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Abstract

Decision-making and learning in anxiety is volatile. There have been
inconsistent findings on the learning patterns in highly anxious people.
For example, anxiety level often showed a negative correlation with
adaptive learning measures during aversive tasks but not during neutral
ones. Recently, psychologists investigated learning in anxiety based on
two decision-making systems: model-free (MF) and model-based (MB)
control. MF control reinforces habitual behavior by repeating previously
rewarded actions, whereas MB control governs goal-directed behavior by
internalizing the structure of a task. Previous findings examined that
anxiety was not associated with MB control deficits under monetary
gains. However, it remains unclear whether this null association is
domain-general or subject to change depending on outcome valence. In
this study, I probed whether state anxiety, trait anxiety, and worry are
distinctly associated with MB control deficits under monetary losses. |
recruited non-clinical adults and asked them to perform a multi-step
decision-making task in both reward and punishment conditions. Using
computational modeling, I estimated individual MB control measures
and tested for between-condition differences in the association between
MB control and three anxiety levels. Here, worry showed a significantly
negative correlation with MB control in the punishment condition. Also,
refocus on planning strategy moderated the relationship between worry
and MB control. This study suggests that worry negatively impacts MB
control in punishment when it interacts with certain emotion regulation

strategies.
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Introduction

Reinforcement learning (RL) has blossomed in the fields of
computer science, neuroscience and psychology. In cognitive and clinical
psychology, RL theories have been used to explain instrumental learning
in humans and animals and connect observable learning behaviors with
the underlying neural correlates (Collins & Cockburn, 2020; Sutton &
Barto, 1998). Psychological research has investigated decision-making in
humans and animals by utilizing the framework of such computational
RL models (Niv, 2009). Most of the previous literature on learning and
decision-making were based on two parallel systems of RL: model-free
and model-based systems (Daw et al., 2005). Model-free (MF) RL
requires no explicit model of the environment and leads to a choice
based on the aggregated reward history, or cached value (Daw et al.,
2011; Daw et al., 2005; Glascher et al., 2010). It is closely tied with
habitual behaviors, repetitive actions due to a strong stimulus-response
association after overtraining. These habitual and inflexible behaviors
tend to persist regardless of the change in the valence of outcomes. In
contrast, model-based (MB) RL occurs when an agent has an internal
structure of the environment and uses it to flexibly adjust its action in
order to accumulate reward. MB system modulates goal-directed control
that allows us to successfully regulate our behaviors and prospectively
make decisions by taking the learned model of the environment into
account (Daw et al., 2005; Gillan et al., 2016; Gléascher et al., 2010;
Voon et al., 2017). As the MF and MB RL systems have been often
mapped to the habitual and goal-directed behaviors, respectively, I will



use these terms interchangeably here.

These dichotomized RL systems have been used to understand
the behaviors and symptoms of each psychological disorder. Especially,
MB control has been suggested as a ‘dimensional construct’ that
underlies several psychological disorders associated with obsession and
compulsion (Voon et al., 2017). A large online study examined that
eating disorders, alcohol addiction, and OCD were associated with
goal-directed control deficits that often lead to spontaneous and
compulsive behaviors (Gillan et al., 2016). Also, the OCD patients
showed higher habitual but lower goal-directed control scores compared
to the healthy control during a multi-step decision-making task (Voon,
Baek, et al., 2015). Recently, however, a few studies revealed that
psychological constructs such as depression may also be related to the
lack of ability in goal-directed decision-making under certain situations.
For example, higher depression scores predicted more decreases in the
use of MB control during a decision-making task, but only when the
participants were experiencing social stress (Heller et al., 2018). This
implies that the MF-MB control dimension can be a potential construct
that underlies multiple psychological disorders characterized by not only
high impulsivity but also mood instability if researchers study it with a
proper experiment paradigm.

To this date, however, there lacks a research that examined these
decision-making controllers in anxiety or other mood disorders in various
contexts and emotional states facing different valences of outcome. The

association between mood disturbance and goal-directed behaviors has
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not been fully probed yet. Consequently, only OCD, BED, and
substance use disorders were reported as the main disorders showing MB
control deficits. This might be because most of the studies that
concluded anxiety groups did not show any MB control deficits
compared to the healthy control used a reward-based multi-step
decision-making task (e.g., Deserno et al., 2015; Gillan et al., 2020;
Gillan et al., 2016; Otto et al., 2013). Also, there is a possibility that
MB controller in anxiety might have seemed intact because it was
estimated in an environment without any significant inner or outer
aversive stimuli. Supporting this argument, several studies examined
that contexts, emotional states, and outcome valence in which learning
occurred significantly affected decision-making of anxious participants.
For example, emotional disturbance due to acute stress and fear altered
decision-making in anxious participants (Aylward et al., 2019; Browning
et al., 2015; Sebold et al., 2019). It is clear that further research is
needed to set up more valid experimental environments that resemble
those where anxious people are likely to think and behave aberrantly.
Since only few studies manipulated the task structure or
environment, it is difficult to exactly pinpoint which context, emotional
state, and outcome valence is responsible for such alteration in
decision-making. Indeed, most of the previous literature investigating
both habitual and goal-directed behaviors exploited the limited range of
task paradigms that incur positive reinforcement with probabilistic
monetary reward in an emotionally neutral state. The lack of variation

in a task design can be attributed to the absence of a systematic
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framework to consult when developing or selecting an appropriate task
and environment. In the following subsections, I will summarize the
definitions of MF and MB RL in psychology first and briefly review
papers that have utilized MF and MB RL tasks to understand
psychological disorders in human participants. Next, I will focus on
anxiety and its aberrant decision-making and learning patterns that have
been revealed by previous literature through neuroscientific and
computational modeling approaches. After explaining how contexts,
emotional states, and outcome valence interact with psychiatric
symptoms including anxiety and result in distinct patterns of
decision-making, I will propose my thesis idea and explain its study
design to elucidate decision-making and learning in anxiety under four

hypotheses.

Reinforcement Learning (RL) in psychology
Model-Free and Model-Based (MF and MB) control

RL theory originated from computer science and consists of five
elements: agent, environment, a policy, reward function, and value
function (Sutton & Barto, 1998). An agent is a learner and decision
maker. It interacts with the environment to learn to maximize its total
reward, which is one of the key features in a RL problem. A policy
defines the probability of each action at a certain state. The reward
function governs a reward given after each action, and it determines the
negativity or positivity of the event. Lastly, the value function is similar

to the reward function, but it reflects total reward in the long-term by
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including the estimation of the future rewards that will be given in the
following states. These five elements can construct numerous RL
problems by having an agent interact with the environment to learn,
make a series of choices, and accumulate rewards. Even though the RL
model widely used in psychology had been adopted from this RL theory,
there are some differences in their definitions. In psychology, the RL
model has been used to describe learning and decision-making or
strategies for acting in humans and animals (Dolan & Dayan, 2013).
One of the major mappings is that the MF-MB dichotomy formalized a
dual system theory of behavior, habitual and goal-directed behavior,
respectively (Balleine & Dickinson, 1998; Daw et al., 2005; Sutton &
Barto, 1998). These two RL methods provide different predictions on
future rewards, leading to distinct actions.

Habitual behavior is defined as repetitive and inflexible actions
based on stimulus-response associations, relying less on the outcomes
(Daw et al., 2005; Voon, Derbyshire, et al., 2015). This inflexible
behavior is mostly governed by MF control that estimates the value
based on cumulative history of the past rewards. In the RL theory, the
temporal difference RL algorithm in which value is updated by taking
reward prediction error (RPE)-the difference between prediction and
actual reward-in the previous trial accounts for MF control. By utilizing
this temporal difference algorithm in neuroscience, the neural
mechanisms underlying habitual learning had been successfully revealed:
both positive and negative RPEs are encoded in dopamine neurons and

act as positive or negative reinforcers of actions (Schultz et al., 1997).
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Goal-directed control is characterized by an inner representation of the
environment or the transition probability. A MB agent develops an
internal model or a cognitive map of the environment and flexibly
changes its behavior to adjust to a volatile environment (Daw et al.,
2005). Compared to habitual behavior, goal-directed behavior does not
depend solely on reward history but simulates possible outcomes after a
series of actions by incorporating the state transition information into a
decision-making process. This prospective prediction guides more
flexible decisions in the volatile environment but requires high

computational costs (Loosen & Hauser, 2020).

RL and psychological disorders

Various RL tasks have been devised to study specific learning and
decision-making features of each psychological disorder. Using a simple
reward-learning paradigm, researchers found that patients with positive
psychosis symptoms showed significantly weakened neural activation
associated with RPE in substantia nigra/ventral tegmental when
compared with healthy controls (Murray et al., 2008). Other latent
measures of learning have also been estimated by computational
modelling. One of the computational RL models, the Rescorla-Wagner
RL model, formalizes how the value is updated by trial-by-trial RPE and
has been widely used in computational psychiatry. It calculates
trial-level prediction error values and the degree to which a subject
reflects the prediction error to his or her choice, which is called learning

rate. In a recent finding, unmedicated mood and anxiety patients
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learned faster about punishment outcomes and based their choices on
more recent negative outcomes, compared to the healthy group (Aylward
et al., 2019). This altered decision-making, however, was not shown in
the reward domain. Such interactions between outcome valence and
psychological constructs have created innumerable combinations of
possible task paradigms, leading to inconsistent and incommensurable
findings. This could be problematic because the confounded findings
hamper our investigation to pinpoint which factor causes a difference.
For example, researchers found higher trait anxiety scores were
associated with less adaptability to a volatile environment in an aversive
learning task, but there was no such association in the same task but
with reward (Browning et al., 2015). In the study, the participants were
punished with electric shock in the aversive version, whereas with money
in the reward version. It is unclear whether the outcome valence (e.g.
reward versus punishment) by itself or its interaction with acute
emotional disturbance (e.g. fear induced by electric shock) caused the
altered learning behaviors in participants with higher trait anxiety
scores. To dissociate these factors and probe decision-making in
psychological disorders more systematically and tailored to each disorder,
it is necessary to understand the types of dimension that can lead to
systematic changes in the decision-making behavior of people with
psychological disorders. In the following subsections, I will specifically
look into anxiety and its decision-making and learning patterns that

vary under different emotional states and outcome valences.
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Decision-making in anxiety
Origins of anxiety: neuroscientific evidence

Anxiety is one of the necessary emotional states or responses for
humans and animals to survive (Delgado et al., 2006; LeDoux, 2012). It
has been closely tied with fear as anxiety share a lot of commonalities
with fear. However, many research findings have claimed that they are
distinct from each other (e.g., Sylvers et al., 2011). To this date, these
two emotional states have been conceptualized in many different ways.
Now, most of the affective psychologists seem to reach a consensus on
the definitions: fear is short-lived and elicited by a specific stimulus and
short-lived, whereas anxiety, also known as a ‘sustained fear,’ can be
incurred by not experiencing a direct stimulus and does not dissipate
quickly (Davis, 1998; Hartley & Phelps, 2012; Sylvers et al., 2011). Fear
has been easier for neuroscientists to identify its underlying neural
mechanisms as it can be manually elicited with acute and specific
sensory stimuli (Tovote et al., 2015). However, localizing specific brain
areas that generate anxiety has been relatively harder due to its
complexity and ambiguity as it can be evoked by not-present but
anticipated and abstract threats. In fact, it was argued that what we
usually call ‘emotions’ like anxiety, happiness, or sadness may mean
nothing more than our subjective introspections on emotional states,
‘feelings’ (LeDoux, 2012). Due to this subjectivity involved in its
definition, anxiety has been less understood than fear.

Regardless of this limitation, the neural mechanisms associated



with both fear and anxiety have been increasingly investigated.
Crucially, the clinical research on anxiety revealed that the process of
experiencing anxiety is very similar to fear conditioning (Mineka &
Zinbarg, 2006). Fear conditioning explains through which process fear
can be elicited. One of the famous fear conditioning processes is
Pavlovian conditioning, which associates a neutral stimulus with fear
responses by connecting it with a fear-generating stimulus like electric
shock or aversive sound. Using a Pavlovian fear conditioning paradigm,
research to discover the neural correlates of fear and anxiety has become
much easier and more scientific.

The initial focus of the research was to identify specific brain
regions generating anxiety. For example, the amygdala has been widely
known to be the main area responsible for fear acquisition and
processing. The amygdala consists of subareas including lateral, basal,
and central nuclei, and it was argued that each nucleus plays a specific
role. The lateral nucleus directly receives sensory inputs from sensory
cortices and thalamus, and it transmits the information to the central
nucleus where the outputs are sent out to modulatory systems,
periaqueductal gray or hypothalamus eliciting physiological responses.
In the middle of this process, the basal nucleus connects the
aforementioned two nuclei. Interestingly, it also projects to striatal
regions that control behaviors or actions (LeDoux, 2007). As the past
neuroimaging studies focused on the role of the amygdala, its association
with anxiety has become clearer. Some studies examined that trait

anxiety scores or social anxiety symptoms were correlated with
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hyperactivation in the amygdala (Indovina et al., 2011; Phan et al.,
2006). Another study probed the impact of a short-term exposure
therapy on the amygdalic activation and found that the 2-week exposure
therapy on the spider phobics significantly reduced the hyperactivation
in their amygdalas (Goossens et al., 2007). Apart from the amygdala,
the hippocampus, insula and dorsal anterior cortex are also known to
modulate fear acquisition (Fanselow, 2000; Milad et al., 2007).

However, most of the recent findings suggest that anxiety recruit
more than one brain area, and such emotional states are the products of
multiple brain regions that form neuronal circuits or networks. These
networks can cover either distanced cortical areas or local neurons
(Tovote et al., 2015). For one example of the long-range pathways, the
amygdala-ventromedial prefrontal cortex (vinPFC) network has caught
researchers’ attention for its regulatory role on fear and anxiety.
Specifically, the vimnPFC engages in regulating the conditioned fear
responses by directly projecting to the amygdala (Garcia et al., 1999).
Using the resting-state fMRI data, neuroscientists showed higher anxiety
scores were associated with weaker amygdala-vmPFC functional
connectivity (M. J. Kim et al., 2011). This amygdala-vimmPFC pathway
also includes other regions in the temporal lobe such as the bed nucleus
of the stria terminalis (BNST) and the ventral hippocampus (VHPC)
(Calhoon & Tye, 2015). The BNST is known as a main output pathway
of the amygdala and transmits the sensory information from the
amygdala to vHPC, which eventually reaches the medial prefrontal

cortex (mPFC). The reversal projection occurs as well. Especially, the
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reciprocal connection between the basolateral amygdala (BLA) and the
vHPC modulates anxiety-related behaviors: the activation in the
BLA-vPHC synapses increases anxiety-related responses (Felix-Ortiz
et al., 2013).

To sum up, the initial research focus was to localize a specific
brain area for fear learning and responses. Most of the early studies
investigated the role of the amygdala on fear processing by itself.
However, recent findings revealed that anxiety and fear conditioning is
rather associated with the distributed neural networks across the brain.
The major regions in these networks are the amygdala, BNST, vHPC,
and mPFC. The four areas form bidirectional connections to transmit
back and forth the fear-related information and mediate behavioral and
physiological responses like freezing and feeling of conditioned fear.
Recently, some neuroscientists raised their voices to assert that despite
these concrete findings on the neural circuitry of fear and anxiety,
clinical practice has not been fully benefited from them (LeDoux & Pine,
2016). To improve clinical outcomes, a novel approach to understand
fear and anxiety in both neuroscience and clinical psychology might be
required. Recently, computational modeling has been suggested as one of
the solutions to close this gap between advanced neuroscientific evidence

and clinical practices.
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Computational modeling: a novel approach to probe

decision-making and learning

Computational modeling is a modeling of human cognition and
behavior through computational models that are mathematical equations
with either known or unknown parameters and values (W.-Y. Ahn et al.,
2017; Lewandowsky & Farrell, 2011). Modeling of human cognition and
behavior serves various roles in psychology. For example, researchers
seek to simply describe observed behavior by developing or finding the
best model to fit the data. While successful description of the data
provides valuable insights into our latent cognitive processes, researchers
expand this approach to move beyond simple description and eventually
predict and explain future behavior and cognition. Here, the terms
cognition and behavior broadly represent complex and numerous
decision-making, information processing, or perception in the brain, on
which researchers make inferences based on their final outputs, behavior.
The unobservable and latent nature of cognition has obscured our
understanding on which mechanisms humans think, learn and make
decisions. However, with the advent of computational models, it became
significantly easier to clarify our general and individual-specific cognitive
processes. This novel approach has served to fill in our gaps in the
knowledge of psychiatric symptoms and disorders, which led a creation
of a new area of field called computational psychiatry (W.-Y. Ahn et al.,
2017; Friston et al., 2014; Huys et al., 2016; Montague et al., 2012;
Paulus, 2019). In the realm of computational psychiatry, psychologists

and neuroscientists have extensively worked to probe various
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psychological concepts by applying formal mathematical or
computational models. Using computational models to describe, predict,
and ultimately explain aberrant behaviors under psychiatric conditions
has several advantages over other simple descriptive methods. First, it
clarifies abstract psychological notions and theories that were suggested
a few decades ago by providing us with their formulas. For example, one
of the fundamental questions imposed on drug addicts around the 1950s
was why they persist in utilizing substances that lead to regretful or
unwanted psychological and physical states (Jellinek, 1949). This
question had been investigated by cognitive psychologists using
decision-making tasks like the Iowa Gambling task and computational
models to reveal impaired learning in drug abusers (W.-Y. Ahn et al.,
2016; Bechara et al., 1994; Busemeyer & Stout, 2002). Second,
computational modeling enables us to quantify the latent cognitive
processes and estimates individual- and group-level parameter values
that can be applied to track the neural encodings of these processes
(W.-Y. Ahn & Busemeyer, 2016). Despite some remaining challenges,
computational psychiatry has been regarded as a medium to bring and

apply neuroscientific findings to the clinical settings (Huys et al., 2016).

Decision-making and RL in anxiety

Not only psychological constructs like addiction that show
apparent symptoms in a behavioral level, mood disturbance and anxiety
have also been one of the main focuses in computational psychiatry.

Anxiety has long been characterized with its excessive risk-avoidance
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decision-making, and a number of theories have suggested possible
mechanisms governing such systematic risk-avoidance especially under
aversive environments (e.g., Maner et al., 2007; Maner & Schmidt, 2006).
Prospect theory is one of the well-known models that describe
decision-making under uncertainty (Kahneman & Tversky, 1979). Using
this model and computational modeling, researchers have found that
anxiety patients tend to exhibit high risk-aversion (e.g., Charpentier

et al., 2017). During my master’s program, I have participated in one of
the laboratory-based studies to investigate distortion in the perception of
outcome probabilities using a modified gambling task (S. Kim et al.,
prep). In this study, three computational models with different
probability functions were applied to the data collected from both
reward and punishment domains to quantify individual perception of
outcome probabilities. We examined that people with higher anxiety
scores showed more distortion in probability perception, meaning higher
anxiety was associated with overestimation on the likelihood of
low-probable events in both reward and punishment domains.

Various learning tasks have been developed in order to study
learning in anxiety. Focusing on the anxiety patients’ attentional bias
towards negative information, researchers have utilized simple RL tasks
to reveal anxiety was associated with the increased usage of the recent
outcome history or less adaptability to a changing environment during
aversive learning (e.g., Aylward et al., 2019; Browning et al., 2015).
Recently, there have been a few articles establishing a comprehensive

MB control profile under various psychological constructs that
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obsession/compulsion and impulsivity are correlated with MB control
deficits, whereas anxiety and depression are not (Gillan et al., 2020;
Gillan et al., 2016). However, learning involves complex and
multi-dimensional mechanisms in which various factors play a role and
interact with each other to form similar but distinct states that can
significantly alter people’s choices. In the following subsections, I will
list three major components by which learning can be impacted both
within and between individuals and explain research gaps that I found in

regards to anxiety and its goal-directed planning and learning.

What alters learning in people with psychiatric symptoms:

contexts, emotional states, and outcome valence
Contexts: spaces where learning happens

Learning can occur in various contexts. Here, a context means a
situation or space where the learning occurs, and it shapes the specific
goal of decision-making. For example, people can be put in a context
where they have to learn to maximize total monetary gain, which is the
most common. There is another case when they are given rewards at the
beginning and have to learn not to lose them. Also, people can be put in
contexts associated with punishment as well. These contexts can be
divided into ‘avoidance’ and ‘escape.’ In the avoidance condition, people
learn to avoid punishment, while in the escape condition, they learn to
escape from an aversive state.

Participants showed distinct learning behaviors based on which

context they were in, and the within-individual or group difference in the
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resultant decision-making outcomes was associated with certain
psychiatric symptoms. Suicidal psychiatric participants and non-suicidal
psychiatric controls showed similar learning behaviors in the avoid
condition, but suicidal participants exhibited significantly higher escape
bias than non-suicidal controls in the escape condition (Miller et al.,
2019). This escape bias represented suicidal patients’ tendency to take
active actions to escape from their aversive states, which well
differentiated them from non-suicidal patients. Learning context also
influences the transition from goal-directed to habitual behavior, which
will be discussed in the outcome valence subsection in detail. It seems
crucial to select a context that aligns well with a distinct behavior or a

cognitive bias of the mental disorder that researchers are interested in.

Emotional states

Emotional state of the agent, the learner, is another significant
factor that alters decision-making. Such emotional states include stress,
frustration or craving after abstinence, anxiety, and fear. Stress induced
in the middle of the two blocks of a multistep decision-making task,
which estimates whether a learner exhibits the MF or MB control,
decreased participants’ reliance on MB system, and higher depression
scores were associated with more decreases in MB control (Heller et al.,
2018). The effect of stress has been also observed in a non-psychiatric
group. The higher susceptibility to stress in healthy women, measured
by the change in cortisol level, predicted smaller model-based weights in

the low working memory capacity group (Otto et al., 2013). It is
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noteworthy that stressors were not the same in these two papers: social
stress was induced in the former, whereas physical stress with cold water
was induced in the latter. The different nature of stressors can also have
an impact on learning, so the stress-learning relationship requires more
investigation. Emotional states after abstinence can significantly change
strategies for decision-making in substance use disorder patients.
Alcohol-dependent patients who abstained from alcohol for about 24
hours showed more reliance on habitual control than goal-directed
control in both behavioral and neural analyses (Sjoerds et al., 2013).
Even though the associated emotional states were not reported, the
longer duration of alcohol abstinence was also correlated with more
weights on MB control (Voon, Derbyshire, et al., 2015). In addition, in
the face of possible threats, anxious participants tend to learn more
slowly. Higher trait anxiety scores exhibited significantly less flexible
adjustment in their learning rates in the threat condition with
probabilistic electric shock, but not in the reward condition (Browning
et al., 2015). This result might be consistent with the finding of the
neural mechanisms of anxiety that the activation in lateral amygdala
induced unconditioned freezing behavior when facing shock-predictive

cues, which could lead to behavioral inflexibility (Calhoon & Tye, 2015).

Outcome valence

Outcome valence means the positivity or negativity that an
outcome bears. This shares some aspects that were already discussed in

the contexts part, but here I will delve more into the distinction between
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gain and loss (or reward and punishment) and how it possibly affects
decision-making of psychiatric patients. Before specifying each domain,
it is important to understand there are a number of possible outcome
types: monetary, social, auditory, and tactile outcomes. A coin gain or
loss exemplifies the monetary outcome, which is the most commonly used
one. Due to the loss aversion feature of human beings, monetary gain
and loss affects our decisions differently. For example, the OCD patients
exhibited more habitual behavior in the reward domain compared to the
healthy control but showed more goal-directed behavior in the loss
domain as much as the healthy control did (Voon, Baek, et al., 2015).
This result has an important implication on our understanding of
psychiatric disorders: it could be an overgeneralization if we conclude
high-impulsivity disorders show MB control deficits in every situation. It
would be crucial to understand how different motivations in the gain and
loss domains bring out different behavioral results.

The interaction between gain-loss and stimulus type also affects
decision-making. Overtraining for cocaine addicts in the monetary
reward domain enhanced the transition from their goal-directed to
habitual behavior, which was indicated by their increased insensitivity to
devaluation. However, such insensitivity was not found in the tactile loss
domain with electric shock (Ersche et al., 2016). One caveat on
interpreting this finding is that it is hard to dissociate whether the
insensitivity was due to general loss aversion or fear from predicted
electric shock. To more accurately draw a conclusion, it would be

recommended to use the gain and loss domain with the same stimulus
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type and then compare it with another stimulus type.

Study goals
Research gaps and study design

Previously established decision-making and learning patterns in
people with psychiatric symptoms can be modified by their emotional
responses towards different outcome valences. Anxiety, one of the most
common affective states that both general populations and psychiatric
patients can experience, has been characterized by its aberrant
decision-making and learning behaviors examined through cognitive
tasks and computational modeling. Previous literature on
decision-making in anxiety patients or people with high anxiety levels
have mainly focused on their excessive avoidant behavior under
uncertain environments (e.g., Hartley & Phelps, 2012; Maner et al.,
2007). This risk-avoidant decision-making in anxiety could be attributed
to either heightened physiological responses associated with anxiety that
lead to threat-avoiding choices (i.e., risk aversion) or biased appraisals
that anticipate negative outcomes more often (i.e., loss aversion)
(Charpentier et al., 2017). In terms of learning, individuals with higher
anxiety levels showed faster update of action value after receiving an
aversive outcome such as electric shock or a picture with negative facial
expression. In a recent computational modelling study, people with
unmedicated mood and anxiety disorders exhibited that they based their
choices more on the recent history of negative outcomes rather than the

longer outcome trajectories. Unlike our expectation, they did not show
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greater sensitivity to punishment, meaning they evaluated negative
outcomes similarly to the healthy control (Aylward et al., 2019).

MB control and its association with learning in people with high
state and trait anxiety have been recently investigated using a multi-step
decision-making task, or the two-step task (e.g., Daw et al., 2011; Gillan
et al., 2020; Gillan et al., 2016). Previous studies showed no relationship
between anxiety level and MB control deficits. Not only dispositional
anxiety but also induced anxiety did not impair MB learning when
experimenters manipulated individual anxiety level. These findings
supported that most of the components of anxiety were not associated
with difficulty in the usage of MB system. However, one of the major
limitations of these studies was that the task they used was only framed
in the reward domain. Given the non-negligible impact of negative
information on decision-making and learning in anxiety, it is likely that
this null association between anxiety level and MB control might be
restricted to a learning environment that does not accompany any
threatening or negative outcomes.

It still remains unclear whether anxiety level is not associated
with MB control deficits under monetary loss. Monetary loss incurs
negative affect like anger or disgust to the degree to which individuals
are sensitive to loss or punishment. Emotional responses are critical to
cognitive appraisals of the situation that can lead to systematic
alteration in decision-making and learning (Maner & Schmidt, 2006). It
is also plausible that sequential monetary losses increase cognitive loads

during aversive learning due to people’s general tendency to avoid losses.

20 I |
.-:24 :‘i 1__l| '..l]



Thus, there is a possibility that MB control deficits can be observed in
people with high anxiety, but only under monetary loss. To fill in this
research gap, I have proposed a thesis study to recruit non-clinical adult
participants with a range of anxiety levels and ask them to perform the
two-step task under both monetary rewards and punishments. Here, I
also comprehensively look into the components of anxiety by taking
worry into consideration.

Worry is one of the the main symptoms that are considered for
the diagnosis of generalized anxiety disorder (American Psychiatric
Association, 2013). Historically, researchers have attempted to dissociate
worry and anxiety, but most of the research findings concluded that
worry is a cognitive component of anxiety (e.g., Zebb & Beck, 1998).
Regarding the broad spectrum of anxiety symptoms in terms of somatic,
cognitive, and behavioral aspects, it is important to dissect the construct
into distinct components in order to prevent obscuring the effects of each
symptom dimension (Schouten et al., 2020; Wise & Dolan, 2020). The
cognitive model of pathological worry characterizes worry with three
cognitive components: emotional processing, attentional control, and its
verbal form (Hirsch & Mathews, 2012). Worry is associated with biased
emotional processing of negative information, impaired attentional
control or vulnerability towards inner or outer distractors, and its
intrusive and verbal representation in mind. As MB control requires
more cognitive or mental loads to use compared to MF control (Kool
et al., 2016), worry might play an important role in lowering the usage of

the MB system by hampering adequate distribution of cognitive
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resources for successful task performance. Thus, I focused on worry
along with state and trait anxiety in this study to comprehensively test

for associations between anxiety scales and MB control measures.

Objectives and hypotheses

The main goal of this study is to elucidate the unknown
relationship between MB control and anxiety level under monetary loss.
To do so, I will conduct statistical analyses based on the following four
hypotheses. First, anxiety level will not be associated with MB control
deficits under monetary gain. Also, people with a higher anxiety level
will show a tendency to update their action values faster based on the
recent history of negative outcomes. These two hypotheses are to test
whether I can replicate the previous findings that reveal distinct learning
and decision-making patterns in anxiety. Next, the condition-specific
effect of monetary loss on MB control will be examined. I hypothesize
that there will be a significantly negative association between MB
control and anxiety levels only in the punishment domain. Lastly,
through an exploratory analysis, I will investigate a possible factor that
alters the association between MB control and anxiety. Specifically, 1
expect that cognitive emotion regulation strategies will moderate the
relationship between anxiety level and MB control score.

This study will bring the realm of anxiety MB decision-making
and learning research to an unexplored domain, punishment with
sequential monetary losses. It will provide empirical evidence to support

the importance of incorporating both reward and punishment conditions
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when probing decision-making and learning in anxiety. The findings will
also suggest which component of anxiety is more associated with MB
control, which will advance our understanding of each of the anxiety
symptoms. From computational modeling to an exploratory
investigation on possible cognitive and emotional contents underlying the
association, this thesis project will ultimately help other researchers and
clinicians to better grasp the latent decision-making and learning

processes of anxiety patients or people with high anxiety levels.

23 .




Methods
Participants

One-hundred eighty-three healthy adults were recruited through
online and offline advertisements. They voluntarily agreed to fill out
pre-screening survey questionnaires, which consisted of 18 questions to
check participation eligibility and took about 5 minutes to complete. 15
participants failed to pass the screening because they either had histories
of psychiatric disorders, were addicted to substances (e.g., nicotine), or
were in a situation where involuntary participation might be possible.
The pre-screening survey answers were manually checked by the
experimenters, and the eligible participants were contacted individually
through their preferred contact mediums (i.e., e-mail and phone
message) for scheduling. Due to the unusual pandemic situation in 2020
and 2021, 39 of whom passed the screening did not respond to our
request to visit the laboratory. 18 of them responded but either cancelled
their visits or did not show-up. Thus, a total of 111 non-clinical adults
aged from 18-35 years participated in the experiments. Each participant
visited the laboratory once on the scheduled date and time. They were
informed to take enough sleep during the night before the experiment
day and refrain from drinking caffeinated beverage right before the
experiment. All participants provided an informed consent by signing
the agreement forms. They were compensated for their participation
time at a rate of 10,000 ($6 in U.S dollar) per hour. Some participants

received extra payment based on their performance on a cognitive task.
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Cognitive task: two-step task

Figure 1

Schematic of two-step task trial in reward condition

Reaction Time -2s

Reaction Time -2s

@
— 8

Each participant conducted a multi-stage decision-making task.

This task, also known as the two-step task, was developed to dissociate
two systems of decision-making, model-free and model-based, and has

been widely used in various psychology research (e.g., Daw et al., 2011;
Gillan et al., 2016; Voon, Baek, et al., 2015). Each trial consists of two

stages, and in each trial a participant is given with two different and
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Figure 2

Task stage transition structure

70%
(common)

70%
(common)

randomly selected fractal images. When the participant chooses one
fractal image in the first stage within 2 seconds, the second stage, or the
second pair of the fractal images, appears on the computer screen. After
the participant selects one fractal image in the second stage, a final
outcome appears on the screen (Figure 1).

Each of the two stimuli in the first stage is assigned with certain
probabilities that determine the stimulus pair in the second stage
(Figure 2). For example, if a participant chooses A in the first stage,
there will be 70% chance that the stimuli with pink background (C in
Figure 2) appear in the second stage and 30% change that the stimuli
with skyblue background (D in Figure 2) appear. If B is selected, then

vice versa. After the second stage pair is conditionally determined and
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Figure 3

Task outcome probability
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shown on the screen, the participant makes a choice to maximize the net
monetary outcomes. Each of the second stage stimuli is associated with
distinct probabilities of monetary outcomes, which were pre-programmed
to slightly vary across the trials (Figure 3). Each of the four outcome
probabilities was randomly generated with different initial points: 0.4,
0.45, 0.50, and 0.55. By using Gaussian Random Walks with the mean
of 0 and standard deviation of 0.025, drifting outcome probabilities were
determined with the lower and upper boundaries of 0.25 and 0.75,
respectively. This variation was to make sure that the participants not
only exploited the outcome histories when determining their next choices
but also explored new second-stage options so that they did not stick

with one first-stage or second-stage choice. To minimize any potential
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Figure 4

Ezxperimental procedure

.2, Reward condition Punishment condition
Survey Task block Task block

*Condition order was counterbalanced.

learning biases caused by the probabilities assigned to each condition
and stimulus, the same set of probabilities was used for the reward and
punishment conditions and randomly assigned to each stimulus.

Most of the previous studies used the two-step task only with
monetary rewards (e.g., Deserno et al., 2015; Gillan et al., 2020; Heller
et al., 2018). In this study, however, all participants were asked to
perform the two-step task in both reward and punishment conditions
(Figure 4). In the reward condition, the participants gained either a coin
reward of 500 ($0.45 in U.S. dollar) or no reward per trial. In the
punishment condition, they either lost the same amount of coin or did
not lose anything. The participants were informed that they would
receive the net amount of money they earned during the task, and at the
end of their experiment sessions, some participants whose net amounts
of the task outcomes exceeded zero received extra payments. The order
of the reward and punishment versions was counterbalanced across the

participants and treated as a confounding variable in multiple regression
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analyses. All participants were required to finish 1 block of 15 practice
trials per each condition to make sure they understood task instructions
properly. They completed 2 blocks of 75 trials for each condition, with 1
minute break between block and 10 minutes break between condition.

The entire task lasted for an hour and 10 minutes on average.

Inclusion and exclusion criteria
Screening survey

The screening survey included questions to check whether or not
the subject had had neurological injuries, had hospitalized for psychiatric
disorders within the last 5 years, had been medicated after being
diagnosed with mental disorders within the last 1 year, had had addicted
to alcohol or any other substances, was taking psychotropic drugs, had
difficulty reading or listening task instructions, was not fluent in Korean,
and had possibility to involuntarily participate in the experiment (e.g., a
student who was taking a course from any experimenters). Participants
must be able to answer no to all of the questions above to be eligible to
participate in the laboratory experiment. Also, participants must be at
least 18 years old and at most 35 years old. The questionnaires were
distributed online through Qualtrics, and individuals who were
interested voluntarily filled out the survey. Experimenters manually
checked the collected answers and contacted those who were eligible to

set up date and time for the laboratory experiment.
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Behavioral data

Data with poor behavioral performance was not included in
analyses. Poor performance was determined by the task accuracy.
Specifically, I excluded the data from 17 participants who failed to
demonstrate sensitivity to rewards (e.g., probability of stay after
receiving rewards in common transition trials being less than 0.5) in the
reward version of the two-step task. Also, 10 participants who chose the
same first stage option over 95% of the entire trials in each condition
were excluded as they were not deemed to adequately learn the outcome
contingencies. These criteria were based on previous studies (Gillan
et al., 2016; Otto et al., 2013) and reported in pre-registration. The total

of 86 participants was included in the analyses.

Measures

Before conducting the two-step task in reward and punishment
conditions, all participants were asked to fill out 9 survey questionnaires
for about 20 minutes. The surveys included Liebowitz Social Anxiety
Scale (LSAS) (Liebowitz, 1987), Penn State Worry Questionnaire
(PSWQ) (Meyer et al., 1990), State-Trait Anxiety Inventory-Y
(STAL-Y) (Spielberger, 1983), Beck Depression Inventory-2 (BDI-2)
(Beck et al., 1996), Patient Health Questionnaire-9 (PHQ-9) (Spitzer
et al., 1999), Cognitive Emotion Regulation Questionnaire (CERQ)
(Garnefski & Kraaij, 2007), Yale-Brown Obsessive-Compulsive
Scale-Symptom Scale (Y-BOCS-SC) (Goodman et al., 1989), and Barratt
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Table 1

Summary of survey information

Construct Survey Number of questions
Anxiety LSAS 24
PSWQ 16
STAI-Y 40
Depression BDI-2 21
PHQ-9 9
Emotion regulation CERQ 36
Obsession & Compulsion Y-BOCS-SC 58
Impulsivity BIS-11 30

Impulsiveness Scale-11 (BIS-11) (Patton et al., 1995). The summary of
the survey questionnaires is provided in Table 1. The distribution of
survey scores for each questionnaire is included in Appendix A.

LSAS. LSAS measures social anxiety and avoidance with a
total of 24 questions (S. Y. Park, 2003). This study used the Korean
version of LSAS that was translated and validated (S. Y. Park, 2003).
The internal consistency of the Korean version of LSAS (Cronbach’s «)
was .85-.91 (S. Y. Park, 2003).

PSWQ. PSWQ was developed to assess pathological worry
level (Meyer et al., 1990). Pathological worry is defined as excessive and

uncontrollable worry. The survey consists of 16 questions, and each item
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is scored with a 5-point Likert scale. Kim & Min translated and
validated the Korean version of PSWQ (J. W. Kim & Min, 1998). The
internal consistency of the Korean version of PSWQ (Cronbach’s «) was
92 (J. W. Kim & Min, 1998).

STAI-Y. STAI-Y measures trait and state anxiety in
non-clinical populations (Spielberger, 1983). It consists of 40 items in
total. 20 questions assess state anxiety (STAI-S) and the other 20 ones
assess trait anxiety (STAI-T) with a 4-point Likert scale. STAI-Y was
translated into Korean and validated (Han et al., 1996). The internal
consistency of the Korean version of STAI'Y (Cronbach’s ) was .92
(Han et al., 1996).

BDI-2. BDI-2 is aimed to measure depressive symptoms with a
total of 21 questions (Beck et al., 1996). Each question is assessed with a
4-point Likert scale of 0 to 3. This study used the Korean version of
BDI-2, which was translated and validated (M.-S. Kim et al., 2007). The
internal consistency of the Korean version of BDI-2 (Cronbach’s o) was
.80 (M.-S. Kim et al., 2007).

PHQ-9. PHQ-9 was developed for a diganosis of depressive
disorders (Spitzer et al., 1999). The range of scores is 0 to 27, and the
higher score represents the more severe symptoms. Each item is assessed
by the frequency of each symptom with a 3-point Likert scale. This
study used the Korean version of PHQ-9 that was translated and
validated in 2020 (S.-J. Park et al., 2010). The internal consistency of
the Korean version of PHQ-9 (Cronbach’s o) was .81 (S.-J. Park et al.,
2010).
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CERQ. CERQ is aimed to measure individual differences in
which cognitive emotion regulation strategies a person uses when
experiencing negative events (Garnefski & Kraaij, 2007). It consists of
36 questions, and each item is scored at a 5-point Likert scale. CERQ
was translated into Korean and validated with the internal consistency
(Cronbach’s «) of .84. However, the internal consistency of the
‘acceptance’ and 'putting into perspective’ subscales were relatively low,
.68 and .77, respectively (H.-n. Ahn et al., 2013).

Y-BOCS-SC. Y-BOCS-SC measures 8 categories of obsessions
and 7 categories of compulsions (Goodman et al., 1989). A total of 58
questions are included in the survey, and each item is answered with
either "Yes” or 'No’. The internal consistency of Y-BOCS-SC
(Cronbach’s «r) was .69-.91 (S., 1995). This study used the Korean
version of Y-BOCS-SC that was translated and validated in 2004
(S. J. Kim et al., 2004).

BIS-11. BIS-11 measures impulsivity with a total of 30 items
(Patton et al., 1995). Three constructs of impulsivity are measured by
BIS-11: attentional, motor, and non-planning impulsivity. Each item is
scored at a 4-point Likert scale. BIS-11 was translated and validated in
Korean in 2012, and the internal consistency (Cronbach’s «) was .58-.80

(Heo et al., 2012).
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Data analyses
Behavioral analyses

Introduction to task logic. This task is based on an
assumption that model-free and model-based learning strategies lead to
different decision-making choice patterns. This choice pattern is mainly
characterized by how the second-level choice impacts the first-level
choice. Given the task structure where there are two possible transitions
from the first- to the second-level (i.e., common and rare) and two
possible second-level outcomes (i.e. rewarded versus not-reward and
punished versus not-punished in the reward and punishment conditions,
respectively), participants can incorporate either only past reward
history or both reward and transition information into their choices on
the next trial. If a participant exhibits more model-free learning, then
the first-level choices will be made solely based on the previous reward
history regardless of the transition type on the preceding trial. For
example, assuming a model-free participant is rewarded after a rare
transition on the previous trial, then he or she will be more likely to
select the same first-level choice on the next trial. However, as the
transition type is rare, it is probabilistically more plausible to view the
second-level pair that includes the previously rewarded fractal stimulus.
Thus, in the same scenario, a model-based learner is more likely to
change its first-level choice to increase the likelihood of landing the same

second-level that has the previously rewarded stimulus.
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Figure 5
Stay probabilities of a purely model-free learner (left) and a model-based

learner (right)

Model-free learner Model-based learner

Stay probability

Rewarded Unrewarded Rewarded Unrewarded
Outcome of previous trial Outcome of previous trial

Transition . common . rare

Stay probability. To visually assess the interaction between
reward and transition and its impact on the first-level choice, stay
probability on the current trial based on the reward and transition type
on the previous trial was calculated separately for each of all possible
reward and transition combinations. Also, the same four stay
probabilities were calculated for both reward and punishment domains
and compared. Figure 5 illustrates example patterns of stay probabilities
of a model-free and a model-based learner. If a participant only uses
completely model-free control, there will be no interaction effect between
reward and transition on the stay probability, whereas if one is a
complete model-based learner, a clear interaction effect will be inspected.
Previous literature has suggested that humans exhibit both model-free

and model-based strategies, which support a hybrid theory of
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decision-making (Daw et al., 2011; Glascher et al., 2010). The hybrid
theory specifies the human decision-making process that humans make
choices based on the weighted combination of the action values that are
driven by both controllers. In this study, stay probabilities were first
calculated for both conditions, assessed whether they aligned with the
hybrid theory, and visually inspected to check if there were any
significant differences between conditions.

Mixed-effect logistic regression. To quantify model-based
learning, mixed-effects logistic regression analyses were conducted using
the Imej package in R. The logistic regression models were constructed
to predict the first-level choice with the predictors including binary
variables of whether reward was received and whether transition type
was common or rare on the previous trial. The dependent variable, the
first-level choice, was coded as 1 if a participant made the same
first-level choice as the one in the previous trial, while 0 if switched. For
the predictors, the rewarded (or not-punished) and common trials were
coded as 1, while the non-rewarded (or punished) and rare trials as -1.
Using the models, I examined the main effect of reward and interaction
effect of reward and transition on the first-level choice. The main effect
of reward indicated the stay propensity on the first-level was
significantly governed by previous reward history or model-free learning.
The interaction effect between reward and transition showed that the
choice behavior was significantly controlled by model-based learning. To
more accurately capture individual differences, the logistic regression

models included within-subject factors as random effects, including the
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intercept, main effects of reward and transition, their interaction,
condition, and order. Condition was coded as 1 for reward condition and
as -1 for punishment condition, and order was coded as 1 if a participant
was semi-randomly assigned to perform reward condition first, 0 if
otherwise. The basic logistic regression model was tested while
controlling for age (z-scored), order, and sex as fixed effects. The

following is the model syntax specified in R:

Stay ~ Reward * Transition % Condition * (Age + Order + Sex) + (
Reward * Transition * Condition + Order + 1 | Subject)

I conducted additional tests including the state and trait anxiety and

worry survey scores (all z-scored) in separate models:

Stay ~ Reward * Transition % Condition * (Survey measure + Age +
Order + Sex) + (Reward % Transition * Condition + Order + 1 |
Subject)

Computational modeling

Reinforcement learning models. Three reinforcement
learning models were fitted to the data from the reward and punishment
conditions separately. The models are nested to each other, and the
standard model, which consists of 7 parameters, was adopted from Daw
et al., 2011. The model assumes that people make decisions using the
weighted combination of the model-free and model-based systems. Given
that there are two stages in the task, stimuli presented in each stage are

updated distinctly as selection in each stage is followed by different
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types of outcome. A first-stage choice leads to a stimulus pair in the
second stage, whereas a second-stage choice to a monetary outcome.
Since monetary outcomes are presented after the second-stage choices,
each of the four second-stage stimuli is updated based on the actual
outcomes a participant observes across trials. This action value update
in the second stage follows the model-free algorithm, SARSA(X)
temporal difference learning (Rummery & Niranjan, 1994). For each
trial ¢, the action value V of each stimulus ¢ (¢ € [1, 2, 3, 4] in the

second stage) is updated following the equation below:
V’Lsg(t+1) = Vlsg(t) + OéQ(T’(Zf) - VZSQ(t>)

where Vig(t) is the action value of the chosen second-stage stimulus 7,
r(t) represents actual reward (or punishment) presented on trial ¢. ay is
second-stage learning rate that determines how much of the difference
between the actual reward and action value is taken into account when
updating the stimulus in the next trial, ¢+1. This reward prediction
error is then added to the action value at the trial ¢ to calculate the
action value in the next trial.

The first-stage stimulus pair, however, is updated according to
both model-free and model-based algorithms based on the hybrid model
(Gléscher et al., 2010). The weighted sum of the action values distinctly
calculated by the model-based and model-free algorithms is determined
by a model-based weight parameter w. The estimated w close to 1 means
that a participant acts like a pure model-based learner who updates his

or her first-stage action value based mostly on the model-based

38 A



algorithm. The model-free update of the first-stage action value follows
the same SARSA algorithm like in the second stage. However, here the
action value is updated by reward prediction error, the difference
between the action value of the chosen second-stage stimulus and that of
the first-stage stimulus. Also, the model assumes that there is a
stage-skipping update that a certain portion of the difference between
the outcome received in the second stage and the action value of the
first-stage choice is added to the first-stage action value. This
stage-skipping update is determined by both the first-stage learning rate
parameter a; and eligibility trace parameter A. The formal equation for
the SARSA update in the first stage is the following (¢ € [1, 2] in the

first stage):

ViME(t+1) = ViM{F(t) + a1 (Vchoseng(t) - Vit (1)) + Aaa(r(t) -
Vig"(t))

One of the crucial characteristics of the model-based algorithm
that it takes transition probabilities into account. Thus, the action value
of each of the first-stage stimuli reflects not only the action values of
each of the second-stage stimuli but also the transition probabilities.
Thus, each of the maximum action values in each second-stage pair is
weighted by the corresponding transition probability and then summed

to calculate the model-based action value of the first-stage stimulus:
VIMB = 0.7 * max(V1ME V2ME) + 0.3 * max(V3M%E V4»ME)

V2MB = 0.3 * max(V1ME V2ME) 4 0.7 * max(V3ME, vV4MF)
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The weighted sum of V1Y% and V1¥ becomes the final action

value of each stimulus in the first stage:
Vil = w * ViMB 4 (1w) * ViME

where w represents model-based weight parameter.
Based on the softmax function, the probability of selecting one

stimulus (i.e. stimulus 1) in each stage is then calculated:
Pa(1) =1/ (1 + exp(-pu(VIG""™ - V2™) - 7(C(t)-C(t-1)))
Po(1) =1/ (1 + exp(-fo(V15" - V257)))

where perseverance parameter 7 reflects the tendency of repeating the
first-stage choice in the previous trial (i.e., C(¢-1)), and inverse
temperature parameters 5; and [y determine the randomness of choices
in the first and second stage, respectively. This model has 7 parameters
in total, which together form the standard model (7-par). I also modified
the model by taking the eligibility parameter A out, leading to 6
parameters (6-par). Lastly, I added the model with one learning rate and
one inverse temperature parameter, resulting in 4 parameters (4-par).
Hierarchical Bayesian analysis. Model parameters were
estimated with hierarchical Bayesian analysis (HBA). The parameter
estimation using HBA is based on Bayesian inference, which is to
re-distribute probabilities across candidate parameter values after
observing the data (Kruschke, 2014). In Bayesian inference, parameter
values are assigned with initial probabilities that reflect prior knowledge

or beliefs. Using Bayes’s rule, the priors are updated into posterior
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distributions that show the most probable parameter values for each
individual given the data. Bayesian analysis has been suggested as an
alternative of maximum likelihood estimation (MLE), a traditional
parameter estimation method. One of their clear distinctions is that
MLE gives point estimates that maximize the likelihood of data, whereas
HBA provides full probability distributions of the parameter estimates.
In comparison to MLE, HBA contains a more comprehensive
information about candidate parameter values and is better at reflecting
the randomness of data, estimation process, and parameter estimates.

Here, I also applied hierarchical modeling to each reinforcement
learning model. Hierarchical estimation adds a hyper-constraint(s) on
individual-level parameters to take both individual difference and
similarity into account simultaneously. In other words, the individual
parameters are estimated independently like in a non-hierarchical
analysis, but they are constrained by the hyper- or group-level
parameters (Lewandowsky & Farrell, 2011). This method is known to
provide more reliable and stable estimates especially when the number of
data or the amount of information (e.g., number of trials) for estimation
is insufficient (W.-Y. Ahn et al., 2017).

HBA was conducted using the hBayesDM package in R
(W.-Y. Ahn et al., 2017). The package uses an open-source platform for
statistical modeling called Stan with a Hamiltonian Monte Carlo sampler
(Carpenter et al., 2017). In this study, three reinforcement learning
models that were already implemented in the hBayesDM package were

fitted to the data collected from each condition. All parameter
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estimation procedures were preceded with 4 independent Markov chain
Monte Carlo (MCMC) chains with 10,000 iterations after 2,500 warm-up
samples. The Gelman-Rubin R-hat Statistics calculated by the package
was used to check the convergence of the MCMC chains (Gelman &
Rubin, 1992). The R-hat value close to 1 indicated successful
convergence.

Model comparison. Model performance was compared based
on Leave-One-Out Information Criterion (LOOIC). LOOIC values for
each model were calculated using the loo package in R. The lower
LOOIC value indicates the better model performance since it is a
product of the expected log predictive distribution (elpd) times a
negative integer (i.e., 2). The elpd is a utility function to measure the
predictive accuracy of the model by taking the posterior distribution and
likelihood into account. LOOIC has advantages over other simpler model
comparison measures like Akaike Information Criterion or Bayesian
Information Criterion (Vehtari et al., 2017). The fitting performance of
three reinforcement learning models used in this study were compared
with the LOOIC values provided by the printfit function in the
hBayesDM package.

Main analyses

Correlational analysis. To assess simple correlations between
anxiety scores and parameter values, the Pearson correlation coefficients
(R) were calculated. The significance of each correlation coefficient was

determined by evaluating its p-value.
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Multiple linear regression analysis. In addition to simple
linear correlation analyses, multiple linear regression models were used
to test if the parameter values were associated with anxiety scores when
age, gender, and other psychiatric symptom scores were controlled. The
main dependent variables were model-based weights and second-stage
learning rates estimated separately for each domain. State and trait
anxiety and worry scores were individually included in the models. The
model performance was examined based on its F-statistics, adjusted
r-squared, and p-value for each estimated beta coefficient.

Moderation effect analysis. For exploratory analyses,
regression models with interaction terms were tested to examine a
potential moderation effect of cognitive emotion regulation strategies on
the anxiety and model-based learning relationship. Independent variables
were state anxiety, trait anxiety and worry scores, and the moderator
was each of the emotion regulation strategy sub-score. The dependent
variables were model-based learning weight parameter values estimated
from the reward and punishment conditions. Independent analyses for

each domain were performed using the same set of predictors.
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Results
Demographic information

Eighty six participants who passed the pre-screening survey and
performed a multi-stage decision-making task (see Methods for exclusion
criteria) were included in the analyses. They filled out 9 self-report
surveys and performed the cognitive task under the reward and
punishment conditions in a psychology laboratory located in Seoul

National University (see Table 2 for the full demographic information).

Survey measures

Nine self-report surveys were used in the study (Table 2). To
comprehensively examine the impact of anxiety on decision-making and
learning, anxiety was divided into three components: state anxiety, trait
anxiety, and worry. In the analyses, I tried to rule out any potential
impacts from other mood factors, mainly depression. Depression score
was included in the regression analyses as one of the confounding
variables. Depression was measured with two different surveys (i.e.,
BDI-2 and PHQ-9). Given the high co-morbidity between depression
and anxiety, self-reported depression scores were highly correlated with
anxiety scores in previous studies. Thus, in this study, the correlation
coefficients between anxiety level and each of the two depression score
were compared. The depression score that had lower correlation
coefficients with anxiety level was included in the analyses to prevent
multicollinearity. In Figure 6, the Pearson correlation coefficients for all

pairs of the surveys are reported. The correlation coefficients between

44

SECECE

1V



Table 2

Demographics and survey measures

Total (v = se)
Measures’ Mean SD
Age 23.31 3.77
Education 15.19 2.04
BDI 10.69 8.55
BIS 62.58 9.24
LSAS 23.41 13.39
PHQ 5.06 4.57
PSWQ 46.22 11.72
STAI-S 41.60 11.08
STAI-T 41.81 10.73
Y-BOCS-SC 6.92 6.72
CERQ - -
Acceptance 1.32 0.26
Catastrophizing 0.93 0.40
Other-blame 1.06 0.34
Positive reappraisal 1.70 0.35
Positive refocusing 1.34 0.45
Putting into perspective 1.52 0.36
Refocus on planning 1.82 0.31
Rumination 1.39 0.40
Self-blame 1.39 0.35

T Education = years of education; BDI = Beck Depression Inventory-2;

BIS = Barratt Impulsiveness Scale-11; LSAS = Liebowitz Social

Anxiety Scale; PHQ = Patient Health Questionnaire-9; PSW(Q = Penn

State Worry Questionnaire; STAI-S = State Trait Anxiety Inventory-Y
State; STAI-T = State Trait Anxiety Inventory-Y Trait; Y-BOCS-SC =

Yale-Brown Obsessive-Compulsive Scale-Symptom Checklist; CERQ =

Cognitive Emotion Regulation.
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Figure 6
Pearson correlation coefficients (R) among the self-reported survey

scores
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PHQ-9 and all of the anxiety measures (r = .6, .7, and .4, respectively)
were smaller than those between BDI-2 and anxiety measures (r = .7,
.8, and .5, respectively). All of the correction coefficients were
statistically significant (p < .001). Individual PHQ-9 score was used as a
covariate to adjust for individual depression level. See Appendix A for

the histogram of each of the survey scores.
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Figure 7

Stay probabilities in the reward condition (left) and punishment

condition (right)
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Behavioral analyses
Stay probability

Stay probability was calculated for each of the four combinations
of outcome and transition type in the previous trial, separately for each
domain. In both reward and punishment conditions, participants
performed the task using both model-based and model-free control as
shown in Figure 7. These patterns of stay probabilities are consistent
with the hybrid theory of decision-making, in which participants base
their learning on the weighted combination of the model-based and

model-free systems.

Despite this similarity in the overall stay probability patterns,
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Figure 8
Comparison on the difference in stay probability after receiving rewards
and after receiving non-rewards between the reward and punishment

conditions
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there was a significant difference in staying after receiving positive
outcomes (i.e., a coin gain and or no loss in the reward and punishment
condition, respectively) minus staying after receiving negative outcomes
(i.e., no gain or a coin loss in the reward and punishment condition,
respectively) between the two domains. In a two-tailed t-test for paired

samples, the difference in the stay probability (rewards minus
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Table 3
Results from mized-effect logistic regression testing the association

between stay probability and condition

Predictors B (SE) p
(Intercept) 0.676 (0.019) <.001
Reward 0.033 (0.006) <.001
Transition -0.005 (0.005) 302
Condition -0.006 (0.008) 447
Reward * Transition 0.024 (0.006) <.001
Reward * Condition 0.010 (0.005) .063
Transition * Condition -0.002 (0.005) .640
Reward * Transition * Condition 0.004 (0.005) 469

non-rewards) was significantly higher in reward than punishment (7'(85)
= 2.22, p < .05; Figure 8). The reward-dependent discrepancy in stay
choices became larger when participants were experiencing coin gains
than coin losses. This difference could be attributed to either higher
sensitivity to rewards than punishments or more exhibition of
model-based control in the punishment than reward condition. To test
which factor contributed to this difference, mixed-effect logistic

regression analyses were conducted.

Mized-effect logistic regression

Mixed-effect logistic regression analysis was conducted to test if
there were a significant difference in model-free and model-based
learning between the two domains (Table 3). After controlling for age,

order, and sex, a significant main effect of reward on first-level choices
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Table 4
Results from mized-effect logistic regression testing the association

among stay probability, state anziety and condition

Predictors B (SE) p
(Intercept) 0.679 (0.019) <.001
Reward 0.032 (0.006) <.001
Transition -0.005 (0.005) 339
Condition 0.006 (0.008) 443
STAI-S -0.012 (0.013) .394
Reward * Transition 0.025 (0.006) <.001
Reward * Condition -0.010 (0.005) .061
Transition * Condition -0.003 (0.005) 537
Reward * STAI-S 0.006 (0.004) 1561
Transition * STAI-S -0.003 (0.004) ATT
Condition * STAI-S -0.000 (0.006) .966
Reward * Transition * Condition 0.004 (0.005) .398
Reward * Transition * STAI-S -0.006 (0.005) 222
Reward * Condition * STAI-S -0.002 (0.004) 661
Transition * Condition * STAI-S 0.004 (0.003) 237
Reward * Transition * Condition * STAI-S -0.004 (0.004) 275

was found, meaning participants repeated their first-level choices more
often when the previous trials were rewarded or not punished (8 = 0.03,
SE = 0.006, p < .001). The main effect of reward indicated that the
participants exhibited model-free control during the task. There was also
a significant reward * transition interaction effect on stay probability (3
= 0.03, SE = 0.006, p < .001). The participants repeated their first-level
choices more often when the previous trials were rewarded with common

transition, indicating their usage of model-based control. The result also
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Table 5
Results from mized-effect logistic regression testing the association

among stay probability, trait anxiety and condition

Predictors B (SE) p
(Intercept) 0.680 (0.019) <.001
Reward 0.032 (0.006) <.001
Transition -0.005 (0.005) 441
Condition 0.006 (0.008) .608
STAI-T -0.022 (0.013) 107
Reward * Transition 0.025 (0.006) <.001
Reward * Condition 0.010 (0.005) .058
Transition * Condition -0.003 (0.005) 504
Reward * STAI-T 0.004 (0.004) 376
Transition * STAI-T 0.001 (0.004) 707
Condition * STALT 0.001 (0.006) 835
Reward * Transition * Condition 0.003 (0.005) A79
Reward * Transition * STAI-T -0.007 (0.005) 154
Reward * Condition * STAI-T -0.002 (0.004) .666
Transition * Condition * STAI-T 0.004 (0.003) 219
Reward * Transition * Condition * STAI-T  0.000 (0.004) 892

revealed a marginally significant reward * condition interaction effect ((
= 0.01, SE = 0.008, p < .10), but there was no significant three-way
interaction effect (reward * transition * condition). This result
supported that the participants tended to show higher reward sensitivity
in the reward than punishment condition.

Additional mixed-effect logistic regression analyses were
performed to investigate whether anxiety scores would contribute to any

significant differences in either model-free or model-based learning
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Table 6

Results from mized-effect logistic regression testing the association

among stay probability, worry and condition

Predictors B (SE) p
(Intercept) 0.678 (0.019) <.001
Reward 0.032 (0.006) <.001
Transition -0.005 (0.005) 331
Condition 0.006 (0.008) 435
PSWQ -0.008 (0.014) 0.552
Reward * Transition 0.024 (0.006) <.001
Reward * Condition 0.009 (0.005) 079
Transition * Condition -0.002 (0.005) .649
Reward * PSWQ 0.005 (0.004) 225
Transition * PSWQ -0.002 (0.004) 593
Condition * PSWQ 20.002 (0.006) 706
Reward * Transition * Condition 0.004 (0.005) 442
Reward * Transition * PSWQ -0.004 (0.005) 407
Reward * Condition * PSWQ 0.003 (0.004) 432
Transition * Condition * PSWQ -0.000 (0.003) 949
Reward * Transition * Condition * PSW(Q -0.002 (0.004) 668

between the reward and punishment domains. State anxiety, trait

anxiety, and worry were separately included in the mixed-effect logistic

regression models with the same predictors (i.e., reward, transition, and

their interaction term) and covariates (i.e., age, order, and sex). In all of

the three analyses, there was a significant main effect of reward and

interaction effect of reward * transition on first-level choices (Table 4 for

state anxiety; Table 5 for trait anxiety; Table 6 for worry). A marginally

significant reward * condition interaction effect was also found in all of
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Table 7
Results from mized-effect logistic regression testing the association

between stay probability and obsession and compulsion in the reward

condition
Predictors S (SE) 4
(Intercept) 0.682 (0.018) <.001
Reward 0.042 (0.008) <.001
Transition -0.008 (0.006) 240
Y-BOCS-SC -0.022 (0.013) 097
Reward * Transition 0.027 (0.008) .001
Reward * Y-BOCS-SC 0.004 (0.006) 522
Transition * Y-BOCS-SC 0.001 (0.005) 879
Reward * Transition * Y-BOCS-SC -0.013 (0.006) .029

the three analyses. However, there were no interaction effects between
each of the survey scores and other predictors on stay probability.

In previous literature, it has been consistently reported that
compulsivity is associated with model-based deficits in the reward
condition (Gillan et al., 2016; Voon, Baek, et al., 2015). To test whether
this finding could be replicated, I ran a supplementary mixed-effect
logistic regression analysis with obsession and compulsion (OC) score
and stay probability in the reward condition (Table 7). There was a
significant main effect of reward (8 = 0.042, SE = 0.008, p < .001) and
interaction effect of reward * transition (5 = 0.027, SE = 0.008, p =
.001). Also, a significant three way interaction effect of reward *
transition * OC score was found (5 = -0.013, SE = 0.006, p < .05). One

standard deviation increase in OC score was associated with a significant
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Table 8
Model comparison results: LOOIC

Domain Model® LOOIC?
Reward 7-par 27,792.35
6-par 27,788.55
4-par 28,133.06
Punishment 7-par 28,048.23
6-par 28,048.74
4-par 28,235.52

@7-par = T-parameter; 6-par = 6-parameter; 4-par = 4-parameter.

PTL,OOIC = Leave-One-Out Information Criterion.

decrease in the interaction effect of reward * transition on stay
probability, meaning this study successfully replicated the previous

finding.

Computational modeling results
Model comparison

Three reinforcement learning models were fitted to the data from
the reward and punishment conditions separately. The best model for
each condition was determined based on the LOOIC value (Table 8). In
the reward domain, 6-par was the winning model with the lowest
LOOIC value. In the punishment domain, 6-par and 7-par showed
nearly identical performance. Since 6-par and 7-par were nested, I
performed post-hoc correlational analyses to check whether the
individual-level model parameter values from the two models were

significantly different. All of the mean estimates of the 6 overlapping
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Figure 9
Correlation plots between individual-level parameter estimates from the

6-parameter (6-par) and 7-parameter (7-par) models
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parameters showed significant correlations with the coefficient values
close or equal to 1 (Figure 9). Given this similarity in the parameter
values from the two models, the posterior mean estimates from 6-par
were used in the further analyses for the punishment domain to match
the winning models between the two conditions.

Note that all of the three models were identical to the ones
developed by Daw and his colleagues in 2011 (Daw et al., 2011) and

validated by previous literature (e.g., Gillan et al., 2016; Otto et al.,
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Table 9
Group-level mean (standard deviation) parameter estimates on the

winning model (6-par) for both reward and punishment conditions

Model parameters’ Reward Punishment Between-condition HDI

6-par:
o1 0.13 (0.03) 0.10 (0.03) -0.05 0.12
Joi 5.24 (0.53) 4.25 (0.52) -0.46 2.46
a2} 0.17 (0.02) 0.25 (0.03) -0.15 -0.01
Ba 441 (0.25) 3.47 (0.26) 0.25 1.67
T 0.50 (0.05) 0.45 (0.07) -0.13 0.21
w 0.50 (0.05) 0.46 (0.05) -0.10 0.18

fa; = first-stage learning rate; 3; = first-stage inverse temperature; ap =
second-stage learning rate; By = second-stage inverse temperature; m=

perseverance; w = model-based weight.

2013; Wunderlich et al., 2012). Thus, model validation using parameter

recovery and posterior predictive check was skipped in this study.

Parameter estimates

The summary of group-level parameter estimates is provided in
Table 9. The values under the reward and punishment columns represent
the mean posterior estimates from the winning model (i.e., 6-par) fitted
to each domain. For each of the parameters, between-condition 95%
highest density interval (HDI) was also calculated. If HDI does not
overlap zero, I conclude there is a significant difference between the two
parameter estimates. All group-level parameters except second-stage

inverse temperature (/33) did not show significant differences between the
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Figure 10

Correlation plots between anziety level and individual-level model-based

weight in the (A) reward condition and (B) punishment condition
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two domains. The non-significant between-condition difference in

model-based weight (w) was consistent with the mixed-effect logistic

regression analysis result that the model-based weight term (reward *

transition) was not significantly moderated by condition.
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Correlation analyses
Anxiety and model-based weight

Pearson correlation coefficients () were calculated to measure
the association between anxiety level and model-based weight parameter
w (Figure 10). I mainly examined whether there would be a
condition-dependent difference in the correlation between model-based
weight and anxiety score. In the correlation analyses, the individual-level
mean posterior estimates were used to quantify each participant’s
model-based weight. Anxiety was measured using self-reported state
anxiety, trait anxiety and worry scores. State anxiety was not associated
with model-based weight in both reward and punishment conditions (r =
-.10, p = .37 in reward; r = -.07, p = .51 in punishment). Similarly, there
was no significant association between trait anxiety and model-based
weight in both conditions (r = -.01, p = .93 in reward; r = -.03, p = .82
in punishment). Worry was also not associated with model-based weight
in the reward condition (r = -.04, p = .70). However, there was a
significantly negative correlation between worry level and model-based
weight in the punishment condition (r = -.25, p < .05).

I also calculated the False Discovery Rate (FDR) adjusted
p-values for each pair of the correlations as three correlation analyses
were performed simultaneously in each domain. Based on the
FDR-~adjusted p-values, state anxiety, trait anxiety, and worry scores
were still not significantly associated with model-based weight in the

reward condition as expected (FDR-corrected p = .93, .93, and .83,
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respectively). In the punishment condition, there were no significant
correlations between state and trait anxiety and model-based weight
(FDR-corrected p = .76 and .82, respectively), whereas worry had a
marginally significant association with model-based weight in the
punishment condition (FDR-corrected p < .10).

As a supplementary analysis, the Pearson correlation coefficient
between each of all survey scores and model-based weight was calculated
(Appendix B). None of the remaining survey measures (i.e. depression,
impulsivity, obsession and compulsion, and social anxiety) showed a

significant association with model-based weight in both conditions.

Anxiety and second-stage learning rate

The correlation between second-stage learning rate as and
anxiety level was calculated. Second-stage learning rate quantifies how
fast an individual updates the second-stage action value after observing
an outcome. I investigated whether the association between the learning
rate parameter and anxiety level would be modulated by condition. In
both conditions, all of the three anxiety scores did not show any
significant associations with second-stage learning rate (Figure 11). Also,
none of the remaining survey scores was associated with second-stage

learning rate (Appendix B).
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Figure 11

Correlation plots between anxiety level and individual-level second-stage

learning rate in the (A) reward condition and (B) punishment condition
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Multiple linear regression analyses

Second-stage learning rate

Independent variable I: model-based weight

Multiple linear regression analyses were performed to examine if

anxiety was a significant predictor of model-based weight after adjusting

for demographic information (i.e., age and sex), condition order, and

other survey measures. Mainly, I tested whether worry remained as a
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Figure 12
Main effect plots between anziety level and individual-level model-based

weight in the (A) reward condition and (B) punishment condition
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significant predictor of model-based weight in punishment. The models
were tested separately for each condition.

The first multiple linear regression model (Model 1) included the
z-scored age and binary variables of sex and order as covariates along
with the main predictor of interest, three anxiety scores as a dependent
variable in separate models (Figure 12). The results were nearly identical

to the correlation analyses. State anxiety was not a significant predictor
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Table 10
Association between model-based weight in the reward condition and

worry after adjusting for confounding variables

Reward condition®

Model 1 Model 2 Model 3 Model 4
Questionnaire® B(SE) p B(SE) p B(SE) p B(SE) p
Worry -0.002(0.012) .879 -0.003(0.013) .815 -0.003(0.013) .803 -0.004(0.013) .780
Obsession 0.003(0.013) .782 0.003(0.013) .847
Depression 0.004(0.013) .783  0.003(0.014) .848
Adjusted R? -0.026 -0.038 -0.038 -0.050
F-statistics® 0.466 0.384 0.384 0.322

@ All models are controlled for age (z-scored), order, and sex.
b Worry = Penn State Worry Questionnaire; Obsession = Yale-Brown Obsessive-Compulsive
Score-Symptom Scale; Depression = Patient Health Questionnaire-9. All survey scores are z-scored.

¢ Notation for significance level: . (p < .1), * (p < .05), ** (p < .01), *** (p < .001)

of model-based weight in either domain (8 = - 0.001, SE = 0.001, p =
51 in reward; 8 = - 0.001, SE = 0.001, p = .58 in punishment). Trait
anxiety also did not significantly predict model-based weight in both
reward and punishment conditions (8 = 0.000, SE = 0.001, p = .81 in
reward; 5 = -0.000, SE = 0.001, p = .98 in punishment). Similarly to
state and trait anxiety measures, worry was not a significant predictor of
model-based weight in the reward condition (5 = -0.000, SE = 0.001, p
= .88, Model 1 in Table 10). However, it significantly predicted
model-based weight in the punishment condition (5 = -0.002, SE =
0.001, p < .05, Model 1 in Table 11). Even after controlling for age, order
and sex, 1 standard deviation increase in worry score was associated

with a significant decrease in model-based weight by 0.002 (Figure 13).
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Table 11
Association between model-based weight in the punishment condition

and worry after adjusting for confounding variables

Punishment condition®

Model 1 Model 2 Model 3 Model 4
Questionnaire® B(SE) p B(SE) p B(SE) p B(SE) p
Worry -0.025(0.012) .033 -0.029(0.012) .020 -0.025(0.013) .050 -0.029(0.013) .035
Obsession 0.012(0.012) .322 0.014(0.013) 300
Depression 0.000(0.013) 971  -0.004(0.013) .748
Adjusted R? 0.060 0.060 0.048 0.049
F-statistics® 2.359. 2.086. 1.864 1.736

@ All models are controlled for age (z-scored), order, and sex.
b Worry = Penn State Worry Questionnaire; Obsession = Yale-Brown Obsessive-Compulsive
Score-Symptom Scale; Depression = Patient Health Questionnaire-9. All survey scores are z-scored.

¢ Notation for significance level: . (p < .1), * (p < .05), ** (p < .01), *** (p < .001)

I also investigated whether worry remained as a significant
predictor when adjusting for other survey measures. I specifically looked
into the effects of depression and OC and included them in the models as
covariates along with age, order and sex. This was because these two
constructs were the main psychological variables that previous literature
have focused on when studying individual differences in model-based
control (e.g., Gillan et al., 2016). I performed three additional multiple
linear regression analyses (Model 2-4 in Table 10 for reward; Table 11 for
punishment). Model 2 examined the association between worry and
model-based weight while adjusting for OC level. Model 3 included
worry and depression level, and Model 4 included all three survey scores.

In all three models, worry did not predict model-based weight in reward
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Figure 13
Beta distributions for the multiple regression analysis examining the
association between worry and individual-level model-based weight in the

punishment condition

Dependent Variable: Model-Based Weight

Worry (PSWQ) 0
| Condition
Order ' |

l Punishment
E [0  Reward

Age L

Sex v .

-0.05 0.00 0.05

Estimate

(8 =-0.003, SE = 0.013, p = .82 in Model 2; § = -0.003, SE = 0.013, p
= .80 in Model 3; g = -0.004, SE = 0.013, p = .78 in Model 4).

Unlike in the reward domain, worry was a significant predictor of
model-based weight in punishment in all of the three models (8 = -0.029,
SE = 0.012, p < .05 in Model 2; g = -0.025, SE = 0.013, p = .05 in
Model 3; 5 = -0.029, SE = 0.013, p < .05 in Model 4). When OC and
depression levels were taken into account, worry still had a significantly
negative association with model-based weight but only in the

punishment condition.
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Figure 14

Main effect plots between anziety level and individual-level second-stage

learning rate in the (A) reward condition and (B) punishment condition
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Independent variable II: second-stage learning rate

Similar to the analyses to predict model-based weight w, Model 1

included each anxiety level and covariates (i.e. age, order and sex) to

predict second-stage learning rate oy estimated from each domain

separately (Figure 14). In the reward condition, all three anxiety scores

were not significant predictors of second-stage learning rate (5 = 0.017,
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Table 12
Association between second-stage learning rate in the reward condition

and state anxiety after adjusting for confounding variables

Reward condition®

Model 1 Model 2 Model 3 Model 4

Questionnaire® B(SE) p B(SE) p B(SE) p B(SE)

p

State anxiety 0.017(0.021) .417 0.040(0.022) .083 0.047(0.030) .112 0.058(0.030) .051

Obsession -0.052(0.022) .019 -0.048(0.022) .036
Depression -0.043(0.029) .151  -0.029(0.029) .321
Adjusted R2 0.045 0.100 0.058 0.100
F-statistics® 1.999 2.842* 2.041. 2.534*

@ All models are controlled for age (z-scored), order, and sex.

b State anxiety = State-Trait Anxiety Inventory-Y State; Obsession = Yale-Brown Obsessive-Compulsive

Score-Symptom Scale; Depression = Patient Health Questionnaire-9. All survey scores are z-scored.

¢ Notation for significance level: . (p < .1), * (p < .05), ** (p < .01), *** (p < .001)

SE = 0.021, p = .42 for state anxiety; 8 = 0.000, SE = 0.002, p = .34 for
trait anxiety; f = -0.000, SE= 0.002, p = .90 for worry). Similarly in the
punishment condition, trait anxiety and worry were not associated with
second-stage learning rate (f = 0.001, SE = 0.002, p = .53 for trait
anxiety; 5 = 0.001, SE = 0.002, p = .40 for worry). Only state anxiety
showed a marginally significant association with second-stage learning
rate in punishment (8 = 0.035, SE = 0.020, p < .10). There was a
tendency that 1 standard deviation increase in state anxiety was
associated with a significant increase in second-stage learning rate in
punishment by 0.035 after age, order and sex were controlled.

As post-hoc analyses, I tested nearly identical models to predict

second-stage learning rate except having state anxiety as a main
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Table 13
Association between second-stage learning rate in the punishment

condition and state anziety after adjusting for confounding variables

Punishment condition®

Model 1 Model 2 Model 3 Model 4
Questionnaire® B(SE) p B(SE) p B(SE) p B(SE) p
State anxiety 0.035(0.020) .082 0.043(0.022) .056 0.074(0.028) .009 0.076(0.028) .009
Obsession -0.017(0.022) .415 -0.009(0.022) .672
Depression -0.055(0.028) .051 -0.053(0.029) .070
Adjusted R? 0.029 0.025 0.063 0.049
F-statistics® 1.641 1.441 2.143. 1.798

@ All models are controlled for age (z-scored), order, and sex.

b State anxiety = State-Trait Anxiety Inventory-Y State; Obsession = Yale-Brown Obsessive-Compulsive

Score-Symptom Scale; Depression = Patient Health Questionnaire-9. All survey scores are z-scored.

¢ Notation for significance level: . (p < .1), * (p < .05), ** (p < .01), *** (p < .001)

dependent variable (Model 2-4 in Table 12 for reward; Model 2-4 in
Table 13 for punishment). I mainly investigated the association between
state anxiety and second-stage learning rate, given the marginally
significant association between state anxiety and second-stage learning
rate in punishment. In Model 2 and Model 4 where state anxiety was
tested with OC score only and both OC and depression, respectively,
state anxiety was marginally associated with second-stage learning rate
in reward (5 = 0.040, SE = 0.022, p < .10 in Model 2; 5 = 0.058, SE =
0.030, p < .10 in Model 4). However, when controlling for depression
only in Model 3, state anxiety no longer had a marginally significant
association with second-stage learning rate in reward (5 = 0.047, SE =

0.030, p = .11).
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Figure 15
Beta distributions for the multiple regression analysis examining the
association between state anxiety and individual-level second-stage

learning rate in the punishment condition
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Here, OC score was also a significantly positive predictor of
second-stage learning rate in reward (8 = -0.052, SE = 0.022, p < .05 in
Model 2; 5 = -0.048, SE = 0.022, p < .05 in Model 4). As a post-hoc
analysis, Model 1 with OC score as a sole dependent variable was tested.
OC score was marginally associated with second-stage learning rate in
reward (3 = -0.037, SE = 0.020, p < .10).

In the punishment condition, state anxiety significantly predicted
second-stage learning rate in all models (Table 13). Given the highest
adjusted R-squared value of Model 3, Figure 15 illustrates the

distributions of Model 3 beta coefficients separately for the reward and
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punishment conditions. State anxiety was possibly associated with

second-stage learning rate in punishment but not in reward.

Exploratory analysis: moderation effect

As exploratory analyses, I tested for a moderation effect to probe
which cognitive content might have contributed to the negative
association between worry and model-based weight in punishment. I
used 9 sub-scores from the Cognitive Emotion Regulation Strategy
(CERQ) survey, which assesses both adaptive and nonadaptive
emotional regulation strategies (i.e., catastrophizing, rumination,
other-blame, self-blame, acceptance, refocus on planning, putting into
perspective, positive refocus, and positive reappraisal).

First, I examined whether there was a significant correlation
between each sub-score and model-based weight in punishment
(Figure 16). Only refocus on planning sub-score was negatively
correlated with model-based weight in punishment (r = -.24, p < .05).
All other sub-scores did not have significant correlations with
model-based weight, except that positive refocus was marginally
associated with model-based weight in punishment (r = -.18, p < .10).

Next, I tested if there was a moderation effect of refocus on
planning on the worry and model-based weight relationship (Figure 17).
An interaction term (worry * refocus on planning) was included in the
model along with the main effect terms of worry and refocus on planning
while controlling for age, order and sex. There were main effects of

worry (f = -0.029, SE = 0.011, p < .05) and refocus on planning (5 =
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Figure 16

Correlation plots between for each Cognitive Emotion Regulation

Strategies sub-score and model-based weight in the punishment condition
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-0.033, SE = 0.011, p < .01) on model-based weight in punishment.

Also, the relationship between worry and model-based weight in

punishment was significantly moderated by refocus on planning score (/3
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Figure 17

Interaction effect plot from the moderation effect analysis testing the

impact of the refocus on planning strategy on the association between

worry and model-based weight in the punishment condition
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=-0.026, SE = 0.013, p < .05). Only in the high worry group,

participants with higher refocus on planning scores exhibited

significantly less model-based control. This moderation effect was only

significant in the punishment condition.
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Discussion

In this study, I mainly tested for four hypotheses: 1) anxiety
levels are not associated with model-based weight in the reward
condition, 2) people with higher anxiety scores show higher learning rate
in the punishment condition, 3) anxiety levels show significantly
negative correlations with model-based weight in the punishment
condition, and 4) certain cognitive emotion regulation strategies
moderate the association between anxiety levels and model-based weight
in punishment. Additionally, I investigated whether there were any
systematic differences in decision-making and choice behavior between
the reward and punishment condition by calculating and comparing
behavioral and computational modeling measures. I also conducted
analyses with other psychiatric symptom measures focusing on obsession
and compulsion (OC) scores in order to replicate the previous findings.

Using mixed-effect logistic regression analyses, I found there was
no significant interaction effect of anxiety scale on either reward or
reward * transition interaction in the reward condition. This result was
consistent with the correlation and multiple linear regression analyses
using the parameter estimates from computational modeling. None of
the anxiety measures had a significant association with model-based
weight in the reward condition. This null finding remained even after
age, sex, condition order, and other psychiatric symptom measures (i.e.,
OC and depression) were controlled. Overall, the results replicated the
previous findings that the anxiety construct was not significantly

associated with model-based weight in the reward domain (Gillan et al.,
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2020; Gillan et al., 2016).

My second replication analysis was focused on second-stage
learning rate, which measures how fast an individual updates its action
value based on the recent outcome history. A previous literature
examined that unmedicated mood and anxiety patients showed
significantly higher punishment learning rate than their control group,
meaning they updated their action values abbertanly faster when
experiencing aversive outcomes. However, their group-level mean reward
learning rate was not significantly different from the control group’s
(Aylward et al., 2019). Based on this finding, I hypothesized that people
with higher anxiety levels would exhibit similar learning patterns by
updating their action values faster in the second-stage where they
observed monetary outcomes. I expected that the increase in
second-stage learning rate would be significant only in the punishment
condition in which participants were experiencing sequential monetary
losses.

Consistent with my hypothesis, one of the anxiety levels, state
anxiety, showed a significantly positive association with second-stage
learning rate only in the punishment condition. The significance got
significantly improved when either depression or both depression and OC
scales were controlled in the multiple linear regression analyses. One of
the remaining questions, however, is that trait anxiety was not
significantly associated with second-stage learning rate. Given the high
correlation coefficient value between state and trait anxiety (r = .80, p <

.001), this discrepancy in the results was rather unexpected. A possible
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explanation would be that there might have been an interaction effect
between state anxiety and emotional disturbance caused by experiencing
monetary losses. People who were experiencing high state anxiety might
have become more sensitive to negative outcomes during the punishment
condition, leading to faster changes in their choice behavior upon the
recent negative outcomes. Further studies would be needed to conclude
whether state anxiety rather than trait anxiety plays a more significant
role in altering learning rate.

One of the main findings in this study is that people with a higher
worry score exhibited less model-based control in punishment. Individual
worry score was significantly correlated with model-based weight in
punishment, and the relationship remained still even after controlling for
age, sex, order, OC and depression. This consistency supported the
robustness of the result. According to the cognitive model of pathological
worry, two of the cognitive characteristics in worry are attentional bias
towards threatening information and its quasi-verbal form (Hirsch &
Mathews, 2012). Worry might have led highly worrying people to focus
more on the negative outcome than the transition history in the previous
history. Also, the verbal nature of worry might have caused a conflict
with representing a cognitive map for model-based planning. It has been
revealed that the dorsal hippocampus plays an essential role in
model-based planning in rodents (Miller et al., 2017). As successful
model-based planning involves a clear spatial or visual representation of
the task structure, worry that most likely exists in a verbal form may be

conflicted with utilizing model-based control especially in the
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punishment condition where people might have worried significantly
more than in the reward condition. As the real-time worry was not
assessed during the experiment sessions, further study would be required
to better understand how monetary loss outcome impacts current worry
level and alters the usage of model-based control in learning.

Still, the possibility that worry level had got significantly
increased during the punishment condition was supported by the
exploratory analyses I conducted. I performed correlational analyses to
understand whether there were any significant associations between
cognitive emotion regulation strategy sub-scores and model-based
weights from both conditions. Refocus on planning, which is to actively
switch attention to come up with some plans to get out of the aversive
situations, was negatively correlated with model-based weight in
punishment but not in reward. In addition, refocus on planning served
as a moderator between the worry score and model-based weight. It was
significantly associated with model-based weight only in the high worry
group. Thus, a cognitive emotion regulation strategy like refocus on
planning explained individual differences in the impact of worry on
model-based learning. Not all highly worrying people exhibited lower
model-based weight in punishment, but it was when they strategically
tended to alter their attention to refocus on planning to escape from the
aversive condition.

Refocus on planning is known as one of the adaptive cognitive
emotion regulation strategies (Garnefski & Kraaij, 2007). This finding

that an increase in the refocus on planning scale is significantly
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associated with a decrease in model-based weight in punishment only in
the high worry group might be inconsistent with a previous finding. For
example, refocus on planning was one of the positive predictors of
academic achievement as refocus on planning score had a significantly
positive correlation with GPA among university students (Al-badareen,
2016). However, it has been reported that refocus on planning had a
positive correlation with other nonadaptive cognitive emotion regulation
strategy subscales such as catastrophizing (r = .23) and self-blame (r =
.30) (H.-n. Ahn et al., 2013). Previous literature also suggested that
categorizing a certain cognitive emotion regulation strategy into either
adaptive or nonadaptive is less recommended as adaptiveness is
dependent on the situations (Garnefski & Kraaij, 2007). Thus, it is more
likely that the adaptive cognitive emotion regulation strategies serve
both positive and negative roles. This study supports this hypothesis
that more reliance on the refocus on planing strategy could sometimes
be associated with negative performance on various dimensions,
including model-based learning.

In the additional analyses, I found that there was a significant
difference in stay probabilities (rewards versus non-rewards) between the
two conditions. After examining the results from the mixed-effect
logistic regression analyses and computational modeling analyses, a
tentative hypothesis that people marginally became more reward
sensitive in the reward condition than in the punishment was supported.
Lastly, the previous finding on impaired model-based control in the OC

group under monetary reward was also replicated in this study,
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supporting the validity of the task and overall experimental procedures

used in this study.

Limitations and future studies

There are two major limitations in this study. First, the
inconsistent findings among the analyses with state anxiety, trait anxiety
and worry were not thoroughly investigated. In this study, only worry
scores had a significantly negative correlation with model-based weight
in punishment. As worry showed significantly positive correlations with
both state (r = .58, p < .001) and trait anxiety (r = .71, p < .001), it
was expected that state and trait anxiety scores might have also had
significant associations with model-based weight in punishment, which
was not found in this study. One possible explanation for this
inconsistency is that model-based weight in punishment is significantly
associated only with cognitive components of anxiety. The questionnaire
I used to measure state and trait anxiety, STAI-Y, measures both
cognitive and physical symptoms of anxiety (Han et al., 1996;
Spielberger, 1983). In a previous literature, researchers performed
exploratory analyses using two subscales of anxiety, cognitive and
physical symptoms scores, in order to prevent their analyses from being
obscured by the sum scores (Wise & Dolan, 2020). As STAI-Y does not
dissociate cognitive and physical components of anxiety but rather
calculates an aggregate score of anxiety, a future study with a
questionnaire that consists with different subscales of anxiety (e.g., the

State and Trait Inventory of Cognitive and Somatic Anxiety (Gros et al.,
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2007)) is recommended.

Also, this study only included non-clinical participants, which
might have contributed to insignificant relationships between state and
trait anxiety scores and model-based weight parameters. Previous
studies on investigating the relationship between anxiety and
model-based weight mainly focused on non-clinical populations (Gillan
et al., 2020; Gillan et al., 2016). To this date, it still remains unclear
whether anxious patients would show model-based learning deficits
compared to a non-clinical group. Due to the unusual circumstance (i.e.,
COVID-19 pandemic), this study was able to recruit the non-clinical
samples only, who showed less hesitance to visit the lab and participate
the experiment in-person. This situation might have caused a sampling
bias that excluded people with higher or more severe anxiety symptoms.
Thus, a future study with anxiety disorder patients is needed in order to
probe possible group-level differences in model-based learning by

between-group analyses.
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Figure B2

Correlation between survey score

and second-stage learning rate
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