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Abstract 

 

Introduction: Habit bias, resulted from imbalanced arbitration 

between goal-directed and habitual controls, is thought to underlie 

compulsive symptoms of patients with obsessive-compulsive 

disorder (OCD). A computational reinforcement learning (RL) model 

accounts for that, between the goal-directed (model-based; MB) 

and habitual (model-free; MF) RL systems, brain allocates weight 

to a controller with higher reliability in state or reward prediction. 

However, it remains unclear whether the impaired arbitration in 

OCD is attributed to faulty estimation of the reliability in the RLs 

and if inferior frontal gyrus (IFG) and/or frontopolar cortex (FPC), 

known to track the reliability signals, are grounded on this 

impairment. 

Methods: The sequential two-choice Markov decision task was 

used to dissociate the MB and MF learning strategies. Thirty 

patients with OCD and thirty-one healthy controls (HCs) 

underwent a fMRI scan while performing the behavioral task. 

Behaviors of the arbitration process were estimated through a 

computational model based on RL algorithms. The model parameters 

and their neural estimates were compared between groups. 

Regression analyses were conducted to examine if neural 

differences explained faulty estimation of the reliability, in addition 

to compulsion severity, in OCD. 

Results: Patients with OCD earned less reward and showed higher 

perseveration than HCs. During MB-favored trials, the uncertainty 
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of prediction based on the MF strategy was lower in patients, which 

led to higher maximum reliability of the RL systems arbitrating 

behaviors (i.e., stability of the arbitration) and higher probability to 

choose the MF strategy. The higher stability of the arbitration was 

associated with hyperactive signal of the lateral orbitofrontal cortex 

(OFC)/FPC in patients. Patients increased connectivity strength 

between the OFC/FPC and precuneus when choosing an action 

strategy. On the other hand, the hyperactive IFG signal was 

inversely associated with the lower stability of the arbitration and 

less severe compulsion in patients. 

Conclusions: It was demonstrated that the hyperactive neural 

arbitrators encoding the excessively stable arbitration in which the 

MF reliability was predominant underlay the imbalanced arbitration 

in OCD. Therefore, the findings suggest the IFG and FPC as brain 

biomarkers useful to plan a neurocircuit-based treatment for habit 

biases and compulsions of OCD. 

 

Keywords: obsessive-compulsive disorder; decision-making; 

goal-directed control; habitual control; reinforcement learning; 

neural arbitrator; task-based fMRI 
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Background 

 

Clinical characteristics of obsessive-compulsive disorder 

 

Obsessive-compulsive disorder (OCD) is a psychiatric disorder 

that affects 1 to 3% of the world’s population and provokes severe 

role impairments to 65% of patients.1,2 OCD was classified as an 

anxiety disorder prior to the current diagnostic system using the 

Diagnostic and Statistical Manual of Mental Disorders (DSM) fifth 

edition because anxiety is commonly observed in the disorder.3 

However, OCD has been moved to a category of obsessive-

compulsive related disorders as anxiety is not the most essential 

feature of this disorder.4 Categorical diagnosis of OCD is made 

based on severity of obsessions and compulsions of patients. By 

definition, obsessions are persistent unwanted thoughts that are 

intrusive and causes distress, and compulsions are inflexible 

repetitive behaviors that are thought to reduce the distress 

following obsessions or form excessive habits and perseveration 

(Figure 1).5,6 
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Figure 1. Characteristics of obsessive-compulsive disorder. 

 

Although patients with OCD share common clinical features, 

they are not homogeneous group. For example, individual patients 

suffer different profiles of obsessive-compulsive (OC) symptoms 

across several symptom dimensions: aggressive/checking, 

contamination/cleaning, symmetry/ordering, and sexual/religious.7,8 

In addition, OCD patients are divided into at least two subtypes 

depending on age at illness onset.9 Patients who had illness onset 

before puberty (early-onset subgroup) have difference of genetic 

loading, brain structures, and neurocognitive functions, compared to 

patients with illness onset after young adulthood (late-onset 

subgroup).9,10 The aforementioned heterogeneity issue suggests 

that the current symptom-based classification of OCD does not 

satisfactorily capture the pathophysiology on an individual basis and 



 3 

that the diagnostic classification should be complemented by using 

biological evidence.10,11 

 

Theoretical models for OCD symptomatology 

 

There are two main theories that account for symptomatology of 

OCD. A conventional theory views that obsessions arise first with 

distress in patients, and compulsions are performed as secondary 

phenomena to reduce the anxiety that follows obsession and provide 

relief.5 This model is based on cognitive bias between values of 

repeating behaviors and those of switching to alternatives.12 

Patients with OCD may assign higher values to the cost of ceasing 

repetitive behaviors than the benefits thereof because relief 

resulting from the compulsions are rewarding to them. 

However, there are two main limitations in the conventional 

view to account for some phenomena of OCD. First, in experimental 

settings of habit formation, patients with OCD often carry out 

compulsion-like behaviors in the absence of any prior 

obsession.6,13,14 This evidence raises the possibility that compulsive 

behaviors of OCD could be independent of distress following 

obsessive thoughts.15 Second, OCD is considered to be ego-

dystonic as patients have difficulty to control urge to action even 

though they have insight that compulsive behaviors are irrational 

and want to cease these actions;16 however, the theory on the basis 

of the cognitive bias is not enough to explain about the intact insight 

of patients.15 
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 An alternative theory of OCD has been developed to address 

these concerns. This theory views that habit biases cooperate with 

trait anxiety (not necessarily) and foster compulsive urges and 

actions in patients with OCD.15,17 Patients may experience cognitive 

dissonance and attempt to resolve this discrepancy between their 

cognitions and compulsive urges by developing irrational thoughts 

(i.e., obsessions) about threat or fear of the conflict.15,18 Interacting 

with anxiety, the obsessive thoughts reinforce the compulsions 

through cognitive dissonance, forming a vicious cycle of sorts.15 

The idea that excessive habit formation serves as a key component 

in this alternative model suggests that disrupted balance between 

goal-directed and habitual controls might produce the habit biases 

and be a basis of OCD symptomatology. 

 

Neurocircuitry mechanisms of OCD 

 

Brain dysfunctions of OCD has been explained by the well-accepted 

cortico-striato-thalamo-cortical (CSTC) circuitry model, which is 

a neural basis of execution-inhibition balance for cognitive and 

affective processes.19-22 In the CSTC circuitry, direct and indirect 

pathways counterbalance each other to regulate the execution and 

inhibition of actions.23 Through the direct pathway, the CSTC loops 

project striatal Go signal through the internal globus pallidus to the 

thalamus, subsequently disinhibiting thalamo-cortical excitatory 

signal to execute actions. On the other hand, the indirect pathway 

projects striatal NoGo signal through the internal and external 
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segments of globus pallidus to the thalamus, suppressing the 

thalamo-cortical signal to inhibit actions.23,24 In OCD, imbalance of 

the neurocircuitry is thought to underlie maladaptive shifting of 

attention to optimal choices.25 

Multifaceted impairments of cognitive and affective controls 

in OCD can be explained by several parallel but often interactive 

CSTC circuits, each of which is connected with cortical regions 

involved in distinct functions.21,22 Five parallel circuits are currently 

proposed for the CSTC model as follows: the fronto-limbic circuit 

(ventromedial prefrontal cortex [vmPFC]-amygdala) relevant for 

extinction of emotional response, dorsal cognitive circuit (dorsal 

prefrontal cortex-dorsal caudate) for working memory and 

planning, ventral cognitive circuit (ventrolateral prefrontal cortex 

[vlPFC]/anterolateral orbitofrontal cortex [OFC]-ventral caudate) 

for response inhibition and cognitive flexibility, ventral affective 

circuit (medial OFC/vmPFC-nucleus accumbens [NAcc]) for 

affective and reward processing, and sensorimotor circuit 

(supplementary motor area [SMA]-putamen) for habit formation.22 

When generating and/or extinguishing emotional responses, 

such as fear or uncertain threat, patients have hyperactive vmPFC 

and amygdala and reduced functional connectivity between these 

regions,26-28 suggestive of hyperactive fronto-limbic circuit in 

OCD.29 While hypoactive dorsal cognitive circuit (failed recruitment 

of dlPFC and caudate, in addition to reduced dlPFC-striatal 

connectivity) is neural basis of impaired working memory and 

planning in OCD,30,31 hypoactive ventral cognitive circuit (failed 
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recruitment of vlPFC/inferior frontal gyrus [IFG] and caudate, in 

addition to reduced vlPFC-caudate connectivity) underlie 

impairments in response inhibition and attention shifting.31-33 

However, the anterolateral OFC within the ventral cognitive circuit 

is hyperactive during symptom provocation and normalized after 

symptom improvement.34 Also, the strength of vlPFC-pallidal 

subnetwork is strengthened as a compensatory neural mechanism 

for cognitive inflexibility.25 Similar to the fronto-limbic circuit, the 

ventral affective circuit includes vmPFC; but, main areas of the 

affective circuit are reward-circuit regions, such as medial OFC and 

NAcc. When anticipating reward/punishment or making reward-

based decision-making, patients fail to recruit the OFC and/or NAcc 

and have hyperconnectivity among reward-circuit regions.35-38 In 

terms of the sensorimotor circuit, it has been hypothesized (but not 

empirically tested) to be related to habit-like compulsions of 

OCD.15,19 The sensorimotor circuit is considered to become 

hyperactive in patients with multiple repetitions of habitual 

behaviors over time, which may play a role in the transition from 

goal-directed to habitual behaviors.15 

In addition to the abnormalities within circuits, between-

circuit interactions are considered to arise and integrate 

subprocesses of each circuit in order to execute complex 

behaviors.22 This hypothesis was supported by studies showed that 

higher cognitive functions, such as attention shifting and emotion 

regulation, involved interactions between dorsal cognitive and 

ventral cognitive/affective circuits.25,39 
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Treatment strategies and unsatisfactory responses in patients with 

OCD 

 

As described earlier in the conventional theory, the abnormalities in 

fear extinction has been recognized as a major pathological problem 

of OCD.5,27 Thus, this phenotypic feature has been targeted to 

develop first-line treatments for OCD; for example, the exposure 

and response prevention, which is a type of cognitive behavioral 

therapy (CBT), is used to normalize the dysfunctional fear 

processing and has responsive up to 70% of patients.40 

The other first-line treatment for OCD is a pharmacotherapy 

based on serotonergic dysfunction.41 OCD is characterized by lower 

synaptic serotonin (5-HT) in the CSTC circuitry: diminished 

serotonin transporter (SERT) availability in the thalamus and raphe 

nuclei, increased 5-HT1A receptor availability in the striatum, and 

increased 5-HT2A autoreceptor availability in prefrontal areas.41 

The selective serotonin reuptake inhibitors (SSRIs) is, therefore, 

used to normalize the synaptic 5-HT concentration in the circuitry.1 

However, the SSRIs are not effective to roughly half of 

patients.1 Thus, it raises attention to neurotransmitter systems 

beyond the serotonin dysfunction in order to better design 

treatment options for OCD. Neuroimaging studies have revealed 

striatal dopaminergic (increased transporter density and diminished 

receptor binding) and glutamatergic (increased neurotransmitter 

concentration) hyperactivity in the CSTC circuitry of OCD.41,42 



 8 

Additionally, patients also have diminished γ-aminobutyric acid 

(GABA) level in the medial prefrontal cortex.43 The above 

literatures suggest a collective neurochemical model that the 

diminished inhibitory signals of serotonergic and GABAergic 

pathways provoke the striatal dopaminergic and glutamatergic 

hyperactivity, resulting in overactive CSTC circuitry in OCD.44 

 

Current issues to be addressed in developing neurobiological 

evidence-based treatments for OCD 

 

The unsatisfactory treatment outcomes in psychiatry diseases have 

been pointed out and thought to be attributed to symptom-based 

categorical diagnoses and phenotypic heterogeneity.45 In case of 

OCD, at least 30 % of patients are not responsive to first-line 

treatments.46,47 The Research Domain of Criteria (RDoC) initiative 

was introduced as an alternative to address the heterogeneity 

issue.48 The RDoC uses dimensional approach to assess biotypes, 

both across and within diagnoses, in a basis of underlying biological 

features and cognitive/behavioral measures, pursuing evidence-

based treatments. The RDoC framework consists of diverse domain 

matrices, such as positive or negative valence system and cognitive 

system. In particular, constructs in the positive valence system 

(e.g., learning and valuation of reward) and those in the cognitive 

system (goal selection and response inhibition) are relevant to 

pathophysiology of OCD.49,50 
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The dimensional classification based on biological evidence 

(i.e., biotyping) needs to build obvious biological bases, such as 

brain biomarkers, that capture clinical and neurocognitive features 

of the disorder.48,51 Also, building brain biomarkers and determining 

biotypes of OCD are expected to help addressing the heterogeneity 

issue and developing neurocircuit-based treatments.29,44 There was 

an effort to apply RDoC-based classification differentiating OCD 

patients responsive to treatments from treatment-resistant group 

by using functional brain organization.52 However, this previous 

study is not sufficient to guide neurocircuit-based treatments for 

OCD because of lack of information about brain-behavior 

relationships. 

 According to the alternative theory, excessive habit 

formation is a key component in the vicious cycle of compulsions 

and obsessions. Importantly, imbalance between goal-directed and 

habitual controls is thought to produce the habit biases and 

underlies the symptomatology. However, it remains unclear how the 

arbitration of decision-making strategies becomes imbalanced in 

OCD. Therefore, this research aimed to reveal deficient cognitive 

component in the arbitration process, build brain biomarkers 

underlying the imbalanced arbitration between two strategies of 

decision-making, and provide biological evidence to guide a 

neurocircuit-based treatment for OCD impairments, especially habit 

bias. Considering the neurocircuitry model of OCD, it is expected 

that the imbalanced arbitration may be related to imbalanced 

competition between the direct and indirect pathways of CSTC 
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circuitry. The impaired arbitration in OCD may also involve the 

ventral cognitive circuit that inhibits repetitive habitual behaviors 

and the dorsal cognitive circuit that controls goal-directed planning. 
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Chapter 1. Reliability-based competition 

between model-based and model-free learning 

strategies in OCD 



 12 

Introduction 

 

Compulsive symptoms of OCD are translated into inflexible and 

habitual behaviors that result in biases toward habits.13 In addition 

to the excessive habits, patients have difficulty to use forward 

models of action-outcome scenarios to perform goal-directed 

behaviors.6,14 As optimal decision-making can be achieved by 

adaptive integration of goal-directed and habitual learning 

processes, the deficits in two action control systems should be 

discussed along the same lines in OCD.53,54 In a recent study, it has 

been demonstrated that patients with OCD are more likely to 

employ habitual learning system, at expense of goal-directed 

planning, when facing decision problems.55 The above literatures 

have established a theory of imbalanced arbitration between goal-

directed and habitual decision-making strategies, which explains 

compulsive behaviors of OCD. In addition, the imbalanced arbitration 

of decision-making is considered as a useful source for dimensional 

biotyping of OCD because the arbitration process comprises the 

positive valence (e.g., reward-based learning) and cognitive control 

(inhibition and planning) systems of the RDoC matrix56,57. 

 Although the theory of imbalanced arbitration provides 

insight into symptomatology of OCD,13,54,55,58 there is lack of 

understanding about which cognitive component in the arbitration 

process provokes the impaired arbitration. This issue can be dealt 

with using a computational model of the arbitration process. In the 

computational framework, goal-directed and habitual behaviors are 
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modeled as two different classes of reinforcement learning (RL) 

that updates action values from prediction errors.57,59 Goal-directed 

behaviors can be expressed by a model-based (MB) RL algorithm 

in which agents compute action values using an internal model about 

state-transition and outcome structure of the environment. On the 

other hand, a model-free (MF) RL algorithm that learns cached 

action values directly from trial and error experience without 

building an explicit model of the environment describes habitual 

behaviors.57 A theoretical study of the dual-action choice systems 

suggests that a competition between the two learning systems is 

arbitrated according to uncertainty of each controller; each 

controller is deployed when its learning system is most accurate.57 

Furthermore, a recent computational model has empirically 

demonstrated that human brain evaluates reliability of each learning 

strategy and uses this information to proportionately allocate 

degree of behavioral control of each system.60 For instance, if the 

reliability of MF learning strategy is more predominant than that of 

MB learning strategy, brain is likely to produce greater reliance on 

habitual system than goal-directed system. In addition, stability of 

the arbitration between the two RL systems can be measured by the 

reliability of whichever strategy that provides more accurate 

predictions (i.e., maximum reliability).60,61 Therefore, this 

computational model, which exhibits details of the arbitration 

process, is considered to be useful to test whether the reliability 

estimation process is a cognitive basis of the imbalanced arbitration 

that is biased toward habitual system in OCD. 
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In the first chapter of dissertation, it was aimed to test 

whether the impaired arbitration in OCD is attributed to faulty 

estimation of the reliability in the RL systems. It was hypothesized 

that the arbitration of dual-action systems is imbalanced in OCD 

patients because their arbitration is excessively stable (i.e., higher 

maximum reliability) in which MF learning strategy is predominant 

(i.e., higher MF reliability). 
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Methods 

 

Participants 

 

Thirty-one patients with OCD were recruited via the OCD clinic in 

Seoul National University Hospital (SNUH). Licensed psychiatrists 

made the diagnosis of OCD using the Structured Clinical Interview 

for DSM-IV Axis-I Disorder (SCID-I), patient edition.62 OC 

symptoms and accompanying anxiety and depression of patients 

were assessed using the Yale-Brown Obsessive Compulsive Scale 

(Y-BOCS) and Hamilton Rating Scales for Anxiety and Depression 

(HAM-A/D).63-65 Clinicians in the OCD clinic introduced this study 

to outpatients who had no current comorbid psychotic or movement 

disorders. Patients who suffered moderate or more severe OC 

symptom (Y-BOCS total  15) at the time of study and had no CBT 

history in recent 1 year were asked about their willingness to 

participate in this study. Patients taking more than two 

antidepressants, high dose of antipsychotics, or a mood stabilizer at 

the time of study were not included. The procedures for 

recruitment and experiment of OCD patients are presented in Figure 

2. 

The study also recruited thirty-one healthy controls (HCs) 

through internet advertisements, and healthy participants were 

screened using the SCID-I, non-patient edition.66 Exclusion criteria 

was set as follows: a lifetime history of psychotic or neurological 

disorders, substance use disorder, mental retardation, or incomplete 
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data collection. After excluding one sample with missing behavioral 

data, 30 patients and 31 HCs from the original dataset remained. All 

participants were informed of a complete description of the 

experimental procedures and provided written informed consent. 

This study was approved by SNUH Institutional Review Board (IRB 

No. H-1908-208-1066) and performed in accordance with ethical 

guidelines of the Declaration of Helsinki. 

 

 

Figure 2. Flowchart of the recruitment and experimental procedures 

for patients with obsessive-compulsive disorder. 

 

Behavioral task 

 

Participants performed the sequential two-choice Markov decision 

task, which was designed to examine behavioral arbitration between 

MB (goal-directed) and MF (habitual) learning strategies (Figure 

3).60 Participants made two sequential choices (pressing left or 
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right button) to gain a coin valued 40, 20, or 10 scores (10 scores 

equals to 200 KRW) at the reward stage. If making no choice in four 

seconds, a random choice was made followed by a monetary penalty 

for this trial. Participants were instructed to collect as many coins 

as possible and learn about associations between states and 

outcomes to find optimal choices. Each trial of the task started at 

the same starting state. A choice at the initial stage led to one of 

four states (two states exist per a choice option; one of the two 

states is selected by a certain state-transition probability) at the 

second stage. In the same manner, a choice from a state of the 

second stage led to one of four reward states (total 16 reward 

states). Participants were informed that the contingencies might 

change during the experiment without notice about the state-

transition probability. The state-transition probability changed 

between high uncertainty (P = (0.5, 0.5) when MF system is 

favored) and low uncertainty (P = (0.9, 0.1) when MB system is 

favored) conditions, which dissociates the two behavioral control 

systems. 

The task design also incorporated specific and flexible goal 

conditions to observe MB and MF behaviors, respectively.60 In the 

specific goal condition, participants needed to guide their behaviors 

to obtain a specific coin whose color was matched to a presented 

collecting box (red, yellow, or blue) at the trial. If a color of coin did 

not match with the collecting box color, participants failed to obtain 

a monetary reward of that coin. By changing the goal-state 

(collecting box color) every few trials, the specific goal condition 
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made participants actively consider about currently valuable goal. In 

contrast, participants in the flexible goal condition were presented 

with a white collecting box and allowed to collect any color of coin. 

In association with the both goal and uncertainty conditions, the task 

dissociates the goal-directed system (MB-favored block; specific 

goal with low uncertainty) from the habitual system (MF-favored 

block; flexible goal with high uncertainty). The task randomized the 

sequence of total four blocks, including two other blocks with 

arbitrary conditions (specific goal with high uncertainty or flexible 

goal with low uncertainty). 

There was a uniform-distributed temporal interval between 

1 to 4 seconds when preceding to next stage or trial, and the 

duration of reward stage was two seconds. The experimental task 

comprises six sessions (40 trials on average per session). Prior to 

the experiment sessions, participants performed one pre-training 

session of 100 trials, which have been demonstrated as enough time 

for participants to learn about the rules of the two-choice decision 

task.67 The pre-training session was designed to help learning 

about the task with free decision-making strategy; the state-

transition probability was fixed at high uncertainty condition with 

flexible goal condition for first 80 trials and specific goal condition 

for the rest of the session. 
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Figure 3. The paradigm of sequential two-choice Markov decision 

task. In the sequential two-choice decision task, participants 

needed to perform goal-directed behaviors in MB-favored block 

(specific goal with low uncertainty) while it was preferred to 

perform habitual behaviors in MF-favored block (flexible goal with 

high uncertainty). In every few trials, block types were dynamically 

changed to make participants arbitrate their behavioral strategy for 

the purpose of optimal decision outcomes. 

 

Computational model of decision arbitration system 

 

Lee et al. (2014) developed a computational model that arbitrates 

MB and MF learning strategies depending on reliability of each 

controller.60 This arbitration model updates reliability of each MB 

and MF learning by Bayesian estimation and Pearce-Hall 
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associability rule respectively and incorporates model bias toward 

MF system by programming biophysical two-state transition; the 

model was named “mixedArb-dynamic” and was better fitted to 

explain the arbitration process than other versions, such as dual 

Bayesian model.60 In this study, the “mixedArb-dynamic” model 

was modified to update the MF reliability differently depending on 

sign of reward prediction error (RPE) signal (please see below for 

details). The computational model contains six free parameters: the 

threshold for defining zero state prediction error (SPE), learning 

rate of the model estimating absolute RPE, the amplitude of a 

transition rate function (MB  MF), the amplitude of a transition 

rate function (MF  MB), the level of stochastic decision-making 

(inverse softmax temperature), and learning rate of the MB and MF 

systems.60 To optimize the free parameters, model fitting process 

was iterated one hundred times with randomly generated seed 

parameters in each run. 

Following the previously established computational 

framework,60 the arbitration model estimated parameters in 

following steps (Figure 4): reinforcement learning (state-action 

values corresponding to SPE and RPE), reliability estimation 

(reliability of learning strategies and stability of the arbitration), 

reliability competition (model-choice probability), and value 

integration (state-action value of the arbitration). 
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Figure 4. The computational framework estimating model parameters 

that are used to account for the reliability-based arbitration of RL 

systems. Between MB and MF RL systems, brain allocates weight to 

a controller with higher reliability in state or reward prediction. The 

computational model estimated model parameters in a sequence of 

four steps. At RL step, prediction errors were estimated while 

updating state-action values. Based on the prediction errors, 

reliability of the predictions was estimated in each RL system. In a 

dynamical two-state transition model, the reliability values of MB 

and MF RL systems calculated model-choice probability. This 

computational model finally estimated state-action value of the 

arbitration integrating the action values of the two RL systems in a 

weighted average manner by the model-choice probability. 

 

First, the arbitrator computed state-action values of the MB 

and MF systems by using prediction errors of each strategy. By 

employing the MB learning algorithm with the FORWARD learning 

and BACKWARD planning components, a state-action-state 

transition probability (T(s, a, s')) and the corresponding state-

action value (QMB) were updated based on the state prediction error 
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(SPE, δSPE).67 The BACKWARD planning was applied whenever an 

agent was presented with an explicit goal (e.g., change in a specific 

goal condition or transition from the flexible to specific goal 

condition). The MF learning was expressed by the SARSA 

algorithm that computed reward prediction error (RPE) and updated 

the corresponding state-action value (QMF).59 

𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑀𝐵 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔: 

𝐹𝑂𝑅𝑊𝐴𝑅𝐷 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 

𝛿𝑆𝑃𝐸 = 1 − 𝑇(𝑠, 𝑎, 𝑠′), 

∆𝑇(𝑠, 𝑎, 𝑠′) = 𝜂𝛿𝑆𝑃𝐸 , 

𝑄𝑀𝐵(𝑠, 𝑎) = ∑ 𝑇(𝑠, 𝑎, 𝑠′){𝑟(𝑠′) + 𝑚𝑎𝑥𝑎′𝑄𝑀𝐵(𝑠′, 𝑎′)}
𝑠′

. 

𝐵𝐴𝐶𝐾𝑊𝐴𝑅𝐷 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔, 

𝑓𝑜𝑟 𝑖 = 3, 2 

𝑓𝑜𝑟 𝑠 ∈ 𝑆𝑖−1 

  𝑄𝑀𝐵(𝑠, 𝑎) = ∑ 𝑇(𝑠, 𝑎, 𝑠′){𝑟(𝑠𝑖) + 𝑚𝑎𝑥𝑎′𝑄𝑀𝐵(𝑠′, 𝑎′)}𝑠′ . 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑀𝐹 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔: 

𝛿𝑅𝑃𝐸 = 𝑟(𝑠′) + 𝛾𝑄𝑀𝐹(𝑠′, 𝑎′) − 𝑄𝑀𝐹(𝑠, 𝑎), 

∆𝑄𝑀𝐹(𝑠, 𝑎) = 𝛼𝛿𝑅𝑃𝐸 . 

where a and a' refer to the action in the current (s) and the next 

state (s'), r(s') indicates the earned reward value at s' state, η and 

α denote the learning rate of MB and MF, and γ refers to the 

temporal discount factor. 

Second, the arbitrator estimated reliability of each learning strategy 

by determining the extent to which the prediction errors are high or 

low. A hierarchical Bayesian model with inverse Fano factor was 
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used to estimate the reliability of MB learning strategy given the 

SPE history.60 Because the SPE is always positive, less erroneous 

prediction produced higher reliability of the system. 

𝐸(𝜃𝑗|𝐷) =
1 + #𝑃𝐸𝑗

3 + |𝐷|
, 𝑗 = 0, 1, 2, 

𝑉𝑎𝑟(𝜃𝑗|𝐷) =
(1 + #𝑃𝐸𝑗)(2 + ∑ #𝑃𝐸𝑖𝑗≠𝑖 )

(3 + |𝐷|)2(4 + |𝐷|)
, 𝑗 = 0, 1, 2, 

𝜒𝑗 =
𝐸(𝜃𝑗|𝐷)

𝑉𝑎𝑟(𝜃𝑗|𝐷)
, 𝑗 = 0, 1, 2, 

𝜒𝑀𝐵 = 𝜒0/ ∑ 𝜒𝑗

2

𝑖=0
. 

where θ0, θ1, θ2 represents the probability of making zero, 

negative, or positive prediction error (PE), #PEj refers to the 

number of events that cause PEj, |D| = ∑ #𝑃𝐸𝑗
2
𝑗=0 , the cardinality of 

a set (D) of events causing prediction errors, E and Var denote the 

expectation and variance of the posterior θ|D, and χMB is the 

reliability of MB learning strategy. 

For the MF learning, the absolute RPE estimate was computed in 

the same manner with the previous study.60 The Pearce-Hall 

associability rule was used to estimate the reliability;68 however, it 

depended on positive or negative sign of RPE. In case of positive 

RPE, it was assumed that agents would decrease the reliability of 

current learning strategy and facilitate explorative learning (i.e., 

transition to MB learning strategy) because of an unexpected 

positive reward following an erroneous prediction based on the 

current strategy. In case of negative RPE, the reliability of current 

learning strategy would be increased, which hampers the 

explorative learning, because 1) expected negative rewards 
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following erroneous predictions do not mean that the current 

learning strategy is unreliable and because 2) this prediction-

reward pair rather may give hints about correct choices.69 

∆Ω = 𝜂(|𝑅𝑃𝐸| − Ω), 

𝜒𝑀𝐹 = {
(𝑅𝑃𝐸𝑚𝑎𝑥 − Ω)/(2 × 𝑅𝑃𝐸𝑚𝑎𝑥), 𝑅𝑃𝐸 > 0
(𝑅𝑃𝐸𝑚𝑎𝑥 + Ω)/(2 × 𝑅𝑃𝐸𝑚𝑎𝑥), 𝑅𝑃𝐸 ≤ 0

. 

where Ω is the absolute RPE estimator, η refers to the learning 

rate of the model estimating Ω, RPEmax, the upper bound of RPE, 

equals to 40, and χMF is the reliability of MF learning strategy. 

Stability of the arbitration between MB and MF systems can be 

measured by the reliability of whichever strategy that provides 

more accurate predictions (i.e., maximum reliability, 

𝑚𝑎𝑥(𝜒𝑀𝐵 , 𝜒𝑀𝐹)).60,61 

Third, the reliability signals of learnings were used as 

transition rates to compute the probability of choosing MB (PMB) or 

MF strategy (1PMB) in a dynamical two-state transition model, 

inspired by biophysical neuronal models.70 

𝛼(𝜒𝑀𝐹) = 𝐴𝛼/(1 + 𝑒𝐵𝛼𝜒𝑀𝐹), 

𝛽(𝜒𝑀𝐵) = 𝐴𝛽/(1 + 𝑒𝐵𝛽𝜒𝑀𝐵), 

𝑑𝑃𝑀𝐵

𝑑𝑡
= 𝛼(1 − 𝑃𝑀𝐵) − 𝛽𝑃𝑀𝐵 . 

where α is the MF  MB transition rate, β is the MB  MF 

transition rate, A, B represents the maximum transition rate and the 

steepness of each learning model, and PMB is the probability of 

choosing MB model, which is equals to 1PMF. 
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Finally, the computational model estimated the state-action 

value of arbitration (QArb) integrating QMB and QMF signals in a 

weighted average manner by the arbitrator weight, PMB.
67 

𝑄𝐴𝑟𝑏(𝑠, 𝑎) = 𝑃𝑀𝐵𝑄𝑀𝐵(𝑠, 𝑎) + (1 − 𝑃𝑀𝐵)𝑄𝑀𝐹(𝑠, 𝑎). 

Given the value signal of the arbitrator, this model stochastically 

selects an action according to the softmax function.67 

 

Statistical analyses 

 

Demographic data and the model parameters of behavioral 

arbitration were compared by using the chi-squared test or two-

sample t-test between OCD patients and HCs, while the Mann–

Whitney U test was used for the observed behaviors to address 

non-normality issue. Behavioral variables were separately tested in 

each MB-favored (specific goal with low uncertainty) or MF-

favored (flexible goal with high uncertainty) block. Because of 

insufficiency of the experimental blocks to reveal model differences 

on choice consistency, this behavioral measure was separated 

depending on whether the arbitrator predicts predominantly MB 

(PMB > 0.5) or MF strategy (PMB < 0.5).60 All the above analyses 

were performed using the statistical functions in the SciPy library 

(www.scipy.org/). 

Correlations between the observed behaviors and the 

estimated model parameters were examined in patients to 

demonstrate how altered model parameters would account for 

impaired decision-making performance. 

http://www.scipy.org/
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Results 

 

Demographic and clinical characteristics 

 

Demographic variables, including intelligence quotient (IQ) and 

education year, were comparable between patients and HCs. 

Patients suffered moderate severity of OC symptom (Y-BOCSTotal 

= 22.03 ± 5.28). Details of demographic and clinical information 

are presented in Table 1. 

 

Table 1. Demographic, clinical, and behavioral characteristics 

Variables OCD 

(N = 30) 

HCs 

(N = 31) 

Statistic p value 

 

Demographic information 

Age, year 27.50 ± 6.53 24.97 ± 4.64 t = 1.74 0.088 

Male/female 18/12 13/18 χ2 = 1.99 0.158 

Handedness (left/right) 2/28 4/27 χ2 = 0.67 0.414 

IQ 
113.00 

± 13.55 

112.77 

± 8.72 
t = 0.08 0.938 

Education, year 14.52 ± 1.78 15.00 ± 1.95 t = -0.98 0.333 

Clinical outcomes 

Y-BOCS score     

Total 22.03 ± 5.28 - - - 

Obsession 11.27 ± 3.17 - - - 

Compulsion 10.77 ± 2.85 - - - 

HAM-A score 6.59 ± 4.79 - - - 

HAM-D score 7.34 ± 6.01 - - - 

Observed behaviors 

Mean reward     
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MB-favored** 12.41 ± 4.67 15.28 ± 3.37 U = 291.0 0.006 

MF-favored 17.79 ± 3.42 17.37 ± 2.98 U = 430.0 0.309 

Hit rate         

MB-favored** 0.51 ± 0.19 0.65 ± 0.13 U = 271.0 0.003 

MF-favored 0.63 ± 0.08 0.59 ± 0.06 U = 376.0 0.101 

Choice consistency         

MB-favored** 0.64 ± 0.07 0.59 ± 0.07 U = 285.0 0.005 

MF-favored 0.90 ± 0.13 0.87 ± 0.13 U = 412.0 0.224 

OCD: obsessive-compulsive disorder; HCs: healthy controls; IQ: 

intelligence quotient; Y-BOCS, Yale-Brown Obsessive Compulsive 

Scale; HAM-A, Hamilton Anxiety Rating Scale; HAM-D, Hamilton 

Depression Rating Scale; MB-favored: within trials favoring 

model-based system; MF-favored: within trials favoring model-

free system 

* p < 0.05; ** p < 0.01; *** p < 0.001 

 

Behaviors biased toward habits and inefficient decision-making 

 

Patients had smaller amounts of mean reward (U = 291.0, p = 

0.006) and hit rate (U = 271.0, p = 0.003) and higher choice 

consistency at the initial stage (U = 285.0, p = 0.005) than HCs 

when MB system was favored while these performances were 

comparable between groups during MF-favored trials (Table 1). 

 Regarding free parameters of the arbitration model (Table 

2), patients had greater amplitude of the MB  MF transition rate 

function (t = 3.18, p = 0.003) and lower level of the stochastic 

decision-making (t = -2.45, p = 0.017) than HCs. Group 
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differences of the computed model parameters are presented in 

Table 3, which showed how the arbitration behaviors are altered 

compared to HCs. Patients had greater negative RPE (t = -3.08, p 

= 0.003) and higher reliability of MF learning strategy (t = 2.67, p 

= 0.010) than HCs during MB-favored trials while SPE and 

reliability of MB learning strategy were comparable between groups 

(Figure 5). Also, patients showed more stable arbitration between 

learning strategies (t = 2.63, p = 0.011) than HCs when MB system 

was favored (Figure 6). During MF-favored trials, all the computed 

parameters except lower MF learning reliability in patients (t = -

2.81, p = 0.007) were comparable between groups. As a result of 

the reliability-based competition, patients chose MF learning 

strategy more often than HCs when MB system was preferred 

(lower PMB; t = -2.63, p = 0.012) but similarly when MF system is 

favored (t = -1.81, p = 0.075). When combining the state-action 

values with the arbitration weight, patients showed lower QArb than 

HCs (t = -2.26, p = 0.028) during MB-favored trials (Figure 7). 

 As shown in Figures 3, 4, & 5, the lower hit rate of patients 

was correlated with higher stability of the arbitration (r = -0.52, p 

= 0.003), higher reliability of MF strategy (r = -0.95, p < 0.001), 

and lower action value of the arbitration (r = 0.82, p < 0.001), when 

MB system was favored. Likewise, the hit rate of HCs was 

correlated with MF reliability (r = -0.91, p < 0.001), arbitration 

stability (r = -0.42, p = 0.020), and action value of the arbitration 

(r = 0.70, p < 0.001) during MB-favored trials. 
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Table 2. Estimated free parameters of the arbitration model 

Subjects 
Free parametersa 

1 2 3 4 5 6 

OCD 01 0.331 0.019 10.000 4.183 0.053 0.200 

OCD 02 0.795 0.308 0.102 9.310 0.164 0.011 

OCD 03 0.394 0.099 0.122 2.936 0.149 0.111 

OCD 04 0.337 0.032 0.416 1.353 0.010 0.034 

OCD 05 0.779 0.219 0.122 2.636 0.166 0.010 

OCD 06 0.662 0.310 9.583 9.419 0.132 0.094 

OCD 07 0.621 0.010 0.100 4.902 0.152 0.196 

OCD 08 0.785 0.182 0.124 0.894 0.137 0.197 

OCD 09 0.358 0.132 3.746 0.114 0.037 0.198 

OCD 10 0.300 0.049 9.998 0.116 0.141 0.141 

OCD 11 0.790 0.347 9.754 9.769 0.023 0.194 

OCD 12 0.628 0.056 0.115 2.394 0.099 0.130 

OCD 13 0.433 0.035 0.101 0.145 0.123 0.076 

OCD 14 0.441 0.324 0.108 9.595 0.097 0.200 

OCD 15 0.630 0.233 0.419 8.907 0.080 0.013 

OCD 16 0.793 0.089 7.433 6.045 0.010 0.010 

OCD 17 0.300 0.021 0.157 8.641 0.118 0.187 

OCD 18 0.677 0.350 9.972 9.882 0.047 0.200 

OCD 19 0.300 0.287 9.995 0.100 0.034 0.026 

OCD 20 0.364 0.185 0.137 3.496 0.105 0.145 

OCD 21 0.378 0.075 8.269 0.425 0.060 0.179 

OCD 22 0.587 0.021 0.117 0.320 0.056 0.199 

OCD 23 0.406 0.145 0.107 0.106 0.193 0.200 

OCD 24 0.431 0.191 0.114 5.080 0.063 0.088 

OCD 25 0.702 0.200 9.984 9.326 0.024 0.046 

OCD 26 0.650 0.275 0.118 7.687 0.075 0.200 

OCD 27 0.371 0.055 0.112 8.476 0.155 0.200 

OCD 28 0.302 0.052 0.158 5.891 0.010 0.199 

OCD 29 0.603 0.195 0.135 6.332 0.121 0.165 
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OCD 30 0.363 0.199 0.125 8.430 0.065 0.199 

HC 01 0.325 0.039 0.102 0.112 0.163 0.200 

HC 02 0.399 0.032 0.138 0.771 0.120 0.045 

HC 03 0.342 0.295 0.104 9.615 0.056 0.198 

HC 04 0.309 0.015 0.117 1.709 0.108 0.195 

HC 05 0.657 0.298 0.107 7.663 0.154 0.030 

HC 06 0.517 0.175 0.107 4.643 0.217 0.067 

HC 07 0.413 0.032 0.217 0.226 0.045 0.200 

HC 08 0.492 0.103 4.581 2.708 0.024 0.049 

HC 09 0.405 0.078 0.108 9.721 0.052 0.119 

HC 10 0.335 0.059 5.734 3.024 0.131 0.092 

HC 11 0.749 0.045 0.102 7.702 0.076 0.093 

HC 12 0.340 0.271 0.101 6.818 0.042 0.175 

HC 13 0.797 0.024 0.113 6.020 0.083 0.195 

HC 14 0.604 0.066 0.122 5.228 0.116 0.200 

HC 15 0.458 0.204 0.106 2.876 0.178 0.172 

HC 16 0.449 0.193 0.112 3.133 0.181 0.157 

HC 17 0.796 0.327 0.104 7.454 0.032 0.198 

HC 18 0.799 0.341 0.118 10.000 0.323 0.142 

HC 19 0.443 0.281 0.129 9.995 0.154 0.200 

HC 20 0.357 0.047 0.112 2.996 0.285 0.081 

HC 21 0.552 0.152 0.111 3.747 0.295 0.038 

HC 22 0.506 0.057 0.109 1.435 0.130 0.134 

HC 23 0.783 0.041 0.150 6.590 0.125 0.010 

HC 24 0.418 0.152 0.120 0.489 0.013 0.199 

HC 25 0.309 0.066 0.115 9.033 0.140 0.200 

HC 26 0.637 0.222 0.108 0.100 0.220 0.071 

HC 27 0.795 0.074 0.103 9.157 0.111 0.200 

HC 28 0.300 0.014 0.110 5.209 0.252 0.019 

HC 29 0.362 0.342 0.105 8.852 0.115 0.195 

HC 30 0.591 0.261 0.111 7.310 0.109 0.199 

HC 31 0.354 0.171 0.143 0.107 0.079 0.200 

OCD: obsessive-compulsive disorder; HC: healthy control 
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a Parameter 1: the threshold for defining zero state prediction error, 

(2) learning rate of the model estimating absolute reward prediction 

error, (3) the amplitude of a transition rate function (MB  MF), 

(4) the amplitude of a transition rate function (MF  MB), (5) the 

level of stochastic decision-making (inverse softmax temperature), 

and (6) learning rate of the MB and MF systems 

 

Table 3. Computational parameters accounting for behavioral 

arbitration between model-based and model-free systems 

Model parameters OCD 

(N = 30) 

HCs 

(N = 31) 

t statistic p value 

 

Prediction error 

SPE         

MB-favored 0.38 ± 0.06 0.38 ± 0.04 0.21 0.832 

MF-favored 0.52 ± 0.02 0.51 ± 0.02 0.31 0.758 

RPE         

MB-favored** -1.00 ± 3.86 1.58 ± 2.51 -3.08 0.003 

MF-favored† 1.06 ± 2.83 -0.29 ± 2.76 1.88 0.065 

Reliability of learning strategies 

Reliability of MB learning     

MB-favored 0.23 ± 0.09 0.21 ± 0.10 0.92 0.362 

MF-favored 0.13 ± 0.09 0.13 ± 0.07 0.07 0.948 

Reliability of MF learning     

MB-favored* 0.23 ± 0.06 0.20 ± 0.04 2.67 0.010 

MF-favored** 0.21 ± 0.04 0.24 ± 0.03 -2.81 0.007 

Stability of arbitration (maximum reliability) 

MB-favored* 0.36 ± 0.05 0.32 ± 0.06 2.63 0.011 

MF-favored 0.31 ± 0.04 0.32 ± 0.04 -1.41 0.165 
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Arbitration weight and action value 

Model-choice probability (PMB) 

MB-favored* 0.76 ± 0.06 0.79 ± 0.03 -2.63 0.012 

MF-favored 0.30 ± 0.13 0.35 ± 0.10 -1.81 0.075 

State-action value of arbitration (QArb) 

MB-favored* 4.96 ± 3.50 6.76 ± 2.66 -2.26 0.028 

MF-favored 8.85 ± 5.27 9.67 ± 5.23 -0.61 0.547 

MB-favored: within trials favoring model-based system; MF-

favored: within trials favoring model-free system; SPE: state 

prediction error; RPE: reward prediction error 

* p < 0.05; ** p < 0.01; *** p < 0.001; † marginally significant level 

 

 

Figure 5. Higher reliability of MF learning in OCD patients. Compared 

to HCs, patients with OCD had higher reliability of MF learning 

during MB-favored trials, which was associated with lower hit rate 

in the sequential two-choice decision task. 
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Figure 6. Higher stability of the arbitration in OCD patients. 

Compared to HCs, patients with OCD had higher stability of the 

arbitration during MB-favored trials, which was associated with 

lower hit rate in the sequential two-choice decision task. 
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Figure 7. Lower state-action value of the arbitration in OCD patients. 

Compared to HCs, patients with OCD had lower state-action value 

of the arbitration during MB-favored trials, which was associated 

with lower hit rate in the sequential two-choice decision task. 
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Discussion 

 

Imbalance between goal-directed and habitual controls is 

considered to produce habit biases, which is a key component in 

vicious cycle of OC symptoms. To reveal deficient cognitive 

component underlying the imbalanced decision-making in OCD, this 

study applied the computational model of reliability-based 

arbitration between MB (goal-directed) and MF (habitual) learning 

strategies. Consistent with the hypothesis, OCD patients had higher 

reliability of MF learning and more stably arbitrated the learning 

systems during MB-favored trials. In addition, the atypical 

arbitration and MF learning reliability was associated with lower 

performance of decision-making in patients. 

According to the dual-action choice theory, human brain 

computes prediction error signals from the dichotomous MB and MF 

systems and chooses a system having less prediction uncertainty 

and higher reliability.57,60 From this view, the higher reliability of 

MF strategy accounts for biases toward habitual system in OCD. 

The higher stability of the arbitration then explains whether the 

decision arbitration is inflexibly fixed at a certain behavioral 

strategy.60,61 Therefore, the excessively stable arbitration that 

heavily relies on MF system is considered to be the key cognitive 

factor underlying the imbalance between goal-directed and habitual 

actions in OCD. Because the reliability differences were observed 

during MB-favored trials, it is worth to note that patients have the 
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difficulty to achieve balanced arbitration when goal-directed 

planning is required. 
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Chapter 2. Aberrant neural arbitrators 

underlying the imbalanced arbitration between 

decision-making strategies in OCD 
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Introduction 

 

The final aim of this doctoral research was to build brain 

biomarkers underlying the imbalanced arbitration and provide 

biological evidence to guide a neurocircuit-based treatment for 

difficulties (especially, habit bias and compulsions) in OCD. Through 

the behavioral study described in Chapter 1, the excessively stable 

arbitration with predominant MF learning strategy was suggested as 

a crucial cognitive component underlying the imbalanced arbitration 

in OCD. In this second chapter of dissertation, it was aimed to 

understand how the impaired arbitration process is mapped in OCD 

brain and provide it as brain biomarkers to be targeted in future 

neurocircuit-based treatments. 

From a computational neuroscience study of the reliability-

based arbitration, the inferior frontal gyrus (IFG) and frontopolar 

cortex (FPC) were identified as the neural arbitrators that encode 

reliability signals of MB and MF learnings and stability signal of the 

arbitration (i.e., maximum reliability).60 The neural arbitrators are 

involved in implementing the arbitration process between the MB 

and MF learning systems and transmit reliability signals of the 

controllers to other brain areas encoding action values, including 

dorsal striatum, to guide behavioral choices.60 The brain regions 

participating in the reliability-based arbitration process have been 

frequently observed as neural substrates of excessive habit 

formation, cognitive inflexibility, and clinical symptoms of 

OCD.25,34,55,71 Especially, FPC area at the lateral OFC is abnormally 
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hyperactive during symptom provocation and has reduced global 

connectivity in OCD.34,72 The IFG is hypoactive during response 

inhibition and coupled with the hyperactive caudate when forming 

excessive habits in OCD.32,71 However, it has not been tested if the 

imbalanced arbitration in OCD is attributed to dysfunctions of the 

neural substrates involved in the reliability-based arbitration 

process. Based on evidence of the neural dysfunctions in OCD, it 

was hypothesized that hyperactive lateral OFC/FPC and hypoactive 

IFG are impaired neural arbitrators and underlie the excessively 

stable arbitration with predominant MF learning strategy in OCD. 
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Methods 

 

Participants 

 

This neuroimaging study used the data from the same participants 

(30 patients with OCD and 31 HCs) of the behavioral study (see 

participants section of Chapter 1). This second study was approved 

by SNUH Institutional Review Board (IRB No. H-1908-208-1066) 

and performed in accordance with ethical guidelines of the 

Declaration of Helsinki. 

 

fMRI data acquisition and preprocessing 

 

Functional and structural neuroimaging data were acquired at Seoul 

National University Hospital using a 3T magnetic resonance imaging 

(MRI) scanner (Siemens Magnetom Trio), equipped with a 32-

channel head coil. Both T1-weighted (T1w) and T2-weighted 

(T2w) MRI images with submillimeter voxel dimension were 

obtained for the purpose of higher accuracy of brain segmentation 

and registration. Each T1w and T2w MRI data was acquired with 

repetition time [TR]/echo time [TE] = 2,400/2.19 or 3,200/565 ms 

respectively, while applying common parameters of 0.85 mm 

isotropic voxel dimension and 320 slices. Task-based functional 

MRI (fMRI) data were scanned for six sessions using a gradient 

echo-planar imaging (EPI) pulse sequence (TR/TE = 1,500/30 ms, 

flip angle = 85°, phase encoding [PE] direction = left-right, 2.3 
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mm isotropic voxels, 66 slices, multiband x3) for max 9 min per 

session. To correct EPI distortion of fMRI data, a pair of blip images 

with PE directions in left-right and right-left was acquired. 

 The neuroimaging data were preprocessed following the HCP 

pipeline.73 Non-brain tissues were extracted using a FNIRT-based 

masking method after aligning T1w and T2w images to the AC-PC 

line. To reduce a magnetic susceptibility-induced distortion, bias 

field was corrected for the structural images, which were used for a 

structural-functional coregistration step. For preprocessing the 

functional images, the fMRI timeseries data were realigned for head 

motion correction using rigid body transformation to the first 

volume reference. The motion parameters were provided as well for 

nuisance regression in first-level analysis following the 

preprocessing step. Because EPI images are susceptible to 

magnetic field inhomogeneity effect in a phase encoding direction, 

the EPI distortion was corrected by using the pair of blip images 

with reversed PE directions in the FSL topup.74 The distortion-

corrected functional images were coregistered to the T1w images 

using the boundary-based registration method for fine tuning.75 

Subsequently, a nonlinear warping was carried out to register the 

functional images to the standard MNI space with 2 mm isotropic 

voxel dimension. At last, spatial smoothing with a full width at half 

maximum Gaussian kernel of 6 mm was applied to improve signal-

to-noise ratio. 

 

Statistical analyses 
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The fMRI data was analyzed using the Statistical Parametric 

Mapping toolbox version 12 (SPM12; www.fil.ion.ucl.ac.uk/spm/). 

For a first-level analysis, general linear model (GLM) design 

matrices were constructed, each of which estimated neural 

correlates of the following regressors: (1) the SPE and RPE, (2) 

reliability of MB and MF learning strategies, (3) maximum reliability 

and reliability difference, or (4) the QMB, QMF, QArb, and updated 

value signal after BACKWARD planning. All design matrices 

included regressors containing average neural signals at choice and 

outcome states, two prediction errors, and the six motion 

parameters. The GLM models were separated as above without 

applying serial orthogonalization in order to avoid impacts of the 

orthogonalization on result inferences and collinearity issues among 

the regressors.76 For a second-level analysis, one-sample t-test 

was conducted across all participants to test replicability of the 

previous findings of neural arbitrator signals.60 Then, independent 

two samples t-test of the parametric estimates was performed 

between patients and HCs. A brain region with significant difference 

was defined if a cluster survived the cluster-extent threshold of 

false discovery rate corrected p (pFDR) < 0.05 with peak-level 

threshold of uncorrected p < 0.005.77 When the previously defined 

neural arbitrator regions (i.e., IFG and FPC) were included in a 

large cluster, small volume correction (10 mm sphere) on a local 

minimum region of the a priori ROIs was applied to increase spatial 

specificity. For the one-sample t-test, clusters were formed at 

http://www.fil.ion.ucl.ac.uk/spm/
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peak-level threshold of p < 0.001 to follow the test criterion of the 

previous study.60 The survived brain regions were labeled based on 

the Automated Anatomical Labelling atlas 3 and NeuroSynth 

systems.78,79 

To understand how neural interaction processes for the 

arbitration are altered in patients, it needed to investigate coupling 

between neural arbitrator regions encoding stability of the 

arbitration and other regions encoding state-action value of the 

arbitration. Thus, differences of psychophysiological interaction 

(PPI) between dysfunctional neural arbitrators and model-choice 

probability (PMB) were additionally tested between groups. Based on 

two samples t-test results of neural activations encoding the 

arbitration stability (Table 5), the right anterolateral OFC and 

bilateral IFG regions were chosen. First eigenvariate of these neural 

signals were extracted from 5 mm spherical ROIs centered on their 

peak coordinates. The GLM for the PPI analysis included the 

interaction term as a covariate of interest while controlling for the 

physiological and psychological terms. 

To explore neural mechanisms underlying dysfunctional 

behavioral arbitration and OC symptoms, multiple linear regression 

analyses were performed using stepwise method. Regression 

models explaining stability of the arbitration included activities of 

the neural arbitrators that encoded the maximum reliability and had 

significant group differences, while controlling for effects of IQ and 

a reliability parameter relevant to the neural arbitrators (Table 5). 

As exploratory analyses, partial correlation coefficients between 
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stability of the arbitration and activities of the neural arbitrator 

were also calculated while controlling for the same covariates. In 

addition, other regression models predicting OC symptom severity 

included activities of the neural arbitrators or effective connectivity 

thereof as covariates of interest, while controlling for an effect of 

anxiety symptom. 
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Results 

 

Demographic and clinical characteristics 

 

Demographic data were comparable between groups, and patients 

with OCD suffered moderate severity of OC symptoms. 

Demographic variables and severity of clinical symptoms are 

presented in Table 1. 

 

Neural substrates of the arbitration between MB and MF strategies 

 

Consistent with the previous study,60 the IFG and FPC regions were 

found to encode stability of the arbitration; thus, these regions were 

defined as the neural arbitrators. The neural arbitrators estimated 

reliability signals of MB and MF systems. Regarding neural 

correlates of state-action values, the dorsal striatum was found to 

encode the QMF and QArb signals. In addition to the insula and 

supplementary motor area (SMA),60 neural signals of the inferior 

parietal lobe (IPL) and precuneus contained the QArb. Details of 

neural correlates with the model parameters, including prediction 

errors, are presented in Table 4. 
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Table 4. Neural correlates of the arbitration model parameters 

Brain region MNI coordinates 

(mm) 

Cluster 

size (k) 

Statistics 

   T 
Cluster 

pFDR 

SPEa 

R Insula  38,  20, -02 2897 14.60 < 0.001 

L Insula -36,  18, -02 608 14.57 < 0.001 

R Caudate/GP  10,  06,   0 1458 11.91 < 0.001 

L dmPFC  02,  30,  50 1144 11.35 < 0.001 

L Fusiform gyrus -28, -72, -08 4469 10.34 < 0.001 

R IPL  42, -50,  46 733 8.93 < 0.001 

L Precentral gyrus -54,  10,  44 766 8.22 < 0.001 

L IFG -44, 44, -04 228 8.17 < 0.001 

L Substantia nigra -06, -12, -16 101 7.34 < 0.001 

R MFG  36,  54,  02 96 7.31 < 0.001 

RPEa 

L Lingual gyrus -18, -80, -08 619 7.94 < 0.001 

L NAcc -06,  06, -10 104 7.79 < 0.001 

R NAcc/Putamen  14,  08, -10 111 7.68 < 0.001 

R Cuneus  16, -92,  18 340 7.22 < 0.001 

R Insula  28,  14, -16 53 7.15 < 0.001 

Reliability of MB learning 

R Cuneus  14, -92,  18 3370 8.17 < 0.001 

R IFG (FPC)  52,  40, -06 2527 7.18 < 0.001 

R Fusiform gryus  28, -76, -06 355 6.34 < 0.001 

L IFG -54,  26,  02 315 5.75 < 0.001 

R dmPFC  08,  36,  54 1616 5.64 < 0.001 

L Insula -30,  14, -18 232 5.12 < 0.001 

L dmPFC (FPC) -16,  54,  28 96 4.75 < 0.001 

Reliability of MF learning 

R dmPFC  04,  32,  54 767 5.66 < 0.001 

L Caudate -10, -08,  26 85 5.20 0.019 
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R STG  50, -24, -04 135 4.55 0.005 

R IFG  52,  24 ,  06 133 4.25 0.005 

R MFG  42,  10,  46 252 4.14 < 0.001 

R vlPFC (FPC)  38,  56,   0 131 3.98 0.005 

Stability of arbitration (maximum reliability) 

R dmPFC  06,  36,  56 1223 6.54 < 0.001 

R IFG (FPC)  52,  40, -06 1726 6.22 < 0.001 

R Cuneus  14, -90,  18 804 5.66 < 0.001 

L Insula/IFG -28,  18, -14 321 5.22 < 0.001 

L Cerebellar Crus I -18, -80, -30 513 4.90 < 0.001 

R MTG  58, -30, -04 364 4.41 < 0.001 

State-action value of MB learning (QMB) 

R Precentral gyrus  40, -20,  54 10197 11.27 < 0.001 

L Postcentral gyrus -56, -18,  26 1403 7.41 < 0.001 

L Insula/IFG -34,  20,  10 843 6.58 < 0.001 

R Insula  32,  24,  10 151 5.57 < 0.001 

R Precentral gyrus  60,  06,  28 149 5.47 < 0.001 

L NAcc/Caudate   0,  18, -04 72 4.56 < 0.001 

R Calcarine sulcus  24, -50,  04 88 4.36 < 0.001 

L Putamen -20,  12, -06 91 4.33 < 0.001 

State-action value of MF learning (QMF) 

L dlPFC -26,   0,  56 35318 14.40 < 0.001 

R Insula/IFG  32,  24,  06 437 8.46 < 0.001 

L Thalamus -12, -18,  02 1345 7.18 < 0.001 

L Caudate/GP -14,  10,  08 480 6.99 < 0.001 

R Caudate/GP  14,  06,  14 313 6.12 < 0.001 

R IFG  60,  10,  22 370 5.53 < 0.001 

L ITG -58, -48, -14 237 4.96 < 0.001 

State-action value of arbitration (QArb), chosen-unchosen 

R Cuneus  14, -92,  18 8141 10.51 < 0.001 

R Cerebellar Crus II  20, -76, -40 765 8.34 < 0.001 

R Hippocampus  28, -06, -18 113 7.36 0.006 

L Cerebellar Crus II -40, -78, -36 1230 6.77 < 0.001 
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L Caudate -18, -02,  28 225 6.63 < 0.001 

L IFG -52,  26,  02 575 6.51 < 0.001 

L Amygdala -24, -06, -14 192 5.78 0.001 

R IFG  44,  28, -12 1269 5.65 < 0.001 

R dmPFC  08,  52,  26 3380 5.60 < 0.001 

L Postcentral gyrus -38, -26,  52 1010 5.42 < 0.001 

L Putamen -30, -08,  04 160 5.07 0.001 

State-action value of arbitration (QArb), unchosen-chosena 

L SMA -04,  14,  50 5703 14.91 < 0.001 

L SFG -28,   0,  58 1187 11.77 < 0.001 

L Insula -30,  20,  08 372 11.75 < 0.001 

R Insula  32,  22,  08 239 10.81 < 0.001 

L IPL -34, -46,  40 1154 9.20 < 0.001 

L IFG -58,  06,  18 594 8.53 < 0.001 

R SPL/Precuneus  14, -68,  56 277 8.45 < 0.001 

L Precuneus -10, -70,  52 362 8.37 < 0.001 

R Precuneus  16, -56, 20 94 7.88 < 0.001 

R Precentral gyrus/IFG  60,  08,  22 94 7.82 < 0.001 

L Caudate -10,  10,  08 85 6.91 < 0.001 

dmPFC: dorsomedial prefrontal cortex; dlPFC: dorsolateral 

prefrontal cortex; vlPFC: ventrolateral prefrontal cortex; FPC: 

frontopolar cortex; SFG: superior frontal gyrus; MFG: middle frontal 

gyrus; IFG: inferior frontal gyrus; STG: superior temporal gyrus; 

MTG: middle temporal gyrus; ITG: inferior temporal gyrus; SPL: 

superior parietal lobe; IPL: inferior parietal lobe; SMA: 

supplementary motor area; NAcc: nucleus accumbens; GP: globus 

pallidus 

a cluster-forming peak threshold of family-wise error corrected p 

< 0.05 
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Dysfunctional neural signals of the arbitration between MB and MF 

strategies 

 

When neural estimates of the model parameters were compared 

between groups, patients with OCD showed hyperactive right 

anterolateral OFC/FPC (MNI [32, 54, -16], cluster pFDR = 0.039) 

and bilateral IFG (MNI [50, 24, -12], cluster pFDR = 0.039; MNI 

[-56, 22, -4], cluster pFDR = 0.046) signals encoding stability of 

the arbitration than HCs (Figure 8). The hyperactivations of the 

same model parameter were also observed in the left OFC (MNI [-

38, 28, -22], cluster pFDR = 0.030, k = 214) and right superior 

temporal gyrus (MNI [46, 0, -20], cluster pFDR < 0.001, k = 694) 

clusters that extended to local maxima of the IFG regions (Table 5). 

The aforementioned neural arbitrators of the right OFC/FPC (MNI 

[34, 48, -14], cluster pFDR = 0.006) and bilateral IFG (MNI [46, 

34, -10], cluster pFDR = 0.026; MNI [-56, 24, -4], cluster pFDR 

= 0.004) were also hyperactive in patients than HCs when these 

regions contained MF reliability signal. Right IPL signal (MNI [34, -

48, 36], cluster pFDR = 0.002) encoding action value of the 

arbitration was hyperactive in patients than HCs. When choosing a 

model between MB and MF strategies, patients had stronger 

effective connectivity from the right anterolateral OFC/FPC (MNI 

[32, 54, -16]), which contained arbitration stability signal, to the 

right precuneus (MNI [4, -54, 26], cluster pFDR = 0.018) found to 

encode state-action value of the arbitration than HCs. Detailed 

results of the brain functional differences are presented in Table 5. 
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Table 5. Dysfunctional neural signals of the arbitration system in 

patients with OCD 

Brain region MNI coordinates 

(mm) 

Cluster 

size (k) 

Statistics 

   T 
Cluster 

pFDR 

     OCD > HCs 

Reliability of MF learning 

L Paracentral gyrus -06, -20,  64 1301 5.01 < 0.001 

R STG  62, -06,   0 885 4.37 < 0.001 

L dmPFC -14,  38,  22 434 4.15 0.002 

R OFC (FPC)  34,  48, -14 321 4.07 0.006 

R IFGa  46,  34, -10 117 3.76 0.026 

L IFG -56,  24, -04 352 3.81 0.004 

L dlPFC -50,  18,  40 363 3.62 0.004 

Stability of arbitration (maximum reliability) 

L ACC -06, -02,  34 318 5.18 0.006 

R OFC (FPC)  32,  54, -16 186 4.74 0.039 

R Insula  46, -04, -02 316 4.69 0.006 

R STG/IFG  46,   0, -20 694 4.60 < 0.001 

R IFGa  50,  24, -12 104 3.39 0.015 

L OFC/IFG -38,  28, -22 214 4.46 0.030 

L IFGa -56,  22, -04 65 3.65 0.046 

L Postcentral gyrus -32, -40,  66 320 4.08 0.006 

R Postcentral gyrus  22, -34,  74 245 3.86 0.019 

State-action value of arbitration (QArb) 

R IPL  34, -48,  36 426 4.42 0.002 

Effective connectivity of the R OFC (FPC)maximum reliability
b 

when choosing a model system ( PMB) 

R Precuneus  04, -54,  26 327 0.018 4.10 

dmPFC: dorsomedial prefrontal cortex; dlPFC: dorsolateral 

prefrontal cortex; ACC: anterior cingulate cortex; OFC: orbitofrontal 
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cortex; FPC: frontopolar cortex; IFG: inferior frontal gyrus; STG: 

superior temporal gyrus; IPL: inferior parietal lobe 

a small volume correction (10 mm sphere) on a local minimum 

region of IFG or FPC, the neural arbitrators60 

b first eigenvariate of the right OFC (FPC) signal (5 mm spherical 

ROI on MNI [32, 54, -16]) encoding the arbitration stability 

 

 

Figure 8. Dysfunctional neural arbitrators in OCD. Compared to HCs, 

patients with OCD had hyperactive signals in the right anterolateral 

orbitofrontal cortex (OFC)/frontopolar cortex (FPC) and bilateral 

inferior frontal gyrus (IFG) regions that encoded stability of the 

arbitration. 

 

Neural arbitrators accounting for the impaired arbitration and OC 

symptoms 

 

47 % of the higher stability of the arbitration in patients during MB-

favored trials was explained (F = 9.46, p < 0.001) by effects of the 

right OFC/FPC signal encoding arbitration stability ( = 0.42, p = 
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0.007), MF reliability ( = 0.65, p < 0.001), and IQ ( = 0.27, p = 

0.06) in the model predicting the behavioral impairment (Figure 9). 

The right OFC/FPC hyperactivation was also positively correlated 

with the higher stability of the arbitration during MF-favored trials 

(r = 0.47, p = 0.011) while the right IFG hyperactivation relevant 

to the arbitration stability had opposite correlation with the same 

measure (r = -0.70, p < 0.001) in patients (Figure 9). 

 Severity of OC symptoms was explained by brain functional 

differences (Figure 10). The right IFG signal containing the 

arbitration stability ( = -0.37, p = 0.026), together with HAM-A 

score ( = 0.53, p = 0.002), explained compulsion score of patients 

(F = 7.99, p = 0.002, adjusted R2 = 0.33). In addition, obsession 

score of patients was explained (F = 14.29, p < 0.001, adjusted R2 

= 0.49) by effects of the connectivity between right OFC/FPC and 

precuneus ( = -0.29, p = 0.046) and HAM-A score ( = 0.72, p 

< 0.001). 
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Figure 9. Neural arbitrator signals underlying the impaired arbitration 

in OCD. The impaired arbitration in patients was explained by their 

hyperactive OFG/FPC signal encoding stability of the arbitration 

while the hyperactive right IFG signal in patients compensated the 

arbitration dysfunction during MF-favored trials. 
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Figure 10. Neural arbitrator signals underlying clinical symptom 

severity of OCD. The increased right IFG signal encoding stability of 

the arbitration and the strengthened functional connectivity of the 

OFC/FPC with the precuneus containing action value of the 

arbitration were compensatorily related to less severe compulsion 

and obsession, respectively, in patients with OCD. 
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Discussion 

 

Based on the finding of the excessively stable arbitration in which 

MF RL strategy was predominant in OCD, the subsequent 

neuroimaging study expected that neural arbitrators estimating the 

reliability of learning strategies would be dysfunctional in patients. 

Consistent with the hypothesis, hyperactive lateral OFC/FPC signal 

in OCD underlay the imbalanced arbitration between MB and MF RL 

systems. Interestingly, the right IFG, the other neural arbitrator, 

was also hyperactive in patients but relevant to a compensating 

mechanism for the impaired arbitration and compulsivity. 

 The main purpose of this research project was to build brain 

biomarkers underlying the imbalanced arbitration between goal-

directed and habitual systems in OCD for developing a 

neurocircuit-based treatment.29,44 The hyperactive anterolateral 

OFC/FPC and IFG regions were identified to be relevant to the 

impaired arbitration in OCD. These two regions are known as the 

neural arbitrators that compute reliability of each learning strategy 

and arbitrate decision-making by choosing a more reliable 

controller.60 In OCD, these neural substrates are parts of the ventral 

cognitive CSTC circuit, which is relevant for impaired response 

inhibition and inflexible attention switching.21,22,25,31,80 This study 

provided a new evidence of pathological role of these two regions. 

The neural arbitrators were demonstrated to influence the 

imbalanced arbitration of OCD but in different ways. While the 

hyperactive lateral OFC/FPC was related to the excessively stable 
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arbitration that was biased toward MF system, the right IFG region 

compensatorily increased its activation to normalize the impaired 

arbitration. Therefore, it is suggested that the hyperactive lateral 

OFC/FPC underlies the impaired arbitration and habit bias in OCD. 

To provide the biomarkers as biological evidence for 

neurotherapeutics, it needs to confirm if the neural substrates of the 

impaired arbitration would be further related to severity of clinical 

symptoms. Through the regression analyses, it was figured out that 

the hyperactive right IFG signal was linked to less severe 

compulsion. Considering its compensatory mechanism on the 

decision arbitration and compulsivity, the right IFG and its role in 

ventral cognitive circuit are thought to be neuroscientifically-

informed treatment targets for compulsions of OCD. On the other 

hand, the precuneus relevant for action value of the arbitration was 

more strongly connected with the dysfunctional OFC/FPC in 

patients with less severe obsessions. Thus, the OFC/FPC-

precuneus connectivity may be an additional target for treating 

obsessive symptoms. Because the disrupted goal-directed planning 

and excessive habits are transdiagnostically related to compulsivity, 

not confined to OCD diagnosis,81 the neurobiological evidence 

provided by this study would be applicable to other compulsive 

disorders as well. 
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General Discussion 

 

Current symptom-based classification of OCD does not 

satisfactorily capture the pathophysiology on an individual basis.10,11 

In case of OCD, at least 30 % of patients are not responsive to 

first-line treatments.46,47 Dimensional classification based on 

biological evidence is suggested as an alternative. Building brain 

biomarkers and determining biotypes of OCD are expected to help 

addressing the heterogeneity issue and developing neurocircuit-

based treatments.29,44 

The unsatisfactory outcome of first-line treatments in OCD 

draws attention to develop alternative treatments that are based on 

well-accepted CSTC circuitry model (Figure 11).44,46,47,82,83 

According to the collective neurobiological model, OCD is 

characterized by diminished inhibitory signals of serotonergic and 

GABAergic pathways, which further provoke striatal dopaminergic 

and glutamatergic hyperactivity (i.e., hyperactive CSTC circuitry).44  

From this extended neurobiological model, poor performances of 

decision-making in OCD could be linked to the dopaminergic 

hyperactivity beyond the serotonergic dysfunction, which is more 

relevant to emotion regulation and fear extinction.41 CSTC circuitry 

comprises direct and indirect pathways that are divided by distinct 

dopaminergic system but interacting each other. Striatal neurons in 

the direct pathway express mostly D1 receptor and project Go 

signal through the internal globus pallidus to thalamus, consequently 

executing actions. On the other hand, other types of striatal neurons 
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expressing mostly D2 receptor occupy the indirect pathway and 

project Nogo signal through the internal and external segments of 

globus pallidus to the thalamus, consequently inhibiting 

actions.23,24,84 These two counterbalancing dopaminergic systems 

further participate in goal-directed and habitual behaviors.85 

Therefore, the balance between striatal dopaminergic systems is a 

key in adaptive behavioral controls, and dysfunctional 

communication between the striatal regions and the prefrontal 

controllers is considered to provoke maladaptive behaviors, such as  

compulsivity and habit bias in psychiatric diseases. 

A theory-driven approach suggests that habit bias and 

imbalance between goal-directed and habitual controls underlie 

symptomatology of OCD.15 Among several CSTC circuits, the 

imbalanced arbitration and habit bias of OCD are thought to involve 

disrupted ventral cognitive circuit, which is known to underlie 

response inhibition and adaptive attention shifting (Figure 11).31-34 

Non-invasive neuromodulation approach, such as transcranial 

magnetic stimulation, can modulates prefrontal and striatal dopamine 

releases and be applicable to enhance the performance of decision-

making.86-88 Therefore, it is expected that a neurocircuit-based 

treatment that decreases the lateral OFC/FPC activity or increases 

the IFG activity would normalize the dopaminergic dysfunctions 

within the ventral cognitive CSTC circuit and improve the 

imbalanced arbitration and compulsion of OCD. 

 This study has limitations to be addressed. First, CBT is 

considered to improve goal-directed planning in OCD although this 



 59 

effect is controversial.89,90 Because the long-term efficacy is not 

clearly known and becomes less effective at one year after the 

treatment,91,92 it was planned to recruit patients who did not 

experience the CBT session in recent one year so as to minimize 

the CBT effect on the arbitration performance. Second, a large 

number of free parameters were used to explain the complex 

arbitration process; however, this high parameter count renders 

concerns about overfitting of the model parameters.93 To address 

this issue and optimize the parameters, model fitting was iterated 

large enough times with random seeds to make it as reproducible as 

possible. 

 In conclusion, it was identified that the hyperactive neural 

arbitrators underlying the excessively stable arbitration in which 

MF learning strategy was predominant were brain biomarkers for 

the imbalanced arbitration between goal-directed and habitual 

controls in OCD. Based on their associations with compulsion 

severity, this study suggests that the hyperactive IFG and its 

connections within the ventral cognitive CSTC circuit can guide a 

neurocircuit-based treatment for habit bias and compulsivity in 

OCD. 
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Figure 11. A model of neurocircuitry system implicated in imbalanced 

arbitration between goal-directed and habitual behaviors in OCD. 

Hypoactive ventral affective circuit in OCD reflects that patients are 

sensitive to initiate habits. Because of their irrational belief about 

that model-free learning is the most reliable strategy for decision-

making, patients are more likely to reinforce the habits and take an 
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arbitration strategy that stabilizes the habit biases. Hyperactive 

anterolateral OFC/FPC underlies this imbalance in the arbitration 

between goal-directed and habitual systems, while the IFG, the 

other neural arbitrator, is hyperactivated to struggle to facilitate 

inhibitions for the habitual behaviors and normalize the imbalanced 

arbitration. The disrupted arbitration system also influences other 

CSTC circuits as follows. The dorsal cognitive circuit becomes 

hypoactive, making patients not to carry out goal-directed planning. 

The reinforced transitions from goal-directed to habitual behaviors 

make the sensorimotor circuit hyperactive in patients. Lastly, 

patients become to have maladaptive behaviors (i.e., impaired 

extinction of emotional responses) because the excessive habits 

make anxiety and fear blunt, which is relevant to hyperactive 

fronto-limbic circuit. 
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국문 초록 

 

서론: 목적-지향적 행동전략과 습관적 행동전략 사이의 조율 불균형으로 

발생하는 습관 편향은 강박장애(OCD) 주증상인 강박행동의 기저를 

이룬다. 강화학습 인공지능 알고리즘에 기반한 계산신경과학 모델은 

이러한 두 행동전략 사이의 조율 기전을 설명할 수 있다. 사람의 뇌는 

목적-지향적(모델-기반) 학습 시스템과 습관적(모델-자유) 학습 

시스템의 상태/보상 예측 신뢰도를 계산하고, 신뢰도가 높은 학습 시스템을 

선택하여 의사결정을 조율한다. 하지만, 강박장애 환자에서 나타나는 

의사결정 조율 불균형이 잘못된 학습전략 신뢰도 추정에 원인을 둔 것인지 

아직 불분명하다. 또한, 학습전략 신뢰도 계산을 담당하는 

하전두회(IFG)와 전두극피질(FPC)의 기능 손상이 이러한 조율 불균형의 

신경생물학적 기저인지 연구가 필요하다. 

방법: 연구참여자들의 모델-기반 학습전략과 모델-자유 학습전략 행동을 

분리해 관찰하기 위해 마르코프 의사결정 과제(sequential two-choice 

Markov decision task)를 사용했다. 30 명의 강박장애 환자와 31 명의 

건강 대조군이 연구에 참여했으며, 의사결정 과제를 수행함과 동시에 

기능적 뇌 자기공명영상(fMRI)을 촬영했다. 강화학습 알고리즘에 기반한 

계산모델을 이용해 의사결정 조율 과정 동안의 행동을 추정했다. 모델 

행동변수 및 관련 뇌 기능에 대해 환자군과 대조군 사이의 차이를 

통계적으로 검증했으며, 해당 뇌 기능 차이가 신뢰도 추정 오류 및 

강박행동 증상을 설명하는지 회귀분석을 통해 확인했다. 

결과: 강박장애 환자들은 대조군에 비해 의사결정 과제 수행 시 보상 

획득에 더 큰 어려움을 겪고 더 보속적으로 행동했다. 모델-기반 

학습전략이 필요한 상황에서, 환자들은 오히려 모델-자유 학습전략을 

과도히 신뢰했다. 그 결과, 환자들에서 두 학습전략 사이의 조율 안정성이 
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더 높았으며, 모델-자유 학습전략으로의 편향이 확인되었다. 환자에서 

과도히 높은 조율 안정성은 전두극피질 영역 중 전외측 

안와전두피질(anterolateral OFC)의 과활성화와 관련있었으며, 신뢰도 

정보를 바탕으로 학습전략을 선택할 때 전외측 안와전두피질과 쐐기앞소엽 

사이의 기능적 연결성이 비정상적으로 강화되었다. 반면, 환자에서 

과활성화된 하전두회는 조율 안정성 및 강박행동 중증도와 부적 

상관관계를 보였다. 

결론: 본 연구는 강박장애의 의사결정 조율 불균형이 모델-자유 

학습전략에 편향된 조율을 야기하는 뇌 기능 이상에 원인이 있음을 밝혔다. 

나아가, 예측 신뢰도를 추정하는 하전두회 및 전두극피질을 강박행동 및 

습관 편향에 대한 신경회로-기반 치료의 뇌 생물지표로 제안한다. 

 

주요어: 강박장애, 의사결정, 목적-지향적 행동 조절, 습관적 행동 조절, 

강화학습, 신경조율자, 과제-기반 기능적 뇌 자기공명영상 
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