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ABSTRACT 

 

Multiscale poroacoustic modelling of fibrous 

acoustical materials using artificial intelligence 

 

Ju Hyun Jeon 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

   

This study proposes a methods for estimating the intrinsic parameters 

and sound absorption coefficient of single or multi-layered fibrous 

materials using artificial intelligence. In the first phase of this work, 

convolutional neural network models (CNNs) for estimating intrinsic 

parameters of a single fibrous layer from X-ray micro-computed 

tomography (CT) images are introduced. Two-dimensional micro-CT 

images and numerically obtained intrinsic parameters were used to train 

the CNNs; Stokes flow and potential flow were used to numerically 

obtain the intrinsic parameters using geometrical models extracted from 
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the raw CT images. Then analogously to constructing a 3-D image of the 

fibrous material by stacking the 2-D slice images, the volumetric 

intrinsic parameters of the fibrous materials were calculated using the 

parameters of each 2-D image predicted by the trained CNN models. The 

intrinsic parameters of the fibrous volume predicted by the CNN models 

showed good agreement with the measured values. In addition, the sound 

absorption coefficient was calculated by applying both the predicted and 

measured intrinsic parameters to the semi-phenomenological sound 

propagation model and compared with the measured sound absorption 

coefficient. The results of the study confirm the feasibility of predicting 

intrinsic parameters of fibrous materials using a neural network model 

based on raw micro-CT images. In the second phase of this work, The 

feasibility of an artificial neural network (ANN) for the estimation of the 

sound absorption coefficient of a layered fibrous material is studied. The 

sound absorption coefficient of a four-layered fibrous material was 

estimated using a well-trained ANN model with only one intrinsic 

parameter: the static airflow resistivity (σ). The results indicated that the 

ANN model exhibits a good correlation between the estimated and 

measured absorption coefficient. The training data sets were built by 

carrying out experimental measurements using a two-microphone 
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impedance measurement tube with 230 combinations of four-layered 

fibrous materials. The results of the ANN are compared in three different 

cases with the transfer matrix method (TMM), which is the conventional 

method of estimating the sound absorption coefficient of multi-layers 

using several intrinsic parameters. The sound propagation model in 

acoustical material for the TMM was used by two models proposed by 

Delany-Bazely and Johnson-Champoux-Allard. By comparing the 

estimated sound absorption coefficient from the ANN and TMM with 

measured values, it was demonstrated that the model developed in this 

work gives more accurate results within the defined conditions. The 

results were compared in the frequency range of 3000-6000 Hz, and the 

error of the ANN model was less than 1.67 %. 

 

Keywords: Artificial intelligence, Convolutional neural network, Intrinsic 

parameter, Micro-computed tomography, Numerical analysis, 

Sound absorption coefficient, Fibrous material, Multi-layered 

porous media 

Student Number: 2013-23086 
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CHAPTER 1 

 

INTRODUCTION 

 

Fibrous materials are porous materials that are widely used for noise 

control. Generally, these materials are applied to the surface of a space to block 

external noise or to control the sound absorption coefficient of the space. 

Specifically, fibrous materials are used to control the interior sound pressure 

levels of vehicles such as automobiles, trains, and airplanes. However, to 

control the indoor noise level of a mechanical system using acoustical materials, 

it is necessary to understand the precise performance measures of the materials. 

[1, 2] 

In general, models used to describe the acoustic properties of fibrous 

materials can be categorized as empirical models and semi-phenomenological 

(motionless skeleton) models. The model proposed by Delaney and Bazely is 

representative of empirical models. [3] The model uses a single intrinsic 

parameter, static airflow resistivity, to predict the acoustic properties of fibrous 

materials. Numerous empirical formulas have been proposed to improve the 

model accuracy or to predict the acoustic performance of various materials. [4, 

5] Empirical models are widely used because of their convenience; however, 
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their performance may decrease depending on the material. [6] Semi-

phenomenological models have been developed to overcome this limitation of 

application to various materials. Johnson et al. proposed a model that expresses 

the complex bulk density of air in acoustical materials, which describes the 

effect of viscous resistance. [7] Champoux and Allard proposed a model that 

expresses the complex bulk modulus of air in acoustical materials, which 

describes the effect of thermal conduction in the material. [8] These two models 

can be applied to an arbitrary pore shape inside the porous media. The complex 

bulk density and complex bulk modulus obtained from the two models have 

been applied to the cylindrical tube model proposed by Zwikker and Kosten [9] 

to predict the acoustic properties of porous media. This is commonly referred 

to as the Johnson-Champoux-Allard (JCA) model, which requires knowledge 

of five intrinsic parameters: porosity, tortuosity, static airflow resistivity, 

viscous characteristic length (VCL), and thermal characteristic length (TCL). 

Subsequently, Lafarge et al. and Pride et al. modified the JCA model to improve 

prediction accuracy at low frequencies. [10, 11] In the model presented by 

Lafarge et al., [10] static thermal permeability is included in addition to the five 

parameters required in the JCA model. In the case of the model suggested by 

Pride et al., [11] static thermal permeability, static viscous tortuosity, and static 

thermal tortuosity are included in addition to the to the five parameters. 
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Because it is difficult to guarantee the accuracy of empirical models for 

various materials, the JCA, JCA-Lafarge, and JCA-Pride-Lafarge models are 

generally used to predict the acoustic performance of fibrous materials. The 

three models consider only airborne noise in porous media and assume that the 

skeleton of the material is motionless. Therefore, all intrinsic parameters 

required to construct the models represent the fluid characteristics inside the 

porous media. Conventionally, the five parameters required in the JCA model 

can be obtained using well-organized measurement methods, [12, 13, 14, 15, 

16] but the measurement process is labor intensive and requires proficiency in 

the use of the measuring instruments. To overcome these disadvantages, 

numerous studies have been conducted to predict the intrinsic parameters of 

materials. In particular, studies on predicting intrinsic parameters through 

numerical analysis using the geometrical information of porous media 

microstructures have been conducted for decades. Tarnow proposed an explicit 

equation to express the static airflow resistivity of a fibrous material by 

randomly arranging the cross-sections of fibers with a single radius on a two-

dimensional (2-D) plane using Voronoi polygons. [17, 18] The static airflow 

resistivity of the material was calculated using Stokes flow analysis in the 

lateral direction of the randomly arranged fibers. Subsequently, Hirosawa and 

Nakagawa proposed a method for obtaining all five intrinsic parameters using 
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Stokes flow analysis and potential flow analysis based on 200 strands of fibers 

randomly arranged in a 2-D plane. [19] As research on microstructures of 

porous media in three-dimensions (3-D), studies on open-cell foam have been 

actively conducted. Perrot et al. proposed periodic unit cells for open-cell foam 

to predict intrinsic parameters through numerical analysis. [20, 21, 22] Park et 

al. introduced a method for optimizing the sound absorption of polyurethane 

foam using periodic unit cell analysis. [23, 24] Finally, Luu et al. proposed a 

method to obtain intrinsic parameters through a fiber reconstruction technique 

based on scanning electron microscope (SEM) imaging, contributing to the 

research on the 3-D microstructure of fibrous material. [25, 26] These methods 

have a common goal of constructing geometrical information from the 

microstructure of porous media and using it to predict intrinsic parameters 

through numerical analysis. With another approach, Lieblappen et al. 

considered snow as a natural porous medium, and predicted the porosity and 

tortuosity of the porous medium using micro-computerized tomography (CT) 

imaging and ultrasonic waves. [27] Lee et al. proposed semi-phenomenological 

and empirical models that relate the microstructural properties to the intrinsic 

parameters using micro-CT imaging. [28] However, because these models were 

developed using polyurethane foam, they cannot predict the intrinsic 

parameters of fibrous materials. 
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In first phase of this work, to build upon these previous studies, I propose 

a method to predict intrinsic parameters of fibrous materials using artificial 

intelligence. The five basic intrinsic parameters required by the JCA model are 

covered in this work. Previously, Lähivaara proposed a methodology, using a 

deep convolutional neural network (CNN), that estimates the porosity and 

tortuosity of materials based on the wave field pattern inside porous media 

using ultrasound. [29] In this work, I take an approach from easily obtainable 

image information. 3-D X-ray micro-CT imaging was used to obtain 

geometrical information of the microstructure of real fibrous materials; 3-D CT 

imaging allows the reconstruction of the volume render image by stacking 

multiple 2-D slice images. Based on this concept, the microstructural geometry 

of the fibers was extracted for each CT slice image, and numerical analysis was 

conducted in 2-D to predict the intrinsic parameters for each slice image. I 

employed the finite element method for a steady incompressible Stokes flow to 

obtain the static airflow resistivity [30, 31] and the boundary element method 

for a potential flow to obtain the tortuosity and VCL. [32, 33, 34] Porosity and 

TCL were obtained directly from the fiber geometry. The slice images of a 

fibrous material can be stacked to reconstruct the volume structure, and then 

the intrinsic parameters of the volume can be calculated using the value of each 

fiber geometry slice. In this process, the effects of the fluid flow in the direction 
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normal to the 2-D image plane are ignored. In addition, CNNs [35, 36] were 

employed to 2-D micro-CT raw images. The CNN models for each intrinsic 

parameter were trained based on a large dataset of raw slice CT images and the 

intrinsic parameters obtained from numerical analysis. The intrinsic parameter 

values obtained using the trained CNNs were compared with parameter values 

obtained from 3-D model analysis and measured at the macro scale using 

conventional measurement methods to validate the proposed method. 

In second phase of this work, the method of predicting the absorption 

coefficient of multi-layered fibrous materials using the fully-connected 

artificial neural network (ANN) is discussed. The objective of the work in 

second phase is to accurately estimate the sound absorption coefficient of multi-

layered fibrous material by using only one intrinsic parameter as an input 

variable. The neural network model developed in the second phase, uses one 

intrinsic parameter (static airflow resistivity) and shows better estimation 

accuracy than the conventional transfer matrix method (TMM) [37, 38, 39] 

using one or five parameters. 

This paper is organized as follows. First, chapter 2 explains the process of 

constructing geometrical information of the fibrous materials using the micro-

CT images. Then, chapter 3 presents the process of constructing a numerical 

model and obtaining five intrinsic parameters using 2-D micro-CT images. 
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Next, chapter 4 presents the CNN models and the data structures used to train 

the model. After comparing predicted and measured values, the results and 

verifications are presented. Chapter 5 explains the ANN model used to 

estimating the acoustical property of multi-layered fibrous material. Then the 

estimated sound absorption coefficient using ANN and TMM is compared with 

measured values. Finally, the conclusions are discussed in Sec. VI. 
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CHAPTER 2 

 

PHYSICAL CHARACTERIZATION OF FIBROUS 

MATERIAL 

 

2.1 Introduction 

In this chapter, the process for constructing a 2-D geometrical model is 

described using X-ray micro-CT image of fibrous material. In order to 

accurately analyze the flow field in the fibrous material, it is important to find 

the optimal condition considering the effect of resolution and size of the micro-

CT image. In this work, the density-based spatial clustering of applications with 

noise (DB-SCAN) algorithm was used to extract information such as the 

centroid, perimeter, and diameter of fiber strands distributed on the micro-CT 

images. Polyethylene terephthalate was used in this work for the basic material, 

which is widely used for sound insulation in the interior of the automotive 

vehicle. 
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2.2 Microscopic geometrical characterization 

 

2.2.1 X-ray micro-computerized tomography imaging 

 

Nine polyethylene terephthalate (PET) felts with a thickness of 

approximately 10 mm and a surface density from 600 to 1400 grams per square 

meter (GSM) at intervals of 100 GSM were used in this work. Six of these 

specimens were used to generate a dataset to train the CNNs, and the other three 

specimens were used to test the performance of the trained CNNs. Tomography 

was conducted on nine types of PET using an X-ray micro-imaging system 

(Skyscan 1172, Bruker, Belgium). For micro-CT imaging, each specimen was 

prepared 20 mm long in a 4 mm × 4 mm cross-section. The voltage and current 

of the X-ray source were set to 40 kV and 250 μA, respectively, and the 

exposure time was set to 2356 ms. 

A previous microstructure study on fibrous material [25] confirmed that 

the standard deviation of the intrinsic parameters calculated according to a 

random position in the fibrous material is very small when the cubic box 

dimension of the micro volume is 1000 μm or more. Using this point, I set the 

3-D image size to be analyzed as 1000 × 1000 × 1000 μm3. The resolution of 

the image was set to 2 μm/voxel, thus using an image of 500 × 500 × 500 voxels. 
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The resolution of the image was determined considering both the computational 

cost and accuracy of the analysis. Because the diameter of fibers constituting 

the PET fibrous material used in this study was mostly between 20 and 60 μm, 

and the pore size was much larger than this, a resolution of 2 μm was considered 

suitable for analysis. [40] The slice images were stacked to reconstruct a 3-D 

image using cone-beam reconstruction software (NRecon, Brucker, Belgium). 

For visual reference, a part of the 3-D geometrical model of 600 GSM PET is 

shown in Fig. 2.1. Micro-CT images were taken on the y–z plane of the fibrous 

volume. Therefore, 2-D images can be analyzed in the y and z direction. The 2-

D flow analysis covered in chapter III considers the z-direction flow, and the 3-

D flow analysis which will be covered in chapter IV, also considers the flow in 

the z-direction. 

  



 

11 

 

2.2.2 Two-dimensional geometrical model for fibrous material 

 

This section describes the algorithm used to reconstruct a 2-D geometrical 

model of felt fibers based on 3-D micro-CT images. The algorithm uses a DB-

SCAN [41] to identify illuminated pixels in micro-CT images and group them 

into clusters representing the section of a fiber on the image plane. The process 

of extracting the 2-D geometrical model from the micro-CT slice image is 

shown in Fig. 2.2 and Fig. 2.3. For clarity, this section uses a 3-D image of 480 

× 480 × 200 μm3. 

First, from the raw image shown in Fig. 2.2(a), the pores and fibers are 

distinguished using a binary threshold, as shown in Fig. 2.2(b). The pixels 

included in the region of the fiber are designated active pixels. The coordinates 

of the active pixels in each slice image are extracted from the image file at this 

stage. The active point coordinates are then clustered using DB-SCAN, as 

shown in Fig. 2.2(c). Cluster objects were created by extracting the cluster 

centroid, cluster tag, cluster point coordinates, and the number of points in the 

cluster. Cluster objects were then used to deduce the boundary ellipse 

containing the respective clusters. Note that, as shown by the arrows in Fig. 

2.2(b) and Fig. 2.2(c), a single micro-CT image may fail to separate a plurality 

of adjacent fibers. To overcome this problem, cluster objects in the images 
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immediately before and after the image of interest were examined to determine 

whether the cluster consisted of one fiber or a plurality of fibers. 

The center of each fiber detected in the slice image can be presented in 

three-axis coordinates, as shown in Fig. 2.3(a). To create a continuous cylinder 

along this centerline, the diameter of the cylinder was taken to be the average 

length of the minor axis of the ellipse deduced from the cluster of each slice 

image. The diameter of the fibers of PET felt used in this study follows the 

normal distribution with an average of 29 μm and a standard deviation of 10 

μm. Here, it is assumed that the diameter of a single fiber is constant in the 

centerline direction. In the 3-D fiber geometrical model shown in Fig. 2.3(b), it 

is possible to obtain a 2-D geometrical model for an arbitrary position in the x-

axis direction. The 2-D geometrical model reconstructed from the x-axis 

position of the raw image shown in Fig. 2.2(a) is overlaid with the raw image 

in Fig. 2.3(c). 
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Figure 2.1 (a) Isometric view, (b) top view, and (c) side vie of the 600 GSM 

PET felt. The gray square of the Fig. 2.1(a) coincides with the plane of micro-

CT image plane. 
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Figure 2.2 (a) Micro-CT raw image of PET felt, (b) binary threshold image, 

and (c) active points clustered using DB-SCAN. 
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Figure 2.3 (a) Cluster centroid connections, (b) reconstruction of the 2-D 

geometrical model from the 3-D fiber model, and (c) overlaid image of the 2-

D geometrical model and micro-CT image.  
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CHAPTER 3 

 

EXPERIMENTAL PROCEDURES 

 

3.1 Introduction 

In this section, numerical experiments are applied to the 2-D geometrical 

model generated in chapter 2, and the process of obtaining the intrinsic 

parameters of each slice image is described. The five basic intrinsic parameters 

are covered required by the JCA model in this work. I employed the finite 

element method for a steady incompressible Stokes flow to obtain the static 

airflow resistivity [30, 31] and the boundary element method for a potential 

flow to obtain the tortuosity and VCL. [32, 33, 34] Porosity and TCL were 

obtained directly from the fiber geometry.  

Chapter 3.2 introduces the process of obtaining intrinsic parameters using 

numerical experiments. Chapter 3.3 briefly discusses the process of obtaining 

parameters using direct measurement method, to verify the estimated values 

obtained in chapter 3.2. Finally, in chapter 3.4, the process of measuring the 

sound absorption coefficient is introduced. Here, the experimentally obtained 

sound absorption coefficient will be used to verify the predicted values in 

chapter 4 and 5. 
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3.2 Numerical experiments for obtaining intrinsic parameters 

 

3.2.1 Model for porosity and thermal characteristic length 

 

Porosity and TCL can be obtained using a mesh model constructed from 

the 2-D geometrical model, as shown in Fig. 3.1. First, the porosity 𝜙 can be 

calculated according to its definition as 

 𝜙 =
1

𝑆𝑇
∑𝑆𝑖

𝑛

 , (3.1) 

where 𝑆𝑖 is the surface area of the 𝑖-th pore element, 𝑛 is the total number of 

pore elements, and 𝑆𝑇 is the total surface area of the mesh model, which is 

equal to 1000 × 1000 μm2, as mentioned in chapter 2. 

The TCL Λ′ is defined as the ratio of the volume integration of the pore 

and the area integration of the fiber as 

 Λ′ = 2
∫ 𝑑𝑉
𝑉

∫ 𝑑𝑆
𝑆

 ≈  2
∑ 𝑆𝑖
𝑛

∑ 𝐿𝑗√2/(1 + cos2𝛼)𝑚
 , (3.2) 

where 𝐿𝑗 is the perimeter of the 𝑗-th fiber section on the plane and 𝛼 is the 
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angle between the normal vector of the image plane and the fiber strand. 𝛼 can 

be calculated as the ratio of the major and minor axis. Since this study deals 

with the 2-D flow field, volume integration was approximated by numerical 

area integration, and area integration was approximated by numerical line 

integration multiplied by a correction factor. When the fiber is positioned 

obliquely to the image plane in 3-D, the lateral area of the elliptical cylinder 

positioned perpendicular to the image plane is calculated if only the perimeter 

𝐿𝑗  is considered. Using the approximated perimeter of ellipse 𝑝 =

2𝜋√(𝑎2 + 𝑏2)/2, (where 𝑎 and 𝑏 are the semi-major and semi-minor axis, 

respectively) the ratio of the lateral area between the elliptical cylinder and 

oblique cylinder can be obtained as 1:√2/(1 + cos2𝛼). The error resulting 

from this approximation will be presented in chapter 4. 

 

3.2.2 Model for tortuosity and viscous characteristic length 

 

Because the tortuosity and the VCL are defined in a flow of non-viscous 

fluid, [7] a potential flow analysis was conducted to obtain both parameters 

from the 2-D geometrical model. A uniform potential flow was made to flow 

with the velocity 𝑈𝑝 from the left to the right side (z-axis direction) of the 2-

D geometrical model, and the medium was assumed to be an incompressible 
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inviscid fluid. The upper and lower boundaries and the fiber contour were 

treated as impermeable walls. The description of the potential flow problem 

including applied boundary condition is given by 

 

 ∇ ∙ 𝒘𝑷 = 0  in  Ω𝑓 , (3.3) 

 ∇ × 𝒘𝑷 = 0  in  Ω𝑓 , (3.4) 

 𝒘𝑷 ∙ 𝐧 = 0  on  Ω𝑠𝑓 , (3.5) 

 

where 𝒘𝑷 is the velocity of the fluid of the potential flow, Ω𝑓 is the fluid 

domain, and Ω𝑠𝑓 is the fluid–solid interface, and 𝐧 is the unit normal to the 

boundary Ω𝑠𝑓. Eq. (3.3) and (3.4) imply the incompressible and irrotational 

flow, respectively.  

The flow field was calculated using the complex variable boundary 

element method. [19, 32, 33, 34] For a 2-D potential flow, the stream function 

Ψ is determined by 

 𝒖 =
𝜕Ψ

𝜕𝑦
;   and  𝒗 = −

𝜕Ψ

𝜕𝑥
 , (3.6) 

and if the 2-D incompressible flow is irrotational, the potential function Φ is 
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 𝒖 =
𝜕Φ

𝜕𝑥
;   and  𝒗 =

𝜕Φ

𝜕𝑦
 . (3.7) 

Because Eq. (3.6) and (3.7) satisfy the Cauchy–Riemann condition, it is 

possible to form the complex potential 𝑊𝑃 as a linear combination of Ψ and 

Φ as 

 𝑊 =  Φ + iΨ. (3.8) 

The functions 𝑊,Φ,Ψ are all analytic, the velocity component 𝒘𝒑 = (𝒖, 𝒗)  

can be obtained from 𝑊𝑃 by differentiating with respect to 𝑧 as 

 
𝑑𝑊

𝑑𝑧
= 𝒘𝑷 = 𝒖 − 𝑖𝒗. (3.9) 

The complex potential 𝑊𝑃  at an arbitrary point z can be obtained with the 

Cauchy-type integral formula as 

 𝑊(𝑧) =
1

2𝜋𝑖
∮

𝑊(𝜁)

𝜁 − 𝑧
𝑑𝜁

Ω𝑠𝑓

, (3.10) 

where 𝜁  is a point on the boundary Ω𝑠𝑓 , 𝑊(𝜁)  takes on the values of the 
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potential and stream function along the boundary. Now, the boundary contour 

can be approximated by 𝑚 discretized boundary elements. The nodal points 

located at both ends of the infinitesimal element are sequentially designated as 

𝜁1 , 𝜁2 , ⋯ , and 𝜁𝑚+1 . For a closed boundary, 𝜁𝑚+1 = 𝜁1 . The Cauchy-type 

integral of Eq. (3.10) can be discretized as 

 𝑊(𝑧) =∑Δ𝑗𝑊(𝑧),

𝑚

𝑗=1

 (3.11) 

 Δ𝑗𝑊(𝑧) =
1

2𝜋𝑖
∫

𝑊(𝜁)

𝜁 − 𝑧
𝑑𝜁

𝜁𝑗+1

𝜁𝑗

, (3.12) 

where Δ𝑗𝑊(𝑧)  is the contribution of the 𝑗 -th infinitesimal element to the 

complex potential at an arbitrary point 𝑧. 

The tortuosity 𝛼∞ is defined as the ratio of the square of the path length 

in the porous material 𝐿𝑒 to the square of the distance in free space 𝐿0, given 

by 

 𝛼∞ = (
𝐿𝑒
𝐿0
)
2

 . (3.13) 

The path length 𝐿𝑒 can be obtained from the average length of the multiple 
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streamlines, where each individual streamline is found using the coordinates 

with equal stream function values in the flow field. [19] Excluding the stream 

function, which vanished on the fiber contour, the path length 𝐿𝑒 was obtained 

from the length of the streamline maintained between both ends of the 2-D 

geometrical model. The horizontal length of the geometrical model was used as 

the distance in free space 𝐿0, and the tortuosity was calculated using Eq. (3.13). 

The streamline formed in the square box in Fig. 3.1 is shown in Fig. 3.2. 

The viscous characteristic length Λ is defined by the ratio of the volume 

integration to the surface integration, in which each volume or area element is 

weighted according to the local value of the squared velocity field |𝒘𝑷|
𝟐 as 

 Λ = 2
∫ |𝒘𝑷(𝑧)|

2𝑑𝑉
𝑉

∫ |𝒘𝑷(𝜁Ω𝑠𝑓
)|
2
𝑑𝑆

𝑆

 ≈  2
∑ ∫ |𝒘𝑷(𝑧)|

2𝑑𝑆
𝑆

𝑛

∑ ∫ |𝒘𝑷(𝜁Ω𝑠𝑓
)|
2
𝑑𝑙

𝑙
𝑚

 , (3.14) 

where ∫ |𝒘𝑷(𝑧)|
2𝑑𝑆

𝑆
 is the surface integration of the squared velocity of the 

pore element and ∫ |𝒘𝑷(𝜁Ω𝑠𝑓
)|
2
𝑑𝑙

𝑙
  is the line integration of the squared 

velocity of the fiber contour element. For the similar reason as in the calculation 

of the TCL, volume integration and area integration are approximated by 

numerical area integration and line integration, respectively. However, when an 

ellipse on the plane exists due to the oblique fiber, it is difficult to inversely 



 

23 

 

estimate the difference in velocity field. Therefore, correction factor is not 

considered in this case. The error resulting from this assumption will be 

presented in chapter 4. The velocity field formed in the square box in Fig. 3.1 

is shown in Fig. 3.3. 

 

3.2.3 Model for static airflow resistivity 

 

The flow field to obtain the static airflow resistivity is treated as a 2-D 

incompressible viscous air flow. The flow was applied as a steady, low 

Reynolds number flow. A viscous flow problem was solved using the Stokes 

flow, and the problem description including the Stokes equation and applied 

boundary conditions is shown in Eqs. (3.15)–(3.17), [22, 23] 

 

 𝜇∇2𝒘𝑺 − ∇𝑝 = −𝑮  in  Ω𝑓 , (3.15) 

 ∇ ∙ 𝒘𝑺 = 0  in  Ω𝑓 , (3.16) 

 𝒘𝑺 = 0  on  Ω𝑠𝑓 , (3.17) 

 

where 𝜇  is the viscosity of air, 𝒘𝒔  is the velocity of the fluid, 𝑝  is the 

pressure, 𝑮 is the pressure gradient acting as a body force throughout the fluid 

domain. A laminar flow was made to flow from the left side to the right side (z-
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axis direction) of the 2-D geometrical model. The boundary of the inlet and 

outlet was designated as the velocity 𝑈𝑺, and the upper and lower boundaries 

were treated as free slip conditions. The flow field was calculated using the 

finite element method. The fluid field of the geometrical model is discretized 

by a Taylor–Hood (P2-P1) triangular element that satisfies the Ladyzhenskaya-

Babuška-Brezzi (LBB) condition, and the Galerkin method was applied to Eqs. 

(3.15)–(3.17). [19, 30, 31] The velocity and pressure field were obtained from 

a 2-D plane extended in the inlet and outlet direction of the 2-D geometrical 

model, and the spatially averaged pressure at both ends, 〈𝑃𝑖𝑛〉 and 〈𝑃𝑜𝑢𝑡〉, was 

calculated where the pressure field was sufficiently stabilized. The static 

airflow resistivity of the 2-D geometrical model was calculated using Darcy’s 

law given by 

 𝜎 =
Δ𝑝

𝑈𝑺𝐿0
  , (3.18) 

where Δ𝑝 = 〈𝑃𝑖𝑛〉 − 〈𝑃𝑜𝑢𝑡〉 and 𝐿0 is the length of the horizontal side of the 

geometrical model. The pressure field calculated from the geometrical model 

in Fig. 3.1 is shown in Fig. 3.4. 
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3.3 Intrinsic parameter measurement 

 

The intrinsic parameters of PET were measured to validate the parameters 

predicted using the methods proposed in this work. Among the nine PET 

specimens, the parameters of three PETs used for testing the neural network 

were obtained using the direct measurement method and the inverse method. 

Testing PETs have surface densities of 800, 1000, and 1200 GSM, and the 

intrinsic parameters were measured for three specimens of each surface density. 

A brief summary of the measurement method is as follows, and the results are 

summarized in Table 3.1. 

The porosity was measured using a porosity meter (PHI, Mecanum Inc., 

Quebec, Canada). The pressure and mass of the chamber were measured under 

four conditions: with and without a specimen in the chamber at an air pressure 

of less than 1.0 psi, and with and without a specimen in the chamber under 

pressure around 80 psi of argon gas. The porosity can be calculated from these 

four measurements using four ideal gas equations corresponding to these states. 

[16, 28] 

The tortuosity was measured using a tortuosity meter (TOR, Mecanum Inc., 

Quebec, Canada). After measuring the impulse response with and without the 

specimen between the ultrasonic source and receiver sensors, the refraction 
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index of the material can be calculated using the phase difference between two 

impulse responses. By measuring the refraction index at multiple ultrasonic 

frequencies, the tortuosity can be calculated through high-frequency 

approximation using regression. [13] 

The static airflow resistivity was measured in accordance with ISO 9053-

1. [12] The pressure difference between the front and back sides of the specimen 

was measured while an air velocity of 1–10 mm/s flowed through the specimen. 

Then, the pressure difference was estimated at an air velocity of 0.5 mm/s using 

linear regression. The static airflow resistivity was then calculated using 

Darcy’s law. 

The TCL and VCL were obtained using the inverse characterization 

method. [42] The JCA model was used, and previously measured values of the 

parameters except for the two characteristic lengths were used. The normal 

incidence sound absorption coefficient required as the objective function of the 

inverse problem was measured using the Brüel and Kjær Type-4206 impedance 

tube, following the ASTM E1050 standard. [43] 
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3.4 Sound absorption coefficient measurement 

 

The sound absorption coefficient of fibrous material was measured using 

a Bruel and Kjær (B & K) two-microphone impedance tube (Type 4206). The 

B & K Type 4206 impedance tube consists of a loudspeaker, several 

microphone holders, and a cylindrical structure to mount a specimen. The sound 

reflection coefficient or the sound transmission loss can be measured using the 

transfer function between the microphones. [44, 45] After generating a 

broadband random signal in the frequency range of 100–6400 Hz, using a 

loudspeaker at one end of the tube, the transfer function between the two 

microphones is obtained over that frequency band. The sound reflection 

coefficient and the absorption coefficient can be calculated using the following 

transfer function: 

 𝐻12 =
𝑃2(𝜔)

𝑃1(𝜔)
=
𝑃𝑖𝑒

𝑗𝑘𝑥2 + 𝑅(𝜔)𝑃𝑖𝑒
−𝑗𝑘𝑥2

𝑃𝑖𝑒𝑗𝑘𝑥1 + 𝑅(𝜔)𝑃𝑖𝑒−𝑗𝑘𝑥1
, (3.19) 

and 

 𝑅(𝜔) =
𝑒−𝑗𝑘(𝑥1−𝑥2) − 𝐻12

𝐻12 − 𝑒𝑗𝑘(𝑥1−𝑥2)
𝑒2𝑗𝑘𝑥1 , (3.19) 
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where 𝑃𝑖 is the incident wave in the impedance tube, 𝑅(𝜔) is the reflection 

coefficient, and 𝑥1  and 𝑥2  are the distance between the sample and the 

microphone locations, respectively (see Fig. 3.5 for more detail). When 

measuring the normal incidence sound absorption coefficient of a specimen 

using the B & K Type 4206, specimens with diameters of 100 mm and 29 mm 

can be used depending on the frequency range of interest. The suitable 

frequency range is 100 to 1600 Hz for 100 mm specimens and 500 to 6400 Hz 

for 29 mm specimens [46]. 
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TABLE 3.1 Measured intrinsic parameters of the three testing PET specimens. 

Testing 

PET 

𝜌𝑠𝑢𝑟𝑓𝑎𝑐𝑒 [GSM] 𝜙 [−] 𝛼∞ [−] 𝜎 [Nsm−4] Λ′ [𝜇m] Λ [𝜇m] 

Mean 
Std.  

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Inverse method 

A 800 20 0.863 0.010 1.04 0.03 69 500 1 100 106 33 

B 1 000 20 0.847 0.008 1.09 0.04 103 000 2 800 84 27 

C 1 200 20 0.825 0.009 1.14 0.07 121 000 5 100 74 24 
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Figure 3.1 2-D mesh model constructed using the geometrical model. The 

square box in the figure is an area for visual reference of potential flow analysis 

to obtain tortuosity and VCL in Fig. 3.2 and Fig. 3.3. 
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Figure 3.2 Streamlines of inviscid flow formed in the square box in Fig. 3.1. 
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Figure 3.3 Velocity field of inviscid flow formed in the square box in Fig. 3.1.
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Figure 3.4 Analyzed pressure field from the 2-D geometrical model using stokes flow. 
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Figure 3.5 Schematic of the two-microphone impedance measurement tube 

(B & K Type 4206).
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CHAPTER 4 

 

NEURAL NETWORK MODEL DEVELOPMENT 

FOR INTRINSIC PARAMETERS 

OF FIBROUS MATERIAL 

 

4.1 Introduction 

 

The present chapter focuses on identifying the feasibility of an CNN 

model for estimating the intrinsic parameters of the fibrous materials. The 

objective of this work is to accurately estimate the intrinsic parameters of 

fibrous material by using the CNN models with 2-D micro-CT images as an 

input variable. The result will be compared with the value obtained using the 

transfer matrix method (TMM), which is widely used to obtain the acoustical 

properties of multi-layered porous media.  

The concept of the neural network is briefly discussed in chapter 4.2, the 

modelling procedure is introduced in chapter 4.3. The validation of the 

developed CNN models is discussed in chapter 4.4, finally, the limitation of the 

developed model is noted in chapter 4.5. 
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4.2 Artificial neural network 

 

4.2.1 Fully-connected artificial neural network 

 

The configuration of a general feedforward ANN is shown in Fig. 4.1. The 

cubes in the figure represent artificial neurons, and the arrows represent the 

unidirectional calculation flow. The network can be divided into three layers: 

input layer, hidden layer, and output layer. For an arbitrary problem, once input 

and output variables are defined, the hidden layer serves to describe the 

relationship between them. In general, the number of layers and neurons is 

determined by the complexity of the data; however, the network normally 

consists of one input layer, one output layer, and one or more hidden layers. [47, 

48] 

The artificial neurons in the hidden and output layers are constructed 

similar to dendrites, cell bodies, and axons, which make up biological neurons. 

An example of the artificial neuron is shown in Fig. 4.2. Analogously to human 

neurons, each synaptic weight corresponds to the length of a dendrite, the 

summing junction corresponds to the cell body, and the activation function 

corresponds to the axon. The artificial neuron collects the information from 

previous neurons at the summing junction by multiplying synaptic weights and 
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adding a bias. For a given input, the artificial neurons calculate the activations 

as follows [49]: 

 𝑥𝑗
𝑛 = 𝜑(∑𝑤𝑗𝑖

𝑛𝑥𝑖
𝑛−1 + 𝑏𝑗

𝑛

𝑖

), (4.1) 

where 𝜑(𝑥) represents the activation function, and 𝑥𝑖
𝑛−1 is the input of the 

𝑖-th neuron in the (𝑛 − 1)-th layer, 𝑥𝑗
𝑛 is the output of the 𝑗-th neuron in the 

𝑛-th layer, 𝑤𝑗𝑖
𝑛 is the synaptic weight from artificial neuron 𝑖 in the (𝑛 − 1)-

th layer to neuron 𝑗 in the 𝑛-th layer, and 𝑏𝑗
𝑛 is the respective bias term of 

the 𝑛-th layer. The most commonly used activation function is the rectified 

linear unit (ReLU): 𝜑(𝑥) = max (0, 𝑥) . Nonlinear functions, such as the 

sigmoid 𝜑(𝑥) = (1 + exp(−𝑥))−1  and tanh, have been used in recent 

decades, but the ReLU function has been shown to give better results for 

complex and large networks [35]. 

The process of training a network constitutes optimization of the weights 

and biases of all neurons that make up the network through iterative learning 

from a given data set. The principle of optimizing weight and bias is based on 

the gradient descent method. Typically, the cost function in the regression 

problem can be set to a mean squared error (MSE), can be set as 
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 𝑓(𝜃) =
1

𝑁
∑(Θ𝜃(𝑋𝑖) − 𝑌𝑖)

2

𝑁

𝑖=1

 , (4.2) 

where Θ𝜃(𝑋𝑖) is the predicted value of the neural network for a given input 

𝑋𝑖, and 𝑌𝑖 is the observed value of the variable being predicted. The optimal 

set of weights and biases for a given input/output data minimizes MSE, 𝑓(𝜃), 

which can be found using the gradient descent method with numerical 

differentiation or backpropagation. [35, 50]  

Since more complex networks require more computational resources to 

calculate gradients and costs, a mini-batch (a subset of a given dataset that is 

randomly chosen during training) can be used for efficient calculations. The 

method of obtaining gradients and costs via this mini-batch is called the 

stochastic gradient descent (SGD) method [51]. The procedure of updating 

weights and biases using SGD is defined as  

 𝑊(𝑡+1) = 𝑊(𝑡) − 𝜂∇𝑊𝐸(𝑊
(𝑡)), (4.3) 

where 𝜂 is the step size, commonly known as a hyper parameter (the learning 

rate) in machine learning, 𝑡 represents the current iteration indexed at zero. In 

addition to the SGD, various methods have been introduced that are used to 
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update the weights and biases [52, 53]. In this study, the adaptive moment 

estimation (Adam) method was used. In a complex model, solutions can be 

found faster and more efficiently using Adam than the SGD [54]. In the Adam 

algorithm, moving averages (averages that continually change as more data 

points are collected) of both the first moment and the second moment of the 

gradients are used. The updating algorithm of Adam is given by the following 

expressions [53]: 

 𝑚𝑊
(𝑡+1)

= 𝛽1𝑚𝑊
(𝑡)

+ (1 − 𝛽1)∇𝑊𝐸(𝑊
(𝑡)), (4.4) 

 𝑣𝑊
(𝑡+1)

= 𝛽2𝑣𝑊
(𝑡)

+ (1 − 𝛽2)∇𝑊𝐸(𝑊
(𝑡)), (4.5) 

 𝑚̂𝑊 =
𝑚𝑊

(𝑡+1)

1 − 𝛽1
(𝑡+1)

, (4.6) 

 𝑣𝑊 =
𝑣𝑊
(𝑡+1)

1 − 𝛽2
(𝑡+1)

, (4.7) 

and 

 𝑊(𝑡+1) = 𝑊(𝑡) − 𝜂
𝑚̂𝑊

√𝑣𝑊 + 𝜖
, (4.8) 
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where 𝛽1  and 𝛽2  are the hyper parameters of machine learning. These 

parameters adjust the damping ratio of the moving average. 𝑚𝑊 represents the 

first moment of the gradient, 𝑣𝑊 the second moment of the gradient and 𝜖 is 

a small scalar used to prevent division by zero. 

The validation of the ANN is carried out using a test set, which is 

commonly extracted from a given data set or collected separately. Because the 

test set is unused for training the ANN, it can be used to evaluate the 

performance of the trained ANN. It functions to observe the potential 

overfitting problem of a network in the training process. If the ANN is 

overfitted on a training data set, it loses its generality when applied to unseen 

data, so the model needs to be evaluated using a test set. 
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4.2.2 Convolutional neural network 

 

Fully connected networks generally use input variables in the form of a 

vector. Therefore, input variables of more than two dimensions, such as images, 

should be converted to a vector form when using a fully connected network. 

Two problems can arise during this process. First, if a 3-D variable such as an 

image (horizontal pixels, vertical pixels, and image channels) is converted into 

a one-dimensional (1-D) vector, the shape of the data is ignored. Here, the shape 

refers to a pattern formed by adjacent pixels or a similar color of spatially close 

pixels. Second, if a huge 2-D or 3-D input is converted into a 1-D vector, and 

fully connected with all the several hidden layers, the total number of weights 

and biases can be enormous. [29] To overcome this problem, I can use a 2-D 

CNN. The 2-D convolutional layer also has a network structure that includes 

weights and biases, similar to the fully connected layer. However, data flowing 

through the network is treated in the form of a 2-D matrix, and the weights are 

also expressed in the form of a 2-D matrix; this is called a filter or kernel. As 

shown in Eq. (11), the 2-D convolutional layer uses convolution of a 2-D matrix 

rather than a simple product of data and weight. The value of each element in 

the matrix can be calculated as 
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𝑋𝑛 = 𝜑(𝑋𝑛−1 ∗ 𝑊 + 𝑏𝑛) , (4.9) 

 

𝑥𝑖𝑗
𝑛 = 𝜑(∑ ∑ 𝑥(𝑖+𝑝)(𝑗+𝑞)

𝑛−1 𝑤(𝑝+1)(𝑞+1)

𝑚−1

𝑞=0

𝑚−1

𝑝=0

+ 𝑏𝑛) , (4.10) 

 

where 𝑋𝑛−1 and 𝑋𝑛 are the matrix forms of the input and output of the 

convolutional layer, respectively; 𝑊 is a filter made up of weights; and 𝑥𝑛−1, 

𝑥𝑛, and 𝑤 are the elements of the matrices 𝑋𝑛−1, 𝑋𝑛, and 𝑊, respectively. 

The convolutional layer is generally used in combination with a pooling layer. 

Activation calculated in the convolutional layer is down-sampled in the pooling 

layer and then passed to the next layer. The pool size and stride values are 

determined in the pooling layer. [35] 
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4.3 Materials and model development 

 

Six CNN models were trained to estimate the intrinsic parameters of a 2-

D micro-CT slice image of a PET felt. Three of the six CNN models were 

trained to directly estimate the intrinsic parameters: (ⅰ) porosity, (ⅱ) tortuosity, 

and (ⅲ) static airflow resistivity of the 2-D image. The remaining three models 

were trained to estimate the three basic values in each 2-D slice image used to 

calculate the TCL and VCL of the bulk material. Each of the remaining three 

models estimates following values: (ⅳ) summation of the line integration of the 

corrected fiber perimeter, ∑∫ 𝑑𝑙
𝑙

, which corresponds to the denominator in 

Eq. (3.2), (ⅴ) summation of the line integration of the squared velocity over the 

fiber skin, ∑∫ |𝑣𝑠𝑘𝑖𝑛|
2𝑑𝑙

𝑙
, which corresponds to the denominator in Eq. (3.14), 

and (ⅵ) summation of the area integration of the squared velocity in the pore, 

∑∫ |𝑣𝑝𝑜𝑟𝑒|
2
𝑑𝐴

𝐴
 , which corresponds to the numerator in Eq. (3.14). The 

summation of the area integration of the pore area, which corresponds to the 

numerator of Eq. (3.2) for calculating TCL, can be calculated by multiplying 

the area of the slice image by the porosity, so a separate model is not developed. 

The dataset for training the CNN models was constructed using numerical 

analysis results and 2-D micro-CT slice images of six PETs, excluding the 800, 
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1000, and 1200 GSM PETs. Samples were extracted from three locations of 

each PET felt, and micro-CT images were obtained. One 3-D micro-CT image 

consists of 500 ×  500 ×  500 voxels. Therefore, 500 ×  3 = 1500 slice 

images per PET type were obtained, and 600 of the 1500 slice images were 

chosen for the numerical analysis. This procedure was performed in the same 

manner for six types of training PET for each surface density, for a total number 

of training datasets of 600 × 6 = 3600. The dataset for testing the CNN was 

constructed using the remaining three types of PET (800, 1000, and 1200 GSM). 

As in the previous procedure, three samples were taken for each PET type 

corresponding to each surface density. Of these, one sample was selected for 

each surface density and a numerical analysis was conducted. Thus, the total 

number of testing datasets was 500 × 3 = 1500. 

The CNN architecture is shown in Table 4.1 and Fig. 4.3. The concepts of 

kernel size, stride, pool size, dropout layer, flatten, and batch normalization, 

which are not discussed in this paper, are explained in detail in the book by 

Buduma. [54] The structure of CNN model was designed by referring to 

ALEXNET, [55] although it is not identical. Each CNN model for predicting 6 

parameters was made with the same structure. Here, the tuning of the structure 

and hyperparameter was ended through trial and error. Therefore, there may be 

a model that predicts the intrinsic parameters more accurately than the structure 
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of Table 4.1. Since the main goal of this study was confirming the feasibility of 

training the CNN model with the process of extracting the 2-D geometrical 

model form micro-CT image and numerical analysis, the CNN model was 

settled at upon determining that the degree of error was within the acceptable 

range. Training time for 3600 training set was approximately 24 h on 3.60 

GHz/6 cores, 12 threads (128 GB RAM) for CNN model, and GPU was not 

used for training. The CNN in Fig. 4.3 is a model for predicting static airflow 

resistivity, and one filter of each convolutional layer is visualized in the middle 

of the layer. Through the visualized filter, it is possible to grasp the local pattern 

activated by the filter for the input array. As the layer becomes deeper in Fig. 

4.3, the pore area and the fiber area are clearly divided and activated. 

The cost function for training the CNN was chosen to be the MSE (Eq. 

(4.2)), and the gradient was calculated using backpropagation. The mini-batch 

size was set to 20, and weights and biases were optimized using the Adam 

algorithm with 0.001 learning rate. [53] The implementation was carried out 

using KERAS, which is a machine learning framework in PYTHON. The trend 

of the prediction error of the static airflow resistivity according to the number 

of training datasets is shown in Fig. 4.4. I employed the mean absolute 

percentage error (MAPE) for the relative comparison between the variables 

given by 
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 MAPE =
1

𝑁
∑|

Θ𝜃(𝑋𝑖) − 𝑌𝑖
𝑌𝑖

|

𝑁

𝑖=1

 , (4.11) 

Each variable is the same as in Eq. (4.2). The CNN model was checked by 

increasing the number of training datasets by increments of 300, and the MAPE 

was obtained using 1500 testing datasets for each step. When the number of 

training datasets reached 3600, the MAPE was confirmed to be around 2.5%, 

as shown in Fig. 4.4. Therefore, considering the computational cost and 

prediction accuracy of the model, the number of training datasets was set to 

3600. 
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4.4 Model validation 

 

The results of comparing the intrinsic parameters of 1500 testing images 

predicted using each CNN model and the values obtained using numerical 

analysis are shown in Fig. 4.5-7. The values obtained using numerical analysis 

are expressed as predicted value (Numerical) on the x-axis, and the predicted 

values of the CNN models are expressed on the y-axis. For each model, the 

MAPE and maximum error of the predicted values for 1500 testing images are 

shown at the bottom right of each figure. The MAPE of the predicted values 

from all six CNN models was less than 2.5%, and the maximum error was 8.87% 

in the static airflow resistivity model. The predicted results of the CNN models 

and the results of numerical analysis show good correlation. The results show 

that the CNN models have good prediction accuracy for new 2-D slice images. 

Fig. 4.8 shows the intrinsic parameters predicted using the CNN models 

corresponding to each slice image constituting the fibrous volume of one 

sample of testing PET B (1000 GSM), shown in Table 3.1. The dimension of 

fibrous volume is 1000 × 1000 × 1000 𝜇m3. 

When calculating the intrinsic parameters of the fibrous volume, porosity, 

tortuosity, and static airflow resistivity were calculated as the average of the 

predicted values from each slice image constituting the fibrous volume. 
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Because the tortuosity and static airflow resistivity are obtained from the 

potential flow and Stokes flow analysis in 2-D, respectively, the flow in the 

direction normal to the plane of the slice image inside the fibrous volume is 

ignored. In the Stokes flow analysis, because an incompressible fluid with a 

slow flow rate was assumed, it was considered that the same flow rate was inlet 

in all layers of each slice image constituting the fibrous volume. In the case of 

TCL, the volume integration of the pore and the area integration of the fiber of 

Eq. (3.2) corresponding to the fibrous volume were calculated by the 

summation of the pore area and the corrected perimeter of each slice image, 

respectively. Finally, in the case of VCL, the numerator and denominator terms 

in Eq. (3.14) corresponding to the fibrous volume are calculated by the 

summation of the area integration of the squared velocity in the pore and the 

line integration of the squared velocity over the skin of each slice image. 

Likewise, the fluid flow in the direction normal to the slice image is ignored in 

this process. 

First, the change in the result according to the resolution of the image in 

the x-axis direction was investigated when configuring the fibrous volume. As 

shown in Fig. 4.9-10, it can be seen that the porosity is predicted to be larger 

than the actual value as the image resolution increases. (see Fig. 9 (a)) 

Accordingly, the static airflow resistivity tends to be small and the two 
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characteristic lengths to be large. It can be expected that as the resolution of the 

image gets closer to the diameter of the fiber strand, fibers cannot be captured 

within the resolution value. Therefore, it is important to set an appropriate 

resolution in consideration of the diameter of the fibers. Here, the analysis is 

performed using the 2 𝜇m resolution. 

Next, to confirm the generality of this method in which one of the 

directions of flow is ignored, it is necessary to investigate how much error 

occurs according to this approximation. To find the error, I used the 

reconstructed fiber model considering various fiber orientations by referring to 

the previous work. [25, 26] In the reconstructed model used by Luu et al., [25] 

the azimuth angle of the fiber strand follows the uniform distribution, and the 

elevation angle follows the normal distribution. Therefore, the fiber model can 

be expressed with only one element of the second-order orientation tensor: Ω𝑧𝑧 

(dimensionless quantity). Three models were constructed for each orientation 

angle set at 0.1 intervals from 0.0 to 1.0, and the results obtained by the 

numerical analysis of 3-D and 2-D slice geometrical models were compared. 

The porosity of each model was limited to 0.924 ± 0.003, and the fiber radius 

and the number of fibers was as in the literature presented by Luu et al.. [26] 

The air flows along the +z direction and the 2-D slice geometry is extracted 

from the y-z plane along the x-axis. 3-D numerical analysis was conducted 
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using COMSOL Multiphysics, following the same problem definition as the 2-

D problem. The cubic box dimension of the model was set as 500 × 500 × 500 

𝜇m3, and the 2-D slice geometry was extracted with a total of 101 sheets at 5 

𝜇m resolution. One thing to note is that unlike the PET felt consist of curved 

fibers, straight fibers are used in the reconstructed model. Therefore, when the 

angle between the y-z plane and the fiber is close to 0°, airflow on the 2-D 

geometry may be blocked. To avoid this problem, the fiber created with an 

angle between ±3° with the y-z plane was replaced with a fiber of an arbitrary 

angle. The maximum diameter of the fiber I used is 22.2 μm, and the length of 

one edge of the cubic box is 500 μm. When the azimuth angle of 68 fibers was 

initially created under uniform distribution, the number of fibers present in this 

angular range is 0 to 2. 

The results are shown in Table 4.2. Only the mean percentage error (MPE) 

from comparing the mean parameters obtained from 3-D analysis with the 

parameters calculated by solving 2-D models was marked for intuitive 

understanding. For the porosity, the result of 3-D and 2-D analysis almost 

perfectly match. For the tortuosity, it shows an error within 5% in the whole 

range of the Ω𝑧𝑧. As the Ω𝑧𝑧 increases, the static airflow resistivity obtained 

from 2-D analysis is found to be smaller than that from the 3-D analysis; and 

TCL and VCL are larger. Consequently, this method is valid within a limited 



 

51 

 

range, considering the error depending on the Ω𝑧𝑧. 

As mentioned in chapter 4.3, I took samples in three locations for each of 

the three types of testing PETs. The micro-CT images for each sample were 

input to the developed CNN models to obtain the intrinsic parameters for 

fibrous volume. The intrinsic parameters of the three testing PETs predicted 

using CNNs and the experimentally obtained values in chapter 3.3 are shown 

in Fig. 4.11-13. All predicted value and orientation angle of the testing PETs 

are shown in Table 4.3, with the error which is compared with mean of the 

measured values. The measured values and the estimated values have good 

correlation, whereas TCL and VCL show higher errors than the other three 

parameters. This was acceptable considering that the measured value was 

obtained by the inverse method. One thing to note is, due to the nature of the 

micro-CT image, it can be analyzed in two directions, y and z in the case of our 

micro-CT image. Even if the same image is used, inputting the image to the 

CNN in wrong direction can cause severe errors. For example, Ω𝑧𝑧  of the 

testing PET A #1 is 0.14, however Ω𝑦𝑦 is 0.46. 

For further verification, 3-D models of all testing PETs were analyzed to 

compare with the results obtained from the CNN models. The actual 3-D fiber 

models were also constructed in the dimension of 500 × 500 × 500 𝜇m3 , 

extracted from the center of the fibrous volume used in the CNN model. Fig. 
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4.14 shows the 3-D geometrical model of testing PET B #1, streamlines inside 

the fiber obtained from the potential flow analysis, and the pressure field 

obtained from the Stokes flow analysis. The value of each intrinsic parameter 

obtained from the CNN and 3-D analysis are compared in Fig. 4.11-13, and 

Table 4.4 with the simulation time. The computational resource used in the 

analysis is same as mentioned in chapter 4.3, and the numerical analysis was 

conducted using COMSOL Multiphysics. Since the CNN models have the same 

structure, there is no significant difference in solving time for the analysis of 

different intrinsic parameters. Considering only the solving time, the CNN 

models take shorter time compared to numerical analysis. The required time 

considering the preparation time of materials in detail is described in Table 4.5. 

Finally, the sound absorption coefficients of the testing PETs were 

calculated using the JCA model and the intrinsic parameters obtained, and the 

results were compared with the measured values, as shown in Fig. 4.15-17. 

Compared to the sound absorption coefficient using the experimentally 

measured intrinsic parameters, the sound absorption coefficient using the CNN 

models tended to be slightly lower overall, but it was confirmed that both values 

show good correlation with the sound absorption coefficient obtained using the 

impedance tube measurements. 
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4.5 Limitations of the model 

 

Some limitations of this model should be noted. This study deals with a 

method of obtaining the intrinsic parameters of a 2-D image and predicting the 

parameters of the volume by stacking the images. In this process, the flow of 

fluid in the direction perpendicular to the image plane inside the material is 

ignored. Although this method reflects the changing fiber geometry in 3-D, it 

can obtain a meaningful result only when the ratio of the fiber perpendicular to 

the incident wave in the direction of the fiber is high. It is applicable to materials 

with directional properties such as glass wool or fibrous felt with a small 

orientation angle Ω𝑧𝑧. One more limitation should be noted. In addition to the 

five parameters covered in this paper, one of the widely used parameter is the 

static thermal permeability. The JCA-Lafarge and JCA-Pride-Lafarge models 

require this parameter. The static thermal permeability can be obtained through 

heat transfer analysis, by solving the Poisson problem. [22, 25] Since there is a 

macroscopic one-directional flow in the fluid flow analysis, it was observed 

that an acceptable error was shown even if the flow in one direction inside the 

volume was ignored under limited condition. In contrast, in the case of heat 

transfer analysis, it is necessary to consider the heat transfer in all direction of 

the fiber geometry distributed in the volume in order to estimate the accurate 
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parameter. Therefore, it is difficult to estimate the static thermal permeability 

using the method presented in this study. However, once the micro-CT images 

are obtained, it is possible to construct the 3-D geometrical model. Also, the 

numerical analysis of the Poisson problem does not require a long solving time 

and computational resource for 3-D model as in the case of the Stokes problem. 

(less than 3 m for the actual 3-D fiber models with the computational resource 

used in this study) To present additional information related to this, I will briefly 

introduce the process of obtaining static thermal permeability. 

The static thermal permeability 𝑘0
′  is a geometrical intrinsic parameter 

introduced by Lafarge et al., which describes the thermal exchanges between 

the solid frame and fluid. [11] The static thermal permeability can be obtained 

solving the Poisson problem, and the description of the problem including 

applied boundary condition is given by 

 

 ∇2 ∙ 𝒖 = −1  in  Ω𝑓 , (3.3) 

 𝒖 = 0  on  Ω𝑠𝑓 , (3.4) 

 

where 𝒖  is a temperature field for the heat diffusion problem. The thermal 

permeability can be obtained as the fluid-phase average of the 𝒖 . The 

numerical analysis to obtain the thermal permeability of 2-D and 3-D models 
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is described in more detail in the previous literature. [22, 25, 56] 

As mentioned above, the effect of thermal exchange along all directions in 

3-D fibrous volume should be considered to estimate the static thermal 

permeability. To support this point, a numerical experiment was conducted 

using a single fiber strand passing through the center of a 100 × 100 × 100 

𝜇m3 cubic box. The elevation angle, which is the angle between the fiber and 

z-axis, was set to 90° (i.e., Ω𝑧𝑧 = 0), azimuth angle to 0°, and fiber diameter 

to 25 𝜇m, as the initial conditions. Under these conditions, the porosity is equal 

to 0.951. Subsequently, a heat diffusion analysis was conducted using 3-D and 

2-D slice geometries by decreasing the elevation angle of the fiber by 10° 

intervals. For 2-D analysis, 11 slice geometries were extracted at 10 𝜇m 

intervals along the x-axis of the cubic box. To consider the porosity of all 

models consistently, the diameter of the fiber was gradually decreased with the 

elevation angle, and the azimuth angle was fixed at 0° . The errors of static 

permeability obtained from 2-D analysis at the elevation angle in the range of 

90° to 50° are summarized in Table 4.6. For comparison, the error of the static 

airflow resistivity and VCL are also indicated. The direction of air flow is the 

z-direction. A heat diffusion analysis was conducted using a 3-D model of 

testing PETs to convey additional information. The obtained static thermal 

permeability of each model is summarized in Table 4.7. The pattern of scaled 
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heat diffusion field shown in Fig. 4.18 supports that the effect of 3-D thermal 

exchange must be considered to estimate the static thermal permeability. 

Finally, the output value of the CNN model is designated as a intrinsic 

parameter in this work for connection with the acoustic impedance model such 

as the JCA model used conventionally. However, if the desired output value is 

an acoustic property such as sound absorption coefficient, it will be possible to 

develop a model considering that the impedance model is also included in the 

hidden layer of the neural network in future work. Also, unlike using micro-CT 

image as an input value in this work, other image information that can be 

obtained more simply can be considered. For example, a scanning electron 

microscope (SEM) image taken from a specific direction can be used as an input 

value, and acoustic properties such as the sound absorption coefficient, sound 

transmission loss, and sound insertion loss can be used as an output value. 
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TABLE 4.1 Detailed layer information of the developed CNN model architecture. 

Layer Layer type and activations Input size Output size 

 
1 

 
Input 
Convolutional layer 
[kernel size = 5 × 5, strides = (1, 1), 16 filters] 
+ ReLU  
+ MaxPooling [pool size = 2 × 2, strides = (2, 2)] 
 

 
500 × 500 × 1 
500 × 500 × 1 
 
 
500 × 500 × 16 

 
 
500 × 500 × 16 
 
 
250 × 250 × 16 

2 Convolutional layer 
[kernel size = 2 × 2, strides = (2, 2), 32 filters] 
+ ReLU 
+ MaxPooling [pool size = 2 × 2, strides = (2, 2)] 
 

250 × 250 × 16 
 
 
250 × 250 × 32 

250 × 250 × 32 
 
 
125 × 125 × 32 

3 Convolutional layer 
[kernel size = 2 × 2, strides = (2, 2), 64 filters] 
+ ReLU 
+ MaxPooling [pool size = 2 × 2, strides = (2, 2)] 
 

125 × 125 × 32 
 
 
125 × 125 × 64 

125 × 125 × 64 
 
 
62 × 62 × 64 

4 Dropout (0.25)  
+ Flatten 
+ Fully connected layer + Batch normalization 
+ ReLU 
 

 
62 × 62 × 64 
246 016 

 
246 016 
300 

5 Fully connected layer + Batch normalization 
+ ReLU 
 

300 200 
 

6 Fully connected layer + Batch normalization 
+ ReLU 
Output 
 

200 100 
 
1 
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TABLE 4.2 Errors between the 3-D and 2-D numerical analysis of the reconstructed fiber models according to the orientation 

angles. 

Ω𝑧𝑧 

𝜙 𝛼∞ 𝜎 Λ′ Λ 

3-D 
2-D 

stack 
3-D 

2-D 

stack 
3-D 

2-D 

stack 
3-D 

2-D 

stack 
3-D 

2-D 

stack 

Value 

[-] 

MPE 

[%] 

Value 

[-] 

MPE 

[%] 

Value  

 × 103 

[Nsm−4] 

MPE 

[%] 

Value 

[μm] 

MPE 

[%] 

Value 

[μm] 

MPE 

[%] 

0.0 0.923  0.0  1.04 (+) 2.9±0.8 42.6 (-) 4.0±1.7 134.5 (+) 0.7±0.3 74.2 (+) 4.9±0.3 

0.1 0.925  0.0  1.03 (+) 4.1±1.3 39.7 (-) 3.1±1.3 136.4 (+) 0.3±0.2 77.2 (+) 3.9±2.1 

0.2 0.925  0.0  1.03 (+) 3.9±0.0 37.3 (-) 1.8±1.1 137.2 (+) 1.1±0.2 81.0 (+) 2.7±1.7 

0.3 0.925  0.0  1.02 (+) 4.2±0.9 36.6 (-) 3.7±1.7 138.5 (+) 0.4±0.3 83.8 (+) 4.0±1.8 

0.4 0.925  0.0  1.02 (+) 3.6±0.5 35.5 (-) 9.0±4.5 138.4 (+) 0.9±0.7 89.7 (+) 3.9±1.8 

0.5 0.925  0.0  1.02 (+) 3.5±0.5 33.1 (-) 10.4±1.1 136.8 (+) 1.9±0.7 96.2 (+) 4.9±0.9 

0.6 0.925  0.0  1.01 (+) 4.5±0.5 30.1 (-) 11.6±2.5 137.4 (+) 1.0±0.2 98.4 (+) 3.6±0.5 

0.7 0.925  0.0  1.01 (+) 3.3±0.0 37.9 (-) 19.8±0.7 136.2 (+) 3.1±0.1 106.0 (+) 5.7±2.2 

0.8 0.924  0.0  1.00 (+) 2.6±0.1 25.7 (-) 36.6±2.0 134.2 (+) 5.4±0.6 113.4 (+) 15.5±2.3 

0.9 0.923  0.0  1.00 (+) 2.9±0.1 24.8 (-) 43.9±4.9 134.7 (+) 7.6±0.8 121.4 (+) 31.8±3.9 

1.0 0.924  0.0  1.00 0.0±0.0 21.6 (-) 74.0±7.2 136.4 (+) 13.6±1.1 136.4 (+) 64.9±4.5 
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TABLE 4.3 Intrinsic parameters predicted using CNNs of the three samples 

of each testing PET and error from the mean of measured value. 

Testing PET Ω𝑧𝑧 𝜙 [−] 𝛼∞ [−] 𝜎 [Nsm−4] Λ′ [μm] Λ [μm] 

A 

#1 0.14 0.865 1.09 73 900 89 40 

#2 0.13 0.862 1.03 71 800 82 38 

#3 0.11 0.850 1.04 74 100 80 36 

Mean 0.13 0.859 1.05 73 300 84 38 

Std. Dev. 0.01 0.006 0.03 1 000 4 2 

Error [%]  0.5 1.0 5.5 20.8 15.2 

B 

#1 0.11 0.843 1.07 96 000 74 32 

#2 0.12 0.841 1.09 102 000 73 31 

#3 0.10 0.840 1.10 101 000 68 30 

Mean 0.11 0.841 1.09 99 700 72 31 

Std. Dev. 0.01 0.001 0.01 2 600 3 1 

Error [%]  0.7 0.0 3.2 14.3 14.8 

C 

#1 0.10 0.824 1.11 110 000 64 29 

#2 0.07 0.816 1.12 112 000 63 26 

#3 0.09 0.815 1.11 122 000 61 26 

Mean 0.09 0.818 1.11 115 000 63 27 

Std. Dev. 0.01 0.004 0.01 5 200 1 1 

Error [%]  0.8 2.6 5.0 14.9 12.5 
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TABLE 4.4 Comparison of the estimated intrinsic parameters and solving time between the 3-D numerical analysis and 

CNN model analysis for testing PETs.  

Testing 

PET 
 𝜙 [−] 𝛼∞ [−] 

𝜎 

[Nsm−4] 
Λ′ [μm] Λ [μm] 

Averaged 

solving time 

Potential flow Stokes flow 

PET A: 

800 

[GSM] 

3-D 0.860 1.04 76 000 83 36 6 m 17 h 

CNNs 0.859 1.05 73 300 84 38 15 s 15 s 

Error [%] 0.1 1.0 3.6 1.2 5.6  

PET B: 

1 000 

[GSM] 

3-D 0.841 1.08 102 000 72 30 12 m 47 h 

CNNs 0.841 1.09 99 700 72 31 15 s 15 s 

Error [%] 0.0 0.9 2.3 0.0 3.3  

PET C: 

1 200 

[GSM] 

3-D 0.820 1.10 122 000 64 26 15 m 66 h 

CNNs 0.818 1.11 115 000 63 27 15 s 15 s 

Error [%] 0.2 0.9 5.7 1.6 3.8  
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TABLE 4.5 Detailed information on micro-CT image acquisition, modelling, and computation time. 

 
2-D convolutional neural network 

(5 000 images in this work) 

3-D numerical analysis 

(5 volumetric samples in this work) 

Collecting 

Micro-CT image 
24 h / 1 sample 24 h / 1 sample 

Modelling time 

2-D geometrical 

modelling 

1 week /  

5 000 images 

3-D geometrical 

modelling 
3 days / 1 sample 

2-D numerical 

analysis 

3 weeks / 

5 000 images 

CNN modelling 

24 h / 1 model 

(total 6 models 

are developed) 

Total time 5 weeks Total time 15 days 

Computation time 15 s / 1 parameter 

Stokes flow problem 60 h ~ 120 h 

Potential flow 

problem 
10 m ~ 20 m 
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TABLE 4.6 Error of the intrinsic parameters obtained using 2-D slice 

geometries of the single fiber strand model. 

 Error of 2-D analysis [%] 

 90° 80° 70° 60° 50° 

𝑘0
′  0.0 2.8 11.8 27.8 53.4 

𝜎 0.4 0.5 0.5 0.3 3.1 

Λ 0.0 0.2 0.5 0.5 1.2 
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TABLE 4.7 The static thermal permeability of testing PETs obtained using 3-

D heat transfer analysis. 

Testing PET 
𝜙 [−] 

of 3-D model 

𝑘0
′  

× 10−11 [m2] 

A 

#1 0.865 57.4 

#2 0.862 54.2 

#3 0.852 46.3 

Mean 0.860 52.6 

Std. Dev. 0.006 4.7 

B 

#1 0.843 41.0 

#2 0.841 44.4 

#3 0.840 39.4 

Mean 0.841 41.6 

Std. Dev. 0.001 2.1 

C 

#1 0.826 34.7 

#2 0.816 27.1 

#3 0.817 30.3 

Mean 0.820 30.7 

Std. Dev. 0.004 3.1 
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Figure 4.1 Schematic architecture of a typical feedforward neural network. 
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Figure 4.2 Detailed structure of an artificial neuron.
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Figure 4.3 6-layer (3-convolutional layer, 3-fully connected layer) architecture of the CNN model for AFR. 
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Figure 4.4 The trend of prediction error of static airflow resistivity according 

to the number of training datasets. 
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Figure 4.5 (a) Porosity and (b) summation of the line integration of the 

corrected fiber perimeter of 1500 testing images predicted using each CNN 

model and the values obtained using numerical analysis. 
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Figure 4.6 (a) Summation of the line integration of the squared velocity over 

the fiber skin and (b) summation of the area integration of the squared velocity 

in the pore of 1500 testing images predicted using each CNN model and the 

values obtained using numerical analysis. 
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Figure 4.7 (a) Tortuosity and (b) static airflow resistivity of 1500 testing images 

predicted using each CNN model and the values obtained using numerical 

analysis.
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Figure 4.8 The intrinsic parameters predicted using CNNs corresponding to each slice image constituting the fibrous volume. 
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Figure 4.9 Change of intrinsic parameter values according to x-axis image 

resolution; (a) porosity, (b) tortuosity and (c) static airflow resistivity.  
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Figure 4.10 Change of intrinsic parameter values according to x-axis image 

resolution; (a) TCL and (b) VCL.  
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Figure 4.11 Comparison of measured and predicted intrinsic parameters;  

(a) porosity and (b) tortuosity.
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Figure 4.12 Comparison of measured and predicted intrinsic parameters;  

(a) static airflow resistivity and (b) thermal characteristic length.
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Figure 4.13 Comparison of measured and predicted intrinsic parameters;  

viscous characteristic length.
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Figure 4.14 (a) 3-D geometrical for testing PET B #1 (b) streamlines obtained from potential flow analysis, (c) pressure field 

obtained from Stokes flow analysis. 
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Figure 4.15 Normal incidence sound absorption coefficient of the PET A. 
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Figure 4.16 Normal incidence sound absorption coefficient of the PET B. 
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Figure 4.17 Normal incidence sound absorption coefficient of the PET C. 
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Figure 4.18 Heat diffusion field (𝒖) [× 10−10m2] of the testing PETs. (a) PET A #3, (b) PET B #1 and (c) PET C #2. 
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CHAPTER 5 

 

NEURAL NETWORK MODEL DEVELOPMENT 

FOR MULTI-LAYERED FIBROUS MATERIAL 

 

5.1 Introduction 

 

This chapter focuses on identifying the feasibility of an ANN model for 

estimating the sound absorption coefficient of multi-layered fibrous materials. 

While chapter 4 focused on the fibrous material itself, the method of estimating 

the absorption coefficient of multi-layered fibrous materials using ANN will be 

discussed in this chapter. The objective of this work is to accurately estimate 

the sound absorption coefficient of multi-layered fibrous material by using only 

one intrinsic parameter as an input variable. The result will be compared with 

the value obtained using the transfer matrix method (TMM). 

The model configuration is briefly discussed in chapter 5.2, the theory of 

TMM is introduced in chapter 5.3. The validity of the developed ANN model 

is verified in chapter 5.4 for three different cases, finally, the limitation of the 

developed model is noted in chapter 5.5. 
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5.2 Materials and model development 

 

In this chapter, four types of fibrous PET felt were used to train the ANN 

model. PET felt is commonly used on dash isolation pads or floor carpets in the 

form of multilayered structures. The neural network model was trained using 

the sound absorption coefficient of stacked PET felts composed of four layers. 

The four types of PET felt have different densities and static airflow resistivity 

values, which are listed in Table 5.1. The thickness of all fibrous felt used was 

between 5–10 mm, and each specimen was prepared by cutting the felt into 

samples with a circular cross-section with diameter of 29 mm. An example of 

a four-layered PET felt sample is shown in Fig. 5.1. Four specimens were 

prepared for each PET type, and each specimen was classified to be of the same 

type if the density and static airflow resistivity values fell within a certain range. 

Therefore, the static airflow resistivity of the PET felt prepared in four 

specimens by four types (16 specimens) was distributed over a wide range of 

40000 to 220000 [Nsm−4]. 

The data set consisted of 256 four-layered samples covering all possible 

multilayer structure combinations using the four types of PET. The sound 

absorption coefficient of all 256 samples was measured, and the boundaries 

between each layer were not bonded. The ANN model was trained using 230 
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samples out of the data set, which corresponded to about 90% of the 256 

samples. Model performance was verified using the test set which consisted of 

the remaining 26 samples (combinations of 26 samples are shown in Fig. 5.2-

4), the sound absorption coefficient of the test set is estimated and compared to 

measured values. The ANN architecture is shown in Fig. 5.5. The input layer 

was divided into four parts, and each part was configured to input the thickness, 

density, and static airflow resistivity of one felt layer. The output value is the 

sound absorption coefficient of the four-layered fibrous material, for 56 

frequencies, at 100 Hz intervals in the range of 500 to 6000 Hz. 

For the cost function, the MSE function of Eq. (4.2) was used. The ReLU 

function was used as the activation function of the artificial neurons, and the 

weights and biases of the network were optimized using the Adam algorithm. 

The initial values of the weights and biases were used as an initial “He” values 

[57] that are specific for the ReLU function. The gradient was calculated using 

back propagation. Finally, the mini-batch size was chosen to be 25 samples, and 

the implementation was carried out using PYTHON language. Fig. 5.6 shows 

the loss trend of the training and test set. As the training cycle is repeated, the 

weights and biases of the network are updated by the Adam algorithm reducing 

the error (loss) in Eq. (4.2). I observed that the loss is stable after about 2000 

training cycles. At the end of 3000 training cycles, the MAPE between the 
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predicted and measured value of the sound absorption coefficient is 0.82%, 

showing high accuracy. Specific results and additional verification of the ANN 

model, using PET 5 and RESIN felt, are covered in chapter 5.4. 
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5.3 Conventional acoustical impedance models 

 

5.3.1 Transfer matrix for layered fibrous material 

 

Here, the TMM is used to describe acoustic fields before and after layered 

acoustical materials [37, 39, 58]. The general expression of the TMM is as 

follows: 

{
𝑝
𝑣𝑦
}
𝑥=0

= [𝑇𝐿𝑎𝑦𝑒𝑟 1][𝑇𝐿𝑎𝑦𝑒𝑟 2]⋯ [𝑇𝐿𝑎𝑦𝑒𝑟 𝑛] {
𝑝
𝑣𝑦
}
𝑥=𝑡

 

(5.1) 

                = [𝑇𝑡𝑜𝑡𝑎𝑙] {
𝑝
𝑣𝑦
}
𝑥=𝑡

= [
𝑇11 𝑇12
𝑇21 𝑇22

] {
𝑝
𝑣𝑦
}
𝑥=𝑡

, 

where 𝑝 is the acoustic pressure, 𝑣𝑦 is the normal acoustic particle velocity, 

𝑇 is the transfer matrix of the arbitrary layer, and 𝑡 is the total thickness of 

multilayer. Once the elements of the transfer matrix are obtained, all the 

acoustical properties, such as reflection, absorption, and transmission 

coefficients, can be calculated. Using the total transfer matrix of Eq. (5.1), the 

reflection coefficient: 𝑅(𝜃)  and sound absorption coefficient: 𝛼  of the 

layered material can be calculated by applying the below expressions: 



 

87 

 

 𝑅(𝜃) =
𝑇11 − (𝜌0𝑐0 cos𝜃⁄ )𝑇21
𝑇11 + (𝜌0𝑐0 cos𝜃⁄ )𝑇21

 , (5.2) 

and 

 𝛼 = ∫ (1 − |𝑅(𝜃)|2)
𝜃𝑙𝑖𝑚

0

sin 𝜃 cos 𝜃 𝑑𝜃, (5.3) 

where 𝜌0𝑐0 is the characteristic impedance of air, 𝜌0 is the density of air, 𝑐0 

is the velocity of sound, and 𝜃 is the incident angle of the sound waves. 

  The transfer matrix is well organized to describe materials such as fibrous 

material, and elastic porous material. In this study, we used the TMM to obtain 

the normal incidence sound absorption coefficient of layered fibrous materials 

to compare with the results of the ANN model developed in chapter 5.2. In the 

case of fibrous material, it can be considered a limp or rigid porous material 

[37, 39, 58], and the transfer matrix for limp or rigid porous material is as 

defined below: 

 [𝑇𝑅𝑖𝑔𝑖𝑑,𝐿𝑖𝑚𝑝] = [
cos 𝑘𝑑 𝑗𝑍𝑐 sin 𝑘𝑑

𝑗sin 𝑘𝑑 𝑍𝑐⁄ cos 𝑘𝑑
], (5.4) 
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where 𝑍𝑐 is the characteristic impedance of the acoustical material, 𝑘 is the 

wave number in the acoustical material, and 𝑑 is the thickness of a layer. Two 

models for obtaining these acoustical properties are discussed in chapter 5.3.2. 

 

5.3.2 Empirical model and motionless skeleton model 

 

Empirical models consist of several coefficients that correlate the 

impedance and wave number with static airflow resistivity. Empirical models 

are developed by applying regression using the measurements of these 

particular values. Delany and Bazely [3] have proposed simple empirical 

expressions with a power law relation for fibrous materials. The established 

method consists of two indices, Eq. (5.5) and Eq. (5.6), which represent the 

characteristic impedance and the wave number. These indices are predicted 

simply based on the static airflow resistivity of materials and given by the 

following expressions: 

 𝑍𝑐 = 𝜌0𝑐0 [1 + 9.08 (103
𝑓

𝜎
)
−0.75

− 𝑗11.9 (103
𝑓

𝜎
)
−0.73

], (5.5) 

and 
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 𝑘 =
𝜔

𝑐0
[1 + 10.8 (103

𝑓

𝜎
)
−0.70

− 𝑗10.3 (103
𝑓

𝜎
)
−0.59

], (5.6) 

where 𝑓  is the frequency, and 𝜎  is the static airflow resistivity. The 

characteristic impedance and wave number obtained through the Delany and 

Bazely model can be substituted into Eq. (5.4) to form a transfer matrix of 

fibrous material. Many subsequent empirical models have been proposed since 

the Delany and Bazely model, Miki [4] and Komatsu [59] have proposed 

modified models to predict the acoustical behavior of different materials. 

Empirical models are still widely used because of their simplicity: only the 

static airflow resistivity is needed to describe the acoustical behavior. However, 

it should be noted that each model is only valid for specific types of materials 

[6]. 

Motionless skeleton models start with the assumption that the skeleton of 

the porous media is rigid and motionless when its density and stiffness is much 

larger than that of air. From the work of Zwikker and Kosten [9], motionless 

skeleton materials can be considered analogous to cylindrical tubes when 

describing acoustic behavior. The acoustic wave equation in the tube is given 

by the following equation: 
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 ∇2𝑝 +
𝜌𝑒𝑞

𝐾𝑒𝑞
𝑝 = 0, (5.7) 

where 𝜌𝑒𝑞 represents the complex bulk density, which can describe the effect 

of viscous resistance and 𝐾𝑒𝑞 is the complex bulk modulus, which describes 

the effect of thermal conduction. These two variables can be described by a 

given pore shape inside the porous media. Johnson, Champoux, and Allard [7, 

8] proposed the complex bulk density and modulus of acoustical material, with 

a motionless skeleton having arbitrary pore shapes given by Eqs. (5.8) to (5.11), 

and several intrinsic parameters are considered during the modeling procedure. 

The arbitrary pore shapes are described by 

 𝜌𝑒𝑞 = 𝛼∞𝜌0 [1 +
𝜎𝜙

𝑗𝜔𝜌0𝛼∞
𝐺𝐽1(𝜔)], (5.8) 

 𝐺𝐽1(𝜔) = √1 + 𝑗
 𝛼∞

2 𝜂𝜌0𝜔

𝜎2Λ2𝜙2
, (5.9) 

 𝐾𝑒𝑞 = 𝛾𝑃0 [𝛾 − (𝛾 − 1)(1 + 𝑗
𝜎𝜙

𝜔𝜌0𝑃𝛾𝛼∞
𝐺𝐽2(𝑃𝛾𝜔))

−1

]⁄ , (5.10) 

and 
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 𝐺𝐽2(𝑃𝛾𝜔) = √1 + 𝑗
𝜌0Λ

′2𝑃𝛾𝜔

1 𝜂
, (5.11) 

where 𝑃0  is the atmospheric pressure; 𝜌0  is the density of air; 𝛾  is the 

specific heat ratio of air; 𝑃𝛾 is the Prandtl number of air, and 𝜂 is the viscosity 

of air. Using the complex bulk density and modulus, Eq. (5.8) and Eq. (5.10) 

respectively, the characteristic impedance of the material can be calculated as 

𝑍𝑐 = √𝜌𝑒𝑞𝐾𝑒𝑞, and the wave number can be calculated as 𝑘 = 𝜔√𝜌𝑒𝑞 𝐾𝑒𝑞⁄ . 

The characteristic impedance and wave number obtained through the JCA 

model can be substituted into Eq. (5.4) to form a transfer matrix of fibrous 

material. 

For ANN and Delany-Bazely models, only the static airflow resistivity (𝜎) 

is needed to predict the acoustic behavior of a layered fibrous material. 

However, the JCA model requires five intrinsic parameters. Intrinsic parameters 

were obtained in the same way as in chapter 3.3. The measured intrinsic 

parameters of fibrous materials used in this study, excluding static airflow 

resistivity are shown in Table 5.2. 
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5.4 Model validation 

 

In this chapter, the accuracy of the sound absorption coefficient prediction 

model using ANN and TMM is investigated. The required characteristic 

impedance and wave number for the transfer matrix are obtained by both the 

empirical model (the Delany-Bazely model) and the motionless skeleton model 

(the JCA model). The case where the transfer matrix is constructed using the 

Delany-Bazely model will be referred to as TMM-DB, and the case wherein the 

transfer matrix is constructed using the JCA model will be referred to as TMM-

JCA. Note that the ANN and TMM-DB models require only one intrinsic 

parameter, 𝜎, to estimate the sound absorption coefficient. In the case of TMM-

JCA, five intrinsic parameters, 𝜎, 𝛼∞, 𝜙, Λ, and Λ′, are needed. 

As mentioned in chapter 5.2, the ANN model is trained using 230 samples 

of PET felts stacked in four layers. To verify the generality of the trained model, 

I divided the three cases and confirmed the accuracy of the ANN model. The 

first case deals with 26 samples of four-layered PET combinations consisting 

of the same materials. In the second case, 26 samples of four-layered PET 

combinations were used with at least one different PET layer (PET 5) from the 

first case. The 26 samples consist of 12 samples containing one layer of PET 

with a new density and static airflow resistivity, 10 samples containing two new 
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layers, 3 samples containing three new layers, and one sample having four new 

layers. Since the first layer has the highest contribution when determining the 

sound absorption coefficient of the layered materials, out of the 26 samples, 

new PET layer was inserted at the first layer for 12 samples. The last case also 

deals with 26 samples of four-layered fibrous felt combinations with at least 

one RESIN felt layer in the PET combination of the first case. The composition 

of the combination with the RESIN felt is the same as in case 2. All detailed 

combinations of Case 1, 2, 3 are described in Fig. 5.2-4. For these three cases, 

the MAPE was obtained over the frequency range of 500–6000 Hz between the 

predicted absorption coefficient from the ANN, TMM, and the actual 

measurements for each of the 26 samples. 

However, the four-layered samples covered in this study have a resonance 

phenomenon between 1500 and 3000 Hz. Dahl et al. [60] and Allard et al. [61] 

derived models that predict the sound absorption coefficient by dividing the 

frequencies at resonance and frequencies away from resonance. In the 

resonance frequency region, fiber motion should be considered, but another 

region shows motionless behavior. Since both TMM-DB and TMM-JCA 

models assume the motionless fiber skeleton, when comparing the MAPE of 

the ANN model and the TMM, only the frequency range of 3000-6000 Hz was 

considered. Then the difference between the predicted and measured values was 
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compared of the 26 samples at 4000 Hz. 

 

5.4.1 Case no.1 

 

In case 1, 26 samples were randomly selected from 256 four-layered PET 

felts to test the ANN model. The error of each sample was calculated, and the 

MAPE is shown in Fig. 5.7 in intervals of 100 Hz. The estimated sound 

absorption coefficient using TMM-DB shows an average error of 6.84% within 

the frequency range of 3000–6000 Hz. TMM-JCA shows an average error of 

3.83%. When estimating the sound absorption coefficient using the ANN, the 

average error is 0.72%. The estimated sound absorption coefficient using the 

ANN of one randomly selected sample (sample 10 in Fig. 5.2) is shown in Fig. 

5.8. It can be seen that the result fits very well with the measured sound 

absorption coefficient in the frequency range of interest. It is important to note 

that the four-layered PET causes resonance near 2500 Hz. This phenomenon is 

expected when high-density fibrous materials are stacked under an un-bonded 

condition in a normal direction to the incidence wave [60]. Although this is not 

a focus of this study, the trained ANN can predict the resonant frequency of the 

four-layered PET. The result at a single frequency of 4000 Hz is shown in Fig. 

5.9. The black diagonal line represents a perfect correlation between the 
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predicted and the measured values. The average error was 7.18% for TMM-DB, 

3.74% for TMM-JCA, and 0.38% for the ANN at 4000 Hz. 

 

5.4.2 Case no.2 

 

In Case 2, at least one new PET felt (  T   from Table 5.1) that was not 

used when training the ANN was included in the four layers. The MAPE of 

each sample is shown in Fig. 5.10. TMM-DB shows an average error of 4.54% 

within the frequency range of 3000–6000 Hz, and TMM-JCA shows an average 

error of 2.46%. When using the ANN, the average error is 1.67%. Although the 

mean error is slightly higher than that of Case 1, it still shows consistent results. 

Out of the 26 samples in Case 2, the sample consisting of four layers of new 

PET is expected to be the most difficult to predict (sample 18 in Fig. 5.3). The 

estimated sound absorption coefficient, using the ANN of that sample, shown 

in Fig. 5.11 with measured values. However, the measured and estimated values 

show good correlation, suggesting that the developed ANN can accurately 

estimate the sound absorption coefficient of a four-layered structure composed 

of new PET of the same series. The result at a single frequency of 4000 Hz is 

shown in Fig. 5.12. An average error of 3.75% was observed with TMM-DB, 

1.64% with TMM-JCA, and 1.30% with ANN at 4000 Hz. 
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5.4.3 Case no.3 

 

In Case 3, at least one RESIN felt is included in four layers as described 

as R SIN from Table 5.1. Cases 1 and 2 deal with same series of PET, but in 

Case 3, the generality of the ANN model is examined using RESIN felt. The 

MAPE of each sample is shown in Fig. 5.13. TMM-DB shows an average error 

of 5.20% within the frequency range of 3000–6000 Hz, and TMM-JCA shows 

an average error of 3.10%. For the ANN, the average error is 1.25%. Again, the 

average error is slightly higher than Case 1, but with better accuracy than the 

estimated values of TMM. As with Case 2, the sample consisting of four layers 

of RESIN is expected to be the most difficult to predict out of the 26 samples 

in Case 3 (sample 18 in Fig. 5.4). The estimated sound absorption coefficient, 

using the ANN of that sample, is shown in Fig. 5.14. As with the four-layered 

PET, resonance occurs, but the region of the resonance frequency changes as 

the material of the skeleton is changed from PET to RESIN. For reference, 

micro computed tomography images of the two felt types are included in Fig. 

5.15 to visually identify the structural differences between the RESIN and PET 

felts. Since the ANN model is trained based on the PET skeleton, it is assumed 

that the sample consists of a PET skeleton with the airflow resistivity of RESIN 

felt. Except for the region where resonance occurs, the remaining frequency 
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range shows an accurate estimated value. Although it is impossible to predict 

the resonance frequency of samples made of different materials with the ANN 

model, I can confirm that the model works well when only the fluid medium 

property is considered. The result at a single frequency of 4000 Hz is shown in 

Fig. 5.16. An average error of 3.75% is observed with TMM-DB, 1.64% with 

TMM-JCA, and 1.30% with ANN at 4000 Hz. 
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5.5 Limitations of the model 

 

The result shows a positive starting point for multi-layered acoustical 

material research, neural network models that require more input variables 

might be needed for future work. Since the model was trained only with PET 

felt, a database containing a wider range of data is required to expand the range 

of acoustical materials to which this model can be applied. Additionally, it is 

important to point out that the model developed in this paper was trained only 

using data set for layers under the un-bonded boundary condition. Further 

research will focus on collecting more data from specimens with different fiber 

skeletons and a wider range of thickness and airflow resistivity values. By 

enlarging the database, it is possible to estimate the acoustic performance of 

multilayered acoustical materials for a wider variety of materials and layers. 

This allows the accurate estimation of acoustic performance while reducing the 

time and effort required for measuring intrinsic parameters. Furthermore, it is 

also possible to design the neural network model that covers the characteristics 

of the bonded boundary condition, because it is often difficult to predict the 

accurate performance of bonded multilayered acoustical materials using the 

TMM. 
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TABLE 5.1 Properties of PET and RESIN felts. 

  sed t  t a n & test the  NN   del 
 sed  nly t  test the  NN 

  del 

Specimen Name   T     T     T     T     T   R SIN 

Areal Density 

[GSM] 
600±50 800±50 1200±50 1400±50 1000±50 1000±50 

Airflow 

Resistivity 

[× 𝟏𝟎𝟑 𝐍𝐬𝐦−𝟒] 

40–46 63–70 120–140 190–220 92–104 130–160 
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TABLE 5.2 Intrinsic parameters of PET and RESIN felts. 

 Tortuosity (𝜶∞) Porosity (𝝓) VCL (𝚲) TCL (𝚲′) 

  T   1.15±0.09 0.91±0.05 46.22±2.11 111.58±7.20 

  T   1.04±0.10 0.86±0.05 30.33±3.10 106.78±8.91 

  T   1.14±0.12 0.82±0.05 22.90±1.89 139.06±6.18 

  T   1.10±0.11 0.78±0.05 15.75±0.74 150.77±3.21 

  T   1.09±0.12 0.84±0.05 24.19±1.72 117.72±4.21 

R SIN 1.03±0.08 0.87±0.04 20.70±1.26 70.56±2.04 
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Figure 5.1 Example of a four-layered PET sample with a circular cross-

section. 
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Figure 5.2 26 four-layered fibrous felt samples used in Case no.1. 
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Figure 5.3 26 four-layered fibrous felt samples used in Case no.2. 
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Figure 5.4 26 four-layered fibrous felt samples used in Case no.3. 
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Figure 5.5 Structure of the ANN developed for estimating the sound 

absorption coefficient of a layered fibrous material. 
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Figure 5.6 Trend of loss (percentage error) versus the number of training 

iterations (epochs). 
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Figure 5.7 MAPE of estimated sound absorption coefficient using the  

TMM-DB (△), TMM-JCA (○), and ANN model (×) for Case 1. 
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Figure 5.8 Estimated sound absorption coefficient using an ANN for one 

randomly selected sample out of 26 samples for Case 1. (sample 10 in Fig. 5.2) 

 

 

 

Figure 5.9 Estimated sound absorption coefficient of 26 samples at 4000 Hz 

using (a) TMM-DB, (b) TMM-JCA, and (c) ANN model for Case 1. 
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Figure 5.10 MAPE of estimated sound absorption coefficient using the 

TMM-DB (△), TMM-JCA (○), and ANN model (×) for Case 2. 

  



 

110 

 

 

Figure 5.11 Estimated sound absorption coefficient using an ANN for Case 2, 

wherein the sample consisted of four layers of new PET. (sample 18 in Fig 5.3) 

 

 

 

Figure 5.12 Estimated sound absorption coefficient of 26 samples at 4000 Hz 

using (a) TMM-DB, (b) TMM-JCA, and (c) ANN model for Case 2. 
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Figure 5.13 MAPE of estimated sound absorption coefficient using the  

TMM-DB (△), TMM-JCA (○), and ANN model (×) for Case 3. 
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Figure 5.14 Estimated sound absorption coefficient using an ANN for Case 3, 

wherein the sample consisted of four layers of RESIN. (sample 18 in Fig 5.4) 
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(a) 

 

(b)  

 

Figure 5.15 Micro computed tomography images of (a) PET and (b) RESIN 

felt. (2800 × 2800 × 1950 voxels with a resolution of 0.95 𝜇m/voxel) 
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Figure 5.16 Estimated sound absorption coefficient of 26 samples at 4000 Hz 

using (a) TMM-DB, (b) TMM-JCA, and (c) ANN model for Case 3. 
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CHAPTER 6 

 

CONCLUSION 

 

In this study, a method for predicting intrinsic parameters of fibrous 

materials using micro-CT images and CNNs and an ANN model for predicting 

the acoustical property of multi-layered fibrous material were proposed. In the 

first phase of the study, micro-CT image was used to develop the CNN models. 

The 2-D geometry of the fibers distributed in the image was characterized using 

the DB-SCAN algorithm to obtain the intrinsic parameters from the micro-CT 

images. Numerical analysis was performed using 2-D geometrical models 

characterized from the micro-CT image to calculate the five intrinsic 

parameters. Of the five intrinsic parameters, porosity and TCL were obtained 

directly using a 2-D geometrical model, tortuosity and VCL were obtained from 

the result of potential flow analysis, and static airflow resistivity was obtained 

from the result of Stokes flow analysis. Six CNN models were developed using 

2-D slice images and intrinsic parameters corresponding to the images. After 

the CNN models were trained using this data, a test dataset containing 2-D CT 

images of different fibrous materials was used to validate the CNNs. The 

prediction accuracy of the developed CNN models was evaluated by comparing 
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the predicted intrinsic parameters of the fibrous volume with the values 

measured using traditional methods. The measured and predicted values 

showed good correlation. From the results, it was concluded that it is possible 

to predict the intrinsic parameters of fibrous material through CNNs using only 

2-D micro-CT images, under limited range of orientation angle. 

In the second phase of the study, the feasibility of a data-based ANN for 

the estimation of the sound absorption coefficient of multi-layered fibrous 

material is studied. The results demonstrate that it is possible to estimate the 

sound absorption coefficient of multilayered acoustical material using a neural 

network. Specifically, the sound absorption coefficient of four-layered fibrous 

material, in the frequency range of 500 to 6000 Hz, is estimated by a well-

trained ANN that is based on the thickness, density, airflow resistivity, and 

sequence of the fibrous materials. For the three cases studied in this paper, the 

neural network model uses one intrinsic parameter and shows better estimation 

accuracy than the TMM using one or five parameters, especially in the high-

frequency range. Note that these results were validated for the types of material, 

range of airflow resistivity, the density, and the thickness of materials used in 

this work. 

This study dealt with methods to obtain physical quantities more simply 

and quickly by applying artificial intelligence to the field of acoustical materials. 
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The strength of artificial intelligence in terms of predicting physical quantities 

is that once the model is constructed, results can be derived through a set of 

input variable without in-depth of knowledge in the relevant field. Since 

acoustical materials are very important in the field of sound design, artificial 

intelligence can be an efficient tool for the needs of predicting the performance 

of acoustical materials without background knowledge in this field. As many 

engineers in the field of acoustical materials are making great efforts to graft 

artificial intelligence into this field, I look forward to meeting creative and 

surprising technologies in the near future. 
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국 문 초 록 

본 연구에서는 인공지능을 활용하여 단층 섬유형 음향재료의 전송 

매개변수와 음향 물성, 다층 섬유형 음향재료의 음향 물성을 예측하

는 기법에 대해 소개한다. 본 연구의 첫 장에서는, 합성곱 신경망 

(Convolutional neural network)과 재료의 단층촬영 이미지를 이용하여 

섬유형 재료의 전송 매개변수를 예측한다. 2차원의 단층촬영 이미지

를 이용해 추출한 기하 모델을 이용한 유동해석으로 전송 매개변수

를 구하고, 이미지와 전송 매개변수를 이용해 합성곱 신경망 모델을 

구성하였다. 유동해석은 Stokes 유동과 Potential 유동을 이용해 수치

해석적으로 수행되었다. 2차원의 이미지를 적층하여 3차원의 이미

지를 구성하는 단층촬영 기법의 방법론에 착안하여, 각 2차원 이미

지와 합성곱 신경망을 이용해 구한 전송 매개변수를 합성하여 3차

원 섬유 재료의 매개변수를 구한다. 합성곱 신경망을 이용해 구한 

섬유형 재료의 전송 매개변수는 측정을 통해 구한 값으로 검증하였

고, 높은 정확성을 나타내었다. 마지막으로 예측한 전송 매개변수를 

이용해 재료의 흡음률을 예측하고, 마찬가지로 측정 값과 비교 검증

하였다. 본 장의 결과에서, 인공지능 기술과 단층촬영 이미지만으로 

음향재료의 전송 매개변수를 구하는 것이 가능함을 확인하였다. 본 

연구의 두 번째 장에서는, 인공지능을 활용하여 다층 구조 섬유 재
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료의 음향 물성을 예측하는 기법에 대해 다루었다. 정적 유동저항계

수 하나의 전송 매개변수를 입력하는 인공신경망을 이용하여 4층 

구조의 섬유형 재료의 흡음계수를 예측하는 모델을 개발하였고, 측

정 값과 비교 및 검증한다. 인공신경망을 구성하기 위한 훈련 데이

터로는 실험적으로 측정한 230개 4층 섬유재료의 흡음률을 이용하

였다. 인공신경망의 범용성을 확인하기 위해 세 가지 케이스를 나누

어 검증을 수행하였다. 이때 다층 음향재료의 음향 물성을 예측하는

데 널리 사용되는 전달행렬법 (Transfer matrix method)의 예측값과, 관

내법을 이용해 측정한 값을 통해 인공신경망의 성능을 검증하였고, 

본 연구에서 정의된 시험편의 조건에서 인공신경망이 매우 우수한 

예측 성능을 보임을 확인하였다. 
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