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Abstract 

Loïc Millet 

Department of Materials Science and Engineering 

The Graduate School 

Seoul National University 

Neuromorphic computing is a brain-inspired computing 

paradigm to outperform conventional computing on specific tasks. In 

particular, reservoir computing is a form of neuromorphic computing 

that uses a recurrent and randomly interconnected network of non-

linear neurons, called a reservoir, to perform classification tasks. To 

improve further neuromorphic computing efficiency, spintronics-

based neuromorphic computing devices are intensively studied. As 

opposed to conventional CMOS systems emulating neurons and 

synapses properties, neuromorphic device research aims at creating 

intrinsically similar devices.  

In this work, photon-magnon coupling in a 2D geometry 

hybrid was successfully used to create a neuron performing 

waveform recognition in the reservoir computing paradigm. The 

hybrid system consists of an Inverted Split-Ring Resonator (ISRR) 

and an Yttrium Iron Garnet (YIG) film. The photon-magnon coupled-
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mode properties or Cavity Magnon Polariton (CMP) properties were 

used as neuron outputs while the waveforms were encoded in a static 

and uniform magnetic field. High experimental success rates obtained 

from the CMP mode frequency, S21 parameter magnitude and phase 

demonstrate for the first-time photon-magnon coupling usability for 

classification tasks. This demonstration is a first step towards 

realizing more complex tasks and networks relying on photon-

magnon coupling in hybrid systems.  

Additionally, the concept of a second task relying on a 

different neuromorphic computing scheme is presented. As 

demonstrated by pioneering work on Spin Torque Nano-Oscillators 

(STNO), the synchronization between an oscillator emulating a 

collection of neurons and an external frequency encoding input data 

allows computing in a bio-inspired way. This concept has been used 

to perform vowel recognition, and the corresponding concept using 

photon-magnon coupling is presented. 

Keywords: photon-magnon coupling, hybrid system, inverted split-

ring resonator, yttrium-iron garnet, neuromorphic computing, 

reservoir computing, neuron, waveform recognition, vowel recognition, 

coupling range, SRR array 

Student number: 2019-26377 
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Chapter 1. Introduction 

1.1. Moore’s Law  

In 1965, Dr. Gordon Moore observed a trend in integrated 

circuit manufacturing. The number of components minimizing the cost 

per component in an integrated circuit doubled every year [1]. Home 

computers, mobile phones, and various technological innovations 

were foreseeable from these predicted exponential performance 

increase and relative cost decrease. 10 years later, in 1975, Dr. 

Moore updated his projection to the doubling of transistors every two 

years, for what is now known as the Moore’s Law [2]. 

Moore’s Law drove the Information Technology industry. 

Coordinated efforts of worldwide manufacturers and suppliers of the 

semiconductor industry led to the sustained scaling down of circuit 

elements, turning Moore’s Law into a self-fulfilling prophecy [3].  

While scaling down transistors usually improved clock speed 

and power consumption, heat dissipation, which depends on the two 

variables, became a significant issue below 90nm [4]. To remain 

within power levels that can be dissipated, and since the supply 

voltage was not going any lower, the clock speed increase was 

hindered. Therefore, despite the continued increased transistor 
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density, single processor performance grew slower since the 2000s 

after years of exponential growth [5].  

This expectation gap between Moore’s Law and computing 

efficiency opens the way for dramatic innovations in computing [5]. 

In 2016, the International Technology Roadmap for Semi-Conductor 

changed its Moore’s Law-centered strategy for the More than Moore 

approach. The focus for chips development includes diversification in 

architectures and devices [6].  

1.2. Artificial Intelligence  

The question of Artificial Intelligence (AI) can be found since 

the early days of computing in Alan Turing's papers [7]. AI, which 

aims to implement human cognitive functions such as learning and 

problem solving in machines or computers, has considerably grown 

in recent years due to the development of new hardware such as 

Graphical Processing Unit (GPU) and the availability of large datasets. 

AI shows its usefulness in various applications and sectors such as 

image and speech recognition, materials science, medicine, or finance.  

AI relies on Artificial Neural Networks (ANN) such as Deep 

Neural Networks (DNN) and Recurrent Neural Networks (RNN) and 

other Machine Learning (ML) concepts to compute [8]. Those 
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concepts usually require a considerable amount of data with 

numerous matrix multiplication to work successfully. Consequently, 

Moore’s Law expectation gap and the von Neumann bottlenecks (the 

physical separation of memory and processors) hinder the further 

development of AI. The research for new AI hardware and 

architectures is at the core of neuromorphic computing device 

research.  

1.3. Neuromorphic Computing 

The physicist Carver Mead introduced the term 

Neuromorphic Computing (NC) in 1989 [9]. Initially, NC described 

the use of silicon-based electronic systems to reproduce brain-like 

computation, mainly for neuroscience and simulation purposes. This 

definition evolved over the years to include the research for new AI 

hardware, architectures, and algorithms by intrinsically mimicking 

biological brain structures instead of simply running brain-inspired 

ANN algorithms on CPUs and GPUs [10].  

  The brain can be seen as a highly interconnected and 

energy-efficient computer operating at a different time and spatial 

scales [11]. Around 80% of the brain’s volume is made by the 

cerebral cortex, the walnut-like outer shell responsible for a 
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considerable part of information processing. The cerebral cortex is 

divided between the left and right hemispheres into four lobes 

(frontal, parietal, occipital, and temporal). In each lobe, several areas 

assuming one or a few specific functions can be further distinguished.  

 Zooming in further in the spatial scale allows us to see 

neurons and synapses. Electrical potential spikes generated by 

neurons are used in the brain to encode information, communicate 

and compute. A neuron is composed of dendrites which are filaments 

used to receive inputs from other neurons, a cell body where inputs 

can be stored through the cellular membrane voltage and capacitance, 

and an axon used for sending outputs to other neurons. The Leaky, 

Integrate, and Fire model [12]-[15] can describe a neuron's basic 

behavior. Inputs from other neurons coming from dendrites are added 

up in the cell (integrate). This potential leaks over time towards the 

resting potential level (leaky). If a potential threshold is exceeded, 

the neuron emits a spike (fire). Many more or less bio-plausible 

models exist [16]. 

The other main component in the brain is the synapse. A 

synapse is a tiny gap making the interface between a dendrite and a 

neuron’s body. Electrical signals transported by ions flowing through 

the synapse can be reinforced or inhibited by the synapse 
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capacitance modulation, thus realizing in-memory computing. This 

capacitance or “weight” storage and adaptation is at the basis of 

memory and learning. How the weight evolves describes a learning 

rule, whereas the ability to evolve is called synaptic plasticity. The 

Long- or Short-Term Potentiation and Depression (LTP/LTD, 

STP/STD) [17] plasticity are the synapse abilities to change their 

weights for milliseconds to hours and weeks. The Spike Timing 

Dependent Plasticity (STDP) [18] and the Spike Rate Dependent 

Plasticity (SRDP) [19] learning rules increase or decrease the 

synaptic weights according to the time difference between post and 

pre-synaptic spikes or to the pre-synaptic firing rate.  

Therefore, the brain, which contains approximately 1015 

synapses and 1011  neurons perform simultaneous computations 

directly at the memory location. As a result, our brains can 

simultaneously and accurately complete multiple tasks such as 

language, visual, and audible information processing, to name only a 

few, using only 20 Watts. To reproduce this energy efficiency and 

performance on a chip, neuromorphic device research aims to create 

neurons and synapses properties in new devices with highly 

interconnected architectures.  
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1.4. Emerging Neuromorphic Devices 

Emerging neuromorphic devices can be classified depending 

on the main physical mechanisms at play [16]. For instance, 

emerging devices can rely on anion or cation migration [20], phase 

change [21], ferroelectricity [22], magnetism, and spintronics [23]. 

Up-and-coming synaptic devices are memristors [24] organized in 

crossbar arrays [25], while spintronics Spin-Torque Nano-

Oscillators (STNO) show promising applications as nano-neurons 

[26]-[30]. 

This thesis explores a new field at the interplay between 

spintronics, magnetism, quantum optics, and microwave engineering, 

namely Photon-Magnon Coupling [31],[32], for realizing a 

neuromorphic neuron.  

1.5. Photon-Magnon Coupling 

Strong light-matter interactions can create new quasi-

particles, called polaritons, which are hybrids of light and matter 

states [33]. Strong light-matter interactions have been typically 

observed in crystals between photons (the quanta of electromagnetic 

waves) and phonons (the quanta of lattice vibration). In such a 

system, the two independent harmonic oscillators couple through 
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light-matter interactions leading to 2 polaritons modes [34]. The 

frequency dispersion of the two modes shows independent phonon- 

and photon-like behaviors far from the zero-detuning point 

(∆𝜔= 𝜔𝑝ℎ𝑜𝑛𝑜𝑛 − 𝜔𝑝ℎ𝑜𝑡𝑜𝑛), whereas modes anti-crossing is observed 

near ∆𝜔= 0. 

The emerging field of Cavity Quantum Electrodynamics 

(CQED) experimentally observed anti-crossing between a photon 

cavity mode and a single 2-level atom in 1992 [35] and 1996 [36]. 

Over the years, anti-crossing, which is often seen as the signature 

of strongly-coupled quantum particles, has been observed with 

multiple systems [37] such as excitons in semiconductors [38], 

qubits in superconductors [39], and Rydberg atoms [40]. 

Anti-crossing between microwave photons and magnons was 

theoretically predicted in 2010 [41]. In 2013, strong photon-magnon 

coupling was experimentally demonstrated between a YIG sample 

and a superconducting coplanar microwave resonator at cryogenic 

temperatures [42]. In 2014, different coupling regimes (strong, weak, 

Magnetically Induced Transparency, Purcell Effect) were shown at 

room temperature between a YIG sphere and a 3-dimensional cavity 

[43]. The quasi-particle resulting from strong photon-magnon 
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interactions in a cavity is called Cavity Magnon-Polariton (CMP). 

Classical, electrodynamical, and quantum theories of the transmission 

line shape have been developed over the years [44],[45]. 

In 2014, strong photon-magnon coupling was shown between 

a single crystal YIG sphere and a Split-Ring Resonator (SRR), a 2-

dimensional photon cavity [46],[47]. While previous studies focused 

on superconducting cavities at cryogenic temperatures or 3-

dimensional cavities at room temperature, this study opened the path 

for 2-dimensional systems at room temperature. In particular, strong 

photon-magnon coupling was observed between an Inverted Split-

Ring Resonator (ISRR) and an YIG film in 2017 [48], which is a 

similar system to the one used in this thesis.  

Besides fundamental physical interests, achieving strong 

coupling between quantum systems enable technological progress 

[49], [50]. For instance, the field of Quantum Information Processing 

and Communication (QIPC) may use photons for transmitting 

information, superconducting systems for processing, and spin 

ensembles for information storage [37]. Such envisioned hybrid 

system needs to exchange data between its various components. 

Transducing information requires preserving coherence (phase 
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preservation of excitations). Since the transduction rate is 

proportional to the coupling strength and decoherence is proportional 

to the damping rates, the coupling strength must be higher than the 

damping rates: this is the strong coupling regime. Other applications 

include quantum repeaters [51] and quantum memories [52].  

1.6. Thesis Outline 

This thesis aims to create a neuromorphic neuron device from 

photon-magnon coupling in a hybrid magnonics system [53]. The 

hybrid system consists of an ISRR loaded with an YIG film. In this 

planar system, strong photon-magnon coupling results in anti-

crossing [45], [48]. The CMPs are used as neurons: in the coupling 

range, the properties of the resulting CMPs, such as the S21 

parameter magnitude, frequency, and phase, can be used as neuron 

functions. Those functions are used separately to perform a 

waveform classification task (classification between sine and square 

waveforms) in the reservoir computing framework, following what 

was previously done for single STNOs [28].  

Additionally, the concept of vowel recognition based on the 

photon-magnon coupling is presented in the last part. Following [27], 

frequency recognition can be realized by encoding information in the 
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synchronization between an oscillator frequency and the frequency 

of an additional driving force. Using two additional frequencies, the 

resulting synchronization map in an array of oscillators leads to 

multiple synchronization states, which are used to encode, and hence 

recognize, input vowels. The numerous coupling ranges in photon-

magnon coupling between photon oscillators and the magnon 

oscillator in an array of SRR photon resonators reproduces the idea 

of synchronization range and should allow performing the recognition. 

Since only the concept has been laid down by the time the thesis was 

written, the thesis is mainly focused on waveform recognition, and 

vowel recognition is presented in the last chapter. 

Chapter one provided a historical overview of the IT industry 

leading to AI and the need for new neuromorphic devices. An 

overview of photon-magnon coupling summing up its main features 

and applications was given, ending up with a new possible application 

in the field of the neuromorphic device. 

Chapter 2 lays down further the theoretical knowledge 

required in this thesis. The computing paradigm, reservoir computing, 

is explained in detail. Following RC, the classification task to perform 

is presented. Finally, classical and electrodynamical theories of PM 

coupling are discussed.  
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Chapter 3 explains the precise experimental setup and 

parameters, and procedure. The hybrid system and the neuron 

functions are shown.  

Chapter 4 presents the results. Experimental and simulation 

recognition success rates are given for different configurations 

(ISRR alone, YIG alone, 2 YIG positions, two magnetic field angles, 

degenerate waveform sequences).  

Chapter 5 presents the concept of vowel recognition using 

photon-magnon coupling.  

Chapter 6 concludes the thesis, discusses the results, and 

suggests further work.  
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Chapter 2. Literature Review 

Chapter 2 offers a review of reservoir computing and photon-

magnon coupling theory. The recognition task is also explained. 

2.1. Reservoir Computing 

Reservoir computing (RC) is a neuromorphic computing 

framework based on Recurrent Neural Networks (RNN) [54]. In an 

RNN, feedback loops and neurons dynamical behavior enable the 

processing of temporal data. RC appeared after the development of 

Echo State Networks and Liquid State Machines as a unified 

framework for RNN-based networks [55]. This subchapter starts by 

explaining the general working principle of RC and the specific RC 

framework used in this thesis [56].  

2.1.1. Classical Scheme of Reservoir Computing 

The basic functionality of RC is data classification. Inputs to 

classify are sent to a network made of non-linear and randomly 

interconnected units called neurons. This Neural Network (NN), 

called a reservoir, also possesses randomly defined recurrent 

connections. Such a network is thus called a Recurrent Neural 

Network (RNN). 
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Connection values (thereafter called weights) between the 

input layer and the reservoir are randomly fixed. On the other hand, 

reservoir-to-output-layer weights change. This evolution follows a 

supervised learning rule while all the other weights remain identical. 

Weights of recurrent connections can either remain fixed or evolve 

via an unsupervised algorithm (figure 1.a). 

The neuron activation function is the relationship between the 

neuron’s output and its inputs. In an artificial (algorithmic) 

implementation of RC, the neuron function is often the hyperbolic 

tangent function. In that case, a general equation giving the neuron's 

output is: 

𝒙(𝒕 + 𝟏) = 𝒇(𝑾𝒊𝒏 ∗ 𝒖(𝒕 + 𝟏) +𝑾 ∗ 𝒙(𝒕) +𝑾𝒇𝒃 ∗ 𝒚̂(𝒕)) 

With 𝒙(𝒕) the vector describing the reservoir state (N-dimensional 

vector with N the number of neurons), 𝑢 the input vector, 𝒚̂(𝒕) the 

output state vector, 𝒇  the neuronal activation function (tanh), 

𝑾𝒊𝒏 the input layer to the reservoir weight matrix, 𝑾 the reservoir 

internal weight matrix and 𝑾𝒇𝒃 an optional matrix for output–layer–

to–reservoir weights. 

 

(2.1.1)

) 
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A general output layer activation function is: 

𝒚̂(𝒕) = 𝒇𝒐𝒖𝒕(𝑾𝒐𝒖𝒕 ∗ [𝟏, 𝒙(𝒕), 𝒖(𝒕), 𝒚̂(𝒕 − 𝟏)]) 

𝒇𝒐𝒖𝒕 is usually the identity function, 𝑾𝒐𝒖𝒕 is the weight matrix whose 

values are found by learning via linear regression, 𝒚̂(𝒕 − 𝟏) is the 

previous output vector, 𝒖(𝒕) is the input vector, 𝒙(𝒕) is the vector 

containing each neuron output, and [., …,.] is the vertical 

concatenation. The unitary vector 1 corresponds to adding a bias in 

the linear regression. In terms of RC, the bias corresponds to a 

neuron always equal to 1. 

In this work, the output layer activation function is simply: 

𝒚̂(𝒕) = 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 ∗ [𝟏,  𝒙(𝒕)] 

With 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 the reservoir-to-output weight matrix.  

When an input signal is applied, neurons responses are 

measured and combined linearly at the output layer. The network’s 

output can be equivalently rewritten as: 

𝒚̂(𝒕) =∑𝒘𝒊
𝒓𝒆𝒔−𝒐𝒖𝒕  ∗  𝒙𝒊(𝒕)

𝑵

𝒊=𝟏

 

Where 𝒚̂(𝒕) is the network output, 𝒙𝒊(𝒕) is the 𝑖𝑡ℎ neuron response, 

𝒘𝒊
𝒓𝒆𝒔−𝒐𝒖𝒕 is the weight between the 𝑖𝑡ℎ neuron and the output layer. 

(2.1.2) 

(2.1.3) 

(2.1.4) 
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A learning algorithm adjusts the weights. The goal is to find 

the weights so that the 𝑛𝑡ℎ input type, among p different input types 

to be classified, gives for the 𝑛𝑡ℎ output 𝒚𝒏̂: 

{
𝒚𝒏̂(𝒕) = 𝟏 

𝒚𝒎≠𝒏̂(𝒕) = 𝟎
 

For all 𝒏,𝐦 ∈ [𝟏, . . , 𝒑].  

Separating different types of input using linear combinations of non-

linear functions is called a linear classifier. 

2.1.2. Training and Testing a Reservoir Computer 

RC is a paradigm change in the way recurrent networks are 

trained (figure 1.a). Usually, all weights are changed: the weights 

from the input layer to the reservoir, the weights inside the reservoir, 

and the weights from the reservoir to the output layer. RC only 

changes the weights from the reservoir to the output layer. This 

considerable reduction of trained parameters makes reservoirs 

easier to train than other types of RNN. 

To find the matrix elements 𝒘𝒊
𝒓𝒆𝒔−𝒐𝒖𝒕 of the reservoir-to-

output weight matrix 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕, each neuron output is measured for a 

(2.1.5) 
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whole input sequence. For N neurons, one bias neuron 𝒙𝟎 = 𝟏 and M 

inputs, the reservoir state is a ((𝑵 + 𝟏)) ∗ 𝑴) dimensional matrix: 

𝑅 ≡ (

𝒙𝟎 ⋯ 𝒙𝟎
⋮ ⋱ ⋮

𝒙𝑵(𝟏) ⋯ 𝒙𝑵(𝑴)
) 

 

Next, we define the weight matrix 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 . In general, 

𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 is a (𝒑 ∗ (𝑵 + 𝟏)) dimensional matrix, with p the number of 

input types or, equivalently, the number of linear classifiers to train. 

In this thesis, since inputs are classified between 2 categories, one 

linear classifier is enough. Therefore, we obtain:  

𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 ≡ (𝒘𝟎
𝒓𝒆𝒔−𝒐𝒖𝒕 ⋯ 𝒘𝑵

𝒓𝒆𝒔−𝒐𝒖𝒕) 

The following step is to define the targeted output matrix 𝒀. 

𝒀 is a (𝒑 ∗ 𝑴) dimensional matrix. For two types of inputs, the matrix 

elements 𝒚 of 𝒀 equal 1 when one category is applied to the system 

and 0 for the second. As the learning dataset is known, this matrix is 

also known. With M number of inputs and one linear classifier to train, 

we have: 

                 𝒀 ≡ (𝒚(𝟏) ⋯ 𝒚(𝑴)) 

Similarly, we define the (𝒑 ∗ 𝑴) output matrix, which contains the 

linear combinations 𝒀̂, as: 

(2.1.6) 

(2.1.7) 

(2.1.8) 
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𝒀̂ ≡ (𝒚̂(𝟏) ⋯ 𝒚̂(𝑴)) 

The training goal is to determine the weights 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 to fit 𝒀̂ with 

𝒀. This is done by minimizing the mean square error: 

𝑴𝑺𝑬 = ‖𝒀̂ − 𝒀‖
𝟐
= ‖𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 ∗ 𝑹 − 𝒀‖𝟐 

 

This is done by choosing: 

𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 = (𝒀 ∗ 𝑹†)𝑻 

Where † denotes the Moore-Penrose pseudo-inverse.  

After learning, an unseen dataset is applied to the system. 

This is the testing phase. Each neuron output is measured, and the 

trained weights 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕  are used to calculate the linear 

combinations according to: 

𝒀̂ = 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 ∗ 𝑹 

The trial is a success if: 

          {
𝒚̂(𝒊) > 𝟎. 𝟓 𝒂𝒏𝒅 𝒚(𝒊) = 𝟏 

𝒚̂(𝒊) < 𝟎. 𝟓 𝒂𝒏𝒅 𝒚(𝒊) = 𝟎 
 , for 𝒊 ∈ [𝟏, . . ,𝑴]. 

And is a failure otherwise. The number of successes to the number 

of trials ratio gives the success rate. Success rates under various 

experimental conditions are the main results reported in this thesis.  

(2.1.9) 

(2.1.10)

) 

(2.1.11)

) 

(2.1.12) 

(2.1.13)

) 
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2.1.3. Reservoir Requirements 

Neurons in the reservoir must meet several requirements for 

the classification to work. Three main requirements are discussed 

here. 

The first and most basic requirement is neuronal non-

linearity since in RC, classification requires signals to be non-

linearly projected into the reservoir space by the neuron function.  

The second requirement is the reservoir size. Separating 

inputs with linear classifiers requires a highly dimensional reservoir. 

Hundreds or thousands of neurons can be necessary to achieve good 

performances. 

The final requirement is memory. Depending on the task, 

neurons may or may not require intrinsic short-term memory and 

feedback loops. A relevant example is a waveform sequence 

containing two types of waveforms: sines and squares. If both 

waveforms share a common value, the common value cannot be 

successfully classified without a memory. If the sequence is not 

degenerated, memory is not required. 
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2.1.4 Reservoir Computing with a Single Neuron 

Reservoir size is a significant issue for hardware 

implementation of RC. In 2011, Appeltant et al. demonstrated RC with 

a single neuron [57]. By using unique data pre-processing, the entire 

reservoir can be emulated from a single hardware neuron. This is the 

method used in the thesis (figure 1.b). 

The data pre-processing is illustrated in figure 1.c. Two 

types of signals can be sent as input: Time-continuous signals or 

time-discrete signals (u(t) and u(k), respectively). First, signals are 

sampled and held with a τ time periodicity. Then, each sampled value 

is multiplied by a mask M, a (1 ∗ 𝑁) matrix with N the number of 

neurons to emulate, where the 𝑖𝑡ℎ value represents the input-to-

𝑖𝑡ℎ neuron weight [58]. In this work, following dr. Grolier’s example 

[28], the mask is a random ±1 binary sequence. The final step is 

time multiplexing. Each newly obtained value is held for a time θ, 

with θ=τ/N. The 𝑖𝑡ℎ neuron is simply the single hardware neuron 

when the sampled input value times the 𝑖𝑡ℎ mask value is applied to 

the system.  

A delayed feedback loop with the same τ periodicity is added 

to the system if a short-term memory is desired. Since the 
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periodicities between the pre-processing and the loop are shared, 

the 𝑖𝑡ℎ neuron will receive its previous output as an input as well. 

The inter-neuron connection can be achieved by using the 

device's intrinsic relaxation time. Each pre-processed input value is 

held for a time θ, with θ=τ/N. If θ is lower than the relaxation time, 

the 𝑖𝑡ℎ + 1 neuron output will depend on the 𝑖𝑡ℎ neuron output. To 

measure each virtual neuron output, the device response is red after 

each time step θ. Because the network output linearly combines the 

N virtual neurons outputs, we obtain for any time t: 

𝒚̂(𝒕) =∑𝒘𝒊
𝒓𝒆𝒔−𝒐𝒖𝒕 ∗ 𝒙(𝒕 −

𝝉

𝑵
(𝑵 − 𝒊))

𝑵

𝒊=𝟏

 

With one linear classifier to train, M sampled points to classify 

applied for a time τ, N neurons, and one additional bias neuron 𝑥0 =

1, an equivalent matrix formulation is given by: 

𝒀̂ = 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 ∗ 𝑹′ 

Where:           𝑹′ ≡

(

 
 

𝒙𝟎
𝒙𝟏(𝛉)

⋯
𝒙𝟎

𝒙𝟏(𝑴 ∗ 𝛉)

𝒙𝟐(𝟐𝛉)
⋮

⋱ 𝒙𝟐(𝑴 ∗ 𝟐𝛉)
⋮

𝒙𝑵(𝛕) ⋯ 𝒙𝑵(𝑴 ∗ 𝛕) )

 
 
, 

 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 ≡ (𝒘𝟎
𝒓𝒆𝒔−𝒐𝒖𝒕 ⋯ 𝒘𝑵

𝒓𝒆𝒔−𝒐𝒖𝒕) 𝑎𝑛d   𝒀̂ ≡ (𝒚̂(𝛕) ⋯ 𝒚̂(𝑴 ∗ 𝛕)). 

Training and testing are following the classical scheme of RC. 

(2.1.14) 

(2.1.15) 

(2.1.16)

) 
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(a) 

(b) 

(c) 

Figure 1. (a) RC scheme. (b) Single node RC scheme. (c) Data pre-

processing [57]. 

 

Figure 2. (a) RC scheme. (b) Single node RC scheme. (c) Data pre-

processing [57]. 
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2.1.3. Waveform recognition with single node RC 

Hardware implementation of single node RC has been 

demonstrated with electrical systems [57],[59], mechanical systems 

[60]-[61], photonic systems [62]-[68], memristor array [69] and 

spintronics using STNOs [26]-[30], [70]. Waveform recognition of 

a degenerate [28] or non-degenerate [59] sequence is a typical 

benchmark task for RC with a single hardware node. Non-degenerate 

waveform recognition is the task performed in this thesis.  

The first step towards recognition is the dataset creation. The 

dataset is made of a randomly defined sequence of sine and square 

waveforms with different amplitudes. Each waveform is made of a 

given number of sampled points (figure 3.a).  

Following Appeltant et al. [57], each sampled point is 

multiplied by a mask defining the number of neurons (figure 3.b). 

According to an encoding scale, the resulting pre-processed data 

points are successively applied as inputs to the system for a given 

time θ (figure 3.c).   

In the training step, half of the data is used for finding the 

weights 𝑾𝒓𝒆𝒔−𝒐𝒖𝒕 by minimizing the MSE. The other half is kept for 

testing the network output to find the success rates, using the trained 
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weights. The goal is to recognize the category of each sampled point 

by reconstructing the network outputs 𝒀̂ from the measured 

hardware response 𝑹′. The process is illustrated in Figures 2 and 3 

for an STNO [28]. 

Besides the success rates, the Normalized MSE (NMSE) is 

also tracked:  

𝑵𝑴𝑺𝑬 =
𝟏

𝒏 ∗ 𝒗𝒂𝒓(𝒚(𝒏))
∑(𝒚(𝒏) − 𝒚̂(𝒏))𝟐
𝒏

𝒊=𝟏

 

Where 𝒚̂(𝒏) is the network output and 𝒚(𝒏) is the target value. 

Equivalently, the Nash‐Sutcliffe Efficiency (NSE) can be 

tracked [71]:  

𝑵𝑺𝑬 = 𝟏 − 𝑵𝑴𝑺𝑬 

The NMSE/NSE ranges in [0,+∞]/[-∞,1]. An NMSE/NSE equals 0/1 

indicates a perfect prediction. On the other hand, an NMSE/NSE ≥1/

≤0 shows no added benefit from the network compared to a model 

equal to the target values' mean. By measuring the network output 

deviation from the target, both NMSE and NSE assess the prediction 

quality. Assessing the prediction quality allows to discriminate 

systems with equal success rates and to compare different neuron 

hardware. 

(2.1.17) 

 

(2.1.17) 

(2.1.18)

) 

 

(2.1.18)

) 
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Figure 4. (a) Single node RC with an STNO for non-degenerate 

waveform recognition. The STNO interacts with 𝑯𝒊𝒏 which encodes 

waveforms. (b) Neuron functions are the frequency (violet), phase 

(blue), and amplitude (red) of the STNO voltage as a function of the 

microwave current frequency. [28]. 
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Figure 6. (a) Waveform sequence. (b) Mask multiplication. The black 

horizontal line represents the center frequency. (c) Conversion to a 

microwave current frequency. (d) Success rates from the frequency, 

phase and amplitude [28]. 
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2.2. Photon-Magnon Coupling Theory 

2.2.1. Spin Waves and Magnons  

Interaction between electronic spins in atoms can lead to 

magnetic ordering [72]. In particular, exchange interaction between 

neighboring spins can lead to parallel (ferromagnetism) or 

antiparallel (antiferromagnetism) spin orientations.  

Meanwhile, when a bias magnetic field is applied on a spin 

magnetic moment, a torque tends to align the magnetic moment on 

the field to decrease Zeeman potential energy. As a consequence, the 

magnetic moment undergoes a damped precession motion around the 

magnetic field according to the Landau-Lifshitz-Gilbert (LLG) 

equation [73]:  

𝒅𝒎

𝒅𝒕
= 𝜸𝒎 ×𝑯+ 𝜶𝒎×

𝒅𝒎

𝒅𝒕
 

When strong exchange interaction keeps all the spins parallelly 

aligned, the resulting uniform magnetization precession motion obeys 

the LLG equation, and the resonance frequency is given by:  

𝝎𝒓 = 𝜸√𝑯(𝑯+ 𝝁𝟎𝑴𝑺) 

Where 𝜸 is the gyromagnetic ratio, H is the external magnetic field 

and 𝝁𝟎𝑴𝑺 is the saturation magnetization. This in-phase collective 

motion can be seen as a spin-wave of infinite wavelength called the 

(2.2.1) 

 

(2.2.1) 

(2.2.2)

) 

 

Figure 

7. 

Spin-

waves 

dispers

ion in a 

thin-

film 

[31].(2
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Kittel’s mode. Alike electromagnetic fields and photons or crystal 

lattice vibrations and phonons, spin waves are quantized in magnons, 

a bosonic quasi-particle.  

In thin-film magnetic samples, additional finite wavelength 

spin-wave modes can be excited [74]. Short wavelength modes are 

dominated by exchange interaction, while long-wavelength modes 

are dominated by magnetic dipolar interaction. Depending on the 

external magnetic field angle and the spin-wave propagation 

direction, different dipolar dominated spin waves, or magnetostatic 

waves, can be excited, as illustrated in figure 4.  

While each spin-wave mode can couple with photons, the 

coupling strength is inversely proportional to the wavenumber [75], 

and the strongest coupling is usually achieved with Kittel’s mode.  
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Figure 8. Spin-waves dispersion in a thin-film [31]. 
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2.2.2. Classical Harmonic Oscillator Model 

Photon-magnon coupling can be described by a classical 

harmonic oscillator model [44]. The cavity photon oscillator and the 

magnon oscillator resonance frequencies are respectively 𝝎𝒄  and 

𝝎𝒎 . Photon and magnon losses are modeled by viscous forces of 

damping constants 𝜷 and 𝜶. The oscillators are coupled by a spring 

of constant 𝜿. In this first model, only the photon oscillator is driven 

by an external force 𝒇(𝒕) = 𝒇𝒆−𝒊𝝎𝒕 representing a microwave input of 

frequency 𝝎.  

Considering a unitary mass, Newton’s Laws lead to the 

following equations of motion for the photon and magnon oscillators: 

𝒙̈𝒄 +𝝎𝒄
𝟐𝒙𝒄 + 𝜷𝝎𝒄𝒙̇𝒄 + 𝜿𝝎𝒄

𝟐𝒙𝒎 = 𝒇𝒆
−𝒊𝝎𝒕

𝒙̈𝒎 +𝝎𝒎
𝟐𝒙𝒎 + 𝜶𝝎𝒎𝒙̇𝒎 + 𝜿𝝎𝒄

𝟐𝒙𝒄 = 𝟎
 

Assuming an oscillator motion of the form 𝒙𝒄,𝒎(𝒕) =

𝒙𝒄,𝒎𝒆
−𝒊𝝎𝒕 (𝒙̇𝒄,𝒎(𝒕) = −𝒊𝝎𝒙𝒄,𝒎(𝒕) ; 𝒙̈𝒄,𝒎(𝒕) = −𝝎

𝟐𝒙𝒄,𝒎(𝒕)),  we obtain in a 

matrix form:  

 (
𝝎𝟐 −𝝎𝒄

𝟐 + 𝒊𝜷𝝎𝒄𝝎 −𝜿𝝎𝒄
𝟐

−𝜿𝝎𝒄
𝟐 𝝎𝟐 −𝝎𝒎

𝟐 + 𝒊𝜶𝝎𝒎𝝎
)(𝒙𝒄

𝒙𝒎
) = (−𝒇

𝟎
) 

The determinant of the 2*2 matrix 𝚲 is given by:  

      𝐝𝐞𝐭 (𝚲) = (𝝎𝟐 −𝝎𝒄
𝟐 + 𝒊𝜷𝝎𝒄𝝎)(𝝎

𝟐 −𝝎𝒎
𝟐 + 𝒊𝜶𝝎𝒎𝝎)− 𝜿

𝟐𝝎𝒄
𝟒 

(2.2.4) 

 

(2.2.4) 

(2.2.3) 

 

(2.2.3) 

(2.2.5) 

 

(2.2.5) 
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Solving numerically for 𝜔 and plotting the real and imaginary parts 

gives the eigenmodes dispersion and their linewidth evolution (figure 

5.a and 5.b for 𝝎𝒄 = 𝟏𝟎. 𝟓𝟒𝑮𝑯𝒛 ,  𝜶 = 𝟎. 𝟖 × 𝟏𝟎−𝟒,𝜷 = 𝟑 × 𝟏𝟎−𝟒, 𝝁𝟎𝑯 =

−𝟑𝟕. 𝟕𝒎𝑻).  

Further analytical analysis can be done in the low damping case 

(𝜶,𝜷 ≪ 𝟏) near the crossing point (𝝎 ≈ 𝝎𝒄 ≈ 𝝎𝒎). The 2*2 matrix 𝚲 

becomes: 

   𝚲 = (
𝝎𝟐 −𝝎𝒄

𝟐 −𝜿𝝎𝒄
𝟐

−𝜿𝝎𝒄
𝟐 𝝎𝟐 −𝝎𝒎

𝟐) = (
𝟐𝝎𝒄(𝝎−𝝎𝒄) −𝜿𝝎𝒄

𝟐

−𝜿𝝎𝒄
𝟐 𝟐𝝎𝒄(𝝎 −𝝎𝒎)

) 

So, the determinant is: 

𝐝𝐞𝐭(𝚲) = 𝟒𝝎𝒄(𝝎 −𝝎𝒄)(𝝎 −𝝎𝒎) − 𝜿
𝟐𝝎𝒄

𝟒 

Approximating terms proportional to frequency sums by 𝟐𝝎𝒄 while 

keeping terms proportional to differences is called the Rotating Wave 

Approximation (RWA). 

 The roots are given by: 

𝝎± =
𝝎𝒄 +𝝎𝒎 ±𝛀𝒈

𝟐
 

Where we defined the generalized Rabi frequency as 𝛀𝒈 =

√(𝝎𝒄 −𝝎𝒎)
𝟐 + 𝜿𝟒𝝎𝒄

𝟐.  

 Finding the eigenvectors 𝑿± = (𝒖±, 𝒗±)  is done by solving 

(2.2.6) 

 

(2.2.6) 

(2.2.7)

) 

 

(2.2.7)

) 

(2.2.8)

) 

 

(2.2.8)

) 
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the following matrix equations: 

(
𝟐(𝝎± −𝝎𝒄) −𝜿𝝎𝒄
−𝜿𝝎𝒄 𝟐(𝝎± −𝝎𝒎)

) (
𝒖±
𝒗±
) = (

𝟎

𝟎
) 

Which can be simplified as:  

(
∆ ± 𝛀𝒈 −𝜿𝝎𝒄
−𝜿𝝎𝒄 −∆ ±𝛀𝒈

)(
𝒖±
𝒗±
) = (

𝟎

𝟎
) 

Where ∆≡ 𝝎𝒎 −𝝎𝒄. 

Solving the first line gives after normalization: 

(
𝒖±
𝒗±
) =

𝟏

√(𝜿𝝎𝒄)
𝟐 + (∆ + 𝛀𝒈)

𝟐
(
±𝜿𝝎𝒄
±∆+ 𝛀𝒈

) 

With 𝐬𝐢𝐧(𝜽) ≡
𝜿𝝎𝒄

𝛀𝒈
⁄ 𝑎𝑛d 𝐜𝐨𝐬(𝜽) ≡ ∆ 𝛀𝒈

⁄ we get: 

(
𝒖±
𝒗±
) =

𝟏

√𝟐𝛀𝒈
(
±√𝛀𝒈∓∆

√𝛀𝒈±∆
) 

Therefore, we finally get: 

(
𝑿+
𝑿−
) = (

𝜼𝟏 𝜼𝟐
−𝜼𝟐 𝜼𝟏 

) (
𝝎𝒄
𝝎𝒎

) 

With 𝜼𝟏 = 𝒖+ and 𝜼𝟐 = 𝒗+. The coefficients 𝜼𝟏(𝜼𝟐) and 𝜼𝟐(𝜼𝟏) give 

respectively the photon and magnon proportion of 𝑿+(𝑿−) (figure 

5.c).  

  

 

(2.2.9) 

 

(2.2.9) 

(2.2.10)

)) 

 

(2.2.10)

)) 

(2.2.11)

) 

 

(2.2.11)

) 
(2.2.12)

) 

 

(2.2.12)

) 
(2.2.13) 

 

(2.2.13) 
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2.2.3. Electrodynamical Model 

 PM coupling for the hybrid system used in this thesis was  
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Figure 10. (a) Frequency dispersion and (b) linewidth dispersion of 

the CMP modes. (c) Evolution of 𝜼𝟏 and 𝜼𝟐 [44]. 
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Finally, expressing the energy transmitted through the 

system requires adding an energy absorber coupled with the photon 

oscillator. Physically, such a third oscillator equation represents an 

output port connected to the cavity, whereas the driving force is 

applied to the cavity through an input port. Defining an impedance 

mismatch parameter Γ, the output to input energy ratio, the so-called 

𝑺𝟐𝟏 parameter is given by: 

𝑺𝟐𝟏 = 𝚪
𝝎𝒄

𝟒

𝝎𝟐
(𝝎𝟐 −𝝎𝒓

𝟐 + 𝒊𝜶𝝎𝝎𝒄)

𝐝𝐞𝐭 (𝚲)
 

 

 

 

 

 

 

 

 

 

 

 

(2.2.14) 

 

(2.2.14) 
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  2.2.3. Electrodynamical Model 

 PM coupling for the hybrid system used in this thesis was 

described by Bhoi et al. [45]. In this electrodynamical model, the 

driving force 𝒇(𝒕) excites both cavity photons and magnons. 𝒇(𝒕) 

represents an RF current flowing through a microstrip line. The 

photon cavity is a planar Inverted Split Ring Pattern (ISRR) etched 

on the ground plane of the microstrip line [76],[77]. 𝒇(𝒕) drives the 

photon oscillator by inducing an RF current in the planar cavity while 

it can directly excite magnons through Ampere’s circuit law. Coupling 

comes from electromagnetic interactions. When excited, the photon 

cavity creates an RF magnetic field that interacts with magnons from 

a ferromagnetic film. On the other hand, magnons from the 

ferrimagnetic film induce additional currents in the planar cavity 

according to Faraday’s Law. 

 The voltage created in the cavity by the AC current j from 

the microstrip line is given by 𝐕 = 𝒁𝑰𝑺𝑹𝑹𝐣. With L the ISRR inductance, 

C its capacitance, 𝝎𝑰𝑺𝑹𝑹 = 𝟏 √𝑳𝑪⁄  its resonance frequency, the ISRR 

impedance 𝒁𝑰𝑺𝑹𝑹 is given by: 

𝒁𝑰𝑺𝑹𝑹 = −
𝒊𝑳

𝝎
(𝝎𝟐 −𝝎𝑰𝑺𝑹𝑹

𝟐 + 𝟐𝒊𝜷𝝎𝑰𝑺𝑹𝑹𝝎) (2.2.15) 

 

(2.2.15) 
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Following Faraday’s Law, magnons induce an additional voltage in the 

ISRR proportional to the oscillating magnetization vector 𝒎+. The 

voltage is given by: 

 𝑽𝑰𝑺𝑹𝑹←𝒀𝑰𝑮 = −𝑲𝑭𝑳𝝎𝒎
+ 

Where 𝑲𝑭 is a coupling constant from Faraday’s Law. Adding the 

induced current to 𝐣, the total current 𝑱+ in the ISRR is given by:  

𝑱+ = 𝐉𝒆−𝒊(𝝎𝒕+𝝋) 

Where 𝝋 is the phase difference between the ISRR current and the 

microstrip line current. With 𝑽𝑰𝑺𝑹𝑹←𝒀𝑰𝑮 = 𝒁𝑰𝑺𝑹𝑹𝑱
+ and 𝐕 = 𝒁𝑰𝑺𝑹𝑹𝑱

+, we 

can write the equation for the cavity photon mode:  

𝒊𝑲𝑭𝝎
𝟐𝒎+ + (𝝎𝟐 −𝝎𝑰𝑺𝑹𝑹

𝟐 + 𝟐𝒊𝜷𝝎𝑰𝑺𝑹𝑹𝝎)𝑱
+ = 𝟎 

The magnon equation is obtained from the linearized LLG equation 

[80]. By considering both the oscillating magnetic field coming from 

the microstrip line 𝒉𝒍𝒊𝒏𝒆 = 𝐡𝒆
−𝒊𝝎𝒕 and the ISRR magnetic field 𝒉𝑰𝑺𝑹𝑹 =

|𝒉𝑰𝑺𝑹𝑹|

|𝒉𝒍𝒊𝒏𝒆|
𝒆−𝒊𝝋 = 𝜹𝒆−𝒊𝝋𝒉𝒍𝒊𝒏𝒆  as exciting oscillating fields, they obtained 

after using Ampere’s Law :   

(𝝎 −𝝎𝒓 + 𝒊𝜶𝝎)𝒎
+ − 𝒊𝝎𝒎𝑲𝑨(𝟏 + 𝜹𝒆

𝒊𝝋)𝑱+ = 𝟎 

Where 𝑲𝑨 is a coupling constant coming from Ampere’s Law and  

(2.2.16)

) 

 

(2.2.16)

) 
(2.2.17) 

 

(2.2.17) 

(2.2.18)

) 

 

(2.2.18)

) 

(2.2.19) 

 

(2.2.19) 
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𝝎𝒎 = 𝜸𝝁𝟎𝑴𝑺. The 2*2 matrix 𝚲 becomes: 

                𝚲 = (
(𝝎𝟐 −𝝎𝑰𝑺𝑹𝑹

𝟐 + 𝟐𝒊𝜷𝝎𝑰𝑺𝑹𝑹𝝎) 𝒊𝑲𝑭𝝎
𝟐

−𝒊𝝎𝒎𝑲𝑨(𝟏 + 𝜹𝒆
𝒊𝝋) (𝝎 −𝝎𝒓 + 𝒊𝜶𝝎)

) 

Solving the real part of det(𝚲) gives the following dispersion relation: 

 𝝎± =
𝟏

𝟐
[(𝝎𝒓 +𝝎𝑰𝑺𝑹𝑹) ± √(𝝎𝒓 −𝝎𝑰𝑺𝑹𝑹)

𝟐 + (𝟒𝝅∆)𝟐] 

With ∆=
𝟏

𝟒𝝅
√𝟐𝑲𝟐𝝎𝒎𝝎𝑰𝑺𝑹𝑹(𝟏 + 𝜹𝒄𝒐𝒔𝝋)

𝟐 and 𝑲𝟐 ≅ 𝑲𝑨𝑲𝑭 

And the 𝑺𝟐𝟏 parameter is: 

𝑺𝟐𝟏 = 𝚪
𝑱+

𝒋
= 𝚪

𝝎𝟐(𝝎 −𝝎𝒓 + 𝒊𝜶𝝎)

𝐝𝐞𝐭 (𝚲)
 

From this equation, the 𝑺𝟐𝟏  parameter and phase of the cavity, 

magnon mode, and coupled systems can be plotted in the 𝝎−𝑯 plane, 

or equivalently, in the 𝝎− 𝑰 plane, where I is the current flowing 

through the electromagnet generating 𝑯 (figure 6). While such plots 

are usually drawn in the 𝝎−𝑯  plane, the 𝝎− 𝑰  plane is more 

convenient for this research work. Figure 6 clearly shows the mode 

splitting around the anti-crossing point (current value where 𝝎𝒓 =

𝝎𝑰𝑺𝑹𝑹). The plotting was done with 𝝎𝒄 = 𝟒. 𝟎𝑮𝑯𝒛,𝝁𝟎𝑯 = 𝟎. 𝟏𝟕𝟐𝑻, 𝜶 =

𝟑. 𝟐 × 𝟏𝟎−𝟒,𝜷 = 𝟐 × 𝟏𝟎−𝟐, 𝚪 = 𝟎. 𝟎𝟒, 𝑲 = 𝟎. 𝟎𝟒𝟓, 𝜹 = 𝟎. 𝟓,𝝋 = 𝟎  .  

(2.2.20) 

 

(2.2.20) 

(2.2.21)

) 

 

(2.2.21)

) 

(2.2.22) 

 

(2.2.22) 
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(a) (b) 

(c) (d) 

Figure 12. S21 parameter of (a) the ISRR alone, (b) magnons alone, 

and (c) coupled system. (d) Phase of the coupled system. Solid black 

lines are the fitted upper and lower branch of the frequency 

dispersion. Horizontal and vertical dotted black lines are respectively 

the cavity and magnon frequency. 
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Chapter 3. Experimental Method 

3.1. Observing Photon-Magnon Coupling 

 Observing strong photon-magnon coupling requires a high-

quality cavity and low damping magnons. Hybrid systems used for 

photon-magnon coupling usually combine a 2- or 3-dimensional 

photon cavity with an Yttrium Iron Garnet ferrimagnetic sphere or 

thin film. In this thesis, a 2-dimensional cavity along with a YIG thin 

film were used. Meanwhile, S21  parameters are measured from 

Vector Network Analyzer (VNA) calibrated two ports measurements. 

The measurement technique and the two subsystems are presented 

in this sub-chapter.  

3.1.1. Microwave Measurement 

The S21  parameter is the energy transmitted through the 

system. According to equations (2.2.14) and (2.2.22), at the photon 

and magnon frequencies for an uncoupled system or at the CMP 

resonance frequency for a coupled one, the system strongly absorbs 

microwave energy, and dips in the transmission spectra are observed. 

In general, S-parameters for a 2-port system can be measured with 

a VNA [78]. The S-parameters are given by 𝑺𝒊𝒋 =
𝑽𝒊
−

𝑽𝒋
+, where 𝑽𝒊

− is 
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the microwave voltage reflected from port 𝐢 and 𝑽𝒋
+ is the voltage 

sent to port 𝐣.  Therefore, during an S21 parameter measurement, 

the VNA measures the ratio of microwave voltage received at port 2 

to the microwave voltage sent from port one for different angular 

frequencies 𝝎.  

The VNA used in the experiments is an Agilent Technologies 

E8362C PNA Network Analyzer. Both S21 parameter and phase are 

measured in a dedicated channel. Measurements were performed 

from 2GHz to 6GHz with 6401 points per trace. The sweeping rate, 

or IF Bandwidth, was set to 10kHz to have a fast sweeping rate. Even 

though both channels were calibrated, post-measurement data 

calibration was required for phase measurements to subtract a linear 

phase shift induced by the hybrid system. The first measured point 

was set to 0 degree, and the linear phase shift, measured between 

2GHz and 2.5 GHz (far from resonance), was removed from the trace. 

The VNA was entirely controlled by a computer using LabVIEW and 

RS232. 
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3.1.2. Photon System: Inverted Split-Ring Resonator 

Split-Ring Resonators (SRR) are an essential building block 

for metamaterials [76],[77]. SRRs can be used to engineer magnetic 

permeability and negative refractive index [79]. An SRR is a split 

ring or square made of a conductive material deposited on a dielectric 

substrate in its simplest form. This structure shows a geometry 

dependant resonant frequency 𝝎𝒄 =
𝟏

√𝑳𝑪
, with L the SRR inductance 

and C the SRR capacitance given by: 

𝐂 = 𝜺𝟎𝜺𝒄
𝒓𝒕

𝒈
 , 𝐋 = 𝝁𝒐

𝒍𝟐

𝒕
                                            

With 𝒓 the ring width, 𝒈 the gap length, 𝒕 the metal thickness, and 

𝒍 the ring length.  

SRRs can be excited by a microstrip line. Current flowing in 

the microstrip line induces a current in the ring and a magnetic field 

perpendicular to the ring plane. The system behaves as an LC circuit: 

the gap behaves like a capacitor while the ring behaves like a coil. In 

an Inverted Split Ring Resonator (ISRR), the SRR is patterned in the 

substrate’s ground plane just below the microstrip line, and the role 

of the gap and the ring are switched (figure 7.a). The linear phase 

shift stated in part 3.1.1 comes from the microstrip line and is a 

standard and to be expected strip line behavior (figure 8.c). 

(3.1.1

) 

 

(3.1.1

) 
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Using CST studio, an electromagnetic simulation software, 

the dimensions of a 4.3GHz square-shaped ISRR were found. This 

ISRR is situated below a 50 Ohms microstrip line whose dimensions 

were found by the App-CAD calculator. The resonator was patterned 

using photolithography and conventional printed circuit board 

techniques from a CER-10RF substrate. Two SMA connectors were 

soldered at the ends of the microstrip line to send microwave 

currents (Figures 7.b and 7.c).  

The fabricated ISRR has a 4.376GHz resonant frequency. The 

damping is  𝛽 = ∆𝑯𝑾𝑯𝑴 𝝎𝑰𝑺𝑹𝑹 =⁄ 𝟗. 𝟎𝒆𝟕 𝟒. 𝟑𝟕𝟓𝒆𝟗 ≈ 𝟎. 𝟎𝟐𝟎𝟔⁄ , where 

∆𝑯𝑾𝑯𝑴 is the half 𝜔𝐶 = 1 ∕ √𝐿𝐶width at half maximum. ∆𝑯𝑾𝑯𝑴 was 

estimated by fitting the S21  measurement of the ISRR alone and 

without magnetic field with a Lorentzian function while 𝝎𝑰𝑺𝑹𝑹 was 

obtained from the measured S21  parameter. S21  magnitude and 

phase measurements using the VNA were done for different magnetic 

field values and are shown in figure 8. The x-axis I(A) represents 

the current sent to the electromagnet. The ISRR properties remain 

unchanged as the magnetic field is swept. 
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(a) 

(b) 

(c) 

Figure 14. (a) SRR and ISRR schematic with electric fields (blue), 

and magnetic fields (red) [31]. (b) Schematic of the measurement 

setup. (c) Fabricated ISRR, w=0.6mm, a=4.4mm, b=3.4mm, 

g=0.5mm, the copper thickness is 35um, and the dielectric thickness 

is 0.64mm. 
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(a) (b) 

(c) (d) 

Figure 16. (a) Measured ISRR 𝐒𝟐𝟏 parameter. (b) Measured ISRR 

𝐒𝟐𝟏  parameter in the 𝝎− 𝑰 plane. (c) Uncalibrated and calibrated 

ISRR phase. (d) Calibrated ISRR phase in the 𝝎− 𝑰 plane.  
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3.1.3. Magnon System: Yttrium Iron Garnet 

Our magnon source is a commercial 3.7x3.7x25µm epitaxial 

YIG film (𝑌3𝐹𝑒5012). YIG is the commonly used material in photon-

magnon coupling studies owing to its high spin density (≈ 4.0 ∗

1027𝑚−3)  and very low damping (≈ 3 ∗ 10−5 𝑡𝑜 10−3) [80]. Previous 

S21 parameter measurements of our YIG alone determined the 

magnon damping at  𝜶 = 𝟑. 𝟐 × 𝟏𝟎−𝟒  [45]. The magnon frequency 

follows Kittel’s mode (figure 9.b). 
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(a) 

(b) 

Figure 18. (a) Schematic of the measurement setup. (b) Measured 

𝐒𝟐𝟏 parameter of the YIG. Black dotted line is Kittel’s mode.  
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3.2. Network Parameters 

3.2.1. Neuron Functions 

 The fundamental requirement of a hardware neuron in 

RC is non-linearity. Here, as a function of the magnetic field, or 

equivalently, as a function of the DC current sent to the 

electromagnet, three neuron functions are considered: the S21 

magnitude, frequency, and phase of the lowest S21 magnitude point 

in the S21  magnitude measurement of the hybrid system (figure 

10.b). Since the waveform sequence is not degenerated, memory is 

not required, and the neuron function 𝒙𝒊(𝒕) can be simplified as 𝒙(𝒊), 

which is a steady-state function and non-linear as a function of the 

input.   

The lowest S21 magnitude point in the 𝝎− 𝑰  plane follows 

the upper (lower) branch before (after) the anti-crossing (AC) point 

(current value where 𝝎𝒓 = 𝝎𝑰𝑺𝑹𝑹) as illustrated in figure 11, plotted 

from equation (2.2.22) with 𝜔𝑐 = 4.0𝐺𝐻𝑧 ,  𝜇0𝐻 = 0.172𝑇, 𝛼 = 3.2 ×

10−4,𝛽 = 2 × 10−2, Γ = 0.04, 𝐾 = 0.05, 𝛿 = 0.5, 𝜑 = 0 . This is explained 

by the CMP coefficients 𝜼𝟏  and 𝜼𝟐 . The S21  magnitude is 

proportional to the photon proportion of the CMP modes. The S21 

magnitude is the lowest for the branch containing the most photons, 
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or equivalently for the branch with the highest coefficient 𝜼𝟏. As 

shown in figure 5.c, the upper (lower) branch contains the most 

photons before (after) AC [44]. Following this explanation, a simple 

theoretical frequency neuron function was defined from equations 

(2.2.21) and (2.2.22), where the neuron function follows 𝝎+(𝝎−) 

after (before) anti-crossing. 

Unlike an actual time-consuming experiment, the full 

waveform recognition can be quickly simulated entirely on a 

computer using previously measured or theoretical neuron functions. 

Network parameters, such as the number of waveforms and neurons, 

were chosen from the hybrid system theoretical frequency neuron 

function. 

This simulation method was also used to compare expected 

results from multiple neuron functions: the measured and theoretical 

functions of the ISRR alone, YIG alone, and coupled hybrid system.  

The software used for experimental or simulation codes is 

LabVIEW. LabVIEW controls both the DC power supply to encode 

inputs and the VNA to measure outputs with RS232 and GPIB 

protocols in the experimental code. LabVIEW also manages all data 

pre and post-processing. 
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(a) 

(b) 

Figure 20. (a) Typical setup for coupling measurement. The magnetic 

field is perpendicular to the microstrip line. (b) Hybrid system 𝐒𝟐𝟏 

magnitude and phase measurement at I=0.25A.  
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(a) 

(b) 

Figure 22. (a) 𝐒𝟐𝟏 norm from equation (2.2.22). White dotted line is 

the frequency neuron function in the 𝝎− 𝑰  plane , dotted and 

continuous black lines are respectively the magnon, photon, and CMP 

frequencies. (b) Frequency neuron function.  
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3.2.2. Inputs and Current center 

The random sine and square waveform sequence is created 

on a computer following the pre-processing method presented in 

Ch.2 (fig. 12). Each pre-processed data point is encoded in the DC 

current amplitude sent to the electromagnet, allowing the use of the 

hybrid system’s non-linear neuron functions. The amplitude of 

square waveforms is 50% higher than sines, with a 1.5A amplitude 

for squares and 1A for sines. Each waveform is made of 8 sampled 

points. Since no degeneracies are present between sine and square 

points, no memories are required for this task. Each DC current value 

is held 8 seconds. 5 seconds are found to be a minimum required by 

the electromagnet to reach its steady-state magnetic field value. 

Because the VNA measures sequentially the S21  magnitude and 

phase, three additional seconds are required by the VNA to perform 

both sweeps accurately.  

Different regions of neuron functions are used depending on 

the waveform sequence center value. Therefore, the current center 

is swept through the coupling range, and the whole recognition is 

done at each current center value. The current center sweep starts 

at 0.25A, ends at 6.25A, and contains 30 points. The magnetic field 

time delay prohibits adding more points. To be similar to 
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experimental results, most simulation results are done with the same 

current center sweep. 
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(a) 

(b) 

Figure 24. (a) Waveform sequence creation (four shown). (b) Mask 

multiplication (six neurons shown). Each point is applied as a DC 

current held 8 seconds.  
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3.2.3. Neuron and Waveform Number 

 Experiment execution time 𝒕𝒆𝒙𝒑 is given by 𝒕𝒆𝒙𝒑 ≈ 𝑴 ∗ 𝒏𝒔 ∗ 𝑵 ∗

∗ 𝒏𝑰 ∗ 𝒕𝑯 , where 𝑴 is the waveform number, 𝒏𝒔  is the number of 

sampled points per waveform, 𝑵 is the number of neurons, 𝒏𝑰 is the 

number of current center points and 𝒕𝑯 is the magnetic field time 

delay.  The very high 𝒕𝑯 value forces the minimization of all the 

other parameters.  

 Simulations using theoretical frequency functions showed the 

success rate and maximum NSE dependences on 𝑴 and 𝑵 (figure 

13). A minimum threshold value must be given to 𝑴  and 𝑵  to 

successfully perform the recognition and observe peaks of perfect 

success rates. Once the threshold is crossed, adding more waveforms 

or more neurons reduces the perfect success rate peaks length. It 

also does not increase the maximum NSE further, which plateaus 

around 0.990. From these data, we choose to carry further 

experiments and simulations with 𝑴 = 𝟑𝟎  (15 waveforms for 

training, 15 for testing), 𝒏𝒔 = 𝟖, 𝑵 = 𝟐𝟎, 𝒏𝑰 = 𝟑𝟎, resulting in 𝒕𝒆𝒙𝒑 ≈

𝟏𝟒 days long experiments and little simulation execution time. 

 Simulations for figure 15 were done with 𝝎𝒄 = 𝟒. 𝟎𝑮𝑯𝒛, 𝝁𝟎𝑯 =

𝟎. 𝟏𝟕𝟐𝑻, 𝜶 = 𝟑. 𝟐 × 𝟏𝟎−𝟒,𝜷 = 𝟐 × 𝟏𝟎−𝟐, 𝚪 = 𝟎. 𝟎𝟒, 𝑲 = 𝟎. 𝟎𝟓, 𝜹 = 𝟎. 𝟓,𝝋 = 𝟎 .   
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(a) 

(c) (b) 

Figure 26. (a) Simulated maximum NSE. (b) Simulated success rate 

from the frequency function for 30 waveforms. (c) Simulated success 

rate from the frequency function for 20 neurons. 
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Chapter 4. Experimental and Simulation Results  

4.1. Neuron Functions and Simulation Results 

To rapidly compare different systems and configurations, 

simulations based on measured or theoretical neuron functions were 

carried out. Experimental ISRR functions, theoretical frequency 

magnons function, and theoretical frequency hybrid system function 

were compared, justifying the usage of hybrid system functions over 

a single cavity or YIG film. Then, two different configurations of in-

plane magnetic field angle were compared for experimental hybrid 

system neuron functions, allowing to find optimal settings for the two 

weeks long experimental waveform recognition.  Only theoretical 

frequency functions could be obtained by the time the thesis was 

written.  

4.1.1. ISRR Neuron Functions 

 As a function of the magnetic field, or equivalently, as a 

function of the DC current sent to the electromagnet, the ISRR S21 

magnitude, phase, and frequency are constant or weakly varying 

(figure 14). The S21  magnitude presents a small quadratic 

dependence which is thought to be an artifact from the experimental 
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setup. The phase has a higher variance and small non-linearities due 

to measurement and post-measurement calibration imperfections. 

The frequency is the most stable measurement being almost constant 

around 4.375 GHz with relatively low variance.  

 By putting the three experimental neuron functions into a 

LabVIEW code developed for performing the waveform recognition, 

according to the method explained in Chapter 2, expected 

experimental success rates were obtained (figure 14). The S21 and 

frequency functions give respectively weak to completely random 

(0.5) recognition success rates and cannot be used. This is an 

expected result since the S21 function is weakly varying, and the 

frequency is almost constant. On the other hand, the phase function 

leads to a higher success rate for four points. This slightly better 

result comes from more important but artificial, non-linearities. A 

perfect phase measurement would be constant at 0 degrees, leading 

to random success rates (figure 15). 

 Unless stated otherwise, all simulation results in the thesis 

use 20 neurons, 30 waveforms 8 sampled points per waveform, and 

results averaged over 300 simulations. 
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(a) 

(b) 

(c) 

Figure 28. (a) Measured 𝐒𝟐𝟏, (b) frequency, and (c) phase neuron 

functions, and their associated expected success rates. Neuron 

functions values are averaged over three measurements. 
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Figure 29. Ideal phase neuron function, and expected success rate.  
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4.1.2. Magnon Theoretical Frequency Neuron Function 

The lowest S21 magnitude point for magnons follows Kittel’s 

formula, as shown in figure 9. In general, the magnon dispersion in a 

YIG film can be written as 𝝎𝒀𝑰𝑮 = 𝜸√𝑯(𝑯+ 𝝁𝟎𝑴𝑺) + 𝛅 (4.1.1), with 

𝛅 = 𝟎 for the Kittel’s mode and different otherwise [81] (fig 17.a).  

For a given magnetic field value, 𝝎𝒀𝑰𝑮 < 𝟎  when 𝛅 <

−𝜸√𝑯(𝑯+ 𝝁𝟎𝑴𝑺). Since the current center is swept between 1A and 

6.25A and considering the amplitudes of the waveform, neuron 

functions take values between 0.25A and 6.25A. To avoid negative 

frequency values in this current range, the minimum 𝛅  value is 

≈6.63 GHz.rad. Using the dispersion formula, success rates and 

NMSE for 𝛅 ∈ [−𝟔. 𝟔𝟑, 𝟔. 𝟔𝟑] GHz were obtained and plotted (fig. 16). 

Plots show one peak of perfect success, starting at the sweeping 

range beginning, where the YIG frequency shows a square root 

curvature. This peak is followed by a range of random success, where 

the YIG frequency is almost linear. Even if the success peak length 

tends to decrease as 𝛅 increases, the highest NSE value doesn’t 

change significatively and does not exceed 0.945 (fig.17.b). The 

highest NSE value was reached at 1A, which is the first swept point. 
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Theoretical S21 and phase functions could not be obtained by the 

time the thesis was written. 
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(a) 

(b) 

(c) 

Figure 31. Success rates and NSE from the YIG frequency neuron 

function for (a) d=4, (b) d=0, (c) d=-6, with d defined as 𝐝 =  𝛅 𝟏𝒆𝟗⁄ . 



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 33. (a) YIG frequency neuron function for d=0,4 and -6. (b) 

Maximum NSE value reached in the current center sweep. NSE 

values are averaged over 100 simulations.  
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4.1.3. Hybrid System Theoretical Neuron Function 

 Putting the theoretical frequency neuron function in the 

LabVIEW code (𝝎𝒄 = 𝟒. 𝟎𝑮𝑯𝒛 ,  𝝁𝟎𝑯 = 𝟎. 𝟏𝟕𝟐𝑻,𝜶 = 𝟑. 𝟐 × 𝟏𝟎
−𝟒,𝜷 = 𝟐 ×

𝟏𝟎−𝟐, 𝚪 = 𝟎. 𝟎𝟒, 𝑲 = 𝟎. 𝟎𝟓, 𝜹 = 𝟎. 𝟓,𝝋 = 𝟎) for different coupling values, 

K leads to the success rates plotted in figure 18. From these 

simulation results, we can observe the coupling strength influence on 

the recognition: as K increases, the two peaks of perfect rates (SR=1) 

increases in length, and the NSE increases (figure 19.b). The shape 

of the neuron function can qualitatively explain this observation. As 

K increases, the non-linear portion of the frequency neuron function 

increases. MSE values being one order of magnitude lower than 

magnons and being positively influenced by the coupling strength, 

computing with AC is more interesting than magnons alone. 

Theoretical S21 magnitude and phase could not be obtained by the 

time the thesis was written. 
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(a) 

(b) 

(c) 

Figure 35. Frequency neuron function and associated simulated 

success rates for different coupling strength. (a) K=0.005, (b) 

K=0.05, (c) K=0. 
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(a) 

(b) 

Figure 37. (a) Frequency neuron function for K=0.005,0.05, and 

0.01 . (b) Maximum NSE as a function of K. NSE values are averaged 

over 100 simulations.  
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4.1.4. Hybrid System Asymmetrical Neuron Functions 

Experimental hybrid system functions using the ISRR sample 

and the YIG film were measured (figure 20). The magnetic field was 

in the YIG film plane and perpendicular to the microstrip line. To 

achieve a strong coupling with ISRRs, the YIG film was placed 

directly in contact with the resonator. Being closer to the ISRR gap 

and its induced magnetic field, the coupling strength is higher.  

Nonetheless, in this configuration and with samples made 

from this substrate batch, the ISRR resonant frequency changes very 

sensitively depending on the YIG position. Additionally, the fitting 

agreement between the S21 magnitude in the 𝜔 − 𝐼 plane and the 

frequency dispersion relation varies depending on the YIG position. 

When the YIG is placed directly over the ISRR gap, the upper branch 

does not follow the dispersion relation perfectly, whereas the lower 

branch does. Consequently, the lowest S21 magnitude path, or 

equivalently, the frequency neuron function, does not follow the 

upper branch until the anti-crossing point. This is seen by the shift 

between the frequency function discontinuity (white dotted line) and 

the anti-crossing point (intersection of black dotted lines) in figure 

21. 
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With the YIG on the ISRR gap, the three experimental neuron 

functions were put into the LabVIEW code to get simulation results 

(figure 22). Being asymmetric, the frequency function gives two 

peaks of perfect success rates, with the second peak being much 

wider than the first. Surprisingly, the NSE at 1.74A is higher than the 

NSE of K=0.2, with 0.999968 against 0.99982. The S21 function 

follows its expected behavior. The S21 magnitude is constant far 

from anti-crossing and decreases in the coupling region. The 

multiple discontinuities in the function come from multiple anti-

crossings with higher-order spin-wave modes. The phase function 

follows the same behavior. The phase is constant far from anti-

crossing and shows numerous discontinuities in the coupling region. 

Both S21 and phase success rates show small areas or points of 

perfect success rate and NSEs lower than the frequency NSE with 

0.991433 and 0.970877.  

Fitting is done with 𝝎𝒄 = 𝟑. 𝟕𝑮𝑯𝒛 ,  𝝁𝟎𝑯 = 𝟎. 𝟏𝟕𝟐𝑻,   𝑲 =

𝟎. 𝟎𝟖, 𝜹 = 𝟎. 𝟓,𝝋 = 𝟎. 
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(a) 
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Figure 39. (a) Schematic of the hybrid system. (b) Measured 𝐒𝟐𝟏, 

(c) frequency, and (d) phase neuron functions. 
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Figure 41. (a) Measured 𝐒𝟐𝟏 magnitude and (b) phase. White dotted 

line is the frequency neuron function, dotted and continuous black 

lines are the magnon, photon, and CMP frequencies. The phase shift 

in the phase plot at 1A is a measurement artifact. 
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(c) 

Figure 43. Simulated success rates and NSEs from the measured (a) 

𝐒𝟐𝟏, (b) frequency, and (c) phase neuron functions.  
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4.1.5. Hybrid System Neuron Functions: 0 degree 

The YIG film was carefully placed in the ground plane to 

maximize the coupling strength and the frequency dispersion fitting 

agreement (figure 23.a). Consequently, the frequency function 

becomes closer to the theoretical one, as we can see by the reduced 

current shift between the dotted white curve discontinuity and the 

anti-crossing point in Figures 24 and 25. The magnetic field was in 

the plane of the YIG film and perpendicular to the microstrip line. In 

this configuration, fine features at the left of Kittel’s mode can be 

observed in figure 24. Those features are higher-order spin-wave 

modes. Each additional spin-wave mode creates a smaller additional 

anti-crossing, resulting in additional non-linearities in each neuron 

function (figure 23). The three functions were put into the LabVIEW 

code to obtain by simulation the expected experimental results 

(figure 26). Fitting is done with 𝝎𝒄 = 𝟒. 𝟎𝑮𝑯𝒛 ,  𝝁𝟎𝑯 = 𝟎. 𝟏𝟕𝟐𝑻, 𝜶 =

𝟑. 𝟐 × 𝟏𝟎−𝟒,𝜷 = 𝟐 × 𝟏𝟎−𝟐, 𝚪 = 𝟎. 𝟎𝟒, 𝑲 = 𝟎. 𝟎𝟓, 𝜹 = 𝟎. 𝟓,𝝋 = 𝟎 . AC non-

linearities in the frequency and S21 functions break the first perfect 

success rate peak into smaller regions of perfect success. Their 

highest NSE values are respectively 0.99343 at 2.448A and 

0.996448 at 1.181A. The phase success rate and NSE are slightly 

improved, with the highest NSE of 0.990786 reached at 1.36A. 
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Figure 45. (a) Schematic of the hybrid system. (b) Measured S21, 

(c) frequency, and (d) phase neuron functions. 
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Figure 47. (a) Measured 𝐒𝟐𝟏 magnitude and (b) phase at 0°. White 

dotted line is the frequency neuron function, dotted and continuous 

black lines are the magnon, photon, and CMP frequencies.  
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Figure 49. (a) Comparison between experimental and theoretical 

frequency functions with the fitted CMP dispersion (black continuous 

lines) and photon and magnon frequencies (horizontal and oblique 

dotted black lines), and (b) without. 
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Figure 51. Simulated success rates and NSEs from the measured (a) 

𝐒𝟐𝟏, (b) frequency, and (c) phase neuron functions. 
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4.1.6. Hybrid System Neuron Functions: 33.5 degree 

Anticrossing from higher-order spin-wave modes lowers 

performances by breaking the ranges of perfect success rate. 

Nonetheless, it is possible to remove such anti-crossings by 

changing the in-plane magnetic field angle 𝝋. B. Bhoi et al. [48] and 

B. Kim et al. [82] demonstrated in a similar ISRR/YIG hybrid system 

the existence of a critical angle where all the spin-wave modes have 

an equal or very close frequency. The critical angle 𝝋𝒄 depends on 

the in-plane magnetic field 𝑯 according to: 

𝝋𝒄 = 𝐭𝐚𝐧
−𝟏√𝑯 𝝁𝟎𝑴𝒔

⁄  

Choosing for 𝑯 the anti-crossing magnetic field, the critical angle 

was calculated at 𝝋𝒄 = 𝐭𝐚𝐧
−𝟏√𝑯 𝝁𝟎𝑴𝒔

⁄ = 𝐭𝐚𝐧−𝟏√𝟎. 𝟎𝟕𝟔 𝟎. 𝟏𝟕𝟐⁄ ≈

𝟑𝟑. 𝟔𝟓° . After setting the magnetic field accordingly, the three 

neuron functions were measured and put into the LabVIEW code 

(figure 27). The S21 and frequency first success peaks are now 

continuous or almost. The frequency success peaks are smaller in 

length owing to smaller coupling strength as the angle 𝝋 increases, 

as shown by Bhoi et al. [48]. The number of points of high phase 

success rate remains almost unchanged. Maximum NSEs are getting 

lower with 0.991815 at 2.45A, 0.98469 at 2.63A, and 0.968879 at 

(4.1.2) 

 

(4.1.2) 
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4.80A for the frequency, S21, and phase functions, respectively 

(figure 30), indicating slightly lower performances. As opposed to 0 

degree, anti-crossing with higher-order modes almost does not 

happen, making the data clearer (figure 28). Therefore, even if the 

maximum expected NSE values are lower than at 0 degrees, this 

configuration has been chosen to get the first experimental results. 

Additionally, the fitting between the theoretical and experimental 

frequency function is improved (figure 29). 

 Fitting is done with 𝝎𝒄 = 𝟑. 𝟖𝟖𝑮𝑯𝒛 ,  𝝁𝟎𝑯 = 𝟎. 𝟏𝟕𝟐𝑻,   𝑲 =

𝟎. 𝟎𝟒𝟓, 𝜹 = 𝟎. 𝟒𝟓,𝝋 = 𝟎. 
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Figure 53. (a) Schematic of the hybrid system at 𝝋𝒄. (b) Measured 

𝐒𝟐𝟏, (c) frequency, and (d) phase neuron functions. 
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Figure 55. (a) Measured 𝐒𝟐𝟏 magnitude and (b) phase at 𝝋𝒄. White 

dotted line is the frequency neuron function, dotted and continuous 

black lines are the magnon, photon, and CMP frequencies.  
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(a) 

(b) 

Figure 57. (a) Comparison between experimental and theoretical  

frequency functions with the fitted CMP dispersion (black continuous 

lines) and photon and magnon frequencies (horizontal and oblique 

dotted black lines), and (b) without. 
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(a) 

(b) 

(c) 

Figure 59. Simulated success rates and NSEs from the measured (a) 

𝐒𝟐𝟏, (b) frequency, and (c) phase neuron functions at 𝝋𝒄.  
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4.2. Experimental Success Rates 

Experimental success rates were obtained for the hybrid 

system at the critical angle. Previous success rates from the 

frequency function of another sample for a low and high coupling 

strength are also presented. 

4.2.1. Success Rates and NSE at the critical angle 

 Experimental success rates (figure 31) from the S21 

magnitude and frequency are in good agreement with simulation 

results. The maximum NSE is 0.991658 at 2.63A for the S21 function 

and 0.990555 at 2.45A for the frequency function. Phase results are 

slightly below expected with only three points of perfect success rate, 

and a maximum NSE of 0.9546209 at 3.89655A against seven 

predicted points of perfect success and a 0.968879 predicted 

maximum NSE value. This discrepancy is thought to come from the 

higher variance in phase measurement. Those results successfully 

demonstrate waveform recognition with the S21 magnitude, 

frequency, and phase of photon-magnon coupling in an ISRR/YIG film 

hybrid system. 
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(a) 

(b) 

(c) 

Figure 61. Experimental success rates and NSEs from the (a) 𝐒𝟐𝟏, 

(b) frequency, and (c) phase neuron functions at 𝝋𝒄.  
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4.2.2. Frequency Success Rates for 2 YIG positions 

 Experimental comparison of different coupling strengths was 

partially obtained from another ISRR sample (figure 32). The 4GHz 

sample was used in references [45] and [48]. The YIG film was 

either on the microstrip line above the ISRR (weak coupling) or 

directly on the ISRR gap (very strong coupling). The magnetic field 

was in-plane and perpendicular to the microstrip line (𝝋 = 𝟎 degree). 

Despite putting the YIG film directly on the ISRR gap, this sample's 

frequency function was symmetric. Only experimental frequency 

success rates were obtained from the sample before breaking. S21 

and phase neuron functions for the YIG on the ISRR gap were 

measured and had a similar shape and expected results to the 

4.375GHz sample shown in parts 4.1.5 or 4.1.6. Experimental results 

follow simulations well. As the coupling increases, peaks of perfect 

or close to a perfect success rate increase in length. Discrepancies 

between simulation and experimental results for the weak and strong 

coupling positions are respectively coming from suboptimal VNA 

settings (low IF BW) and additional non-linearities coming from 

anti-crossings with higher-order spin-wave modes. Simulations are 

done with 𝝎𝒄 = 𝟑. 𝟖𝟖𝑮𝑯𝒛 ,  𝝁𝟎𝑯 = 𝟎. 𝟏𝟕𝟐𝑻, 𝜶 = 𝟑. 𝟐 × 𝟏𝟎
−𝟒,𝜷 = 𝟐 ×

𝟏𝟎−𝟐, 𝚪 = 𝟎. 𝟎𝟒, 𝜹 = 𝟎. 𝟓,𝝋 = 𝟎. 
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Figure 63. Experimental and theoretical frequency functions for (a) 

the YIG on the microstrip line, and (d) on the ISRR gap. Simulated 

success rate for (e) K=0.014 and (b) K=0.07. Experimental success 

for (c) the YIG on the microstrip line, and (f) on the ISRR gap.  
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Chapter 5. Concept of Vowel Recognition with 

Photon-Magnon Coupling 

5.1. Recognition with STNOs 

An STNO is a nanometric pillar made up of two ferromagnetic 

layers separated by an oxide tunneling layer. The magnetization of 

the first layer is pinned by exchange interaction and acts as a spin 

polarizer, whereas the magnetization of the second layer is free [87]. 

After tunneling, the spin-polarized current from a DC source exerts 

a torque on the free layer magnetization, resulting in magnetic 

moments precession. The combination of Spin-Transfer Torque 

(STT) and magnetoresistance effects converts the magnetic 

oscillations into measurable voltage oscillations [88]. 

M. Romera et al. showed that a network composed of 4 

electrically coupled STNOs could perform vowel recognition [27], 

[86]. A current source independently controls the resonant 

frequency of each STNO voltage oscillations (𝐼1 to 𝐼4, figure 33.b.). 

Since the STNOs are connected in series and no current is equal to 

0, the frequencies are different and increasing from left to right 

( 𝑓𝑆𝑇𝑁𝑂1 < 𝑓𝑆𝑇𝑁𝑂2 < 𝑓𝑆𝑇𝑁𝑂3 < 𝑓𝑆𝑇𝑁𝑂4 ). Network outputs are the 

resonant frequencies red with a spectrum analyzer (figure 33.c).  
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Seven different vowels are used in their first demonstration. 

Thirty-seven women pronounce each vowel. Every vowel is encoded 

in a pair of 2 distinct frequencies, linear combinations of 

characteristic sampled frequencies. The two frequency coordinates 

𝑓𝐴 and 𝑓𝐵  are generated by two RF current generators, and both 

circulate in a stripline above the STNO array. The resulting input 

vowels can be represented in a 2-dimensional plane, as shown in 

figure 33.f. Recognition relies on synchronization. An STNO can lock 

its frequency onto an external microwave current frequency if 

frequencies are close enough (figure 33.d). When two microwave 

frequencies 𝑓𝐴  and 𝑓𝐵  are applied to the system, the resulting 

synchronization states can be represented in a 2-dimensional map 

(figure 33.e). The recognition consists in associating seven different 

synchronization states to the seven different vowels. If the network 

is trained, reading the synchronization state allows seeing which 

vowel has been applied to the system. The training starts from a 

random map (random values of 𝐼1 to 𝐼4) and the goal is to converge 

to the preselected map by tuning the currents. The learning algorithm 

adjusts the currents to minimize the frequency difference between 

the targeted and input frequencies. State of the art success rate was 

obtained (figure 34).  
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Figure 64. (a) Schematic of the network. (b) Schematic of the 

experimental setup. (c) Output without (light blue), and with (dark 

blue) inputs. (d) STNOs synchronization. (e) Synchronization map. 

(f) Vowels. [27] 

Figure 65.(a) Random starting coupling map. Map after (b) seven 

steps, (c) 15 steps. (d) Final map. (e) current, and (f) frequency 

evolution. (g) Success rates. [27] 
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5.2. Recognition with Photon-Magnon Coupling 

The concept can be readily translated to PM coupling. An array 

of in-plane SRRs loaded with varactor diodes (v-SRR) [89] gives 

voltage-tunable oscillators corresponding to the current-tunable 

STNOs (fig. 35.a). An YIG film in contact with the v-SRRs gives PM 

coupled states corresponding to the synchronization states between 

the STNOs and one microwave frequency 𝑓𝐴 (fig 35.b). The coupling 

state is red with a VNA. The difficulty is encoding 𝑓𝐵 . In the 

translated concept, 𝑓𝐴 is the magnon frequency coming from the YIG 

film and controlled by an external magnetic field 𝐻𝐴. Since 𝑓𝐴 and 𝑓𝐵 

must be controlled independently, adding a second YIG film and a 

second magnetic field 𝐻𝐵  requires 𝐻𝐴  and 𝐻𝐵  to affect 

independently their respective YIG film, which is hard to achieve in 

practice. An alternative is to use the v-SRR physics to our advantage. 

In the non-linear regime of a v-SRR [90]-[92], the resonator 

frequency can be tuned by both the frequency and power of the pump 

(fig 35. b,c,d). Adding a second microwave current to the sample 

allows encoding 𝑓𝐵  through either the pump power or frequency. 

Here, success rates benefit from high coupling strengths: the 

coupling ranges increase, reducing misclassification. 
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Figure 67. (a) Illustration of the coupling states and the coupling 

ranges in a three ISRRs sample. Grey, blue, and green lines and circle 

show the coupling ranges in Ampere of each ISRR. (b) Pump power 

dependence of a v-SRR resonance frequency to a continuously or 

periodically applied pump. (c) Frequency and (d) Pump dependence 

of a v-SRR resonance frequency. [92] (e) Schematic of the 

suggested experimental setup illustrated with 4 v-SRRs. Varactors 

voltage sources are not shown. 
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Chapter 6. Conclusion 

 Neuromorphic computing using photon-magnon coupling in 

an ISRR/YIG hybrid system was successfully experimentally 

demonstrated. Using the reservoir computing paradigm, non-

degenerate waveforms classification was performed using the 

frequency, S21 magnitude and phase of the coupled mode. Perfect 

success rates were obtained from each neuron function. with vast 

regions of perfect success rates from both the S21 and frequency 

functions and three points of perfect rate from the phase function 

(figure 31).  

 Additionally, experimental success rates from the frequency 

function for two YIG film positions confirm the predicted performance 

increase owed to higher coupling strengths (figure 19 and figure 32). 

Results can be compared with reference [28] shown in figures 2 and 

3. The hybrid system leads to broad regions of perfect success rate 

while success rates obtained from an STNO do not reach 100% and 

show only one to two smaller peaks of high performances.  

 This thesis also shows a reliable simulation method to predict 

experimental performances. The expected results of various 
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systems and configurations were obtained by putting measured or 

theoretical neuron functions into the LabVIEW code. The simulation 

showed the superiority of the ISRR/YIG coupled system on the ISRR 

or YIG alone. Being almost constant, neuron functions from the ISRR 

naturally lead to random or low success rates (figure 14). On the 

other hand, the classification task can be successfully performed 

using the magnon frequency function, as shown by wide peaks of 

perfect success rates in figure 16. While the peaks tend to increase 

in length as the spin-wave mode gets lower, the maximum NSE is 

independent of the mode order and lower than the NSE obtained from 

the coupled-mode frequency function, thus justifying the superiority 

of the CMP frequency function over the magnons frequency function.  

 The two main limitations of the current system are the 

magnetic field time delay and the absence of both intrinsic and 

extrinsic memory. The time delay limits the usage of a large data set 

and neuron number, while the lack of memory limits the number of 

tasks to perform. Both limitations could be overcome by using 

transient dynamics of photon-magnon coupling [83]. In such a two-

state system (the coupled mode is made up of a photon and magnon 

state), Rabi-oscillations can be observed as a response to 
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microwave current pulse excitations applied to either or both the 

cavity and the magnon source. Inputs would be encoded in the 

nanosecond to microsecond pulse amplitude or frequency. At the 

same time, the output would be the amplitude or frequency of Rabi-

oscillations red from nanosecond time-resolved measurement 

techniques [84]. The intrinsic memory would come from the Rabi-

oscillation damping, while a feedback delay line could create the 

extrinsic memory as in ref [28]. Implementing single node reservoir 

computing would tremendously speed up the computation by 

exploiting the time scale associated with the coupling strength.  

 An intermediate step would be to stay in the steady-state 

dynamics but in the non-linear regime. Inputs would be encoded in 

the pump power or frequency, and the neuron output would be the 

frequency of the upper or lower CMP since the frequency in the non-

linear regime is a non-linear function [85]. This concept allows the 

implementation of a feedback loop but does not implement an intrinsic 

memory.  

 Finally, the concept of vowel recognition using photon-

magnon coupling in a varactor-loaded SRR array has been presented, 

and a solution for encoding the second frequency coordinate 𝑓𝐵 
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suggested.  Besides pursuing this work, an interesting additional 

experiment will be to study the non-linear regime of a PM coupled 

v-SRR since both a PM coupled system and a v-SRR independently 

exhibit bistability [93].  
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초록 

Loïc Millet 

서울대학교 재료공학부 대학원 

 

뉴로모픽 컴퓨팅은 작업을 수행함에 있어서 기존 컴퓨팅을 

능가할 수 있도록 인간의 두뇌를 기반으로 설계된 컴퓨팅 

패러다임입니다. 특히 저장소(Reservoir) 컴퓨팅은 뉴로모픽 컴퓨팅의 

한 형태로서 작업을 수행하기 위해서 저장소라고 하는 비선형 뉴런들이 

반복적이고 무작위로 상호 연결되어 있는 네트워크를 사용합니다. 

뉴로모픽 컴퓨팅의 효율을 증대시키기 위하여 스핀트로닉스에 기반하여 

뉴로모픽 컴퓨팅을 구현하는 연구들이 활발히 진행되고 있습니다. 기존 

CMOS 시스템은 뉴런과 시냅스의 특성 자체를 모방하려 하는 반면에, 

뉴로모픽 장치에 대한 연구는 본질적으로 두뇌 자체와 유사한 장치를 

만드는 것을 목표로 하고 있습니다. 

본 연구에서 우리는 2D 하이브리드 구조에서의 광-마그논 

상호작용을 사용하여 뉴런을 구현함으로써 Reservoir 컴퓨팅 

패러다임에서의 파형 인식을 성공적으로 수행하였습니다. 2D 하이브리드 

시스템은 ISRR(Inverted Split-Ring Resonator, 반전된 분할 링 

공진기)과 YIG(Yttrium Iron Garnet) 박막으로 구성됩니다. 광자-

마그논 결합 혹은 CMP(Cavity-Magnon Polariton)이라 불리는 이 
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모드의 속성을 파형이 균일한 정자기장의 형태로 입력되는 동안 뉴런의 

출력으로써 이용하였습니다. 광-마그논 상호작용의 공진주파수, S21 

파라미터의 매개 변수 크기 및 위상으로 얻은 높은 실험적 성공률은 

뉴로모픽 시스템에서의 분류 작업에 대한 광-마그논 결합의 유용성을 

처음으로 제시하였습니다. 본 연구는 2D 하이브리드 시스템에서 광-

마그논 결합을 사용한 더 고차원적인 작업과 뉴로모픽 네트워크를 

구현하기 위한 첫 번째 단계라고 할 수 있습니다. 이는 더 나아가 

뉴로모픽 컴퓨팅 체계에 기반한 다음 단계의 시스템의 개념을 

제시합니다. STNO(Spin Torque Nano-Oscillator)을 사용한 선행 

연구에서 입증된 바와 같이, 뉴런 집합을 모방한 공진기 배열과 입력 

신호를 받아들이는 외부 주파수 간의 동기화를 통하여 생체의 연산과 

유사한 컴퓨팅 시스템을 구현할 수 있습니다. 이러한 개념은 모음 

인식을 수행하기 위하여 사용되었으며, 본 연구진은 광자-마그논 

결합을 이용하여 해당 개념을 구현할 계획입니다. 

 

키워드: 광-마그논 결합, 하이브리드 구조, 역분할 링 공진기, YIG, 

뉴로모픽 컴퓨팅, Reservoir 컴퓨팅, 뉴런, 파형 인식, 모음 인식, 결합 

범위, 분할 링 공진기 배열 
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