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Abstract

Immunomodulatory effect of canine peripheral blood
mononuclear cell-derived B lymphocytes pretreated with

lipopolysaccharide through macrophage polarization

HEE-WON JANG

Supervised by Prof. Hwa-Young Youn
Laboratory of Veterinary Internal Medicine
The Graduate School of Veterinary Medicine

Seoul National University

Regulatory B cells (Bregs), the specific subset of B cells, downregulate
inflammation and autoimmunity. It has been studied secreting interleukin (IL)-10 is
the key contributor of Bregs and preconditioning B cells with lipopolysaccharide
(LPS) increases IL-10 protein production and secretion. Therefore, various studies
are conducted with the goal of applying IL-10 overexpressing B cells as therapeutic
agents to patients with immune-related inflammatory diseases, but there are only a
few studies on canine B cells. This study aimed to investigate the immune regulatory
gene expression of canine peripheral blood mononuclear cell (PBMC)-derived B
cells pretreated with LPS, and evaluate the anti-inflammatory and immunomodulatory

capacity of primed B cell by identifying anti-inflammatory macrophage M2



polarization when cocultured with primed B cells.

Canine B cells were isolated from canine PBMCs, which were obtained from
three healthy canine donors. The B cells were treated with 5 ng/mL, 10 ng/mL of
LPS to evaluate the cytotoxicity of LPS on B cells by CCK-8 assay. Then expression
marker of Bregs such as IL-10 was investigated by flow cytometry, and determined
the immunomodulatory capacity of primed B cells, by investigating the gene
expression of immunoregulatory factors such as /L-10, programmed death-ligand 1
(PD-L1), and transforming growth factor beta (TGF-f) using real-time quantitative
PCR (RT-qPCR). Moreover, LPS pretreated macrophage cell lines (RAW 264.7 and
DHB82 cell line) were co-cultured with primed B cells to assess immunomodulatory
effect of primed B cell on macrophages in inflammatory condition. Macrophages were
pretreated with LPS to induce inflammatory condition. After RNA extraction from
macrophages, it was investigated for immune condition, and M1, M2 macrophage
markers, and to investigate M2 polarization in protein level, immunofluorescence
analysis was performed, using CD206 as M2 marker protein.

From cell viability assay, confirmed that LPS have no cytotoxicity on B cells.
Bregs expression marker IL-10 was increased significantly by 2.32-fold in LPS 5
ng/mL group and increased significantly by 2.64-fold in LPS 10 ng/mL group, in
comparison with control group. The gene expression of immunoregulatory factors in
LPS 5 ng/mL group, only /L-10 showed 3.07-fold significant increase (P < 0.05)
compared to control group and in LPS 10 ng/mL group, /L-10, PD-L1, and TGF-p,
respectively, showed 8.75-fold (P <0.001), 2.46-fold (P < 0.05), 2.47-fold (P <0.05)
significant increase compared to control group. Since the effect of LPS treatment

was higher in LPS 10 ng/mL group, it was chosen for further experiment.



The immune condition of macrophages when co-cultured with primed B cells
compared to the LPS-treated group, in RAW 264.7 cell line, showed 0.04-fold
decrease in proinflammatory cytokine 7NF-a and 8.21-fold increase in anti-
inflammatory cytokine /L-/0 and in DHS82 cell line, showed 0.26-fold decrease in
TNF-a and 12.39-fold increase IL-10, respectively (P < 0.001). Additionally, the
changes in M1 macrophage marker iNOS and M2 macrophage marker CD206
compared to the LPS-treated group, in RAW 264.7 cell line, showed 0.03-fold
decrease in iNOS (P < 0.01) and 7.97-fold increase in CD206 (P < 0.001) and in
DHS2 cell line, showed 0.11-fold decrease in iNOS (P <0.01) and 8.72-fold increase
in CD206 (P < 0.05), respectively. In protein level, macrophages expressing CD 206
were increased 6.5-fold in RAW 264.7 cell line and 14.16-fold in DHS82 cell line in
comparison with LPS-stimulated macrophages, respectively (P < 0.001).

This study revealed that pretreatment of LPS on canine PBMC-derived B cells
induced IL-10 overexpressing B cells, and that LPS-primed canine B cells have an
anti-inflammatory and immune modulation effect by polarizing macrophages to M2
phenotype, suggesting the possibility of using LPS-primed B cells as a therapeutic

agent for its capacity in canine immune related inflammatory diseases.

Keywords: regulatory B cell, macrophage, anti-inflammatory agent, inflammatory
disease, M2 macrophage

Student Number : 2019-22585



Contents

ADSELACE++++++e+++serereereressesertasesese st e s et ettt re ettt ae bt n et s et i
COMLEIILS  +++#++++##+++#+srsseessssresssaessesesssesesssesssstessseaseeessseeasseeassseesneseasseeessseesansenanseanns iv
LSt OF FAGUI@S: ++++r+rtseerersessessustssestises ittt e vi
LSt OF TABIES:++++w+e++esesrsererrsserestetenestestit ettt ettt sttt et beas e eees vii
1. IIEEOAUCTIQN ++++v++everrvreeerrermneeenntte ettt e 1
2. Materials and IMethods -« -««--+ererreremreremrrrmmmreniiernienie e 3
21 B CCH iSOlatiOﬂ ........................................................................................ 3

2.2. Preconditioning B cells with lipopolysaccharide (LPS) -«--eeoeeeeereeeeeeees 4

2.3, Cell viability assay - -+srrssserssrssssessnrsssesssiissi s 4

2.4, Flow Cytometry analysis - wsrsseesssrrsssmssssmmssssisississsis s 5

2.5, CO-CUILUTE SYSLEMY ++r+++evessrrssssrrssssrssssssssessis s 5

2.6. RNA extraction, cDNA synthesis, and real time quantitative PCR
(RT=QPCRY) #reeereesessesessessentatise ittt 6

2.7. Immunofluorescence analysis « -+« tssesesesessetinmismsiiiiinsitisn e, 7

2.8.  Statistical analysis -+ s+ssesserseseesesesmssmtinistit e 7

3 RESUIES «+veveeereerereerersmiemretnse sttt ettt st e s st et r e n e s r e n e n e aeas ]
31, LPS-stimulated B Cellg -+ r-rereesereerererermerumseesinseisiesiseissseessenessesenenns 8

3.2. Anti-inflammatory effect of primed B cells «+++wswwssessessssrsssnsssnsssiisninns. ]

3.3. Macrophage polarization from M1 to M2 «wwseweseresrsssrmssmssissnisnisninas 9

v
.



COMCIUSIOIL +etveeeereeereerrerereesennimniiiieeiietiitiite ittt sesssssssssssssssassassiaas 13

REF@EEIICES ++++++rrererrrrrmnerssrerseeeemtnttn ettt ettt ettt s e e e e r e e 14

'3'?":_"‘ EEI_ ..................................................................................................... 28
\%

.-:I-\,,—-i: '-\.I.- 1



List of Figures

Figure 1. Characterization of B cell isolated from canine peripheral blood
mononuclear CellS ................................................................................... 20
Figure 2. Increased immunoregulatory gene expression in canine B cells when treated
Wlth LPS .................................................................................................. 2 1
Figure 3. Increased anti-inflammatory gene expression and decreased proinflammatory
gene expression in macrophage cell lines in inflammatory condition when
CO-Cultured Wlth LPS-prlmed Canine B Cells ........................................... 22
Figure 4. Increased M2 macrophage marker gene expression and decreased M1
macrophage marker gene expression in macrophage cell lines in

inflammatory condition when co-cultured with LPS-primed canine B

Figure 5. Increased CD206 expressing M2 macrophages in macrophage cell lines in

inflammatory condition when co-cultured with LPS-primed canine B

Vi



List of Table

Table 1. Primer sequences of murine used to detect gene expression of immune
related factors and macrophage target genes ........................................... 26
Table 2. Primer sequences of canine used to detect gene expression of immune

related factors and macrophage target genes ........................................... 27

vii



1. Introduction

B cells perform several immunological functions, and because of their
antigen presenting and antibody producing capacity, they have been primarily
regarded as positive regulators of the immune response and central contributors to
the development of immune-related diseases. However, specific regulatory B cells
(Bregs) subset, reversely, downregulate adaptive and innate immunity, inflammation,
and autoimmunity. Multiple mechanisms are involved, it has been revealed by
various studies that the anti-inflammatory effect of B cells is achieved by the
expression of interleukin (IL)-10 [1, 2]. Moreover, there are multiple studies about
relationship between presence of B cells and reduced disease severity in autoimmune
diseases [3, 4].

IL-10 is an anti-inflammatory cytokine that plays an important role in
controlling the inflammatory response that causes tissue damage [5]. In addition, IL-
10 plays an inhibitory role primarily by limiting the innate effector function of
macrophages and dendritic cells and subsequent activation of T cells [6]. Therefore,
B cells producing IL-10 are attracting attention as a pioneering cell therapy, and
various studies are being conducted to apply IL-10-producing B cells as therapeutic
agent for immunomodulatory treatments [7]. Therefore, to develop more effective
cell therapy products, various studies are in progress to overexpress IL-10 in B cells
[8, 9]. According to Parekh et al., when pre-stimulating B cells with
lipopolysaccharide (LPS), resulted in transcriptional activation of the IL-10 gene,

and IL-10 protein production and secretion increased [10]. However, in order for



LPS-primed B cells to be applied as a therapeutic agent to patients with inflammatory
diseases and immune diseases, additional studies are needed to evaluate the
mechanism by which IL-10-overexpressed B cells have anti-inflammatory effects.

Macrophage, which belongs to the innate immune system, is recognized to be
involved in chronic inflammation, and it plays central roles in inflammatory diseases
[11]. Many studies have been conducted to understand the mechanisms involved in
activation of macrophage and to relate them to macrophage function. The well-
known bipolar model [12] distinguishes macrophage into two main types of
polarization: the classically activated type 1 macrophage (M1, pro-inflammatory
type) and the alternatively activated type 2 macrophage (M2, anti-inflammatory type)
[13]. Thus, in inflammatory disorders, down-regulating M1, or re-polarizing M1 to
M2 are the two major approaches to relieve inflammation [14].

Preconditioning with LPS is used to improve the secretion of anti-
inflammatory agents in B cells and the anti-inflammatory effects of B cells are
mainly involved with IL-10. Therefore, various studies are being conducted with the
goal of applying IL-10 overexpressing B cells as therapeutic agents to patients with
immune-related inflammatory diseases, but there are only a few studies on canine B
cells. Therefore, this study aimed to investigate the immune regulatory gene
expression, especially I1-10, of canine peripheral blood mononuclear cell-derived B
cells pretreated with LPS, and evaluate the anti-inflammatory and
immunomodulatory capacity of primed B cell by identifying anti-inflammatory

macrophage M2 polarization when cocultured with primed B cells.



2. Materials and Methods

2.1. B cell isolation

The canine B cells were isolated from canine peripheral blood mononuclear
cells (cPBMCs). To isolate cPBMCs, all experimental procedures were approved by
the Institutional Animal Care and Use Committee of Seoul National University
(protocol no. SNU-201228-4). ¢cPBMCs were collected using Ficoll-Paque
PREMIUM (GE Healthcare Life Sciences, Uppsala, Sweden) according to the
manufacturer’s instruction. With the owners’ consent, whole blood samples were
obtained from three healthy canine donors. The blood samples were blended with an
equal volume of Dulbecco phosphate buffered salt (DPBS) solution DPBS (Pan
Biotech, Aidenbach, Germany) and placed on Ficoll-Paque PREMIUM according to
the manufacturer’s guidelines.

B cells were isolated using mouse CD79a antibody (dilution, 1:200; Invitrogen,
Carlsbad, CA), anti-mouse immunoglobulin (Ig)-G microbeads (Miltenyi Biotec,
Audurn, CA) with MACS (Miltenyi Biotec, Audurn, CA) according to the
manufacturer’s instruction. A mixture of 10% fetal bovine serum (FBS) (Pan Biotech)
and phosphate buffered saline (PBS) were used for the MACS separation buffer. The
CD79a antibody was added to the cPBMCs, which were then incubated for 2 hours
at 37°C in a humidified atmosphere with 5% carbon dioxide. The CD79a+ B cells
were collected after centrifugation at 780 x g for 10 minutes. For magnetic labeling,

10 ul of anti-mouse IgG microbead and 40 pl of the MACS separation buffer were



added to the CD79a+ B cells, which were incubated for 2 hours. The CD79a+ B cells
were collected after centrifugation at 780 x g for 10 minutes. After washing the LS
column of MACS with 3 mL of MACS separation buffer, the CD79a+ B cells were
added to the LS column for isolation. After another washing with 3 mL of MACS
separation buffer, the CD79a+ B cells were collected in 5 mL of MACS separation

buffer. The B cell population obtained out of total cPBMCs were at the mean of 5%.

2.2. Preconditioning B cells with Lipopolysaccharide (LPS)

To stimulate the B cells with LPS (Sigma-Aldrich, St. Louis, MO), the cells
were plated at a density of 1 x 10° cells/mL in six-well plates. The medium used was
the control, which did not contain LPS, and 5 ng/mL of LPS and 10 ng/mL of LPS
were added to the experimental B cell groups. The cells were cultured for 24 hours
for stimulation. Since the effects of LPS occurred in a dose-dependent manner, 10

ng/mL LPS-primed B cells were chosen for further study.

2.3. Cell viability assay

Cell viability was assessed using the Cell Counting Kit-8 (CCK-8) assay
(D-Plus™ CCK cell viability assay kit; Dong-in Biotech, Seoul, Republic of Korea)
to confirm that the concentrations of LPS were not cytotoxic for the B cells. The
cells were seeded at a density of 5 x 10° cells/well in a 96-well plate. The medium
used was the control, which did not contain LPS, and 5 ng/mL of LPS and 10 ng/mL

of LPS were added to the experimental B cell groups. After stimulating the cells for
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24 hours, 10 pL of the Cell CCK-8 solution was added, and the cells were incubated
in the dark at 37°C for 1 hour. The absorbance at a 450-nm wavelength was
determined with a spectrophotometer (Epoch Microplate Spectrophotometer;

BioTek Instruments, Winooski, VT).

2.4. Flow cytometry analysis

LPS-primed B cells were obtained as described above, and then used the
IL-10 antibody (dilution, 1:100; ABclonal, Woburn, MA) to evaluate the expression
of the regulatory B cell marker. After incubation for 1 hour, the cells were washed
with DPBS. Indirect immunofluorescence was performed using mouse anti-rabbit
IgG-PE (dilution, 1:100; Santa Cruz Biotechnology, Santa Cruz, CA). Unstained
cells were used as the negative control. Cell fluorescence was analyzed with a flow
cytometer (FACS Aria II; BD Biosciences, Franklin Lakes, NJ). The results were

analyzed using FlowJo 7.6.5 software (Tree Star, Inc., Ashland, OR).

2.5. Co-culture system

RAW 264.7 cells, the murine macrophage cell line, and DHS2 cells, the
canine macrophage cell line, were purchased from the Korean Cell Line Bank (Seoul,
Korea). Both cells were seeded in six-well plates at a density of 1 x 10° cells/well
and incubated overnight. After adherence to the plates was confirmed, 200 ng/mL of
LPS was added for 24 hours. Next, the medium was removed, the cells were washed

three times with DPBS and then replaced with the control medium. Using 0.4-um
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pore size inserts, naive and primed B cells were plated onto the macrophage cells at
a density of 1 x 10° cells/well at the ratio of 10:1. The total number of cells were
divided into four groups: macrophage cells at the bottom and no insert, macrophage
in the inflammatory condition at the bottom and no inserts, macrophage in the
inflammatory condition and naive B cells in the upper chamber, and macrophage in
the inflammatory condition and LPS-primed B cells in the upper chamber. All cells
were incubated for 48 hours and then harvested for RNA extraction and

immunofluorescence analysis.

2.6. RNA extraction, cDNA synthesis, and real-time quantitative PCR (RT-

qPCR)

The Easy-BLUE Total RNA Extraction Kit (Intron Biotechnology,
Seongnam, Korea) was used to isolate RNA according to the manufacturer’s
instructions. For each sample, total RNA concentration was measured at 260-nm
absorbance using a nanophotometer (IMPLEN, Munich, Germany). Complementary
(c)-DNA was synthesized using Cell Script All-in-One 5x 1st ¢cDNA Strand
Synthesis Master Mix (Cell Safe, Seoul, Korea), and the samples were detected using
AMPIGENE gPCR Green Mix Hi-ROX with SYBR Green dye (Enzo Life Sciences,
Farmingdale, NY) and forward and reverse primers (Bionics, Seoul, Korea). The
expression levels of each gene were normalized to that of glyceraldehyde 3-
phosphate dehydrogenase. The primer sequences used in this study are listed in
Tables 1 and 2. The mRNA expression levels were normalized to that of

glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
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2.7. Immunofluorescence analysis

RAW 264.7 and DHS82 cells were washed three times with DPBS and fixed
with 4% paraformaldehyde for 20 minutes at room temperature. After washing with
DPBS, the cells were permeabilized for 1 hour with 0.2% Triton X-100 (Sigma-
Aldrich) and then blocked for 1 hour at room temperature with 2% FBS. The cells
were incubated sequentially with FITC-conjugated CD206 (1:200; Santa Cruz
Biotechnology) and PE-conjugated CD11b antibodies (1:200; Abcam, Cambridge,
MA) at 4°C overnight in the dark. Finally, the cells were washed three times with
PBS and mounted. The samples were observed using an EVOS FL microscope (Life
Technologies, Darmstadt, Germany). Immunoreactive cells were counted in 20

random fields per group, and the percentage of CD206+ positive cells was recorded.

2.8. Statistical analysis

GraphPad Prism version 6.01 software (GraphPad Software, La Jolla, CA)
was used to perform the statistical analysis. The Student t-test and one-way analysis
of variance were used to analyze the data, followed by the Bonferroni multiple
comparison test. The data are presented as mean value + standard deviation.

Differences with a P-value < 0.05 were considered statistically significant.



3. Results

3.1. LPS-stimulated B cells

CCK-8 assay was performed to evaluate the cytotoxicity of 5 ng/mL LPS
and 10 ng/mL LPS to B cells. The result showed there was no significant difference
between the control and experimental groups (Figure 1A). After stimulation with
LPS, both 5 ng/mL LPS and 10 ng/mL LPS-stimulated B cell groups were
determined to express IL-10, which is known as a regulatory B cell expression
marker, based on flow cytometry analysis (Figure 1B). In addition, the 10 ng/mL
LPS-stimulated group expressed significantly increased immunomodulatory factors,
such as IL-10, programmed death-ligand 1 (PD-L1), and transforming growth factor
beta (TGF-p) and the 5 ng/mL LPS-stimulated group showed significant increase in

only /L-10 (Figure 2).

3.2. Anti-inflammatory effect of the primed B cells

The result of RT-qPCR showed that after LPS stimulation of macrophages,
proinflammatory cytokine TNF-a expression levels were significantly increased, and
they were decreased after co-culture in both the naive and LPS-primed B cell groups.
This result was more significant in the co-cultured with LPS-primed B cell group
than in the naive B cell group. Moreover, the level of anti-inflammatory cytokine /L-

10 expression was increased after co-culture in both B cell groups, and this result



was more significant after co-culture in the LPS-primed B cell group than in the
naive B cell group. All these results were observed in the RAW 264.7 and DHS2 cell
lines (Figure 3A, 3B). Therefore, these results indicated that primed B cells have

anti-inflammatory effects on macrophages in inflammatory condition.

3.3. Macrophage polarization from M1 to M2

As target genes, CD206 for the M2 macrophage and iNOS for the M1
macrophage were used for RT-qPCR in RAW 264.7 and DHS?2 cells (Figure 4A, 4B).
The results showed that iNOS expressions were highly increased after LPS
stimulation, and they were decreased significantly after co-culture with LPS-primed
B cells. The CD206 expressions were significantly increased after co-culture with
LPS-primed B cells. For immunofluorescence assay, CD206 was used for M2
macrophage marker protein. The results showed that in both RAW 264.7 and DH82
cells, the percentage of CD206+ M2 macrophages was increased in both naive and
LPS-primed B cell co-cultured groups, and this finding was more significant in the
LPS-primed B cell group than in the naive B cell co-culture group (Figure 5A, 5B,
5C, 5D). These results suggest that LPS-primed B cells have an ability to repolarize

the M1 macrophage to the M2 macrophage.



4. Discussion

Cell therapy is the most recent phase of biotechnology in medicine, and it
offers the advantage of treating and altering the course of diseases, which cannot be
addressed by current pharmaceutical techniques [15]. B cells are generally
considered to play a pathogenic role in the development of autoimmune diseases
because they produce autoantibodies that cause target tissue damage, but
autoantibodies can also exert a protective effect through the elimination of apoptotic
cells and reduction of autoantigen load [16]. B cells also act as antigen-presenting
cells that contribute to the activation and amplification of naive and activated
autoreactive T cell responses [8]. However, in order to apply B cells as cell therapy
to patients with various autoimmune diseases, including rheumatoid arthritis,
autoimmune diabetes, autoimmune encephalomyelitis and lupus, additional studies
about the treatment mechanisms are needed [3].

LPS, which a major component of environmental microbial products, is one
of the most well-studied pathogen-associated molecular patterns that can induce
innate immune recognition. It signals through the toll-like receptor 4 (TLR-4) [17],
and interacts with dendritic cells, macrophages, and B cells [18-21]. In B cells,
activation of pattern recognition receptors, especially members of the toll-like
receptor family, has been shown to be an effective stimulus to induce IL-10
production. In these cells, stimulation of TLR-4 results in transcriptional activation
of the IL-10 gene, increasing IL-10 protein production and secretion. According to

Xu et al., when B cells were pre-stimulated with LPS, the expression of IL-10 was
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increased [22]. In this study, firstly, to evaluate the cytotoxicity of LPS on B cells,
CCK-8 assay was performed, which allows sensitive colorimetric assays using WST-
8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium,
which is reduced by dehydrogenase activities in cells to give orange-colored
formazan, for the determination of cell viability, and the result showed there was no
difference in control group and LPS-treated group, confirming that LPS have no
cytotoxicity on B cells. Then confirmed that the number of cells expressing IL-10
increased when B cells were pretreated with LPS [9]. In addition, LPS-primed B
cells expressed regulatory B cell markers, such as [L-10, PD-L1, and TGF-f [23, 24].

B cells that produce IL-10, TGF-B and express PD-L1 are known as
regulatory B cells (Bregs) in the B cell subset [23, 25, 26], and Bregs have the effect
of suppressing activated immunity [7]. Therefore, various studies are being
conducted with the goal of applying B cells as therapeutic agents to patients with
immune-related inflammatory diseases. However, there has been no research on this
in veterinary medicine. Moreover, multiple mechanisms are involved, but secreting
IL-10 is the key contributor of Bregs, which is considered the master negative
regulator of inflammation [27]. As described above, IL-10 is an anti-inflammatory
cytokine that plays an inhibitory role by limiting the innate effector function of
macrophages and dendritic cells and subsequent activation of T cells [6]. However,
in order to apply IL-10-overexpressing B cells as a therapeutic agent to patients with
immune-related inflammatory diseases, it is necessary to determine how IL-10-
overexpressing B cells regulate immune cells in inflammatory conditions. In this
study, pretreating 10 ng/mL LPS showed no cytotoxicity on B cells, and induced

specific B cells which expresses significantly upregulated gene expression of
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immunomodulatory factor. However, in order to apply IL-10 overexpressing B cells
in anti-inflammatory and immunomodulatory therapy, for its capacity of immune
cell regulation, additional studies are needed.

In the inflammatory condition, M1 is responsible for active inflammation,
such as the expression of high levels of pro-inflammatory cytokines, enhanced
phagocytosis and assistance with T-helper type 1 cells, whereas M2 is responsible
for immune modulation and wound repair functions [28]. Currently, strategies to
reduce M1 or re-polarization of M1 to M2 have been studied, and re-educating M1
to M2 can be beneficial in not only decreasing pro-inflammatory effects but also
inducing anti-inflammatory effects as well. Moreover, there are studies about the
requirement of IL-10 for macrophage M2 polarization [29]. In the present study,
RAW 264.7 and DH82 macrophages in inflammatory conditions were co-cultured
LPS-stimulated B cells, which expresses higher IL-10 than control, and confirmed
the effect of primed B cells on re-polarizing M1 to M2 [30, 31]. Considering that
changing macrophages from M1 to M2 in various inflammatory diseases is a major
therapeutic target to suppress activated immunity, these results may serve as the
supporting data for future studies on the applying primed B cell as an immunotherapy.

In conclusion, it was confirmed that the expression of IL-10 increased when
B cells were pretreated with 10 ng/mL of LPS for 24 hours. In addition, this data
suggest that IL-10-overexpressed B cells play an important role in suppressing
inflammation though macrophage polarization from M1 to M2. This study could
serve as a basis for future in vivo studies on the anti-inflammatory effects of LPS-
primed B cells, and clinical applications of canine B cells may become a new option

of cell therapy for refractory inflammatory diseases.
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5. Conclusion

It was demonstrated that LPS-stimulated B cells derived from canine
peripheral blood mononuclear cells showed anti-inflammatory effect, and have
immunomodulatory effect on macrophages, by re-polarizing M1 macrophages to M2
macrophages. This novel study could play a role as a basis for clinical applications

of anti-inflammatory therapy.
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Figure 1. Characterization of B cell isolated from canine peripheral blood
mononuclear cells. A. Cell viability assay. Cell viability of B cells according to the
LPS concentration gradient was confirmed through CCK-8 analysis. B. Through
flow cytometry, the degree of increase in B cells expressing IL-10 was confirmed.
Representative of three independent experiments with similar results. Data are
shown as mean + standard deviation of three independent experiments (ns = not

statistically significant by one-way ANOVA analysis).
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Figure 2. Increased immunoregulatory gene expression in canine B cells when

treated with LPS. Increased gene expression of immunoregulatory genes such as

IL-10, PD-L1 and TGF-f in canine B cells after LPS stimulation. Results are

presented as the mean + standard deviation of three independent experiments. Data

are shown as mean + standard deviation of three independent experiments (ns = not

statistically significant, *P < 0.05, ***P < (0.001 by one-way ANOVA analysis).
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Figure 3. Increased anti-inflammatory gene expression and decreased

proinflammatory gene expression in macrophage cell lines in inflammatory

condition when co-cultured with LPS-primed canine B cells. LPS-stimulated

RAW 264.7 and DH82 cells were co-cultured with primed B cells for 48 h. Then

gene expression of inflammation in macrophage cell lines were analyzed by RT-

qPCR. A. Relative mRNA expression levels of TNF-a and IL-10 in RAW 264.7. B.

Relative mRNA expression level of TNF-a and IL-10 in DH82. Data are shown as

mean * standard deviation of three independent experiments (ns = not statistically

significant, *P < 0.05, **P < 0.01, ***P <0.001 by one-way ANOVA analysis)
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Figure 4. Increased M2 macrophage marker gene expression and decreased M1
macrophage marker gene expression in macrophage cell lines in inflammatory
condition when co-cultured with LPS-primed canine B cells. LPS-stimulated
RAW 264.7 and DH82 cells were co-cultured with primed B cells for 48 h. Then
gene expression of macrophage target genes was analyzed by RT-qPCR. A. Relative
mRNA expression levels of CD206 and iNOS in RAW 264.7. B. Relative mRNA
expression level of CD206 and iNOS in DH82. Data are shown as mean + standard
deviation of three independent experiments (ns = not statistically significant, *P <

0.05, **P <0.01, ***P <0.001 by one-way ANOVA analysis).
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Figure 5. Increased CD206 expressing M2 macrophages in macrophage cell
lines in inflammatory condition when co-cultured with LPS-primed canine B
cells. LPS-stimulated RAW 264.7 and DHS82 cells were co-cultured with primed B
cells for 48 h. Then M2 macrophages expressing CD206 marker protein were

analyzed by immunofluorescence analysis. A. Representative immunofluorescence
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staining using anti-CD11b-PE (red) or anti-CD206-FITC (green) positive cell in
RAW 264.7 cells. B. Representative immunofluorescence staining using anti-
CD11b-PE (red) or anti-CD206-FITC (green) positive cell in DH82 cells. C. The
calculated percentage of CD206-FITC positive cells among the CD11b-PE positive
cell in RAW 264.7 are shown. D. The calculated percentage of CD206-FITC positive
cells among the CD11b-PE positive cell in DH82 are shown. Data are shown as
mean + standard deviation of three independent experiments. Scale bars = 100pm
(ns = not statistically significant, **P < 0.01, ***P < 0.001 by one-way ANOVA

analysis).
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Table 1. Primer sequences of murine used to detect gene expression of

immune related factors and macrophage target genes

Genes Primer sequences (5’ to 3°) References

Forward CAA AAT GGT GAA GGT CGG TG
mGAPDH [32]
Reverse CGT TGATGG CAACAATCT CC

Forward TGG CCC AGA AAT CAA GGA GC
mIL-10 [33]
Reverse CAG CAGACT CAATACACACT

Forward GGC CTCTCACCTTGTTGC C
mTNF-a [34]
Reverse ATG ACC CGT AGG GCG ATT AC

Forward CAC CTT GGA GTT CAC CCA GT

mINOS [35]
Reverse AGA TGT AGG TTA TTT TCT GCC AGT G

Forward ~ AAC GGA ATG ATT GTG TAG TTC TAG C
mCD206 [36]
Reverse  TAC AGG ATC AAT AAT TTT TGG CAT T
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Table 2. Primer sequences of canine used to detect gene expression of

immune related factors and macrophage target genes

Genes Primer sequences (5’ to 3°) References

Forward CCC CAATGT ATC ACT TGT GGATCT G

¢GAPDH [37]
Reverse CCT GCT TCACTACCT TCT TGATGT C
Forward AGC ACC CTA CTT GAG GAC GA

cIL-10 [38]
Reverse GAT GTC TGG GTC GTG GTT CT
Forward CCAAAC CGACCCTTT GAT CA

cTNF-a [39]
Reverse CCA GCC CTGAGC CCTTAATT
Forward GAG ATC AAT GTC GCT GTACTC C

cINOS [33]
Reverse TGA TGG TCA CAT TTT GCT TCT G
Forward GGA AAT ATG TAAACA GGAATGATGC

cCD206 [33]
Reverse TCC ATC CAAATAAAC TTTTTATCC A
Forward CCG CCA GCA GGTCACTT

cPD-L1 [40]
Reverse TCC ATT GTC ACATTG CCA CC
Forward CTC AGT GCC CAC TGT TCC TG

cTGF-p [41]

Reverse

TCC GTG GAG CTG AAG CAGTA
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AZEAAEAN ety LPS AAdolr AEAEL
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gelatdry. aela 24 B €278 mp7Ql IL-109] Zde] izt
H]&] LPS 5 ng/mL AAg3elA 2.328], LPS 10 ng/mL A= 2] 7oA
2.64) F7HEE Il Wz fHx wdES LPS 5 ng/mL
AAG A= izl Blal [L-109 F3A wEve] 3.079=
FolulstAl F7Esk om (P < 0.05), LPS 10 ng/mL A gtelM =
el wla [L—102 8.754(P< 0.001), PD—-L12 2.464) (P< 0.05),
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AAYel ot IL-10 viA #AEd anel wolxd fHx 4y
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