creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering

Neuromorphic Computing based
on Photon—Magnon Coupling

August 2021

Graduate School of Engineering

Seoul National University
Materials Science and Engineering Major

Loic Millet



Neuromorphic Computing based
on Photon—Magnon Coupling

F-vax= B3FL) 7N 29 HEY
AERF: A X =Z
°] =EE TTAl =R oT 2

20214 07 €

My st

s3Iy
Loic Millet

Loic Millet8] 4Alstgy) =82 Az

2021d 07 9
AHeR ¥ 3 A
Rmih-X's 2 A =
A K 3 4 9

i

5 4208t 3



Abstract
Loic Millet
Department of Materials Science and Engineering
The Graduate School

Seoul National University

Neuromorphic computing is a brain—inspired computing
paradigm to outperform conventional computing on specific tasks. In
particular, reservoir computing 1s a form of neuromorphic computing
that uses a recurrent and randomly interconnected network of non—
linear neurons, called a reservoir, to perform classification tasks. To
improve further neuromorphic computing efficiency, spintronics—
based neuromorphic computing devices are intensively studied. As
opposed to conventional CMOS systems emulating neurons and
synapses properties, neuromorphic device research aims at creating
intrinsically similar devices.

In this work, photon—magnon coupling in a 2D geometry
hybrid was successfully used to create a neuron performing
waveform recognition in the reservoir computing paradigm. The
hybrid system consists of an Inverted Split—Ring Resonator (ISRR)

and an Yttrium Iron Garnet (YIG) film. The photon—magnon coupled—
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mode properties or Cavity Magnon Polariton (CMP) properties were
used as neuron outputs while the waveforms were encoded in a static
and uniform magnetic field. High experimental success rates obtained
from the CMP mode frequency, S,; parameter magnitude and phase
demonstrate for the first—time photon—magnon coupling usability for
classification tasks. This demonstration is a first step towards
realizing more complex tasks and networks relying on photon—
magnon coupling in hybrid systems.

Additionally, the concept of a second task relying on a

different neuromorphic computing scheme is presented. As
demonstrated by pioneering work on Spin Torque Nano—Oscillators
(STNO), the synchronization between an oscillator emulating a
collection of neurons and an external frequency encoding input data
allows computing in a bio—inspired way. This concept has been used
to perform vowel recognition, and the corresponding concept using
photon—magnon coupling is presented.
Keywords: photon—magnon coupling, hybrid system, inverted split—
ring resonator, yttrium—iron garnet, neuromorphic computing,
reservoir computing, neuron, waveform recognition, vowel recognition,
coupling range, SRR array

Student number: 2019—-26377
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Chapter 1. Introduction

1.1. Moore’s Law

In 1965, Dr. Gordon Moore observed a trend in integrated
circuit manufacturing. The number of components minimizing the cost
per component in an integrated circuit doubled every year [1]. Home
computers, mobile phones, and various technological innovations
were foreseeable from these predicted exponential performance
increase and relative cost decrease. 10 years later, in 1975, Dr.
Moore updated his projection to the doubling of transistors every two
years, for what is now known as the Moore’s Law [2].

Moore’s Law drove the Information Technology industry.
Coordinated efforts of worldwide manufacturers and suppliers of the
semiconductor industry led to the sustained scaling down of circuit
elements, turning Moore’s Law into a self—fulfilling prophecy [3].

While scaling down transistors usually improved clock speed
and power consumption, heat dissipation, which depends on the two
variables, became a significant issue below 90nm [4]. To remain
within power levels that can be dissipated, and since the supply
voltage was not going any lower, the clock speed increase was

hindered. Therefore, despite the continued increased transistor
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density, single processor performance grew slower since the 2000s
after years of exponential growth [5].

This expectation gap between Moore's Law and computing
efficiency opens the way for dramatic innovations in computing [5].
In 2016, the International Technology Roadmap for Semi—Conductor
changed its Moore’s Law—centered strategy for the More than Moore
approach. The focus for chips development includes diversification in

architectures and devices [6].

1.2. Artificial Intelligence

The question of Artificial Intelligence (AI) can be found since
the early days of computing in Alan Turing's papers [7]. Al, which
aims to implement human cognitive functions such as learning and
problem solving in machines or computers, has considerably grown
in recent years due to the development of new hardware such as
Graphical Processing Unit (GPU) and the availability of large datasets.
Al shows its usefulness in various applications and sectors such as
image and speech recognition, materials science, medicine, or finance.

Al relies on Artificial Neural Networks (ANN) such as Deep
Neural Networks (DNN) and Recurrent Neural Networks (RNN) and

other Machine Learning (ML) concepts to compute [8]. Those
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concepts usually require a considerable amount of data with
numerous matrix multiplication to work successfully. Consequently,
Moore’s Law expectation gap and the von Neumann bottlenecks (the
physical separation of memory and processors) hinder the further
development of AIl. The research for new Al hardware and
architectures is at the core of neuromorphic computing device

research.

1.3. Neuromorphic Computing

The physicist Carver Mead introduced the term
Neuromorphic Computing (NC) in 1989 [9]. Initially, NC described
the use of silicon—based electronic systems to reproduce brain—Ilike
computation, mainly for neuroscience and simulation purposes. This
definition evolved over the years to include the research for new Al
hardware, architectures, and algorithms by intrinsically mimicking
biological brain structures instead of simply running brain—inspired
ANN algorithms on CPUs and GPUs [10].

The brain can be seen as a highly interconnected and
energy—efficient computer operating at a different time and spatial
scales [11]. Around 80% of the brain’s volume is made by the

cerebral cortex, the walnut—like outer shell responsible for a
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considerable part of information processing. The cerebral cortex is
divided between the left and right hemispheres into four lobes
(frontal, parietal, occipital, and temporal). In each lobe, several areas
assuming one or a few specific functions can be further distinguished.

Zooming in further in the spatial scale allows us to see
neurons and synapses. Electrical potential spikes generated by
neurons are used in the brain to encode information, communicate
and compute. A neuron is composed of dendrites which are filaments
used to receive inputs from other neurons, a cell body where inputs
can be stored through the cellular membrane voltage and capacitance,
and an axon used for sending outputs to other neurons. The Leaky,
Integrate, and Fire model [12]—[15] can describe a neuron's basic
behavior. Inputs from other neurons coming from dendrites are added
up in the cell (integrate). This potential leaks over time towards the
resting potential level (leaky). If a potential threshold is exceeded,
the neuron emits a spike (fire). Many more or less bio—plausible
models exist [16].

The other main component in the brain is the synapse. A
synapse is a tiny gap making the interface between a dendrite and a
neuron’s body. Electrical signals transported by ions flowing through

the synapse can be reinforced or inhibited by the synapse
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capacitance modulation, thus realizing in—memory computing. This
capacitance or “weight” storage and adaptation is at the basis of
memory and learning. How the weight evolves describes a learning
rule, whereas the ability to evolve is called synaptic plasticity. The
Long— or Short—Term Potentiation and Depression (LTP/LTD,
STP/STD) [17] plasticity are the synapse abilities to change their
weights for milliseconds to hours and weeks. The Spike Timing
Dependent Plasticity (STDP) [18] and the Spike Rate Dependent
Plasticity (SRDP) [19] learning rules increase or decrease the
synaptic weights according to the time difference between post and
pre—synaptic spikes or to the pre—synaptic firing rate.

Therefore, the brain, which contains approximately 10°
synapses and 10! neurons perform simultaneous computations
directly at the memory location. As a result, our brains can
simultaneously and accurately complete multiple tasks such as
language, visual, and audible information processing, to name only a
few, using only 20 Watts. To reproduce this energy efficiency and
performance on a chip, neuromorphic device research aims to create
neurons and synapses properties in new devices with highly

interconnected architectures.
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1.4. Emerging Neuromorphic Devices

Emerging neuromorphic devices can be classified depending
on the main physical mechanisms at play [16]. For instance,
emerging devices can rely on anion or cation migration [20], phase
change [21], ferroelectricity [22], magnetism, and spintronics [23].
Up—and—coming synaptic devices are memristors [24] organized in
crosshar arrays [25], while spintronics Spin—Torque Nano—
Oscillators (STNO) show promising applications as nano—neurons
[26]—[30].

This thesis explores a new field at the interplay between
spintronics, magnetism, quantum optics, and microwave engineering,
namely Photon—Magnon Coupling [31],[32], for realizing a

neuromorphic neuron.

1.5. Photon—Magnon Coupling

Strong light—matter interactions can create new quasi—
particles, called polaritons, which are hybrids of light and matter
states [33]. Strong light—matter interactions have been typically
observed in crystals between photons (the quanta of electromagnetic
waves) and phonons (the quanta of lattice vibration). In such a

system, the two independent harmonic oscillators couple through
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light—matter interactions leading to 2 polaritons modes [34]. The
frequency dispersion of the two modes shows independent phonon—
and photon—like behaviors far from the zero—detuning point
(A= Wphonon — Wpnoton), Whereas modes anti—crossing is observed

near A,=0.

The emerging field of Cavity Quantum Electrodynamics
(CQED) experimentally observed anti—crossing between a photon
cavity mode and a single 2—level atom in 1992 [35] and 1996 [36].
Over the years, anti—crossing, which is often seen as the signature
of strongly—coupled quantum particles, has been observed with
multiple systems [37] such as excitons in semiconductors [38],

qubits in superconductors [39], and Rydberg atoms [40].

Anti—crossing between microwave photons and magnons was
theoretically predicted in 2010 [41]. In 2013, strong photon—magnon
coupling was experimentally demonstrated between a YIG sample
and a superconducting coplanar microwave resonator at cryogenic
temperatures [42].In 2014, different coupling regimes (strong, weak,
Magnetically Induced Transparency, Purcell Effect) were shown at
room temperature between a YIG sphere and a 3—dimensional cavity

[43]. The quasi—particle resulting from strong photon—magnon
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interactions in a cavity is called Cavity Magnon—Polariton (CMP).
Classical, electrodynamical, and quantum theories of the transmission

line shape have been developed over the years [44],[45].

In 2014, strong photon—magnon coupling was shown between
a single crystal YIG sphere and a Split—Ring Resonator (SRR), a 2—
dimensional photon cavity [46],[47]. While previous studies focused
on superconducting cavities at cryogenic temperatures or 3—
dimensional cavities at room temperature, this study opened the path
for 2—dimensional systems at room temperature. In particular, strong
photon—magnon coupling was observed between an Inverted Split—
Ring Resonator (ISRR) and an YIG film in 2017 [48], which is a

similar system to the one used in this thesis.

Besides fundamental physical interests, achieving strong
coupling between quantum systems enable technological progress
[49], [50]. For instance, the field of Quantum Information Processing
and Communication (QIPC) may use photons for transmitting
information, superconducting systems for processing, and spin
ensembles for information storage [37]. Such envisioned hybrid
system needs to exchange data between its various components.

Transducing information requires preserving coherence (phase
8
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preservation of excitations). Since the transduction rate is
proportional to the coupling strength and decoherence is proportional
to the damping rates, the coupling strength must be higher than the
damping rates: this is the strong coupling regime. Other applications

include quantum repeaters [51] and quantum memories [52].

1.6. Thesis Outline

This thesis aims to create a neuromorphic neuron device from
photon—magnon coupling in a hybrid magnonics system [53]. The
hybrid system consists of an ISRR loaded with an YIG film. In this
planar system, strong photon—magnon coupling results in anti—
crossing [45], [48]. The CMPs are used as neurons: in the coupling
range, the properties of the resulting CMPs, such as the SZ21
parameter magnitude, frequency, and phase, can be used as neuron
functions. Those functions are used separately to perform a
waveform classification task (classification between sine and square
waveforms) in the reservoir computing framework, following what
was previously done for single STNOs [28].

Additionally, the concept of vowel recognition based on the
photon—magnon coupling is presented in the last part. Following [27],

frequency recognition can be realized by encoding information in the
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synchronization between an oscillator frequency and the frequency
of an additional driving force. Using two additional frequencies, the
resulting synchronization map in an array of oscillators leads to
multiple synchronization states, which are used to encode, and hence
recognize, input vowels. The numerous coupling ranges in photon—
magnon coupling between photon oscillators and the magnon
oscillator in an array of SRR photon resonators reproduces the idea
of synchronization range and should allow performing the recognition.
Since only the concept has been laid down by the time the thesis was
written, the thesis is mainly focused on waveform recognition, and
vowel recognition is presented in the last chapter.

Chapter one provided a historical overview of the IT industry
leading to Al and the need for new neuromorphic devices. An
overview of photon—magnon coupling summing up its main features
and applications was given, ending up with a new possible application
in the field of the neuromorphic device.

Chapter 2 lays down further the theoretical knowledge
required in this thesis. The computing paradigm, reservoir computing,
is explained in detail. Following RC, the classification task to perform
1s presented. Finally, classical and electrodynamical theories of PM

coupling are discussed.
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Chapter 3 explains the precise experimental setup and
parameters, and procedure. The hybrid system and the neuron
functions are shown.

Chapter 4 presents the results. Experimental and simulation
recognition success rates are given for different configurations
(ISRR alone, YIG alone, 2 YIG positions, two magnetic field angles,
degenerate waveform sequences).

Chapter 5 presents the concept of vowel recognition using
photon—magnon coupling.

Chapter 6 concludes the thesis, discusses the results, and

suggests further work.
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Chapter 2. Literature Review

Chapter 2 offers a review of reservoir computing and photon—

magnon coupling theory. The recognition task is also explained.

2.1. Reservoir Computing

Reservoir computing (RC) is a neuromorphic computing
framework based on Recurrent Neural Networks (RNN) [54]. In an
RNN, feedback loops and neurons dynamical behavior enable the
processing of temporal data. RC appeared after the development of
Echo State Networks and Liquid State Machines as a unified
framework for RNN—based networks [55]. This subchapter starts by
explaining the general working principle of RC and the specific RC

framework used in this thesis [56].

2.1.1. Classical Scheme of Reservoir Computing
The basic functionality of RC is data classification. Inputs to
classify are sent to a network made of non—linear and randomly
interconnected units called neurons. This Neural Network (NN),
called a reservoir, also possesses randomly defined recurrent

connections. Such a network is thus called a Recurrent Neural

Network (RNN).
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Connection values (thereafter called weights) between the
input layer and the reservoir are randomly fixed. On the other hand,
reservoir—to—output—layer weights change. This evolution follows a
supervised learning rule while all the other weights remain identical.
Weights of recurrent connections can either remain fixed or evolve

via an unsupervised algorithm (figure 1.a).

The neuron activation function is the relationship between the
neuron’s output and its inputs. In an artificial (algorithmic)
implementation of RC, the neuron function is often the hyperbolic
tangent function. In that case, a general equation giving the neuron's
output is:

x(t+1) = fFWmxu(t+1) + W x(t) + WP «51) (2.1.1)

With x(t) the vector describing the reservoir state (N—dimensional
vector with N the number of neurons), u the input vector, y(t) the
output state vector, f the neuronal activation function (tanh),
W™ the input layer to the reservoir weight matrix, W the reservoir
internal weight matrix and W/? an optional matrix for output-layer—

to—reservoir weights.
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A general output layer activation function is:

y(@) = fOEW « [1,x(8), u(®),y(t — 1)]) (2.1.2)

fout is usually the identity function, W* is the weight matrix whose
values are found by learning via linear regression, y(t —1) is the
previous output vector, u(t) is the input vector, x(t) is the vector
containing each neuron output, and [., *-,.] is the vertical
concatenation. The unitary vector 1 corresponds to adding a bias in
the linear regression. In terms of RC, the bias corresponds to a

neuron always equal to 1.

In this work, the output layer activation function is simply:

$(£) = We=" 1, x(0)] (2.1.3)

With Wres—out the reservoir—to—output weight matrix.
When an input signal is applied, neurons responses are
measured and combined linearly at the output layer. The network’s

output can be equivalently rewritten as:

N
y() = Zwim‘“‘” * x;(t) (2.1.4)

i=1

Where 9(t) is the network output, x;(t) is the i*® neuron response,

w;"es~0ut s the weight between the i" neuron and the output layer.
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A learning algorithm adjusts the weights. The goal is to find
the weights so that the nt* input type, among p different input types

to be classified, gives for the n®* output y,:

{};’7\(‘?;:10 (2.1.5)

For all n,m € [1,..,p].

Separating different types of input using linear combinations of non—

linear functions is called a linear classifier.

2.1.2. Training and Testing a Reservoir Computer
RC is a paradigm change in the way recurrent networks are
trained (figure 1.a). Usually, all weights are changed: the weights
from the input layer to the reservoir, the weights inside the reservoir,
and the weights from the reservoir to the output layer. RC only
changes the weights from the reservoir to the output layer. This
considerable reduction of trained parameters makes reservoirs

easier to train than other types of RNN.

To find the matrix elements w;"®$7°% of the reservoir—to—

output weight matrix W'e %% each neuron output is measured for a
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whole input sequence. For N neurons, one bias neuron xo =1 and M

inputs, the reservoir state is a ((N + 1)) * M) dimensional matrix:

xg - xg
R = ( : : > (2.1.6)
ay() - xy(M)

Next, we define the weight matrix W'®s—°% In general,
wres—out is a (p = (N +1)) dimensional matrix, with p the number of
input types or, equivalently, the number of linear classifiers to train.
In this thesis, since inputs are classified between 2 categories, one

linear classifier is enough. Therefore, we obtain:
—out — —out —out
Wres—out = (Wores ou ries ou) (217)

The following step is to define the targeted output matrix Y.
Y isa (p x M) dimensional matrix. For two types of inputs, the matrix
elements y of ¥ equal 1 when one category is applied to the system
and O for the second. As the learning dataset is known, this matrix is
also known. With M number of inputs and one linear classifier to train,

we have:

Y= - yM) (2.1.8)

Similarly, we define the (p* M) output matrix, which contains the

linear combinations Y, as:
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Y=3@) - yM) (2.1.9)

The training goal is to determine the weights W7Tes—out o fit ¥ with

Y. This is done by minimizing the mean square error:
MSE = |7 — ¥||" = [[wres—out « R — |2 (2.1.10)

This is done by choosing:
wres-out — (y « RHT (2.1.11)

Where t denotes the Moore—Penrose pseudo—inverse.

After learning, an unseen dataset is applied to the system.
This is the testing phase. Each neuron output is measured, and the
trained weights W' °% are used to calculate the linear

combinations according to:
Y = wres—out . R (2.1.12)
The trial is a success if:

{?(i) >0.5and y(i) =1

(D) < 0.5 and y(i) = 0 ,fori €[1,..,M]. (2.1.13)

And is a failure otherwise. The number of successes to the number
of trials ratio gives the success rate. Success rates under various

experimental conditions are the main results reported in this thesis.
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2.1.3. Reservoir Requirements
Neurons in the reservoir must meet several requirements for
the classification to work. Three main requirements are discussed

here.

The first and most basic requirement is neuronal non-—
linearity since in RC, classification requires signals to be non—

linearly projected into the reservoir space by the neuron function.

The second requirement is the reservoir size. Separating
inputs with linear classifiers requires a highly dimensional reservoir.
Hundreds or thousands of neurons can be necessary to achieve good

performances.

The final requirement is memory. Depending on the task,
neurons may or may not require intrinsic short—term memory and
feedback loops. A relevant example is a waveform sequence
containing two types of waveforms: sines and squares. If both
waveforms share a common value, the common value cannot be
successfully classified without a memory. If the sequence is not

degenerated, memory 1s not required.
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2.1.4 Reservoir Computing with a Single Neuron
Reservoir size 1s a significant issue for hardware
implementation of RC. In 2011, Appeltant et al. demonstrated RC with
a single neuron [57]. By using unique data pre—processing, the entire
reservoir can be emulated from a single hardware neuron. This is the

method used in the thesis (figure 1.b).

The data pre—processing is illustrated in figure 1l.c. Two
types of signals can be sent as input: Time—continuous signals or
time—discrete signals (u(t) and u(k), respectively). First, signals are
sampled and held with a T time periodicity. Then, each sampled value
is multiplied by a mask M, a (1 *N) matrix with N the number of

h value represents the input—to—

neurons to emulate, where the it
it" neuron weight [58]. In this work, following dr. Grolier’s example
[28], the mask is a random +1 binary sequence. The final step is
time multiplexing. Each newly obtained value is held for a time O,
with ©=1/N. The i*® neuron is simply the single hardware neuron

when the sampled input value times the it" mask value is applied to

the system.

A delayed feedback loop with the same T periodicity is added

to the system if a short—term memory is desired. Since the
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periodicities between the pre—processing and the loop are shared,

the it" neuron will receive its previous output as an input as well.

The inter—neuron connection can be achieved by using the
device's intrinsic relaxation time. Each pre—processed input value is
held for a time O, with ©=7/N. If © is lower than the relaxation time,
the i" + 1 neuron output will depend on the " neuron output. To
measure each virtual neuron output, the device response is red after
each time step ©. Because the network output linearly combines the

N virtual neurons outputs, we obtain for any time t:

N

PO =) WS- — (N =) (2.1.14)

i=1

With one linear classifier to train, M sampled points to classify
applied for a time T, N neurons, and one additional bias neuron x, =

1, an equivalent matrix formulation is given by:

Y = wres—out . g’ (2.1.15)
Xo X0
x1(0) x1(M % 0)
Where: R'=|x,(20) . x(M=*20) |, (2.1.16)
iy - xy(M*)
wres—out — (Wores—out ries—out) and Y = F) - M *1)).

Training and testing are following the classical scheme of RC.
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Figure 1. (a) RC scheme. (b) Single node RC scheme. (c) Data pre—
processing [57].
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2.1.3. Waveform recognition with single node RC

Hardware implementation of single node RC has been
demonstrated with electrical systems [57],[59], mechanical systems
[60]—=[61], photonic systems [62] —[68], memristor array [69] and
spintronics using STNOs [26]—[30], [70]. Waveform recognition of
a degenerate [28] or non—degenerate [59] sequence is a typical
benchmark task for RC with a single hardware node. Non—degenerate
waveform recognition is the task performed in this thesis.

The first step towards recognition is the dataset creation. The
dataset is made of a randomly defined sequence of sine and square
waveforms with different amplitudes. Each waveform is made of a
given number of sampled points (figure 3.a).

Following Appeltant et al. [57], each sampled point is
multiplied by a mask defining the number of neurons (figure 3.b).
According to an encoding scale, the resulting pre—processed data
points are successively applied as inputs to the system for a given
time © (figure 3.c).

In the training step, half of the data is used for finding the
weights W'~ °U Ly minimizing the MSE. The other half is kept for

testing the network output to find the success rates, using the trained
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weilghts. The goal is to recognize the category of each sampled point
by reconstructing the network outputs Y from the measured
hardware response R'. The process is illustrated in Figures 2 and 3
for an STNO [28].

Besides the success rates, the Normalized MSE (NMSE) is

also tracked:

1

NMSE:W;()’(M —ym)?  (2.1.17)

Where y(n) is the network output and y(n) is the target value.

Equivalently, the Nash-Sutcliffe Efficiency (NSE) can be
tracked [71]:

NSE =1 — NMSE (2.1.18)

The NMSE/NSE ranges in [0,+]/[-20,1]. An NMSE/NSE equals 0/1
indicates a perfect prediction. On the other hand, an NMSE/NSE =1/
<0 shows no added benefit from the network compared to a model
equal to the target values' mean. By measuring the network output
deviation from the target, both NMSE and NSE assess the prediction
quality. Assessing the prediction quality allows to discriminate
systems with equal success rates and to compare different neuron

hardware.
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Figure 4. (a) Single node RC with an STNO for non—degenerate
waveform recognition. The STNO interacts with H;, which encodes
waveforms. (b) Neuron functions are the frequency (violet), phase
(blue), and amplitude (red) of the STNO voltage as a function of the

microwave current frequency. [28].
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2.2. Photon—Magnon Coupling Theory

2.2.1. Spin Waves and Magnons

Interaction between electronic spins in atoms can lead to
magnetic ordering [72]. In particular, exchange interaction between
neighboring spins can lead to parallel (ferromagnetism) or
antiparallel (antiferromagnetism) spin orientations.

Meanwhile, when a bias magnetic field is applied on a spin
magnetic moment, a torque tends to align the magnetic moment on
the field to decrease Zeeman potential energy. As a consequence, the
magnetic moment undergoes a damped precession motion around the
magnetic field according to the Landau—Lifshitz—Gilbert (LLG)

equation [73]:

dm_ < H + ><dm 2.2.1)
dt—ym am it 2.

When strong exchange interaction keeps all the spins parallelly
aligned, the resulting uniform magnetization precession motion obeys
the LLG equation, and the resonance frequency is given by:

w, = yJH(H + poMy) (2.2.2)
Where y is the gyromagnetic ratio, H is the external magnetic field
and pgMs is the saturation magnetization. This in—phase collective

motion can be seen as a spin—wave of infinite wavelength called the
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Kittel's mode. Alike electromagnetic fields and photons or crystal
lattice vibrations and phonons, spin waves are quantized in magnons,
a bosonic quasi—particle.

In thin—film magnetic samples, additional finite wavelength
spin—wave modes can be excited [74]. Short wavelength modes are
dominated by exchange interaction, while long—wavelength modes
are dominated by magnetic dipolar interaction. Depending on the
external magnetic field angle and the spin—wave propagation
direction, different dipolar dominated spin waves, or magnetostatic
waves, can be excited, as illustrated in figure 4.

While each spin—wave mode can couple with photons, the
coupling strength is inversely proportional to the wavenumber [75],

and the strongest coupling is usually achieved with Kittel’s mode.
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2.2.2. Classical Harmonic Oscillator Model

Photon—magnon coupling can be described by a classical
harmonic oscillator model [44]. The cavity photon oscillator and the
magnon oscillator resonance frequencies are respectively w, and
w,, . Photon and magnon losses are modeled by viscous forces of
damping constants B and a. The oscillators are coupled by a spring
of constant k. In this first model, only the photon oscillator is driven
by an external force f(t) = fe ! representing a microwave input of
frequency w.

Considering a unitary mass, Newton's Laws lead to the
following equations of motion for the photon and magnon oscillators:

X+ 0 l2x, + Bwox, + Ko lx,, = fe i@t

.. 2 . 2 (2.2.3)
Xm + O Xy + AW, X, + K0 X, = 0

Assuming an oscillator motion of the form x..,()=
Xem€ P (ke m () = —iwxem(8) 5 ¥em(t) = —@2x, (), we obtain in a
matrix form:

(wz _ w2+ ifw.w —kw,? >(x) = () @.2.0

—Kkw,? w? — 0w, tiaw,w) \VFm

The determinant of the 2*2 matrix Ais given by:

det(A) = (0? — w2 + ifw.w)(0? — 0,° + iaw,0) - Kol (2.2.5)
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Solving numerically for w and plotting the real and imaginary parts
gives the eigenmodes dispersion and their linewidth evolution (figure
5.2 and 5.b for w,=10.54GHz, a =0.8x 1074, =3 x10"% yuoH =

—37.7mT).

Further analytical analysis can be done in the low damping case

(a, B < 1) near the crossing point (w = o, = w,,). The 2+2 matrix A

becomes: (2.9.6)
w? -w? —kw? 20, (0 — w,) —Kkw,?
A= 2 2 2]~ 2
—Kw, W — Wy, —Kw, 2w (0 — w,y)
So, the determinant is:
det(A) = 4wc(w - wc)(w - wm) - szc4 (227)

Approximating terms proportional to frequency sums by 2w, while
keeping terms proportional to differences is called the Rotating Wave

Approximation (RWA).

The roots are given by:

W+ oyt Qg (2.2.8)

wi: 2

Where we defined the generalized Rabi frequency as Q4=

\/(wc - wm)z + K4wcz'

Finding the eigenvectors X; = (u4,v4) 1s done by solving
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the following matrix equations:
(Z(om_r —we) —Kw, ) ugp\ (0)
—Kw, 2(wy —wy)) \vy )~ \0
Which can be simplified as:
A+ Q, —Kw, u
—Kw, —-A+Q4/\v

Where A= w,, — w,.

)=

H I+

Solving the first line gives after normalization:

Uy 1 TKw,
vi iA + Qg

\/(ch)z +(a+ ﬂg)z

With sin(@) = '“"C/ﬂ and cos(0) = A/ﬂ we get:
g g

up) 1 + ﬂg¢A>
vi) 20, \ /O A
Therefore, we finally get:

()= (o)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)

With 4 =u, and n, =v,. The coefficients ny(n) and ny(ny) give

respectively the photon and magnon proportion of X,(X_) (figure

5.0).
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the CMP modes. (c) Evolution of 1y and n, [44].
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Finally, expressing the energy transmitted through the
system requires adding an energy absorber coupled with the photon
oscillator. Physically, such a third oscillator equation represents an
output port connected to the cavity, whereas the driving force is
applied to the cavity through an input port. Defining an impedance
mismatch parameter T, the output to input energy ratio, the so—called
S,1 parameter is given by:

o = rwc4 (w? — w,? +iaww,) (2.2.14)
21 w? det(A)
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2.2.3. Electrodynamical Model

PM coupling for the hybrid system used in this thesis was
described by Bhoi et al. [45]. In this electrodynamical model, the
driving force f(t) excites both cavity photons and magnons. f(t)
represents an RF current flowing through a microstrip line. The
photon cavity is a planar Inverted Split Ring Pattern (ISRR) etched
on the ground plane of the microstrip line [76],[77]. f(t) drives the
photon oscillator by inducing an RF current in the planar cavity while
it can directly excite magnons through Ampere’s circuit law. Coupling
comes from electromagnetic interactions. When excited, the photon
cavity creates an RF magnetic field that interacts with magnons from
a ferromagnetic film. On the other hand, magnons from the
ferrimagnetic film induce additional currents in the planar cavity

according to Faraday’s Law.

The voltage created in the cavity by the AC current j from
the microstrip line is given by V = Zggrj. With L the ISRR inductance,
C its capacitance, wisgg = 1/VLC its resonance frequency, the ISRR

impedance Z;sgg 1S given by:
iL " " .
Zisrr = —— (0% — wiggp? + 2ipwisgr®) (2.2.15)
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Following Faraday’s Law, magnons induce an additional voltage in the
ISRR proportional to the oscillating magnetization vector m*. The

voltage is given by:

Visrrevic = —KpLom?* (2.2.16)

Where Kp is a coupling constant from Faraday’s Law. Adding the
induced current to j, the total current J* in the ISRR is given by:

Jt =Je i@tte) (2.2.17)

Where ¢ is the phase difference between the ISRR current and the
microstrip line current. With Vispreyic = Zisgr)”™ and V = ZigppJ*t, we

can write the equation for the cavity photon mode:
iKFw2m+ + (wz — wISRRZ + ZiﬂwISRRw)]+ =0 (2218)

The magnon equation is obtained from the linearized LLG equation
[80]. By considering both the oscillating magnetic field coming from

the microstrip line hype = he ™! and the ISRR magnetic field hjggg =

|hisgrrl

7 le‘i‘/’=6e‘i“’h,ine as exciting oscillating fields, they obtained
line

after using Ampere’s Law :
(@ — o, + iaw)m* — iw,K,(1 +8e®)+ =0 (2.2.19)

Where K, is a coupling constant coming from Ampere's Law and
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Wy =YUoMg. The 2%2 matrix A becomes:

A= ((DZ - (DISRRZ + 2iﬂo')ISRR(")) iKF(")2 (2220)
—iwn K, (1 + 8e'?) (0 - w, +iaw)

Solving the real part of det(A) gives the following dispersion relation:

Wi = %[(wr + wispr) 1/ (0, — ©spp)? + (414)?] (2.2.21)

With A= - \/2K?@,w;spr(1 + 6c05@)? and K? = KK
And the §,; parameter is:

+ 20,0 _ :
P AR (@ — o, + law) (2.2.22)
j det(A)

From this equation, the §,; parameter and phase of the cavity,
magnon mode, and coupled systems can be plotted in the @w — H plane,
or equivalently, in the w —1I plane, where I is the current flowing
through the electromagnet generating H (figure 6). While such plots
are usually drawn in the w—H plane, the w—1 plane is more
convenient for this research work. Figure 6 clearly shows the mode
splitting around the anti—crossing point (current value where w, =
wsgr)- The plotting was done with w, =4.0GHz,ugH = 0.172T,a =

3.2x10°48=2x10"2T=0.04, K=10.0458=0.50=0 .
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and (c) coupled system. (d) Phase of the coupled system. Solid black
lines are the fitted upper and lower branch of the frequency
dispersion. Horizontal and vertical dotted black lines are respectively

the cavity and magnon frequency.
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Chapter 3. Experimental Method

3.1. Observing Photon—Magnon Coupling

Observing strong photon—magnon coupling requires a high—
quality cavity and low damping magnons. Hybrid systems used for
photon—magnon coupling usually combine a 2— or 3—dimensional
photon cavity with an Yttrium Iron Garnet ferrimagnetic sphere or
thin film. In this thesis, a 2—dimensional cavity along with a YIG thin
film were used. Meanwhile, S,; parameters are measured from
Vector Network Analyzer (VNA) calibrated two ports measurements.
The measurement technique and the two subsystems are presented

in this sub—chapter.

3.1.1. Microwave Measurement
The S,; parameter is the energy transmitted through the
system. According to equations (2.2.14) and (2.2.22), at the photon
and magnon frequencies for an uncoupled system or at the CMP

resonance frequency for a coupled one, the system strongly absorbs

microwave energy, and dips in the transmission spectra are observed.

In general, S—parameters for a 2—port system can be measured with

a VNA [78]. The S—parameters are given by §;; = Vi where V" is

Zi
+
Vj
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the microwave voltage reflected from port i and V]-+ 1s the voltage
sent to port j. Therefore, during an S,; parameter measurement,
the VNA measures the ratio of microwave voltage received at port 2
to the microwave voltage sent from port one for different angular

frequencies w.

The VNA used in the experiments is an Agilent Technologies
E8362C PNA Network Analyzer. Both S,; parameter and phase are
measured in a dedicated channel. Measurements were performed
from 2GHz to 6GHz with 6401 points per trace. The sweeping rate,
or IF Bandwidth, was set to 10kHz to have a fast sweeping rate. Even
though both channels were calibrated, post—measurement data
calibration was required for phase measurements to subtract a linear
phase shift induced by the hybrid system. The first measured point
was set to O degree, and the linear phase shift, measured between
2GHz and 2.5 GHz (far from resonance), was removed from the trace.
The VNA was entirely controlled by a computer using LabVIEW and

RS232.
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3.1.2. Photon System: Inverted Split—Ring Resonator
Split—Ring Resonators (SRR) are an essential building block
for metamaterials [76],[77]. SRRs can be used to engineer magnetic
permeability and negative refractive index [79]. An SRR is a split
ring or square made of a conductive material deposited on a dielectric

substrate in its simplest form. This structure shows a geometry

dependant resonant frequency w, = \/%_c with L the SRR inductance

and Cthe SRR capacitance given by:

2
Czeosc%t,L=y,,17 (3.1.1

With r the ring width, g the gap length, t the metal thickness, and
l the ring length.

SRRs can be excited by a microstrip line. Current flowing in
the microstrip line induces a current in the ring and a magnetic field
perpendicular to the ring plane. The system behaves as an LC circuit:
the gap behaves like a capacitor while the ring behaves like a coil. In
an Inverted Split Ring Resonator (ISRR), the SRR is patterned in the
substrate’s ground plane just below the microstrip line, and the role
of the gap and the ring are switched (figure 7.a). The linear phase
shift stated in part 3.1.1 comes from the microstrip line and is a
standard and to be expected strip line behavior (figure 8.c).
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Using CST studio, an electromagnetic simulation software,
the dimensions of a 4.3GHz square—shaped ISRR were found. This
ISRR is situated below a 50 Ohms microstrip line whose dimensions
were found by the App—CAD calculator. The resonator was patterned
using photolithography and conventional printed circuit board
techniques from a CER—10RF substrate. Two SMA connectors were
soldered at the ends of the microstrip line to send microwave
currents (Figures 7.b and 7.c).

The fabricated ISRR has a 4.376GHz resonant frequency. The
damping is f = Aywum/®isrr =9.0e7/4.375€9 =~ 0.0206 , where
Agwam is the half wc =1/+LCwidth at half maximum. Agywupy Was
estimated by fitting the S,; measurement of the ISRR alone and
without magnetic field with a Lorentzian function while w;sgr Was
obtained from the measured S,; parameter. S,; magnitude and
phase measurements using the VNA were done for different magnetic
field values and are shown in figure 8. The x—axis I(A) represents
the current sent to the electromagnet. The ISRR properties remain

unchanged as the magnetic field is swept.
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Figure 14. (a) SRR and ISRR schematic with electric fields (blue),

and magnetic fields (red) [31].

(b) Schematic of the measurement

setup. (c) Fabricated ISRR, w=0.6mm, a=4.4mm, b=3.4mm,

g=0.5mm, the copper thickness is 35um, and the dielectric thickness

is 0.64mm.
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3.1.3. Magnon System: Yttrium Iron Garnet
Our magnon source is a commercial 3.7x3.7x25um epitaxial
YIG film (Y3Fes0;,). YIG is the commonly used material in photon—
magnon coupling studies owing to its high spin density (= 4.0 *
102”m=3) and very low damping (= 3 %1075 to 1073) [80]. Previous
S21 parameter measurements of our YIG alone determined the
magnon damping at a=3.2x10"* [45]. The magnon frequency

follows Kittel’'s mode (figure 9.b).
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3.2. Network Parameters

3.2.1. Neuron Functions

The fundamental requirement of a hardware neuron in
RC is non—linearity. Here, as a function of the magnetic field, or
equivalently, as a function of the DC current sent to the
electromagnet, three neuron functions are considered: the S,;
magnitude, frequency, and phase of the lowest S,; magnitude point
in the S,; magnitude measurement of the hybrid system (figure
10.b). Since the waveform sequence is not degenerated, memory is
not required, and the neuron function x;(t) can be simplified as x(i),
which is a steady —state function and non—linear as a function of the
input.

The lowest S,; magnitude point in the w —1 plane follows
the upper (lower) branch before (after) the anti—crossing (AC) point
(current value where w, = wiggp) as illustrated in figure 11, plotted
from equation (2.2.22) with w,=4.0GHz , uoH = 0.172T,a = 3.2 X
1074, =2x10"3T =10.04, K =0.05,6§ =0.5,¢ = 0. This is explained
by the CMP coefficients n; and n, . The S,; magnitude is
proportional to the photon proportion of the CMP modes. The S,;

magnitude is the lowest for the branch containing the most photons,
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or equivalently for the branch with the highest coefficient nq. As
shown in figure 5.c, the upper (lower) branch contains the most
photons before (after) AC [44]. Following this explanation, a simple
theoretical frequency neuron function was defined from equations
(2.2.21) and (2.2.22), where the neuron function follows w,(w_)
after (before) anti—crossing.

Unlike an actual time—consuming experiment, the full
waveform recognition can be quickly simulated entirely on a
computer using previously measured or theoretical neuron functions.
Network parameters, such as the number of waveforms and neurons,
were chosen from the hybrid system theoretical frequency neuron
function.

This simulation method was also used to compare expected
results from multiple neuron functions: the measured and theoretical
functions of the ISRR alone, YIG alone, and coupled hybrid system.

The software used for experimental or simulation codes is
LabVIEW. LabVIEW controls both the DC power supply to encode
inputs and the VNA to measure outputs with RS232 and GPIB
protocols in the experimental code. LabVIEW also manages all data

pre and post—processing.
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3.2.2. Inputs and Current center

The random sine and square waveform sequence is created
on a computer following the pre—processing method presented in
Ch.2 (fig. 12). Each pre—processed data point is encoded in the DC
current amplitude sent to the electromagnet, allowing the use of the
hybrid system’s non—linear neuron functions. The amplitude of
square waveforms is 50% higher than sines, with a 1.5A amplitude
for squares and 1A for sines. Each waveform is made of 8 sampled
points. Since no degeneracies are present between sine and square
points, no memories are required for this task. Each DC current value
is held 8 seconds. 5 seconds are found to be a minimum required by
the electromagnet to reach its steady—state magnetic field value.
Because the VNA measures sequentially the S,; magnitude and
phase, three additional seconds are required by the VNA to perform
both sweeps accurately.

Different regions of neuron functions are used depending on
the waveform sequence center value. Therefore, the current center
1s swept through the coupling range, and the whole recognition is
done at each current center value. The current center sweep starts
at 0.25A, ends at 6.25A, and contains 30 points. The magnetic field

time delay prohibits adding more points. To be similar to
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experimental results, most simulation results are done with the same

current center sweep.
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3.2.3. Neuron and Waveform Number

Experiment execution time tgy, 1S given by tex, ® M *ng * N *
*Nn; *ty, where M is the waveform number, ng is the number of
sampled points per waveform, N is the number of neurons, n; is the
number of current center points and ty is the magnetic field time
delay. The very high tyg value forces the minimization of all the
other parameters.

Simulations using theoretical frequency functions showed the
success rate and maximum NSE dependences on M and N (figure
13). A minimum threshold value must be given to M and N to
successfully perform the recognition and observe peaks of perfect
success rates. Once the threshold is crossed, adding more waveforms
or more neurons reduces the perfect success rate peaks length. It
also does not increase the maximum NSE further, which plateaus
around 0.990. From these data, we choose to carry further
experiments and simulations with M =30 (15 waveforms for
training, 15 for testing), ng =8, N =20, n; = 30, resulting in te,, =
14 days long experiments and little simulation execution time.

Simulations for figure 15 were done with w, =4.0GHz, ugH =

0.172T,a =3.2x 104 =2x10"2T=0.04, K=0.05,6 =0.5,0=0.
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Chapter 4. Experimental and Simulation Results

4.1. Neuron Functions and Simulation Results

To rapidly compare different systems and configurations,
simulations based on measured or theoretical neuron functions were
carried out. Experimental ISRR functions, theoretical frequency
magnons function, and theoretical frequency hybrid system function
were compared, justifying the usage of hybrid system functions over
a single cavity or YIG film. Then, two different configurations of in—
plane magnetic field angle were compared for experimental hybrid
system neuron functions, allowing to find optimal settings for the two
weeks long experimental waveform recognition. Only theoretical
frequency functions could be obtained by the time the thesis was

written.

4.1.1. ISRR Neuron Functions

As a function of the magnetic field, or equivalently, as a
function of the DC current sent to the electromagnet, the ISRR S,;
magnitude, phase, and frequency are constant or weakly varying
(figure 14). The S,; magnitude presents a small quadratic
dependence which is thought to be an artifact from the experimental
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setup. The phase has a higher variance and small non—linearities due
to measurement and post—measurement calibration imperfections.
The frequency is the most stable measurement being almost constant
around 4.375 GHz with relatively low variance.

By putting the three experimental neuron functions into a
LabVIEW code developed for performing the waveform recognition,
according to the method explained in Chapter 2, expected
experimental success rates were obtained (figure 14). The S,; and
frequency functions give respectively weak to completely random
(0.5) recognition success rates and cannot be used. This is an
expected result since the S,; function is weakly varying, and the
frequency is almost constant. On the other hand, the phase function
leads to a higher success rate for four points. This slightly better
result comes from more important but artificial, non—linearities. A
perfect phase measurement would be constant at O degrees, leading
to random success rates (figure 15).

Unless stated otherwise, all simulation results in the thesis
use 20 neurons, 30 waveforms 8 sampled points per waveform, and

results averaged over 300 simulations.
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4.1.2. Magnon Theoretical Frequency Neuron Function

The lowest S,; magnitude point for magnons follows Kittel’s

formula, as shown in figure 9. In general, the magnon dispersion in a

YIG film can be written as wyjg = y/H(H + goMg) +8 (4.1.1), with
8§ = 0 for the Kittel’'s mode and different otherwise [81] (fig 17.a).
For a given magnetic field value, wy;g <0 when &<
—ym. Since the current center is swept between 1A and
6.25A and considering the amplitudes of the waveform, neuron
functions take values between 0.25A and 6.25A. To avoid negative
frequency values in this current range, the minimum &8 value is
=~6.63 GHz.rad. Using the dispersion formula, success rates and
NMSE for 8 € [-6.63,6.63] GHz were obtained and plotted (fig. 16).
Plots show one peak of perfect success, starting at the sweeping
range beginning, where the YIG frequency shows a square root
curvature. This peak is followed by a range of random success, where
the YIG frequency is almost linear. Even if the success peak length
tends to decrease as 8 increases, the highest NSE value doesn’t
change significatively and does not exceed 0.945 (fig.17.b). The

highest NSE value was reached at 1A, which is the first swept point.
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Theoretical S21 and phase functions could not be obtained by the

time the thesis was written.

60

A eTsta



Success Rate

Success Rate

Success Rate

Figure 31. Success rates and NSE from the YIG frequency

1.0

09

0.8

07

06

05

0.4

03

0.8

0.8

0.7

0.8

0.5

0.4

0.3

1.0

09

0.8

07

0.6

05

0.4

03

®

(©)

— —d=4

NSE

e o Do i g Dl o Dol

2

T
—0—d=0

NSE

-0.2

08

06

0.2

0.0

-0.2

0.8

06

0.4

02

0.0

O OO OO

NSE

1 " 1

- d=6

1 2 3 4
Current center (A)

3 4
Current center (A)

neuron

function for (a) d=4, (b) d=0, (¢) d=—6, with d defined asd = &§/1e9.

61



(a)

(b)

Max NSE

YIG frequency (GHz)

0.946

0.944

0.942

0.940

0.938

0.936

0.934

d
—0—d=0

o]

0
d(GHz.rad)

Figure 33. (a) YIG frequency neuron function for d=0,4 and —6. (b)

Maximum NSE value reached in the current center sweep. NSE

values are averaged over 100 simulations.

62



4.1.3. Hybrid System Theoretical Neuron Function

Putting the theoretical frequency neuron function in the
LabVIEW code (w,=4.0GHz, uoH = 0.172T,a =3.2x 1074, B =2 x
1072r=0.04, K=0.05,86 = 0.5,¢ = 0) for different coupling values,
K leads to the success rates plotted in figure 18. From these
simulation results, we can observe the coupling strength influence on
the recognition: as K increases, the two peaks of perfect rates (SR=1)
increases in length, and the NSE increases (figure 19.b). The shape
of the neuron function can qualitatively explain this observation. As
K increases, the non—linear portion of the frequency neuron function
increases. MSE values being one order of magnitude lower than
magnons and being positively influenced by the coupling strength,
computing with AC 1is more interesting than magnons alone.
Theoretical S21 magnitude and phase could not be obtained by the

time the thesis was written.
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Figure 35. Frequency neuron function and associated simulated
success rates for different coupling strength. (a) K=0.005, (b)
K=0.05, (¢c) K=0.
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4.1.4. Hybrid System Asymmetrical Neuron Functions
Experimental hybrid system functions using the ISRR sample
and the YIG film were measured (figure 20). The magnetic field was
in the YIG film plane and perpendicular to the microstrip line. To
achieve a strong coupling with ISRRs, the YIG film was placed
directly in contact with the resonator. Being closer to the ISRR gap
and its induced magnetic field, the coupling strength is higher.
Nonetheless, in this configuration and with samples made
from this substrate batch, the ISRR resonant frequency changes very
sensitively depending on the YIG position. Additionally, the fitting
agreement between the S21 magnitude in the w —1 plane and the
frequency dispersion relation varies depending on the YIG position.
When the YIG is placed directly over the ISRR gap, the upper branch
does not follow the dispersion relation perfectly, whereas the lower
branch does. Consequently, the lowest SZ21 magnitude path, or
equivalently, the frequency neuron function, does not follow the
upper branch until the anti—crossing point. This is seen by the shift
between the frequency function discontinuity (white dotted line) and
the anti—crossing point (intersection of black dotted lines) in figure

21.
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With the YIG on the ISRR gap, the three experimental neuron
functions were put into the LabVIEW code to get simulation results
(figure 22). Being asymmetric, the frequency function gives two
peaks of perfect success rates, with the second peak being much
wider than the first. Surprisingly, the NSE at 1.74A is higher than the
NSE of K=0.2, with 0.999968 against 0.99982. The SZ21 function
follows its expected behavior. The S21 magnitude is constant far
from anti—crossing and decreases in the coupling region. The
multiple discontinuities in the function come from multiple anti—
crossings with higher—order spin—wave modes. The phase function
follows the same behavior. The phase is constant far from anti—
crossing and shows numerous discontinuities in the coupling region.
Both S21 and phase success rates show small areas or points of
perfect success rate and NSEs lower than the frequency NSE with
0.991433 and 0.970877.

Fitting 1s done with w,=3.7GHz , puoH =0.172T, K =

0.08,6 =0.5,¢ = 0.
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Figure 39. (a) Schematic of the hybrid system. (b) Measured S,
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S,1, (b) frequency, and (c¢) phase neuron functions.
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4.1.5. Hybrid System Neuron Functions: O degree

The YIG film was carefully placed in the ground plane to
maximize the coupling strength and the frequency dispersion fitting
agreement (figure 23.a). Consequently, the frequency function
becomes closer to the theoretical one, as we can see by the reduced
current shift between the dotted white curve discontinuity and the
anti—crossing point in Figures 24 and 25. The magnetic field was in
the plane of the YIG film and perpendicular to the microstrip line. In
this configuration, fine features at the left of Kittel's mode can be
observed in figure 24. Those features are higher—order spin—wave
modes. Each additional spin—wave mode creates a smaller additional
anti—crossing, resulting in additional non—linearities in each neuron
function (figure 23). The three functions were put into the LabVIEW
code to obtain by simulation the expected experimental results
(figure 26). Fitting is done with w.=4.0GHz, uygH = 0.172T,a =
3.2x10°4,8=2x10"2T=0.04, K=0.0556=0.5,¢0=0. AC non—
linearities in the frequency and S,; functions break the first perfect
success rate peak into smaller regions of perfect success. Their
highest NSE values are respectively 0.99343 at 2.448A and
0.996448 at 1.181A. The phase success rate and NSE are slightly

improved, with the highest NSE of 0.990786 reached at 1.36A.
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S,1, (b) frequency, and (c) phase neuron functions.
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4.1.6. Hybrid System Neuron Functions: 33.5 degree

Anticrossing from higher—order spin—wave modes lowers
performances by breaking the ranges of perfect success rate.
Nonetheless, it is possible to remove such anti—crossings by
changing the in—plane magnetic field angle ¢. B. Bhoi et al. [48] and
B. Kim et al. [82] demonstrated in a similar ISRR/YIG hybrid system
the existence of a critical angle where all the spin—wave modes have
an equal or very close frequency. The critical angle ¢, depends on

the in—plane magnetic field H according to:

@ =tan"! /H/qus (4.1.2)

Choosing for H the anti—crossing magnetic field, the critical angle

was  calculated at ¢, =tan! H/MoM = tan~! 0'076/() 172 %
/ s 1/ .

33.65° . After setting the magnetic field accordingly, the three
neuron functions were measured and put into the LabVIEW code
(figure 27). The S21 and frequency first success peaks are now
continuous or almost. The frequency success peaks are smaller in
length owing to smaller coupling strength as the angle ¢ increases,
as shown by Bhoi et al. [48]. The number of points of high phase
success rate remains almost unchanged. Maximum NSEs are getting

lower with 0.991815 at 2.45A, 0.98469 at 2.63A, and 0.968879 at
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4.80A for the frequency, S21, and phase functions, respectively
(figure 30), indicating slightly lower performances. As opposed to 0
degree, anti—crossing with higher—order modes almost does not
happen, making the data clearer (figure 28). Therefore, even if the
maximum expected NSE values are lower than at O degrees, this
configuration has been chosen to get the first experimental results.
Additionally, the fitting between the theoretical and experimental
frequency function is improved (figure 29).

Fitting is done with w.,=3.88GHz , uoH = 0.172T, K =

0.045,56 = 0.45,¢ = 0.
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4.2. Experimental Success Rates

Experimental success rates were obtained for the hybrid
system at the critical angle. Previous success rates from the
frequency function of another sample for a low and high coupling

strength are also presented.

4.2.1. Success Rates and NSE at the critical angle

Experimental success rates (figure 31) from the S,y
magnitude and frequency are in good agreement with simulation
results. The maximum NSE is 0.991658 at 2.63A for the S,; function
and 0.990555 at 2.45A for the frequency function. Phase results are
slightly below expected with only three points of perfect success rate,
and a maximum NSE of 0.9546209 at 3.89655A against seven
predicted points of perfect success and a 0.968879 predicted
maximum NSE value. This discrepancy is thought to come from the
higher variance in phase measurement. Those results successfully
demonstrate waveform recognition with the S21 magnitude,
frequency, and phase of photon—magnon coupling in an ISRR/YIG film

hybrid system.
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4.2.2. Frequency Success Rates for 2 YIG positions
Experimental comparison of different coupling strengths was
partially obtained from another ISRR sample (figure 32). The 4GHz
sample was used in references [45] and [48]. The YIG film was
either on the microstrip line above the ISRR (weak coupling) or

directly on the ISRR gap (very strong coupling). The magnetic field

was in—plane and perpendicular to the microstrip line (¢ = 0 degree).

Despite putting the YIG film directly on the ISRR gap, this sample's
frequency function was symmetric. Only experimental frequency
success rates were obtained from the sample before breaking. S21
and phase neuron functions for the YIG on the ISRR gap were
measured and had a similar shape and expected results to the
4.375GHz sample shown in parts 4.1.5 or 4.1.6. Experimental results
follow simulations well. As the coupling increases, peaks of perfect
or close to a perfect success rate increase in length. Discrepancies
between simulation and experimental results for the weak and strong
coupling positions are respectively coming from suboptimal VNA
settings (low IF BW) and additional non—linearities coming from
anti—crossings with higher—order spin—wave modes. Simulations are
done with w,=3.886GHz , poH=0.172T,a=3.2x10"% B =2 x

1027 =0.04, § =0.5,¢ = 0.
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Chapter 5. Concept of Vowel Recognition with
Photon—Magnon Coupling

5.1. Recognition with STNOs

An STNO is a nanometric pillar made up of two ferromagnetic
layers separated by an oxide tunneling layer. The magnetization of
the first layer is pinned by exchange interaction and acts as a spin
polarizer, whereas the magnetization of the second layer is free [87].
After tunneling, the spin—polarized current from a DC source exerts
a torque on the free layer magnetization, resulting in magnetic
moments precession. The combination of Spin—Transfer Torque
(STT) and magnetoresistance effects converts the magnetic

oscillations into measurable voltage oscillations [88].

M. Romera et al. showed that a network composed of 4
electrically coupled STNOs could perform vowel recognition [27],
[86]. A current source independently controls the resonant
frequency of each STNO voltage oscillations (I; to I,, figure 33.b.).
Since the STNOs are connected in series and no current is equal to
O, the frequencies are different and increasing from left to right

( f:STNOI < f:STNOZ < fSTNO3 < fSTNO4- ) Network OUtpUtS are the

resonant frequencies red with a spectrum analyzer (figure 33.c).
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Seven different vowels are used in their first demonstration.
Thirty—seven women pronounce each vowel. Every vowel is encoded
in a pair of 2 distinct frequencies, linear combinations of
characteristic sampled frequencies. The two frequency coordinates
fa and fp are generated by two RF current generators, and both
circulate in a stripline above the STNO array. The resulting input
vowels can be represented in a 2—dimensional plane, as shown in
figure 33.f. Recognition relies on synchronization. An STNO can lock
its frequency onto an external microwave current frequency if
frequencies are close enough (figure 33.d). When two microwave
frequencies f; and fp are applied to the system, the resulting
synchronization states can be represented in a 2—dimensional map
(figure 33.e). The recognition consists in associating seven different
synchronization states to the seven different vowels. If the network
is trained, reading the synchronization state allows seeing which
vowel has been applied to the system. The training starts from a
random map (random values of I; to I,) and the goal is to converge
to the preselected map by tuning the currents. The learning algorithm
adjusts the currents to minimize the frequency difference between
the targeted and input frequencies. State of the art success rate was

obtained (figure 34).
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5.2. Recognition with Photon—Magnon Coupling

The concept can be readily translated to PM coupling. An array
of in—plane SRRs loaded with varactor diodes (v—SRR) [89] gives
voltage—tunable oscillators corresponding to the current—tunable
STNOs (fig. 35.a). An YIG film in contact with the v—SRRs gives PM
coupled states corresponding to the synchronization states between
the STNOs and one microwave frequency f, (fig 35.b). The coupling
state is red with a VNA. The difficulty is encoding fg. In the
translated concept, f4 is the magnon frequency coming from the YIG
film and controlled by an external magnetic field Hy. Since f, and fp
must be controlled independently, adding a second YIG film and a
second magnetic field Hgz requires H, and Hz to affect

independently their respective YIG film, which is hard to achieve in

practice. An alternative is to use the v—SRR physics to our advantage.

In the non-—linear regime of a v—SRR [90]—-[92], the resonator
frequency can be tuned by both the frequency and power of the pump
(fig 35. b,c,d). Adding a second microwave current to the sample
allows encoding fz through either the pump power or frequency.
Here, success rates benefit from high coupling strengths: the

coupling ranges increase, reducing misclassification.
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Chapter 6. Conclusion

Neuromorphic computing using photon—magnon coupling in
an ISRR/YIG hybrid system was successfully experimentally
demonstrated. Using the reservoir computing paradigm, non—
degenerate waveforms classification was performed using the
frequency, S,; magnitude and phase of the coupled mode. Perfect
success rates were obtained from each neuron function. with vast
regions of perfect success rates from both the S,; and frequency
functions and three points of perfect rate from the phase function

(figure 31).

Additionally, experimental success rates from the frequency
function for two YIG film positions confirm the predicted performance
increase owed to higher coupling strengths (figure 19 and figure 32).
Results can be compared with reference [28] shown in figures 2 and
3. The hybrid system leads to broad regions of perfect success rate
while success rates obtained from an STNO do not reach 100% and

show only one to two smaller peaks of high performances.

This thesis also shows a reliable simulation method to predict

experimental performances. The expected results of various
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systems and configurations were obtained by putting measured or
theoretical neuron functions into the LabVIEW code. The simulation
showed the superiority of the ISRR/YIG coupled system on the ISRR
or YIG alone. Being almost constant, neuron functions from the ISRR
naturally lead to random or low success rates (figure 14). On the
other hand, the classification task can be successfully performed
using the magnon frequency function, as shown by wide peaks of
perfect success rates in figure 16. While the peaks tend to increase
in length as the spin—wave mode gets lower, the maximum NSE is
independent of the mode order and lower than the NSE obtained from
the coupled—mode frequency function, thus justifying the superiority

of the CMP frequency function over the magnons frequency function.

The two main limitations of the current system are the
magnetic field time delay and the absence of both intrinsic and
extrinsic memory. The time delay limits the usage of a large data set
and neuron number, while the lack of memory limits the number of
tasks to perform. Both limitations could be overcome by using
transient dynamics of photon—magnon coupling [83]. In such a two—
state system (the coupled mode is made up of a photon and magnon

state), Rabi—oscillations can be observed as a response to
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microwave current pulse excitations applied to either or both the
cavity and the magnon source. Inputs would be encoded in the
nanosecond to microsecond pulse amplitude or frequency. At the
same time, the output would be the amplitude or frequency of Rabi—
oscillations red from nanosecond time—resolved measurement
techniques [84]. The intrinsic memory would come from the Rabi—
oscillation damping, while a feedback delay line could create the
extrinsic memory as in ref [28]. Implementing single node reservoir
computing would tremendously speed up the computation by

exploiting the time scale associated with the coupling strength.

An intermediate step would be to stay in the steady—state
dynamics but in the non—linear regime. Inputs would be encoded in
the pump power or frequency, and the neuron output would be the
frequency of the upper or lower CMP since the frequency in the non—
linear regime is a non—linear function [85]. This concept allows the
implementation of a feedback loop but does not implement an intrinsic

memory.

Finally, the concept of vowel recognition using photon—
magnon coupling in a varactor—loaded SRR array has been presented,

and a solution for encoding the second frequency coordinate fp
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suggested. Besides pursuing this work, an interesting additional
experiment will be to study the non—linear regime of a PM coupled
v—SRR since both a PM coupled system and a v—SRR independently

exhibit bistability [93].
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