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Abstract 

 

Investigating clinico-molecular and 

immunological evolution of lung 

adenocarcinoma using a pseudotime 

analysis  

 

Hyunjong Lee 

Department of Molecular Medicine and Biopharmaceutical Sciences,  

Graduate School of Convergence Science and Technology,  

Seoul National University 

 

Lung adenocarcinoma (LUAD) is the most common histological type among lung 

malignancies. Because molecular features of lung cancer have been evaluated as a cross-

section study, the course of biological progression of lung cancer has not been modeled. The 

progression of lung cancer has been clinically and pathologically evaluated by staging, 

histological features, and glucose metabolism on 18F-fluorodeoxyglucose positron emission 

tomography (FDG PET), while they hardly model the biological progression in terms of 

evolution of molecular profiles. Here, pseudotime trajectories reflecting the biological 
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progression of LUAD were estimated from publicly available datasets. The evolution of 

tumor characteristics was interrogated along the pseudotime trajectories.  

A pseudotime trajectory was constructed in lung cancer dataset from the Cancer 

Genome Atlas (TCGA) using “Phenopath” tool. Genes associating with pseudotime were 

selected and gene ontology analysis was performed. A pseudotime trajectory was estimated 

also in LUAD samples of NSCLC radiogenomics dataset using lasso regression. Correlation 

analyses were performed between clinical factors including TNM stage and pseudotime. 

FDG PET images of subjects were collected from the Cancer Imaging Archive (TCIA). 

Imaging parameters including standardized uptake value (SUV) were obtained from region-

of-interests drawn with adaptive tumor margin in LifeX software. Correlation analyses were 

performed between imaging parameters and pseudotime. Immune profiles were obtained 

using “xCell” tool.  Gene mutation data were downloaded from genomic data commons 

(https://gdc.cancer.gov/). Correlation analyses were performed between enrichment scores of 

immune cells, tumor mutation burden, and pseudotime. Immunologic factors associating with 

lymph node metastasis and glucose metabolism were explored using differentially expressed 

genes, gene ontology, and comparison analyses. 

A pseudotime trajectory was successfully estimated in TCGA dataset. In LUAD 

samples, molecular profiles related to natural killer cell activity were downregulated along 

pseudotime. Those related to cell division were upregulated along pseudotime. A pseudotime 

trajectory was estimated in LUAD samples of NSCLC radiogenomics dataset with lasso 

regression model constructed from TCGA datasets. In TCGA dataset, there was a significant 

difference of pseudotime in each T stages and overall TNM stages, whereas no difference in 

N and M stages. Overall survival was significantly different between early pseudotime group 

and late pseudotime group. Maximal SUV and solute carrier family 2 member 1 gene 

(SLC2A1) expression showed a positive correlation with pseudotime. Cell enrichment in 

tumor immune microenvironment was changed according to the pseudotime. Type 1 helper 
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T (Th1) cells showed a positive correlation, whereas M2 macrophages showed a negative 

correlation with pseudotime. In early pseudotime group, triggering receptor expressed on 

myeloid cells-1 gene (TREM-1) was upregulated in adenocarcinoma patients with lymph 

node metastasis than in those without lymph node metastasis. In late pseudotime group, 

negative regulation of mononuclear cell migration was selected as a significantly 

downregulated function in samples with high FDG uptake.  

In conclusion, the pseudotime trajectories of lung cancer were estimated according 

to transcriptomic profiles. Clinical stage and SUV demonstrated significant association with 

pseudotime, showing feasibility of new scale evaluating molecular progression of lung cancer. 

Among tumor immune microenvironment, Th1 cells and M2 macrophages showed positive 

and negative correlation with pseudotime, respectively. Immunologic factors were revealed 

to associate with lymph node metastasis in early phase of disease and glucose metabolism in 

late phase of disease. The present study represented evolution of tumor characteristics in 

LUAD using pseudotime analysis. 

----------------------------------------------------------------------------------------------------  

Keywords: lung adenocarcinoma, metastasis, immune, metabolism, pseudotime 

Student number: 2015-26015  
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Introduction 

Staging of lung adenocarcinoma 

Lung adenocarcinoma (LUAD) is the most frequent histological type among lung 

malignancies (1, 2). Diagnosis and treatment of LUAD is very important in terms that lung 

malignancy is the leading cause of cancer-related deaths not only in Korea but also in other 

countries (3, 4). Since the first revision of the lung cancer TNM staging in 1973, TNM stage 

is known as the most basic and critical factor to evaluate status of disease. This staging system 

is supported by clinical observation that prognosis worsens as the size of tumor and extent of 

metastasis increase (5). Therefore, scholars have been commonly used TNM staging system 

as a reference of disease progression in previous studies. However, there is limitation to 

investigate natural progression of tumor based on TNM staging as it is evaluated at a timing 

of initial diagnosis. Referring to the current TNM staging system, patients with lymph node 

(LN) or distant metastasis are classified into high stage despite small-sized tumor. In clinical 

fields, early T stage patients with LN metastasis or high T stage patients without are not 

uncommon.  

 

FDG PET in lung adenocarcinoma 

18F-fluorodeoxyglucose positron emission tomography (FDG PET) is an essential imaging 

tool in diagnosing lung cancer. It is well established knowledge that FDG PET provides better 

accuracy in staging and more information in therapeutic response assessment (6, 7). 

Especially, FDG uptake of tumor is known to be increased according to stage of lung cancer 

(8, 9). On the contrary to this knowledge, there have been several cases with low FDG uptake 

in tumor of high T stage or high FDG uptake in tumor of low T stage. These inconsistent 

clinical experiences raise questions which factors affect FDG uptake in the early phase of 
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cancer progression. 

 

Immune microenvironment in lung adenocarcinoma 

The tumor immune microenvironment (TIME) plays a crucial role in tumor progression and 

metastasis. Among immune cells, tumor-associated macrophages (TAMs) exert various 

functions in lung cancer by differentiating into different subtypes, M1 and M2 macrophages: 

M1 macrophages mainly contribute to anti-tumor activity and M2 macrophages to pro-tumor 

activity (10). CD4+ and CD8+ T cells are revealed to associate with prognosis of LUAD (11, 

12). Programmed cell death protein 1 (PD-1) / programmed death ligand 1 (PD-L1) pathway 

is the most well-known pathway to modulate immune response via regulating activity of T 

cells (13). Pembrolizumab, a PD-1 inhibitor, showed improvement of prognosis in lung 

cancer patients (14). Thus, characterization of TIME is important to explore therapeutic target 

and predict response of immunotherapy (15, 16). There have been a few studies to report 

difference of TIME according to the stage of lung cancer. Zeni et al. showed that expression 

of interleukin-10 in TAMs was higher in late stage of lung cancer (17). Okita et al. 

documented that expression of PD-L1 was higher in subjects with LN metastasis or high 

pathological stage (18). However, there have been no study to investigate evolution of TIME 

along continuous progression of disease. 

 

Pseudotime analysis 

Pseudotime analysis, also called trajectory inference analysis, is a spotlighted method to 

explore change of cell or tissue characteristics based on transcriptomic expression (19). It 

provides a numerical scale to reflect where a cell or tissue is in the course of disease, other 

than TNM staging system. It is possible to investigate evolution of tumor characteristics 

based on the continuous and quantified time series and even validate conventional staging 

system. There are over 70 methods for pseudotime analysis. Among them, Phenopath is a 



3 

 

recently developed analytic tool for pseudotime estimation with linear methods (20). It 

showed good stability, good code assurance, and fair accuracy (21). Although there have been 

several studies to apply pseudotime analysis in lung cancer samples, scopes of those studies 

were limited to only single cell RNA-sequencing (RNA-seq) data from small numbers of 

patients (22, 23). Pseudotime analysis in large numbers of subjects may provide a model to 

explore the course of biological progression of lung cancer. 
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Purpose 

In this study, it is aimed to reveal evolution of tumor characteristics along the pseudotime 

trajectories, focused on four aspects: genetic features, clinical features, glucose metabolism 

and immune profiles. Pseudotime trajectories were estimated in the LUAD cohorts from the 

Cancer Genome Atlas (TCGA) and non-small cell lung cancer (NSCLC) radiogenomics 

dataset. Association between genetic features, clinical features, glucose metabolism, immune 

profiles and pseudotime was analyzed. In addition, immunological factors associating with 

LN metastasis and glucose metabolism were investigated.  
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Materials and Methods 

 

Pseudotime estimation 

The overall study scheme is described in Figure 1. A pseudotime trajectory was constructed 

in two publicly available datasets; TCGA-LUAD and TCGA-lung squamous cell carcinoma 

(LUSC). They were obtained using “TCGAbiolinks” package in R. Legacy data of gene 

expression quantification were downloaded by “GDCdownload” function. There were 600 

LUAD samples and 553 LUSC samples. RNA-seq data were normalized by log 2 

transformation. Highly variable genes were selected using “DESeq2” package in R. First, 

estimates of variance and coefficient of variation were calculated. Subsequently, a regression 

line was fitted. Finally, genes showing significant deviation from regression line were 

selected by chi-squared test with a threshold of 0.001 as p-value. 8589 genes were selected 

as HVGs among total 21022 genes. A pseudotime trajectory was generated using “Phenopath” 

package in R (20). An input data was a gene expression matrix of highly variable genes from 

TCGA-LUAD and TCGA-LUSC datasets. We choose an evidence lower bound as 10-6 and 

compute it thinned by 2 iterations. 
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Figure 1. Overall scheme of the study. 
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Genetic feature analysis 

Principal component analysis (PCA) was performed to visualize temporal evolution of 

genetic characteristics of LUAD and LUSC, using “PCA” function included in “factoextra” 

package in R. Phenopath analysis provided four output values; alpha: degree of differential 

expression, beta: degree of covariate-pseudotime interaction, lambda: degree of pseudotime 

dependency, z: estimates of pseudotime. Bayesian significant test was applied to select genes 

showing significant pseudotime dependency (non-zero lambda) and significant covariate-

pseudotime dependency (non-zero beta). Gene ontology (GO) analysis was conducted on 

genes showing significant pseudotime dependency to investigate which functions were 

upregulated or downregulated along the pseudotime trajectory, using “enrichGO” function 

included in “clusterProfiler” package in R. 

 

Pseudotime prediction in NSCLC radiogenomics dataset 

LUAD samples of NSCLC radiogenomics dataset were employed to perform validation 

analysis. A RNA-seq dataset (GSE103584) was downloaded from Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/) (24). There were 96 LUAD samples in NSCLC 

radiogenomics dataset. A lasso regression model was used to estimate pseudotime in LUAD 

samples of NSCLC radiogenomics dataset based on results of TCGA dataset. Two hundred 

genes were selected from genes which showed significant association between pseudotime: 

top 100 genes in the positive correlation group, top 100 genes in the negative correlation 

group. An expression matrix of those 200 genes was constructed from TCGA dataset. It was 

divided into two groups with 2:1 ratio, training and test data. A lambda with the least error 

was selected via cross-validation (Figure 2). A lasso regression model was obtained. An alpha 

was 1. The model was applied to LUAD samples of NSCLC radiogenomics dataset to predict 

a pseudotime trajectory.   
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Figure 2. Result of cross-validation to select lambda with the least error for lasso 

regression. 

For lasso regression modelling, a lambda with the least error was selected via cross-validation. 
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Clinical feature analysis 

Clinical data of TCGA dataset were downloaded from cBioPortal (http://www.cbioportal.org/) 

using “cgdsr” package in R. TNM stage, disease-free status (DFS), overall survival (OS), and 

duration of DFS/OS were selected as representative clinical factors. A heatmap was plotted 

to visualize association between genes, clinical factors, and pseudotime using 

“Complexheatmap” package in R. Pseudotime of each TNM stage group was compared each 

other using t-test or ANOVA test. Survival curves were plotted with a median value of 

pseudotime as a threshold. Clinical data of NSCLC radiogenomics dataset were downloaded 

from The Cancer Imaging Archive (TCIA, https://www.cancerimagingarchive.net/). 

Pseudotime of each TNM stage group was compared each other using Wilcoxon rank-sum 

test or Kruskal-Wallis test.  

 

Glucose metabolism analysis 

FDG PET images of LUAD subjects from both TCGA dataset and NSCLC radiogenomics 

dataset were downloaded from TCIA. There were 16 and 93 samples with both RNA-seq 

data and FDG PET images in LUAD samples of TCGA dataset and NSCLC radiogenomics 

dataset, respectively. Tumor margins were delineated using Nestle adaptive threshold method 

provided by “LifeX” software (25, 26). Beta was 0.3. Maximal standardized uptake value 

(SUV), mean SUV, and metabolic tumor volume (MTV) were obtained from the region-of-

interests. Total lesion glycolysis (TLG) was calculated from mean SUV and MTV. 

Correlation coefficients between FDG PET parameters, solute carrier family 2 member 1 

(SLC2A1) expression, and pseudotime were calculated by Spearman and Pearson correlation 

test in TCGA dataset and NSCLC radiogenomics dataset, respectively. 

 

Immune profile analysis 

In both of TCGA dataset and NSCLC radiogenomics dataset, enrichment scores of 64 
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immune and stroma cell types were estimated using “xCellAnalysis” function in “xCell” 

package in R (27). Correlation coefficients between enrichment scores and pseudotime were 

calculated by Pearson correlation test. False discovery rate (FDR) was calculated from p-

values with Bonferroni method. Volcano plot, heatmap, and scatter plot were represented to 

describe association between enrichment scores of immune cells and pseudotime. Expression 

of PD-L1 and tumor mutation burden (TMB) are well-known indicators for immune profiles 

of tumor (13, 28, 29). In TCGA dataset, gene mutation data were downloaded from genomic 

data commons (https://gdc.cancer.gov/), followed by constructing mutation annotation 

format file using “read.maf” function included in “maftools” package (30). TMB was 

estimated using “tmb” function included in “maftools” package. Correlation coefficients 

between expression of PD-L1, TMB, and pseudotime were calculated by Pearson correlation 

test. Difference of immune profiles were investigated between samples with epidermal 

growth factor receptor gene (EGFR) or Kirsten rat sarcoma gene (KRAS) mutation and those 

without, using ANOVA. Correlation between enrichment of immune cells, expression of PD-

L1, TMB, and pseudotime was explored in each mutation group, respectively. 

 

Features associating with lymph node metastasis and glucose metabolism 

An additional analysis was performed to explore which factors associate with lymph node 

metastasis in early and late pseudotime of LUAD. A median value of pseudotime was set as 

the threshold to classify samples into two group: early pseudotime and late pseudotime group. 

Samples without lymph node metastasis (N0) was defined as “No LN metastasis” group, 

those with lymph node metastasis (N1, N2, N3) as “LN metastasis” group. First, chi-square 

test was conducted to reveal whether there is difference in possibility of lymph node 

metastasis between two groups, early pseudotime and late pseudotime. Subsequently, 

differentially expressed genes (DEGs) between “No LN metastasis” group and “LN 

metastasis” group were obtained using “limma” package in R. The analysis was performed 
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respectively in early pseudotime and late pseudotime group. Genes with FDR below 0.1 were 

selected as DEGs. A volcano plot was drawn using “EnhancedVolcano” package in R. GO 

analysis was conducted on DEGs, using “enrichGO” function included in “clusterProfiler” 

package in R. TMB was compared using t-test and immune cell enrichment scores using 

Wilcoxon rank-sum test due to non-normality. Expression of triggering receptor expressed 

on myeloid cells-1 (TREM-1) expression and enrichment scores of monocytic myeloid-

derived suppressor cells (MDSCs) were also compared using t-test. Marker genes for 

monocytic MDSC were selected as integrin subunit alpha M (ITGAM), CD33, and CD14 

based on a previous study (31). Enrichment scores of monocytic MDSC were estimated using 

“gsva” function included in “GSVA” package in R. 

An additional analysis was performed to explore which factors associate with 

glucose metabolism in early and late pseudotime of LUAD. As described above, a median 

value of pseudotime was set as the threshold to classify samples into two group: early 

pseudotime and late pseudotime group. A median value of maximal SUV was set as the 

threshold to classify samples into two groups: high FDG uptake and low FDG uptake group. 

First, chi-square test was conducted to reveal whether there is difference in mutation profiles 

including status of EGFR mutation and KRAS mutation between two groups, early 

pseudotime and late pseudotime. Subsequently, DEG and GO analysis was performed with 

same methods as previously described, except 0.001 as a threshold of p-value. Immune cell 

enrichment scores were also compared using Wilcoxon rank-sum test. 

 

Statistical analysis 

All statistical analysis were performed using R software (v4.0.4, R Foundation for Statistical 

Computing, Vienna, Austria). A p-value of < 0.05 was considered statistically significant.
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Results 

 

Part I. Pseudotime estimation and validation 

Temporal evolution of genetic features 

TCGA-LUAD and TCGA-LUSC datasets were employed to estimate a pseudotime trajectory 

in bulk data of lung cancer. In PCA, LUAD and LUSC samples seem to be in same position 

at the beginning of pseudotime (Figure 3). As pseudotime passes, LUAD and LUSC samples 

are clearly discriminated in PCA plot. We investigated genes regulated along pseudotime in 

total lung cancer, LUAD, and LUSC samples, respectively (Figure 4a, b). 603 genes showed 

significantly positive correlation with pseudotime in total lung cancer samples, 2594 genes 

negative correlation in total cancer samples, 178 genes positive correlation in LUAD samples, 

853 genes negative correlation in LUAD samples, 479 genes positive correlation in LUSC 

samples, and 647 genes negative correlation in LUSC samples, respectively. GO analysis was 

performed to uncover which biological pathways are related (Figure 5). In total lung cancer 

samples, molecular functions related to cell division are upregulated along pseudotime. In 

LUAD samples, those related to natural killer (NK) cell function are downregulated along 

pseudotime. Those related to cell division such as nucleosome assembly and DNA packaging 

are upregulated along pseudotime as in total lung cancer samples.  
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Figure 3. PCA plots of TCGA lung cancer cohorts. 

Principal components analysis was performed in TCGA-LUAD and TCGA-LUSC samples. 

Adenocarcinoma samples (TCGA-LUAD) were plotted in the left panel and squamous cell 

carcinoma (TCGA-LUSC) in the right panel. Both of two histological types located in same 

position at the beginning of pseudotime and differentiate along pseudotime as black arrows. 
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Figure 4. Genes upregulated and downregulated along pseudotime. 

Genes upregulated and downregulated along pseudotime were selected and plotted with 

yellow dots. Top 10 genes with high pseudotime dependency were annotated. (a) 3197 genes 

showed significant correlation with pseudotime in total lung cancer. (b) 1031 genes showed 

significant correlation in LUAD samples, and 1126 genes in LUSC samples. 
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Figure 5. Gene ontology analysis with genes upregulated and downregulated along 

pseudotime. 

Gene ontology analysis was performed in genes associating with pseudotime. In total lung 

cancer samples, molecular functions related to cell division are upregulated along pseudotime 

(upper). In LUAD samples, those related to natural killer cell activity are downregulated 

along pseudotime and those related to cell division upregulated (lower).  
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Temporal evolution of clinical features 

A heatmap visualizes clinical factors of each sample with top 10 genes upregulated and those 

downregulated along pseudotime in LUAD samples (Figure 6). Notably, histone coding 

genes showed upregulation along pseudotime. Boxplots represent association between TNM 

stage and pseudotime in LUAD samples (Figure 7a-d). There was significant difference of 

pseudotime in each T stages (p < 0.001), especially in T1-T2 (mean: -0.08013 vs. 0.03092, p 

< 0.001) and T1-T3 (mean: -0.08013 vs. 0.08310, p < 0.001). Pseudotime in difference N and 

M stages showed no difference. There was significant difference of pseudotime in each 

overall TNM stage (p < 0.001), especially in IA-IB (mean: -0.09326 vs. 0.02969, p < 0.001), 

IA-IIB (mean: -0.09326 vs. 0.05374, p < 0.001), and IA-IIIA (mean: -0.09326 vs. 0.03749, p 

< 0.001). Kaplan-Meier curves were plotted for survival analysis (Figure 8a, b). OS was 

significantly different between early pseudotime group and late pseudotime group (p = 0.015). 

Pseudotime was estimated in the NSCLC radiogenomics dataset based on lasso 

regression model from TCGA dataset. Association between clinical factors and pseudotime 

was validated in LUAD samples. There was mild tendency of increasing T stage along 

pseudotime, especially in early T stages (Figure 9a, p = 0.097). There was no association 

between N/M stage and pseudotime (Figure 9b, c). Histological grade showed association 

with pseudotime (Figure 9d, p = 0.017). There was no significant association between overall 

TNM stage and pseudotime (Figure 9e). However, in early stages, association with 

pseudotime was partially observed.  
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Figure 6. A heatmap visualizing clinical factors of each sample with top 10 genes 

associated along pseudotime in TCGA-LUAD dataset. 
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Figure 7. Boxplots visualizing difference of pseudotime according to TNM stages in 

TCGA-LUAD dataset. 

(a) There was significant difference of pseudotime in each T stages. (b, c) Pseudotime in each 

N and M stage showed no difference. (d) There was significant difference of pseudotime in 

each overall TNM stage. 
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Figure 8. Kaplan-Meier curves in TCGA-LUAD dataset. 

Survival analysis was performed in two groups: early pseudotime group and late pseudotime 

group. (a) There was no significant difference in disease-free survival. (b) Overall survival 

was significantly different between two groups. 
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Figure 9. Boxplots visualizing difference of pseudotime according to TNM stages in 

LUAD samples of NSCLC radiogenomics dataset. 

(a) There was mild tendency of increasing T stage along pseudotime. (b, c) Pseudotime in 

each N stage and M stage showed no difference. (d) There was significant difference of 

pseudotime in different histological grades. (e) There was no significant association between 

overall TNM stage and pseudotime. 
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Temporal evolution of glucose metabolism in TCGA-LUAD dataset 

The Spearman correlation test was performed to reveal temporal change of glucose 

metabolism in LUAD. There was significant positive correlation between maximal SUV and 

pseudotime (Figure 10, rho = 0.518, p = 0.042). There was significant positive correlation 

between mean SUV and pseudotime (Figure 10, rho = 0.517, p = 0.049). However, MTV and 

TLG showed no association with pseudotime. There was tendency of high SLC2A1 

expression in late pseudotime without statistical significance (Figure 11a, rho = 0.444, p = 

0.087). However, there was no correlation between maximal SUV and expression of SLC2A1 

(Figure 11b, rho = 0.409, p = 0.117). 
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Figure 10. Scatter plots showing correlation between SUV and pseudotime in TCGA-

LUAD dataset. 

A size of dot represents metabolic tumor volume. Color of dot represents total lesion 

glycolysis. Maximal SUV showed positive correlation with pseudotime (left). Mean SUV 

showed positive correlation with pseudotime (right). 
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Figure 11. Scatter plots showing correlation of SLC2A1 expression with pseudotime and 

SUV in TCGA-LUAD dataset. 

(a) Expression of SLC2A1 increased along pseudotime without statistical significance. (b) 

There was no significant correlation between SLC2A1 and maximal SUV. 
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Temporal evolution of glucose metabolism in LUAD samples of NSCLC radiogenomics 

dataset 

The Pearson correlation test was performed to reveal temporal change of glucose metabolism 

in the NSCLC radiogenomics dataset. There was significant positive correlation between 

maximal SUV and pseudotime (Figure 12, r = 0.259, p = 0.005). There was significant 

positive correlation between mean SUV and pseudotime (Figure 12, r = 0.227, p = 0.029). 

However, MTV and TLG showed no association with pseudotime. There was marginally 

positive correlation between expression of SLC2A1 and pseudotime (Figure 13a, r = 0.202, 

p = 0.053). In addition, there was no significant correlation between maximal SUV and 

expression of SLC2A1 (Figure 13b, r = 0.070, p = 0.504).  
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Figure 12. Scatter plots showing correlation between SUV and pseudotime in LUAD 

samples of NSCLC radiogenomics dataset. 

A size of dot represents metabolic tumor volume. Color of dot represents total lesion 

glycolysis as log scale. Maximal SUV showed weakly positive correlation with pseudotime 

(left). Mean SUV showed weakly positive correlation with pseudotime (right). 
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Figure 13. Scatter plots showing correlation of SLC2A1 expression with pseudotime and 

SUV in LUAD samples of NSCLC radiogenomics dataset. 

(a) Expression of SLC2A1 showed weakly positive correlation with pseudotime despite of 

statistical insignificance. (b) Expression of SLC2A1 showed no significant correlation with 

maximal SUV. 

  



27 

 

Part II. Temporal evolution of immune profiles in lung adenocarcinoma 

Temporal evolution of immune profiles in TCGA-LUAD dataset 

A volcano plot and a heatmap demonstrate immune and stroma cells associating with 

pseudotime in TCGA dataset. (Figure 14, 15). Among them, type 1 helper T (Th1) cells 

showed positive correlation (Figure 16a, r = 0.524, p < 0.001) and M2 macrophages negative 

correlation (Figure 16b, r = -0.545, p < 0.001). PD-L1, the most representative 

immunotherapy target in lung cancer, showed weakly negative correlation with pseudotime 

(Figure 17a, r = -0.289, p < 0.001). TMB showed weakly positive correlation with 

pseudotime (Figure 17b, r = 0.243, p < 0.001). 

 Enrichment scores of Th1 cells, those of M2 macrophages, expression of PD-L1, 

and TMB were compared between groups with different driver mutations: EGFR mutation, 

KRAS mutation and other mutations. Although there was no difference in enrichment of M2 

macrophages and expression of PD-L1, there were significant differences in enrichment of 

Th1 cells and TMB (Figure 18-21, p = 0.023 and p = 0.011, respectively). Th1 cells and TMB 

showed significantly positive correlation with pseudotime in all mutation groups (Figure 18, 

Figure 21).  
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Figure 14. A volcano plot representing immune cells associating with pseudotime in 

TCGA-LUAD dataset. 

Cell types of correlation coefficients above 0.5 were plotted as red dots. Cell types of FDR 

below 0.05 and correlation coefficients below 0.5 were plotted as blue dots. Among them, 

immune cells were annotated. 
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Figure 15. A heatmap representing immune and stromal cells associating with 

pseudotime in TCGA-LUAD dataset. 
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Figure 16. Scatter plots showing correlation between immune cell enrichment scores 

and pseudotime in TCGA-LUAD dataset. 

(a) Th1 cells showed positive correlation with pseudotime. (b) M2 macrophages showed 

negative correlation with pseudotime. 
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Figure 17. Scatter plots showing correlation between PD-L1 expression, TMB, and 

pseudotime in TCGA-LUAD dataset. 

(a) PD-L1 expression showed weakly negative correlation with pseudotime. (b) TMB 

showed weakly positive correlation with pseudotime. 
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There was significant difference in enrichment of Th1 cells between different driver mutation 

groups (upper). In all mutation groups, enrichment of Th1 cells increased along pseudotime 

(lower). 

Figure 18. Difference and association with pseudotime of Th1 cell enrichment in each 

mutation group. 
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There was no significant difference in enrichment of M2 macrophages between different 

driver mutation groups (upper). In all mutation groups, enrichment of M2 macrophages 

decreased along pseudotime (lower). 

  

Figure 19. Difference and association with pseudotime of M2 macrophages enrichment 

in each mutation group. 
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There was no significant difference in enrichment of PD-L1 expression between different 

driver mutation groups (upper). In KRAS and others mutation groups, PD-L1 expression 

decreased along pseudotime (lower). 

  

Figure 20. Difference and association with pseudotime of PD-L1 expression in each 

mutation group. 
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There was significant difference in TMB between different driver mutation groups (upper). 

In all mutation groups, TMB increased along pseudotime (lower). 

 

  

Figure 21. Difference and association with pseudotime of TMB in each mutation group. 
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Temporal evolution of immune profiles in LUAD samples of NSCLC radiogenomics dataset  

A volcano plot and a heatmap demonstrate immune and stroma cells associating with 

pseudotime in LUAD samples of NSCLC dataset. (Figure 22, 23). Among them, Th1 cells 

showed positive correlation (Figure 24a, r = 0.444, p < 0.001) and M2 macrophages negative 

correlation (Figure 24b, r = -0.367, p < 0.001). PD-L1 showed no significant correlation with 

pseudotime (Figure 25, r = 0.041, p = 0.698). There was no significant difference in 

enrichment scores of Th1 cells, those of M2 macrophages and expression of PD-L1 between 

groups with different driver mutations: EGFR mutation, KRAS mutation and other mutations. 
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Figure 22. A volcano plot representing immune cells associating with pseudotime in 

LUAD samples of NSCLC radiogenomics dataset. 

Cell types of correlation coefficients above 0.5 were plotted as red dots. Cell types of FDR 

below 0.05 and correlation coefficients below 0.5 were plotted as blue dots. Among them, 

immune cells were annotated. 
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Figure 23. A heatmap representing immune and stromal cells associating with 

pseudotime in LUAD samples of NSCLC radiogenomics dataset. 
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Figure 24. Scatter plots showing correlation between immune cell enrichment scores 

and pseudotime in LUAD samples of NSCLC radiogenomics dataset. 

(a) Th1 cells showed positive correlation with pseudotime. (b) M2 macrophages showed 

negative correlation with pseudotime. 
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Figure 25. A scatter plot showing correlation between PD-L1 expression and pseudotime 

in LUAD samples of NSCLC radiogenomics dataset. 

PD-L1 expression showed no significant correlation with pseudotime. 
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Part III. Immunological factors associating with lymph node metastasis and 

glucose metabolism 

TREM-1 associating with lymph node metastasis 

In TCGA-LUAD dataset, there was no significant difference in possibility of lymph node 

metastasis between early pseudotime group and late pseudotime group (Figure 26, p = 0.066). 

Volcano plots represent DEGs between samples without LN metastasis and those with LN 

metastasis in early pseudotime group and late pseudotime group, respectively (Figure 27). 

Notably, triggering receptor expressed on myeloid cells-1 (TREM-1) was highly expressed 

in samples with LN metastasis in early pseudotime group. Among GO terms, acute 

inflammatory response and humoral immune response were selected as significantly 

upregulated functions in samples with LN metastasis in early pseudotime group (Figure 28). 

In early pseudotime group, monocytes were enriched higher in samples with LN metastasis 

than those without LN metastasis (Figure 29a, W = 7184.5, p = 0.008). There was tendency 

of high macrophages and M2 macrophages in samples with LN metastasis despite statistical 

significance (Figure 29a, W = 7657, p = 0.051; W = 7756, p = 0.071; respectively.). In late 

pseudotime group, CD4+ T cells, CD8+ T cells, and B cells were enriched higher in samples 

without LN metastasis than those with LN metastasis (Figure 29b, W = 12321, p < 0.001; W 

= 11581.5, p = 0.015; W = 11831.5, p = 0.005; respectively).  

Expression of TREM-1 was compared between samples with and without LN 

metastasis in early pseudotime group. Additionally, gene set enrichment scores for monocytic 

myeloid-derived stem cells were compared. Both of those were higher in samples with LN 

metastasis than those without (Figure 30, mean: 11.28313 vs. 10.45068, p < 0.001; mean: 

0.306 vs. 0.158, p = 0.039).  
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Figure 26. A mosaic plot representing difference of subjects with lymph node metastasis 

in early pseudotime and late pseudotime groups. 

There was no significant difference in possibility of lymph node metastasis between early 

pseudotime group and late pseudotime group in TCGA-LUAD dataset. 
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Figure 27. Volcano plots representing DEGs between samples without lymph node 

metastasis and those with lymph node metastasis. 

DEGs were plotted with red dots in early pseudotime group (left) and late pseudotime group 

(right). TREM-1 was highly expressed in samples with lymph node metastasis in early 

pseudotime group. 
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Figure 28. Gene ontology analysis with DEGs between samples without lymph node 

metastasis and those with lymph node metastasis. 

Acute inflammatory response and humoral immune response were selected as significantly 

upregulated functions in samples with LN metastasis in early pseudotime group. 
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Figure 29. Violin plots representing difference of immune cell enrichment scores. 

(a) In early pseudotime group, monocytes were enriched higher in samples with lymph node 

metastasis than those without lymph node metastasis. (b) In late pseudotime group, CD4+ T 

cells, CD8+ T cells, and B cells were enriched higher in samples without lymph node 

metastasis than those with lymph node metastasis. 

  



46 

 

 

Figure 30. Differences of TREM-1 expression and monocytic MDSC enrichment.  

(a) In early pseudotime group, TREM-1 expression was higher in samples with lymph node 

metastasis than those without lymph node metastasis. (b) In early pseudotime group, 

monocytic MDSC were enriched higher in samples with lymph node metastasis than those 

without lymph node metastasis. 
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Mononuclear cell associating with glucose metabolism 

In LUAD samples of NSCLC radiogenomics dataset, there were samples with high FDG 

uptake in the early pseudotime and samples with low FDG uptake in the late pseudotime 

(Figure 31). In early pseudotime group, there was lesser subjects with EGFR mutation than 

those with wildtype EGFR in low FDG uptake group despite statistical insignificance (Figure 

32a, p = 0.079). On the contrary, there was no differences in proportion of subjects with 

EGFR mutation between high FDG uptake group and low FDG uptake group in late 

pseudotime group (Figure 32b, p = 0.817). In early pseudotime group, a proportion of 

subjects with grade 3 was higher in high FDG uptake group than in low FDG uptake group 

(Figure 33a, p = 0.050). In late pseudotime group, a proportion of subjects with grade 3 was 

higher in high FDG uptake group and that with grade 1 was higher in low FDG uptake group 

(Figure 33b, p = 0.016). Among GO terms, negative regulation of keratinocyte proliferation 

was selected as significantly downregulated function in samples with high FDG uptake in 

early pseudotime group. Cell cycle arrest and negative regulation of mononuclear cell 

migration were selected as significantly downregulated function in samples with high FDG 

uptake in late pseudotime group (Figure 34). Enrichment scores of monocytes and Th1 cells 

were higher in those with FDG uptake than those with low FDG uptake in early and late 

pseudotime group, respectively (Figure 35, W = 378, p = 0.012; W = 379, p = 0.028, 

respectively). In addition, enrichment scores of Th1 cells showed positive correlation with 

maximal SUV (Figure 36a, r = 0.442, p < 0.001).  
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Figure 31. A scatter plot showing weak positive correlation between SUV and 

pseudotime in LUAD samples of NSCLC radiogenomics dataset. 

There were samples with high FDG uptake in the early pseudotime (the left upper quadrant 

of scatter plot) and samples with low FDG uptake in the late pseudotime (the right lower 

quadrant of scatter plot). The vertical dashed line is a median value of pseudotime. The 

horizontal dashed line is a median value of maximal SUV in early and late pseudotime group. 
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Figure 32. Mosaic plots representing difference of subjects with EGFR mutation 

according to FDG uptake. 

(a) In early pseudotime group, there was lesser subjects with EGFR mutation than those with 

wildtype EGFR in low FDG uptake group despite statistical insignificance. (b) In late 

pseudotime group, there was no differences in proportion of subjects with EGFR mutation 

between high FDG uptake group and low FDG uptake group. 
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Figure 33. Mosaic plots representing difference of subjects with different histological 

grade according to FDG uptake. 

(a) In early pseudotime group, a proportion of subjects with G3 was higher in high FDG 

uptake group than in low FDG uptake group. (b) In late pseudotime group, a proportion of 

subjects with G3 was higher in high FDG uptake group and that with G1 was higher in low 

FDG uptake group. 
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Figure 34. Gene ontology analysis with DEGs between samples with high FDG uptake 

and those with low FDG uptake. 

Negative regulation of keratinocyte proliferation was selected as significantly downregulated 

function in samples with high FDG uptake in early pseudotime group (upper). Cell cycle 

arrest and negative regulation of mononuclear cell migration were selected as significantly 

downregulated functions in samples with high FDG uptake in late pseudotime group (lower). 

  



52 

 

 

Figure 35. Violin plots representing difference of immune cells according to FDG uptake. 

Enrichment scores of monocytes were higher in samples with FDG uptake than those with 

low FDG uptake in early pseudotime (left). Enrichment scores of Th1 were higher in samples 

with FDG uptake than those with low FDG uptake in early pseudotime (right). 
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Figure 36. Scatter plots showing correlation of Th1 cell enrichment with pseudotime 

and SLC2A1 expression in LUAD sample of NSCLC radiogenomics dataset. 

(a) Enrichment of Th1 cells showed positive correlation with maximal SUV. (b) Enrichment 

of Th1 cells showed no significant correlation with expression of SLC2A1. 

  



54 

 

Discussion 

The TNM staging in lung cancer is a well-established system to evaluate disease progression 

status, predict prognosis, and select appropriate treatment options (32, 33). However, it is the 

result from cross-sectional observation via clinical / pathologic / radiologic findings at a 

timing of initial diagnosis. Therefore, there is limitation to investigate temporal evolution of 

tumor biology longitudinally based on TNM staging as a reference scale. We attempted to 

construct a temporal model for the biological progression from genetic profiles of a large-

scale dataset. Based on the generated model, we interrogated temporal evolution of genetic 

features, clinical features, glucose metabolism, and immune profiles in lung adenocarcinoma.  

In this study, we successfully estimated a pseudotime trajectory in TCGA-LUAD 

and TCGA-LUSC datasets. In PCA, LUAD and LUSC samples in early phase are revealed 

to have similar genetic characteristics and differentiate into LUAD and LUSC along 

pseudotime order. In tumorigenesis of NSCLC, molecular events such as 3p allele loss and 

telomerase activation are observed in most of NSCLC (34-36). Similarity of genetic 

characteristics in early LUAD and LUSC may be caused by the common pathogenesis 

mechanisms. The result implies that tumor showing specific characteristics of LUAD or 

LUSC has high possibility of progressed state. 

In both of total lung cancer and LUAD samples, GO terms related to cell division 

were selected as significant upregulated molecular functions along pseudotime. Especially, 

histone-related genes showed high correlation with pseudotime in LUAD. These can be 

interpreted as the results from either large number of tumor cells or enhanced mitotic activity 

of tumor cell in late phase. In the same tendency, T stage and overall TNM stage demonstrated 

good association with pseudotime. It is well consistent with the current TNM staging system. 

Notably, there were significant associations in the early T stages (T1-T2, T2-T3) and early 
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overall stages (IA-IB, IA-IIB, IA-IIIA). In the current TNM staging system, T2-T4 stages 

include not only size criteria but also criteria of involving other structures such as bronchus 

or chest wall (37). Thus, a small size tumor with involvement of other structures can be 

diagnosed as high T stage. If there are lymph node metastases, it is highly likely to be 

classified as above stage IIIA. These characteristics of the current TNM staging system cause 

associations between early T-stage/overall stage and pseudotime. Probability of OS showed 

significant difference between early pseudotime and late pseudotime samples. It indicates 

that pseudotime may have clinical usability to classify patients based on prognosis as TNM 

staging. Of course, further study is warranted to explore clinical significance of pseudotime 

trajectory. In both of two datasets, maximal SUV and mean SUV demonstrated significantly 

positive correlation with pseudotime. These findings are consistent with previously revealed 

relationship between FDG uptake and stage of tumor (8, 9, 38). In brief, change of genetic 

features, clinical features, and glucose metabolism along pseudotime was revealed to be 

consistent with previous knowledges about tumor progression. Therefore, estimated 

pseudotime was hypothesized to be an appropriate temporal reference of disease progression. 

The present study demonstrated temporal evolution of immune profiles in LUAD. 

It is noteworthy that enrichment score of Th1 cells represented significantly positive 

correlation with pseudotime. It is generally believed that Th1 cells contribute to anti-tumor 

response inducing cytotoxicity (39, 40). It is also remarkable that M2 macrophages showed 

significantly negative correlation with pseudotime. M2 macrophages exert pro-tumor activity 

via tissue remodeling and angiogenesis (41, 42). Briefly, anti-tumor immunity seems to 

strengthen along pseudotime, whereas pro-tumor immunity seems to weaken along 

pseudotime. These results are also consistent with a previous report documenting that 

proportion of high stage was larger in samples with high immune score and cytolytic score 

(43). In addition, NK cell function was downregulated along pseudotime. Although NK cells 

are known to be a good prognostic factor in lung cancer, a few studies showed inconsistent 
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results (44-47). Among them, Jules et al. suggested that intratumoral NK cells negatively 

affect the prognostic value of CD8+ T cells (47). Regarding the tendency of lesser Th1 and 

more M2 macrophages along pseudotime, this study supports an inhibitory role of 

intratumoral NK cells for anti-tumor immunity. Interestingly, PD-L1 expression showed a 

negative correlation with pseudotime, whereas TMB showed positive correlation in TCGA-

LUAD dataset. Those are well-known biomarkers predicting response for cancer 

immunotherapy (29, 48). This heterogenous finding implies that response of immunotherapy 

may not represent any tendency according to molecular progression of lung adenocarcinoma. 

Driver mutations are key factors not only to initiate tumorigenesis but also to 

progress disease. EGFR and KRAS mutations are the most representative driver mutations 

of LUAD (49). It was revealed that TMB was lower in EGFR mutation group than in other 

mutation groups. It is consistent with other studies that showed weak immunogenicity or low 

TMB of tumors with EGFR mutation (50, 51). This study showed that immunogenicity of 

tumor increases along disease progression regardless of driver mutations, despite low Th1 

cell infiltration and TMB in EGFR mutation tumors. 

In this study, there was no significant correlation between N stage and pseudotime. 

There was no significant difference in proportion of LN metastasis subjects between in early 

time group and late time group, although that in late time group was higher than that in early 

time group. It suggests that there is no inevitable association between molecular progression 

and lymph node metastasis. In clinical field, there is tendency that patients with high T stage 

show lymph node metastasis. However, it is not unique that patients with low T stage show 

multiple lymph nodes or distant metastases or patients with high T stage show no metastasis. 

These experiences are related to the result of this study. In early pseudotime group, TREM-1 

was selected as a DEG between subjects with LN metastasis and those without LN metastasis. 

TREM-1 is one of receptor proteins expressed in myeloid cells including monocytes and 

neutrophils. It is reported to induce inflammation through pro-inflammatory gene 
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upregulation (52). Thus, GO terms related to inflammation were selected as significant 

functions upregulated in those with LN metastasis. Especially in lung cancer, TREM-1 is 

expressed on tumor-associated macrophages, increases invasiveness of tumor cells, and 

associates with poor prognosis (53). Notably, monocytes were highly enriched in samples 

with lymph node metastasis in early pseudotime group. TREM-1 is known to be expressed 

on MDSC (54). Monocytic MDSC enables immune escape and promotes tumor progression 

(55, 56). This study also showed that expression of TREM-1 and enrichment of monocytic 

MDSC were higher in samples with LN metastasis than those without, in early pseudotime. 

Briefly, the present study implies that immune suppression may affect lymph node metastasis 

in early phase of lung adenocarcinoma. In late pseudotime group, CD4+ T cells and CD8+ T 

cells were lowly enriched in samples with lymph node metastasis. It is supposed that reduced 

anti-tumor immunity of T cells may affect lymph node metastasis in late phase of lung cancer 

progression.  

Although positive correlation between pseudotime and maximal SUV was 

identified, there were some heterogenous findings in NSCLC radiogenomics dataset. There 

were samples with relatively higher FDG uptake with maximal SUV even over 10 in early 

phase of lung adenocarcinoma, and samples with relatively lower FDG uptake with maximal 

uptake even below 3 in late phase. Clinicians often experience lung adenocarcinoma cases 

with FDG PET/CT findings inconsistent with general knowledge, as described above. In 

subgroup analyses, we explored factors associating with FDG uptake in early pseudotime 

group and late pseudotime group, respectively. Subjects with EGFR mutation represented 

low FDG uptake in early pseudotime group despite statistical insignificance. In several 

studies, EGFR mutants showed lower FDG uptake than EGFR wild-type due to decreased 

glucose metabolism (57-59). This study suggests that EGFR mutation may associate with 

glucose metabolism especially in early phase of lung adenocarcinoma. FDG uptake of low-

grade tumor was lower than that of high-grade tumor in late pseudotime group. It may be 



58 

 

caused not only by high FDG uptake of poorly differentiated lung cancer but also by positive 

correlation between histological grade and pseudotime (38, 60).  

GO analyses showed which function associates with FDG uptake in early and late 

pseudotime groups. In early pseudotime group, keratinocyte proliferation was revealed to 

associate with FDG uptake. First, it is closely linked with previously described results, larger 

proportion of EGFR wild type in high FDG uptake group. EGFR induces cell proliferation 

and accelerates tumor growth (61, 62). Thus, cell proliferative activity seems to affect FDG 

uptake in the early phase of lung adenocarcinoma. Secondly, it may be interpretated with 

results from principal component analysis. We demonstrated early phase of LUAD and LUSC 

shared similar genetic characteristics, implying that early stage of LUAD may show a part of 

squamous features. In terms that LUSC shows higher FDG uptake than LUAD, LUAD with 

squamous cell features is supposed to demonstrate high FDG uptake (38, 63). On the contrary, 

mononuclear cell migration was revealed to associate with FDG uptake in late pseudotime 

group. In addition, it was pointed out that Th1 cells associated with FDG uptake among 

immune cells infiltrated in tumor tissue. It is consistent with a previous study that Th1 cell 

enrichment is higher in tumor with high FDG uptake in head and neck cancer patients (64). 

First, high glucose metabolism may be needed for proliferation and activation of Th1 cells. 

Secondly, high tumor burden or enhanced metabolism of tumor may affect immunogenicity 

inducing Th1 cell infiltration. In short, Th1 cell is a remarkable immune cell to potentially 

affect glucose metabolism in late phase of lung adenocarcinoma.  

There are some limitations in this study. First, FDG PET examination of subjects 

were performed in different institutes so that there were differences in image acquisition and 

reconstruction methods. However, the purpose of analyzing association between SUV and 

pseudotime was not to predict accurate SUV or pseudotime but to assess overall tendency of 

SUV along pseudotime. Furthermore, the image acquisition protocol of each sample was not 

identified in the obtained clinical data. Therefore, all the data were included in a single 
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correlation study. Further study is warranted to analyze evolution of glucose metabolism 

along pseudotime more accurately using FDG PET image data of same institute. Second, this 

study includes only RNA-seq data from primary tumor tissue of different subjects. Data of 

recurrent or metastatic tumor were not included in the datasets employed in this study. 

Although tumor characteristics of recurrent or metastatic tissue are not equal to naturally 

progressed malignancy due to treatment, comparison of tumor characteristics between 

primary tumor and recurrent/metastatic tumor in same subject can provide additional 

information of disease progression. Further study to explore change of tumor characteristics 

in same patient can support the results of this study. Third, pseudotime trajectory from RNA-

seq has a limitation to apply to clinical field due to complexity of obtaining tumor tissue and 

analyzing transcriptomic data from each patient. To facilitate application of pseudotime in 

clinical situations, further study is underway to construct pseudotime trajectory from FDG 

PET images.   



60 

 

Conclusions 

Taken together, pseudotime trajectories were successfully estimated in lung adenocarcinoma 

subjects from TCGA dataset and NSCLC radiogenomics dataset. It shows fair correlation 

with TNM stage, clinical outcome, and glucose metabolism, suggesting feasibility of new 

scale evaluating disease progression status. Th1 cells and M2 macrophages showed positive 

and negative correlation with pseudotime, respectively. TREM-1 was pointed out as a gene 

associating with lymph node metastasis in early phase of disease. Mononuclear cell migration 

was revealed to associate with glucose metabolism of tumor in late phase of disease. The 

present study demonstrated evolution of tumor biology based on transcriptomic profiles. 
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유사시간분석을 이용한 폐선암의 

임상분자적 및 면역학적 변화 연구  
 

이현종 

서울대학교 

융합과학기술대학원 

분자의학 및 바이오제약학과 

 

폐선암은 폐의 악성 종양 중 가장 흔한 조직학적 유형이다. 

폐암의 분자적 특징은 단면적으로 평가해 왔다. 따라서 폐암의 생물학적 

진행 과정에 대해서는 적절히 모델화하지 못하였다. 폐암의 진행은 특히 

병기 설정, 조직학적 소견, 그리고 플루오르데옥시글루코오스 양전자 

단층 촬영을 이용한 포도당 대사 평가 소견에 의해 임상적으로 그리고 

병리학적으로 평가해 왔다. 그러나 이러한 평가 도구들은 폐암의 분자 

프로파일의 변화 측면에서 생물학적 진행을 평가하기 어렵다. 이 
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연구에서는 공공 접근이 가능한 데이터셋으로부터 폐선암의 생물학적 

진행을 반영하는 유사시간궤적을 추정하였다. 그리고 이에 따라 종양의 

특질이 어떻게 변화하는지 분석하였다. 

암 유전체 아틀라스(TCGA)의 폐암 데이터셋에서 

페노패쓰(Phenopath) 도구를 이용하여 폐암의 유사시간궤적을 

구성하였다. 유사시간과 연관성이 있는 유전자들을 선택하였고 온톨로지 

분석을 시행하였다. 비소세포폐암 영상유전체 데이터셋에서는 

라쏘(Lasso) 회귀분석을 이용하여 유사시간궤적을 추정하였다. 종양 

병기를 포함한 임상적 요인들과 유사시간의 상관 분석을 시행하였다. 

플루오르데옥시글루코오스 양전자 단층 촬영 영상은 암 영상 

아카이브(TCIA)로부터 수집하였다. 표준섭취계수를 비롯한 영상 

파라미터들은 라이프엑스(LifeX) 소프트웨어에서 적응 종양 경계 

방식으로 그려진 관심 영역으로부터 구했다. 영상 파라미터와 

유사시간의 상관 분석을 시행하였다. 면역 프로파일은 엑스셀(xCell) 

도구를 이용하여 구하였다. 유전자 돌연변이 데이터는 지노믹 데이터 

커먼스(genomic data commons)로부터 다운로드하였다. 면역 세포들의 

농축 점수 및 종양 돌연변이 부하와 유사시간의 상관 분석을 시행하였다. 

림프절 전이 및 포도당 대사와 상관이 있는 면역학적 인자를 탐색하기 

위하여 차이발현 유전자(DEG) 분석, 유전자 온톨로지 분석, 그리고 

비교 분석을 시행하였다. 
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암 유전체 아틀라스 데이터셋에서 유사시간궤적을 성공적으로 

추정하였다. 폐선암 표본에서 자연살해세포의 활성과 관련된 분자 

프로파일이 유사시간에 따라 하향 조절됨을 보였다. 세포 분열과 관련된 

분자 프로파일은 유사시간에 따라 상향 조절되었다. 암 유전체 

아틀라스의 데이터셋에서 구한 라쏘 회귀분석 모델을 이용하여 

비소세포폐암 영상유전체 데이터셋의 폐선암 샘플에서도 유사시간궤적을 

추정하였다. 암 유전체 아틀라스 데이터셋에서 유사시간은 T 병기와 

전체 병기에 따라 차이를 보였으나 N 병기와 M 병기에 따라서는 

차이를 보이지 않았다. 전체 생존기간은 이른 유사시간 그룹과 늦은 

유사시간 그룹에서 유의한 차이를 보였다. 최대 표준섭취계수와 

SLC2A1 의 발현도는 유사시간과 양의 상관관계를 보였다. 종양 면역 

미세 환경에서 세포의 농축 정도는 유사시간에 따라 변화하였다. 제 1 형 

보조 T세포는 유사시간과 양의 상관관계를 보였고 M2 대식세포는 음의 

상관관계를 보였다. 이른 유사시간 그룹 내의 림프절 전이가 없는 

폐선암 환자보다 림프절 전이가 있는 폐선암 환자에서 TREM-1 

유전자가 상향 조절되었다. 늦은 유사시간 그룹 내에서는 높은 

플루오르데옥시글루코오스 섭취를 보이는 표본에서 단핵구 이동의 

음성조절이 유의하게 하향 조절됨을 보였다. 

결론적으로 폐암의 유사시간궤적을 전사체 프로파일에 근거하여 

추정하였다. 임상 병기와 표준섭취계수는 유사시간과 유의한 상관관계가 

있어 폐암의 분자적 진행을 평가할 수 있는 새로운 척도로서의 가능성을 
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보였다. 종양 면역 미세 환경에서 제1형 보조 T 세포와 M2 대식세포는 

유사시간과 각각 양의 상관관계 및 음의 상관관계를 보였다. 면역학적 

인자들은 질병의 이른 단계에서 림프절 전이 여부와, 질병의 늦은 

단계에서 포도당 대사와 연관성을 보였다.  이 연구는 유사시간분석을 

이용하여 폐선암의 종양 특질이 어떻게 변화하는지 밝혔다. 

---------------------------------------- 

주요어: 폐선암, 전이, 면역, 대사, 유사시간 

학번: 2015-26015 


	Introduction
	Staging of lung adenocarcinoma
	FDG PET in lung adenocarcinoma
	Immune microenvironment in lung adenocarcinoma
	Pseudotime analysis

	Purpose
	Materials and Methods
	Pseudotime estimation
	Genetic feature analysis
	Pseudotime prediction in NSCLC radiogenomics dataset
	Clinical feature analysis
	Glucose metabolism analysis
	Immune profile analysis
	Features associating with lymph node metastasis and glucose metabolism
	Statistical analysis

	Results
	Part I. Pseudotime estimation and validation
	Temporal evolution of genetic features
	Temporal evolution of clinical features
	Temporal evolution of glucose metabolism in TCGA-LUAD dataset
	Temporal evolution of glucose metabolism in LUAD samples of NSCLC radiogenomics dataset

	Part II. Temporal evolution of immune profiles in lung adenocarcinoma
	Temporal evolution of immune profiles in TCGA-LUAD dataset
	Temporal evolution of immune profiles in LUAD samples of NSCLC radiogenomics dataset

	Part III. Immunological factors associating with lymph node metastasis and glucose metabolism
	TREM-1 associating with lymph node metastasis
	Mononuclear cell associating with glucose metabolism


	Discussion
	Conclusions
	References
	국 문 초 록


<startpage>14
Introduction 1
 Staging of lung adenocarcinoma 1
 FDG PET in lung adenocarcinoma 1
 Immune microenvironment in lung adenocarcinoma 2
 Pseudotime analysis 2
Purpose 4
Materials and Methods 5
 Pseudotime estimation 5
 Genetic feature analysis 7
 Pseudotime prediction in NSCLC radiogenomics dataset 7
 Clinical feature analysis 9
 Glucose metabolism analysis 9
 Immune profile analysis 9
 Features associating with lymph node metastasis and glucose metabolism 10
 Statistical analysis 11
Results 12
 Part I. Pseudotime estimation and validation 12
  Temporal evolution of genetic features 12
  Temporal evolution of clinical features 16
  Temporal evolution of glucose metabolism in TCGA-LUAD dataset 21
  Temporal evolution of glucose metabolism in LUAD samples of NSCLC radiogenomics dataset 24
 Part II. Temporal evolution of immune profiles in lung adenocarcinoma 27
  Temporal evolution of immune profiles in TCGA-LUAD dataset 27
  Temporal evolution of immune profiles in LUAD samples of NSCLC radiogenomics dataset 36
 Part III. Immunological factors associating with lymph node metastasis and glucose metabolism 41
  TREM-1 associating with lymph node metastasis 41
  Mononuclear cell associating with glucose metabolism 47
Discussion 54
Conclusions 60
References 61
국 문 초 록 68
</body>

