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Abstract

Gravitational wave as a probe of dark matter physics

Han-Gil Choi

Department of Physics and Astronomy

The Graduate School

Seoul National University

In this dissertation, we present novel ways of probing dark matter(DM) physics

through gravitational waves(GWs). We find that if a light scalar dark matter interacts

with neutron and induces time-oscillating mass shift of it, GW chirps radiated by

neutron star binary inspiral can be sensitive probe to such effects. The sensitivity

comes from a large number of GW cycles during year-long measurements in broadband

(0.01 Hz – 1000 Hz). Such broadband measurements that can be realized by a future

detector network including LIGO and mid-band detectors will probe unconstrained

parameter space of the light scalar DM.

We also show that gravitational lensing(GL) of GW can be a probe of dark matter

subhalos at subgalactic scales(M < 107 M⊙). It has been very challenging for GL of

light to probe the scale. What special to GW is its parsec scale Fresnel Length which

comes from its long wavelength and cosmological distance to the GW source. It makes

possible GW chirps to be diffracted by the parsec-scale subhalos. We show that the

diffractive lensing signal is equivalent to a shear distribution of a lens object, and

therefore, it can be used for reconstruction of the lens profile. The event rate of such

GW lensing is estimated to O(10) per year at BBO.
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Chapter 1

Introduction

Gravitational wave(GW) is a completely new window to the cosmos. GW is the ripple

of the space-time curvature propagating with the speed of light, and is one of the main

predictions of the Einstein’s General relativity(GR). Same as electromagnetic waves

which are radiated by acceleration of electric charge, GWs are radiated by acceleration

of mass. Due to weak coupling between matter and gravity, the amplitude of GWs

radiated by daily-size objects is completely ignorable. Even GWs sourced by violent

astrophysical events such as binary star coalescence and supernovae explosion have

extremely small amplitudes, detection of GW has been one of major challenges of

modern physics. Despite it’s smallness, GWs can carry the information on bulk motion

of matters deep inside the astrophysical phenomena to an observer, and are expected

to give us new insight on the universe.

Finally in 2015, after the centennial of the birth of GR, LIGO collaboration suc-

ceeded in direct detection of GW signal [2, 3]. The GW signal was radiated by the

merger event of 30 solar masses binary black holes which occurred at a billion years
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ago. Until now (2021), LIGO-VIRGO collaboration has been detected 20 GWs sig-

nals [4] which include completely new phenomena such as the coalescence of neutron

star binary [5] and the formation of intermediate black hole [6]. The potential of GW

astrophyics just have begun to be revealed. In the near future, as more GW detectors

such KAGRA and LIGO-india join for GW observation, the number of GW signals

and sensitivity to them will drastically improved, which is expected to revolutionize

astrophyics.

Meanwhile, the realization of GW observation triggers the rise of interest in the

application of GW to dark matter physics. Dark matter, the old mysteries, has re-

vealed its existence only through gravitational interaction, which make its properties

not much known until today. Although electromagnetic observation has been very

powerful means for dark matter research, it has a clear limitation coming from high

systematic errors due to strong interaction with ordinary matters. However, GW, as

a pure gravitational probe, might become a game changer for dark matter hunting.

In this dissertation, we propose the new way of probing dark matter physics by utiliz-

ing the unique properties of GW signals. The following sections of this introduction

reviews the basics of gravitational wave.

1.1 Gravitational waves in Linearized GR

Although everything of general relativity(GR) are encoded in the Einstein’s field

equations

Gµν ≡ Rµν −
1

2
gµνR = κTµν , κ ≡ 8πG

c4
, (1.1)

where gµν is space-time metric, Rµν and R are Ricci tensor and scalar, and Tµν is

energy-stress tensor, it is almost impossible to solve the equations without simplifying

assumptions due to their non-linearity. In this case, the most natural strategy is to

find out their linear component by assuming small perturbations to simple and well-
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known solutions. Gravitational waves are also well-understood in this context which

is enough for most cases. In this section, we consider linearized GR on flat metric

ηµν ≡ diag(−1, 1, 1, 1), and will see that GR allow only two degree of freedom which

propagate with speed of light.

We start with defining metric perturbation hµν as

gµν = ηµν + ϵhµν , ϵ≪ 1 , (1.2)

where ϵ is introduced as a book-keeping parameter which eventually will be set to

1. Dealing with them with Lorentz covariant way is more conventional, but resulting

gauge dependence somewhat dilute the fact that the true number of propagating

degree of freedom is two. Therefore, instead, we adopt the decomposition of hµν

according to the transformation property with respect to SO(3). The decomposition

is given by

h00 = A

h0i = ∂iB +Bi

hij =
1

3
Dδij + ∂ijE + ∂iVj + ∂jVi + hTT

ij

(1.3)

where the Latin indices take 1 to 3, and the newly introduced 3D vectors and tensor

satisfy

∂iBi = ∂iVi = ∂ihTT
ij = 0 , hTT

ij δ
ij = 0 . (1.4)

Assuming appropriate fall of condition for r → ∞, one can show that this decompo-
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sition is uniquely determined as

A = h00

B = ∆−1∂ih0i

Bi = h0i − ∂i∆
−1∂jh0j

D =
3

2

(
h3 −∆−1∂ijhij

)
E = −1

2
∆−1h3 +

3

2
∆−2∂ijhij

Vj = ∆−1∂ihij − ∂j∆
−2∂klhkl

hTT
ij = hij − (remains) ,

(1.5)

where ∆ ≡ ∂i∂i, and h3 ≡ hijδ
ij . As one can see, suffering from non-local definition,

this formalism is not preferable option for real-problem solving. However, we shall see

that this method will clearly show the formal structure of linearized GR.

By the definition of hµν , hµν should be properly redefined under a transformation

of ηµν . Especially when the coordinate transformation

xµ → x′µ = xµ + ϵξµ (1.6)

does not significantly distort the background, it is the so-called gauge transformation

of hµν . Under Eq. (1.6), hµν should transform as

h′µν = hµν + ∂µξν + ∂νξµ . (1.7)
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Correspondingly, the transformations of Eq. (1.5) are

A′ = A+ 2∂0ξ0

B′ = B + ∂0ξ
L + ξ0

B′
i = Bi + ∂0ξ

T
i

D′ = D

E′ = E + 2ξL

V ′
i = Vi + ξTi

h′TT
ij = hTT

ij ,

(1.8)

where ξL = ∆−1∂iξi, and ∂iξTi = 0. Note that one can find gauge-invariant scalar,

vector, and tensor field by rearranging Eq. (1.8). While D and hTT
ij are already gauge-

invariant, the others are given by

Φ ≡ A− 2∂0B + ∂20E

Ki ≡ Bi − ∂0Vi .
(1.9)

In short, hµν have two gauge-invariant degrees of freedom(DOF) for each scalar,

vector, tensor component.

The linearized version of Riemann curvature tensor is given by

Rαβγδ =
1

2
(∂βδhαγ − ∂βαhγδ − ∂γδhαβ + ∂αγhβδ) . (1.10)

One can show that Rαβγδ is invariant under Eq. (1.7). This implies it can be expressed

in terms of Φ, D, Ki, and h
TT
ij . Actually, we can write the Einstein tensor Gµν as

G00 =
1

3
∆D

G0i =
1

3
∂0iD +

1

2
∆Ki

Gij =

(
1

2
∆Φ +

1

3
∂20D − 1

6
∆D

)
δij

+
1

2

[
∂ij

(
1

3
D − Φ

)
+ ∂iKj + ∂jKi +□hTT

ij

]
.

(1.11)
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Before equating these results with Tµν , note that Tµν allows same decomposition :

T00 = ρ

T0i = ∂iS + Si

Tij = Pδij + ∂ijσ + ∂iσj + ∂jσi + σij ,

(1.12)

where ∂iSi = ∂iσi = ∂iσij = σijδ
ij = 0. Not all the components are independent due

to the conservation law ∂µTµν = 0. Their relations are given by

∂0ρ = ∆S

∆σ = ∂0S − P

∆σj = ∂0Sj ,

(1.13)

and removes 4 DOF from Tµν . The remaining 6 DOF match with the 6 gauge-invariant

DOF of hµν through the Eq. (1.1). Finally, the Einstein equation with Tµν of order ϵ

gives

1

3
∆D = κρ

∆Φ = κ (ρ+ 2P − 2∂0S)

∆Ki = 2κSi

□hTT
ij = 2κσij .

(1.14)

Therefore, we can clearly see that only transverse-traceless(TT) tensor components

can propagate, and the scalar and vector are constrained by matter distribution,

which can be connected to the conservation of energy and linear momentum of the

whole system.

1.2 Gravitational wave radiation from a binary star

While the TT decomposition clearly shows radiative degree of freedom of gravitational

fields, it is lack of practical usefulness due to its non-local properties. Solving the
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Einstein equation with a specific gauge choice become the standard which can be

found in many literature. We are going to follow the conventional steps to present

the gravitational wave radiation of a binary star.

The Lorenz gauge of the linearized Einstein gravity is defined as

∂µhµν = 0 , (1.15)

where

hµν ≡ hµν −
1

2
hηµν , (1.16)

is the trace-reversed metric. In this gauge, the Einstein’s field equation is reduced to

□hµν = −2κTµν , (1.17)

and it is solved by

h̄µν(t,x) =
κ

2π

∫
d3x′

Tµν(ct− |x− x′|,x′)

|x− x′|
. (1.18)

At large distance which is far larger than a characteristic dimension, the solution is

approximately

h̄µν(t,x) ≃
κ

2πr

∫
d3x′Tµν(ct− r,x′) =

κ

4πr
Ïij(ct− r) , (1.19)

where

Iij(t) =

∫
d3x′ρ(t,x′)x′ix

′
j . (1.20)

To arrive at the last expression, we used the conservation law ∂µTµν = 0 and in-

tegration by parts. After taking out the TT component by the projection operator

Pij = δij − xixj/r
2, the expression is the famous quadrupole formula of gravitational

wave :

hTT
ij (t,x) =

κ

4πr
[Ïij(ct− r)]TT

=
κ

4πr

d2

dt2
Ikl(ct− r)

[
PikPjl −

1

2
PklPij

]
,

(1.21)
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where

Ikl = Ikl −
1

3
δklI . (1.22)

Remaining part is finding out the energy flux due to the gravitational wave ra-

diation. However, it is revealed to be highly non-trivial task which requires second

order perturbations and spatial/time averaged quantities. The difficulty is mainly

originated from the heart of general relativity, the equivalence principle which states

that observer that lying on a point on space-time cannot distinguish a gravitation

and acceleration(which is not a feature of gravitation) only with local measurements.

The localized energy of GW, although it is an effective and approximate concept,

can be found to be [7]

TGW
µν =

1

4κ
⟨∂µhTT

ij ∂νh
ij
TT ⟩ , (1.23)

where the ⟨·⟩ denotes the spatial/time average over few wavelength of GW. One

can show that TGW
µν satisfies the conservation laws and the gauge independence. The

energy flux due to the quadrupole radiation is given by TGW
0i . Plugging Eq. (1.21)

into Eq. (1.23) and integrating TGW
0i over the sphere, one find that

dE

dt
= − κ

40πc
⟨
...
I ij

...
I ij⟩ . (1.24)

Now we are on the stage of calculating GW radiation from a binary star. Let the

mass of binary star as m1 and m2, and also define M = m1 +m2 and µ = m1m2/M .

The energy density can be written by

ρ(t,x) = m1c
2δ3(x− x1(t)) +m2c

2δ3(x− x2(t)) , (1.25)

where x1(t) and x2(t) are the position vectors of the stars. We assume the binary has

circular orbit which is given by

x1 =
m2

M
a(cosΩt x̂+ sinΩt ŷ)

x2 = −m1

M
a(cosΩt x̂+ sinΩt ŷ) ,

(1.26)
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where Ω is orbital frequency and a is separation of the binary. Then, the inertia tensor

Iij can be found to be

I11 =
µc2a2

2
(1 + cos 2Ωt) , I22 =

µc2a2

2
(1− cos 2Ωt) ,

I12 =
µc2a2

2
sin 2Ωt ,

I13 = I33 = 0.

(1.27)

Combining those quantities with Eq. (1.24), we have

dE

dt
= −32G

5c5
µ2a4Ω6 = −32G

7
3

5c5
µ2M

4
3Ω

10
3 , (1.28)

up to the Newtonian order, where a3 = GMΩ−2 and E = Mc2 − µM/(2a). If we

rewrite the equation in terms of the GW frequency f = Ω/π, the equation becomes

df

dt
=

(
dE

df

)−1 dE

dt
=

96G
5
3

5c5
M

5
3π

8
3 f

11
3 , (1.29)

where

M ≡M
2
5µ

3
5 , (1.30)

is the chirp mass which takes the central role of GW astrophysics as well as this

dissertation. Those aspects will be discussed shortly. Integrating Eq. (1.29) up to the

cut-off frequency fc(usually set to be inner-most-circular orbit frequency), the time

evolution of frequency can be found as

tc − t =
5

256

c5

G
5
3M

5
3π

8
3

(f−
8
3 − f

− 8
3

c ) , (1.31)

where tc is the time at GW frequency being fc, or by inverting the relation approxi-

mately with fc ≫ f ,

f(t) ≃ 53/8

8π
G− 5

8 c
15
8 M− 5

8 (tc − t)−
3
8 (1.32)

Accordingly, the phase of GW is

Φ(t) ≡
∫ tc

t
2πf(t)dt = Φc − 2 · 5−5/8G− 5

8 c
15
8 M− 5

8 (tc − t)
5
8 , (1.33)
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where Φc is the GW phase at tc which can be arbitrary chosen.

To obtain GW waveform, one need to calculate the TT projection of the inertia

tensor. The TT projection with respect to the radial direction xi/r can be easily

obtained in spherical coordinate (θ, ϕ). In the coordinates, one can find

[Iθθ]
TT = −[Iϕϕ]

TT =
1

2
(I11 cos

2 θ − I22) , [Iθϕ ]
TT = I12 cos θ . (1.34)

Using Eqs. (1.21), (1.27), (1.33), and (1.34), one can obtain GW waveform as follows:

h+(t) = −2G
5
3

rc4
M

5
3 (πf(t))

2
3 (1 + cos2 θ) cosΦ(t)

h×(t) = −2G
5
3

rc4
M

5
3 (πf(t))

2
3 (2 cos θ) sinΦ(t) .

(1.35)

As one can see in Eqs. (1.33) and (1.35), the dynamics of a binary star is almost

completely determined by the single mass parameter. As a consequence, a binary star

coalescence has a high predictability in spite of currently operating GW detectors

being only sensitive to GW frequency. The unique property has been utilized to infer

the population of binary black holes, to measure distance to binary neutron star

merger, and etc. Until now, the application of GW measurement has been restricted

to astronomy due to limitation of current GW detectors, however, the opportunity

for probing fundamental physics will be widely open as soon as the next-generation

GW detectors begin their operation. In this dissertation, we are going to explore the

potential of GW physics in the aspect of its application to particle physics. In the

first part of main text, we will show how GW measurement can become a sensitive

probe to new forces, which are possibly byproducts of dark matter. In the second

part, we will introduce how gravitational lensing of GW can be used to detect dark

matter substructure at subgalactic scale.
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Chapter 2

A New Probe of Dark
Matter-Induced Fifth Force with
Neutron Star Inspirals

This chapter was published as New probe of dark matter-induced fifth force with neu-

tron star inspirals. Phys. Rev. D 99, 015013 (2019).

2.1 Introduction

The Gravitational Wave (GW) from compact binary mergers are finally discovered [1].

The discovery has convinced the existence of solar-mass black holes for the first

time [2] and tested General Relativity in a new way [3]. But more and foremost

excitingly, in the upcoming years with next-generation GW detectors, its physics

potential is bound to grow significantly and extend outside astrophysics.

In particular, binary neutron stars (NS) [5] are becoming new precision observato-

ries. Their final years of inspirals can be tracked very precisely through the observation
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of GW radiation. The final inspiral is strongly governed by general relativity, produc-

ing a well-predicted particular type of evolution called the “chirping”. The chirping

inspiral is thus naturally immune to small perturbations from their environments or

backgrounds. This allows not only the detection of binary GWs as tiny as 10−21 frac-

tional oscillation of the metric but also precision cosmology combined with optical

counterparts [8].

But the immunity does not mean that small perturbations are irrelevant or un-

observable. Often, they do leave important traces on the binary inspiral from which

we can observe the binary environments – the Universe. One of the most exciting

environmental effects would be from the dark matter (DM). For example, DM can

accumulate at the core of NS, strongly modifying NS binary mergers [9–12]. A DM

locus nearby the binary may be also able to perturb the binary orbit in such a way

to enhance the instability or ellipticity [13]. The high-precision observation of NS

inspirals with GW may have broader (unexplored) sensitivities to milder DM effects

from more varieties of DM.

Dark matter is one of the biggest mysteries of the Universe. In spite of its un-

precedented evidence, it has not been discovered yet. For decades, Weakly Interacting

Massive Particle – WIMP – has been a main paradigm of DM, but all DM detection

experiments so far have failed to discover it. Today, it became essential to explore

broader possibilities of DM interactions and masses both theoretically and experi-

mentally.

A light scalar DM is one important candidate that receives much attention these

days. A wide range of its mass as light as 10−23 eV is unconstrained. Various types of

its couplings to matter are possible. There are also several well-motivated examples

such as axions [14], fuzzy dark matter [15], relaxions [16] as well as simple scalar

DM. These scalars might be relevant to the solution of important particle physics
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problems such as strong QCD problem and the Planck-weak hierarchy. Thus, many

direct detection experiments are proposed and ongoing; a good survey of them is in

Ref. [17]. But to probe a complete range of possible masses and interactions of the

DM, more new and complementary ideas are needed.

In this paper, we show that final years of NS-NS inspirals may be sensitive to

light scalar DM-induced perturbations in a new way. We give an overview of the new

observable and possible experimental setup in Sec. 2.2, then we introduce DM models

in Sec. 2.3, discuss new observables and other existing ones in Sec. 2.4, experimental

setup and calculation in Sec. 2.5, finally show and analyze results in Sec. 2.6 and

2.7.1, and conclude at the end.

2.2 Overview

We give an overview of the new DM-induced signal on the NS-NS inspiral, a signal that

can be observed through the last years of inspiral at, e.g., LIGO plus mid-frequency

detectors.

• Signal with the oscillating NS mass. The light scalar DM (not just light scalars)

interacting with neutrons can induce the time-oscillating mass-shift of NS-NS

binaries. The oscillation is due to the lightness of DM with long phase coherence.

The phase coherence is kept for long enough periods ∼ 1/mDMv
2 ≫ 1/mDM be-

cause DM is non-relativistic v ∼ 10−3. Thus, the lightest possible DM oscillates

coherently at its Compton frequency, mDM ≳ 10−22 eV ≈ 0.76/year, which is

about 1 per year.

• Enhanced sensitivity to the chirp-mass. The oscillation in time is a key property

that provides a time-dependent change to detect the mass shift. As long as the

DM Compton period is within inspiral measurement time, the oscillation is
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detectable, through the exquisite chirp-mass measurement from GW waveform

evolution. The sensitivity benefits from a large number of GW cycles during a

long measurement, which can accumulate a tiny phase shift (from the chirp-mass

shift) in each cycle to a detectably large one. Thus, the chirp-mass accuracy is

augmented by ∼ Ncyc · SNR (not just SNR).

• Highest-frequency broadband. The broadband f ≃ 0.01 − 1000 Hz (e.g. with

LIGO + mid-frequency detectors) is ideal to detect the DM effects, as it is the

highest-frequency band with year-long lifetime of NS-NS binaries. Not only can

a long measurement enhance Ncyc and SNR, but the highest-frequency end can

also resolve important parameter degeneracies, partly by utilizing the Doppler

effects around the Sun. In addition, as mentioned, the year-long measurement

is also a proper time scale to probe the lightest scalar DM.

• NS-NS. The NS-NS is the type of binaries that can test the DM induced effect.

Here, non-DM light-scalar effects (such as dipole radiation of the scalar and

Yukawa force) is absent or at least suppressed. We focus on the NS-NS case in

this paper.

• Other probes. There are existing and proposed experiments that can be sensitive

to light-scalar DM effects: pulsar timing arrays, lunar laser ranging, atomic

clocks, GW interferometers, and torsion balance experiments. These can search

for the DM-induced time-varying clock rate, α, acceleration, and equivalence-

principle (EP) violation. Our new probe – looking for the DM-induced absolute

mass-shift – can be competitive or complementary to those.
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2.3 Models of DM-induced fifth force

A light scalar DM shows its wave nature through its long phase coherence. Although

background DM is an incoherent superposition of individual DM waves, their phase

coherence is retained for a long time ∼ 1/(mDMv
2) ≫ 1/mDM. Within that time, DM

then coherently oscillates at the Compton frequency mDM = 2.42×10−8Hz
(

mDM
10−22eV

)
,

and its background effect can be collectively enhanced.

Testable signals arise when the light scalar DM interacts with the visible matter

(hence, the fifth force), in particular with the neutron in this paper. We introduce

benchmark models for this phenomena:

• Higgs portal DM. The mixing between the DM ϕ and the Higgs h induces the

coupling to the neutron n

L ⊃ bϕ

m2
h

⟨h⟩ghnnn̄n → bϕ

m2
h

cNmnn̄n, (2.1)

where the non-perturbative QCD effects on the nucleon coupling is captured by

cN ≈ 200MeV/mn with significant uncertainties [18]. The DM wave almost co-

herently oscillates in time and space with the amplitude set by the DM density:

ϕ(t) = (
√
ρDM/mϕ) cos(mϕt). The coefficient b is our free parameter.

The couplings to protons and electrons are also generated by the mixing; since

these couplings are not proportional to the masses due partly to QCD confine-

ment effect, they generally break the (weak) equivalence principle (EP) [18].

For constraints on the weak EP-violation, we take the results in Ref. [17]. Cou-

plings to photons and gluons can also be generated (at least through loops

of charged/colored particles). But searches of such couplings from the lightest

possible DM is absent. We focus on the coupling to the neutron in this paper.
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• Scalar DM coupled to the trace of the stress-energy tensor T = Tµ
µ

L ⊃ gϕϕT, (2.2)

where gϕ is a universal coupling constant. In the long-wavelength limit of ϕ, the

interaction term for the neutron is effectively equivalent to

L ⊃ gϕnn ϕn̄n, (2.3)

where gϕnn = gϕmn is our free parameter specialized to the neutrons. We assume

no other modifications in the gravitational sector. This model does not violate

the weak EP, but the strong EP is still broken. One can find that ϕ violates

the strong EP in the following two ways: (1) the outcome of the elementary

particle mass measurements depend on the space-time varying intensity of ϕ,

(2) the self-energy dependence (due to the self-energy of ϕ) of the free-falling

acceleration under the external fields (gµν and ϕ). The effect of the scalar field

ϕ can be constrained by not only the tests of the fifth force but also by the tests

of the general relativity, such as the Shapiro delay measurement from Cassini

spacecraft [19] and strong-EP tests by the observation of stellar binary or triple

systems containing a pulsar [20, 21]. The Cassini constraints are stronger and

will be shown in our results.

2.4 Signals in Neutron Star inspirals

We introduce the new observable in Sec. 2.4.1, then we review non-DM signals in

NS-NS in Sec. 2.4.2, other mass-shift effects in Sec. 2.4.3, other light scalar non-DM

effect Sec. 2.4.4 and equivalence-principle violating effects in Sec. 2.4.5.
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2.4.1 Oscillating NS-NS mass-shift

The neutron-star(NS) inspiral interacts with the background DM distributed over the

space through which it moves. This interaction can leave traces1 as (1) the oscillating

mass-shift of NS, (2) oscillating external forces on the NS. The former one is our focus

in this paper, and we show that NS-NS inspirals can be used to test this DM effect.

The (oscillating) fractional neutron mass-shift from the two benchmark models is

δmn

mn
=

cN
bϕ
m2

h
= cN

b
√
ρDM

mϕm
2
h

≃ 8.0× 10−13
(

b
10−9eV

) (
10−7Hz

mϕ

)
cos(mϕt)

gϕnnϕ
mn

=
gϕnn

√
ρDM

mϕmn
≃ 6.3× 10−13

( gϕnn

10−23

) (
10−7Hz

mϕ

)
cos(mϕt)

(2.4)

The effect is proportional to ϕ ∝ √
ρDM so that galactic centers where the majority

of both DM and NS-NS reside are good places to detect the DM effect. We base our

numerical calculation on the value of ρDM = 77.3GeV/cm3 from the 0.8 kpc flat-core

value of Burkert profile, but we also consider variations later. The neutron mass-shift

will induce the NS mass-shift, hence the NS-NS chirp-mass shift

δM
M

= a
δmn

mn
(2.5)

with a = 1 for NS-NS binary, but there can be a mild suppression from the neutron

fraction in the NS.

The mass-shift becomes observable as it oscillates in time: δM(t)/M ∝ √
ρDM cos(mϕt).

The time-oscillation of the chirp mass induces a characteristic change of the GW evo-

lution that cannot be mimicked by GR effects. As a proxy of sensitivity, we will

calculate the parameter space where the oscillation amplitude equals to the chirp-

mass measurement accuracy; we discuss our calculation in the next section and show

results in Fig. 2.1 and 2.2. The chirp mass can be exquisitely well measured through a

huge number of GW cycles and highest-frequency data, as will be discussed. For the

1Similar DM effects on binary pulsars have been studied in Ref. [22] based on DM oscillation in
resonant with binary orbital frequency.
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chirp-mass oscillation to be detected, at least a large portion of an oscillation should

be within the GW measurement time (about a year or longer in f ≥ 0.01 Hz). Since

mϕ ≳ 10−22 eV = 0.76/yr and their phase coherence is retained for much longer time,

the (multi) year-long high-frequency GW measurement is proper to test the lightest

possible DM.

2.4.2 Other light-scalar (non-DM) effects in NS inspirals

A light scalar can also induce other effects in NS-NS binaries, the non-DM effects

that exist even if the scalar is not the main fraction of DM. The exchange of light

scalars ϕ mediates a long-range Yukawa force between the neutron stars, deviating

from the 1/r2 law

µ
v2

r
=

GµM

r2
(
1 + α(1 +mϕr)e

−mϕr
)
, (2.6)

where α =
b2c2N
m4

h

1
4πG ≃ 1.48× 10−9( b

10−9 eV
)2 for the first model and α =

g2ϕnn

4πGm2
n

≃

1.44× 10−9(
gϕnn

10−23 )
2 for the second model, and the reduced and total mass µ and M .

The effect on the GW waveform evolution can be described approximately by the

shift of the chirp mass δM(r)
M ≃ 2

5α (1+mϕr) e
−mϕr2. The resulting radius-dependent

(hence, frequency-dependent) chirp mass is a clean signal that cannot be mimicked

by GR effects. The total change of the chirp mass during a measurement starting

from fi (or ri) until ff (or rf ) is given by

δM
M

≃ 2

5
α
(
(1 +mϕrf ) e

−mϕrf − (1 +mϕri) e
−mϕri

)
≈


2
5α(1−

1
2m

2
ϕr

2
f ), ri ≫ 1

mϕ

1
5αm

2
ϕ(r

2
i − r2f ), ri ≪ 1

mϕ

≲
2

5
α (2.7)

The change is maximal, 2
5α, for the scalar mass in the range ri ≫ 1/mϕ ≫ rf . The

range, for the NS-NS binary, is ri(f = 0.1Hz) ≃ (7.8× 10−14 eV)−1 ≃ 16000 km and

2Our method applied to ET yields similar or actually slightly worse sensitivity than the more
dedicated estimation in Ref. [25].
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rf (f = 1000Hz) ≃ (3.7×10−11 eV)−1 ≃ 34 km3. Thus, this effect can only probe those

range of the DM mass (in our experimental setups); lighter Yukawa force essentially

looks the same as gravity. In Fig. 2.1 and 2.2, we show the parameter space where

Eq. (2.7) equals to the chirp-mass accuracy.

A light scalar (again not necessarily the main DM) can also be efficiently radi-

ated if each NS carries different scalar charge-to-mass ratio, forming a scalar-charge

dipole [10,23]. This dipole radiation is qualitatively different from the GW quadrupole

radiation, thus can be tested with GW waveform evolution [23–25]. It is efficient for

any light scalars with long enough Compton wavelength 1/mϕ ≳ 10 km. But this ef-

fect is absent in the NS-NS in our model, as every NS has the same charge (mNS/mn)

to mass (mNS) ratio = 1/mn; at least, the radiation is suppressed by a small variation

of the neutron fraction in the NS. In the NS-BH, on the other hand, the dipole radi-

ation is efficient and dominant effect of light scalars, prohibiting the detection of the

DM effects – the oscillating mass-shift. Thus, in this paper, we focus on the NS-NS

as the type of binaries that can test the light-scalar DM effects.

2.4.3 Mass-shift in other experiments

Pulsars are highly stable and regular clocks. If its mass changes by DM effects, its

rotation period (hence, the clock) also changes; see also Ref. [22]. This leaves an oscil-

lating timing residual on each pulsar timing measurement. Each pulsar’s variation is

uncorrelated with those of every other pulsar since pulsars are separated by distances

much longer than the DM Compton wavelength. Thus, the average of pulsar timing

array (PTA) can provide a stable clock, cancelling the DM effect [17]. This PTA clock

may be compared with individual pulsar timing to measure the oscillation.

With EP violations, the pulsar measurement can also be affected by the varia-

3For LIGO-band expected sensitivities, refer to Refs. [10,23–25].
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tion of atomic clocks on the Earth [17]. The atomic-clock rate varies because atomic

transition frequencies are affected by the DM-induced variations of nucleus (and elec-

tron) masses and fine-structure constant α [26–30]. But all the atomic clocks oscillate

coherently on the Earth while independently from all the pulsars. Thus, individual

pulsar’s oscillation can perhaps be distinguished from atomic clock oscillations.

Therefore, we assume that DM-induced mass-shift can be detected by either obser-

vation, whether EP is conserved or not. One difference is that DM density at pulsars

can be different from local density that affects the atomic clocks on the Earth. In the

future, this difference can be exploited to better measure DM effects. Today, however,

most pulsars used in IPTA [31] and Parkes PTA [32] are within 1 ∼ 2 kpc from the

Earth4. Thus, we use the same local DM density ρDM = 0.39GeV/cm3 to estimate

both effects. They give equivalent sensitivities at the end so that we essentially do

not distinguish the two observables.

The first release of IPTA [31] achieved the timing sensitivity ∆t ≈ σt/
√
NpNm

with r.m.s. timing residual σt ≃ 1µs, Np = 50 pulsars and Nm ≃ 10 yr/2weeks total

number of measurements. In our final results, we compare this sensitivity with the

DM-induced mass-shift or timing-residual amplitude

∆t ≃
∫
dt
δT

T
≃ 1

mϕ

δmn

mn
. (2.8)

Lunar laser ranging (LLR) may be also sensitive to the absolute mass-shifts of

the Earth and the Moon. About 50% of their masses come from neutrons, so their

fractional mass-shift is approximately 1
2
δmn
mn

. We assume that the mass-shift induces

a change or perturbation in orbital radius about the same fractional size as the frac-

tional mass-shift. The LLR measurement of the separation distance is currently lim-

ited by δℓ ≤ 1 ∼ 2 cm [33]. We take the fractional sensitivity on the mass-shift to

4Presumably, pulsars and NS-NS are both accumulated at galactic center (GC). But the observed
distributions (pulsars with lights and NS-NS with GWs) could be somewhat different. See Sec. 2.7.2
for more discussions.
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be
δℓ

(3.8× 105 km)
≃ 1

2

δmn

mn
≲ 5× 10−11. (2.9)

In our final results, we compare this sensitivity with the DM-induced mass-shift.

It is also proposed that GW interferometers can detect DM-induced space-time

varying accelerations on the mirrors [17,34,35]. The best sensitivity is achieved when

the DM Compton frequency matches approximately with the interferometer sensitiv-

ity range, hence mϕ ∼ 100 Hz or 10−3 Hz for LIGO and LISA, for example.

2.4.4 Light-scalar(non-DM) effects in other experiments

A long-range Yukawa force has been also searched in other observations: lunar laser

ranging (LLR) [33] and Keplerian tests from planetary motions. We show these ex-

isting constraints taken from Ref. [36]. Note that the searches only cover up to 1

AU(∼ 10−18 eV) scale.

In contrast, the Shapiro time delay measurement of the Cassini spacecraft [19]

can give constraints above 1 AU too. During the period of 15 days before and after

the Cassini solar conjunction event, the Cassini spacecraft and the ground antenna

on the Earth have exchanged the radio signals. The strong gravity of the Sun delays

the round-trip time of the radio signal by ∆t

∆t ∝ 4
GM⊙
c3

= 4(1− α)
GMorbital

⊙
c3

, (2.10)

where Morbital
⊙ = M⊙(1 + α) is what is determined by the orbital motion (under

the influence of both gravity and the ϕ-Yukawa force). The time-delay of the radio

siganl is not affected by the ϕ-Yukawa force. Thus, the ϕ-Yukawa force (or, the strong

EP-violation) can be searched by comparing the two effects as in Eq. (2.10). 2α ≲

2.1× 10−5 from Cassini experiment [19]. This is weaker than the static EP-violation

searches for the first model, but is relevant to the strong EP-violating second model.
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Other constraints from stellar binaries or triple systems containing a pulsar [20, 21]

are weaker.

2.4.5 Equivalence-principle violation

There are existing and proposed experiments that can be sensitive to light-scalar

EP violation. Stringent limits were obtained from the EP tests of Eöt-Wash torsion

balance [37] and MICROSCOPE free-falling Earth orbit [38] experiments (see also

Ref. [39]). But both measure static non-DM effects. We show the Eöt-Wash constraint

taken from Ref. [17] in our final results.

On the other hand, atomic clocks can be sensitive to EP-violating DM effects.

Depending on the atom’s proton and neutron fractions, oscillating DM can induce

different variations of clock rate. To measure the differences, one can compare clock

rates among atomic clocks made of different atoms [26–28, 40, 41], or accelerations

among atom-interferometers made of different atoms [17], or the PTA clock rates

measured by different atomic clocks [17]. Torsion balance experiments may also be

sensitive to DM effects by sensing DM-induced force directions that may not point to

the Earth. These searches all depend on the local DM oscillation. We show existing

constraints from atomic clock experiments [27,40] in our final results.

2.5 Broadband GW detectors and Calculation

We discuss proposed experimental setups and our calculation.

The crucial for exquisite chirp-mass measurement are a large number of GW cycles

and highest-frequency chirping. Thus we consider final 1-year and 10-year measure-

ments of NS-NS binaries, long enough and highest-frequency measurements that are

proper for this work. At 1∼10 years before the merger, the redshifted GW frequen-

cies are O(0.01− 0.1) Hz (where the lower range corresponds to zS ≃ 10) and reach
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the innermost stable orbit (ISCO) at O(100− 1000) Hz. We combine mid- and high-

frequency detectors to cover those range of frequencies 0.01Hz ≲ f ≲ 1000 Hz.

The first benchmark detector-network consists of 4 sets of aLIGO (design sen-

sitivity) [42] + Atom Interferometer (AI) (resonant mode) [137, 138]; and the more

optimistic benchmark network consists of one set of Einstien Telescope (ET) [45] +

Big Bang Observatory (BBO) [46]. The second benchmark has O(10) times smaller

noise.

Our calculation proceeds as follow. Since we consider year-long or longer measure-

ments, particular detector properties (baseline direction and their rotation, etc) are

not so important. Thus, for the calculational simplicity, we use the simplest antenna

function (from a single-baseline AI detector) for all kinds of detectors mentioned

above; we follow the procedure in Ref. [47]. Considering more accurate and compli-

cated antenna functions may even improve the chirp-mass precision, thus our esti-

mation may be conservative in this sense. For GW waveforms, we use mNS = 1.3M⊙

with the amplitude at the Newtonian order. The GW phase includes post-Newtonian

corrections up to 1.5PN at which the reduced mass µ and spin-orbit parameter β. We

pick a random set of extrinsic source parameters (sky location, polarization, orbit in-

clination) that are close to the orientation-averaged GW amplitude; we use the same

parameters as in Ref. [47]. For further simplicity, we assume that spins and orbital

eccentricities are zero.

Our goal is to compare the DM-induced chirp-mass shift in Eq. (2.5) with the

chirp-mass measurement accuracy, as a proxy of sensitivity to the DM effect. We

envisage that oscillating data have the sensitivity to the oscillating part of the chirp

mass at the same level as the chirp-mass accuracy without oscillations; thus, inspirals

can be sensitive equally to any oscillation frequency as long as it is within the inspiral

measurement time. The chirp-mass accuracy (without oscillations) is estimated by the
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Fisher information matrix, F . We include 10 source parameters: sky location (θ, ϕ),

polarization, inclination, luminosity distance DL, coalescence time tc, constant phase-

shift, masses (chirp massM and reduced mass µ), and spin-orbit coupling β (although

we set spins to zero, we do not assume that we know it). The parameter definition and

calculation are followed from Refs. [47, 48]. Fisher matrices from different detectors

are added linearly; equivalently, SNR is added in quadrature. The accuracy of a

parameter is given by the square-root the inverse-Fisher diagonal elements
√
(F−1)ii;

thus, it improves with the square root of the number of measurements and linearly

with SNR.

2.6 Prospects

Fig. 2.1 and Fig. 2.2 are our main results. We show the parameter space (solid lines)

where the mass-shift amplitude Eq. (2.5) equals to the chirp-mass Fisher accuracy.

Fig. 2.1 is from the single measurement of NS-NS at 10 Mpc, and Fig. 2.2 is from the

integration of all NS-NS measurements (for 1 or 10 years) according to their merger-

rate distributions. Each solid line corresponds to different setup and assumptions,

each of which will be discussed. Also shown are existing (shaded) or proposed (non-

shaded) sensitivities on DM effects (dashed) from IPTA and LLR displacement and

on non-DM effects (dot-dashed) from Eöt-Wash EP test and Yukawa searches with

LLR, Keplerian test, Cassini, and NS-NS inspiral in our experimental setups. As

discussed, for the second model, we do not show weak EP-test results. And whether

EP is conserved or not, IPTA probes oscillating DM effects in both models, either by

pulsar mass-shift or period-variation. Notably, a large part of the light-DM parameter

space of the second model is unconstrained.

The single measurement of NS-NS at 10 Mpc (Fig. 2.1), if we are lucky to see this,

alone can be already powerful. In particular, for the EP-conserving second model, this
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Figure 2.1 Single measurement of NS-NS at 10 Mpc with 4(aLIGO+AI) (blue) or
with ET+BBO (red). Along the shown solid lines, the DM-induced mass-shift δM/M
equals to the chirp-mass accuracy. Each solid line corresponds to different setup and
assumptions; see text for details. The aLIGO+AI 10yr and ET+BBO 1yr curves
overlap. Higgs-portal model (left) and scalar-coupled to the trace of the stress-energy
tensor (right). Also shown are existing (shaded) and reinterpreted (non-shaded) con-
straints on DM-induced effects (dashed) from IPTA, LLR displacement, and atomic
clocks [27, 40] and on non-DM effects (dot-dashed) from static EP test [17, 37] and
Yukawa searches with LLR [33], Keplerian test [36], Cassini [19], and NS-NS inspiral.

can probe unconstrained parameter space. It can also strengthen or complement other

expected sensitivities from LLR displacement and IPTA.

Each solid line shows possible improvements. The top line assumes 4(aLIGO+AI)

for 1-yr integration time with full 10× 10 Fisher matrix, and the second line assumes

a 10-yr integration with a posteriori optical-counterpart information to remove the 5

degeneracies with sky-location (θ, ϕ), luminosity distance (redshift with standard cos-

mology), coalescence time (knowing when merges), spin β (knowing that NS has small

spin). The last two lines show ET+BBO results with the same set of assumptions. A

smaller noise (LIGO+AI → ET+BBO) improves the chirp-mass accuracy by about
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Figure 2.2 Integration of all NS-NS measurements for 1 or 10 years with 4(aLIGO+AI)
(blue) and ET+BBO (red). Along the shown solid lines, the DM-induced mass-shift
δM/M equals to the integrated chirp-mass measurement accuracy. Each solid line
corresponds to different setup and assumptions; see text for details. The aLIGO+AI
1yr and LLR displacement curves overlap. Models and other sensitivity curves are as
in Fig. 2.1.

50 times larger SNR, whereas a longer measurement (1 year → 10 years) by about 10

times larger Ncyc. Removing the 5 degeneracies improves by another factor of 2; this

relatively small improvement is one of the highest-frequency benefits (see the next

section). For a shorter 1-yr integration, the degeneracies with sky-location and spin

β are similar, but the latter one becomes more important for a longer 10-yr integra-

tion. This is because spin effects are irrelevant at low-frequency (farther separation)

regimes, thus longer lower-frequency data do not contain much spin information.

A combination of all NS-NS observations for T = 1 or 10 years of integration

(Fig. 2.2) can extend the reach by a few orders of magnitudes. Summing all observa-
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tions enhances the sensitivity statistically, scaling approximately as(∫
dz

4πχ(z)2

H(z)

(
10Mpc

χ(z)

)2 ṅ

(1 + z)2

(
T

year

))1/2

, (2.11)

with the binary redshift z, comoving distance χ, comoving merger-rate density of

NS-NS ṅ (we assume a constant comoving density), the Hubble constant today

H0 = 70 km/sec/Mpc and ΩM = 0.3, ΩΛ = 0.7 for matter and Λ energy frac-

tion. The two sets of predictions shown are based on lower and optimistic val-

ues of ρDM and ṅ. For the lower expectation, we use ρDM = 77.2GeV/cm3 from

0.8 kpc flat-core Burkert profile (similar to 0.1 kpc NFW and Einasto values) and

ṅ = 1000/Gpc3/yr [49] from the central value of predictions. For the optimistic case,

we use ρDM = 1000GeV/cm3 [50] maximum not exceeding the O(10)% of baryonic

mass inside the 100 pc galactic center (which can be constrained by future pulsar-

timing residual measurements from SKA/FAST [32]) and ṅ = 12000/Gpc3/yr [49]

maximum consistent with LIGO observations so far. The “optimistic” curves are the

optimistic results with 10-yr integration and the 5 degeneracies removed. It improves

the lower sensitivity by about a factor 250. After all, the most optimistic sensitivity

reaches down to an exquisite level, b ≲ 10−11 eV and gϕnn ≲ 10−25, from the 10-year

integration with ET+BBO for the lightest DM.

2.7 Discussion

2.7.1 Origin of good sensitivity

We now turn to analyze the origin of good sensitivity to small DM effects.

Above all, the potential chirp-mass measurement accuracy is significantly en-

hanced by a large Ncyc (during year-long measurement). It is because a tiny phase

shift in each cycle can be accumulated to an observably large one after Ncyc cy-

cles [51, 52]. For example, the last 1 year measurement of NS-NS at 10 Mpc yields
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Ncyc ≃ 107 and SNR ≃ 600 (see Fig. 2.3) so that the fractional accuracy is expected

to be enhanced as 1/(SNR ·Ncyc) ∼ 10−9, instead of just 1/SNR ∼ 10−2. Indeed,

while the accuracies of parameters that do not accumulate with Ncyc (such as lnDL)

is only 1/SNR ∼ 10−2, the final chirp-mass accuracy is 10−8 augmented significantly

by ∼ Ncyc.

As shown in the first four panels of Fig. 2.3, however, the chirp-mass accuracy

does not improve closely (or linearly) with SNR ·Ncyc. Only at the end of a year-long

measurement, the accuracy grows significantly and becomes close to the expectation.

Here, it is the interplay of low-frequency and highest-frequency regimes that allows

to fully realize the potential enhancement from Ncyc. We discuss this in this section.

The relevance of Ncyc can be read directly from the Fisher matrix element. The

Fisher element of the chirp-mass part, FlnM lnM =
∫
df |dh̃/d lnM|2, is given by

dh̃(f)

d lnM
≃ −5i

4
(8πMf)−5/3h̃(f), (2.12)

at the Newtonian order. The term in the first parenthesis is proportional to the Ncyc

accumulated in each frequency interval as

Ncyc ≈ 2.44× 107
(

Mz

1.5M⊙

)−5/3( fi
10−1Hz

)−5/3

, (2.13)

where the initial frequency fi ≪ ff is assumed to be much smaller than the final fre-

quency ff . The final term h̃(f) in Eq. (2.12) is proportional to the SNR accumulated

in that interval. Thus, the Fisher element in each frequency interval is indeed related

to the Ncyc· SNR there.

The most of the GW cycles is accumulated at low frequencies (see Eq. (2.13))

as GW spends much more time there than at high frequencies. So does SNR. These

behaviors are shown in Fig. 2.3. Thus, a long period of particular waveform evolution

at low-frequencies contains a large amount of information of the chirp mass. But
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a problem remains in that low-frequency data alone is not enough to confidently

distinguish the chirp mass from other source parameters. The unresolved correlations

with other parameters prohibit to achieve the expected accuracy yet.

Here comes the highest-frequency data, chirping rapidly towards the merger.

There, the frequency evolves most rapidly, whose evolution is governed by the chirp

mass. Even though Ncyc does not increase much during that short evolution, the large

range of non-trivial frequency evolution can resolve various degeneracies.

In particular, high-frequency measurement significantly improves the accuracy of

sky-location (θ, ϕ) and hence correlations with them (see Fig. 2.3). It is improved due

to the huge Doppler phase shift accumulated across the Sun [47] (during year-long

measurment). The GW phase explicitly grows with the frequency as

Ψ(f) ∼ 2πf(−r⃗AU · n̂/c+ tc), (2.14)

where n̂ = n̂(θ, ϕ) is a unit vector for the GW propagation direction or the source’s

sky-location and r⃗AU is the Earth-Sun separation vector. The first term (depending

on θ, ϕ) is the Doppler phase shift. But this effect is measurable only after long

enough measurement around the Sun [47] as linear (or constant) Doppler shift is not

measurable (confused with the cosmological redshift z). Thus, a short high-frequency

segment of data alone is not useful, but only year-long measurement can utilize this

natural benefit. As shown in Fig. 2.3, the location accuracy begins to improve after

about 6 months.

The highest-frequency chirping actually improves most of the source-parameter

accuracies that affect the GW phase. The coalescence time tc will be obviously better

determined as GW approaches that time (and see Eq. (2.14) that the tc contribution

also grows with the frequency). Spin-orbit parameter β’s impact on precession and

phase evolution will be largest when the binary separation is smallest near merger.

The reduced mass µ will receive similar (although smaller) benefits that the chirp
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mass receives. On the other hand, the source parameters that affect GW amplitudes

do not gain high-frequency benefits, as Fig. 2.3 shows for lnDL accuracy.

By comparing the full results (red-solid) and blue-dashed lines in Fig. 2.3 where we

ignore the 5 aforementioned correlations (with sky-location (θ, ϕ), tc, DL, and β from

a posteriori (optical) information), we conclude that the resolution of degeneracies is

responsible for the improvement of chirp-mass accuracy at the highest-frequency end.

And it is the one that finally allows to realize the potential enhancement from Ncyc.

2.7.2 DM density dependence

The DM density dependence of the signal significance is an interesting property. If

NS-NS formation follows the star formation history, then the majority of NS-NS will

reside in the galactic center (GC) where DM is also most abundant. NS-NS is then a

natural candidate to detect large DM effects. The DM density dependence can also

be exploited to better confirm the DM origin of anomalous signals or to map DM

distribution.

In this paper, we implicitly assume that the GC is transparent to the GW. But how

bright or transparent it is would be an interesting question. Note that the majority

of pulsars measured (with lights) and used in PTA [31,32] are within about kpc from

the Earth. Thus, NS-NS with the GW can also be complementary to the local fuzzy

DM search by Parkes PTA [32] too.

2.8 Conclusion

We have shown that last years of NS-NS inspiral may have a precision capability to

detect tiny perturbations from the lightest possible scalar DM. The new observable

considered is the time-oscillating mass shift, induced by the DM fifth force with long

coherence. The precision capability stems from a large number of GW cycles and year-
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long measurement of highest frequencies, which can be realized by a future detector

network in the broadband f ≃ 0.01− 1000 Hz. If light scalar DM interacts with the

NS, our new observable in this broadband measurement can probe a large part of the

unconstrained parameter space, in particular the lightest possible mass range.

Our study also emphasizes the role of long-time high-frequency measurements in

the precision GW program; a large Ncyc can enhance the chirp-mass sensitivity as

discussed, and moreover, the Doppler effect around the Sun can localize the source [47,

53], and a better frequency resolution can resolve the GW lensing fringe generated

by intervening cosmic strings [117] and compact DM [89] (see also [56, 57] for other

benefits). These shall motivate the development of mid-frequency (f ≃ 0.01− 10 Hz)

detectors that can form such broadband detector networks by combining with ongoing

or upcoming LIGO-band detectors.
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Figure 2.3 Improvement of Fisher errors in measurement time. NS-NS at 10 Mpc.
Shown parameters are chirp-mass fractional accuracy, SNR, Ncyc, sky-localization
accuracy, and DL fractional accuracy. The second plot shows the correlation of chirp-
mass accuracy and SNR ×Ncyc. The considered measurement is for the last 1 year,
sweeping f ≃ 0.22 - 1000 Hz. The blue-dashed lines assume no correlations with the
5 source parameters (see text for details), and the orange-dotdashed line assumes no
correlation with any source parameters.
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Chapter 3

Small-scale shear: peeling off diffuse
subhalos with gravitational waves

This chapter was posted on arXiv as Small-scale shear: peeling off diffuse subhalos

with gravitational waves. arXiv:2103.08618 [astro-ph.CO].

3.1 Introduction

Cold Dark Matter (CDM) hypothesis has successfully explained large-scale structures

of the universe, providing firm evidences of DM. But, DM was never detected directly,

and its properties in smaller scales are not yet well established. For decades, there

has been missing satellites problem [58, 59], where the observed number of luminous

satellite galaxies is smaller than the prediction, although CDM predicts numerous

structures – (sub)halos – at the subgalactic scale. Recently, it was argued that the

completeness correction of star formation and detection efficiencies may resolve the

discrepancy [60, 61]. Many new observations of satellite galaxies since then by DES,

PANSTRRS1, and Gaia [61,62] are indeed making a better agreement down to (star-
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forming limit) M ≳ 107 − 108M⊙.

Much further can be progressed by searching for DM subhalos below 107−108M⊙.

Above all, such light subhalos do not harbor star formation [63, 64], hence free of

baryonic physics and keeping pristine nature of DM. Their number abundance, mass

profile, and spatial distribution can all be important information of underlying DM

models [65]; warm, fuzzy, and axion DM models, let alone primordial black holes,

predict significant deviations here [61, 66, 67]. They can also test CDM and missing

satellites problem more confirmly [65,68]. Lastly, they might be numerous around us,

affecting local direct detection.

However, the searches are challenging. First, they are dark (no stars). Second,

they are diffuse in mass profile (no cooling and contraction by baryons) so that their

gravitational effects are also suppressed; often too diffuse to produce strong-lensing

images or Einstein arcs. In addition, NFW profile [69] is known to fit simulations and

galactic-scale observations, but its validity at small scales is also not established. Core-

vs-cusp may be another relevant problem about the central mass profile [68,70,71].

Existing searches mainly rely on milli-lensing perturbations by subhalos. When

one of the strong-lensed images (of compact sources such as quasars) or an arc (of

spatially extended sources such as galaxies) is near a subhalo, its flux, shape, location,

and arrival time can be milli-lensing perturbed so that different from those of the

other images or the other part of the arc [72] (see also [73–79] and refs therein). With

excellent imaging spatial resolution, this method can detect subhalos individually [80],

but only heaviest ones down to M ≳ 107 − 108M⊙ for NFW [81] (and similarly for

pseudo-Jaffe [81–84]). The sensitivity is lower limited in part but inherently by profile

diffuseness; NFW is so diffuse that milli-lensing cross-section σl ∝ M2.5−5
NFW scales

rapidly with the mass, as estimated in Appendix A.1. (For comparison, compact DM

can be probed down to very small masses with lensing [85–95].) Alternatively, a mass
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function [96–100] or power spectrum [101–103] can be extended below this range,

through the collective or statistical effects of subhalos; the mass abundance inferred

in this way also agrees better with CDM in the range 106 − 109M⊙ [66, 67, 104,105].

In all, to search for individual (sub)halos below 107M⊙
1, we need a very different

method.

Recently, it has been proposed that diffractive lensing of chirping GWs can be

used to probe relatively light pseudo-Jaffe subhalos ofMvir ≲ 106M⊙ (more precisely,

ME = 102 − 103M⊙, where ME is the mass within the Einstein radius) [110]. As

will be discussed throughout this paper, the chirping GW is an ideal object to probe

such subhalos; first because its Fresnel length coincides with the scale radii of such

profiles [111, 112]; the frequency chirping is so well under theoretical control that it

can be used for precision measurements; and it is highly coherent, generated from

an almost point source, retaining diffraction pattern. The same physics has also been

used to search for compact DM such as primordial black holes [88, 89, 113–115] and

cosmic strings [116, 117]. These works have pioneered diffractive lensing near the

Einstein radius, rE , but NFW is more diffuse with essentially zero rE (see Sec. 3.3.2).

Not only is it difficult to calculate their diffractive lensing even numerically, but also

not clear which scales are relevant and how strong lensing will be.

In this paper, we develop a general formalism for diffractive lensing and work

out the GW lensing by a single NFW halo, both analytically and numerically (see

Refs. [118,119] for some numerical results). GW diffraction has been already proposed

to measure the matter power spectrum that includes NFW halos at small scales

1− 104M⊙ [111,112] or solar-mass microlens populations [120,121]. But focusing on

individual lens, we aim to assess the prospects of individual detection and profile

1We note that searches using star kinematics [62,106–109] are also limited by ≳ 108M⊙, similarly
to the milli-lensing. Perhaps, it is partly because both rely on presumably similar size ∼ 10% of
gravitational perturbations. But the similar threshold of star-forming galaxies ≳ 107 − 108M⊙ might
be a coincidence.
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Figure 3.1 Illustrating how the chirping GW detects a diffuse subhalo and successively
peels off its profile. The solid circles with radii ∼ Fresenel length rF ∝ 1/

√
f are the

points on the lens plane being probed by the wave with frequency f ; also where the
phase difference with an image “i” is 1. As the frequency chirps, the circle shrinks and
the wave feels the mass distribution at successively smaller scales, hence frequency-
dependent diffractive lensing essentially due to shear. When rF ≲ rs, the source “s”
begins to be well located/imaged by Fermat principle, hence frequency-independent
geometric optics. SIS is used for illustration, where mass is densely distributed within
the Einstein radius rE which is also a boundary between weak and strong diffraction.
NFW is more diffuse with essentially zero rE .
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measurements. Along the line, our formalism provides easier description in terms

of 2D potentials as well as basic understanding of qualitatively different regimes of

diffractive lensing. Some of the main underlying physics is illustrated in Fig. 3.1 and

will be discussed throughout.

We start by developing general formalism in Sec. 3.2, then we solve NFW diffrac-

tive lensing in Sec. 3.3, introduce and quickly estimate the GW lensing detection in

Sec. 3.4, and present numerical results of detection prospects in Sec. 3.5. We demon-

strate the application of our formalism to more general profiles in Sec. 3.6. We close

by summarizing the results in Sec. 3.7.

3.2 Diffractive lensing formalism

We develop general formalism for diffractive lensing.

3.2.1 Lensing integral

Gravitational lensing effects are captured generally by a complex amplification factor

F (f) as

h̃L(f) = F (f)h̃(f), (3.1)

where h̃ (h̃L) is an unlensed (lensed) waveform in the frequency f domain. The

amplification is calculated by Kirchhoff path integral on the lens plane as [122]

F (f) =
f(1 + zl)

ideff

∫
d2r exp [i2πf(1 + zl)Td(r, rs)] , (3.2)

where r is the physical displacement on the lens plane with its origin at the center

of the lens, rs the source position projected onto the lens plane, Td the arrival-time

difference between the deflected path passing r under the lens influence and a straight

path in the absence of the lens, and deff = dldls/ds is the effective angular-diameter

distance to the lens.
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It is convenient to normalize dimensionful parameters by a characteristic length

scale r0

F (w) =
w

2πi

∫
d2x exp

[
iwT̂d(x,xs)

]
, (3.3)

where x = r/r0, xs = rs/r0, T̂d = deffTd/r
2
0, and

w ≡ 2πf(1 + zl)
r20
deff

(3.4)

is the dimensionless frequency. The dimensionless time-delay T̂d, also called the Fer-

mat potential, is

T̂d(x,xs) =
1

2
|x− xs|2 − ψ(x). (3.5)

The first term denotes the geometric time-delay and the second the Shapiro delay with

dimensionless potential ψ being the solution of two-dimensional Poisson equation

∇2
xψ = 2κ(x) =

2Σ(x)

Σcrit
, (3.6)

with the surface density projected onto the lens plane

Σ(x) =

∫ ∞

−∞
dz ρ(z,x), Σcrit =

1

4πdeff
. (3.7)

The convergence κ(x) is the normalized surface density, characterizing lensing strength.

The formalism so far is general and scale invariant. The normalization r0 can

be chosen to be any convenient scale of the lens. For example, the Einstein radius

rE =
√
4MEdeff is a convenient choice of r0 for a point-mass lens because its enclosed

Einstein mass ME is the total mass M so that w = 8πMf is a simple function of M .

Thus, such a choice is often used for strong lensings (see Sec. 3.6 for the usage for

power-law profiles).

For diffuse lenses such as NFW, which rarely induce strong lensing, it is more

intuitive and useful to rewrite w in Eq. (3.4) in terms of a new length scale rF such

that

w = 2

(
r0
rF

)2

. (3.8)
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The new scale defined as [111,123]

rF ≡

√
deff

πf(1 + zl)
≃ 1.76 pc

√
1

1 + zl

(
deff
Gpc

)(
Hz

f

)
, (3.9)

is equivalent to the Fresnel length of diffraction applied to lensing. We will use rF

throughout this paper, discussing its meaning and usefulness in later sections.

Usual geometric-optics lensing is obtained for wT̂d ≫ 1 from the stationary points

of T̂d, hence Fermat principle.

3.2.2 Diffraction condition

Diffractive lensing, also called wave-optics lensing, is the lensing in the regime where

Fermat principle does not lead to clear discrete paths of waves from Kirchhoff path

integral. It is where the wave properties of a probe wave becomes relevant. This

typically produces a single blurred image of a source when rs ≫ rE . But for rs ≲ rE ,

would-be multiple images may not be well resolved and interfere; such is also referred

to as wave-optics effect [89, 91, 113, 124]. In this subsection, we derive conditions for

diffractive lensing.

Fermat principle applies when the phase oscillation among the paths passing dif-

ferent parts of the lens plane is rapid enough, i.e. 2πfTd ≫ 1 near rs in Eq. (3.2).

Thus, diffractive lensing occurs when, in terms of w in Eq. (3.3),

wT̂d ≃ w
x2s
2

≲ 1, (3.10)

where the approximate equality holds if rs ≫ rE so that the ψ contribution to T̂d in

Eq. (3.5) is negligible compared to the geometric contribution.

Diffractive lensing can also be understood by the analogy with single-slit experi-

ment. The shadow of a slit is blurred when light rays propagating from opposite edges

of the slit interfere weakly. This happens when the phase difference between them,

2π(
√
a2 + d2 − d)/λ ∼ πa2/(λd) = (a/rF )

2, is small [125]; here, a, d, and λ are the
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slit size, the distance between the slit and the screen, and the wavelength of incident

light, respectively. In gravitational lensing, a and d are replaced by rs (single-imaged

cases) and deff, respectively. Thus, diffractive lensing occurs if

r2F ≳ r2s , (3.11)

which is equivalent to Eq. (3.10) with the definition of w in Eq. (3.8). The condition

in this form means that as chirping rF falls below rs, the source becomes well located

and only the lens mass profile near the source direction begins to matter; see Fig. 3.1

and Sec. 3.2.5. rF is essentially an effective source size [112], within which effects are

smeared/interfered out.

The diffraction picture is refined when rs ≲ rE (or, rs near any caustic) so that

a lens system can have multiple images. The deflection potential ψ now significantly

contributes to ∆T̂d. A more appropriate diffraction condition is 2πf∆Tij ≲ 1 or

w∆T̂ij ≲ 1 (rather than Eq. (3.10)), where ∆Tij is the arrival-time difference between

the i-th and j-th images [113]. Since typical ∆Tij ∼ 4ME = r2E/deff (equivalently,

∆T̂ij ∼ 1 with r0 = rE), the condition becomes r2F ≳ r2E (cf. Eq. (3.11)). Applied

to the point-mass lensing, the condition leads to a well-known interference relation

λ ≳ 2πRSch between the probe wavelength λ and the lens Schwarzschild radiusRSch =

2M , as r2E/r
2
F = (4Mdeff)/(λdeff/π) = 4πM/λ ≲ 1. Thus, this relation is nothing but

the requirement for the wave to see the lens (or the slit in the single-slit analogy), or

equivalently for the interference between multiple images to be relevant [89, 91, 113,

124].

Wave properties (hence, frequency dependencies) remain important inside rE up

until rF ≳ 2
√
rErs. Consider xs → 0 near a caustic. The would-be multiple images

have very small relative time-delays, ∆T̂d = 2xExs+O(x2s) (derived in Appendix A.2),

as they are formed almost symmetrically around the corresponding critical lines (in

this case, the Einstein radius xE). Only if the frequency is very large, the result-
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ing interference becomes so rapid that geometric optics is reached. Thus, diffraction

continues well inside the Einstein radius until

w ≲
1

2xExs
↔ rF ≳ 2

√
rErs. (3.12)

Diffraction inside rE is strong lensing, and it produces a blurred Einstein ring, which

becomes sharper as rF decreases toward this limit, eventually separated into clear

images.

In all, Eq. (3.10) or (3.11) is a relevant diffraction condition for NFW (Sec. 3.3.2).

But rE and strong diffractive lensing with Eq. (3.12) can also be relevant to general

diffuse profiles (Sec. 3.6). In next subsections, we formulate diffractive lensing and see

how these physics arise.

3.2.3 Formalism for weak diffractive lensing

We solve Eq. (3.3) for weak diffractive lensing, in terms of much simpler 2D projected

potentials. This formalism is applicable to any single lens profiles without symmetries.

Weak lensing will be relevant to NFW.

In the diffraction regime rF ≳ rs, it is convenient to ignore xs (effectively, not

well resolved) so that Eq. (3.3) is rewritten as

F (w) ≃ w

2πi

∫
d2x exp

[
iw

(
1

2
|x|2 − ψ(x)− T0

)]
. (3.13)

T0 is the overall time-delay in the geometric-optics limit relative to the unlensed case;

F (w) now contains only the relative time delays among diffracted rays. We will see

later what T0 means for both single- and multi-imaged cases.

For weak diffraction with small ψ (more precisely, when Shapiro delay is subdom-

inant or rs ≳ rE), the Born approximation leads to the expansion

F (w) ≃ 1− w2

2π

∫
d2x e

1
2
iw|x|2 (ψ(x)− ψ(0)) , (3.14)

41



where T0 ≃ −ψ(0) for weak lensing. Using the integration by parts (with iwx eiwx2/2 =

d
dx(e

iwx2/2)), Eq. (3.14) can be written as

F (w) ≃ 1 +
w

i

∫ ∞

0
dxxeiw

x2

2 κ(x) , (3.15)

where κ(x) is the mean convergence within the aperture of radius x centered at xs

as [126]

κ(x) ≡ 1

πx2

∫
|x′|<x

d2x′κ(x′)

=
1

2πx

∫ 2π

0
dϕ′

∂

∂x
ψ(x, ϕ′) (3.16)

with the lens-plane polar coordinate (x, ϕ).

Furthermore, important physics is contained in the frequency dependence of F (w).

By differentiating Eq. (3.16),

⟨γt(x)⟩ ≡ 1

2π

∫ 2π

0
dϕ γt(x, ϕ) = −1

2

dκ(x)

d lnx
, (3.17)

where γt is the tangential shear

γt(x, ϕ) =
1

2

[
1

x

∂ψ

∂x
− ∂2ψ

∂x2
+

1

x2
∂2ψ

∂ϕ2

]
. (3.18)

Using Eq. (3.17), the differentiation of Eq. (3.15) with respect to lnw can be written

in terms of shear

dF (w)

d lnw
=

w

i

∫ ∞

0
dxxeiw

x2

2 ⟨γt(x)⟩ . (3.19)

Finally and remarkably, although Eqs. (3.15) and (3.19) are already new and

insightful results of this work, they can be more usefully simplified as

F (w) ≃ 1 + κ

(
1√
w
ei

π
4

)
(3.20)

dF (w)

d lnw
≃
〈
γt

(
1√
w
ei

π
4

)〉
, (3.21)
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in that the dominant support of the integral
∫∞
0 dxxeiwx2/2 is near x = 1√

w
eiπ/4,

which can be obtained by rotating the half real-line integration by eiπ/4. The phase

factor in the support is crucial to make this single region a dominant contributor.

These are good approximations as long as κ(x) and ⟨γt(x)⟩ do not vary rapidly near

the support.

Eqs. (3.20) and (3.21) are one of the new and main results of this paper. The

fact that complicated lensing integral is evaluated by much simpler 2D potentials

is not only very convenient in estimating and understanding diffractive lensing, but

also has various implications. Such utilities and implications will be discussed and

demonstrated throughout this paper.

Before moving on, we discuss the formalism in more detail. First, F (w) is a com-

plex quantity, containing information on both amplification |F (w)| and phase φ(w)

(or interferences). For small ψ, one can decompose as [111]

|F (w)| ≃ Re[F (w)] = 1 + w

∫ ∞

0
dxx sin

wx2

2
κ(x), (3.22)

φ(w) ≃ Im[F (w)] = −w
∫ ∞

0
dxx cos

wx2

2
κ(x), (3.23)

and

d|F (w)|
d lnw

≃ Re

[
dF (w)

d lnw

]
= w

∫ ∞

0
dxx sin

wx2

2
⟨γt(x)⟩, (3.24)

dφ(w)

d lnw
≃ Im

[
dF (w)

d lnw

]
= −w

∫ ∞

0
dxx cos

wx2

2
⟨γt(x)⟩ . (3.25)

The frequency dependences of amplification and phase are of the same order and gov-

erned commonly by shear. Both physics must be utilized for detection and precision

measurements.

Up to this point, no assumptions on ψ were made except for its smallness. For

axisymmetric profiles considered in this paper, the angular dependence is trivial so
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that 2D identities are simplified as

κ(x) =
1

x
ψ′(x), (3.26)

⟨γt(x)⟩ = γ(x) =
1

2

[
1

x
ψ′(x)− ψ′′(x)

]
. (3.27)

From here on, we will drop the subscript ‘t’ for shear. Thus, we arrive at final formula

for an axisymmetric lens

F (w) ≃ 1 +
w

i

∫ ∞

0
dxxeiw

x2

2 κ(x) ≃ 1 + κ

(
1√
w
ei

π
4

)
, (3.28)

dF (w)

d lnw
≃ w

i

∫ ∞

0
dxxeiw

x2

2 γ(x) ≃ γ

(
1√
w
ei

π
4

)
. (3.29)

3.2.4 Shear as the origin of frequency dependence

The most remarkable meaning of Eq. (3.21) or (3.29) is that the origin of the frequency

dependence is (1) ‘shear’ of a lens, (2) at frequency-dependent x ≃ 1/
√
w or r ≃

rF /
√
2.

Why does this make sense? Shear, defined in Eq. (3.27), is produced from asym-

metric mass distributions, hence distorting the shapes of background galaxies. But it

also reflects how steeply a profile varies at a given point. Consider the expression in

the form

γ(x) = κ(x)− κ(x), (3.30)

derived from Eqs. (3.26) and (3.27) and κ(x) = 1
2∇

2ψ(x) = 1
2 (ψ

′(x)/x+ ψ′′(x)) for

axisymmetric cases. Note that κ(x), hence γ(x), does not necessarily vanish even

though density κ(x) ∝ Σ(x) may vanish there. So this form makes it clear that the

variation of the potential is the one that produces shear, except at the spherically

symmetric point (as a component of the Weyl conformal curvature tensor [127,128]).

Further, Eqs. (3.28) and (3.29) are consistent with Gauss’ theorem: gravitational

effects must depend only on the enclosed mass. The enclosure boundary in our prob-
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lem is given by the diffraction length scale rF ∝ f−1/2. Thus, as the frequency grows,

the boundary shrinks and the enclosed mass changes; see Fig. 3.1 for illustration.

The change of lensing effects as a function of frequency thus must be related to the

variation of the mass or potential at the boundary, which is given by shear.

Nevertheless, geometric optics is frequency independent. As rF ≲ rs or 2
√
rErs,

the source is well resolved, and Fermat principle determines image properties solely

from T̂d in the narrow region around the image. This will be further discussed in

the next subsection. In reality, a mass profile may contain several substructures at

various scales of their own small curvatures. If we probe this profile with a broad range

of rF , every time rF crosses this scale of a substructure, there appears wave-optics

effect perturbing and correcting the image properties accounting for the substructure

influence.

Eq. (3.29) offers a new concrete way to measure the mass profile. The measurement

of dF (w)/d lnw for a range of w (even from a single GW event) can be directly

translated to the measurement of the shear field γ(x) for the corresponding length

range; recall that F (w) cannot be measured directly. Just as the shear field measured

from galaxy shape distortions are used to measure the mass of a lens galaxy cluster,

the shear field from GW diffraction (this time even with a single event) can tell the

lens mass profile. In Sec. 3.6.3, we apply our formalism to briefly demonstrate this

physics potential.

Practically, Eq. (3.29) allows to estimate diffractive lensing much more easily.

Kirchhoff integral is usually very difficult to calculate even numerically, but 2D pro-

jected potentials are much easier. In the following sections, we work out NFW diffrac-

tive lensing both analytically and numerically, not only confirming our formalism but

also showing how readily one can estimate diffractive lensing.
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3.2.5 Complete formalism with strong diffraction

When the Einstein radius of a lens can be comparable to the rF of chirping GWs,

strong diffractive lensing which is qualitatively different from the weak diffractive

lensing must be taken into account. As derived in Eq. (3.12), strong diffractive lensing

occurs if 2
√
rErs ≲ rF ≲ rE . Given the condition, one can show that the main

contributions to the lensing integral Eq. (3.3) arises at x ≃ xE , i.e. the Einstein ring.

Using the stationary phase approximation at x = xE , Eq. (3.3) is evaluated as

F (f) ≃ i−
1
2xE

√
2πw

1− κ(xE) + γ(xE)
, (3.31)

which is again expressed in terms of κ and γ, this time at x = xE .

Interestingly, the frequency dependence F (f) ∝ w1/2 of strong diffractive lensing

is universal to all axisymmetric lenses. This can be intuitively understood from the

shape of an Einstein ring, which is produced since rs is negligible. By diffraction

effect, the ring is blurred so that it looks like an annulus with thickness ∼ rF and

radius ∼ rE . Then, one can expect Eq. (3.3) to be F (f) ∝ r−2
F ×(area of the annulus)

∝ rEr
−1
F = xE

√
w, and this is exactly as in Eq. (3.31).

The situation was different in the weak diffraction regime, where F (f) directly

connects to the lens profile through κ and γ at x ≃ rF . What is the origin of the

difference between the two diffraction regimes? It is due to the approximate scale

invariance in the weak diffraction regime; no length scales up to weak gravitational

potential ψ. In contrast to strong diffractive lensing, the weak lensing integral is

dominated by a disk with radius rF centered at the origin. By the similar argument,

one might expect F (f) ∝ r−2
F × r2F ∝ const, which looks at first inconsistent with

Eqs. (3.28) and (3.29), but is just a manifestation of a scale invariance. The existence

of ψ corrects this perturbatively. Note that F (f) is invariant under the scale transform

x→ λx and w → λ−2w if there were no lens. Since the symmetry is broken by ψ, we
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keep track of the effects by a spurion coupling aψ that compensates the symmetry

breaking. For simplicity, by considering a power-law profile ψ ∝ x2−k (Sec. 3.6),

the scale invariance wax2−k → wax2−k requires a → λka. The leading term of the

perturbation expansion (in powers of a) of F (f) must be of the form

F (f) = aψwq + const. , with q =
k

2
(3.32)

to respect the scale invariance. The power of w is thus uniquely determined by the spu-

rious scale invariance, and indeed agrees with our power-law calculation in Sec. 3.6.1.

On the other hand, in the strong diffraction regime, the Einstein radius fixes the

length scale of F (f) (as a stationary point), and a scale invariance no longer exists.

Therefore, the existence of a scale invariance discriminates strong/weak diffractive

lensing.

The frequency independence of geometric optics is also explained similarly. In this

regime of rF ≲ max(r2s , 2
√
rsrE) and rs ̸= 0, only stationary points of T̂d(x) (hence,

separate images) contribute to Eq. (3.3). In the small neighborhood of each image,

a scale invariance holds and, as a result, the contribution of each image to F (f) is

constant. If there are multiple images, F (f) also contains the interference between

them, which becomes increasingly oscillatory with w.

As an interesting aside, we can understand the frequency dependences in yet

another way. We can derive them just by matching F (w) to geometric optics at

the diffraction boundaries rF = rs Eq. (3.11) and r2F = 4rsrE Eq. (3.12). For weak

diffraction, matched at rF = rs, the geometric-optics magnification of the single image

at rs is

F =

√
1

(1− κ(rs))2 − γ(rs)2
≃ 1 + κ(rs) (3.33)

= 1 +
2− k

2
x−k
s = 1 +

2− k

2

(w
2

) k
2

(3.34)
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where κ, γ ≪ 1 and in the second line we have used power-law results derived in

Sec. 3.6. This indeed has F−1 ∝ wk/2 as in Eq. (3.32). For strong diffraction, matched

at r2F = 4rsrE , the geometric-optics magnification of one of the multi-images located

at xi = 1 + δx = 1 + xs/(1− ψ′′(1)) Eq. (A.8) is (δx≪ 1)

F =

√
1

(1− κ(xi)2)− γ(xi)2
≃
√

1

kxs
=

√
2w

k
. (3.35)

where again we have used power-law results. This indeed has F ∝ w1/2 as in Eq. (3.31);

the dependence of k−1/2 is also correct as in Eq. (3.79). Thus, the physics of the wave-

to-geometic optics boundary and geometric-optics magnification already contain the

w-dependences.

This completes the formalism of diffractive lensing. In the next few sections, we

apply the weak diffraction to NFW, while in Sec. 3.6 we apply the full formalism to

general power-law profiles.

3.3 NFW lensing

As an important example, we work out diffractive lensing by NFW using our formal-

ism.

3.3.1 Profile

The Navarro-Frenk-White (NFW) profile [69] is commonly used to parametrize spher-

ically symmetric density profiles of CDM halos. With two parameters, ρ0 and r0, its

3-dimensional radial profile is given by

ρ(r) =
4ρ0

(r/r0)(1 + r/r0)2
, (3.36)

where r is the radial distance from the center, r0 the scale radius at which the slope

of profile turns from −1 inside to −3 outside, and ρ0 the mass density at r0. Since
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Figure 3.2 The surface mass density Σ(r) at the distance r from the center of the
NFW profile, with MNFW = 109, 106, 103M⊙. The star on each curve denotes the
location of the scale radius r0. The curves end at their virial radius, rvir = cr0, where
c is given by the Okoli’s Mvir − c relation [130].

the total mass diverges, this profile must be cut off at some r not far from r0; only

the scale r ≲ r0 will be relevant to the lensing. The surface density at the distance

x = r/r0 from the center on the lens plane is given by [129]

Σ(x) =

∫ ∞

−∞
dz ρ

(√
x2r20 + z2

)
= 3Σ0

1−F(x)

x2 − 1
, (3.37)

where Σ0 = 8ρ0r0/3 = Σ(x = 1) and

F(x) =


arctanh

√
1−x2√

1−x2
x < 1

1 x = 1

arctan
√
x2−1√

x2−1
x > 1

. (3.38)

The 2D Poisson equation Eq. (3.6) is solved as

ψ(x) = 3κ0

[
ln2

x

2
+ (x2 − 1)F2(x)

]
, (3.39)

where κ0 = Σ0/Σcrit.
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The NFW parameterization is simplified by removing one of the two parameters

using the Mvir − c relation predicted by CDM simulations. Here, Mvir is the virial

mass of a halo, and c ≡ rvir/r0 is the concentration. We take the Mvir − c relation at

z = 0 from Okoli et. al. in [130]. Moreover, instead of conventional Mvir, it is more

convenient to use the NFW mass defined as

MNFW ≡ 16πρ0r
3
0 (3.40)

because it represents the halo mass independently of redshift. The two masses are

related by

Mvir = MNFW

(
ln(1 + c)− c(1 + c)−1

)
, (3.41)

differing only by O(1) as c = 10 ∼ 50 for Mvir = 104 ∼ 1010M⊙ [130,131].

Now,MNFW fixes all the parameters of NFW profile. For example, we can express

most relevant lens properties in terms ofMNFW as (using central values of the Okoli’s

relation)

Σ0 =
8

3
ρ0r0 ≃ 1.3× 107M⊙/kpc

2

(
MNFW

109M⊙

)0.18

, (3.42)

r0 =

√
MNFW

6πΣ0
≃ 2 kpc

(
MNFW

109M⊙

)0.41

. (3.43)

Fig. 3.2 shows the surface mass density Σ(x) and r0 forMNFW = 103, 106, and 109M⊙.

Σ(r) is obviously smaller for lighter halos while not varying rapidly inside r0; thus,

Σ0 = Σ(r = r0) or κ0 characterizes the values of Σ(x) or κ(x). r0 is smaller for

lighter NFWs, and it is the length scale relevant to this work. We collect other useful

expressions too:

κ0 =
Σ0

Σcrit
≃ 7.9× 10−3

(
MNFW

109M⊙

)0.18( deff
Gpc

)
, (3.44)

Σcrit =
1

4πdeff
≃ 1.66× 109 M⊙kpc

−2

(
Gpc

deff

)
. (3.45)
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Figure 3.3 |F (w)| (upper left), d|F (w)|
d lnw (lower left), φ(w) (upper right), and dφ(w)

d lnw
(lower right) for NFW profiles with κ0 = 0.002 (red) and κ0 = 0.001 (blue). Solid
lines are full numerical solutions of Eq. (3.13), while dashed are diffraction-limit
results in Eqs. (3.51) and (3.52). Their |F (w)| and φ(w) are obtained according to
Eqs. (3.22∼3.25). All of them agree in the diffraction regime w ≲ 2/x2s; see more in
text. Each curve is marked with xs value.

3.3.2 Critical curves

Critical curves are the locations of images where their magnifications (formally) di-

verge. The magnification in the geometric-optics limit

µ = [ detA(x) ]−1 (3.46)

=
[
(1− κ)2 − γ2

]−1
=

[(
1− ψ′

x

)(
1− ψ′′)]−1

, (3.47)

where A(x) ≡ dxs/dx is a 2× 2 matrix of the T̂d curvature around the image, yields

two such solutions

xt ≃ 2 exp
[
−1

2 − 1
3κ0

]
, xr ≃ 2 exp

[
−3

2 − 1
3κ0

]
, (3.48)

called tangential and radial critical curves, respectively. xt is also called the Einstein

radius xE . Since κ0 ≲ 10−2 is small for NFWs considered in this work, the critical
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curves are exponentially suppressed xt,r ≲ exp(−100) ≪ 1 and xE is essentially zero.

What does this mean?

Critical curves (more precisely, caustics) are roughly the boundary between re-

gions of different number of images; if detA Eq. (3.46) does not turn its sign, then

the mapping between source xs and image x planes is one-to-one invertible so that

there can only be a single image [132]. Also, critical curves are (more precisely, Ein-

stein radius) the boundary between geometric versus Shapiro time-delay dominance.

Therefore, NFW lensing is always single-imaged (see also Appendix A.3) and governed

by geometric time-delay; leading gravitational effects come from the perturbation of

order ψ near the image. But this is not a general property of diffuse profiles, as will

be discussed in Sec. 3.6.1.

How can single-imaged lensing be detected? Again, it is possible by the frequency

dependence of diffractive lensing and the frequency chirping of GW.

3.3.3 Diffractive lensing

We solve NFW (weak) diffractive lensing analytically. Plugging Eq. (3.39) into Eqs. (3.26)

and (3.27), we have

κ(x) =
6κ0
x2

[
ln
x

2
+ F(x)

]
, (3.49)

γ(x) =
6κ0
x2

[
ln
x

2
+ F(x)− x2

2

1−F(x)

x2 − 1

]
, (3.50)

where F(x) is given in Eq. (3.38). Then, according to Eqs. (3.28) and (3.29), the

analytic continuation of Eqs. (3.49) and (3.50) yields

F (w) ≃ 1− 6κ0iw

[
iπ

4
− 1

2
lnw − ln 2 + F(w− 1

2 e
iπ
4 )

]
, (3.51)

dF (w)

d lnw
≃ −6κ0iw

[
iπ

4
− 1

2
lnw − ln 2 + F(w− 1

2 e
iπ
4 )

− i

2

1−F(w− 1
2 e

iπ
4 )

i− w

]
. (3.52)
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Recall that this derivation is valid for rF ≳ rs and rs ≳ rE , but since rE vanishes

for NFW these results are valid for all w = 2(r0/rF )
2 as long as rF ≳ rs. Although

these are complicated functions of w in general, they are simplified in the limits of

w ≫ 1 and ≪ 1. For w ≪ 1 (w ≫ 1), they asymptote as dF/d lnw ∝ w (∝ const),

which agrees with the results of k → 2 (k → 0) power-law profiles since these limits

correspond to the outer (inner) part of NFW with ρ ∝ r−3(r−1).

Fig. 3.3, above all, confirms these analytic solutions (dashed) in the diffractive

regime of w ≲ 2/x2s, compared with full numerical results of Eq. (3.2) (solid). Around

this boundary, they are matched well to the well-known geometric-optics results.

Therefore, it is remarkable that one can understand the results of complicated lensing

integral in terms of much simpler 2D potentials.

Fig. 3.3 further demonstrates the main features of NFW diffractive lensing. In the

diffraction regime, both amplification |F (w)| and phase φ(w) are frequency depen-

dent, as expected. Its strength does not depend on xs (i.e., xs not resolved) so that

blue curves with different xs coincide there. But xs determines at which frequency

lensing becomes geometric optics (i.e., when xs is resolved). As a result, larger lens-

ing effects can be obtained for smaller xs; geometric-optics lensing is stronger for

sources closer to the lens. Soon after geometric optics is reached, the slopes of |F (w)|

and φ(w) vanish, and lensing becomes frequency independent. Lastly, single-imaged

diffraction always amplifies the wave, as also proved in Appendix A.3.

Notably, φ(w) itself also vanishes in the geometric-optics limit. It is because T0

was factored out in Eq. (3.13) so that the single image in this limit does not have extra

phases; we will see φ(w) for multi-imaged cases in Sec. 3.6. Although the frequency

dependence of φ(w) is more complicated than that of |F (w)|, their overall sizes are

anyway similar, commonly given by κ(x) and γ(x).
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3.4 GW detection of NFW

We introduce the concept of detection with chirping GW and likelihood criteria for

detection.

3.4.1 GW chirping

One of the most important features of GW is that its amplitude and frequency “chirp”.

It is worth emphasizing that what is actually measurable is the frequency-dependent

change of lensing effects, not the absolute size of amplification.

The observed unlensed chirping amplitude in the frequency domain can be written

as

h̃(f) = ApA(f)e
i(2πft0c+ϕ0

c+Ψ(f)). (3.53)

The chirping A(f) with particular frequency dependences as described below will be

the basis of lensing detection, while the chirping phase Ψ(f) will be canceled out

between lensed and unlensed waveforms (see Eq. (3.57)). Coalescence time t0c and

constant phase ϕ0c set to zero for the best-fit procedure(see Eq. (3.58)) since they

can be arbitrary. For simplicity, we fix binary and detector parameters (polarization,

binary inclination, and detector antenna direction) such that Ap = 1, and ignore

black hole spins and detector reorientation during measurements; such effects will

in principle be distinguishable from lensing effects. We refer to [89, 110] for more

discussions on this simplified analysis.

The frequency dependence of A(f) differs in the successive phases of inspiral-

merger-ringdown. For the inspiral phase f < fmerg, we adopt PhenomA waveform

templates developed in Ref. [133], approximating non-spinning quasi-circular binaries.

The waveform is

A(f) = Ainsp(f) =

√
5

24

M
5
6 f−

7
6

π
2
3dL

, (3.54)
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which is the restricted post-Newtonian approximation. The chirp massM =MBBH/2
6/5

for equal-mass binaries with the total mass MBBH (we consider only such cases), and

dL is the luminosity distance to the source. All the masses are redshifted ones. The

amplitude in the merger (fmerg ≤ f < fring) and ringdown phases (fring ≤ f < fcut)

are

A(f) = Ainsp(fmerg)×


(

f
fmerg

)−2/3
merger

σ2
f/4

(f−fring)2+σ2
f/4

ringdown

, (3.55)

where σf is the width of a peak centered at fring. The expressions for fmerg, fring,

fcut, and σf are detailed in Ref. [133]. Example chirping waveforms |h̃(f)| based on

these expressions are shown in Fig. 3.4. Frequency-dependent lensing effects will be

detectable as a deviation to the chirping.

Also marked on the chirping waveforms are the time remaining until final merger.

The frequency chirping in time at leading post-Newtonian order is given by

f(t) =
1

8πM

(
5M
t

)3/8

= 0.39 Hz

(
M⊙
MBBH

)5/8 (yr
t

)3/8
(3.56)

for time t before final merger. Almost all of the time is spent during the inspiral.

The benchmark GW detectors are Laser Interferometer Space Antenna (LISA)

[134, 135], Big Bang Observer (BBO) [136], Matter-wave Atomic Gradiometer In-

terferometric Sensor (MAGIS) [137, 138], and Einstein Telescope (ET) [139]. Their

noise spectral densities Sn(f) are shown in Fig. 3.4. The sensitivity ranges are roughly

[10µHz, 1Hz] (LISA), [1mHz, 100Hz] (BBO), [30mHz, 3Hz] (MAGIS), and [2Hz, 10 kHz]

(ET).
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Figure 3.4 The spectral density of GW detector noises
√
Sn(f) (solid) and example

chirping GW amplitudes
√
f |h̃(f)| (dashed) with MBBH = 103M⊙ and 105M⊙. zs =

1. The time marked with stars indicate the remaining time until final merger.

3.4.2 Log-likelihood detection

How well can the single-imaged diffractive lensing be detected? Detection likelihood

is measured by [89,110]

ln p = −1

2
(hL − hBF|hL − hBF), (3.57)

where hBF is the best-fit ‘unlensed’ GW waveform that maximizes the likelihood. The

best-fit is performed with respect to the overall amplitude A, constant phase ϕc, and

coalescence time tc of the unlensed h̃(f) Eq. (3.53) as

h̃template(f) = h̃(f)Aei(2πftc+ϕc). (3.58)

When hBF perfectly matches hL, A = 1 and tc = ϕc = 0. The inner product (h1|h2) =

4Re
∫
df h̃∗1(f)h̃2(f)/Sn(f), where Sn(f) is the noise spectral density. The best-fit in

this way is discussed more in [89,110].
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In this way, the ln p measures how well lensed signals can be fitted with unlensed

waveforms. Frequency dependent lensing amplitude |F (f)| will not be fitted by a

constant A. Likewise, non-trivial frequency dependent lensing phase φ(f) cannot be

canceled by ϕc and tc. Thus, the larger the | ln p|, the worse the best-fit, hence the

more confident is the existence of lensing.

In principle, the larger | ln p|, which is equivalent to the smaller match2 , reduces

the ability of GW detection. However, we can ignore such effects in our NFW lensing

situations thanks to the small mismatch(1− (match) ≃ 10−6) 3. In spite of the small

mismatch, the lensed GW can be distinguished from unlensed GW if signal-to-noise

ratio(SNR) of GW waveform is sufficiently high [110,121].

In this work, the binary intrisic parameters like total mass, mass ratio, and spins

are not included in the best-fit procedure. We expect that taking into account the

binary parameters will not significantly reduce | ln p| values. This is because, the

frequency dependence of F (f) around the diffraction-geomtric optics transition fre-

quency(e.g. Fig. 3.3) is characteristically different from the intrisic frequency de-

pendence of GW waveform even if post-Newtonian corrections are considered. More

accurate analysis on the potential degeneracy between the diffractive lensing and GW

waveform are beyond our scope and should be explored in the future researches.

We require ln p < −5.914 for 3σ confidence of the lensing detection. The require-

ment yields a proper lensing cross-section for given masses and distances

σl = π(r0x
max
s )2. (3.59)

There exists a maximum xmax
s for given parameters because | ln p| generally decreases

with xs as shown in Fig. 3.5. If there exist multiple roots of xmax
s , we take the largest

one, while if no root xmax
s = 0. An example result of xmax

s is shown in Fig. A.1 in

2(match) ≡ (hL|hBF)/
√

(hL|hL)(hBF|hBF)
3Actually, from Eq. (3.63), one can easily show that the mismatch is approximately given by the

square of the shear of the lens object.
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Figure 3.5 | ln p| as a function of xs = rs/r0. Last 1 year of inspiral observed at LISA.

Appendix A.6. In later sections, σl will be used for lensing probabilities.

For numerical calculation, a more convenient form for ln p is obtained by analyt-

ically minimizing ln p with respect to A and ϕc as

ln p = −1

2
(ρ2L − ρ2uL) , (3.60)

where

ρ2L = (hL|hL) , (3.61)

ρ2uL = max
tc

∣∣∣∣∣ 4ρ0
∫ fmax

fmin

df
|h̃0(f)|2

Sn(f)
F ∗(f)e2πiftc

∣∣∣∣∣
2

(3.62)

and ρ20 = (h0|h0) is SNR squared. Here, the maximization with respect to tc should

be done numerically; but tc maximization is relatively unimportant since adding T0

in Eq. (3.13) approximately does this maximization. More discussions are presented

in Ref. [110] and in Appendix A.4.

As an aside, there also exists the maximum | ln p| for some small xs for given

lensing parameters. As shown in Fig. 3.5, | ln p| stops growing for xs ≲ 10−2. It
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is because for small enough xs diffraction occurs in the whole frequency range of

measurement so that diffraction amplification does not depend on xs as shown in

Fig. 3.3. Under this condition, we find that

| ln p| ≃ 1

8

{
ρ0 ·

∣∣∣∣∣γ
(
rF (f0)e

iπ
4

√
2

)∣∣∣∣∣ · ln fmax

fmin

}2

, (3.63)

where f0 is a characteristic frequency at which

ρ20
2

= 4

∫ fmax

f0

df
|h0(f)|2

Sn(f)
. (3.64)

f0 is typically close to the maximum point of |h0(f)|2/Sn(f). Its derivation is given

in Appendix A.5. Eq. (3.63) also supports our intuition that the strength of shear is

critical to lensing detection.

3.5 Prospects

We first develop intuitions by semi-analytically estimating the parameter space of

NFW lensing, and then obtain final results with full numerical calculation.

3.5.1 Semi-analytic estimation

Which NFW mass scale is relevant to diffractive lensing? Since diffractive lensing is

sensitive to the mass profile at rF through shear γ(rF ) Eq. (3.29), the profile must

have sizable shear in the chirping range of rF . For NFW, this happens if some range

of rF satisfies

10−3r0 ≲ rF ≲ r0. (3.65)

The maximum is restricted to be within r0 because it is where γ ∼ 3κ0/2 is most

sizable; outside, gravity is suppressed quickly with γ ∝ 1/x2. The minimum 10−3r0

is introduced for the ease of calculation and is chosen arbitrarily; the area within the

minimum is small enough not to affect lensing probability, and the inner profile may
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Figure 3.6 The range of Fresnel length Eq. (3.9) swept by a chirping GW during
its last 1 year before merger (shaded). Other time periods are shown as dashed lines;
ISCO refers to the innermost stable circular orbit. The corresponding GW frequencies
are shown on the right vertical axis. Some part of this range, combined with detector
sensitivities, must satisfy Eq. (3.65) for diffractive lensing. zs = 1, zl = 0.35.

be uncertain too. Therefore, the relevant MNFW is the one whose length scale r0 is

comparable to the range of rF .

The chirping range of rF ∝ f−1/2 (hence the range of GW frequency) is determined

by the total mass of a binary black hole, MBBH, according to the standard GW

chirping; see Sec. 3.4.1. Fig. 3.6 shows an example range of rF swept during the last

1 year of chirping, as a function of MBBH. Basically, the heavier, the earlier at lower

frequencies they merge. The range spans one or two orders of magnitudes, while not

significantly broadened by longer measurements since binary inspiral is much slower

when far away from merger. We use the last 1-year measurements for numerical

results.

Fig. 3.7 shows the relevant parameter space of NFW. The shaded region satisfies

Eq. (3.65), which can be rewritten in terms of MNFW and f as (using r0 in Eq. (3.43)
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and rF in Eq. (3.9))

13.6M⊙

(
Hz

fmax

)1.22

≲MNFW ≲ 2.82× 108M⊙

(
Hz

fmin

)1.22

. (3.66)

However, not all this region can be probed; signals must be strong enough. The

overall change of amplification – the detectable signal – within a modest range of f

is ∆|F | ∼ γ(rF (f∗)) · O(1) from Eq. (3.29), with a characteristic frequency f∗ within

Eq. (3.65). Since the shear of NFW does not vary much within r0 as shown in Fig. 3.7,

γ(rF (f∗)) ∼ γ(r0). Thus, roughly,

SNR ≳ 1/γ(r0) · O(1) (3.67)

is needed to detect the diffractive lensing byMNFW. This is somewhat more rigorously

justified from Eq. (3.63) and Fig. 3.12. The contours of γ(rF ), reflecting the required

SNR, are shown as solid lines.

Based on these, one can now estimate the sensitivity range of MNFW. As quick

examples, we show a green bar for each detector, with their maximum SNR at the

corresponding frequency: SNR ≃ 5000, 105, 1000, 500 at f ≃ 0.004, 0.3, 0.08, 6 Hz

for LISA, BBO, MAGIS, ET, respectively. They roughly show maximal sensitivities,

only as quick references. One can see that MNFW ≲ 107M⊙ is potentially sensitive to

all detectors. The sensitivity range is indeed estimated by the comparison of the rF

range and the lens scale r0. The lower MNFW range is limited by too low frequency

for LISA and BBO that prohibits diffractive lensing by small MNFW (SNRs are large

enough), or by too small SNR for MAGIS and ET that prohibits detection of small

diffraction. Another to note is that, for given MNFW, larger SNR is needed for lower-

frequency detectors because corresponding larger rF probes only outer parts of NFW

with smaller shear.

A caveat is that this kind of estimation does not show any lensing probabilities. In

the next subsection, we obtain final results with full numerical calculation, showing
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Figure 3.7 Semi-analytic estimation of the parameter space of NFW diffractive lens-
ing. Diffractive lensing is relevant in the shaded region Eq. (3.65). Solid contours show
the shear γ(rF ), reflecting the required SNR for detection. The frequency correspond-
ing to rF is shown on the right vertical axis. For quick references, green bars roughly
show maximal sensitivities at best frequencies. See text for details. zs = 1, zl = 0.35.

lensing probabilities as well as confirming these estimations.

3.5.2 Results

We calculate detection prospects, starting from the optical depth (lensing probabil-

ity). For the given MBBH, zs and MNFW, the optical depth of the lensing is given

by

τ(zs) =

∫ zs

0
dzl σl(zl, zs)

1

H0

nl(1 + zl)
2√

(1 + zl)3Ωm +ΩΛ

, (3.68)
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Figure 3.8 Optical depth τ for the given MNFW comprising the full DM abundance
(i.e. no halo mass function) at BBO (left), LISA (mid), and MAGIS (right). Each
curve is marked with MNFW, and each panel with MBBH. Last 1 year of inspiral and
3σ log-likelihood lensing detection.
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where σl is the proper cross-section defined in Eq. (3.59). The comoving DM num-

ber density nl = fDMΩDM
MNFW

3H2
0

8πG is assumed to be constant in zl, with the fraction

of mass density fDM to the total DM abundance ΩDM = 0.25. Hubble constant

H0 = 70 km/s/Mpc, and energy density Ωm = 0.3, ΩΛ = 0.7 of matter and vac-

uum energy in units of critical density ρc = 3H2
0/8πG. The lensing probability is

P (τ) = 1− e−τ ≃ τ for τ ≪ 1.

Fig. 3.8 shows the optical depths at LISA, BBO, and MAGIS, for the givenMNFW

comprising the total ΩDM(i.e. fDM = 1 regardless of MNFW); the optical depth at ET

is too small to show. Overall, BBO and LISA have sizable τ close to or even larger

than 1, while MAGIS has much smaller τ at most ∼ 10−5. This result for single

MNFW can be combined with any mass functions such as given in Refs. [140,141].

The GW lensing event rate ṄL is obtained by integrating the lensing probability

P (τ) with the comoving merger-rate density ṅs

ṄL =

∫ zh

0
dzs

1

H0

4πχ2(zs)√
(1 + zs)3Ωm +ΩΛ

ṅs
1 + zs

P (τ), (3.69)

where zh is the horizon distance of a GW detector and χ(z) is the comoving distance.

The extra factor 1/(1 + zs) accounts for the redshift of the source-frame time period

used to define the merger-rate.

Table 3.1 shows total lensing events per year ṄL. Results are marginalized over

MNFW = 103 − 1010M⊙ with a mass function

dnl
dMNFW

∝ M−2
NFW (3.70)

and summed for MBBH = 102 − 108M⊙ with three models of ṅs. The power slope

of a mass function is taken to be −2 for simplicity; heavier halos may contain abun-

dant baryons that are not well described by NFW, while lighter halos’ existence and

properties are more model dependent. As for three models of ṅs (as a function of

MBBH and zs), two of them are taken from the models of massive black hole mergers
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Detector ṄL ṄGW

const. optim. pessim. const. optim. pessim.

BBO 30 40 10 58 270 13
LISA 0.3 0.03 0.02 47 63 12
MAGIS < 10−5 25 187 9
ET 0 21 124 1

Table 3.1 The expected numbers of lensing detections per year ṄL and of total GW
detections per year ṄGW, at BBO, LISA, MAGIS, and ET. The results are marginal-
ized over MNFW = 103−10M⊙ with the mass function Eq. (3.70) and summed for
MBBH = 102−8M⊙ with three models of ṅs: constant ṅs = 0.01Gpc−3yr−1, opti-
mistic and pessimistic merger models of heavy BBHs [142]. Light BBH mergers are
ignored.

in Ref. [142]; most optimistic and pessimistic predictions are used. Another model,

as a simple reference, is constant ṅs = 0.01 Gpc−3yr−1 for all MBBH and zs; this

reference choice predicts similar total GW detection rates ṄGW, as shown in the last

three columns of Table. 3.1. In all cases, BBH mergers are considered for zs ≤ 10 and

MBBH = 102 ∼ 108M⊙, where lighter BBHs have too small SNRs to contribute to

ṄL although they may contribute sizably to ṄGW (see Fig. 3.9 second panel).

Above all, in Table 3.1, all three models of ṅs predict that BBO can detect O(10)

lensing events per year, while LISA barely single event, and MAGIS and ET no event.

Even though LISA and BBO have relatively large τ , the number of relevant sources

is not so large to start with (see the ṄGW column).

Which MNFW range has high event rates? In Fig. 3.9 upper panel, we show the

event rates in log intervals of MNFW with the mass function. Most importantly, we

conclude that the target range MNFW ≲ 107 − 108M⊙ can be probed by diffractive

lensing at BBO (and marginally at LISA). As discussed in Sec. 3.5.1 and Fig. 3.7, this

range has the right scale radii r0 that happen to coincide with the range of rF at these

detectors. Although MAGIS and ET also have right frequency scales, their SNRs are
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typically too small. Notably, most BBO events are expected from light NFWs: O(10)

events from light MNFW = 103− 105M⊙, and O(1− 10) from MNFW = 105− 107M⊙,

and smaller from heavier NFWs. LISA and MAGIS are relatively more sensitive to

heavier NFWs, albeit with smaller event rates.

Figs.3.8 and 3.9 also show an important feature of diffractive lensing: heavier

NFWs yield smaller τ ∝M−0.8
NFW (at low zs). Therefore, unlike geometric-optics lensing,

lighter NFWs are actually more sensitive. It is because the number density of heavier

NFWs falls (nl ∝ 1/MNFW) more quickly than the increase of the proper lensing

cross-section (σl ∝M0.2
NFW). This is understood from that the length scale of diffractive

lensing is determined dominantly by rF , not by MNFW, since the rF range is much

narrower than the r0 range. For example, consider diffractive lensing by MNFW =

103 M⊙ and 109 M⊙ probed by a common MBBH = 105M⊙: even though their

masses and r0 differ sizably by 106 and ∼ 300 (Eq. (3.43)), the relevant range of rF is

commonly fixed to be about ∼ 10 (Fig. 3.6) so that the lensing cross-sections cannot

differ by more than ∼ 102. This is why σl is not so sensitive to MNFW that τ has a

negative slope with MNFW
4.

This is in stark contrast to usual geometric-optics lensing. For milli-lensing per-

turbations discussed in Sec. 3.1 and Appendix A.1, nlσl ∝M1.5−4
NFW has a large positive

slope with the mass so that light subhalos are insensitive inherently. The strong lens-

ing by a point-mass M is another example, where rE ≳ rF makes σl ∝ r2E ∝M . But

in this case, the power is cancelled by that of nl ∝ 1/M so that very light compact

DM can also be probed with lensing, as mentioned. Diffractive lensing is sensitive to

lower masses more preferentially.

Then, what does determine the lower range of MNFW? Fig. 3.8 shows that, at low

zs, only down toMNFW ≳ 102, 104, 106M⊙ can have sizable τ at BBO, LISA, MAGIS.

4As an aside, if detection criterion is relaxed (say, 3σ to 2σ), τ becomes steeper ∝ M−1
NFW, as the

lighter NFW detection is more subject to the criterion.
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As discussed in Fig. 3.7, it is either too long Fresnel length (for BBO and LISA with

large enough SNRs) or too small SNR (for MAGIS and ET); light enough NFWs

would have too small r0 or too weak gravity to induce large enough diffractions.

Moreover, the weaker gravity also limits the sensitivity at high zs for lighter NFWs.

The highest range of zs roughly scales with γ(r0), since SNR ∝ 1/zs ≳ 1/γ. For

example, the ratio of γ(r0) between MNFW = 105 and 107M⊙ is about 3 (Fig. 3.7),

and this roughly explains why MNFW = 107M⊙ can probe 3 times farther zs, e.g. at

LISA. Meanwhile, the decrease at small zs is due to the small number of lenses and

small κ0 ∝ deff .

Fig. 3.9 lower panel also shows the event rates in terms of MBBH (with MNFW

summed with the mass function). The largest τ is obtained for MBBH = 106−7M⊙

at LISA, 104−6M⊙ at BBO, and ∼ 105M⊙ at MAGIS. They are the mass ranges

that typically produce largest SNRs. As expected, large SNR ≳ O(103) is needed to

overcome small fractional change of waveforms ∼ O(γ(r0)) ∼ O(κ0) ≲ O(10−3). Such

a large SNR is readily obtained at LISA and BBO from heavy BBHs, while rarely at

MAGIS, simply due to larger noise. Although the frequency range of ET is right to

induce diffractive lensing by small NFWs (see Fig. 3.7), SNRs are just too small.

The variations between optimistic and pessimistic predictions are shown as shaded

bands. They are only about ∼ 10. But the predictions from the constant ṅs (solid)

at LISA and MAGIS tend to be larger (by about 10) even though they had similar

ṄGW. This tendency stems from that the massive-black-hole merger models predict

more sources at higher zs so that LISA and MAGIS with smaller SNRs depend more

sensitively on such distributions of source properties.

Lastly, the results without a mass function (dashed) have almost the same shape

as the solid lines but just a larger normalization by a factor ∼ 8. One exception is at

low MNFW range of BBO, where τ > 1 had to be cut off at τ = 1 in our calculation.
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Figure 3.9 The number of lensing events per year ṄL at BBO, LISA, and MAGIS,
as functions of MNFW (top) or MBBH (bottom). The shaded bands are the range of
optimistic and pessimistic ṅs, while the solid lines are from constant ṅs; their total
event rates are normalized as in Table 3.1. For comparison, dashed lines show results
without a mass function; each MNFW comprises total ΩDM. See more in text. Last 1
year of inspiral and 3σ log-likelihood lensing detection.

68



These events are where multi-lensings of a single GW can occur. If SNR is very large,

even tiny lensing effects that might happen multiple times along the line of sight can

all be counted. Such events may not be well detected as signals will be complicated,

depending on many parameters of multi-lens environments. Using τ = 1 for such

events means that we can always select out single-lensing events by, e.g., imposing

stronger detection criteria for such events, favoring the ones with single strong lensing

and small perturbations.

This completes our study on the NFW DM subhalos to which weak diffractive

lensing is applied.

3.6 Generalization

In this section, by working out lensing by power-law profiles, we not only demonstrate

how readily one can estimate diffractive lensing in general (using our formalism), but

also complete our discussions with strong diffractive lensing and the idea of measur-

ing/distinguishing mass profiles.

3.6.1 Lensing by power-law profiles

Starting from a general power-law density profile

ρ(x) = ρ0x
−k−1, (0 < k < 2) (3.71)

with x = r/r0 for some scale r0, we obtain 2D projected potentials

κ(x) =
2κ0
2− k

x−k, κ(x) = κ0x
−k, γ(x) =

kκ0
2− k

x−k, (3.72)

with

κ0 = 4πdeffρ0r0B

(
1

2
,
k

2

)
. (3.73)

The range of k makes the enclosed mass finite.
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Figure 3.10 The amplitude and phase of F (w) obtained by full calculation (solid),
weak diffraction approximation Eq. (3.77) (dashed), and strong diffraction approxi-
mation Eq. (3.79) (dotted) for a power-law profile with k = 1. xs = 0 for simplicity.

We fix the overall scale by specifying Mvir. Further by choosing r0 = rE , 2D

projected potentials are simplified as

κ(x) = x−k, κ(x) =
2− k

2
x−k, γ(x) =

k

2
x−k, (3.74)

now with x = r/rE . The Einstein radius is fixed by Mvir as

rE =

[
8π

2− k
deff ρ0r

k+1
0 B

(
1

2
,
k

2

)] 1
k

, (3.75)

ρ0r
1+k
0 =

200ρc(2− k)

3

(
3

4π

Mvir

200ρc

) 1+k
3

, (3.76)

where ρc = 3H2
0/(8π) and B(x, y) = Γ(x)Γ(y)/Γ(x+ y). Unlike NFW, k < 2 profiles

have non-negligible rE so that it is a useful length scale when it is comparable to the

rF of GWs.

For weak diffractive lensing which is valid for w = 2(rE/rF )
2 ≲ min(1, 2/x2s)
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(Eqs. (3.11) and (3.12)), our approximate results in terms of κ(x) and γ(x) are

F (w) ≃ 1 +
w

i

∫ ∞

0
dxxeiw

x2

2 x−k

= 1 + 2−
k
2 e−i kπ

4 Γ

(
1− k

2

)
w

k
2

= 1 + 2−
k
2Γ

(
1− k

2

)
κ

(
1√
w
ei

π
4

)
, (3.77)

dF (w)

d lnw
≃ w

i

∫ ∞

0
dxxeiw

x2

2
k

2
x−k

= 2−
k
2 e−i kπ

4 Γ

(
1− k

2

)
kw

k
2

2

= 2−
k
2Γ

(
1− k

2

)
γ

(
1√
w
ei

π
4

)
. (3.78)

Here, integrals are evaluated exactly and the results agree with Eqs. (3.28) and (3.29)

obtained from dominant supports. Above the weak diffraction range, but still within

w < 1/(2xs), strong diffractive lensing is described by Eq. (3.31) which is calculated

in this case as

F (w) ≃ i−1/2

√
2πw

1− κ(1)− γ(1)
= i−1/2

√
2πw

k
. (3.79)

In Fig. 3.10, we compare F (w) obtained by full calculation (solid), weak diffraction

Eq. (3.77) (dashed), and strong diffraction Eq. (3.79) (dotted) for k = 1. Approximate

results do agree with full results in their respective validity ranges, confirming not

only analytic calculations but also the validity ranges of weak/strong diffractions

Eqs. (3.11) and (3.12). Weak diffraction starts to deviate at w ≳ 0.1 somewhat earlier

than at 1 since the Born approximation starts to break near rE . Weak and strong

diffractive lensing do have different slopes transitioning at around w = 2r2E/r
2
F ≃ 1

(the difference was explained in Sec. 3.2.5), thus rE (existence and value) can be

directly measured, effectively yielding ME = r2E/4deff too. In the figure, xs = 0 for

simplicity, but frequency independent results will arise for w ≳ 1/2xs with finite xs,
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Figure 3.11 Same as Fig. 3.7 but for SIS with k = 1. Red contours show γ(rF ),
reflecting the required SNR for detection, and blue contours show the enclosed mass
within rF . Length scales, rvir and rE , are shown as dashed lines.

similarly to Fig. 3.3. Although not shown, φ(w) in this regime does not asymptote

to zero (unlike the NFW case in Fig. 3.3) because the relative times delays among

multiple images remain there.

3.6.2 Semi-analytic estimation

Using our analytic solutions, we estimate the detection prospects of diffractive lensing

by power-law lenses.

To start off, as done for NFW, we estimate the relevant parameter space of the

profile with k = 1 in Fig. 3.11. This is called SIS profile, and is conventionally written
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in terms of the isothermal velocity dispersion σv as ρ(r) = σ2v/(2πr
2). 2D projected

potentials are dimensionless

κ(x) = 1/x, κ(x) = 1/2x, (3.80)

γ(x) = 1/2x = 0.07

(
σv

1 km/s

)2( deff
Gpc

)(
pc

r

)
, (3.81)

with x = r/rE , but scale parameters are rewritten as

rE = 4πdeffσ
2
v = 0.14 pc×

(
σv

1 km/s

)2( deff
Gpc

)
, (3.82)

and the enclosed mass M(r) = πσ2vr within rE and rvir

ME = 4π2deffσ
4
v = 1.02× 106M⊙

(
σv

10 km/s

)4( deff
Gpc

)
, (3.83)

Mvir =
2√
50

σ3v
H0

= 9.39× 108M⊙

(
σv

10 km/s

)3

. (3.84)

The detectableMvir range is again estimated by the comparison of γ(rF ) and SNR,

with rF being the Fresnel length at the most sensitive frequency. For example, ET

(rF (f = 10 Hz)∼ 1 pc) with SNR = O(100) can probe a SIS lens as small as Mvir =

104M⊙ (or, σv = O(1km/s)), corresponding to the enclosed mass M(rF ) = 10M⊙

(blue solid). This estimation agrees with more dedicated calculations in Ref. [110], as

the lower mass range is in the weak diffraction regime with rF ≫ rE ≃ 0.1pc.

There are a few notable differences of Fig. 3.11 from NFW results of Fig. 3.7. The

first is that ET can probe smaller Mvir than MAGIS and LISA. This is because, for a

given Mvir, higher frequencies probe inner parts which now yield significantly larger

shear, reflecting the steeper profile. Another is the relevance of the Einstein radius,

which was essentially zero for NFW. This is further discussed in the following.

Further, we can estimate somewhat more accurately, but still much more easily

than full numerical analysis. Using weak diffraction results Eqs. (3.77) and (3.78), we

calculate ln p for detection by minimizing with respect to A and ϕc. This result is
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Figure 3.12 The comparison of | ln p| for detection obtained with full numerical (solid)
and approximate weak diffraction Eqs. (3.77) and (3.78) (dashed). Also shown are
estimations using only shear and SNR Eq. (3.85) (dotted; which overlap with dashed).
Each panel uses the BBH mass yielding maximum SNR. Horizontal lines denote the
3σ threshold, | ln p| = 5.914.
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compared with full numerical result in Fig. 3.12. They do agree well for most Mvir

and k, but deviations in the heavy mass region of large k are due to strong diffractive

lensing. As shown in Fig. 3.13, for given Mvir, the larger k, the larger ME so that

strong diffraction becomes more relevant from lower frequencies. In this region, the

frequency slope w1/2 Eq. (3.79) is steeper (shallower) than that of weak diffraction

wk/2 Eq. (3.77) for k < 1 (k > 1)5 so that full results are stronger (weaker). In

addition to these results, dotted lines show much simpler estimations based solely on

shear and SNR (motivated in Sec. 3.5.1 and supported rigorously in Eq. (3.63))

| ln p| ≃ α (SNR× γ(rF (f∗)))
2 , (3.85)

where α = O(0.1) reproduces the analytic results. In all, Fig. 3.12 confirms our

analytic results and demonstrates how readily one can estimate diffractive lensing

using our formalism.

3.6.3 Peeling off profiles

It was advocated that our formalism in terms of 2D potentials makes it clear what it

means to measure the mass profile with a single diffractive lensing event. The basic

idea is simple: different profile slope k results in different frequency dependence during

the probe of a successively smaller length scale. As a simple demonstration of this

exciting possibility, we estimate the measurement accuracy of the slope k.

Similarly to detection estimates, we calculate ln p, but this time including k as a

fitting parameter (in addition to A and ϕc). We define the measurement accuracy δk as

the variation of k with respect to the true k0 that yields | ln p| = 5.914. In Fig. 3.14,

we show the results, again obtained from full numerical, weak diffraction analytic,

and shear-times-SNR. Above all, different calculations agree well if weak diffraction

dominates (for small k and small Mvir). Measurement accuracies are good as long as

5The turnover can be more accurately found to be k ≃ 1.3 using Eqs. (3.77) and (3.79).
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Figure 3.13 The Einstein mass and the corresponding frequency for rF = rE , as a
function ofMvir. k = 1.0 (orange) and 1.5 (blue). The region above(below) each line is
the weak(strong) diffraction regime. Shaded regions represent the chirping frequency
ranges measured at given detectors. zs = 1, zl = 0.35.

lensing can be detected. Basically, in the weak diffraction regime, the heavier or the

steeper the lens is, the more accurate measurement or distinction of profiles.

Notably, full numerical results deviate more significantly and yield much worse

results in Fig. 3.14, compared to the detection prospects in Fig. 3.12. This is an impor-

tant effect of strong diffractive lensing, qualitatively different from weak diffraction.

Strong diffraction has universal frequency dependence w1/2 Eq. (3.79) independent

of the power k; as discussed carefully in Sec. 3.2.5, it was due to the breaking of the

scale invariance by an Einstein ring. As a result, different profiles are harder to be

distinguished; detection itself was more robust because it is essentially the comparison

of power k and flat potentials. Thus, peeling off profiles is possible only with weak

diffractive lensing.

Since our analysis on the diffractive lensing ignores the parameter degeneracies

between the lens profile and GW waveform, there might be some overestimation in
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Figure 3.14 Same as Fig. 3.12 but for profile measurement accuracies represented by
δk/k. Cases with δk/k > 1 are not shown.

the profile measurement accuracy. But, in practice, the non-zero impact parameter xs

which induces the diffraction-to-geometric-optics transition might be able to resolve

some degeneracy between the profile and GW waveform parameters as discussed in
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Sec. 3.4.2.

3.6.4 Core-vs-cusp

If GW diffractive lensing can probe mass profiles, can it resolve the core-vs-cusp

problem? There exist observational evidences that DM halos may contain flat cores

of O(0.1 − 1) kpc radius [68, 70] rather than cuspy NFW ∝ 1/r. Such cores would

change lensing effects at the corresponding frequencies. But this length scale is too

large, corresponding to too low frequencies f ≲ 10−4 Hz (Fig. 3.6) for chirping GWs to

be relevant; the LISA’s most sensitive frequency range was ∼ 0.003 Hz. It is currently

the problem more of halos rather than of subhalos. Whether this problem persists

to smaller length scales (smaller DM-dominated halos) is not certain, and it is this

question that can be answered by observations of GW diffractive lensing.

3.7 Summary

First, we have developed a formalism for weak and strong diffractive lensing and solved

it analytically. As a result, complex lensing integral is evaluated in terms of much

simpler 2D-projected potentials. In particular, the frequency dependence of weak

lensing turns out to be due to shear of a lens at the Fresnel length rF ∝ f−1/2. These

results make not only underlying physics of diffraction clearer but also its estimation

much easier, as discussed and demonstrated throughout this paper. Moreover, the

idea of measuring mass profiles became concrete.

We have also derived the condition or the validity range of diffractive lensing. It

turns out that there exist two different phases of diffraction: weak and strong. They

are separated by the Einstein radius, outside of which is approximately scale invariant

leading to |F (w)| − 1 ∝ wk/2 (for power-law profiles) while inside of which has only

azimuthal symmetry leading to universal |F (w)| ∝ w1/2. The innermost range of
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diffractive lensing is determined by properties of a caustic (multi-imaged cases) or by

the source location.

Applying these, we have shown that NFW subhalos of MNFW ≲ 107M⊙, which

cannot be probed with existing methods, can be detected individually with GW

diffractive lensing. Detection prospects are O(10) events per year at BBO and less at

LISA, limited mainly by small merger rates and large required SNR ≳ 1/γ(r0) ∼ 103.

This mass scale is sensitive because the corresponding scale radius r0 happens to be

comparable to the range of rF at future GW detectors. Notably, unlike strong lensing

observables, the scale of diffractive lensing is dominantly fixed by rF rather than r0

(or the lens mass) so that it can be relatively more sensitive to lighter lenses.

Further, we have applied our formalism to readily estimate the detection and

profile measurements for general power-law potentials. This application also makes it

clear about the features of strong diffractive lensing and makes the idea of measuring

mass profiles concrete. Just as the shear field measured from galaxy shape distortions

is used to measure galactic profiles and matter power spectrum, GW diffractive lensing

can potentially be used to measure small-scale shear and reveal the particle nature

of DM roaming in the subgalactic scale.
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Appendix A

Appendix for Diffractive lensing

A.1 MNFW scaling of milli-lensing perturbation

We estimate the sensitivity of milli-lensing perturbation observations on MNFW. In

particular, we aim to derive the dependence on the mass and the lower mass range,

both of which can be contrasted with those of diffractive lensing.

The flux ratio anomaly is the most sensitive observable of milli-lensing perturba-

tion; it is a second-derivative of T̂d surface [72]. The typical requirement of ≳ 10%

flux perturbation ∆µ/µ by NFW subhalos [75,78,98] is translated to the requirement

of subhalo’s κ(x) as
∆µ

µ
≃ κ(x) ≳ 0.1, (A.1)

leading to maximum possible x (using Eqs. (3.39) and (3.38))

x ≲ xmax ≃ 2 exp

(
− 0.1

3κ0(MNFW)
− 1

2

)
. (A.2)

Using κ0 ∝ M0.18
NFW Eq. (3.44) and r20 ∝ M0.82

NFW Eq. (3.43), the lensing cross-section
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σl = πr20x
2
max scales with the mass as

d lnσl
d lnMNFW

≃ 0.82 + 0.18

(
2

3

0.1

κ0(MNFW)

)
≃ 5− 2.5 (A.3)

for MNFW = 107 − 109M⊙ (having κ0(MNFW) = 0.003 − 0.008), respectively. Thus,

nlσl ∝ M4−1.5
NFW scales rapidly with the mass. Although heavier masses are subject to

larger shot noise, this scaling inherently limits the sensitivity to light NFWs. If the

profile were more compact as for SIS or pseudo-Jaffe with a power-law κ(x) ∝ 1/x,

the mass dependence would have been shallower as nlσl ∝M
1/3
vir . As emphasized, this

positive scaling slope is in stark contrast with the negative slope of diffractive lensing

(which makes GW diffraction more suitable to probe light NFWs).

Now, how small MNFW can be detectable with sizable probabilities? The average

2D-projected separation of NFW subhalos within the Einstein radius 5 kpc of a

galaxy is about O(0.1) r0 (if a whole DM abundance is in the form of subhalos and is

uniformly distributed). So, by requiring xmax ≳ 10−3−10−2 for sizable optical depths,

we obtain MNFW ≳ 107 − 109M⊙. This is the current lower limit [81–84], which will

not be improved significantly in the future.

A.2 Range of diffractive lensing near a caustic

Near a caustic, time-delays between the images formed just around corresponding crit-

ical lines are very small. Thus, very high frequency is needed to reach the geometric-

optics regime. We quantify this condition.

Start from a dimensionless time-delay in Eq. (3.5) (x = r/rE)

T̂d(x,xs) =
1

2
|x− xs|2 − ψ(x), (A.4)

which appears in the path integral as
∫
d2x exp[iwT̂d(x,xs)]. The locations of geometric-

optics images are stationary points, yielding the lens equation

T̂ ′
d = 0 ↔ xs = x− ψ′(x). (A.5)
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For given xs with xs > 0, images can form in either side. Removing the vector notation

and using x > 0, we obtain two lens equations

xs = x− ψ′(x), xs = −x+ ψ′(x). (A.6)

At the caustic xs = 0, images are formed at the critical line xt (in this case, the

Einstein radius xt = xE = 1)

xt = ψ′(xt), (A.7)

and the two solutions are connected to form an Einstein ring. Near a caustic with

xs ̸= 0, two image locations are xt + δx and −xt + δx satisfying

xs = δx− ψ′′(xt)δx ↔ δx =
xs

1− ψ′′(xt)
. (A.8)

Thus, one image (in the same direction) is slightly outside the critical line, while the

other (in the opposite direction) is slightly inside. Note that δx and xs are proportional

to each other.

The dimensionless time-delay of each image is

T̂d(xt + δx) ≃ T̂d(xt) + T̂ ′
d(xt)δx+ · · · (A.9)

=
1

2
(xt − xs)

2 − ψ(xt) +
(
(xt − xs)− ψ′(xt)

)
δx,

and

T̂d(−xt + δx) ≃ T̂d(−xt) + T̂ ′
d(−xt)δx+ · · · (A.10)

=
1

2
(xt + xs)

2 − ψ(xt) +
(
(xt + xs)− ψ′(xt)

)
δx.

The relative time-delay is then

∆T̂d = T̂d(−xt + δx)− T̂d(xt + δx) (A.11)

≃ 2xtxs + 2xsδx = 2xtxs +O(x2s). (A.12)
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Thus, diffraction occurs inside the Einstein radius if

w ≲
1

2xtxs
↔ rF ≳ 2

√
rErs (A.13)

rather than w ≲ 2/x2s (or rF ≳ rs) outside the Einstein radius. This is the innermost

range of (strong) diffractive lensing discussed in Eq. (3.12).

A.3 Single image of diffractive lensing

We prove that diffractive lensing is single-imaged and that the image is always mag-

nified as shown in Fig. 3.3. The proofs are based on existing theorems and logics for

general lensing properties; see e.g. [132].

Each image is associated with an index characterizing whether it is located at

an extremum or a saddle point of T̂d surface. Define the angle φ of the gravity force

field on the lens plane as ∇T̂d ∝ (cosφ, sinφ). The index can be defined as the loop

integral of φ around the image: 1
2π

∮
C dφ = +1 for a maximum or a minimum and

−1 for a saddle. Index theorem says that a closed-integral along an arbitrary loop is

the sum of all enclosed indices

1

2π

∮
C
dφ = nmax + nmin − nsaddle, (A.14)

where the total number of images is n = nmax+nmin+nsaddle. Since T̂d has an absolute

minimum (corresponding to the minimum travel time), nmin ≥ 1.

In the diffractive regime sufficiently far away from a lens, (1) A→ I identity, and

(2) ∇T̂d is radial. The latter implies 1
2π

∮
C dφ = 1. The former implies trA > 0 and

detA > 0 so that all images are of the minimum-type (a saddle-type has detA < 0

while a maximum trA < 0). Therefore, n = nmin = 1; diffractive lensing produces a

single image, of the minimum-type.

The (1) also implies trA = 2(1−κ) > 0 (with κ > 0) and detA = (1−κ)2−γ2 > 0
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so that γ < 1 − κ ≤ 1, hence detA < 1. Thus, the magnification of the single image

is µ = 1/detA > 1, always magnified.

A.4 Formulation of ln p

The inner product between two time domain waveforms, h1(t) and h2(t), is defined

as

(h1|h2) = 4 Re

∫ ∞

0
df
h̃∗1(f)h̃2(f)

Sn(f)
, (A.15)

where h̃1(f), h̃2(f) are the Fourier transform of the time domain waveform and Sn(f)

is the noise spectral density of the detector. For a detector output s(t) and a waveform

template hλ1,λ2,···, where λ1, λ2, · · · are free parameters of the template, the best-fit

waveform hBF is the waveform that minimizes the inner product

D = (s− hλ1,λ2,···|s− hλ1,λ2,···). (A.16)

The lensed gravitational waveform in frequency domain h̃L is given by

h̃L(f) = F (f)h̃(f), (A.17)

where h̃(f) is an ordinary gravitational wave without lensing effects generated by

compact binary coalescence.

Suppose the signal s(t) is well described by the lensed waveform h̃L(f) = F (f)h̃λ0
1,λ

0
2,···(f)

and we have unlensed template h̃λ1,λ2,···(f). Then the best-fit waveform hBF is given

by minimizing

D = (hL − hλ1,λ2,···|hL − hλ1,λ2,···)

= (Fhλ0
1,λ

0
2,···|Fhλ0

1,λ
0
2,···)− 2(Fhλ0

1,λ
0
2,···|hλ1,λ2,···)

+(hλ1,λ2,···|hλ1,λ2,···) (A.18)

in the parameter space λ1, λ2, · · · . In general, the parameter space includes total

mass, mass ratio of the compact binary, luminosity distance to the source, and etc.
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However, for simplicity of analysis, we consider only three parameters; constant phase

ϕc, overall amplitude A, and coalescence time tc. Then, the lensed waveform and the

template waveform can be written as

h̃L(f) = F (f)h̃0(f) (A.19)

h̃(f) = h̃0(f)Ae
iϕc+2πiftc , (A.20)

where the waveform h̃0(f) contains all the other parameter dependence of GW wave-

form. Here, we set ϕ0c = t0c = 0 since they can be arbitrary. Then, D is given by

D = (Fh0|Fh0)− 2A(Fh0|h0eiϕc+2πiftc) +A2(h0|h0) . (A.21)

We can solve the minimization problem of Eq. (A.21) analytically for ϕc and A. If D

is minimized for ϕc and A, it satisfies

∂D
∂ϕc

= −iA
[
eiϕc⟨Fh0|h0e2πiftc⟩ − (c.c)

]
= 0 (A.22)

∂D
∂A

= 2
[
A(h0|h0)− (Fh0|h0eiϕc+2πiftc)

]
= 0 , (A.23)

where we define complex overlap

⟨h1|h2⟩ = 4

∫ ∞

0
df
h̃∗1(f)h̃2(f)

Sn(f)
, (A.24)

and (c.c) denotes complex conjugate of the other term in the same parenthesis. The

equations are solved by

eiϕc =
|⟨Fh0|h0e2πiftc⟩|
⟨Fh0|h0e2πiftc⟩

, (A.25)

A =
(Fh0|h0eiϕc+2πiftc)

(h0|h0)

=
|⟨Fh0|h0e2πiftc⟩|

(h0|h0)
. (A.26)
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Now, we have

D = (Fh0|Fh0)−
|⟨Fh0|h0e2πiftc⟩|2

(h0|h0)
. (A.27)

Following the definition of GW data analysis, SNR of the lensed signal, ρL, and SNR

of the unlensed template, ρuL are defined as

ρ2L = (hL|hL) = (Fh0|Fh0) , (A.28)

ρ2uL = (hL|hBF) = max
tc

|⟨Fh0|h0e2πiftc⟩|2

(h0|h0)
, (A.29)

where

h̃BF(f) =
|⟨Fh0|h0e2πif t̂c⟩|2

(h0|h0)⟨Fh0|h0e2πif t̂c⟩
h̃0(f)e

2πif t̂c , (A.30)

and t̂c is the coalescence time difference at which ρuL is defined. Then, the minimum

of D is given by

D = ρ2L−ρ2uL. (A.31)

The log-likelihood ratio, ln p, is given by

ln p = −1

2
D = −1

2
(ρ2L − ρ2uL) . (A.32)

This likelihood ratio can be interpreted as the probability that the fluctuation in the

signal is just a noise. We claim the detection of lensing signal when ln p achieves 3σ

significance, i.e.,

ln p = ln

(
1−

∫ 3

−3
dx

1√
2π
e−

1
2
x2

)
= −5.914 . . . . (A.33)
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A.5 Derivation of maximum | ln p|

In this section, we derive Eq. (3.63). The lensing amplification factor F (f) can be

written as

F (u) = Fmax −
∫ umax

umin

du′
dF (u′)

du′
Θ(u′ − u) , (A.34)

where u = ln f , Fmax = F (umax) and Θ(u) is the unit step function. If the phase evo-

lution of F (f) is small, we can set tc ∼ 0 in Eq. (A.29). Inserting F (u) in Eqs. (A.28)

and (A.29), the lensed and unlensed SNRs are given by

ρ2L = |Fmax|2ρ20 − 2Re

∫ umax

umin

du′F ∗
max

dF (u′)

du′
R(u′)

+ 2Re

∫ umax

umin

du′
∫ umax

u′
du′′

dF ∗(u′)

du′
dF (u′′)

du′′
R(u′) , (A.35)

and

ρ2uL = |Fmax|2ρ20−2Re

∫ umax

umin

du′F ∗
max

dF (u′)

du′
R(u′)

+
1

ρ20

∣∣∣∣∫ umax

umin

du′
dF (u′)

du′
R(u′)

∣∣∣∣2 , (A.36)

respectively. Here we define

R(u) ≡ 4

∫ umax

u
due−u |h(u)|2

Sn(u)
= 4

∫ fmax

f
df

|h(f)|2

Sn(f)
, (A.37)

and ρ20 = R(umin). Thus, we have

ln p = −Re

∫ umax

umin

du′
∫ umax

u′
du′′

dF ∗(u′)

du′
dF (u′′)

du′′

×R(u′)

(
1− R(u′′)

ρ20

)
. (A.38)

Note the inequality

R(u′)

(
1− R(u′′)

ρ20

)
≤ ρ20

4
, (A.39)
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where equality holds for R(u0) = ρ20/2 for some u0 = ln f0. If dF (u)/du is a slowly

varying function in u, it is approximately

| ln p| ≃ 1

8

[
ρ0

∣∣∣∣dF (ln f0)d ln f

∣∣∣∣ ln fmax

fmin

]2
. (A.40)

In diffraction regime, using the approximation Eq. (3.29), we get

| ln p| ≃ 1

8

[
ρ0

∣∣∣∣∣γ
(
rF (f0)e

iπ
4

√
2

)∣∣∣∣∣ ln fmax

fmin

]2
. (A.41)

A.6 Example diffractive lensing cross-sections

As shown in Fig. 3.5, | ln p| tends to decreasing function with xs, we can define xmax
s

as

ln p(xmax
s ) = −5.914 , (A.42)

where −5.914 is corresponds to 3σ detection criteria. This definition leads to lensing

cross-section Eq. (3.59). In Fig. A.1, we show an example of xmax
s (black contour

curves). We assume LISA observation of chirping GW from MBBH = 106 M⊙ BBH,

and NFW lens MNFW = 107 M⊙. To show a length scale more clearly, rmax
s ≡

√
σl/π

is denoted on the contours. Square of the numbers times π is just the lensing cross-

section in pc2 for a given zl and zs. Note that the lensing cross-section in Fig. A.1 has

10pc length scale which coincide with rF scale of the GW source in LISA band(f ∼

10−3Hz). The results can be understood by the diffraction condition rF > rs. When

GW SNR is sufficiently large, frequency dependent F (f) within GW spectrum is

enough for lensing detection. Thus, the length scale of rmax
s cannot be significantly

larger than rF length scale of a given GW spectrum. In other words, mostly those

two have similar length scale as long as GW SNR is not a limiting factor.
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Figure A.1 Contours of lensing cross-section in zs − zl space. The number on the
contours are rmax

s ≡
√
σl/π in parsec. Likewise in Fig. 3.5, LISA observation is

assumed and the source and lens mass are set to MBBH = 106 M⊙ and MNFW =
107 M⊙, respectively.
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초록

이 논문에서 우리는 중력파를 이용해 암흑물질 물리학을 탐사하는 새로운 방법을

보여준다. 우리는 가벼운 스칼라 암흑물질이 중성자와 상호작용해서 그것에 시간-진동

성 질량 변화를 일으킨다면, 중성자별 쌍성의 나선운동에서 나온 중력파 처프 신호가

그 효과에 민감할 것임을 알아냈다. 그 민감함은 광대역(0.01 Hz – 1000 Hz)에서 1년

이상의 중력파 측정으로 얻은 매우 큰 수치의 중력파 진동횟수 덕분이다. 그러한 광대역

측정은 미래에 LIGO와 중간-주파수 중력파 관측기를 포함하는 관측소 네트워크에 의

해 실현될 수 있으며, 가벼운 스칼라 암흑물질의 아직 탐사되지 못한 파라메터 영역을

탐사할 것이다.

우리는 또한 중력파의 중력렌즈현상이 은하규모 미만(M < 107 M⊙)의 암흑물질

서브-헤일로 탐사할수 있는 수단임을 보였다. 빛의 중력렌즈현상으로는 그러한 규모를

탐사하기가 쉽지 않았다. 중력파의 특별한 점은 그것의 프레넬 길이가 파섹 규모라는

것인데, 이는 그것의 긴 파장과 파원까지의 우주론적 거리 덕분이다. 이는 중력파 처프

신호가 파섹 규모의 서브-헤일로에 의해 회절될 수 있게 했다. 우리는 그 회절성 렌즈

신호가 렌즈물체의 shear 분포와 동일함을 보였고, 따라서 그것이 렌즈의 물질분포를

재구성하는데 이용될 수 있음을 보였다. 그러한 중력파의 중력렌즈현상은 BBO 디텍터

에서 1년에 수십번 정도 관측할것으로 예측된다.

주요어: 중력파, 암흑물질, 중력렌즈

학번: 2015-20356
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하고 학술활동은 커피를 글로 변환하는 과정이라고 할 수 있습니다. 그런 의미에서 항상

최고의 커피를 내려주시고 다채로운 커피의 세계를 경험할 수 있게 해주신 운석커피 사

장님께 감사드리고 싶습니다. 그리고 학술활동 또한 일종의 커뮤니케이션으로서 외모가

매우 중요하다 할 수 있습니다. 그런고로, 쓰리스타일리스트 민제원장님 지난 10년간 제

헤어스타일을 맡아주셔서 감사합니다. 앞으로도 잘 부탁드립니다.

마지막으로, 부모님의 아낌없는 지원과 응원이 없었다면 저는 여기까지 해낼 수 없

었을 것입니다. 오랜 시간 저를 믿고 지켜봐 주셔서 감사합니다. 그리고 역시 저를 항상

응원해준 제 동생 수정, 할머니, 그리고 지금은 하늘에 계신 할아버지 모두 감사합니다.
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