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ABSTRACT

Multiscale poroacoustic modelling of fibrous

acoustical materials using artificial intelligence

Ju Hyun Jeon
School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

This study proposes a methods for estimating the intrinsic parameters
and sound absorption coefficient of single or multi-layered fibrous
materials using artificial intelligence. In the first phase of this work,
convolutional neural network models (CNNs) for estimating intrinsic
parameters of a single fibrous layer from X-ray micro-computed
tomography (CT) images are introduced. Two-dimensional micro-CT
images and numerically obtained intrinsic parameters were used to train
the CNNs; Stokes flow and potential flow were used to numerically

obtain the intrinsic parameters using geometrical models extracted from



the raw CT images. Then analogously to constructing a 3-D image of the
fibrous material by stacking the 2-D slice images, the volumetric
intrinsic parameters of the fibrous materials were calculated using the
parameters of each 2-D image predicted by the trained CNN models. The
intrinsic parameters of the fibrous volume predicted by the CNN models
showed good agreement with the measured values. In addition, the sound
absorption coefficient was calculated by applying both the predicted and
measured intrinsic parameters to the semi-phenomenological sound
propagation model and compared with the measured sound absorption
coefficient. The results of the study confirm the feasibility of predicting
intrinsic parameters of fibrous materials using a neural network model
based on raw micro-CT images. In the second phase of this work, The
feasibility of an artificial neural network (ANN) for the estimation of the
sound absorption coefficient of a layered fibrous material is studied. The
sound absorption coefficient of a four-layered fibrous material was
estimated using a well-trained ANN model with only one intrinsic
parameter: the static airflow resistivity (). The results indicated that the
ANN model exhibits a good correlation between the estimated and
measured absorption coefficient. The training data sets were built by

carrying out experimental measurements using a two-microphone



impedance measurement tube with 230 combinations of four-layered
fibrous materials. The results of the ANN are compared in three different
cases with the transfer matrix method (TMM), which is the conventional
method of estimating the sound absorption coefficient of multi-layers
using several intrinsic parameters. The sound propagation model in
acoustical material for the TMM was used by two models proposed by
Delany-Bazely and Johnson-Champoux-Allard. By comparing the
estimated sound absorption coefficient from the ANN and TMM with
measured values, it was demonstrated that the model developed in this
work gives more accurate results within the defined conditions. The
results were compared in the frequency range of 3000-6000 Hz, and the

error of the ANN model was less than 1.67 %.

Keywords: Artificial intelligence, Convolutional neural network, Intrinsic
parameter, Micro-computed tomography, Numerical analysis,
Sound absorption coefficient, Fibrous material, Multi-layered
porous media
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CHAPTER 1

INTRODUCTION

Fibrous materials are porous materials that are widely used for noise
control. Generally, these materials are applied to the surface of a space to block
external noise or to control the sound absorption coefficient of the space.
Specifically, fibrous materials are used to control the interior sound pressure
levels of vehicles such as automobiles, trains, and airplanes. However, to
control the indoor noise level of a mechanical system using acoustical materials,
it is necessary to understand the precise performance measures of the materials.
(1,2]

In general, models used to describe the acoustic properties of fibrous
materials can be categorized as empirical models and semi-phenomenological
(motionless skeleton) models. The model proposed by Delaney and Bazely is
representative of empirical models. [3] The model uses a single intrinsic
parameter, static airflow resistivity, to predict the acoustic properties of fibrous
materials. Numerous empirical formulas have been proposed to improve the
model accuracy or to predict the acoustic performance of various materials. [4,

5] Empirical models are widely used because of their convenience; however,



their performance may decrease depending on the material. [6] Semi-
phenomenological models have been developed to overcome this limitation of
application to various materials. Johnson et al. proposed a model that expresses
the complex bulk density of air in acoustical materials, which describes the
effect of viscous resistance. [7] Champoux and Allard proposed a model that
expresses the complex bulk modulus of air in acoustical materials, which
describes the effect of thermal conduction in the material. [8] These two models
can be applied to an arbitrary pore shape inside the porous media. The complex
bulk density and complex bulk modulus obtained from the two models have
been applied to the cylindrical tube model proposed by Zwikker and Kosten [9]
to predict the acoustic properties of porous media. This is commonly referred
to as the Johnson-Champoux-Allard (JCA) model, which requires knowledge
of five intrinsic parameters: porosity, tortuosity, static airflow resistivity,
viscous characteristic length (VCL), and thermal characteristic length (TCL).
Subsequently, Lafarge et al. and Pride et al. modified the JCA model to improve
prediction accuracy at low frequencies. [10, 11] In the model presented by
Lafarge et al., [10] static thermal permeability is included in addition to the five
parameters required in the JCA model. In the case of the model suggested by
Pride et al., [11] static thermal permeability, static viscous tortuosity, and static

thermal tortuosity are included in addition to the to the five parameters.



Because it is difficult to guarantee the accuracy of empirical models for
various materials, the JCA, JCA-Lafarge, and JCA-Pride-Lafarge models are
generally used to predict the acoustic performance of fibrous materials. The
three models consider only airborne noise in porous media and assume that the
skeleton of the material is motionless. Therefore, all intrinsic parameters
required to construct the models represent the fluid characteristics inside the
porous media. Conventionally, the five parameters required in the JCA model
can be obtained using well-organized measurement methods, [12, 13, 14, 15,
16] but the measurement process is labor intensive and requires proficiency in
the use of the measuring instruments. To overcome these disadvantages,
numerous studies have been conducted to predict the intrinsic parameters of
materials. In particular, studies on predicting intrinsic parameters through
numerical analysis using the geometrical information of porous media
microstructures have been conducted for decades. Tarnow proposed an explicit
equation to express the static airflow resistivity of a fibrous material by
randomly arranging the cross-sections of fibers with a single radius on a two-
dimensional (2-D) plane using Voronoi polygons. [17, 18] The static airflow
resistivity of the material was calculated using Stokes flow analysis in the
lateral direction of the randomly arranged fibers. Subsequently, Hirosawa and

Nakagawa proposed a method for obtaining all five intrinsic parameters using



Stokes flow analysis and potential flow analysis based on 200 strands of fibers
randomly arranged in a 2-D plane. [19] As research on microstructures of
porous media in three-dimensions (3-D), studies on open-cell foam have been
actively conducted. Perrot et al. proposed periodic unit cells for open-cell foam
to predict intrinsic parameters through numerical analysis. [20, 21, 22] Park et
al. introduced a method for optimizing the sound absorption of polyurethane
foam using periodic unit cell analysis. [23, 24] Finally, Luu et al. proposed a
method to obtain intrinsic parameters through a fiber reconstruction technique
based on scanning electron microscope (SEM) imaging, contributing to the
research on the 3-D microstructure of fibrous material. [25, 26] These methods
have a common goal of constructing geometrical information from the
microstructure of porous media and using it to predict intrinsic parameters
through numerical analysis. With another approach, Lieblappen et al.
considered snow as a natural porous medium, and predicted the porosity and
tortuosity of the porous medium using micro-computerized tomography (CT)
imaging and ultrasonic waves. [27] Lee et al. proposed semi-phenomenological
and empirical models that relate the microstructural properties to the intrinsic
parameters using micro-CT imaging. [28] However, because these models were
developed using polyurethane foam, they cannot predict the intrinsic

parameters of fibrous materials.



In first phase of this work, to build upon these previous studies, I propose
a method to predict intrinsic parameters of fibrous materials using artificial
intelligence. The five basic intrinsic parameters required by the JCA model are
covered in this work. Previously, Léhivaara proposed a methodology, using a
deep convolutional neural network (CNN), that estimates the porosity and
tortuosity of materials based on the wave field pattern inside porous media
using ultrasound. [29] In this work, I take an approach from easily obtainable
image information. 3-D X-ray micro-CT imaging was used to obtain
geometrical information of the microstructure of real fibrous materials; 3-D CT
imaging allows the reconstruction of the volume render image by stacking
multiple 2-D slice images. Based on this concept, the microstructural geometry
of the fibers was extracted for each CT slice image, and numerical analysis was
conducted in 2-D to predict the intrinsic parameters for each slice image. |
employed the finite element method for a steady incompressible Stokes flow to
obtain the static airflow resistivity [30, 31] and the boundary element method
for a potential flow to obtain the tortuosity and VCL. [32, 33, 34] Porosity and
TCL were obtained directly from the fiber geometry. The slice images of a
fibrous material can be stacked to reconstruct the volume structure, and then
the intrinsic parameters of the volume can be calculated using the value of each

fiber geometry slice. In this process, the effects of the fluid flow in the direction



normal to the 2-D image plane are ignored. In addition, CNNs [35, 36] were
employed to 2-D micro-CT raw images. The CNN models for each intrinsic
parameter were trained based on a large dataset of raw slice CT images and the
intrinsic parameters obtained from numerical analysis. The intrinsic parameter
values obtained using the trained CNNs were compared with parameter values
obtained from 3-D model analysis and measured at the macro scale using
conventional measurement methods to validate the proposed method.

In second phase of this work, the method of predicting the absorption
coefficient of multi-layered fibrous materials using the fully-connected
artificial neural network (ANN) is discussed. The objective of the work in
second phase is to accurately estimate the sound absorption coefficient of multi-
layered fibrous material by using only one intrinsic parameter as an input
variable. The neural network model developed in the second phase, uses one
intrinsic parameter (static airflow resistivity) and shows better estimation
accuracy than the conventional transfer matrix method (TMM) [37, 38, 39]
using one or five parameters.

This paper is organized as follows. First, chapter 2 explains the process of
constructing geometrical information of the fibrous materials using the micro-
CT images. Then, chapter 3 presents the process of constructing a numerical

model and obtaining five intrinsic parameters using 2-D micro-CT images.



Next, chapter 4 presents the CNN models and the data structures used to train
the model. After comparing predicted and measured values, the results and
verifications are presented. Chapter 5 explains the ANN model used to
estimating the acoustical property of multi-layered fibrous material. Then the
estimated sound absorption coefficient using ANN and TMM is compared with

measured values. Finally, the conclusions are discussed in Sec. VI.



CHAPTER 2

PHYSICAL CHARACTERIZATION OF FIBROUS
MATERIAL

2.1 Introduction

In this chapter, the process for constructing a 2-D geometrical model is
described using X-ray micro-CT image of fibrous material. In order to
accurately analyze the flow field in the fibrous material, it is important to find
the optimal condition considering the effect of resolution and size of the micro-
CT image. In this work, the density-based spatial clustering of applications with
noise (DB-SCAN) algorithm was used to extract information such as the
centroid, perimeter, and diameter of fiber strands distributed on the micro-CT
images. Polyethylene terephthalate was used in this work for the basic material,
which is widely used for sound insulation in the interior of the automotive

vehicle.



2.2 Microscopic geometrical characterization

2.2.1 X-ray micro-computerized tomography imaging

Nine polyethylene terephthalate (PET) felts with a thickness of
approximately 10 mm and a surface density from 600 to 1400 grams per square
meter (GSM) at intervals of 100 GSM were used in this work. Six of these
specimens were used to generate a dataset to train the CNNs, and the other three
specimens were used to test the performance of the trained CNNs. Tomography
was conducted on nine types of PET using an X-ray micro-imaging system
(Skyscan 1172, Bruker, Belgium). For micro-CT imaging, each specimen was
prepared 20 mm long in a 4 mm % 4 mm cross-section. The voltage and current
of the X-ray source were set to 40 kV and 250 uA, respectively, and the
exposure time was set to 2356 ms.

A previous microstructure study on fibrous material [25] confirmed that
the standard deviation of the intrinsic parameters calculated according to a
random position in the fibrous material is very small when the cubic box
dimension of the micro volume is 1000 gm or more. Using this point, I set the
3-D image size to be analyzed as 1000 x 1000 x 1000 um?®. The resolution of

the image was set to 2 um/voxel, thus using an image of 500 x 500 x 500 voxels.

9



The resolution of the image was determined considering both the computational
cost and accuracy of the analysis. Because the diameter of fibers constituting
the PET fibrous material used in this study was mostly between 20 and 60 um,
and the pore size was much larger than this, a resolution of 2 gm was considered
suitable for analysis. [40] The slice images were stacked to reconstruct a 3-D
image using cone-beam reconstruction software (NRecon, Brucker, Belgium).
For visual reference, a part of the 3-D geometrical model of 600 GSM PET is
shown in Fig. 2.1. Micro-CT images were taken on the y—z plane of the fibrous
volume. Therefore, 2-D images can be analyzed in the y and z direction. The 2-
D flow analysis covered in chapter III considers the z-direction flow, and the 3-
D flow analysis which will be covered in chapter IV, also considers the flow in

the z-direction.
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2.2.2 Two-dimensional geometrical model for fibrous material

This section describes the algorithm used to reconstruct a 2-D geometrical
model of felt fibers based on 3-D micro-CT images. The algorithm uses a DB-
SCAN [41] to identify illuminated pixels in micro-CT images and group them
into clusters representing the section of a fiber on the image plane. The process
of extracting the 2-D geometrical model from the micro-CT slice image is
shown in Fig. 2.2 and Fig. 2.3. For clarity, this section uses a 3-D image of 480
x 480 x 200 um®.

First, from the raw image shown in Fig. 2.2(a), the pores and fibers are
distinguished using a binary threshold, as shown in Fig. 2.2(b). The pixels
included in the region of the fiber are designated active pixels. The coordinates
of the active pixels in each slice image are extracted from the image file at this
stage. The active point coordinates are then clustered using DB-SCAN, as
shown in Fig. 2.2(c). Cluster objects were created by extracting the cluster
centroid, cluster tag, cluster point coordinates, and the number of points in the
cluster. Cluster objects were then used to deduce the boundary ellipse
containing the respective clusters. Note that, as shown by the arrows in Fig.
2.2(b) and Fig. 2.2(c), a single micro-CT image may fail to separate a plurality
of adjacent fibers. To overcome this problem, cluster objects in the images

11



immediately before and after the image of interest were examined to determine
whether the cluster consisted of one fiber or a plurality of fibers.

The center of each fiber detected in the slice image can be presented in
three-axis coordinates, as shown in Fig. 2.3(a). To create a continuous cylinder
along this centerline, the diameter of the cylinder was taken to be the average
length of the minor axis of the ellipse deduced from the cluster of each slice
image. The diameter of the fibers of PET felt used in this study follows the
normal distribution with an average of 29 um and a standard deviation of 10
um. Here, it is assumed that the diameter of a single fiber is constant in the
centerline direction. In the 3-D fiber geometrical model shown in Fig. 2.3(b), it
is possible to obtain a 2-D geometrical model for an arbitrary position in the x-
axis direction. The 2-D geometrical model reconstructed from the x-axis
position of the raw image shown in Fig. 2.2(a) is overlaid with the raw image

in Fig. 2.3(c).

12



Isometric view

Figure 2.1 (a) Isometric view, (b) top view, and (c) side vie of the 600 GSM
PET felt. The gray square of the Fig. 2.1(a) coincides with the plane of micro-
CT image plane.
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Figure 2.2 (a) Micro-CT raw image of PET felt, (b) binary threshold image,
and (c) active points clustered using DB-SCAN.
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Figure 2.3 (a) Cluster centroid connections, (b) reconstruction of the 2-D
geometrical model from the 3-D fiber model, and (c) overlaid image of the 2-

D geometrical model and micro-CT image.
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CHAPTER 3

EXPERIMENTAL PROCEDURES

3.1 Introduction

In this section, numerical experiments are applied to the 2-D geometrical
model generated in chapter 2, and the process of obtaining the intrinsic
parameters of each slice image is described. The five basic intrinsic parameters
are covered required by the JCA model in this work. I employed the finite
element method for a steady incompressible Stokes flow to obtain the static
airflow resistivity [30, 31] and the boundary element method for a potential
flow to obtain the tortuosity and VCL. [32, 33, 34] Porosity and TCL were
obtained directly from the fiber geometry.

Chapter 3.2 introduces the process of obtaining intrinsic parameters using
numerical experiments. Chapter 3.3 briefly discusses the process of obtaining
parameters using direct measurement method, to verify the estimated values
obtained in chapter 3.2. Finally, in chapter 3.4, the process of measuring the
sound absorption coefficient is introduced. Here, the experimentally obtained
sound absorption coefficient will be used to verify the predicted values in

chapter 4 and 5.
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3.2 Numerical experiments for obtaining intrinsic parameters

3.2.1 Model for porosity and thermal characteristic length

Porosity and TCL can be obtained using a mesh model constructed from
the 2-D geometrical model, as shown in Fig. 3.1. First, the porosity ¢ can be

calculated according to its definition as

1 n
0] =§ZSL-, 3.

where S; is the surface area of the i-th pore element, n is the total number of
pore elements, and S; is the total surface area of the mesh model, which is
equal to 1000 x 1000 m?, as mentioned in chapter 2.

The TCL A’ is defined as the ratio of the volume integration of the pore

and the area integration of the fiber as

Jy av 5 DI
Js ds XML 2/(1+ cos?a)’

(3.2)
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angle between the normal vector of the image plane and the fiber strand. a can
be calculated as the ratio of the major and minor axis. Since this study deals
with the 2-D flow field, volume integration was approximated by numerical
area integration, and area integration was approximated by numerical line
integration multiplied by a correction factor. When the fiber is positioned
obliquely to the image plane in 3-D, the lateral area of the elliptical cylinder
positioned perpendicular to the image plane is calculated if only the perimeter
L; is considered. Using the approximated perimeter of ellipse p =
Zn\/m, (where a and b are the semi-major and semi-minor axis,
respectively) the ratio of the lateral area between the elliptical cylinder and
oblique cylinder can be obtained as 1: \/m. The error resulting

from this approximation will be presented in chapter 4.

3.2.2 Model for tortuosity and viscous characteristic length

Because the tortuosity and the VCL are defined in a flow of non-viscous
fluid, [7] a potential flow analysis was conducted to obtain both parameters
from the 2-D geometrical model. A uniform potential flow was made to flow
with the velocity U, from the left to the right side (z-axis direction) of the 2-

D geometrical model, and the medium was assumed to be an incompressible
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inviscid fluid. The upper and lower boundaries and the fiber contour were
treated as impermeable walls. The description of the potential flow problem

including applied boundary condition is given by

V-wp =0 in Qf, (3.3)
VXwp =0 in Q, (3.4)
wp-n =0 on (g, (3.5)

where wp is the velocity of the fluid of the potential flow, ( is the fluid
domain, and Qg is the fluid—solid interface, and n is the unit normal to the
boundary Qgr. Eq. (3.3) and (3.4) imply the incompressible and irrotational
flow, respectively.

The flow field was calculated using the complex variable boundary
element method. [19, 32, 33, 34] For a 2-D potential flow, the stream function
Y is determined by

oy ovY
u=—y; and v = ——, (36)

and if the 2-D incompressible flow is irrotational, the potential function @ is

19



od od
u=—; and v

ax = E . (37)

Because Eq. (3.6) and (3.7) satisfy the Cauchy—Riemann condition, it is
possible to form the complex potential Wy as a linear combination of ¥ and

O as

W= &+i¥. (3.8)

The functions W, ®,¥ are all analytic, the velocity component wp, = (u, v)
can be obtained from Wp by differentiating with respect to z as

aw

— =Wp=U-—IV. 39

dz P ! 3:9)
The complex potential Wy at an arbitrary point z can be obtained with the

Cauchy-type integral formula as

W)

—Z

1
W(Z) = %

di, (3.10)
st

where ¢ is a point on the boundary Qgr, W({) takes on the values of the
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potential and stream function along the boundary. Now, the boundary contour
can be approximated by m discretized boundary elements. The nodal points
located at both ends of the infinitesimal element are sequentially designated as
{1, (3, =+, and {p4q. For a closed boundary, {;,,;1 = {;. The Cauchy-type

integral of Eq. (3.10) can be discretized as

W(z) = Z AW (2), (3.11)
j=1

we) de, (3.12)

1 fj+1
MW (z) = —
W@ =50 f(], (-2

where AjW(z) is the contribution of the j-th infinitesimal element to the
complex potential at an arbitrary point z.

The tortuosity a., is defined as the ratio of the square of the path length
in the porous material L, to the square of the distance in free space L, given

by

w=(2). 613

The path length L, can be obtained from the average length of the multiple
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streamlines, where each individual streamline is found using the coordinates
with equal stream function values in the flow field. [19] Excluding the stream
function, which vanished on the fiber contour, the path length L, was obtained
from the length of the streamline maintained between both ends of the 2-D
geometrical model. The horizontal length of the geometrical model was used as
the distance in free space L, and the tortuosity was calculated using Eq. (3.13).
The streamline formed in the square box in Fig. 3.1 is shown in Fig. 3.2.

The viscous characteristic length A is defined by the ratio of the volume
integration to the surface integration, in which each volume or area element is

weighted according to the local value of the squared velocity field |wp|? as

J, we@?av , " [, lwp(2)I?ds
f; [weGap| ds 5™, |wea,)| @

. (3.14)

where | s |lwp(2)|?dS is the surface integration of the squared velocity of the

2
pore element and fl |WP(ZQS f)| dl is the line integration of the squared

velocity of the fiber contour element. For the similar reason as in the calculation
of the TCL, volume integration and area integration are approximated by
numerical area integration and line integration, respectively. However, when an

ellipse on the plane exists due to the oblique fiber, it is difficult to inversely
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estimate the difference in velocity field. Therefore, correction factor is not
considered in this case. The error resulting from this assumption will be
presented in chapter 4. The velocity field formed in the square box in Fig. 3.1

is shown in Fig. 3.3.

3.2.3 Model for static airflow resistivity

The flow field to obtain the static airflow resistivity is treated as a 2-D
incompressible viscous air flow. The flow was applied as a steady, low
Reynolds number flow. A viscous flow problem was solved using the Stokes
flow, and the problem description including the Stokes equation and applied

boundary conditions is shown in Egs. (3.15)—(3.17), [22, 23]

uviws —Vp = —G in Qy, (3.15)
V-ws=0in Q, (3.16)
ws =0 on Q, (3.17)

where p is the viscosity of air, wg is the velocity of the fluid, p is the
pressure, G is the pressure gradient acting as a body force throughout the fluid

domain. A laminar flow was made to flow from the left side to the right side (z-
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axis direction) of the 2-D geometrical model. The boundary of the inlet and
outlet was designated as the velocity Ug, and the upper and lower boundaries
were treated as free slip conditions. The flow field was calculated using the
finite element method. The fluid field of the geometrical model is discretized
by a Taylor—-Hood (P2-P1) triangular element that satisfies the Ladyzhenskaya-
Babuska-Brezzi (LBB) condition, and the Galerkin method was applied to Egs.
(3.15)—(3.17). [19, 30, 31] The velocity and pressure field were obtained from
a 2-D plane extended in the inlet and outlet direction of the 2-D geometrical
model, and the spatially averaged pressure at both ends, (P;,) and (P,,;), was
calculated where the pressure field was sufficiently stabilized. The static
airflow resistivity of the 2-D geometrical model was calculated using Darcy’s

law given by

_Ap
 UsLy '

o (3.18)

where Ap = (P;,) — (Poue) and Ly is the length of the horizontal side of the
geometrical model. The pressure field calculated from the geometrical model

in Fig. 3.1 is shown in Fig. 3.4.
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3.3 Intrinsic parameter measurement

The intrinsic parameters of PET were measured to validate the parameters
predicted using the methods proposed in this work. Among the nine PET
specimens, the parameters of three PETs used for testing the neural network
were obtained using the direct measurement method and the inverse method.
Testing PETs have surface densities of 800, 1000, and 1200 GSM, and the
intrinsic parameters were measured for three specimens of each surface density.
A brief summary of the measurement method is as follows, and the results are
summarized in Table 3.1.

The porosity was measured using a porosity meter (PHI, Mecanum Inc.,
Quebec, Canada). The pressure and mass of the chamber were measured under
four conditions: with and without a specimen in the chamber at an air pressure
of less than 1.0 psi, and with and without a specimen in the chamber under
pressure around 80 psi of argon gas. The porosity can be calculated from these
four measurements using four ideal gas equations corresponding to these states.
[16, 28]

The tortuosity was measured using a tortuosity meter (TOR, Mecanum Inc.,
Quebec, Canada). After measuring the impulse response with and without the
specimen between the ultrasonic source and receiver sensors, the refraction
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index of the material can be calculated using the phase difference between two
impulse responses. By measuring the refraction index at multiple ultrasonic
frequencies, the tortuosity can be calculated through high-frequency
approximation using regression. [13]

The static airflow resistivity was measured in accordance with ISO 9053-
1. [12] The pressure difference between the front and back sides of the specimen
was measured while an air velocity of 1-10 mm/s flowed through the specimen.
Then, the pressure difference was estimated at an air velocity of 0.5 mm/s using
linear regression. The static airflow resistivity was then calculated using
Darcy’s law.

The TCL and VCL were obtained using the inverse characterization
method. [42] The JCA model was used, and previously measured values of the
parameters except for the two characteristic lengths were used. The normal
incidence sound absorption coefficient required as the objective function of the
inverse problem was measured using the Briiel and Kjear Type-4206 impedance

tube, following the ASTM E1050 standard. [43]
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3.4 Sound absorption coefficient measurement

The sound absorption coefficient of fibrous material was measured using
a Bruel and Kjer (B & K) two-microphone impedance tube (Type 4206). The
B & K Type 4206 impedance tube consists of a loudspeaker, several
microphone holders, and a cylindrical structure to mount a specimen. The sound
reflection coefficient or the sound transmission loss can be measured using the
transfer function between the microphones. [44, 45] After generating a
broadband random signal in the frequency range of 100—6400 Hz, using a
loudspeaker at one end of the tube, the transfer function between the two
microphones is obtained over that frequency band. The sound reflection
coefficient and the absorption coefficient can be calculated using the following

transfer function:

Pz(a)) Piejkxz + R(w)Pie_jka
- Pi(w)  Pieik*1 4+ R(w)Pe~ikx1’

Hy, (3.19)

and

o—Jk(1—x2) _

Hy, .
12 p2jkxy (3.19)

R(w) = ., = oG ,
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where P; is the incident wave in the impedance tube, R(w) is the reflection
coefficient, and x; and x, are the distance between the sample and the
microphone locations, respectively (see Fig. 3.5 for more detail). When
measuring the normal incidence sound absorption coefficient of a specimen
using the B & K Type 4206, specimens with diameters of 100 mm and 29 mm
can be used depending on the frequency range of interest. The suitable
frequency range is 100 to 1600 Hz for 100 mm specimens and 500 to 6400 Hz

for 29 mm specimens [46].
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TABLE 3.1 Measured intrinsic parameters of the three testing PET specimens.

. psurface [GSM] ¢) [_] Ao [_] o [Nsm_4] N [ﬂm] A [.um]
Testing
Std. Std. Std. Std.
PET Mean Mean Mean Mean Inverse method
Dev. Dev. Dev. Dev.
A 800 20 0.863 0.010 1.04 0.03 69 500 1100 106 33
B 1 000 20 0.847 0.008 1.09 0.04 103 000 2800 84 27
C 1200 20 0.825 0.009 1.14 0.07 121 000 5100 74 24
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Figure 3.1 2-D mesh model constructed using the geometrical model. The

square box in the figure is an area for visual reference of potential flow analysis
to obtain tortuosity and VCL in Fig. 3.2 and Fig. 3.3.
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Figure 3.2 Streamlines of inviscid flow formed in the square box in Fig. 3.1.
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Figure 3.3 Velocity field of inviscid flow formed in the square box in Fig. 3.1.
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Figure 3.4 Analyzed pressure field from the 2-D geometrical model using stokes flow.
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Figure 3.5 Schematic of the two-microphone impedance measurement tube
(B & K Type 4206).
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CHAPTER 4

NEURAL NETWORK MODEL DEVELOPMENT
FOR INTRINSIC PARAMETERS
OF FIBROUS MATERIAL

4.1 Introduction

The present chapter focuses on identifying the feasibility of an CNN
model for estimating the intrinsic parameters of the fibrous materials. The
objective of this work is to accurately estimate the intrinsic parameters of
fibrous material by using the CNN models with 2-D micro-CT images as an
input variable. The result will be compared with the value obtained using the
transfer matrix method (TMM), which is widely used to obtain the acoustical
properties of multi-layered porous media.

The concept of the neural network is briefly discussed in chapter 4.2, the
modelling procedure is introduced in chapter 4.3. The validation of the
developed CNN models is discussed in chapter 4.4, finally, the limitation of the

developed model is noted in chapter 4.5.
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4.2 Artificial neural network

4.2.1 Fully-connected artificial neural network

The configuration of a general feedforward ANN is shown in Fig. 4.1. The
cubes in the figure represent artificial neurons, and the arrows represent the
unidirectional calculation flow. The network can be divided into three layers:
input layer, hidden layer, and output layer. For an arbitrary problem, once input
and output variables are defined, the hidden layer serves to describe the
relationship between them. In general, the number of layers and neurons is
determined by the complexity of the data; however, the network normally
consists of one input layer, one output layer, and one or more hidden layers. [47,
48]

The artificial neurons in the hidden and output layers are constructed
similar to dendrites, cell bodies, and axons, which make up biological neurons.
An example of the artificial neuron is shown in Fig. 4.2. Analogously to human
neurons, each synaptic weight corresponds to the length of a dendrite, the
summing junction corresponds to the cell body, and the activation function
corresponds to the axon. The artificial neuron collects the information from

previous neurons at the summing junction by multiplying synaptic weights and
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adding a bias. For a given input, the artificial neurons calculate the activations

as follows [49]:

X =g (z w1 4 bﬁ), 4.1)
i

where @(x) represents the activation function, and x/~! is the input of the
i-th neuron in the (n — 1)-th layer, x}‘ is the output of the j-th neuron in the

n-th layer, wj;

is the synaptic weight from artificial neuron i inthe (n — 1)-
th layer to neuron j in the n-th layer, and bj” is the respective bias term of
the n-th layer. The most commonly used activation function is the rectified
linear unit (ReLU): ¢(x) = max (0,x). Nonlinear functions, such as the
sigmoid @(x) = (1 + exp(—x))™! and tanh, have been used in recent
decades, but the ReLU function has been shown to give better results for
complex and large networks [35].

The process of training a network constitutes optimization of the weights
and biases of all neurons that make up the network through iterative learning
from a given data set. The principle of optimizing weight and bias is based on

the gradient descent method. Typically, the cost function in the regression

problem can be set to a mean squared error (MSE), can be set as
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N
1
£O) =5 ) @6 ~¥D?, (42)
i=1

where @gy(X;) is the predicted value of the neural network for a given input
X;, and Y; is the observed value of the variable being predicted. The optimal
set of weights and biases for a given input/output data minimizes MSE, f(8),
which can be found using the gradient descent method with numerical
differentiation or backpropagation. [35, 50]

Since more complex networks require more computational resources to
calculate gradients and costs, a mini-batch (a subset of a given dataset that is
randomly chosen during training) can be used for efficient calculations. The
method of obtaining gradients and costs via this mini-batch is called the
stochastic gradient descent (SGD) method [51]. The procedure of updating

weights and biases using SGD is defined as
wED = w® —pv, E(W®), (4.3)

where 7 is the step size, commonly known as a hyper parameter (the learning
rate) in machine learning, t represents the current iteration indexed at zero. In

addition to the SGD, various methods have been introduced that are used to
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update the weights and biases [52, 53]. In this study, the adaptive moment
estimation (Adam) method was used. In a complex model, solutions can be
found faster and more efficiently using Adam than the SGD [54]. In the Adam
algorithm, moving averages (averages that continually change as more data
points are collected) of both the first moment and the second moment of the
gradients are used. The updating algorithm of Adam is given by the following

expressions [53]:

ml(/li+1) _ .Blml(/l? +(1- ,Bl)VWE(W(t))' 4.4)
v = D 4 (1= BV E(W®), (4.5)
(t+1)
~ w
Ay = W (4.6)
(t+1)
1-8
(t+1)
N Yw
By = — W 4.7
(t+1)
1-5,

and

~

_Mw
m-l-é’

WD = w® —y) (4.8)
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where f; and [, are the hyper parameters of machine learning. These
parameters adjust the damping ratio of the moving average. my, represents the
first moment of the gradient, vy, the second moment of the gradient and € is
a small scalar used to prevent division by zero.

The validation of the ANN is carried out using a test set, which is
commonly extracted from a given data set or collected separately. Because the
test set is unused for training the ANN, it can be used to evaluate the
performance of the trained ANN. It functions to observe the potential
overfitting problem of a network in the training process. If the ANN is
overfitted on a training data set, it loses its generality when applied to unseen

data, so the model needs to be evaluated using a test set.
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4.2.2 Convolutional neural network

Fully connected networks generally use input variables in the form of a
vector. Therefore, input variables of more than two dimensions, such as images,
should be converted to a vector form when using a fully connected network.
Two problems can arise during this process. First, if a 3-D variable such as an
image (horizontal pixels, vertical pixels, and image channels) is converted into
a one-dimensional (1-D) vector, the shape of the data is ignored. Here, the shape
refers to a pattern formed by adjacent pixels or a similar color of spatially close
pixels. Second, if a huge 2-D or 3-D input is converted into a 1-D vector, and
fully connected with all the several hidden layers, the total number of weights
and biases can be enormous. [29] To overcome this problem, I can use a 2-D
CNN. The 2-D convolutional layer also has a network structure that includes
weights and biases, similar to the fully connected layer. However, data flowing
through the network is treated in the form of a 2-D matrix, and the weights are
also expressed in the form of a 2-D matrix; this is called a filter or kernel. As
shown in Eq. (11), the 2-D convolutional layer uses convolution of a 2-D matrix
rather than a simple product of data and weight. The value of each element in

the matrix can be calculated as
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X" =X 1«W +b"), 4.9)

m—-1m-1

\.3
5

Xpy G+ Wern@rn 0" |, (4.10)
0

I
A

p=0

Q
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where X™™1 and X" are the matrix forms of the input and output of the
convolutional layer, respectively; W is a filter made up of weights; and x™"1,
x™, and w are the elements of the matrices X™ !, X™ and W, respectively.
The convolutional layer is generally used in combination with a pooling layer.
Activation calculated in the convolutional layer is down-sampled in the pooling

layer and then passed to the next layer. The pool size and stride values are

determined in the pooling layer. [35]
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4.3 Materials and model development

Six CNN models were trained to estimate the intrinsic parameters of a 2-
D micro-CT slice image of a PET felt. Three of the six CNN models were
trained to directly estimate the intrinsic parameters: (i) porosity, (ii) tortuosity,
and (iii) static airflow resistivity of the 2-D image. The remaining three models
were trained to estimate the three basic values in each 2-D slice image used to
calculate the TCL and VCL of the bulk material. Each of the remaining three

models estimates following values: (iv) summation of the line integration of the

corrected fiber perimeter, ), fl dl, which corresponds to the denominator in

Eq. (3.2), (v) summation of the line integration of the squared velocity over the

fiber skin, Y, fl |Vsinl|?dl, which corresponds to the denominator in Eq. (3.14),

and (vi) summation of the area integration of the squared velocity in the pore,

> p |vp0re|2dA, which corresponds to the numerator in Eq. (3.14). The

summation of the area integration of the pore area, which corresponds to the
numerator of Eq. (3.2) for calculating TCL, can be calculated by multiplying
the area of the slice image by the porosity, so a separate model is not developed.

The dataset for training the CNN models was constructed using numerical
analysis results and 2-D micro-CT slice images of six PETs, excluding the 800,

43



1000, and 1200 GSM PETs. Samples were extracted from three locations of
each PET felt, and micro-CT images were obtained. One 3-D micro-CT image
consists of 500 X 500 X 500 voxels. Therefore, 500 X 3 = 1500 slice
images per PET type were obtained, and 600 of the 1500 slice images were
chosen for the numerical analysis. This procedure was performed in the same
manner for six types of training PET for each surface density, for a total number
of training datasets of 600 X 6 = 3600. The dataset for testing the CNN was
constructed using the remaining three types of PET (800, 1000, and 1200 GSM).
As in the previous procedure, three samples were taken for each PET type
corresponding to each surface density. Of these, one sample was selected for
each surface density and a numerical analysis was conducted. Thus, the total
number of testing datasets was 500 X 3 =1500.

The CNN architecture is shown in Table 4.1 and Fig. 4.3. The concepts of
kernel size, stride, pool size, dropout layer, flatten, and batch normalization,
which are not discussed in this paper, are explained in detail in the book by
Buduma. [54] The structure of CNN model was designed by referring to
ALEXNET, [55] although it is not identical. Each CNN model for predicting 6
parameters was made with the same structure. Here, the tuning of the structure
and hyperparameter was ended through trial and error. Therefore, there may be

a model that predicts the intrinsic parameters more accurately than the structure
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of Table 4.1. Since the main goal of this study was confirming the feasibility of
training the CNN model with the process of extracting the 2-D geometrical
model form micro-CT image and numerical analysis, the CNN model was
settled at upon determining that the degree of error was within the acceptable
range. Training time for 3600 training set was approximately 24 h on 3.60
GHz/6 cores, 12 threads (128 GB RAM) for CNN model, and GPU was not
used for training. The CNN in Fig. 4.3 is a model for predicting static airflow
resistivity, and one filter of each convolutional layer is visualized in the middle
of the layer. Through the visualized filter, it is possible to grasp the local pattern
activated by the filter for the input array. As the layer becomes deeper in Fig.
4.3, the pore area and the fiber area are clearly divided and activated.

The cost function for training the CNN was chosen to be the MSE (Eq.
(4.2)), and the gradient was calculated using backpropagation. The mini-batch
size was set to 20, and weights and biases were optimized using the Adam
algorithm with 0.001 learning rate. [53] The implementation was carried out
using KERAS, which is a machine learning framework in PYTHON. The trend
of the prediction error of the static airflow resistivity according to the number
of training datasets is shown in Fig. 4.4. 1 employed the mean absolute
percentage error (MAPE) for the relative comparison between the variables

given by
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Each variable is the same as in Eq. (4.2). The CNN model was checked by
increasing the number of training datasets by increments of 300, and the MAPE
was obtained using 1500 testing datasets for each step. When the number of
training datasets reached 3600, the MAPE was confirmed to be around 2.5%,
as shown in Fig. 4.4. Therefore, considering the computational cost and
prediction accuracy of the model, the number of training datasets was set to

3600.
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4.4 Model validation

The results of comparing the intrinsic parameters of 1500 testing images
predicted using each CNN model and the values obtained using numerical
analysis are shown in Fig. 4.5-7. The values obtained using numerical analysis
are expressed as predicted value (Numerical) on the x-axis, and the predicted
values of the CNN models are expressed on the y-axis. For each model, the
MAPE and maximum error of the predicted values for 1500 testing images are
shown at the bottom right of each figure. The MAPE of the predicted values
from all six CNN models was less than 2.5%, and the maximum error was 8.87%
in the static airflow resistivity model. The predicted results of the CNN models
and the results of numerical analysis show good correlation. The results show
that the CNN models have good prediction accuracy for new 2-D slice images.
Fig. 4.8 shows the intrinsic parameters predicted using the CNN models
corresponding to each slice image constituting the fibrous volume of one
sample of testing PET B (1000 GSM), shown in Table 3.1. The dimension of
fibrous volume is 1000 x 1000 X 1000 um3.

When calculating the intrinsic parameters of the fibrous volume, porosity,
tortuosity, and static airflow resistivity were calculated as the average of the
predicted values from each slice image constituting the fibrous volume.
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Because the tortuosity and static airflow resistivity are obtained from the
potential flow and Stokes flow analysis in 2-D, respectively, the flow in the
direction normal to the plane of the slice image inside the fibrous volume is
ignored. In the Stokes flow analysis, because an incompressible fluid with a
slow flow rate was assumed, it was considered that the same flow rate was inlet
in all layers of each slice image constituting the fibrous volume. In the case of
TCL, the volume integration of the pore and the area integration of the fiber of
Eq. (3.2) corresponding to the fibrous volume were calculated by the
summation of the pore area and the corrected perimeter of each slice image,
respectively. Finally, in the case of VCL, the numerator and denominator terms
in Eq. (3.14) corresponding to the fibrous volume are calculated by the
summation of the area integration of the squared velocity in the pore and the
line integration of the squared velocity over the skin of each slice image.
Likewise, the fluid flow in the direction normal to the slice image is ignored in
this process.

First, the change in the result according to the resolution of the image in
the x-axis direction was investigated when configuring the fibrous volume. As
shown in Fig. 4.9-10, it can be seen that the porosity is predicted to be larger
than the actual value as the image resolution increases. (see Fig. 9 (a))

Accordingly, the static airflow resistivity tends to be small and the two
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characteristic lengths to be large. It can be expected that as the resolution of the
image gets closer to the diameter of the fiber strand, fibers cannot be captured
within the resolution value. Therefore, it is important to set an appropriate
resolution in consideration of the diameter of the fibers. Here, the analysis is
performed using the 2 um resolution.

Next, to confirm the generality of this method in which one of the
directions of flow is ignored, it is necessary to investigate how much error
occurs according to this approximation. To find the error, I used the
reconstructed fiber model considering various fiber orientations by referring to
the previous work. [25, 26] In the reconstructed model used by Luu et al., [25]
the azimuth angle of the fiber strand follows the uniform distribution, and the
elevation angle follows the normal distribution. Therefore, the fiber model can
be expressed with only one element of the second-order orientation tensor: (),,
(dimensionless quantity). Three models were constructed for each orientation
angle set at 0.1 intervals from 0.0 to 1.0, and the results obtained by the
numerical analysis of 3-D and 2-D slice geometrical models were compared.
The porosity of each model was limited to 0.924 + 0.003, and the fiber radius
and the number of fibers was as in the literature presented by Luu ef al.. [26]
The air flows along the +z direction and the 2-D slice geometry is extracted

from the y-z plane along the x-axis. 3-D numerical analysis was conducted
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using COMSOL Multiphysics, following the same problem definition as the 2-
D problem. The cubic box dimension of the model was set as 500 x 500 x 500
um3, and the 2-D slice geometry was extracted with a total of 101 sheets at 5
um resolution. One thing to note is that unlike the PET felt consist of curved
fibers, straight fibers are used in the reconstructed model. Therefore, when the
angle between the y-z plane and the fiber is close to 0°, airflow on the 2-D
geometry may be blocked. To avoid this problem, the fiber created with an
angle between +3° with the y-z plane was replaced with a fiber of an arbitrary
angle. The maximum diameter of the fiber I used is 22.2 um, and the length of
one edge of the cubic box is 500 um. When the azimuth angle of 68 fibers was
initially created under uniform distribution, the number of fibers present in this
angular range is 0 to 2.

The results are shown in Table 4.2. Only the mean percentage error (MPE)
from comparing the mean parameters obtained from 3-D analysis with the
parameters calculated by solving 2-D models was marked for intuitive
understanding. For the porosity, the result of 3-D and 2-D analysis almost
perfectly match. For the tortuosity, it shows an error within 5% in the whole
range of the (),,. As the (,, increases, the static airflow resistivity obtained
from 2-D analysis is found to be smaller than that from the 3-D analysis; and

TCL and VCL are larger. Consequently, this method is valid within a limited
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range, considering the error depending on the (1,,.

As mentioned in chapter 4.3, I took samples in three locations for each of
the three types of testing PETs. The micro-CT images for each sample were
input to the developed CNN models to obtain the intrinsic parameters for
fibrous volume. The intrinsic parameters of the three testing PETs predicted
using CNNs and the experimentally obtained values in chapter 3.3 are shown
in Fig. 4.11-13. All predicted value and orientation angle of the testing PETs
are shown in Table 4.3, with the error which is compared with mean of the
measured values. The measured values and the estimated values have good
correlation, whereas TCL and VCL show higher errors than the other three
parameters. This was acceptable considering that the measured value was
obtained by the inverse method. One thing to note is, due to the nature of the
micro-CT image, it can be analyzed in two directions, y and z in the case of our
micro-CT image. Even if the same image is used, inputting the image to the
CNN in wrong direction can cause severe errors. For example, (,, of the
testing PET A#1 is 0.14, however (1, is 0.46.

For further verification, 3-D models of all testing PETs were analyzed to
compare with the results obtained from the CNN models. The actual 3-D fiber
models were also constructed in the dimension of 500 x 500 x 500 um3,

extracted from the center of the fibrous volume used in the CNN model. Fig.
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4.14 shows the 3-D geometrical model of testing PET B #1, streamlines inside
the fiber obtained from the potential flow analysis, and the pressure field
obtained from the Stokes flow analysis. The value of each intrinsic parameter
obtained from the CNN and 3-D analysis are compared in Fig. 4.11-13, and
Table 4.4 with the simulation time. The computational resource used in the
analysis is same as mentioned in chapter 4.3, and the numerical analysis was
conducted using COMSOL Multiphysics. Since the CNN models have the same
structure, there is no significant difference in solving time for the analysis of
different intrinsic parameters. Considering only the solving time, the CNN
models take shorter time compared to numerical analysis. The required time
considering the preparation time of materials in detail is described in Table 4.5.

Finally, the sound absorption coefficients of the testing PETs were
calculated using the JCA model and the intrinsic parameters obtained, and the
results were compared with the measured values, as shown in Fig. 4.15-17.
Compared to the sound absorption coefficient using the experimentally
measured intrinsic parameters, the sound absorption coefficient using the CNN
models tended to be slightly lower overall, but it was confirmed that both values
show good correlation with the sound absorption coefficient obtained using the

impedance tube measurements.
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4.5 Limitations of the model

Some limitations of this model should be noted. This study deals with a
method of obtaining the intrinsic parameters of a 2-D image and predicting the
parameters of the volume by stacking the images. In this process, the flow of
fluid in the direction perpendicular to the image plane inside the material is
ignored. Although this method reflects the changing fiber geometry in 3-D, it
can obtain a meaningful result only when the ratio of the fiber perpendicular to
the incident wave in the direction of the fiber is high. It is applicable to materials
with directional properties such as glass wool or fibrous felt with a small
orientation angle (),,. One more limitation should be noted. In addition to the
five parameters covered in this paper, one of the widely used parameter is the
static thermal permeability. The JCA-Lafarge and JCA-Pride-Lafarge models
require this parameter. The static thermal permeability can be obtained through
heat transfer analysis, by solving the Poisson problem. [22, 25] Since there is a
macroscopic one-directional flow in the fluid flow analysis, it was observed
that an acceptable error was shown even if the flow in one direction inside the
volume was ignored under limited condition. In contrast, in the case of heat
transfer analysis, it is necessary to consider the heat transfer in all direction of
the fiber geometry distributed in the volume in order to estimate the accurate
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parameter. Therefore, it is difficult to estimate the static thermal permeability
using the method presented in this study. However, once the micro-CT images
are obtained, it is possible to construct the 3-D geometrical model. Also, the
numerical analysis of the Poisson problem does not require a long solving time
and computational resource for 3-D model as in the case of the Stokes problem.
(less than 3 m for the actual 3-D fiber models with the computational resource
used in this study) To present additional information related to this, [ will briefly
introduce the process of obtaining static thermal permeability.

The static thermal permeability k| is a geometrical intrinsic parameter
introduced by Lafarge et al., which describes the thermal exchanges between
the solid frame and fluid. [11] The static thermal permeability can be obtained
solving the Poisson problem, and the description of the problem including

applied boundary condition is given by

VZou=-1in Q, (3.3)

u =0 on Qg, 34

where u is a temperature field for the heat diffusion problem. The thermal
permeability can be obtained as the fluid-phase average of the u. The

numerical analysis to obtain the thermal permeability of 2-D and 3-D models
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is described in more detail in the previous literature. [22, 25, 56]

As mentioned above, the effect of thermal exchange along all directions in
3-D fibrous volume should be considered to estimate the static thermal
permeability. To support this point, a numerical experiment was conducted
using a single fiber strand passing through the center of a 100 X 100 X 100
um? cubic box. The elevation angle, which is the angle between the fiber and
z-axis, was set to 90° (i.e., ,, = 0), azimuth angle to 0°, and fiber diameter
to 25 um, as the initial conditions. Under these conditions, the porosity is equal
to 0.951. Subsequently, a heat diffusion analysis was conducted using 3-D and
2-D slice geometries by decreasing the elevation angle of the fiber by 10°
intervals. For 2-D analysis, 11 slice geometries were extracted at 10 um
intervals along the x-axis of the cubic box. To consider the porosity of all
models consistently, the diameter of the fiber was gradually decreased with the
elevation angle, and the azimuth angle was fixed at 0°. The errors of static
permeability obtained from 2-D analysis at the elevation angle in the range of
90° to 50° are summarized in Table 4.6. For comparison, the error of the static
airflow resistivity and VCL are also indicated. The direction of air flow is the
z-direction. A heat diffusion analysis was conducted using a 3-D model of
testing PETs to convey additional information. The obtained static thermal

permeability of each model is summarized in Table 4.7. The pattern of scaled
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heat diffusion field shown in Fig. 4.18 supports that the effect of 3-D thermal
exchange must be considered to estimate the static thermal permeability.
Finally, the output value of the CNN model is designated as a intrinsic
parameter in this work for connection with the acoustic impedance model such
as the JCA model used conventionally. However, if the desired output value is
an acoustic property such as sound absorption coefficient, it will be possible to
develop a model considering that the impedance model is also included in the
hidden layer of the neural network in future work. Also, unlike using micro-CT
image as an input value in this work, other image information that can be
obtained more simply can be considered. For example, a scanning electron
microscope (SEM) image taken from a specific direction can be used as an input
value, and acoustic properties such as the sound absorption coefficient, sound

transmission loss, and sound insertion loss can be used as an output value.
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TABLE 4.1 Detailed layer information of the developed CNN model architecture.

Layer Layer type and activations Input size Output size
1 Input 500 x 500 x 1

Convolutional layer ] ] 500 x 500 x 1 500 x 500 x 16

[kernel size =5 X 5, strides = (1, 1), 16 filters]

+ReLU ) ]

+ MaxPooling [pool size =2 x 2, strides = (2, 2)] 500 x 500 x 16 250 x 250 x 16
2 Convolutional layer . . 250 x 250 x 16 250 x 250 x 32

[kernel size =2 X 2, strides = (2, 2), 32 filters]

+RelLU . .

+ MaxPooling [pool size =2 x 2, strides = (2, 2)] 250 x 250 x 32 125 x 125 x 32
3 Convolutional layer . ] 125 x 125 x 32 125 x 125 x 64

[kernel size =2 X 2, strides = (2, 2), 64 filters]

+ReLU ) ]

+ MaxPooling [pool size =2 X 2, strides = (2, 2)] 125 x 125 x 64 62 x 62 x 64
4 Dropout (0.25)

+ Flatten o 62 X 62 X 64 246 016

+ Fully connected layer + Batch normalization 246 016 300

+ RelLU
5 Fully connected layer + Batch normalization 300 200

+ ReLU
6 Fully connected layer + Batch normalization 200 100

+ RelLU

Output 1




TABLE 4.2 Errors between the 3-D and 2-D numerical analysis of the reconstructed fiber models according to the orientation

angles.
Ao o N A

3D s%ach 3D s%ach 3D s%ach 3D s%ach 3D s%acl;)k
QZZ

Value MPE Value MPE Value MPE Value MPE Value MPE

[ (o] [ R [um] [o] [um] (o]
00 0923 0.0 104 ($)29:08 426  ()40:L7 1345 (07203 742  (+)4.9:03
01 0925 0.0 103 (#)41#13 397  ()31:13 1364  (+)0.3:02 772 (+)3.9:21
02 0925 0.0 103 (#)39:00 373  ()18:11 1372 (911202 810  (¥)27:17
03 0925 0.0 102 (+)42:09 366  ()37:L7 1385  (+)0.4:0.3 838  (+)4.0:18
04 0925 0.0 102 (#)36:05 355  ()9.0:45 1384  (#)0.9:0.7 897  (+)3.9+18
05 0925 0.0 102 (#)35:05 331  ()104:11 1368 (19807 962  (+)4.9:0.9
06 0925 0.0 101 (945:05 301  ()116£25 1374  (910:0.2 984  (+)3.6£05
0.7 0925 0.0 101 (+)33:00 379  ()19.8:07 1362  (#)3.1:0.1 1060  (+)5.7%2.2
08  0.924 0.0 100 (926:01 257  ()366£20 1342  (+)54:0.6 1134  (+) 155423
09 0923 0.0 100 (+)29:01 248  ()439:49 1347 () 7.6:08 1214  (+)318+39
10 0924 0.0 1.00 0000 216 (740472 1364  (+)136:11 1364  (+)649¢45
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TABLE 4.3 Intrinsic parameters predicted using CNNs of the three samples

of each testing PET and error from the mean of measured value.

TestingPET  Q,, ¢ [-] awx [-] o [Nsm™*] A [um] A [um]
#1  0.14 0.865 1.09 73 900 89 40
A #2 0.13 0.862 1.03 71 800 82 38
#3  0.11 0.850 1.04 74 100 80 36
Mean 0.13 0.859 1.05 73 300 84 38
Std. Dev. 0.01 0.006 0.03 1 000 4 2
Error [%] 0.5 1.0 5.5 20.8 15.2
#1  0.11 0.843 1.07 96 000 74 32
B #2  0.12 0.841 1.09 102 000 73 31
#3  0.10 0.840 1.10 101 000 68 30
Mean 0.11 0.841 1.09 99 700 72 31
Std. Dev. 0.01 0.001 0.01 2 600 3 1
Error [%] 0.7 0.0 32 14.3 14.8
#1  0.10 0.824 1.11 110 000 64 29
C #2  0.07 0.816 1.12 112 000 63 26
#3  0.09 0.815 1.11 122 000 61 26
Mean 0.09 0.818 1.11 115 000 63 27
Std. Dev. 0.01 0.004 0.01 5200 1 1
Error [%] 0.8 2.6 5.0 14.9 12.5
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TABLE 4.4 Comparison of the estimated intrinsic parameters and solving time between the 3-D numerical analysis and

CNN model analysis for testing PETs.

Averaged
T;S]s;lg ¢ [-] o [~] [NS;‘n " A [um] A [um] . solving time
Potential flow  Stokes flow
PET A: 3-D 0.860 1.04 76 000 83 36 6m 17h
800 CNNs 0.859 1.05 73 300 84 38 15s 15s
[GSM]  Error [%] 0.1 1.0 3.6 1.2 5.6
PET B: 3-D 0.841 1.08 102 000 72 30 12m 47h
1 000 CNNs 0.841 1.09 99 700 72 31 15s 15s
[GSM]  Error [%] 0.0 0.9 2.3 0.0 33
PET C: 3-D 0.820 1.10 122 000 64 26 15m 66 h
1200 CNNs 0.818 1.11 115 000 63 27 I5s 15s
[GSM]  Error [%] 0.2 0.9 5.7 1.6 3.8
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TABLE 4.5 Detailed information on micro-CT image acquisition, modelling, and computation time.

2-D convolutional neural network

(5 000 images in this work)

3-D numerical analysis

(5 volumetric samples in this work)

Collecting
) ) 24 h/ 1 sample
Micro-CT image

24 h/ 1 sample

2-D geometrical 1 week /
modelling 5 000 images
2-D numerical 3 weeks / 3-D geometrical
analysis 5 000 images modelling 3 days /1 sample
Modelling time 24 h /1 model
CNN modelling (total 6 models
are developed)
Total time 5 weeks Total time 15 days
Stokes flow problem 60h~120h
Computation time 15 s/ 1 parameter -
Potential flow
I0m~20m

problem
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TABLE 4.6 Error of the intrinsic parameters obtained using 2-D slice

geometries of the single fiber strand model.

Error of 2-D analysis [%]

90° 80° 70° 60° 50°

kg 0.0 2.8 11.8 27.8 534

o 0.4 0.5 0.5 0.3 3.1

A 0.0 0.2 0.5 0.5 1.2
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TABLE 4.7 The static thermal permeability of testing PETs obtained using 3-

D heat transfer analysis.

Testing PET ¢ 17 ko
of 3-D model x 10711 [m?]
#1 0.865 574
A #2 0.862 54.2
#3 0.852 46.3
Mean 0.860 52.6
Std. Dev. 0.006 4.7
#1 0.843 41.0
B #2 0.841 44.4
#3 0.840 394
Mean 0.841 41.6
Std. Dev. 0.001 2.1
#1 0.826 34.7
C #2 0.816 27.1
#3 0.817 30.3
Mean 0.820 30.7
Std. Dev. 0.004 3.1
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Figure 4.1 Schematic architecture of a typical feedforward neural network.
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Figure 4.2 Detailed structure of an artificial neuron.
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Figure 4.3 6-layer (3-convolutional layer, 3-fully connected layer) architecture of the CNN model for AFR.
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Figure 4.5 (a) Porosity and (b) summation of the line integration of the
corrected fiber perimeter of 1500 testing images predicted using each CNN

model and the values obtained using numerical analysis.
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Figure 4.6 (a) Summation of the line integration of the squared velocity over

the fiber skin and (b) summation of the area integration of the squared velocity

in the pore of 1500 testing images predicted using each CNN model and the

values obtained using numerical analysis.
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Figure 4.7 (a) Tortuosity and (b) static airflow resistivity of 1500 testing images
predicted using each CNN model and the values obtained using numerical

analysis.
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Figure 4.8 The intrinsic parameters predicted using CNNs corresponding to each slice image constituting the fibrous volume.
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Figure 4.11 Comparison of measured and predicted intrinsic parameters;

(a) porosity and (b) tortuosity.
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Figure 4.14 (a) 3-D geometrical for testing PET B #1 (b) streamlines obtained from potential flow analysis, (c) pressure field

obtained from Stokes flow analysis.
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(a) Sample A (800 GSM, Thickness: 6.1 mm)
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Figure 4.15 Normal incidence sound absorption coefficient of the PET A.
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(b) Sample B (1000 GSM, Thickness: 6.0 mm)
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Figure 4.16 Normal incidence sound absorption coefficient of the PET B.
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(c) Sample C (1200 GSM, Thickness: 6.1 mm)
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Figure 4.17 Normal incidence sound absorption coefficient of the PET C.
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Figure 4.18 Heat diffusion field (u) [X 1071%m?] of the testing PETs. (a) PET A #3, (b) PET B #1 and (c) PET C #2.
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CHAPTER S

NEURAL NETWORK MODEL DEVELOPMENT
FOR MULTI-LAYERED FIBROUS MATERIAL

5.1 Introduction

This chapter focuses on identifying the feasibility of an ANN model for
estimating the sound absorption coefficient of multi-layered fibrous materials.
While chapter 4 focused on the fibrous material itself, the method of estimating
the absorption coefficient of multi-layered fibrous materials using ANN will be
discussed in this chapter. The objective of this work is to accurately estimate
the sound absorption coefficient of multi-layered fibrous material by using only
one intrinsic parameter as an input variable. The result will be compared with
the value obtained using the transfer matrix method (TMM).

The model configuration is briefly discussed in chapter 5.2, the theory of
TMM is introduced in chapter 5.3. The validity of the developed ANN model
is verified in chapter 5.4 for three different cases, finally, the limitation of the

developed model is noted in chapter 5.5.
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5.2 Materials and model development

In this chapter, four types of fibrous PET felt were used to train the ANN
model. PET felt is commonly used on dash isolation pads or floor carpets in the
form of multilayered structures. The neural network model was trained using
the sound absorption coefficient of stacked PET felts composed of four layers.
The four types of PET felt have different densities and static airflow resistivity
values, which are listed in Table 5.1. The thickness of all fibrous felt used was
between 5—-10 mm, and each specimen was prepared by cutting the felt into
samples with a circular cross-section with diameter of 29 mm. An example of
a four-layered PET felt sample is shown in Fig. 5.1. Four specimens were
prepared for each PET type, and each specimen was classified to be of the same
type if the density and static airflow resistivity values fell within a certain range.
Therefore, the static airflow resistivity of the PET felt prepared in four
specimens by four types (16 specimens) was distributed over a wide range of
40000 to 220000 [Nsm™*].

The data set consisted of 256 four-layered samples covering all possible
multilayer structure combinations using the four types of PET. The sound
absorption coefficient of all 256 samples was measured, and the boundaries

between each layer were not bonded. The ANN model was trained using 230
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samples out of the data set, which corresponded to about 90% of the 256
samples. Model performance was verified using the test set which consisted of
the remaining 26 samples (combinations of 26 samples are shown in Fig. 5.2-
4), the sound absorption coefficient of the test set is estimated and compared to
measured values. The ANN architecture is shown in Fig. 5.5. The input layer
was divided into four parts, and each part was configured to input the thickness,
density, and static airflow resistivity of one felt layer. The output value is the
sound absorption coefficient of the four-layered fibrous material, for 56
frequencies, at 100 Hz intervals in the range of 500 to 6000 Hz.

For the cost function, the MSE function of Eq. (4.2) was used. The ReLU
function was used as the activation function of the artificial neurons, and the
weights and biases of the network were optimized using the Adam algorithm.
The initial values of the weights and biases were used as an initial “He” values
[57] that are specific for the ReLU function. The gradient was calculated using
back propagation. Finally, the mini-batch size was chosen to be 25 samples, and
the implementation was carried out using PYTHON language. Fig. 5.6 shows
the loss trend of the training and test set. As the training cycle is repeated, the
weights and biases of the network are updated by the Adam algorithm reducing
the error (loss) in Eq. (4.2). I observed that the loss is stable after about 2000

training cycles. At the end of 3000 training cycles, the MAPE between the
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predicted and measured value of the sound absorption coefficient is 0.82%,
showing high accuracy. Specific results and additional verification of the ANN

model, using PET 5 and RESIN felt, are covered in chapter 5.4.
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5.3 Conventional acoustical impedance models

5.3.1 Transfer matrix for layered fibrous material

Here, the TMM is used to describe acoustic fields before and after layered
acoustical materials [37, 39, 58]. The general expression of the TMM is as

follows:

) p
{vy} 0 - [TLayer 1][TLayer 2] [TLaJ’e’””] {vy}xzt

= [Ttotal] {IZ’})FI: = gi ;Z] {Iz’}x ’

(5.1)

where p is the acoustic pressure, v), is the normal acoustic particle velocity,
T is the transfer matrix of the arbitrary layer, and t is the total thickness of
multilayer. Once the elements of the transfer matrix are obtained, all the
acoustical properties, such as reflection, absorption, and transmission
coefficients, can be calculated. Using the total transfer matrix of Eq. (5.1), the
reflection coefficient: R(6) and sound absorption coefficient: @ of the

layered material can be calculated by applying the below expressions:
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T11 — (poCo/cos 0)T,y

R(0) = )
() Ti1 + (poco/cos 6)Tyy

(5.2)
and
elim
o =f (1 —1|R(6)|*»)sin B cos 6 db, (5.3)
0

where pgcy is the characteristic impedance of air, p, is the density of air, ¢
is the velocity of sound, and @ is the incident angle of the sound waves.

The transfer matrix is well organized to describe materials such as fibrous
material, and elastic porous material. In this study, we used the TMM to obtain
the normal incidence sound absorption coefficient of layered fibrous materials
to compare with the results of the ANN model developed in chapter 5.2. In the
case of fibrous material, it can be considered a limp or rigid porous material

[37, 39, 58], and the transfer matrix for limp or rigid porous material is as

defined below:

cos kd jZ.sinkd

[TRigid'”mp]:[jsin kd/Z, coskd | 54)
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where Z,. is the characteristic impedance of the acoustical material, k is the
wave number in the acoustical material, and d is the thickness of a layer. Two

models for obtaining these acoustical properties are discussed in chapter 5.3.2.

5.3.2 Empirical model and motionless skeleton model

Empirical models consist of several coefficients that correlate the
impedance and wave number with static airflow resistivity. Empirical models
are developed by applying regression using the measurements of these
particular values. Delany and Bazely [3] have proposed simple empirical
expressions with a power law relation for fibrous materials. The established
method consists of two indices, Eq. (5.5) and Eq. (5.6), which represent the
characteristic impedance and the wave number. These indices are predicted
simply based on the static airflow resistivity of materials and given by the

following expressions:

f>—0.75 (55)

Ze = poCo [1 +9.08 (103;

—j11.9 (103 f)_m],

o
and
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w f -0.70 . f -0.59
k=—|1+10.8 (103 —) —Jj10.3 (103 —> l, (5.6)
Co o o

where f is the frequency, and o is the static airflow resistivity. The
characteristic impedance and wave number obtained through the Delany and
Bazely model can be substituted into Eq. (5.4) to form a transfer matrix of
fibrous material. Many subsequent empirical models have been proposed since
the Delany and Bazely model, Miki [4] and Komatsu [59] have proposed
modified models to predict the acoustical behavior of different materials.
Empirical models are still widely used because of their simplicity: only the
static airflow resistivity is needed to describe the acoustical behavior. However,
it should be noted that each model is only valid for specific types of materials
[6].

Motionless skeleton models start with the assumption that the skeleton of
the porous media is rigid and motionless when its density and stiffness is much
larger than that of air. From the work of Zwikker and Kosten [9], motionless
skeleton materials can be considered analogous to cylindrical tubes when
describing acoustic behavior. The acoustic wave equation in the tube is given

by the following equation:
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Vip+—p =0, (5.7)

where p,, represents the complex bulk density, which can describe the effect

of viscous resistance and K, is the complex bulk modulus, which describes

the effect of thermal conduction. These two variables can be described by a

given pore shape inside the porous media. Johnson, Champoux, and Allard [7,

8] proposed the complex bulk density and modulus of acoustical material, with

a motionless skeleton having arbitrary pore shapes given by Eqgs. (5.8) to (5.11),

and several intrinsic parameters are considered during the modeling procedure.

The arbitrary pore shapes are described by

and

= AP |1+ G , 5.8
Peqg = @ Po[ +]w,000!oo 71 (W) (5.8)
Aagnpow
Gjl(w)=\/1 +]W, (5.9)
o

-1
Keq = VPo/[V --1 (1 +jw—sz(wa)> ] (5.10)

pOPya
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f .POA'ZPy(U
sz(Py(l)) = |1+ W, (5.11)

where P, is the atmospheric pressure; p, is the density of air; y is the
specific heat ratio of air; P, is the Prandtl number of air, and 7 is the viscosity
of air. Using the complex bulk density and modulus, Eq. (5.8) and Eq. (5.10)
respectively, the characteristic impedance of the material can be calculated as
Ze = \[PeqKeq» and the wave number can be calculated as k = w\/peq/Keq.
The characteristic impedance and wave number obtained through the JCA
model can be substituted into Eq. (5.4) to form a transfer matrix of fibrous
material.

For ANN and Delany-Bazely models, only the static airflow resistivity (o)
is needed to predict the acoustic behavior of a layered fibrous material.
However, the JCA model requires five intrinsic parameters. Intrinsic parameters
were obtained in the same way as in chapter 3.3. The measured intrinsic
parameters of fibrous materials used in this study, excluding static airflow

resistivity are shown in Table 5.2.
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5.4 Model validation

In this chapter, the accuracy of the sound absorption coefficient prediction
model using ANN and TMM is investigated. The required characteristic
impedance and wave number for the transfer matrix are obtained by both the
empirical model (the Delany-Bazely model) and the motionless skeleton model
(the JCA model). The case where the transfer matrix is constructed using the
Delany-Bazely model will be referred to as TMM-DB, and the case wherein the
transfer matrix is constructed using the JCA model will be referred to as TMM-
JCA. Note that the ANN and TMM-DB models require only one intrinsic
parameter, g, to estimate the sound absorption coefficient. In the case of TMM-
JCA, five intrinsic parameters, o, @, ¢, A, and A', are needed.

As mentioned in chapter 5.2, the ANN model is trained using 230 samples
of PET felts stacked in four layers. To verify the generality of the trained model,
I divided the three cases and confirmed the accuracy of the ANN model. The
first case deals with 26 samples of four-layered PET combinations consisting
of the same materials. In the second case, 26 samples of four-layered PET
combinations were used with at least one different PET layer (PET 5) from the
first case. The 26 samples consist of 12 samples containing one layer of PET

with a new density and static airflow resistivity, 10 samples containing two new
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layers, 3 samples containing three new layers, and one sample having four new
layers. Since the first layer has the highest contribution when determining the
sound absorption coefficient of the layered materials, out of the 26 samples,
new PET layer was inserted at the first layer for 12 samples. The last case also
deals with 26 samples of four-layered fibrous felt combinations with at least
one RESIN felt layer in the PET combination of the first case. The composition
of the combination with the RESIN felt is the same as in case 2. All detailed
combinations of Case 1, 2, 3 are described in Fig. 5.2-4. For these three cases,
the MAPE was obtained over the frequency range of 500-6000 Hz between the
predicted absorption coefficient from the ANN, TMM, and the actual
measurements for each of the 26 samples.

However, the four-layered samples covered in this study have a resonance
phenomenon between 1500 and 3000 Hz. Dahl et al. [60] and Allard et al. [61]
derived models that predict the sound absorption coefficient by dividing the
frequencies at resonance and frequencies away from resonance. In the
resonance frequency region, fiber motion should be considered, but another
region shows motionless behavior. Since both TMM-DB and TMM-JCA
models assume the motionless fiber skeleton, when comparing the MAPE of
the ANN model and the TMM, only the frequency range of 3000-6000 Hz was

considered. Then the difference between the predicted and measured values was

93



compared of the 26 samples at 4000 Hz.

5.4.1 Case no.1

In case 1, 26 samples were randomly selected from 256 four-layered PET
felts to test the ANN model. The error of each sample was calculated, and the
MAPE is shown in Fig. 5.7 in intervals of 100 Hz. The estimated sound
absorption coefficient using TMM-DB shows an average error of 6.84% within
the frequency range of 3000-6000 Hz. TMM-JCA shows an average error of
3.83%. When estimating the sound absorption coefficient using the ANN, the
average error is 0.72%. The estimated sound absorption coefficient using the
ANN of one randomly selected sample (sample 10 in Fig. 5.2) is shown in Fig.
5.8. It can be seen that the result fits very well with the measured sound
absorption coefficient in the frequency range of interest. It is important to note
that the four-layered PET causes resonance near 2500 Hz. This phenomenon is
expected when high-density fibrous materials are stacked under an un-bonded
condition in a normal direction to the incidence wave [60]. Although this is not
a focus of this study, the trained ANN can predict the resonant frequency of the
four-layered PET. The result at a single frequency of 4000 Hz is shown in Fig.

5.9. The black diagonal line represents a perfect correlation between the
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predicted and the measured values. The average error was 7.18% for TMM-DB,

3.74% for TMM-JCA, and 0.38% for the ANN at 4000 Hz.

5.4.2 Case no.2

In Case 2, at least one new PET felt (PET 5 from Table 5.1) that was not
used when training the ANN was included in the four layers. The MAPE of
each sample is shown in Fig. 5.10. TMM-DB shows an average error of 4.54%
within the frequency range of 3000-6000 Hz, and TMM-JCA shows an average
error of 2.46%. When using the ANN, the average error is 1.67%. Although the
mean error is slightly higher than that of Case 1, it still shows consistent results.
Out of the 26 samples in Case 2, the sample consisting of four layers of new
PET is expected to be the most difficult to predict (sample 18 in Fig. 5.3). The
estimated sound absorption coefficient, using the ANN of that sample, shown
in Fig. 5.11 with measured values. However, the measured and estimated values
show good correlation, suggesting that the developed ANN can accurately
estimate the sound absorption coefficient of a four-layered structure composed
of new PET of the same series. The result at a single frequency of 4000 Hz is
shown in Fig. 5.12. An average error of 3.75% was observed with TMM-DB,

1.64% with TMM-JCA, and 1.30% with ANN at 4000 Hz.
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5.4.3 Case no.3

In Case 3, at least one RESIN felt is included in four layers as described
as RESIN from Table 5.1. Cases 1 and 2 deal with same series of PET, but in
Case 3, the generality of the ANN model is examined using RESIN felt. The
MAPE of each sample is shown in Fig. 5.13. TMM-DB shows an average error
of 5.20% within the frequency range of 3000—-6000 Hz, and TMM-JCA shows
an average error of 3.10%. For the ANN, the average error is 1.25%. Again, the
average error is slightly higher than Case 1, but with better accuracy than the
estimated values of TMM. As with Case 2, the sample consisting of four layers
of RESIN is expected to be the most difficult to predict out of the 26 samples
in Case 3 (sample 18 in Fig. 5.4). The estimated sound absorption coefficient,
using the ANN of that sample, is shown in Fig. 5.14. As with the four-layered
PET, resonance occurs, but the region of the resonance frequency changes as
the material of the skeleton is changed from PET to RESIN. For reference,
micro computed tomography images of the two felt types are included in Fig.
5.15 to visually identify the structural differences between the RESIN and PET
felts. Since the ANN model is trained based on the PET skeleton, it is assumed
that the sample consists of a PET skeleton with the airflow resistivity of RESIN

felt. Except for the region where resonance occurs, the remaining frequency
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range shows an accurate estimated value. Although it is impossible to predict
the resonance frequency of samples made of different materials with the ANN
model, I can confirm that the model works well when only the fluid medium
property is considered. The result at a single frequency of 4000 Hz is shown in
Fig. 5.16. An average error of 3.75% is observed with TMM-DB, 1.64% with

TMM-JCA, and 1.30% with ANN at 4000 Hz.
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5.5 Limitations of the model

The result shows a positive starting point for multi-layered acoustical
material research, neural network models that require more input variables
might be needed for future work. Since the model was trained only with PET
felt, a database containing a wider range of data is required to expand the range
of acoustical materials to which this model can be applied. Additionally, it is
important to point out that the model developed in this paper was trained only
using data set for layers under the un-bonded boundary condition. Further
research will focus on collecting more data from specimens with different fiber
skeletons and a wider range of thickness and airflow resistivity values. By
enlarging the database, it is possible to estimate the acoustic performance of
multilayered acoustical materials for a wider variety of materials and layers.
This allows the accurate estimation of acoustic performance while reducing the
time and effort required for measuring intrinsic parameters. Furthermore, it is
also possible to design the neural network model that covers the characteristics
of the bonded boundary condition, because it is often difficult to predict the
accurate performance of bonded multilayered acoustical materials using the

TMM.
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TABLE 5.1 Properties of PET and RESIN felts.

used only to test the ANN
used to train & test the ANN model
model
Specimen Name PET 1 PET 2 PET 3 PET 4 PET5 RESIN
Areal Density

600150 800+50 1200450 1400+50 1000+50 1000+50
[GSM]
Airflow

Resistivity 4046 63-70 120-140 190-220 92-104 130-160

[x 103 Nsm™]
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TABLE 5.2 Intrinsic parameters of PET and RESIN felts.

Tortuosity (®e) Porosity (¢) VCL (A) TCL (A")
PET 1 1.15£0.09 0.91£0.05 46.2242.11 111.5847.20
PET 2 1.04+0.10 0.8610.05 30.33+£3.10 106.78+8.91
PET 3 1.1440.12 0.82£0.05 22.90+1.89 139.06+6.18
PET 4 1.10£0.11 0.7840.05 15.75+0.74 150.77£3.21
PET S 1.0940.12 0.8410.05 24.19+1.72 117.724+4.21
RESIN 1.031+0.08 0.8740.04 20.704+1.26 70.56+2.04
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Figure 5.1 Example of a four-layered PET sample with a circular cross-

section.
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Figure 5.2 26 four-layered fibrous felt samples used in Case no.1.
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Figure 5.3 26 four-layered fibrous felt samples used in Case no.2.
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Figure 5.5 Structure of the ANN developed for estimating the sound

absorption coefficient of a layered fibrous material.
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Figure 5.7 MAPE of estimated sound absorption coefficient using the

TMM-DB (A), TMM-JCA (O), and ANN model (X) for Case 1.
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Figure 5.8 Estimated sound absorption coefficient using an ANN for one

randomly selected sample out of 26 samples for Case 1. (sample 10 in Fig. 5.2)
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Figure 5.9 Estimated sound absorption coefficient of 26 samples at 4000 Hz

using (a) TMM-DB, (b) TMM-JCA, and (c¢) ANN model for Case 1.
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Figure 5.10 MAPE of estimated sound absorption coefficient using the

TMM-DB (A), TMM-JCA (O), and ANN model (X) for Case 2.
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Figure 5.11 Estimated sound absorption coefficient using an ANN for Case 2,

wherein the sample consisted of four layers of new PET. (sample 18 in Fig 5.3)
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Figure 5.12 Estimated sound absorption coefficient of 26 samples at 4000 Hz

using (a) TMM-DB, (b) TMM-JCA, and (c¢) ANN model for Case 2.

110
e

e



Mean Absolute Percentage Error (%)

—_
el

—_
(%]

—_
[\

©
S Average Error (3-6 kHz)
00 TMM-DB (A):5.20%
5 TMM JCA (O):3.10 %
o00° ANN model (X):1.25%
)
0
A A
A A O X
sz A N
ADMDLAANAAAA
A X x xQEx XX AAAAAAAAAAA
X A AADD 600
a8, x * Ba A 000000000
N gAgéo@ oga0 5000°
XQ X A 8000000000009
x PORRXH 3o XXX KK 3 X K X KX XXX K e
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Frequency [Hz]

Figure 5.13 MAPE of estimated sound absorption coefficient using the

TMM-DB (A), TMM-JCA (O), and ANN model (X) for Case 3.

111



1.0

0.8

0.6

0.4

0.2 —— Measured Absorption Coefficient

Sound Absorption Coefficient

X Estimated Absorption Coefficient (ANN)

0.0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Frequency [Hz]

Figure 5.14 Estimated sound absorption coefficient using an ANN for Case 3,

wherein the sample consisted of four layers of RESIN. (sample 18 in Fig 5.4)
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(b)

Figure 5.15 Micro computed tomography images of (a) PET and (b) RESIN

felt. (2800 x 2800 x 1950 voxels with a resolution of 0.95 um/voxel)
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Figure 5.16 Estimated sound absorption coefficient of 26 samples at 4000 Hz

using (a) TMM-DB, (b) TMM-JCA, and (c¢) ANN model for Case 3.
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CHAPTER 6

CONCLUSION

In this study, a method for predicting intrinsic parameters of fibrous
materials using micro-CT images and CNNs and an ANN model for predicting
the acoustical property of multi-layered fibrous material were proposed. In the
first phase of the study, micro-CT image was used to develop the CNN models.
The 2-D geometry of the fibers distributed in the image was characterized using
the DB-SCAN algorithm to obtain the intrinsic parameters from the micro-CT
images. Numerical analysis was performed using 2-D geometrical models
characterized from the micro-CT image to calculate the five intrinsic
parameters. Of the five intrinsic parameters, porosity and TCL were obtained
directly using a 2-D geometrical model, tortuosity and VCL were obtained from
the result of potential flow analysis, and static airflow resistivity was obtained
from the result of Stokes flow analysis. Six CNN models were developed using
2-D slice images and intrinsic parameters corresponding to the images. After
the CNN models were trained using this data, a test dataset containing 2-D CT
images of different fibrous materials was used to validate the CNNs. The

prediction accuracy of the developed CNN models was evaluated by comparing
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the predicted intrinsic parameters of the fibrous volume with the values
measured using traditional methods. The measured and predicted values
showed good correlation. From the results, it was concluded that it is possible
to predict the intrinsic parameters of fibrous material through CNNs using only
2-D micro-CT images, under limited range of orientation angle.

In the second phase of the study, the feasibility of a data-based ANN for
the estimation of the sound absorption coefficient of multi-layered fibrous
material is studied. The results demonstrate that it is possible to estimate the
sound absorption coefficient of multilayered acoustical material using a neural
network. Specifically, the sound absorption coefficient of four-layered fibrous
material, in the frequency range of 500 to 6000 Hz, is estimated by a well-
trained ANN that is based on the thickness, density, airflow resistivity, and
sequence of the fibrous materials. For the three cases studied in this paper, the
neural network model uses one intrinsic parameter and shows better estimation
accuracy than the TMM using one or five parameters, especially in the high-
frequency range. Note that these results were validated for the types of material,
range of airflow resistivity, the density, and the thickness of materials used in
this work.

This study dealt with methods to obtain physical quantities more simply

and quickly by applying artificial intelligence to the field of acoustical materials.
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The strength of artificial intelligence in terms of predicting physical quantities
is that once the model is constructed, results can be derived through a set of
input variable without in-depth of knowledge in the relevant field. Since
acoustical materials are very important in the field of sound design, artificial
intelligence can be an efficient tool for the needs of predicting the performance
of acoustical materials without background knowledge in this field. As many
engineers in the field of acoustical materials are making great efforts to graft
artificial intelligence into this field, I look forward to meeting creative and

surprising technologies in the near future.
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