref. [22] based on DM oscillation in
resonant with binary orbital frequency.

-1]
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chirp-mass oscillation to be detected, at least a large portion of an oscillation should
be within the GW measurement time (about a year or longer in f > 0.01 Hz). Since
mg 2 10722 eV = 0.76/yr and their phase coherence is retained for much longer time,
the (multi) year-long high-frequency GW measurement is proper to test the lightest
possible DM.

2.4.2 Other light-scalar (non-DM) effects in NS inspirals

A light scalar can also induce other effects in NS-NS binaries, the non-DM effects
that exist even if the scalar is not the main fraction of DM. The exchange of light
scalars ¢ mediates a long-range Yukawa force between the neutron stars, deviating

from the 1/r? law

2 GuM
uv— = /‘72 (1+ a(l+mgr)e ™), (2.6)
r r
here a = % 1~ 148 x 1079(;-4-)2 for the first model and a = L2
where a = Tt 5 o 148 X (7g=o5y)° for the first model an O = e ™
1.44 x 10_9(193511;‘3 )2 for the second model, and the reduced and total mass p and M.
The effect on the GW waveform evolution can be described approximately by the
shift of the chirp mass %(r) ~ %a (1+mer) e*m¢ The resulting radius-dependent

(hence, frequency-dependent) chirp mass is a clean signal that cannot be mimicked
by GR effects. The total change of the chirp mass during a measurement starting

from f; (or r;) until fy (or r¢) is given by

) 2
//\:l o~ ga((l—i—md)rf)e Mt — (14 mgr;) e m‘ﬁ”l)
2 1,22 1
za(l —smirs), > —
~ )5 (L —gmgry), ri> 5o < %a (2.7)
%ami(rf - r?), r; K W%’

The change is maximal, %a, for the scalar mass in the range r; > 1/my > r;. The

range, for the NS-NS binary, is 7;(f = 0.1 Hz) ~ (7.8 x 1071 eV)~! ~ 16000 km and

20ur method applied to ET yields similar or actually slightly worse sensitivity than the more
dedicated estimation in Ref. |25].
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re(f =1000Hz) ~ (3.7x107 1 eV) ™t ~ 34 knﬂ Thus, this effect can only probe those
range of the DM mass (in our experimental setups); lighter Yukawa force essentially
looks the same as gravity. In Fig. and we show the parameter space where
Eq. equals to the chirp-mass accuracy.

A light scalar (again not necessarily the main DM) can also be efficiently radi-
ated if each NS carries different scalar charge-to-mass ratio, forming a scalar-charge
dipole [10,23]. This dipole radiation is qualitatively different from the GW quadrupole
radiation, thus can be tested with GW waveform evolution [23-25]. It is efficient for
any light scalars with long enough Compton wavelength 1/mg 2 10 km. But this ef-
fect is absent in the NS-NS in our model, as every NS has the same charge (mns/my)
to mass (mng) ratio = 1/my,; at least, the radiation is suppressed by a small variation
of the neutron fraction in the NS. In the NS-BH, on the other hand, the dipole radi-
ation is efficient and dominant effect of light scalars, prohibiting the detection of the
DM effects — the oscillating mass-shift. Thus, in this paper, we focus on the NS-NS
as the type of binaries that can test the light-scalar DM effects.

2.4.3 Mass-shift in other experiments

Pulsars are highly stable and regular clocks. If its mass changes by DM effects, its
rotation period (hence, the clock) also changes; see also Ref. [22]. This leaves an oscil-
lating timing residual on each pulsar timing measurement. Each pulsar’s variation is
uncorrelated with those of every other pulsar since pulsars are separated by distances
much longer than the DM Compton wavelength. Thus, the average of pulsar timing
array (PTA) can provide a stable clock, cancelling the DM effect [17]. This PTA clock

may be compared with individual pulsar timing to measure the oscillation.

With EP violations, the pulsar measurement can also be affected by the varia-

3For LIGO-band expected sensitivities, refer to Refs. [10}/2325].

11 ==
19 A = TH e 0



tion of atomic clocks on the Earth [17]. The atomic-clock rate varies because atomic
transition frequencies are affected by the DM-induced variations of nucleus (and elec-
tron) masses and fine-structure constant « [26-30]. But all the atomic clocks oscillate
coherently on the Earth while independently from all the pulsars. Thus, individual

pulsar’s oscillation can perhaps be distinguished from atomic clock oscillations.

Therefore, we assume that DM-induced mass-shift can be detected by either obser-
vation, whether EP is conserved or not. One difference is that DM density at pulsars
can be different from local density that affects the atomic clocks on the Earth. In the
future, this difference can be exploited to better measure DM effects. Today, however,
most pulsars used in IPTA [31] and Parkes PTA [32] are within 1 ~ 2 kpc from the
Eartkﬁ Thus, we use the same local DM density ppy = 0.39 GeV/cm? to estimate
both effects. They give equivalent sensitivities at the end so that we essentially do

not distinguish the two observables.

The first release of IPTA [31] achieved the timing sensitivity At ~ o¢/\/NpNm
with r.m.s. timing residual oy ~ 1 us, N, = 50 pulsars and N,, ~ 10yr/2 weeks total
number of measurements. In our final results, we compare this sensitivity with the

DM-induced mass-shift or timing-residual amplitude

At:/dtﬂzlémn. (2.8)

T mg My

Lunar laser ranging (LLR) may be also sensitive to the absolute mass-shifts of

the Earth and the Moon. About 50% of their masses come from neutrons, so their

1dmy

3 We assume that the mass-shift induces

fractional mass-shift is approximately
a change or perturbation in orbital radius about the same fractional size as the frac-
tional mass-shift. The LLR measurement of the separation distance is currently lim-

ited by 0¢ < 1 ~ 2 cm [33]. We take the fractional sensitivity on the mass-shift to

4Presumably, pulsars and NS-NS are both accumulated at galactic center (GC). But the observed
distributions (pulsars with lights and NS-NS with GWs) could be somewhat different. See Sec.
for more discussions.
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be
¢ _1omy
(3.8 x 10°km) 2 m,

< 5x 1071, (2.9)

In our final results, we compare this sensitivity with the DM-induced mass-shift.

It is also proposed that GW interferometers can detect DM-induced space-time
varying accelerations on the mirrors [17],34,35]. The best sensitivity is achieved when
the DM Compton frequency matches approximately with the interferometer sensitiv-

ity range, hence mg ~ 100 Hz or 1073 Hz for LIGO and LISA, for example.
2.4.4 Light-scalar(non-DM) effects in other experiments

A long-range Yukawa force has been also searched in other observations: lunar laser
ranging (LLR) [33] and Keplerian tests from planetary motions. We show these ex-
isting constraints taken from Ref. [36]. Note that the searches only cover up to 1

AU(~ 10718 eV) scale.

In contrast, the Shapiro time delay measurement of the Cassini spacecraft [19]
can give constraints above 1 AU too. During the period of 15 days before and after
the Cassini solar conjunction event, the Cassini spacecraft and the ground antenna
on the Earth have exchanged the radio signals. The strong gravity of the Sun delays
the round-trip time of the radio signal by At

GM. GMorbital
At o 4—22 = 4(1 —a)fig, (2.10)

where M(%rbital = Mg(1 + «) is what is determined by the orbital motion (under
the influence of both gravity and the ¢-Yukawa force). The time-delay of the radio
siganl is not affected by the ¢-Yukawa force. Thus, the ¢-Yukawa force (or, the strong
EP-violation) can be searched by comparing the two effects as in Eq. . 200 <
2.1 x 107° from Cassini experiment [19]. This is weaker than the static EP-violation

searches for the first model, but is relevant to the strong EP-violating second model.
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Other constraints from stellar binaries or triple systems containing a pulsar [20,[21]

are weaker.
2.4.5 Equivalence-principle violation

There are existing and proposed experiments that can be sensitive to light-scalar
EP violation. Stringent limits were obtained from the EP tests of E6t-Wash torsion
balance [37] and MICROSCOPE free-falling Earth orbit [38] experiments (see also
Ref. [39]). But both measure static non-DM effects. We show the Eot-Wash constraint

taken from Ref. [17] in our final results.

On the other hand, atomic clocks can be sensitive to EP-violating DM effects.
Depending on the atom’s proton and neutron fractions, oscillating DM can induce
different variations of clock rate. To measure the differences, one can compare clock
rates among atomic clocks made of different atoms [26-28,/40,/41], or accelerations
among atom-interferometers made of different atoms |17, or the PTA clock rates
measured by different atomic clocks [17]. Torsion balance experiments may also be
sensitive to DM effects by sensing DM-induced force directions that may not point to
the Earth. These searches all depend on the local DM oscillation. We show existing

constraints from atomic clock experiments [27,40] in our final results.
2.5 Broadband GW detectors and Calculation

We discuss proposed experimental setups and our calculation.

The crucial for exquisite chirp-mass measurement are a large number of GW cycles
and highest-frequency chirping. Thus we consider final 1-year and 10-year measure-
ments of NS-NS binaries, long enough and highest-frequency measurements that are
proper for this work. At 1~10 years before the merger, the redshifted GW frequen-

cies are 0(0.01 — 0.1) Hz (where the lower range corresponds to zg ~ 10) and reach
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the innermost stable orbit (ISCO) at O(100 — 1000) Hz. We combine mid- and high-

frequency detectors to cover those range of frequencies 0.01 Hz < f < 1000 Hz.

The first benchmark detector-network consists of 4 sets of aLIGO (design sen-
sitivity) [42] + Atom Interferometer (AI) (resonant mode) [137,/138]; and the more
optimistic benchmark network consists of one set of Einstien Telescope (ET) |45] +
Big Bang Observatory (BBO) [46]. The second benchmark has O(10) times smaller

noise.

Our calculation proceeds as follow. Since we consider year-long or longer measure-
ments, particular detector properties (baseline direction and their rotation, etc) are
not so important. Thus, for the calculational simplicity, we use the simplest antenna
function (from a single-baseline AI detector) for all kinds of detectors mentioned
above; we follow the procedure in Ref. [47]. Considering more accurate and compli-
cated antenna functions may even improve the chirp-mass precision, thus our esti-
mation may be conservative in this sense. For GW waveforms, we use myg = 1.3Mg
with the amplitude at the Newtonian order. The GW phase includes post-Newtonian
corrections up to 1.5PN at which the reduced mass p and spin-orbit parameter 5. We
pick a random set of extrinsic source parameters (sky location, polarization, orbit in-
clination) that are close to the orientation-averaged GW amplitude; we use the same
parameters as in Ref. [47]. For further simplicity, we assume that spins and orbital

eccentricities are zero.

Our goal is to compare the DM-induced chirp-mass shift in Eq. with the
chirp-mass measurement accuracy, as a proxy of sensitivity to the DM effect. We
envisage that oscillating data have the sensitivity to the oscillating part of the chirp
mass at the same level as the chirp-mass accuracy without oscillations; thus, inspirals
can be sensitive equally to any oscillation frequency as long as it is within the inspiral

measurement time. The chirp-mass accuracy (without oscillations) is estimated by the
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Fisher information matrix, F. We include 10 source parameters: sky location (6, ¢),
polarization, inclination, luminosity distance Dy, coalescence time t., constant phase-
shift, masses (chirp mass M and reduced mass p), and spin-orbit coupling 3 (although
we set spins to zero, we do not assume that we know it). The parameter definition and
calculation are followed from Refs. |[47,/48]. Fisher matrices from different detectors
are added linearly; equivalently, SNR is added in quadrature. The accuracy of a
parameter is given by the square-root the inverse-Fisher diagonal elements /(F~1);;
thus, it improves with the square root of the number of measurements and linearly

with SNR.
2.6 Prospects

Fig. and Fig. are our main results. We show the parameter space (solid lines)
where the mass-shift amplitude Eq. equals to the chirp-mass Fisher accuracy.
Fig.[2:3]is from the single measurement of NS-NS at 10 Mpc, and Fig. 2.2]is from the
integration of all NS-NS measurements (for 1 or 10 years) according to their merger-
rate distributions. Each solid line corresponds to different setup and assumptions,
each of which will be discussed. Also shown are existing (shaded) or proposed (non-
shaded) sensitivities on DM effects (dashed) from IPTA and LLR displacement and
on non-DM effects (dot-dashed) from Eo6t-Wash EP test and Yukawa searches with
LLR, Keplerian test, Cassini, and NS-NS inspiral in our experimental setups. As
discussed, for the second model, we do not show weak EP-test results. And whether
EP is conserved or not, IPTA probes oscillating DM effects in both models, either by
pulsar mass-shift or period-variation. Notably, a large part of the light-DM parameter

space of the second model is unconstrained.

The single measurement of NS-NS at 10 Mpc (Fig. , if we are lucky to see this,

alone can be already powerful. In particular, for the EP-conserving second model, this

3 =11 =1
g &0 8



mHz Hz kHz uHz mHz Hz kHz
LobolHP :
Single NS-NS Single NS-NS
%
% 109 S fos Static EP test -
= LLR/------ “LLE
g o o S -
10719 FCH I
R qug, NS Yukawa NS-NS
R v
& ¥ -
10-11 10-2
10-12 ,'."'C/ 10-26
10727

1072 100 107 107 1074 10712 1072 107% 107 107 107 10712
myleV] mgleV]

Figure 2.1 Single measurement of NS-NS at 10 Mpc with 4(aLIGO+AI) (blue) or
with ET4+BBO (red). Along the shown solid lines, the DM-induced mass-shift M /M
equals to the chirp-mass accuracy. Each solid line corresponds to different setup and
assumptions; see text for details. The aLIGO+AI 10yr and ET+BBO 1yr curves
overlap. Higgs-portal model (left) and scalar-coupled to the trace of the stress-energy
tensor (right). Also shown are existing (shaded) and reinterpreted (non-shaded) con-
straints on DM-induced effects (dashed) from IPTA, LLR displacement, and atomic
clocks and on non-DM effects (dot-dashed) from static EP test and
Yukawa searches with LLR , Keplerian test , Cassini , and NS-NS inspiral.

can probe unconstrained parameter space. It can also strengthen or complement other

expected sensitivities from LLR displacement and IPTA.

Each solid line shows possible improvements. The top line assumes 4(aLIGO+AI)
for 1-yr integration time with full 10 x 10 Fisher matrix, and the second line assumes
a 10-yr integration with a posteriori optical-counterpart information to remove the 5
degeneracies with sky-location (6, ¢), luminosity distance (redshift with standard cos-
mology), coalescence time (knowing when merges), spin 3 (knowing that NS has small
spin). The last two lines show ET+BBO results with the same set of assumptions. A
smaller noise (LIGO+AI — ET+BBO) improves the chirp-mass accuracy by about
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Figure 2.2 Integration of all NS-NS measurements for 1 or 10 years with 4(aLIGO+AI)
(blue) and ET4+BBO (red). Along the shown solid lines, the DM-induced mass-shift
OM /M equals to the integrated chirp-mass measurement accuracy. Each solid line
corresponds to different setup and assumptions; see text for details. The aLIGO+AI
1lyr and LLR displacement curves overlap. Models and other sensitivity curves are as

in Fig.

50 times larger SNR, whereas a longer measurement (1 year — 10 years) by about 10
times larger Ncy.. Removing the 5 degeneracies improves by another factor of 2; this
relatively small improvement is one of the highest-frequency benefits (see the next
section). For a shorter 1-yr integration, the degeneracies with sky-location and spin
[ are similar, but the latter one becomes more important for a longer 10-yr integra-
tion. This is because spin effects are irrelevant at low-frequency (farther separation)

regimes, thus longer lower-frequency data do not contain much spin information.

A combination of all NS-NS observations for T = 1 or 10 years of integration

(Fig. can extend the reach by a few orders of magnitudes. Summing all observa-
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tions enhances the sensitivity statistically, scaling approximately as

</ = (Tﬁ%) i (o) )1/2’ 21y

with the binary redshift z, comoving distance y, comoving merger-rate density of

NS-NS 7 (we assume a constant comoving density), the Hubble constant today
Hy = 70km/sec/Mpc and Qp; = 0.3, Qy = 0.7 for matter and A energy frac-
tion. The two sets of predictions shown are based on lower and optimistic val-
ues of ppy and n. For the lower expectation, we use ppy = 77.2 GeV/cm3 from
0.8 kpc flat-core Burkert profile (similar to 0.1 kpc NFW and Einasto values) and
7 = 1000/Gpc?/yr [49] from the central value of predictions. For the optimistic case,
we use ppy = 1000 GeV/cm?® [50] maximum not exceeding the ©(10)% of baryonic
mass inside the 100 pc galactic center (which can be constrained by future pulsar-
timing residual measurements from SKA/FAST [32]) and 7 = 12000/Gpc?/yr [49]
maximum consistent with LIGO observations so far. The “optimistic” curves are the
optimistic results with 10-yr integration and the 5 degeneracies removed. It improves
the lower sensitivity by about a factor 250. After all, the most optimistic sensitivity
reaches down to an exquisite level, b < 107 eV and onn S 102, from the 10-year

integration with ET+BBO for the lightest DM.

2.7 Discussion

2.7.1 Origin of good sensitivity

We now turn to analyze the origin of good sensitivity to small DM effects.

Above all, the potential chirp-mass measurement accuracy is significantly en-
hanced by a large Neyc (during year-long measurement). It is because a tiny phase
shift in each cycle can be accumulated to an observably large one after Ny cy-

cles [51,/52]. For example, the last 1 year measurement of NS-NS at 10 Mpc yields

1 3
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Neye 107 and SNR ~ 600 (see Fig. 2.3)) so that the fractional accuracy is expected
to be enhanced as 1/(SNR - Neye) ~ 1079, instead of just 1/SNR ~ 1072. Indeed,
while the accuracies of parameters that do not accumulate with Neye (such as In D))
is only 1/SNR ~ 1072, the final chirp-mass accuracy is 10~8 augmented significantly
by ~ Neye.

As shown in the first four panels of Fig. however, the chirp-mass accuracy
does not improve closely (or linearly) with SNR - Neyc. Only at the end of a year-long
measurement, the accuracy grows significantly and becomes close to the expectation.
Here, it is the interplay of low-frequency and highest-frequency regimes that allows

to fully realize the potential enhancement from N.y.. We discuss this in this section.

The relevance of Ny can be read directly from the Fisher matrix element. The
Fisher element of the chirp-mass part, Fia minpm = [ df |dﬁ/ dln M|?, is given by

dn(f) 5i 537
—P~ T8 3 2.12
at the Newtonian order. The term in the first parenthesis is proportional to the Ny
accumulated in each frequency interval as

M —5/3 f; —5/3
Neye ~ 2.44 x 107 z : , 2.1
y x 10 <1.5M@> <101Hz> (2.13)

where the initial frequency f; < f7 is assumed to be much smaller than the final fre-
quency fr. The final term E( f) in Eq. 1} is proportional to the SNR accumulated
in that interval. Thus, the Fisher element in each frequency interval is indeed related

to the Neyer SNR there.

The most of the GW cycles is accumulated at low frequencies (see Eq. (2.13))
as GW spends much more time there than at high frequencies. So does SNR. These
behaviors are shown in Fig. Thus, a long period of particular waveform evolution

at low-frequencies contains a large amount of information of the chirp mass. But

3 =11 =1
’ &0 8



a problem remains in that low-frequency data alone is not enough to confidently
distinguish the chirp mass from other source parameters. The unresolved correlations

with other parameters prohibit to achieve the expected accuracy yet.

Here comes the highest-frequency data, chirping rapidly towards the merger.
There, the frequency evolves most rapidly, whose evolution is governed by the chirp
mass. Even though Ny does not increase much during that short evolution, the large

range of non-trivial frequency evolution can resolve various degeneracies.

In particular, high-frequency measurement significantly improves the accuracy of
sky-location (6, ) and hence correlations with them (see Fig.[2.3)). It is improved due
to the huge Doppler phase shift accumulated across the Sun [47] (during year-long

measurment). The GW phase explicitly grows with the frequency as

U(f) ~ 2rf(—Tav -n/c+te), (2.14)

where 1 = 7(0, ¢) is a unit vector for the GW propagation direction or the source’s
sky-location and 74y is the Earth-Sun separation vector. The first term (depending
on 6,¢) is the Doppler phase shift. But this effect is measurable only after long
enough measurement around the Sun [47] as linear (or constant) Doppler shift is not
measurable (confused with the cosmological redshift z). Thus, a short high-frequency
segment of data alone is not useful, but only year-long measurement can utilize this
natural benefit. As shown in Fig. the location accuracy begins to improve after

about 6 months.

The highest-frequency chirping actually improves most of the source-parameter
accuracies that affect the GW phase. The coalescence time ¢, will be obviously better
determined as GW approaches that time (and see Eq. that the t. contribution
also grows with the frequency). Spin-orbit parameter 5’s impact on precession and
phase evolution will be largest when the binary separation is smallest near merger.

The reduced mass p will receive similar (although smaller) benefits that the chirp
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mass receives. On the other hand, the source parameters that affect GW amplitudes

do not gain high-frequency benefits, as Fig. 2.3 shows for In Dy, accuracy.

By comparing the full results (red-solid) and blue-dashed lines in Fig. where we
ignore the 5 aforementioned correlations (with sky-location (0, ¢), t., Dr,, and 8 from
a posteriori (optical) information), we conclude that the resolution of degeneracies is
responsible for the improvement of chirp-mass accuracy at the highest-frequency end.

And it is the one that finally allows to realize the potential enhancement from Neyec.
2.7.2 DM density dependence

The DM density dependence of the signal significance is an interesting property. If
NS-NS formation follows the star formation history, then the majority of NS-NS will
reside in the galactic center (GC) where DM is also most abundant. NS-NS is then a
natural candidate to detect large DM effects. The DM density dependence can also
be exploited to better confirm the DM origin of anomalous signals or to map DM

distribution.

In this paper, we implicitly assume that the GC is transparent to the GW. But how
bright or transparent it is would be an interesting question. Note that the majority
of pulsars measured (with lights) and used in PTA [31}[32] are within about kpc from
the Earth. Thus, NS-NS with the GW can also be complementary to the local fuzzy
DM search by Parkes PTA [32] too.

2.8 Conclusion

We have shown that last years of NS-NS inspiral may have a precision capability to
detect tiny perturbations from the lightest possible scalar DM. The new observable
considered is the time-oscillating mass shift, induced by the DM fifth force with long

coherence. The precision capability stems from a large number of GW cycles and year-
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long measurement of highest frequencies, which can be realized by a future detector
network in the broadband f ~ 0.01 — 1000 Hz. If light scalar DM interacts with the
NS, our new observable in this broadband measurement can probe a large part of the

unconstrained parameter space, in particular the lightest possible mass range.

Our study also emphasizes the role of long-time high-frequency measurements in
the precision GW program; a large Ncy. can enhance the chirp-mass sensitivity as
discussed, and moreover, the Doppler effect around the Sun can localize the source [47),
53], and a better frequency resolution can resolve the GW lensing fringe generated
by intervening cosmic strings [117] and compact DM [89] (see also [56,,57] for other
benefits). These shall motivate the development of mid-frequency (f ~ 0.01 — 10 Hz)
detectors that can form such broadband detector networks by combining with ongoing

or upcoming LIGO-band detectors.
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Figure 2.3 Improvement of Fisher errors in measurement time. NS-NS at 10 Mpc.
Shown parameters are chirp-mass fractional accuracy, SNR, Ncyc, sky-localization
accuracy, and Dy, fractional accuracy. The second plot shows the correlation of chirp-
mass accuracy and SNR X Ncy.. The considered measurement is for the last 1 year,
sweeping f ~ 0.22 - 1000 Hz. The blue-dashed lines assume no correlations with the
5 source parameters (see text for details), and the orange-dotdashed line assumes no
correlation with any source parameters.
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Chapter 3

Small-scale shear: peeling off diffuse
subhalos with gravitational waves

This chapter was posted on arXiv as Small-scale shear: peeling off diffuse subhalos

with gravitational waves. arXiv:2103.08618 [astro-ph.CO].
3.1 Introduction

Cold Dark Matter (CDM) hypothesis has successfully explained large-scale structures
of the universe, providing firm evidences of DM. But, DM was never detected directly,
and its properties in smaller scales are not yet well established. For decades, there
has been missing satellites problem [58.|59], where the observed number of luminous
satellite galaxies is smaller than the prediction, although CDM predicts numerous
structures — (sub)halos — at the subgalactic scale. Recently, it was argued that the
completeness correction of star formation and detection efficiencies may resolve the
discrepancy [60,/61]. Many new observations of satellite galaxies since then by DES,

PANSTRRSI1, and Gaia [61,62] are indeed making a better agreement down to (star-
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forming limit) M > 107 — 108 M.

Much further can be progressed by searching for DM subhalos below 107 — 108 M.
Above all, such light subhalos do not harbor star formation [63,/64], hence free of
baryonic physics and keeping pristine nature of DM. Their number abundance, mass
profile, and spatial distribution can all be important information of underlying DM
models [65]; warm, fuzzy, and axion DM models, let alone primordial black holes,
predict significant deviations here [61,/66,/67]. They can also test CDM and missing
satellites problem more confirmly [65,68]. Lastly, they might be numerous around us,

affecting local direct detection.

However, the searches are challenging. First, they are dark (no stars). Second,
they are diffuse in mass profile (no cooling and contraction by baryons) so that their
gravitational effects are also suppressed; often too diffuse to produce strong-lensing
images or Einstein arcs. In addition, NFW profile [69] is known to fit simulations and
galactic-scale observations, but its validity at small scales is also not established. Core-

vs-cusp may be another relevant problem about the central mass profile [68}(70%/71].

Existing searches mainly rely on milli-lensing perturbations by subhalos. When
one of the strong-lensed images (of compact sources such as quasars) or an arc (of
spatially extended sources such as galaxies) is near a subhalo, its flux, shape, location,
and arrival time can be milli-lensing perturbed so that different from those of the
other images or the other part of the arc |72] (see also [73-79] and refs therein). With
excellent imaging spatial resolution, this method can detect subhalos individually [80],
but only heaviest ones down to M > 107 — 108M, for NFW [81] (and similarly for
pseudo-Jaffe [81484]). The sensitivity is lower limited in part but inherently by profile
diffuseness; NFW is so diffuse that milli-lensing cross-section o7 MI%E\}E scales

rapidly with the mass, as estimated in Appendix (For comparison, compact DM

can be probed down to very small masses with lensing [85-95].) Alternatively, a mass
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function [96(100] or power spectrum [101-103] can be extended below this range,
through the collective or statistical effects of subhalos; the mass abundance inferred
in this way also agrees better with CDM in the range 10° — 109 M, 66167104, /105].
In all, to search for individual (sub)halos below 107 M El, we need a very different

method.

Recently, it has been proposed that diffractive lensing of chirping GWs can be
used to probe relatively light pseudo-Jaffe subhalos of M,; < 106M, (more precisely,
Mg = 10? — 103M, where Mg is the mass within the Einstein radius) [110]. As
will be discussed throughout this paper, the chirping GW is an ideal object to probe
such subhalos; first because its Fresnel length coincides with the scale radii of such
profiles [111}/112]; the frequency chirping is so well under theoretical control that it
can be used for precision measurements; and it is highly coherent, generated from
an almost point source, retaining diffraction pattern. The same physics has also been
used to search for compact DM such as primordial black holes [88}/89,(113}115] and
cosmic strings [116,|117]. These works have pioneered diffractive lensing near the
Einstein radius, g, but NFW is more diffuse with essentially zero rg (see Sec. .
Not only is it difficult to calculate their diffractive lensing even numerically, but also

not clear which scales are relevant and how strong lensing will be.

In this paper, we develop a general formalism for diffractive lensing and work
out the GW lensing by a single NF'W halo, both analytically and numerically (see
Refs. [118]/119] for some numerical results). GW diffraction has been already proposed
to measure the matter power spectrum that includes NFW halos at small scales
1 — 10* Mg 111,112 or solar-mass microlens populations [120,]121]. But focusing on

individual lens, we aim to assess the prospects of individual detection and profile

'We note that searches using star kinematics [62{106109] are also limited by = 108 M, similarly
to the milli-lensing. Perhaps, it is partly because both rely on presumably similar size ~ 10% of
gravitational perturbations. But the similar threshold of star-forming galaxies > 107 — 10% Mg might
be a coincidence.
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Figure 3.1 Illustrating how the chirping GW detects a diffuse subhalo and successively
peels off its profile. The solid circles with radii ~ Fresenel length rz oc 1/4/f are the
points on the lens plane being probed by the wave with frequency f; also where the
phase difference with an image “i” is 1. As the frequency chirps, the circle shrinks and
the wave feels the mass distribution at successively smaller scales, hence frequency-
dependent diffractive lensing essentially due to shear. When rp < r, the source “s”
begins to be well located/imaged by Fermat principle, hence frequency-independent
geometric optics. SIS is used for illustration, where mass is densely distributed within
the Einstein radius rg which is also a boundary between weak and strong diffraction.

NFW is more diffuse with essentially zero rp.
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measurements. Along the line, our formalism provides easier description in terms
of 2D potentials as well as basic understanding of qualitatively different regimes of
diffractive lensing. Some of the main underlying physics is illustrated in Fig. and
will be discussed throughout.

We start by developing general formalism in Sec. then we solve NFW diffrac-
tive lensing in Sec. introduce and quickly estimate the GW lensing detection in
Sec. and present numerical results of detection prospects in Sec. We demon-
strate the application of our formalism to more general profiles in Sec. We close

by summarizing the results in Sec.
3.2 Diffractive lensing formalism

We develop general formalism for diffractive lensing.
3.2.1 Lensing integral

Gravitational lensing effects are captured generally by a complex amplification factor

F(f) as

hi(f) = F(H)MF), (3.1)
where h (hz) is an unlensed (lensed) waveform in the frequency f domain. The
amplification is calculated by Kirchhoff path integral on the lens plane as [122]

f(l + Zl)
'ideff

EF(f) = /d2r exp [i27 f(1 + z)Ty(r,7rs)], (3.2)

where r is the physical displacement on the lens plane with its origin at the center
of the lens, 74 the source position projected onto the lens plane, Ty the arrival-time
difference between the deflected path passing r under the lens influence and a straight
path in the absence of the lens, and dog = djd;s/d; is the effective angular-diameter

distance to the lens.
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It is convenient to normalize dimensionful parameters by a characteristic length

scale rq
w 9 o
F(w) = — [ d°zexp [szd(m,ms)} , (3.3)
271
where & = r/rg, s = r5/r0, Ty = degTy/72, and
2
w = 21 f(1 4 2) 5% (3.4)
deff

is the dimensionless frequency. The dimensionless time-delay Ty, also called the Fer-

mat potential, is

Ty, ) = %|x—xs\2—w(w). (3.5)

The first term denotes the geometric time-delay and the second the Shapiro delay with

dimensionless potential 1) being the solution of two-dimensional Poisson equation

2%
V2 = o) = =), (3.6)
Ecrit
with the surface density projected onto the lens plane
& 1
D) = d Serit = : 3.7
@ = [ depia) San = o (37)

The convergence x(x) is the normalized surface density, characterizing lensing strength.

The formalism so far is general and scale invariant. The normalization rg can
be chosen to be any convenient scale of the lens. For example, the Einstein radius
re = VAMEgd.g is a convenient choice of 7 for a point-mass lens because its enclosed
Einstein mass Mg is the total mass M so that w = 87 M f is a simple function of M.
Thus, such a choice is often used for strong lensings (see Sec. for the usage for

power-law profiles).

For diffuse lenses such as NFW, which rarely induce strong lensing, it is more

intuitive and useful to rewrite w in Eq. (3.4) in terms of a new length scale rr such

w =2 <:2)2 (3.8)

that
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The new scale defined as [1111|123]

_ deﬂ ~ 1 deﬁ‘ Hz
e 1/7#(1“1) - ¢ (o) (1) 59)

is equivalent to the Fresnel length of diffraction applied to lensing. We will use rg

throughout this paper, discussing its meaning and usefulness in later sections.

Usual geometric-optics lensing is obtained for wTy > 1 from the stationary points

of T, 4, hence Fermat principle.
3.2.2 Diffraction condition

Diffractive lensing, also called wave-optics lensing, is the lensing in the regime where
Fermat principle does not lead to clear discrete paths of waves from Kirchhoff path
integral. It is where the wave properties of a probe wave becomes relevant. This

<TE7

~

typically produces a single blurred image of a source when 7 > rg. But for r;
would-be multiple images may not be well resolved and interfere; such is also referred
to as wave-optics effect [89,/91,113}/124]. In this subsection, we derive conditions for

diffractive lensing.
Fermat principle applies when the phase oscillation among the paths passing dif-

ferent parts of the lens plane is rapid enough, i.e. 27 fT; > 1 near r, in Eq. (3.2).
Thus, diffractive lensing occurs when, in terms of w in Eq. (3.3),

NS

wly ~ w

<1, (3.10)

where the approximate equality holds if rs > rg so that the ¢ contribution to T, in
Eq. is negligible compared to the geometric contribution.

Diffractive lensing can also be understood by the analogy with single-slit experi-
ment. The shadow of a slit is blurred when light rays propagating from opposite edges

of the slit interfere weakly. This happens when the phase difference between them,

21(Va2 +d? — d)/\ ~ ma?/(\d) = (a/rr)?, is small [125]; here, a, d, and X are the

1] =1L —
39 -'x_g — _” '-'l 11



slit size, the distance between the slit and the screen, and the wavelength of incident
light, respectively. In gravitational lensing, a and d are replaced by 75 (single-imaged

cases) and deg, respectively. Thus, diffractive lensing occurs if

r% pe r? (3.11)

S

which is equivalent to Eq. with the definition of w in Eq. . The condition
in this form means that as chirping rr falls below 7, the source becomes well located
and only the lens mass profile near the source direction begins to matter; see Fig. [3.1
and Sec. rr is essentially an effective source size [112], within which effects are

smeared /interfered out.

The diffraction picture is refined when rs < rg (or, rs near any caustic) so that
a lens system can have multiple images. The deflection potential ¢ now significantly

contributes to ATjy. A more appropriate diffraction condition is 27 fAT;; <1 or

~

wATj; $1 (rather than Eq. ), where AT;; is the arrival-time difference between
the i-th and j-th images [113]. Since typical AT;; ~ 4Mpg = r%/deg (equivalently,
AT;; ~ 1 with 7o = 7g), the condition becomes r2 > 72 (cf. Eq. ) Applied
to the point-mass lensing, the condition leads to a well-known interference relation
A 2 27 Rgen, between the probe wavelength A and the lens Schwarzschild radius Rg., =
2M, as 1% /1% = (4Mdeg) /(Adegr/7) = 4w M /X < 1. Thus, this relation is nothing but
the requirement for the wave to see the lens (or the slit in the single-slit analogy), or

equivalently for the interference between multiple images to be relevant [89,91}/113,
124].

Wave properties (hence, frequency dependencies) remain important inside rg up
until 7p 2 2,/7grs. Consider 3 — 0 near a caustic. The would-be multiple images
have very small relative time-delays, AT; = 2z pzs+O(22) (derived in Appendix,
as they are formed almost symmetrically around the corresponding critical lines (in

this case, the Einstein radius zg). Only if the frequency is very large, the result-
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ing interference becomes so rapid that geometric optics is reached. Thus, diffraction

continues well inside the Einstein radius until

w < 1
~ 2xpTs

> rep 2 2\/TETs. (3.12)

Diffraction inside rg is strong lensing, and it produces a blurred Einstein ring, which
becomes sharper as rp decreases toward this limit, eventually separated into clear
images.

In all, Eq. or is a relevant diffraction condition for NEFW (Sec. .
But rg and strong diffractive lensing with Eq. can also be relevant to general
diffuse profiles (Sec. . In next subsections, we formulate diffractive lensing and see

how these physics arise.
3.2.3 Formalism for weak diffractive lensing

We solve Eq. (3.3)) for weak diffractive lensing, in terms of much simpler 2D projected
potentials. This formalism is applicable to any single lens profiles without symmetries.

Weak lensing will be relevant to NEW.

In the diffraction regime rp 2 7, it is convenient to ignore zs (effectively, not

well resolved) so that Eq. (3.3)) is rewritten as

1
F(w) ~ % d*x exp [iw (2|:13]2 —Y(x) — T0>] . (3.13)
Ty is the overall time-delay in the geometric-optics limit relative to the unlensed case;

F(w) now contains only the relative time delays among diffracted rays. We will see

later what Ty means for both single- and multi-imaged cases.

For weak diffraction with small ¢ (more precisely, when Shapiro delay is subdom-

inant or ry 2 rg), the Born approximation leads to the expansion

~

1

’LU2 ; 2
F(w) ~ 1— %/d%ezml ((x) —(0)) , (3.14)
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iwz?/2 _

where Ty ~ —1(0) for weak lensing. Using the integration by parts (with iwzx e

%(eiwxzﬂ)), Eq. 1' can be written as
w 0 a2
Fw) ~ 1+ / dx ze™'7 R(x), (3.15)
vt Jo

where E(z) is the mean convergence within the aperture of radius x centered at x

as [126]
k() = % s d?z'k(x')
1 27 , o ,
Iy ) d¢ %w(w,qﬁ) (3.16)

with the lens-plane polar coordinate (z, ¢).

Furthermore, important physics is contained in the frequency dependence of F'(w).

By differentiating Eq. (3.16]),

1 1 di(x)
(n(e)) = o ; dpy(z,¢) = =57 — (3.17)
where v, is the tangential shear
119y 9 1 0%
’Yt(x7¢) - 5 [37827_8:624_352&& (3.18)

Using Eq. (3.17)), the differentiation of Eq. (3.15]) with respect to Inw can be written

in terms of shear

Cilljél:u) - 1:/0°° de 2™ (3, (). (3.19)

Finally and remarkably, although Eqs. (3.15) and (3.19) are already new and

insightful results of this work, they can be more usefully simplified as

R <\/1@ei’i> (3.20)

e = (e (721)) o2

=
g
1
—
+
X
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iwx? /2 1 gim/4
)

w

in that the dominant support of the integral fooo dx xe is near r =
which can be obtained by rotating the half real-line integration by e™/4. The phase
factor in the support is crucial to make this single region a dominant contributor.
These are good approximations as long as %(x) and (y;(x)) do not vary rapidly near

the support.

Eqgs. and are one of the new and main results of this paper. The
fact that complicated lensing integral is evaluated by much simpler 2D potentials
is not only very convenient in estimating and understanding diffractive lensing, but
also has various implications. Such utilities and implications will be discussed and

demonstrated throughout this paper.

Before moving on, we discuss the formalism in more detail. First, F'(w) is a com-
plex quantity, containing information on both amplification |F(w)| and phase p(w)

(or interferences). For small ¢, one can decompose as [111]

0 wax?
|F(w)| ~ Re[F(w)] =1+ w/o dx x sin TE(:L')7 (3.22)
> 'UJCC2
o(w) ~ Im[F(w)] = —w/o dz x cos Tﬁ(g;), (3.23)
and
w w o0 wa
Cm ~ Re [CilFlr(m)} - w/o dz asin ——(7:(2)), (3.24)
w w 00 ’U)CL‘Q
Cflﬁw) =~ Im [ﬁgw)] = _“’/0 da x cos ——(1(x)) - (3.25)

The frequency dependences of amplification and phase are of the same order and gov-
erned commonly by shear. Both physics must be utilized for detection and precision

measurements.

Up to this point, no assumptions on v were made except for its smallness. For

axisymmetric profiles considered in this paper, the angular dependence is trivial so
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that 2D identities are simplified as

Ra) = /(@) (3.26)

171

(rlo) = @) = 5 [10/@) (@) (3.27)

From here on, we will drop the subscript ‘t” for shear. Thus, we arrive at final formula

for an axisymmetric lens

o0 o p2 1 iy
F(w) ~ 1+l:/0 dx xe™'? R(xr) ~ 1+/€<\/@ez4>, (3.28)
dF(w) w [* iz 1 =
T i/() dr xe" 2 y(z) ~ 'y(\/ae 4>. (3.29)

3.2.4 Shear as the origin of frequency dependence

The most remarkable meaning of Eq. or is that the origin of the frequency
dependence is (1) ‘shear’ of a lens, (2) at frequency-dependent x ~ 1/y/w or r ~
re /2.

Why does this make sense? Shear, defined in Eq. , is produced from asym-
metric mass distributions, hence distorting the shapes of background galaxies. But it
also reflects how steeply a profile varies at a given point. Consider the expression in

the form

(z) = F(z) — (@), (3-30)

derived from Egs. and and k(z) = $V2Y(2) = 5 (¢'(z)/z +¢"(z)) for
axisymmetric cases. Note that ®(z), hence ~y(x), does not necessarily vanish even
though density k(z) o< X(z) may vanish there. So this form makes it clear that the
variation of the potential is the one that produces shear, except at the spherically

symmetric point (as a component of the Weyl conformal curvature tensor [127,128]).

Further, Egs. (3.28) and (3.29) are consistent with Gauss’ theorem: gravitational

effects must depend only on the enclosed mass. The enclosure boundary in our prob-
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lem is given by the diffraction length scale 7 oc f~/2. Thus, as the frequency grows,
the boundary shrinks and the enclosed mass changes; see Fig. [3.1] for illustration.
The change of lensing effects as a function of frequency thus must be related to the

variation of the mass or potential at the boundary, which is given by shear.

Nevertheless, geometric optics is frequency independent. As rp S s or 24/Tgrs,
the source is well resolved, and Fermat principle determines image properties solely
from T in the narrow region around the image. This will be further discussed in
the next subsection. In reality, a mass profile may contain several substructures at
various scales of their own small curvatures. If we probe this profile with a broad range
of rp, every time rg crosses this scale of a substructure, there appears wave-optics
effect perturbing and correcting the image properties accounting for the substructure

influence.

Eq. offers a new concrete way to measure the mass profile. The measurement
of dF(w)/dInw for a range of w (even from a single GW event) can be directly
translated to the measurement of the shear field «(x) for the corresponding length
range; recall that F'(w) cannot be measured directly. Just as the shear field measured
from galaxy shape distortions are used to measure the mass of a lens galaxy cluster,
the shear field from GW diffraction (this time even with a single event) can tell the
lens mass profile. In Sec. [3.6.3] we apply our formalism to briefly demonstrate this
physics potential.

Practically, Eq. allows to estimate diffractive lensing much more easily.
Kirchhoff integral is usually very difficult to calculate even numerically, but 2D pro-
jected potentials are much easier. In the following sections, we work out NFW diffrac-
tive lensing both analytically and numerically, not only confirming our formalism but

also showing how readily one can estimate diffractive lensing.
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3.2.5 Complete formalism with strong diffraction

When the Einstein radius of a lens can be comparable to the rp of chirping GWs,
strong diffractive lensing which is qualitatively different from the weak diffractive
lensing must be taken into account. As derived in Eq. , strong diffractive lensing
occurs if 2,/rgr; < rp S re. Given the condition, one can show that the main
contributions to the lensing integral Eq. arises at * ~ x g, i.e. the Einstein ring.

Using the stationary phase approximation at x = zg, Eq. (3.3) is evaluated as

2w

F(f) ~ z‘sz\/l ) s (3.31)

which is again expressed in terms of x and ~, this time at © = zp.

Interestingly, the frequency dependence F(f) w'/? of strong diffractive lensing
is universal to all axisymmetric lenses. This can be intuitively understood from the
shape of an Einstein ring, which is produced since rs is negligible. By diffraction
effect, the ring is blurred so that it looks like an annulus with thickness ~ rp and
radius ~ rg. Then, one can expect Eq. to be F(f) oc 7% x (area of the annulus)
x TETEI = xp/w, and this is exactly as in Eq. .

The situation was different in the weak diffraction regime, where F(f) directly
connects to the lens profile through ® and +v at x ~ rr. What is the origin of the
difference between the two diffraction regimes? It is due to the approximate scale
invariance in the weak diffraction regime; no length scales up to weak gravitational
potential . In contrast to strong diffractive lensing, the weak lensing integral is
dominated by a disk with radius rz centered at the origin. By the similar argument,

2 % r% o< const, which looks at first inconsistent with

one might expect F(f) o< rp
Egs. (3.28)) and (3.29)), but is just a manifestation of a scale invariance. The existence
of 1 corrects this perturbatively. Note that F'(f) is invariant under the scale transform

r — Az and w — A\~ 2w if there were no lens. Since the symmetry is broken by v, we
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keep track of the effects by a spurion coupling ai that compensates the symmetry

breaking. For simplicity, by considering a power-law profile ¢ oc 2% (Sec. ,

2—k 2—k

the scale invariance wax — wax requires a — Aa. The leading term of the

perturbation expansion (in powers of a) of F/(f) must be of the form
. k
F(f) = aypw? + const. , with ¢ = 3 (3.32)

to respect the scale invariance. The power of w is thus uniquely determined by the spu-
rious scale invariance, and indeed agrees with our power-law calculation in Sec. [3.6.1]
On the other hand, in the strong diffraction regime, the Einstein radius fixes the
length scale of F'(f) (as a stationary point), and a scale invariance no longer exists.
Therefore, the existence of a scale invariance discriminates strong/weak diffractive

lensing.

The frequency independence of geometric optics is also explained similarly. In this
regime of rp < max(r?,2,/rsrg) and g # 0, only stationary points of Ty(x) (hence,
separate images) contribute to Eq. . In the small neighborhood of each image,
a scale invariance holds and, as a result, the contribution of each image to F'(f) is
constant. If there are multiple images, F'(f) also contains the interference between

them, which becomes increasingly oscillatory with w.

As an interesting aside, we can understand the frequency dependences in yet
another way. We can derive them just by matching F(w) to geometric optics at
the diffraction boundaries rp = 75 Eq. and r% = 4dryrp Eq. (3.12). For weak
diffraction, matched at g = r;, the geometric-optics magnification of the single image

at rg is

3 =11 =1
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where k,v7 < 1 and in the second line we have used power-law results derived in
Sec. This indeed has F—1 o w*/? as in Eq. 1) For strong diffraction, matched

at r% = 4ryrg, the geometric-optics magnification of one of the multi-images located

at z; =1+ 0z =1+ax,/(1-1"(1)) Eq. is (0z < 1)

1 1 2w
" \/(1 ~h(@)?) — (@2 \//:«S = \/Z (3.35)

where again we have used power-law results. This indeed has F' w'/? as in Eq. 1)
the dependence of k~1/2 is also correct as in Eq. () Thus, the physics of the wave-

to-geometic optics boundary and geometric-optics magnification already contain the

w-dependences.

This completes the formalism of diffractive lensing. In the next few sections, we
apply the weak diffraction to NFW, while in Sec. [3.6] we apply the full formalism to

general power-law profiles.
3.3 NFW lensing

As an important example, we work out diffractive lensing by NFW using our formal-

ism.
3.3.1 Profile

The Navarro-Frenk-White (NFW) profile [69] is commonly used to parametrize spher-
ically symmetric density profiles of CDM halos. With two parameters, pg and 7, its

3-dimensional radial profile is given by

4po
r/ro)(1+1/ro)?’

) = ¢ (3.36)

where r is the radial distance from the center, rg the scale radius at which the slope

of profile turns from —1 inside to —3 outside, and pg the mass density at rg. Since
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Figure 3.2 The surface mass density 3(r) at the distance r from the center of the
NFW profile, with Mxpw = 107,109, 103M@. The star on each curve denotes the
location of the scale radius rg. The curves end at their virial radius, rvi; = crg, where
¢ is given by the Okoli’s My;, — ¢ relation [130].

the total mass diverges, this profile must be cut off at some r not far from r¢y; only
the scale r < 7o will be relevant to the lensing. The surface density at the distance

x = r/ro from the center on the lens plane is given by [129]

Y(z) = /OO dz p (y/x%“% —|—z2> = 3201;2?;6)’ (3.37)

—00

where Yo = 8poro/3 = X(z =1) and
arctanlh_\/mlgf:v2 <1
Flz) =41 r=1 - (3.38)

arcta;;/_zf—l x> 1
The 2D Poisson equation Eq. (3.6|) is solved as
2 X 2 2
W(z) = 3ko [m 5+ @ - 1F (a:)] , (3.39)

where Ko = EO/ECm.
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The NF'W parameterization is simplified by removing one of the two parameters
using the M, — ¢ relation predicted by CDM simulations. Here, M,;, is the virial
mass of a halo, and ¢ = ry;, /7o is the concentration. We take the My, — ¢ relation at
z = 0 from Okoli et. al. in |130]. Moreover, instead of conventional Mi;,, it is more

convenient to use the NFW mass defined as
_ 3
MNFW = 167‘('/)01"0 (340)

because it represents the halo mass independently of redshift. The two masses are
related by
Myir = Mypw (In(1+¢) —c(1+¢)7"), (3.41)
differing only by O(1) as ¢ = 10 ~ 50 for M, = 10* ~ 101°M, [130,[131].
Now, Mnpw fixes all the parameters of NFW profile. For example, we can express

most relevant lens properties in terms of Mypw as (using central values of the Okoli’s

relation)

] MNFW 0.18
Yo = —poro ~ 1.3><107M@/kp62< ) : (3.42)

3 109M@

[ Mxrw Myrw \ "
ro = s, 2 kpc (109M@> . (3.43)

Fig. shows the surface mass density (z) and ro for Mypw = 10,105, and 109 M.

Y(r) is obviously smaller for lighter halos while not varying rapidly inside r¢; thus,
Yo = X(r = rg) or kg characterizes the values of X (x) or x(z). r¢ is smaller for
lighter NFWs, and it is the length scale relevant to this work. We collect other useful

expressions t0o:

>0 s Marw "' [ de
= ~ 7.9 x 10 , 3.44
"o Serit < 109M,, Gpe (3.44)
1 _o [ Gpc
Peri ~ 1.66 x 10° Mokpc 2 . 3.45
crit 47Tdeff X oKpC < deff > ( )
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Figure 3.3 |F(w)| (upper left), % (lower left), p(w) (upper right), and %
(lower right) for NFW profiles with k9 = 0.002 (red) and ko = 0.001 (blue). Solid
lines are full numerical solutions of Eq. , while dashed are diffraction-limit
results in Egs. (3.51) and (3.52). Their |F(w)| and ¢(w) are obtained according to
Eqgs. . All of them agree in the diffraction regime w < 2/z2; see more in

text. Each curve is marked with x4 value.

3.3.2 Critical curves

Critical curves are the locations of images where their magnifications (formally) di-

verge. The magnification in the geometric-optics limit

p = [detA(x)]™? (3.46)
= [1-r2=77"" = [(1 - W) (1- q//’)} B : (3.47)

x

where A(x) = dx,/dx is a 2 X 2 matrix of the T curvature around the image, yields

two such solutions

Ty ~ 2exp [—% — %} , Ty ~ 2exp [—% — %} , (3.48)

called tangential and radial critical curves, respectively. z; is also called the Einstein

radius zg. Since kg < 1072 is small for NFWs considered in this work, the critical
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< exp(—100) < 1 and zp is essentially zero.

~

curves are exponentially suppressed x

What does this mean?

Critical curves (more precisely, caustics) are roughly the boundary between re-
gions of different number of images; if detA Eq. does not turn its sign, then
the mapping between source xs and image « planes is one-to-one invertible so that
there can only be a single image [132]. Also, critical curves are (more precisely, Ein-
stein radius) the boundary between geometric versus Shapiro time-delay dominance.
Therefore, NFW lensing is always single-imaged (see also Appendix and governed
by geometric time-delay; leading gravitational effects come from the perturbation of
order ? near the image. But this is not a general property of diffuse profiles, as will

be discussed in Sec. B.6.1]

How can single-imaged lensing be detected? Again, it is possible by the frequency

dependence of diffractive lensing and the frequency chirping of GW.
3.3.3 Diffractive lensing

We solve NFW (weak) diffractive lensing analytically. Plugging Eq. (3.39) into Eqs. (3.26))
and (3.27)), we have

A(z) = % [0+ F@)], (3.49)
K A .172 — xT
y(z) = % [111 o Fl) - 21332’1)] , (3.50)

where F(z) is given in Eq. (3.38]). Then, according to Egs. (3.28) and (3.29), the
analytic continuation of Eqs. (3.49) and (3.50) yields

1 i
F(w) ~ 1 - 6krpiw [ZZ - ilnw —1n2—|—]~'(w_§e4)} , (3.51)
dF(w) i 1 _1 in
T = —6rpiw [4—21nw—ln2+]:(w zed)
1 im
il—F(w 2e4)
—= 3.52
2 T —w ( )
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Recall that this derivation is valid for rp 2 r5 and rs 2 rg, but since rp vanishes
for NFW these results are valid for all w = 2(ro/rr)? as long as rp 2 rs. Although
these are complicated functions of w in general, they are simplified in the limits of
w>1and < 1. For w < 1 (w > 1), they asymptote as dF/dIlnw o w (x const),
which agrees with the results of & — 2 (k — 0) power-law profiles since these limits

correspond to the outer (inner) part of NFW with p oc r=3(r=1).

Fig. above all, confirms these analytic solutions (dashed) in the diffractive
regime of w < 2/x2, compared with full numerical results of Eq. (solid). Around
this boundary, they are matched well to the well-known geometric-optics results.
Therefore, it is remarkable that one can understand the results of complicated lensing

integral in terms of much simpler 2D potentials.

Fig. further demonstrates the main features of NF'W diffractive lensing. In the
diffraction regime, both amplification |F'(w)| and phase p(w) are frequency depen-
dent, as expected. Its strength does not depend on z; (i.e., zs not resolved) so that
blue curves with different x, coincide there. But x5 determines at which frequency
lensing becomes geometric optics (i.e., when x4 is resolved). As a result, larger lens-
ing effects can be obtained for smaller zs; geometric-optics lensing is stronger for
sources closer to the lens. Soon after geometric optics is reached, the slopes of |F'(w)]
and op(w) vanish, and lensing becomes frequency independent. Lastly, single-imaged
diffraction always amplifies the wave, as also proved in Appendix

Notably, ¢(w) itself also vanishes in the geometric-optics limit. It is because Tj
was factored out in Eq. so that the single image in this limit does not have extra
phases; we will see ¢(w) for multi-imaged cases in Sec. Although the frequency
dependence of ¢(w) is more complicated than that of |F(w)|, their overall sizes are

anyway similar, commonly given by %(x) and v(x).
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3.4 GW detection of NFW

We introduce the concept of detection with chirping GW and likelihood criteria for

detection.
3.4.1 GW chirping

One of the most important features of GW is that its amplitude and frequency “chirp”.
It is worth emphasizing that what is actually measurable is the frequency-dependent

change of lensing effects, not the absolute size of amplification.

The observed unlensed chirping amplitude in the frequency domain can be written

as
h(f) = ApA(f)elCrite+ot+u(h), (3.53)

The chirping A(f) with particular frequency dependences as described below will be
the basis of lensing detection, while the chirping phase ¥(f) will be canceled out
between lensed and unlensed waveforms (see Eq. ) Coalescence time 2 and
constant phase ¢ set to zero for the best-fit procedure(see Eq. ) since they
can be arbitrary. For simplicity, we fix binary and detector parameters (polarization,
binary inclination, and detector antenna direction) such that A, = 1, and ignore
black hole spins and detector reorientation during measurements; such effects will
in principle be distinguishable from lensing effects. We refer to [89,(110] for more

discussions on this simplified analysis.

The frequency dependence of A(f) differs in the successive phases of inspiral-
merger-ringdown. For the inspiral phase f < fierg, we adopt PhenomA waveform
templates developed in Ref. [133], approximating non-spinning quasi-circular binaries.

The waveform is

MsF 6
A(f) = Ap(f) = 2547rfl (3.54)
sdr,

1] =1L —
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which is the restricted post-Newtonian approximation. The chirp mass M = Mppy/ 26/5
for equal-mass binaries with the total mass Mppy (we consider only such cases), and
dr, is the luminosity distance to the source. All the masses are redshifted ones. The
amplitude in the merger (fmerg < f < fring) and ringdown phases (fring < f < feut)

are

—-2/3
( f ) merger

fmerg

A(f) = Ainsp(fmerg) X s (355)
o%/4 .
—I5——— ringdown
(fffring)2+0'?-/4
where o is the width of a peak centered at fiing. The expressions for fumerg, fring,
feut, and oy are detailed in Ref. [133]. Example chirping waveforms |h(f)| based on

these expressions are shown in Fig. Frequency-dependent lensing effects will be

detectable as a deviation to the chirping.

Also marked on the chirping waveforms are the time remaining until final merger.
The frequency chirping in time at leading post-Newtonian order is given by

1 [/sM\® My \°/® /yry3/8
0= o <t> —0.39 Hz <MBBH> (7> (3.56)

for time ¢ before final merger. Almost all of the time is spent during the inspiral.

The benchmark GW detectors are Laser Interferometer Space Antenna (LISA)
[134,1135], Big Bang Observer (BBO) [136], Matter-wave Atomic Gradiometer In-
terferometric Sensor (MAGIS) |137,/13§], and Einstein Telescope (ET) [139]. Their
noise spectral densities S,,(f) are shown in Fig. The sensitivity ranges are roughly
[10 pHz, 1 Hz] (LISA), [1 mHz, 100 Hz] (BBO), [30 mHz, 3 Hz] (MAGIS), and [2 Hz, 10 kHz]
(ET).
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Figure 3.4 The spectral density of GW detector noises 1/ Sn(f) (solid) and example
chirping GW amplitudes v/f|h(f)| (dashed) with Mgy = 103 M, and 105 Mg, zs =
1. The time marked with stars indicate the remaining time until final merger.

3.4.2 Log-likelihood detection

How well can the single-imaged diffractive lensing be detected? Detection likelihood

is measured by [89,/110]

1
Inp = —i(hL—hBFVlL—hBF)’ (3.57)

where hgp is the best-fit ‘unlensed” GW waveform that maximizes the likelihood. The
best-fit is performed with respect to the overall amplitude A, constant phase ¢., and

coalescence time ¢, of the unlensed h(f) Eq. (3.53) as
Btemplate(f) = iL(f)Aei(QWftC+¢c)' (358)

When hpp perfectly matches hy, A =1 and t. = ¢. = 0. The inner product (hy|he) =
4Re [ df hi(f)ha(f)/Sn(f), where S, (f) is the noise spectral density. The best-fit in

this way is discussed more in [89,/110].
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In this way, the In p measures how well lensed signals can be fitted with unlensed
waveforms. Frequency dependent lensing amplitude |F'(f)| will not be fitted by a
constant A. Likewise, non-trivial frequency dependent lensing phase ¢(f) cannot be
canceled by ¢. and t.. Thus, the larger the |Inp|, the worse the best-fit, hence the

more confident is the existence of lensing.

In principle, the larger |Inp|, which is equivalent to the smaller matchﬂ , reduces
the ability of GW detection. However, we can ignore such effects in our NF'W lensing
situations thanks to the small mismatch(1 — (match) ~ 107) ﬂ In spite of the small
mismatch, the lensed GW can be distinguished from unlensed GW if signal-to-noise

ratio(SNR) of GW waveform is sufficiently high [110,{121].

In this work, the binary intrisic parameters like total mass, mass ratio, and spins
are not included in the best-fit procedure. We expect that taking into account the
binary parameters will not significantly reduce |Inp| values. This is because, the
frequency dependence of F(f) around the diffraction-geomtric optics transition fre-
quency(e.g. Fig. is characteristically different from the intrisic frequency de-
pendence of GW waveform even if post-Newtonian corrections are considered. More
accurate analysis on the potential degeneracy between the diffractive lensing and GW

waveform are beyond our scope and should be explored in the future researches.

We require Inp < —5.914 for 3o confidence of the lensing detection. The require-

ment yields a proper lensing cross-section for given masses and distances
o; = m(roz™)2, (3.59)

There exists a maximum z2'** for given parameters because |In p| generally decreases

max
S

with 4 as shown in Fig. [3.5] If there exist multiple roots of z'**, we take the largest

one, while if no root " = 0. An example result of z*** is shown in Fig. in

2(match) = (hL‘hBF) hL|hL)(hBF‘hBF)
3 Actually, from Eq. (3.63)), one can easily show that the mismatch is approximately given by the
square of the shear of the lens object.
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Figure 3.5 |Inp| as a function of s = 75/rg. Last 1 year of inspiral observed at LISA.

Appendix In later sections, o7 will be used for lensing probabilities.

For numerical calculation, a more convenient form for Inp is obtained by analyt-

ically minimizing In p with respect to A and ¢, as

np = 3} — %) (3.60)

where
pi = (helhr), 2 (3.61)
i = x| f f dfMF*(f)e%iﬂc (3.62)

and p2 = (ho|ho) is SNR squared. Here, the maximization with respect to t. should
be done numerically; but ¢, maximization is relatively unimportant since adding 7p
in Eq. approximately does this maximization. More discussions are presented
in Ref. [110] and in Appendix

As an aside, there also exists the maximum |Inp| for some small zs for given

lensing parameters. As shown in Fig. |Inp| stops growing for =, < 1072, It

~
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is because for small enough x, diffraction occurs in the whole frequency range of
measurement so that diffraction amplification does not depend on x; as shown in

Fig. Under this condition, we find that

L 2
1 TF(fO)eZZ Jmax
1 ~ - . — || -1 , 3.63
[Inp| = ¢ {Po v( NG ny (3.63)
where fy is a characteristic frequency at which
2 fmax 2
o / |ho ()|
oy af =R 3.64
> 1, s (364

fo is typically close to the maximum point of |ho(f)|?/S,(f). Its derivation is given
in Appendix Eq. (3.63) also supports our intuition that the strength of shear is

critical to lensing detection.
3.5 Prospects

We first develop intuitions by semi-analytically estimating the parameter space of

NFW lensing, and then obtain final results with full numerical calculation.
3.5.1 Semi-analytic estimation

Which NFW mass scale is relevant to diffractive lensing? Since diffractive lensing is
sensitive to the mass profile at rp through shear v(rr) Eq. , the profile must
have sizable shear in the chirping range of rp. For NFW| this happens if some range
of rp satisfies

107371) < rp SJ Q- (365)

~

The maximum is restricted to be within 7y because it is where 7 ~ 3k(/2 is most
sizable; outside, gravity is suppressed quickly with v oc 1/22. The minimum 1037y
is introduced for the ease of calculation and is chosen arbitrarily; the area within the

minimum is small enough not to affect lensing probability, and the inner profile may
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Figure 3.6 The range of Fresnel length Eq. swept by a chirping GW during
its last 1 year before merger (shaded). Other time periods are shown as dashed lines;
ISCO refers to the innermost stable circular orbit. The corresponding GW frequencies
are shown on the right vertical axis. Some part of this range, combined with detector
sensitivities, must satisfy Eq. for diffractive lensing. z; = 1, z; = 0.35.

be uncertain too. Therefore, the relevant Mypw is the one whose length scale rg is

comparable to the range of rp.

The chirping range of 7 o< f~1/2 (hence the range of GW frequency) is determined
by the total mass of a binary black hole, Mppy, according to the standard GW
chirping; see Sec. Fig. [3.6] shows an example range of rp swept during the last
1 year of chirping, as a function of Mppy. Basically, the heavier, the earlier at lower
frequencies they merge. The range spans one or two orders of magnitudes, while not
significantly broadened by longer measurements since binary inspiral is much slower
when far away from merger. We use the last 1-year measurements for numerical

results.

Fig. shows the relevant parameter space of NFW. The shaded region satisfies
Eq. (3.65]), which can be rewritten in terms of Mypw and f as (using rg in Eq. (3.43])
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and rr in Eq. (3.9))
Hz

1.22 Hz 1.22
13.6 Mg, < > < Myrpw < 2.82 x 108 Mg, < > : (3.66)

max min

However, not all this region can be probed; signals must be strong enough. The
overall change of amplification — the detectable signal — within a modest range of f
is A|F| ~y(rp(fi)) - O(1) from Eq. (3.29), with a characteristic frequency f. within
Eq. . Since the shear of NFW does not vary much within g as shown in Fig.

Y(rr(fe)) ~ v(ro). Thus, roughly,
SNR = 1/~(ro) - O(1) (3.67)

is needed to detect the diffractive lensing by Mypw. This is somewhat more rigorously
justified from Eq. (3.63) and Fig. The contours of v(rg), reflecting the required

SNR, are shown as solid lines.

Based on these, one can now estimate the sensitivity range of Mypw. As quick
examples, we show a green bar for each detector, with their maximum SNR at the
corresponding frequency: SNR ~ 5000, 10°, 1000, 500 at f ~ 0.004, 0.3, 0.08, 6 Hz
for LISA, BBO, MAGIS, ET, respectively. They roughly show maximal sensitivities,
only as quick references. One can see that Mypw < 107 M, is potentially sensitive to
all detectors. The sensitivity range is indeed estimated by the comparison of the rg
range and the lens scale ry. The lower Mypw range is limited by too low frequency
for LISA and BBO that prohibits diffractive lensing by small Mypw (SNRs are large
enough), or by too small SNR for MAGIS and ET that prohibits detection of small
diffraction. Another to note is that, for given Mypw, larger SNR is needed for lower-
frequency detectors because corresponding larger rr probes only outer parts of NF'W

with smaller shear.

A caveat is that this kind of estimation does not show any lensing probabilities. In

the next subsection, we obtain final results with full numerical calculation, showing
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Figure 3.7 Semi-analytic estimation of the parameter space of NFW diffractive lens-
ing. Diffractive lensing is relevant in the shaded region Eq. (3.65). Solid contours show
the shear v(rp), reflecting the required SNR for detection. The frequency correspond-
ing to rg is shown on the right vertical axis. For quick references, green bars roughly
show maximal sensitivities at best frequencies. See text for details. z; = 1, z; = 0.35.

lensing probabilities as well as confirming these estimations.
3.5.2 Results

We calculate detection prospects, starting from the optical depth (lensing probabil-
ity). For the given Mppn, zs and Mypw, the optical depth of the lensing is given
by

s 1 nl(l + Zl)2
s) = d y Zs) = , 3.68
7(2s) /0 2 o121, 2 )Ho NCESET (3.68)
‘) & = —
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Figure 3.8 Optical depth 7 for the given Mxpw comprising the full DM abundance
(i.e. no halo mass function) at BBO (left), LISA (mid), and MAGIS (right). Each
curve is marked with Mypw, and each panel with Mppy. Last 1 year of inspiral and
30 log-likelihood lensing detection.
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where oy is the proper cross-section defined in Eq. (3.59)). The comoving DM num-

_  fomQpu 3HG

ber density n; Mo 870

is assumed to be constant in z;, with the fraction
of mass density fpm to the total DM abundance Qpy = 0.25. Hubble constant
Hy = 70km/s/Mpc, and energy density €, = 0.3, Q4 = 0.7 of matter and vac-
uum energy in units of critical density p, = SHg /8mG. The lensing probability is
P(r)y=1—e " ~7forT< 1.

Fig.[3.8]shows the optical depths at LISA, BBO, and MAGIS, for the given Mxpw
comprising the total Qpy(i.e. fpm = 1 regardless of Mypw); the optical depth at ET
is too small to show. Overall, BBO and LISA have sizable 7 close to or even larger

than 1, while MAGIS has much smaller 7 at most ~ 107°. This result for single

Mnypw can be combined with any mass functions such as given in Refs. [140,141].

The GW lensing event rate Ny, is obtained by integrating the lensing probability

P(7) with the comoving merger-rate density 7

: “h 1 4mx? s s
Ni :/ dzg— X (%) s pr), (3.69)
0 Ho /(14 25)3Q, + Qp 1+ 25

where zj, is the horizon distance of a GW detector and x(z) is the comoving distance.
The extra factor 1/(1 + z,) accounts for the redshift of the source-frame time period

used to define the merger-rate.

Table shows total lensing events per year Nz. Results are marginalized over

Myrw = 103 — 10'19M, with a mass function

ij;”m o MgZy (3.70)
and summed for Mppy = 102 — 103M with three models of n;. The power slope
of a mass function is taken to be —2 for simplicity; heavier halos may contain abun-
dant baryons that are not well described by NFW, while lighter halos’ existence and

properties are more model dependent. As for three models of n, (as a function of

Mppp and zg), two of them are taken from the models of massive black hole mergers
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Detector N New
const. optim. pessim. const. optim. pessim.

BBO 30 40 10 58 270 13
LISA 0.3 0.03 0.02 47 63 12
MAGIS <107° 25 187 9
ET 0 21 124 1

Table 3.1 The expected numbers of lensing detections per year Ny, and of total GW
detections per year Ngw, at BBO, LISA, MAGIS, and ET. The results are marginal-
ized over Mypw = 10>71°M, with the mass function Eq. and summed for
Mppn = 10*78M,, with three models of n,: constant ng = 0.01 Gpc 3yr~!, opti-
mistic and pessimistic merger models of heavy BBHs [142]. Light BBH mergers are
ignored.

in Ref. [142]; most optimistic and pessimistic predictions are used. Another model,
as a simple reference, is constant ns = 0.01 Gpcfgylr_1 for all Mgy and zs; this
reference choice predicts similar total GW detection rates NGW, as shown in the last
three columns of Table. In all cases, BBH mergers are considered for z; < 10 and
Mggpn = 10% ~ 108M@, where lighter BBHs have too small SNRs to contribute to
Ni although they may contribute sizably to New (see Fig. second panel).

Above all, in Table all three models of ng predict that BBO can detect O(10)
lensing events per year, while LISA barely single event, and MAGIS and ET no event.
Even though LISA and BBO have relatively large 7, the number of relevant sources

is not so large to start with (see the Ngw column).

Which Mypw range has high event rates? In Fig. upper panel, we show the
event rates in log intervals of Mypw with the mass function. Most importantly, we
conclude that the target range Myrw < 107 — 108 M, can be probed by diffractive
lensing at BBO (and marginally at LISA). As discussed in Sec. and Fig. this
range has the right scale radii rg that happen to coincide with the range of r at these

detectors. Although MAGIS and ET also have right frequency scales, their SNRs are

1] =L —
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typically too small. Notably, most BBO events are expected from light NEFWs: O(10)
events from light Mypw = 10% — 10° M), and O(1 — 10) from Mypw = 10° — 10" M,
and smaller from heavier NFWs. LISA and MAGIS are relatively more sensitive to

heavier NFWs, albeit with smaller event rates.

Figs[3.8) and also show an important feature of diffractive lensing: heavier
NFWs yield smaller 7 Ml\?gi% (at low z4). Therefore, unlike geometric-optics lensing,
lighter NFWs are actually more sensitive. It is because the number density of heavier
NFWs falls (n; o< 1/Mnpw) more quickly than the increase of the proper lensing
cross-section (07 o< MYy ). This is understood from that the length scale of diffractive
lensing is determined dominantly by rg, not by Mypw, since the rp range is much
narrower than the rg range. For example, consider diffractive lensing by Myrw =
103> My and 10° M probed by a common Mgy = 10°Mg: even though their
masses and rq differ sizably by 106 and ~ 300 (Eq. ), the relevant range of rp is
commonly fixed to be about ~ 10 (Fig.|3.6) so that the lensing cross-sections cannot
differ by more than ~ 102. This is why oy is not so sensitive to Mypw that 7 has a

negative slope with MNFWﬁ

This is in stark contrast to usual geometric-optics lensing. For milli-lensing per-
turbations discussed in Sec. and Appendix nyo; X Mﬁﬁ?\# has a large positive
slope with the mass so that light subhalos are insensitive inherently. The strong lens-
ing by a point-mass M is another example, where rg 2 rp makes o7 r?E x M. But
in this case, the power is cancelled by that of n; o< 1/M so that very light compact
DM can also be probed with lensing, as mentioned. Diffractive lensing is sensitive to

lower masses more preferentially.

Then, what does determine the lower range of Mypw? Fig. [3.8shows that, at low
25, only down to Mypw = 102,104, 10M, can have sizable 7 at BBO, LISA, MAGIS.

4As an aside, if detection criterion is relaxed (say, 30 to 20), T becomes steeper o Ml\}éw, as the
lighter NEF'W detection is more subject to the criterion.
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As discussed in Fig. [3.7] it is either too long Fresnel length (for BBO and LISA with
large enough SNRs) or too small SNR (for MAGIS and ET); light enough NFWs
would have too small 7o or too weak gravity to induce large enough diffractions.
Moreover, the weaker gravity also limits the sensitivity at high zs for lighter NFWs.
The highest range of z; roughly scales with ~y(rg), since SNR o« 1/z5 2 1/~. For
example, the ratio of v(rp) between Mypw = 10° and 10" M, is about 3 (Fig. ,
and this roughly explains why Mypw = 107 M, can probe 3 times farther z, e.g. at

LISA. Meanwhile, the decrease at small z; is due to the small number of lenses and

small kg o< degr.

Fig. lower panel also shows the event rates in terms of Mppy (with Myxpw
summed with the mass function). The largest 7 is obtained for Mppy = 106_7M@
at LISA, 10*75M, at BBO, and ~ 10°M. at MAGIS. They are the mass ranges
that typically produce largest SNRs. As expected, large SNR > O(10?) is needed to
overcome small fractional change of waveforms ~ O(v(rg)) ~ O(ko) < O(1073). Such
a large SNR is readily obtained at LISA and BBO from heavy BBHs, while rarely at
MAGIS, simply due to larger noise. Although the frequency range of ET is right to
induce diffractive lensing by small NFWs (see Fig. , SNRs are just too small.

The variations between optimistic and pessimistic predictions are shown as shaded
bands. They are only about ~ 10. But the predictions from the constant 74 (solid)
at LISA and MAGIS tend to be larger (by about 10) even though they had similar
Ngw. This tendency stems from that the massive-black-hole merger models predict
more sources at higher zs so that LISA and MAGIS with smaller SNRs depend more

sensitively on such distributions of source properties.

Lastly, the results without a mass function (dashed) have almost the same shape
as the solid lines but just a larger normalization by a factor ~ 8. One exception is at

low Myrw range of BBO, where 7 > 1 had to be cut off at 7 = 1 in our calculation.

) 3 1] &=L —
. A2t 8 5



1000 10* 10° 10%° 10" 10%® 10°
Mypw (M)
100} BBO
1,
' 0.01} LISA
2
~ _
= 107 MAGIS
_6 /\
10
-8
100 1000 10* 10° 10% 107
Mpggy (M)

Figure 3.9 The number of lensing events per year N, at BBO, LISA, and MAGIS,
as functions of Mypw (top) or Mppn (bottom). The shaded bands are the range of
optimistic and pessimistic g, while the solid lines are from constant n; their total
event rates are normalized as in Table For comparison, dashed lines show results
without a mass function; each Mypw comprises total 2py. See more in text. Last 1

year of inspiral and 3o log-likelihood lensing detection.
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These events are where multi-lensings of a single GW can occur. If SNR is very large,
even tiny lensing effects that might happen multiple times along the line of sight can
all be counted. Such events may not be well detected as signals will be complicated,
depending on many parameters of multi-lens environments. Using 7 = 1 for such
events means that we can always select out single-lensing events by, e.g., imposing
stronger detection criteria for such events, favoring the ones with single strong lensing

and small perturbations.

This completes our study on the NFW DM subhalos to which weak diffractive

lensing is applied.
3.6 Generalization

In this section, by working out lensing by power-law profiles, we not only demonstrate
how readily one can estimate diffractive lensing in general (using our formalism), but
also complete our discussions with strong diffractive lensing and the idea of measur-

ing/distinguishing mass profiles.
3.6.1 Lensing by power-law profiles
Starting from a general power-law density profile
plx) = pox *71 (0<k<?2) (3.71)

with = r/ro for some scale rg, we obtain 2D projected potentials

_ 250 _k —k k/i() —k
with
1k
ko = A4mdegporoB <2, 2> . (3.73)

The range of &k makes the enclosed mass finite.

11 =1
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Figure 3.10 The amplitude and phase of F'(w) obtained by full calculation (solid),
weak diffraction approximation Eq. (3.77) (dashed), and strong diffraction approxi-
mation Eq. (3.79) (dotted) for a power-law profile with k = 1. z; = 0 for simplicity.

We fix the overall scale by specifying M. Further by choosing rg = rg, 2D

projected potentials are simplified as

k
R@) = ot a) = 2ot () = ek, (3.74)
now with = r/rg. The Einstein radius is fixed by M, as
_ |8y riip (1 k : (3.75)
e = 2 _ L eff P0T 2’9 ) .
200pe(2 — k) (3 My \ &
1+k Pc - vir
_ e 3.76
oo (47r 200/)6) , (3.76)

where p. = 3H2/(87) and B(x,y) = I'(z)['(y)/T'(z + y). Unlike NFW, k < 2 profiles
have non-negligible rg so that it is a useful length scale when it is comparable to the

rp of GWs.

For weak diffractive lensing which is valid for w = 2(rg/rr)? < min(1,2/22)
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(Egs. (3.11) and (3.12)), our approximate results in terms of %(x) and v(x) are

w 0 g2 k
F(w) ~ 1—}-,/ dx ze™'2 z~
vt Jo
= 1+22¢9T (1 = Z) w?
k 1 .=
o
dF(w) ~ Y dwxeiw% ﬁ:):_]’C
dlnw t Jo
k
km k kw?2
=2 ar(1-—
e ( 2) 2

= 275D (1 - g) 5 (\}Em) . (3.78)

Here, integrals are evaluated exactly and the results agree with Egs. (3.28) and (3.29))

obtained from dominant supports. Above the weak diffraction range, but still within

w < 1/(2x4), strong diffractive lensing is described by Eq. (3.31]) which is calculated

w) ~ i~V 2mw — ;Y 277711)
F(w) ~ 12\/15(1)7(1) 12, Tt (3.79)

In Fig. we compare F'(w) obtained by full calculation (solid), weak diffraction
Eq. (3.77) (dashed), and strong diffraction Eq. (3.79)) (dotted) for k = 1. Approximate

results do agree with full results in their respective validity ranges, confirming not

in this case as

only analytic calculations but also the validity ranges of weak/strong diffractions
Egs. and . Weak diffraction starts to deviate at w 2 0.1 somewhat earlier
than at 1 since the Born approximation starts to break near rg. Weak and strong
diffractive lensing do have different slopes transitioning at around w = 27"12E /r% ~1
(the difference was explained in Sec. [3.2.5), thus rp (existence and value) can be
directly measured, effectively yielding Mg = 7% /4deg too. In the figure, 5 = 0 for

simplicity, but frequency independent results will arise for w 2 1/2x4 with finite xs,
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Figure 3.11 Same as Fig. but for SIS with £ = 1. Red contours show ~(rr),
reflecting the required SNR for detection, and blue contours show the enclosed mass
within rz. Length scales, ryi; and rg, are shown as dashed lines.

similarly to Fig. Although not shown, ¢(w) in this regime does not asymptote
to zero (unlike the NFW case in Fig. because the relative times delays among

multiple images remain there.
3.6.2 Semi-analytic estimation

Using our analytic solutions, we estimate the detection prospects of diffractive lensing

by power-law lenses.

To start off, as done for NFW, we estimate the relevant parameter space of the

profile with £ = 1 in Fig. This is called SIS profile, and is conventionally written
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in terms of the isothermal velocity dispersion o, as p(r) = 02/(27r?). 2D projected

potentials are dimensionless

R(z) = 1/z, r(z) = 1/2, 2 (3.80)
yz) = 1/2x=0.07<1k0;;/s> <ng> <ij> (3.81)

with = r/rg, but scale parameters are rewritten as

2
def
= Ardego? = 0.14 v © 3.82
TE Tdef 0, pe X <1k /s) (Gpc)’ ( )

2

+r within rg and ryiy

and the enclosed mass M(r) = 7o

4
deft
Mg = 4r2d.go = 1.02 x 106M Tv © 3.83
E T Qeff Ty x © 10km/s Gpc )’ ( )
My, 2 90 _ g9 1080 o\’ (3.84)
Vit V50 Hy © 10km/s ) '

The detectable My, range is again estimated by the comparison of v(rr) and SNR,
with rr being the Fresnel length at the most sensitive frequency. For example, ET
(re(f =10 Hz) ~ 1pc) with SNR = O(100) can probe a SIS lens as small as My, =
10*My, (or, o, = O(1km/s)), corresponding to the enclosed mass M (rp) = 10Mg
(blue solid). This estimation agrees with more dedicated calculations in Ref. [110], as

the lower mass range is in the weak diffraction regime with rp > rg ~ 0.1pc.

There are a few notable differences of Fig. [3.11| from NFW results of Fig. 3.7} The
first is that ET can probe smaller My;, than MAGIS and LISA. This is because, for a
given My, higher frequencies probe inner parts which now yield significantly larger
shear, reflecting the steeper profile. Another is the relevance of the Einstein radius,

which was essentially zero for NF'W. This is further discussed in the following.

Further, we can estimate somewhat more accurately, but still much more easily

than full numerical analysis. Using weak diffraction results Eqs. (3.77)) and (3.78), we

calculate Inp for detection by minimizing with respect to A and ¢.. This result is
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Figure 3.12 The comparison of | In p| for detection obtained with full numerical (solid)

and approximate weak diffraction Egs. (3.77) and (3.78]) (dashed). Also shown are
estimations using only shear and SNR Eq. (3.85)) (dotted; which overlap with dashed).
Each panel uses the BBH mass yielding maximum SNR. Horizontal lines denote the

3o threshold, |Inp| = 5.914.
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compared with full numerical result in Fig. They do agree well for most My,
and k, but deviations in the heavy mass region of large k are due to strong diffractive
lensing. As shown in Fig. for given My, the larger k, the larger Mg so that
strong diffraction becomes more relevant from lower frequencies. In this region, the
frequency slope w'/2 Eq. is steeper (shallower) than that of weak diffraction
wk/? Eq. for k < 1(k > 1 so that full results are stronger (weaker). In
addition to these results, dotted lines show much simpler estimations based solely on

shear and SNR (motivated in Sec. and supported rigorously in Eq. (3.63))
[Inp| = a (SNR x y(re(f.)))", (3.85)

where @ = O(0.1) reproduces the analytic results. In all, Fig. confirms our
analytic results and demonstrates how readily one can estimate diffractive lensing

using our formalism.
3.6.3 Peeling off profiles

It was advocated that our formalism in terms of 2D potentials makes it clear what it
means to measure the mass profile with a single diffractive lensing event. The basic
idea is simple: different profile slope k results in different frequency dependence during
the probe of a successively smaller length scale. As a simple demonstration of this

exciting possibility, we estimate the measurement accuracy of the slope k.

Similarly to detection estimates, we calculate In p, but this time including k as a
fitting parameter (in addition to A and ¢.). We define the measurement accuracy ok as
the variation of k with respect to the true ko that yields |Inp| = 5.914. In Fig. [3.14
we show the results, again obtained from full numerical, weak diffraction analytic,
and shear-times-SNR. Above all, different calculations agree well if weak diffraction

dominates (for small k& and small My, ). Measurement accuracies are good as long as

5The turnover can be more accurately found to be k ~ 1.3 using Eqs. 1) and ll
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Figure 3.13 The Einstein mass and the corresponding frequency for rrp = rg, as a
function of My;,. k = 1.0 (orange) and 1.5 (blue). The region above(below) each line is
the weak(strong) diffraction regime. Shaded regions represent the chirping frequency
ranges measured at given detectors. z; = 1, z; = 0.35.

lensing can be detected. Basically, in the weak diffraction regime, the heavier or the
steeper the lens is, the more accurate measurement or distinction of profiles.

Notably, full numerical results deviate more significantly and yield much worse
results in Fig. [3.14] compared to the detection prospects in Fig.[3.12] This is an impor-
tant effect of strong diffractive lensing, qualitatively different from weak diffraction.
Strong diffraction has universal frequency dependence w'/2 Eq. independent
of the power k; as discussed carefully in Sec. it was due to the breaking of the
scale invariance by an Einstein ring. As a result, different profiles are harder to be
distinguished; detection itself was more robust because it is essentially the comparison
of power k and flat potentials. Thus, peeling off profiles is possible only with weak
diffractive lensing.

Since our analysis on the diffractive lensing ignores the parameter degeneracies

between the lens profile and GW waveform, there might be some overestimation in
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Figure 3.14 Same as Fig. but for profile measurement accuracies represented by
0k/k. Cases with 0k/k > 1 are not shown.

the profile measurement accuracy. But, in practice, the non-zero impact parameter x
which induces the diffraction-to-geometric-optics transition might be able to resolve

some degeneracy between the profile and GW waveform parameters as discussed in
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Sec. [3.4.2
3.6.4 Core-vs-cusp

If GW diffractive lensing can probe mass profiles, can it resolve the core-vs-cusp
problem? There exist observational evidences that DM halos may contain flat cores
of O(0.1 — 1) kpc radius [68,70] rather than cuspy NFW o 1/r. Such cores would
change lensing effects at the corresponding frequencies. But this length scale is too
large, corresponding to too low frequencies f < 10~* Hz (Fig. for chirping GWs to
be relevant; the LISA’s most sensitive frequency range was ~ 0.003 Hz. It is currently
the problem more of halos rather than of subhalos. Whether this problem persists
to smaller length scales (smaller DM-dominated halos) is not certain, and it is this

question that can be answered by observations of GW diffractive lensing.
3.7 Summary

First, we have developed a formalism for weak and strong diffractive lensing and solved
it analytically. As a result, complex lensing integral is evaluated in terms of much
simpler 2D-projected potentials. In particular, the frequency dependence of weak
lensing turns out to be due to shear of a lens at the Fresnel length 7z o f~1/2. These
results make not only underlying physics of diffraction clearer but also its estimation
much easier, as discussed and demonstrated throughout this paper. Moreover, the

idea of measuring mass profiles became concrete.

We have also derived the condition or the validity range of diffractive lensing. It
turns out that there exist two different phases of diffraction: weak and strong. They
are separated by the Einstein radius, outside of which is approximately scale invariant
leading to |F(w)| — 1 o< w*/? (for power-law profiles) while inside of which has only

1/2

azimuthal symmetry leading to universal |F(w)| o w'/“. The innermost range of

1 3
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diffractive lensing is determined by properties of a caustic (multi-imaged cases) or by

the source location.

Applying these, we have shown that NFW subhalos of Mypw < 107 M, which
cannot be probed with existing methods, can be detected individually with GW
diffractive lensing. Detection prospects are O(10) events per year at BBO and less at
LISA, limited mainly by small merger rates and large required SNR > 1/~(rq) ~ 103.
This mass scale is sensitive because the corresponding scale radius ry happens to be
comparable to the range of rr at future GW detectors. Notably, unlike strong lensing
observables, the scale of diffractive lensing is dominantly fixed by rr rather than rg

(or the lens mass) so that it can be relatively more sensitive to lighter lenses.

Further, we have applied our formalism to readily estimate the detection and
profile measurements for general power-law potentials. This application also makes it
clear about the features of strong diffractive lensing and makes the idea of measuring
mass profiles concrete. Just as the shear field measured from galaxy shape distortions
is used to measure galactic profiles and matter power spectrum, GW diffractive lensing
can potentially be used to measure small-scale shear and reveal the particle nature

of DM roaming in the subgalactic scale.
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Appendix A

Appendix for Diffractive lensing

A.1 Mnrw scaling of milli-lensing perturbation

We estimate the sensitivity of milli-lensing perturbation observations on Mypw. In
particular, we aim to derive the dependence on the mass and the lower mass range,

both of which can be contrasted with those of diffractive lensing.

The flux ratio anomaly is the most sensitive observable of milli-lensing perturba-
tion; it is a second-derivative of T surface [72]. The typical requirement of > 10%
flux perturbation Ap/u by NFW subhalos [75,/78,98] is translated to the requirement

of subhalo’s k(z) as

Ap
— X~ KX
. (z)

leading to maximum possible z (using Egs. (3.39) and (3.38)]))

> 0.1, (A.1)

0.1 1
T S Tmax = 2€Xp (_EWNFVV) — 2) . (AQ)

Using kg Mf\}'ﬁ%v Eq. l’ and 7“8 x Mf\}'g%v Eq. 1) the lensing cross-section
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o] = Wr%:n?nax scales with the mass as
dlno; <2 0.1 )
_— ~ 082+ 018 =——+——— ) ~5-25 A3
dln MNFW 3 Ho(Mpr) ( )

for Mxrpw = 107 — 10° Mg, (having xo(Myrw) = 0.003 — 0.008), respectively. Thus,
nyoy X Mf@\l}f scales rapidly with the mass. Although heavier masses are subject to
larger shot noise, this scaling inherently limits the sensitivity to light NFWs. If the
profile were more compact as for SIS or pseudo-Jaffe with a power-law k(z) o 1/z,
the mass dependence would have been shallower as njo; M\}f’ As emphasized, this
positive scaling slope is in stark contrast with the negative slope of diffractive lensing

(which makes GW diffraction more suitable to probe light NFWs).

Now, how small Mypw can be detectable with sizable probabilities? The average
2D-projected separation of NFW subhalos within the Einstein radius 5 kpc of a
galaxy is about 0(0.1) 7 (if a whole DM abundance is in the form of subhalos and is
uniformly distributed). So, by requiring zmax = 1073 —1072 for sizable optical depths,

we obtain Mypw = 107 — 10 M. This is the current lower limit [81-84], which will

not be improved significantly in the future.
A.2 Range of diffractive lensing near a caustic

Near a caustic, time-delays between the images formed just around corresponding crit-
ical lines are very small. Thus, very high frequency is needed to reach the geometric-

optics regime. We quantify this condition.

Start from a dimensionless time-delay in Eq. (3.5)) (z =r/rg)
A 1
Ta(x, ) = Slo —zol* — v(2), (A.4)

which appears in the path integral as [ d*x expliwTy(a, x)]. The locations of geometric-

optics images are stationary points, yielding the lens equation

V=0 « x,=x—14¢ (). (A.5)
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For given xs with x5 > 0, images can form in either side. Removing the vector notation

and using x > 0, we obtain two lens equations
s = x — (), rs = —x + (). (A.6)

At the caustic zs = 0, images are formed at the critical line x; (in this case, the
Einstein radius 2y = xp = 1)

xy = Y (xy), (A7)

and the two solutions are connected to form an Einstein ring. Near a caustic with

xs # 0, two image locations are x; + dx and —z; + dx satisfying

Ts

1— ¢”(l’t) :

Thus, one image (in the same direction) is slightly outside the critical line, while the

zs = dx — " (z4)dx < oxr = (A.8)

other (in the opposite direction) is slightly inside. Note that dx and z are proportional

to each other.

The dimensionless time-delay of each image is

Ta(ze + 6x) ~ Tylx) + T(x)ox + - (A.9)
_ ;@—%P—¢@g+«m—x9—w@mﬁg
and
Ty(—z: + 0x) ~ Ty(—xy) + Th(—x)dx + - - (A.10)
= St — () + (@ ) — ¥

The relative time-delay is then

ATy = Ty(—ay+ 0x) — Ty(z, + 6z) (A.11)

~  2xxs + 2a0r = 2xxs + O(2). (A.12)
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Thus, diffraction occurs inside the Einstein radius if

w < !
~ 2

rr 2 2\/TETs (A.13)

rather than w < 2/z2 (or rr 2 74) outside the Einstein radius. This is the innermost

range of (strong) diffractive lensing discussed in Eq. (3.12)).
A.3 Single image of diffractive lensing

We prove that diffractive lensing is single-imaged and that the image is always mag-
nified as shown in Fig. [3.3] The proofs are based on existing theorems and logics for

general lensing properties; see e.g. |[132].

Each image is associated with an index characterizing whether it is located at
an extremum or a saddle point of T, surface. Define the angle ¢ of the gravity force
field on the lens plane as VT, (cos ¢, sin ). The index can be defined as the loop
integral of ¢ around the image: % fc dy = +1 for a maximum or a minimum and
—1 for a saddle. Index theorem says that a closed-integral along an arbitrary loop is

the sum of all enclosed indices

1

27 dSD = Nmax + Nmin — Msaddle; (A14)
T Jo

where the total number of images is 7 = Nmax + Mmin +Nsaddle- SiNce Td has an absolute

minimum (corresponding to the minimum travel time), 7y, > 1.

In the diffractive regime sufficiently far away from a lens, (1) A — I identity, and
(2) V1, is radial. The latter implies % fC dp = 1. The former implies trA > 0 and
detA > 0 so that all images are of the minimum-type (a saddle-type has detA < 0
while a maximum trA < 0). Therefore, n = ny,, = 1; diffractive lensing produces a
single image, of the minimum-type.

The (1) also implies trA = 2(1—x) > 0 (with £ > 0) and detA = (1—k)2—~% >0

) -11 =1
; &0 8



so that v < 1 — k < 1, hence detA < 1. Thus, the magnification of the single image

is p =1/detA > 1, always magnified.
A.4 Formulation of Inp

The inner product between two time domain waveforms, hi(t) and hao(t), is defined

as

(h1|h2) =4 Re/ooo de s (A.15)

where h1(f), ho(f) are the Fourier transform of the time domain waveform and S, (f)
is the noise spectral density of the detector. For a detector output s(¢) and a waveform
template hy; x,,..., where A1, A, - are free parameters of the template, the best-fit

waveform hpp is the waveform that minimizes the inner product
D=(s— h/\1,>\2,'“|5 — h)\17>\27'“)' (A.16)

The lensed gravitational waveform in frequency domain hy is given by

ho(f) = F(£)h(f), (A.17)

where l~1( f) is an ordinary gravitational wave without lensing effects generated by

compact binary coalescence.
Suppose the signal s(t) is well described by the lensed waveform hy(f) = F(f)iLA%/\g,,,_ (f)
and we have unlensed template l~z,\17 Ag,(f). Then the best-fit waveform hpp is given
by minimizing
D — (h/L - h)\l,)\Q,"'|hL - h>\11>\27"')
= (Fhyog..[Fhyo o ..) = 2(Fhyo g . [hag o)
S (OVIP VRO VIPPRY (A.18)

in the parameter space A1, Ag,---. In general, the parameter space includes total

mass, mass ratio of the compact binary, luminosity distance to the source, and etc.

3 =11 =1
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However, for simplicity of analysis, we consider only three parameters; constant phase
¢¢, overall amplitude A, and coalescence time t.. Then, the lensed waveform and the

template waveform can be written as

hi(f) = F(f)ho(f) (A.19)
h(f) = ho(f)Aei¢et?mdte (A.20)

where the waveform Bo( f) contains all the other parameter dependence of GW wave-

form. Here, we set ¢0 =t = 0 since they can be arbitrary. Then, D is given by
D = (Fho|Fhg) — 2A(Fhg|hoe'® 270ty 1 A2(hg|hy) . (A.21)

We can solve the minimization problem of Eq. (A.21)) analytically for ¢. and A. If D

is minimized for ¢. and A, it satisfies

oD . .
— _a ide 2mifte _
9. = —iA {e (Fholhoe ) (c.c)]
=0 (A.22)
oD . ,
51 = 2|Alholho) — (Fholhgei+2mifte)|

~0, (A.23)

where we define complex overlap

(e} =4 [ R,

and (c.c) denotes complex conjugate of the other term in the same parenthesis. The

(A.24)

equations are solved by

2mifte
ise  _ |{(Fholhoe ) A95
e <Fh0|h0€27riftc> ) ( . )

(Fh0|h0€i¢>c+2ﬂ'iftc)
(holho)
|[(Fho|hoe*™ /)|

- (holho) ' (4.26)

A =
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Now, we have ‘
’<Fh0|h0627”ftc> |2

(holho)
Following the definition of GW data analysis, SNR of the lensed signal, p;, and SNR

D = (Fho|Fho) — (A.27)

of the unlensed template, p,1 are defined as

03 = (hlhr) = (Fho|Fho) (A.28)
Fh ]herMftCHQ
2, = (ho|hoe) = max 20 A2
Pur, = (he|hpr) = max (holho) ; (A.29)
where
B Fhalhae2mifiey2 o
() = o rolhoe gy amiic (4.30)

(h0|h0) <Fh0‘h062mﬁc>

and £, is the coalescence time difference at which pur 18 defined. Then, the minimum

of D is given by
D= pi—pyr- (A.31)

The log-likelihood ratio, In p, is given by

1 1
I p=—5D==2(p} —Pir) - (A.32)

This likelihood ratio can be interpreted as the probability that the fluctuation in the
signal is just a noise. We claim the detection of lensing signal when In p achieves 3o

significance, i.e.,

Inp=1In <1 — /3 dx 1 62179”2>
b= _3 27
= —5914... . (A.33)
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A.5 Derivation of maximum |In p|

In this section, we derive Eq. (3.63]). The lensing amplification factor F'(f) can be

written as

Umax F /
F(u) = Fiax — / du/d dgL/L )@(U/ — U) ) (A34)

min

where u = In f, Finax = F(umax) and ©(u) is the unit step function. If the phase evo-

lution of F'(f) is small, we can set t. ~ 0 in Eq. (A.29)). Inserting F'(u) in Egs. (A.28])
and (A.29), the lensed and unlensed SNRs are given by

Umax dF /
= 1Pl = 2Re [l S )
Umax Umax dF* (u/) dF(u//)
/ " /
+ 2Re /umm du /u/ du T T R(u'), (A.35)
and
Umax dF /
P = P2 [ i S Ry
Umin du
1 Umax — qF(u/ 2
o / du’ de ) r@| (A.36)
0 Umin
respectively. Here we define
o [h()? /f‘“a* R (f)?
R(u) = 4/ due™ =4 df ) (A.37)
u Sn(u) ! Sn(f)
and p§ = R(umin). Thus, we have
Umax Umax dF* (u/) dF(UH)
Inp = —Re /umin du’ /u/ du” T T
R "
x R(u) (1 - (7; )> . (A.38)
Po
Note the inequality
" 2
Ry (1 B o2 (A.39)
2 9
Po 4
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where equality holds for R(ug) = p2/2 for some ug = In fo. If dF(u)/du is a slowly

varying function in u, it is approximately

AF (in fo)
dln f

2
1 fma"] : (A.40)

n
fmin

In diffraction regime, using the approximation Eq. (3.29)), we get

re(fo)e't
”( V2 )

A.6 Example diffractive lensing cross-sections

1
1 ~ =
[Inp| = 2 [Po

2
In J}z] . (A.41)

1
1 ~ —
| In p| 3 [po

As shown in Fig. |Inp| tends to decreasing function with x5, we can define x"**

S

as

Inp(x™) = —5.914, (A.42)

s

where —5.914 is corresponds to 3o detection criteria. This definition leads to lensing
cross-section Eq. . In Fig. we show an example of z2**(black contour
curves). We assume LISA observation of chirping GW from Mppy = 10° M, BBH,
and NFW lens Myrw = 107 M. To show a length scale more clearly, r8% = m
is denoted on the contours. Square of the numbers times 7 is just the lensing cross-
section in pc? for a given z; and zs. Note that the lensing cross-section in Fig. has
10pc length scale which coincide with 7 scale of the GW source in LISA band(f ~
10_3HZ). The results can be understood by the diffraction condition rg > r;. When

GW SNR is sufficiently large, frequency dependent F'(f) within GW spectrum is

max

enough for lensing detection. Thus, the length scale of 77

cannot be significantly
larger than rr length scale of a given GW spectrum. In other words, mostly those

two have similar length scale as long as GW SNR is not a limiting factor.

) -11 =1
; &0 8



3.0 7
MBBH:106 M, MNFW:107 MO e

55| LISA ,/

Figure A.1 Contours of lensing cross-section in zs — z; space. The number on the
contours are r®* = |/o;/7 in parsec. Likewise in Fig. LISA observation is
assumed and the source and lens mass are set to Mppy = 106 Mg and Myrw =

107 M, respectively.
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