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Abstract

In this thesis, we propose an end-to-end multi-scale connected convolutional neu-
ral network (MC-CNN) that leverages all scale features to remove rain streaks while
recovering detailed information on images. The first key point for recovering details
is a multi-scale connection, which connects all scale features of the encoder part to
the decoder part to restore the image with as much information as possible. Multi-
scale connection considers channel-wise attention to learn which scale features are
important in the current process, rather than simply combining the features of each
scale. The second key point is a wide regional non-local (WRNL) block. We find that
dividing images into wide rectangular patches makes each patch have a more even
distribution than the existing method and based on this, we propose a WRNL block.
Experimental results on synthetic and real-world datasets demonstrate that MC-CNN
quantitatively outperforms existing state-of-the-art models and qualitatively achieves

several improvements.

keywords: Convolutional neural network, deraining, deep Learning, image-
preprocessing, rain

student number: 2019-28867



Contents

Abstract
Contents

List of Tables
List of Figures

1 Introduction
2 Related Work

3 Proposed Network
3.1 Multi-scale Connection . . . . . ... ... ... .. ... ...,
3.2  Wide Regional Non-LocalBlock . . . . ... ... ... ... ....
32.1 Analysis . ... ... e
3.3 Discrete Wavelet Transform . . . . . ... ... ... ... .....
3.4 Data Augmentation . . . . . . ... ..o

3.5 LossFunction . . . ... . .. . . . ... ...

4 Experiments
4.1 Datasets and Evaluation Metrics . . . . . .. ... ... .......
42 ExperimentDetails . . . . ... ... ... ... ... ... ...
43 Results. . . . . . . e

ii

ii

iv

10
12
12
13



4.3.1 Synthetic Datasets . . . ... ... ... ... ........ 16

4.3.2 Real-world Datasets . . . . ... ... .. .......... 18
44 AblationStudy . . ... ... ... 20
4.4.1 Multi-scale connection . . . . .. . ... ... ... ... 20
4.4.2 Region types of non-Localblock . . . . .. ... ... .... 21
5 Conclusion 23
Abstract (In Korean) 32
.-_:I ] L 11
‘1 = 4

iii



4.1
4.2
4.3
4.4
4.5

List of Tables

Synthetic and real-world datasets . . . . . .. ... ... ... ...
Training Environment . . . . . . . . ... ... oL 0oL L.
Avergae PSNR and SSIM comparison . . . . .. ... ... .....
The results of ablation study on main components of MC-CNN . . . .

The ablation study on region types of Regional Non-Local Blocks

v



3.1
32
33

4.1
4.2
4.3
44

List of Figures

[lustration of the proposed network . . . . . ... ... .. ... .. 7
Examples of patch shapes according to regiontype . . ... ... .. 9
Rain pixel distributions across various region types . . . . . . . . .. 11
Results images on Rain200H dataset . . . . . ... ... ... .... 17
Results imageson SPA-data . . . . .. ... ... ... ..... 18
Results images onreal images . . . . . ... ... .. ... ..... 19
The ablation study on multi-scale connection . . . . . ... ... .. 22



Chapter 1

Introduction

Adverse weather conditions such as rain, haze, and snow, are capable of producing
complex visual effects on natural images or videos. In particular, rain streaks, which
comprise one of the most commonly occurring phenomena in outdoor imaging, are
capable of potentially degrading performance in several computer vision applications.
Therefore, it is imperative to develop algorithms that effectively remove rain streaks
and restore the pristine background scenes in the context of vision-related tasks.

Over the past few decades, several pieces of research have been dedicated to the
removal of rain streaks from captured images. Several traditional deraining methods
[2, 1, 4, 13, 19, 17] have been suggested to separate rain streaks from a clean back-
ground image based on the physical characteristics or texture appearance pattern of
rain streaks. Recently, motivated by the unprecedented success of deep learning in
low-level vision, image deraining has made rapid progress with convolutional neural
network (CNN)-based methods [7, 8, 14, 15, 16, 22, 23, 24, 29, 32, 36, 37, 42, 45].

Among those, there were several attempts to increase performance with encoder-
decoder based structure. For example, to remove fine-grained rain streaks and recover
rain-free backgrounds more clearly, Yu et al. [42] proposed a two-stage model using
encoder-decoder as a coarse deraining stage and a simple network as a fine deraining

stage. And Wang et al. [29] added a residual learning branch parallel to the encoder



part to form a better conditional embedding and eventually generate a much better de-
raining result in the decoder part. Both methods have achieved notable performance
improvements, but there is a limitation that they have improved their performance
through additional branches without fully exploiting all the information generated
within the U-Net structure.

In order to obtain information on the degraded background from other pixels through
spatial attention, Li et al. [14] applied non-local block. Because the original non-local
block is inefficient with too many computations, Yu e/ al. [42] used a regional non-
local operation, which divides images into grids and applies a non-local block to each
patch. However, the regional non-local operation was originally designed for the de-
noising task and therefore never considered the characteristics of rain. Consequently,
these methods have difficulties recovering details, especially under extremely adverse
weather conditions.

To address the above-mentioned issues, we present a multi-scale connected con-
volutional neural network (MC-CNN) to carefully remove rain streaks and recover
background details leveraging multi-scale features and adaptive non-local operation
considering the characteristics of the rain streaks.

Recent deraining papers show slightly complex structures, such as recurrent model
[36, 16, 3, 40], multiple inputs model [12], or adding branches in parallel to the main
network [29, 6] to achieve better results. However, MC-CNN achieves state-of-the-art
with some proposed methods without deviating from the encoder-decoder structure
with a single input.

Inspired by [25, 26, 31], we propose a multi-scale connection to efficiently leverage
information on various scales in the decoding process. To learn which scale is more
important in the decoding process of each scale, multi-scale connection is designed
to consider channel attention. Unlike other tasks such as human pose estimation and
semantic segmentation, multiple connections without channel attention rather cause

performance degradation in the deraining task. After many attempts to optimize mul-



tiple connections for the deraining task, we find that considering channel attention is
an important point and devise multi-scale connection through it. In Table 4.4 and Fig-
ure 4.4, we show that multi-scale connection plays an effective role by comparing the
qualitative and quantitative results of models with and without multi-scale connection.

Next, based on a statistical analysis of the distribution of rain pixels in rainy im-
ages, we also propose a wide regional non-local (WRNL) block, an adaptive regional
non-local block for the deraining task. By analyzing rain pixel distributions over dif-
ferent patch shapes, we find that rain pixel distributions are most uniformly distributed
when images are divided into wide rectangular patches (see Fig.3.3). When rain pixels
are evenly distributed on each patch, background information is also evenly distributed,
leading to overall performance improvement as information-poor patches disappear.

MC-CNN is evaluated on four synthetic and two real-world deraining datasets and
compares its performance with those of existing state-of-the-art methods. In summary,
the contribution of this thesis may be summarized as follows.

1) We propose multi-scale connection, multiple connections for the deraining task,
to ensure that the model utilizes as much information as possible in the decoding pro-
cess. At each stage of the decoder part, feature information of all the scales in the
encoder part is aggregated. By considering channel attention after concatenating all
scales of feature, we effectively aggregate different scale characteristics.

2) We propose the WRNL block, which supports the model to effectively restore
the background by providing more sufficient rain-free information in each region than
the original regional non-local block.

3) We perform experiments on both synthetic and real-world rain datasets and
show that the proposed method significantly outperforms existing state-of-the-art meth-

ods.



Chapter 2

Related Work

The single image deraining problem begins with the assumption that a rainy image
consists of a background layer and a rainy layer. Several traditional training methods
based on single images and videos have been proposed. Barnum et al. [1] reconstruct
rainy images by combining the appearance model with the streak model. The appear-
ance model identifies individual rain streaks and the streak model utilizes the statistical
characteristics of rain. Chen and Hsu [4] use the low-rank model to separate the layers
in a rainy image. As noted by Yang er al. [38], sparse coding is applied during this
process to separate the rainy layer from the rainy image [5, 13, 19, 33, 47]. Further, Li
et al. [2, 17] approach this problem using the Gaussian mixture model.

Because of the remarkable performance exhibited by deep learning-based meth-
ods, especially CNN-based ones, the potential use of deep learning in deraining has
been extensively researched. Yang et al. [37] apply a CNN-based method for the first
time and express natural images by adding atmospheric light as a component to rainy
images. Fu et al. [8] and Fan et al. [7] use a single primary network that restores input
images using the residual network. Based on the residual network, Li ef al. [16] attempt
to further eliminate overlapping rain streaks by organizing the context aggregate net-
work into multiple stages. Shen et al. [24] consider rain streaks to be high-frequency

and attempt to remove rain streaks by utilizing DWT. Yang et al. [36] divide the de-



raining process into several stages and reconstruct the image recurrently, beginning
with a small portion of the image to eventually obtain the entire image.

Wang et al. [32] capture the spatial contextual information using a four-directional
recurrent neural network with the identity matrix initialization model. Ren et al. [23]
propose progressive ResNet to effectively remove the rain via recursive computation.
Yu et al. [42] propose GraNet, which is designed to identify rain masks in the coarse
stage using a region-aware non-local block. Subsequently, the process uses the rain
masks to create the final image using another reconstruction network. To achieve pixel-
wise deraining in image recovery, encoder-decoder structures have been used in certain
methods. Wang et al. [29] propose the residual learning branch as a component of the
encoder. Li et al. [14] enhance the performance by introducing non-local blocks into
the encoder-decoder network. Among the methods that reconstruct the rainy layer to
be identical to the background layer, the generative adversarial network is widely used
to remove raindrops and rain streaks [15, 22, 45].

Yang et al. [39] propose the fractal band learning network based on frequent band
recovery. Wang et al. [30] propose an interpretable deep network based on a convolu-
tional dictionary network. Jiang et al. [12] use the images of various sizes as the input
to the model. A multi-scale pyramid structure is used to promote cooperative repre-
sentation. Deng et al. [6] propose two-branch parallel networks, in which one branch
performs rain removal and the other branch detail recovery. In [34], newly formulated
rain streaks transmission maps, vapor transmission maps, and atmospheric lights are
respectively learned by three different networks. Zhang et al. [46] propose a paired

rain removal network, which exploits both stereo images and semantic information.



Chapter 3

Proposed Network

In this chapter, we describe the overall structure and main components of the proposed
MC-CNN. The overview of MC-CNN is depicted in Figure 3.1. In Figure 3.1, let the
clustered blocks used within one scale be called stages. The first three stages consti-
tute the encoder part and the other four stages constitute the decoder part. Multi-scale
connection connects all output of all encoder parts to all inputs of the decoder. The
output of each encoder is concatenated and processed through a multi-scale attention
block before entering the input of the decoder. Multi-scale attention blocks serve to
change the concatenated feature of all scales to be useful for the model. Each stage
of MC-CNN is composed of two densely connected residual (DCR) blocks [20], each
of which consists of three convolution layers followed by PReLU [27] (refer toFigure
3.1(b)) and one WRNL block.
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3.1 Multi-scale Connection

In a typical U-Net-like network, connections exist between features corresponding to
the same scale. Although it performs better than the encoder-decoder without connec-
tions, they result in missing information in that all features generated in the encoding
process are not utilized in the decoding process. Such information loss is undesirable
because a single image deraining task is a low-level vision task that attempts to restore
each pixel more accurately. Multi-scale connection has been proposed to minimize this
loss of information.

Formally, let E

out

be the output features at level [ (I = 1,2, 3) in the encoder part.

Ateachlevel [ (I = 1,2,3,4) in the decoder part, the input feature Dén is given as:

3
choncat = (@ Hzl( éut)) @Hup(Df):tl% (31)
=1
D}y, = frran(Dionear): (32)

where @ denotes the concatenation operation, H,,(-) denotes the up-sampling op-
eration, D! , denotes the output feature of the decoder part at level /, and fi;45(")
denotes the multi-scale attention block depicted in Figure 3.1(c). H!(-) denotes the
sampling operation from level ¢ to [. In other words, H f is the down-sampling by [ — ¢
times, identity, and up-sampling by ¢ — [ times operations if [ > ¢ ,] = ¢, and | < 1,
respectively. We set D2 = 0 for convenience.

Multi-scale connection is designed to consider channel attention to learn which
scale is more important in the decoding process of each scale. In contrast to tasks such
as human pose estimation and semantic segmentation, which demonstrated the effec-
tiveness of multiple connections between scales in [25], multiple connections between
scales rather cause performance degradation in the deraining tasks. Through several
experiments, we find that channel attention is required for multiple connections be-
tween scales to be effectively used for the deraining task. To design multi-scale con-

nection to consider channel-wise attention of concatenated multi-scale input, we tried



1 A VR B

s il A B AT s
BV A LD BT
(TR AT (W FUAL TN
(VR WA

[ el
G
A "
1 i 4
1S L
I N AR 1
T
B B4IN

W "
i |7 T L
DIREC A VRN NS

(a) (b)
Figure 3.2: Examples of patch shapes according to region type. (a) is square patch and

(b) is wide rectangular patch. Every pixel in a patch refers to every pixel in the patch.

multi-head attention [28] and squeeze-and-excitation (SE) block [10] respectively, and
we adopt SE block with better results. To find the correct correspondence between

features at different scales, discrete wavelet transforms (DWT or IWT) is applied.

3.2 Wide Regional Non-Local Block

In this section, we first describe the representation of the WRNL block and then pro-
vide an analysis of the effectiveness of the WRNL block based on statistical explo-
ration.

Formally, let denote the input feature to the WRNL block as X € RIXWxC,
WRNL block divides X into a a x b grid of patches {X*}, (k = 1,..., K = ab) where
K is the number of patches. The grid division is illustrated in Figure 3.2. The linear

embedding processes for X* to generate the output Z* are formulated as follows.
B(XM)] = o(XF, XJ) = exp{0(XF)u (X))}, (33)
0(X]) = X[ Wo, v(X[) = XfWy, G(X)] = X[W,, (34)
where X¥ and X ]’“ denote the feature X* at position i and j, respectively. The
learnable weight matrices Wy, W, and W, have the dimensions of C' x L, C' x L, and

C x C, respectively. In practice, L = C'/2 is used. The regional non-local operation

can be expressed as follows:

ZF = 55 2y, YXNROXE), Wi, (3.5)

S g Eidi



where 6;( X*) =3 jes, P(X kX Jk) denotes the correlation between X and each X Jk
in S;, and Zf denotes the output feature Z* at position 4. S; denotes a set of patch
positions. If a > b, then the patch is wider than when a = b. Therefore, we call the
patch a wide rectangular patch, a square patch, and a tall rectangular patch if ¢ > b,
a = b, and a < b, respectively. In the WRNL block, we set the a x b grids to 16 x 4 ,

8 x2,4x1,and 4 x 1 atlevels 1, 2, 3, and 4, respectively.

3.2.1 Analysis

Each patch should have sufficient background information in that non-local blocks
recover certain pixels based on information from other pixels in the patch. Therefore, if
the background information is distributed evenly on each patch, it can be expected that
the regional non-local block will restore the image globally well. However, we find that
the rain pixels are not evenly distributed between square patches in the images used
in the previous deraining research [14, 42]. Since the rain steaks are mostly vertical,
wide rectangular patches can be expected to distribute more evenly between patches
than square and wide rectangular patches.

To check the distribution of rain pixels in each patch, we analyze 2 synthetic
datasets (Rain200L, Rain200H) and one real-world dataset (SPA-data). To match the
number of pixels per patch of grid divisions, we divide the height and width of the
image into 16 x4, 8 x8, 4 x 16 grids, respectively, to create wide, square, and tall
rectangular patches (see Figure 3.2). We define pixels as rain if the difference between
the pixels in @yt and x4 exceeds a certain threshold. The standard deviation be-
tween the number of rain pixels in the patches included in each image is depicted
in Figure 3.3. Wide rectangular patches are observed to exhibit much smaller aver-
age standard deviation values compared to square and tall rectangular patches, which
implies an even distribution of rain across all patches. This results in the effective re-
covery of the image because the usable background information within each patch is

also distributed evenly.

10
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Figure 3.3: Rain pixel distributions across various region types. Rain200H, Rain200L,

and SPA-data are analyzed. The x-axis represents the standard deviation between rain

pixels per patch in each image. The y-axis represents the number of images. The distri-

bution of the images according to the standard deviation is represented by histograms.

We approximate the probability density function of the histogram.
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3.3 Discrete Wavelet Transform

MC-CNN use DWT and IWT for down-sampling and up-sampling, respectively. In our
implementation, Haar wavelet is adopted, which is simple and widely used method in
image processing [9, 18, 21, 24, 36]. In 2D Haar wavelet, four filters, fry, frr, frr

and fy g, are fined as,

1(1 1 1]1-1-1 11-11 11 -1
frp=— Sop=— K =— Sop=— . (3.6)
11 411 1 4111 4111

4
Let LL, LH, HL, and HH be images generated by fr, fr i, frr, and £y filters

respectively. Given that f7; is the same as average pooling, LL achieves the local
translation invariance by reducing the size of the feature map (see Equation 3.6). LH,
HL, and H H have edge information. In particular, since L H has vertical edge infor-
mation, the feature of rain streaks can be effectively obtained.

The IWT operation in the up-sampling process is written as:

a=LL+LH+HL+ HH,
b=LL—LH+HL— HH,

(3.7)
c=LL+LH—-HL— HH,
d=LL—LH— HL+ HH,

where a, b, ¢, d are four pixels in every 2 x 2 block.

3.4 Data Augmentation

In addition to the commonly adopted data augmentation techniques such as random
cropping, we opt CutMix [43] augmentation strategy which cuts and pastes ground-
truth patches to input images. In visual recognition, CutMix allows the model to use
pixels efficiently in training and obtain the regularization effect. Yoo et al. [41] show
that this cut-and-paste approach is also useful in low-level vision tasks such as image

super-resolution task. To detail CutMix augmentation, let Z,put, Tgr € RWXHXC pe

12



input and ground-truth images. In the deraining task, ;. and x4 are rainy images

and rain-free images. We perform the cut-and-paste operation as :
T=MO0oO Tinput + (1 — M) © Zgt, (3.8)

where & denotes the augmented sample, M € {0, 1}"W*# denote the binary mask
indicating where to replace, 1 denotes the binary mask filled with ones and ® denotes
the element-wise multiplication. We randomly sample the size of the binary mask M

not more than half of the input image.

3.5 Loss Function

We use L1, Lo hybrid loss function because it showed slightly better performance, but
our method doesn’t appear to be sensitive to loss. Total loss, standard L, and L5 losses

are defined as follows.
L =1L+ Lo,
L1 = |zgt — fro—cNN(Tinput)|| 1, (3.9)
Lo = ||xgt — fric—cNN (Tinput) |2,

where ;¢ denotes input rainy image and x4 denotes the corresponding rain-free
image and fy;o_conn is a function that denotes the return of the HF-Net output with

respect t0 Tinput-

13



Chapter 4

Experiments

In this chapter, we introduce datasets we used, the evaluation method, and the ex-
perimental environment, and then demonstrate experimental results. The experimental
results are evaluated qualitatively and quantitatively, and the results of other state-of-
the-art methods are also compared. Then we conduct ablation studies to verify the

main components of our methods introduced in Chapter 3.

4.1 Datasets and Evaluation Metrics

Datasets Train images | Test images | Data Type | Training Epoch
Rain200L [37] 1,800 200 synthetic 200
Rain200H [37] 1,800 200 synthetic 200

Rain800 [45] 700 100 synthetic 200
Rain1200 [44] 12,000 1,200 synthetic 80
SPA-data [32] 640k 1,000 real-world 3
Yang et al. [37] - 15 real-world -

Table 4.1: Synthetic and real-world datasets

Four synthetic datasets, i.e., Rain200L [37], Rain200H [37], Rain800 [45], and

14



Rain1200 [44], and two real-world datasets, i.e., SPA-data [32] and Yang et al. [37],
are used to evaluate the performance of the proposed method. Details of the datasets
are given in Table 4.1 As pointed out by Ren et al. [23], certain overlaps of background
exist between the training dataset and the test dataset in the Rain100H and Rain100L
datasets. Therefore, new test datasets i.e., Rain200H and Rain200L, which do not share
the backgrounds with the corresponding training datasets are updated by Yang et al.
[37]. We strictly evaluate our model using Rain200H and Rain200L.

Because of the unavailability of training images and ground-truth images for test
input images in the real-world dataset of Yang ef al. [37], evaluation is only performed
qualitatively on the Yang et al. dataset using Rain200H-trained weights.

We use peak single-to-noise ratio (PSNR) [11] and structural similarity index
(SSIM) [35] as evaluation metrics to compare the performance of our proposed model
with those of other state-of-the-art methods. For equal evaluation, we calculate the
PSNR and SSIM in the RGB color space instead of the luminance channel of the
YCbCr space.

4.2 Experiment Details

Hardware Specification

CPU Intel Core i7-9700K
GPU Titan RTX

Software Specification

oS Ubuntu 16.04.6 LTS

Python 2.7.12
Pytorch Version: 1.2.0
CUDA Version: 10.0

Table 4.2: Training Environment

15



Details of the training environment are in Table 4.2. Adam optimizer is used for
model optimization, and we set the batch size to 4. We used the basic data augmen-
tation methods random cropping, horizontal flipping, and additional advanced data
augmentation, CutMix. The patch size for random cropping is set to 256 x 256. The

training epochs are set differently for each dataset and are described in Table 4.1.

4.3 Results

4.3.1 Synthetic Datasets

The proposed MC-CNN is evaluated on four synthetic datasets [37, 45, 32] and its per-
formance is compared to six state-of-the-art methods [37, 16, 23, 38, 30, 6]. The quan-
titative results for synthetic datasets are shown in Table 4.3. As can be seen from the
data, the proposed MC-CNN achieved a significant improvement over existing state-
of-the-art methods for PSNR and SSIM metrics. The original input, ground truth, and
qualitative results on the Rain200H are depicted in Figure 4.1. In Figure 4.1, other
methods also capture and remove the rain streaks well, but they are lacking by leaving
stains or losing detailed background information in the process of removing. The pro-
posed MC-CNN model also does not completely remove and restore all rain streaks,
but it significantly improves performance compared to other methods and restores

them almost close to ground truth data.

16
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4.3.2 Real-world Datasets

To verify the effectiveness of the model on real-world situations, experiments are also
conducted on two real-world datasets [37, 32]. Quantitative evaluation is made only in
SPA-data, because only SPA-data has ground truth data among the real-world datasets
we experimented on. As shown in Table 4.3, MC-CNN exhibits superior performance
with a very large difference quantitatively compared to the rest of the state-of-the-art
methods [37, 16, 23, 38, 30] in SPA-data. This shows that our model is not a model
that works specifically on synthetic datasets, but rather is more suitable for removing

real rain streaks.
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(a) Input (b) RESCAN (d) PReNet (e) ReHEN  (f) HF-Net (our) (g) GT

Figure 4.2: Results obtained via several different methods on SPA-data [32] images.
The outputs of ReHEN [23] and the proposed HF-Net exhibit almost no traces of rain
streaks on all two image samples, while the results obtained via other methods [16, 23,
38] exhibit traces of rain streaks. The derained image obtained via the proposed model
demonstrates its effectiveness in removing rain streaks that are not even clearly found

in the ground truth data.
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In order to visually check whether rain streaks are derained well, we conduct a
qualitative evaluation in SPA-data and Yang ef al. dataset. As can be seen in Figure
4.2, we can see that our model removes rain streaks better than other models without
blurring or remaining stain. Even SPA-data’s ground truth data is not perfect because
it made ground truth data with some techniques and manpower, but the background
of the second row of Figure 4.2 shows that our results have removed rain stains better
than ground truth data. Next, Figure 4.3 is the results for Yang et al. dataset, and since
Yang et al. dataset has no training data, we output the result through a model trained
with Rain200H training data. Looking at the boxes shown in the first row of Figure
4.3, PreNet fail to remove rain streaks in the yellow box instead of preserving the
background in the red box. Conversely, ReHEN does not preserve the background in
the red, although it does remove the rain well in the yellow box. However, our MC-
CNN achieves satisfactory results in both boxes. This confirms that MC-CNN also

shows robust performance for out-of-domain data.

4.4 Ablation Study

We conduct an ablation study to validate all main components of MC-CNN introduced
in Chapter 3. During the ablation study, Rain200H dataset is used as a training and
evaluation dataset. Based on the original U-Net structure with DCR block, each com-
ponent is applied in turn, and the resulting values are shown in Table 4.4. The results
are reported as the average of the three experiments. From Table 4.4, we can confirm

that each component contributes to improving the model performance.

4.4.1 Multi-scale connection

As mentioned in Chapter 1, we devise a multi-scale connection in the process of de-
signing a model to better recover the details of images through much information.

While we already find that multi-scale connection shows quantitative numerical im-
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Table 4.4: The results of ablation study on main components of MC-CNN

WRNL DWT Multi-scale connection Cutmix PSNR SSIM
28.91 0.903

v 29.35 0.909

v v 30.06 0.915

v v v 30.24 0.916

v v v v 30.34 0.916

provements in Table 4.4, we also perform qualitative comparisons to see that multi-
scale connections better restore details as intended (see Figure 4.4).

In the first row of Figure 4.4, we can see that multi-scale connection significantly
contributes to the clearer restoration of zebra patterns. In the second row, we can also
see that multi-scale connection helps to restore the tone and texture of the tree more
delicately. Since rain streaks are generally close to white, so many models often make
the mistake of lowering the tone of the image. In this respect, multi-scale connection

is shown to play a role in improving the fundamental problem of the deraining task.

4.4.2 Region types of non-Local block

To compare the performance of our proposed WRNL block, introduced in Section
3.2, we evaluate the performance of the region types “square”, “tall”, and “wide”

in regional non-local blocks. In the experiment, we use the baseline model with the

Table 4.5: The ablation study on region types of Regional Non-Local Blocks
Region Type PSNR SSIM

Tall Rectangle 29.78 0.913
Square 29.96 0.914
Wide Rectangle 30.06 0.915
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(a) MC-CNN (w/o MSC) (b) MC-CNN (c) GT

Figure 4.4: The ablation study on multi-scale connection (MSC).

WRNL block and DWT added as a model for comparison. Results presented in Table
4.5 demonstrate that the wide-type regional non-local block achieves the best per-
formance. This result indicates that, as we hypothesize, the even distribution of rain

streaks between the regions is advantageous for restoring rain-free background.
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Chapter 5

Conclusion

In this study, we proposed the MC-CNN for single image deraining. MC-CNN is a
model that attempts to improve detailed restore performance in the deraining process
based on encoder-decoder structure in a direction that leverages all existing feature
information without additional branches. To maximize the utilization of feature infor-
mation that we already have, we proposed two methods named multi-scale connection
and WRNL block.

Multi-scale connection is proposed to minimize information loss in the encoding-
decoding process. However, if multi-scale connection did not consider channel-wise
attention of concatenated multi-scale input, performance degradation occurred. So we
applied SE block to multi-scale connection to learn which scale is more important
in the decoding process of each scale. Through the ablation study, we confirmed that
multi-scale connection plays a role in solving the critical problem of the deraining task
and improve the performance of the model.

WRNL is proposed based on the assumption that regional non-local block works
more effectively when rain pixels between patches are evenly distributed. Through rain
pixel distribution analysis, we found that a wide rectangular region provides the even-
est distribution to each patch and showed that WRNL improves model performance

through experiments in Table 4.5. In several experiments, WRNL showed steady per-
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formance improvements.

Finally, MC-CNN achieved state-of-the-art in quantitative comparisons, and also
in qualitative comparisons, MC-CNN showed the best recovery of rain-free back-
ground details, as well as overcoming the tone-down problem, a chronic problem in
deraining models.

However, MC-CNN has limitations that the model, which is a disadvantage of
encoder-decoder structure, is heavy, and that it still does not fully restore the details of

the image, which should be overcome through future research.
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