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Abstract

Orbit harmonics and cyclic sieving
phenomena

Jaeseong Oh
Department of Mathematical Sciences
The Graduate School

Seoul National University

Orbit harmonics is a tool in combinatorial representation theory which
promotes the (ungraded) action of a linear group G on a finite set X to
a graded action of G on a polynomial ring quotient by viewing X as a
G-stable point locus in a complex space C™.

The cyclic sieving phenomenon is a notion in enumerative combina-
torics which encapsulates the fixed-point structure of the action of a finite
cyclic group C on a finite set X in terms of root-of-unity evaluations of an
auxiliary polynomial X (q).

In this thesis, we apply orbit harmonics to prove a variety of cyclic
sieving results. This includes cyclic sieving results involving enumerations
of combinatorial objects such as words, graphs or matrices, and symmetric

functions such as Hall-Littlewood polynomials or Macdonald polynomials.

Key words: Cyclic sieving phenomena, Orbit harmonics, Point locus, De-
formation, complex reflection group
Student Number: 2015-20268
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Chapter 1
Introduction

Let X be a finite set with an action of a finite cyclic group C' = (c) and let
w = exp(2mi/|C]). Let X(q) € Z>o[q] be a polynomial with nonnegative
integer coefficients. We say that the triple (X, C, X (q)) exhibits the cyclic
sieving phenomenon [RSW04] if for all » > 0 we have

(X =z e X : o =a} = X (W) = [X()]g=or-

More generally, if X carries an action of a product C} x Cy = (¢1) X {(c2)
of two finite cyclic groups and X(q,t) € Zso[q,t], the triple (X, X
Cy, X(q,t)) exhibits the bicyclic sieving phenomenon [BRS08] if for all

r,s > 0 we have
‘X(c{,c§)| — |{LE c X : (CQ,C;) L= Qj‘ = X(w{,wg)

where wy = exp(27i/|Cy|) and we = exp(2mi/|Cy|). In typical sieving re-
sults, X is a set of combinatorial objects, the operators ¢, ¢ act on X by

natural combinatorial actions, and X (q) or X (g, t) are generating functions



for natural (bi)statistics on the set X.

Although ostensibly in the domain of enumerative combinatorics, the
most desired proofs CSPs are algebraic. One seeks a representation-theoretic
model for the action of C' on X by finding a C-vector space V' carrying
an action of a group G and possessing a distinguished basis {e, : * € X}
indexed by elements of the set X. The action of the generator ¢ € C on
X is modeled by a group element g € G which satisfies g - e, = e..,, for all
x € X. If x : G — C is the character of the G-module V', then

| X[ = tracey (¢") = x(g")

for all » > 0, transferring the enumerative problem of counting | X< | to
the algebraic problem of calculating x(¢g"). These algebraic proofs are de-
sired over brute force enumerative proofs because they give representation-
theoretic insight about why a sieving result should hold.

In this thesis, we use the orbit harmonics method of zero-dimensional
algebraic geometry to prove CSPs. The results proven in this fashion will
have the ‘nice’ representation-theoretic proofs as outlined above. This ap-
proach unifies various CSPs coming from actions on word-like objects and
‘quotients’ thereof. The idea is to model the set X geometrically as a finite
point locus in C™. The relevant algebra has roots in (at least) the work of
Kostant [Kos63] and goes as follows.

The polynomial ring C[x,] := C[z1, ..., z,] may be naturally viewed as
the coordinate ring of polynomial functions f : C* — C. This identification
gives rise to an action of the general linear group GL, (C) on C[x,] by linear

substitutions:

g- fv):= f(g7" - ) for all g € GL,(C), f € C[x,], and v € C".



By restriction, any subgroup of GL,(C) also acts on C[x,].
Let X C C" be a finite set of points which is closed under the action
of W x C where

e W C GL,(C) is a (finite) complex reflection group and
e (U is a finite cyclic group acting on C" by root-of-unity scaling.

Let
I(X):={feC[x,] : f(v)=0 forallve X}

be the ideal of polynomials in C[x,] which vanish on X. Since X is finite,

Lagrange Interpolation affords a C-algebra isomorphism
ClX] = C[x,|/I(X) (1.0.1)

where C[X] is the algebra of all functions X — C. Since X is W x C-stable,
isomorphism (1.0.1) is also an isomorphism of ungraded W x C-modules.

For any nonzero polynomial f € C[x,], let 7(f) be the highest degree
component of f. That is, if f = fg+---+ f1 + fo with f; homogeneous of
degree i and fy # 0, we set 7(f) := fq. Given our locus X with ideal I(X)

as above, we define a homogeneous ideal T(X) by

T(X) = {r(f) : F€I(X), f+0) C Clx,.

The ideal T(X) is the associated graded ideal of I(X) and is often denoted
grI(X). By construction T(X) is homogeneous and stable under W x C'.

The isomorphism (1.0.1) extends to an isomorphism of W x C-modules

CIX] = Clxal/I(X) = Clx,]/T(X) (1.0.2)



where Clx,]/T(X) has the additional structure of a graded W x C-module
on which C' acts by scaling in each fixed degree.

The action of W x C on X coincides ! with the W x C-action on the
natural basis {e, : © € X} of C[X] of indicator functions e, : X — C
given by

ex(y) = L
0 otherwise.
If the graded W-isomorphism type of C[x,]/T(X) is known, the isomor-
phism (1.0.2) and Springer’s theorem on regular elements [Spr74] (see The-
orem 3.1.1) give bicyclic sieving results for the set X under product groups
of the form C’" x C where C" C W is the subgroup generated by a regular
element in W. Furthermore, if G C W is any subgroup, the set X/G of
G-orbits in X carries a residual action of C, and the Hilbert series of the
G-invariant subspace (C[x,]/T(X))% is a cyclic sieving polynomial for the

action of C' on X/G. By varying
e the choice of point locus X and
e the choice of subgroup G of W

a variety of CSPs can be obtained. This method has been implicitly used
[ARR15, Doul8]| to prove CSPs before; the purpose of this thesis is to make
its approach and utility explicit.

The procedure X ~» C[x,,]/T(X) which promotes the (ungraded) locus
X to the graded module C[x,,|/T(X) is known as orbit harmonics. Gener-
ators for the ideal T(X) may be found by computer from the point set X

as follows. The ideal I(X') may be expressed as either an intersection or a

Lup to duality, but permutation representations are self-dual



product

I(X) = ﬂ (x1—aq, ..., T — ) = H (X1 =1, .., Ty — Q)

(a1,.,an)€X (a1,...,an)€X

of ideals corresponding to the points (o, ..., a,) belonging to X C C" .
If {g1,92,--.,9-} is a Grobner basis for I(X) with respect to any graded
monomial order < (i.e. we have m < m’ whenever m, m’ are monomials in

Clx,] with degm < degm’), then T(X) will be generated by

{T<gl)> T(QZ)? s vT(gr)}-

While this facilitates the investigation by computer of a graded quotient
C[x,])/T(X) corresponding to a point locus X, a generating set of T(X)
obtained in this way can be messy and not so enlightening. Finding a
nice generating set of T(X) is often necessary to understand the graded
W-isomorphism type of C[X]/T(X).

In this thesis we will focus mostly on the reflection group W = &,, act-
ing by coordinate permutation on C". This setting has received substantial
attention in algebraic combinatorics. By making an appropriate choice of
an G,,-stable locus X, orbit harmonics has produced graded &,,-modules
which give algebraic models for various intricate objects in symmetric func-
tion theory [GP92, Gri21, HRS18]. We hope that this thesis inspires future
connections between orbit harmonics and cyclic sieving.

We use orbit harmonics to reprove and unify a variety of known cyclic
sieving results [ARR15, BRS08, BER11, RSW04, Rhol0], prove some cyclic
sieving results that seem to have escaped notice, and give new proofs of
some results [Spr74, MNO06] which are not per se in the field of cyclic

sieving. It would be interesting to see if our methods apply to the notion



of dihedral sieving due to Swanson [Swa21] (see also [RS20]).

The remainder of this thesis is organized as follows. In Chapter 2
we give background on complex reflection groups and the representation
theory of &,,. In Chapter 3 we describe how orbit harmonics gives a
new perspective on classical results of Springer and Morita-Nakajima. We
also state our main tool for proving sieving results from point loci (Theo-
rem 3.3.1). In Chapter 4 we apply Theorem 3.3.1 to point loci correspond-
ing to arbitrary, injective, and surjective functions between finite sets. In
Chapter 5 we apply Theorem 3.3.1 to other combinatorial loci. In Chap-
ter 6 we further investigate orbit harmonics in ‘diagonal setting’ to obtain
cyclic sieving results involving Macdonald polynomials. We conclude in

Chapter 7 with possible future directions.



Chapter 2

Preliminaries

2.1 Combinatorics

A weak composition of n is a sequence of non-negative integers which sum
to n. A composition is a weak composition which consists of positive inte-
gers. A partition of n is a composition of n which is weakly decreasing. We
denote p = n and A F n for a composition p and a partition A of n.For a
weak composition = (1, ..., tx), the length () of p is k.

For a partition A F n we abuse our notation so that a partition A
also denotes for its Young diagram (or Ferres diagram). We draw Young

diagrams in French style:
A= {(Z,]) S ZZO X ZZO 1< >‘j+1}-

The elements of a Young diagram are called cells. For example,

A= (4,3,1) =1{(0,0),(1,0),(2,0),(3,0),(0,1),(1,1),(2,1),(0,2)} =



We define the conjugate X' to be the partition obtained by reflecting A with
respect to the diagonal line z = y in the plane.

A tableau of a partition A is a filling T": A — Z~(. For a tableau T of
shape A, we denote shape(T) = A. The content of a tableau T of \ is a
weak composition (17,75, . ..) of n, where T} is the number of i’s appearing
in T. A tableau T is called semistandard if each row is weakly increasing
(left to right) and each column are strictly increasing (bottom to top). The
Kostka number K, is the number of semistandard tableaux of shape A
and content p. A semistandard tableau is called standard if its content is
(1,1,...). The set of standard tableaux of shape A is denoted by SYT'(\).
Examples of semistandard tableau and standard tableau of shape (4,3, 1)

are shown in the left and the right below, respectively.

ot

.
-1

| o A—|
Y]
s

b
[
3
=)

3] 8|

For a standard tableau 7', a descent is an index 7 such that i 4+ 1 is in
the upper row than i. The descent dex(T') of T is defined as the number
of descents of T and major index maj(T) of T is defined as the sum of all
descents in T'. For the standard tableau given right above, 1,3,4 and 6 are
descents (descents of the tableau is written in bold), so the major index of
the tableau is 1 +3 +4 + 6 = 14.

The fake degree polynomial of a partition A is defined by the major



index generating function for the standard tableaux of shape A, i.e.,

Pla)= 3 .

TeSYT(N)

The polynomial fA(q) may be efficiently computed using the g-hook

formula
f)\<q) _ qb(A) [n]!y

HCE)\ [hc]q

where the product is over the cells ¢ in the Young diagram of A and h, is
the hook length at the cell c¢. Here and throughout we use the standard

g-analogs of numbers, factorials, binomial, and multinomial coefficients:

R n— n e [n]!
]y :=1+q+---+¢"" mq el I
) n — [n]!
[n]ly = [n]g[n — 1], ---[1], |:M17---7M7":|q = [ul]!q..‘fm}!q
where = (p1, ..., p) is a weak composition of n.

2.2 Symmetric functions

We denote by A = P 40 Aa the graded ring of symmetric functions in
an infinite variable set x = (z1,2,...) over the ground field C(q). Here
A4 denotes the subspace of A consisting of homogeneous symmetric func-
tions of degree d. Two important elements of Ay are the homogeneous and

elementary symmetric functions

hq(x) = Z Ty - T, and eq(x) == Z Tiy e Ty

11<-<ig 11<<iq



By restricting hg(x) and e4(x) to a finite variable set x,, = {1,...,2,},
we obtain the homogeneous and elementary symmetric polynomials hy(x;,)
and egq(x,).

Bases of A,, are indexed by partitions of n. For a partition A - n, we
let

hx), exx), sa(x), Ox(x;q) and Hy(x;q,t)

denote the associated homogeneous symmetric function, elementary sym-
metric function, Schur function, Hall-Littlewood symmetric function and
Macdonald polynomial. For any partition A = (A; > Ay > --+) the h- and

e-functions are defined by
ha(x) := hy, (X)hy, (x) - - - and ex(x) == ey (X)er, (x) - - -

and the Schur function is given by

where the sum is over all semistandard tableaux 7" of shape A and x” is
a shorthand for the monomial z]'22? - -- where T} is the number of 4’s in
the tableau T'.

The (modified) Macdonald polynomials H A(X;¢,t) indexed by parti-
tions A F n form another basis of A,, and they are defined by the unique
family satisfying the following triangulation and normalization axioms

[HHLO5].
o H\[x(1—q)iq,t] =Y ,o, aru(g,)s),

o Hi[x(1—1);q.t] =Y, bau(a.t)sn,

10



. <H,u73(n)> = 17

for suitable coefficients ay ,,, by v € Q(g,t). Here, a partial order < is called

dominance order of partitions of n is defined by
A< pif A+ + X\ < g+ -+ pyg for all k,

Here, [-] denotes the plethystic substitution, and (-,-) denotes the Hall
inner product defined by

<3>\a 3u> = 6)\,lm

where 0, ,, is the Kronecker delta. These axioms are equivalent with Mac-
donald’s triangularity and orthogonality axioms.
Expanding the Macdonald polynoimal with Schur functions, we may

write

Hu(x;q,t) = Y Kaula: t)sa(x),

where the sum is over all partitions A of n. The coefficients K (g, t) is
called the (modified) (q,t)-Kostka polynomials. A combinatorial descrip-
tion of general (g,t)-Kostka polynomials as a generating function for the
standard tabelaux is unknown, and it is one of the major open problems
in algebraic combinatorics.

The (modified) Hall-Littlewood polynomial QVM(X; q) and g-Kostka poly-
nomial I?,w(q) can be obtained by specializing ¢ = 0,¢t = ¢ to the Mac-
donald polynomial [?[u(X; q,t) and the (g, t)-Kostka polynomial [?,\7“((], t).
The ¢-Kostka polynomial K Au(q) can also be defined as the generating
function of the cocharge statistics for the semistandard tableaux of shape

A and content p (see [Rhol0] for definition of cocharge).

11



2.3 Representation theory of the symmetric

group

A class function on a finite group G is a map ¢ : G — C which is constant
on conjugacy classes. The set R(G) of all class functions G — C forms a
C-algebra under pointwise addition and multiplication. We let (—, —)¢ be

the standard inner product on these class functions:

(,¥)a = ‘—(1” > w(g)(g).
9ea
If V, W are finite-dimensional G-modules with characters xv, xw : G — C,
we extend this notation by setting (V, W) = (xv, xw)c-

Irreducible representations of the symmetric group &,, are in one to
one correspondence with partitions A of n. We let S* be the corresponding
irreducible representation. If V' is a finite dimensional &,-module, there is
a unique way of decomposing V into irreducibles as V' = @,,, cAS*. The

Frobenius image of V' is the symmetric function defined by

Frob(V) := Z CASA-

AFn

For example, if u = n and &, := §,, x &,, x --- is the corresponding

parabolic subgroup of &,,, the coset representation
Mmoo — Gn
M*:=C[6,/6,]=1 TGM

has Frobenius image h,(x).
If V' is graded (or bigraded) &,-module as V' = P, Va (or V =

D, >0 Vi) the graded Frobenius image is the symmetric function over

12



C(g,t) given by

grkrob(V;q) := Z Frob(V;)q*

d>0
(or grFrob(V;q,t) := Z Frob(Vy.)q%t°).
d,e>0
We end this section with a fact about Kronecker coefficients. For &,,-
modulues V' and W, define the inner tensor product V& W to be the the

usual tensor product of vector spaces with &,-module structure given by
o-(v@w)=(0-v)® (c-w).

For given partitions A\, u and v of n, the Kronecker coefficients g}’)ﬂ, is the

multiplicity of S* in the inner tensor product S* ® S, i.e.
St ® SY = @gin’\.

Although giving an explicit combinatorial description of general Kronecker
coefficients is difficult in general (it is one of the major open problems in

algebraic combinatorics), we have the following identity for special cases.

Proposition 2.3.1. For partitions p,v of n, the Kronecker coefficient

g,(fg = 0, where 9, is the Kronecker delta.

2.4 Complex reflection groups

The general linear group GL,(C) acts naturally on V' := C". An element
t € GL,(C) is called a reflection if its fixed space Vi :={v € V : t-v =}
has codimension one in V. A finite subgroup W C GL,(C) is a reflection

13



group if it is generated by reflections.

Let W C GL,(C) be a complex reflection group. The full general lin-
ear group GL,(C) acts on the polynomial ring C[x,] := Clxy,...,x,] by
linear substitutions, and by restriction C[x,] is a graded W-module. Let
Clx,)¥ C C[x,] be the subspace of W-invariants with vanishing constant
term and let (C[x,]") C C[x,] be the ideal generated by this subspace.

The coinvariant ring attached to W is the quotient
Ry = C[xn]/((C[xn]Y>

This is a graded W-module.
For any irreducible W-module U, the fake degree polynomial fU(q) is

the graded multiplicity of U in the coinvariant ring. That is, we have

f7(a) = Z myaq”

d>0

where my 4 is the multiplicity of U in the W-module given by the degree
d piece (Rw)q of Rw. When W = &,, is the symmetric group of n x n
permutation matrices, the irreducible representations of W correspond to
partitions A - n, and f5* (q) = f*(q) specializes to our earlier definition.
Let W C GL,(C) be a complex reflection group acting on V"= C". An
element ¢ € W is a regular element if it possesses an eigenvector v € V
which has full W-orbit, or equivalently the stabilizer W, := {w € W :
w - v = v} consists of the identity e € W alone. Such an eigenvector v is
called a reqular eigenvector and if w € C* is such that w - v = wv, the
order of w € W will equal the order of w in the multiplicative group C*.
For example, when W = G,, a permutation w € W is a regular element if

and only if it is a power of an n-cycle or an (n — 1)-cycle.

14



2.5 Regular sequences

A length n sequence of polynomials fi,..., f, € C[x,] is a regular se-
quence if for all 1 < i < n, the map (=) x f; : C[x,]/{(f1,... fi-1) —
Clxn)/{f1,---, fi1) of multiplication by f; is injective. If fi,..., f, is a

regular sequence, we have a short exact sequence

0 — Cla/(fi, o fin) 5 Clx/ oo, fin)

- Clx,|/(f1,.. ., ficr, fi) — 0

for all 4. If the f; are homogeneous, this implies that

Hilb(C[xn]/(f1, -, fa); @) = [deg fi], - - - [deg fulq

and in particular dim(C[x,]/(f1,..., fa)) = deg f1 - - - deg fn.

A useful criterion for deciding whether a sequence of polynomials is
regular is as follows. Let fi,...,f, € C[x,] be a length n sequence of
homogeneous polynomials of positive degree. This sequence is regular if
and only if the locus in C" cut out by f; = --- = f, = 0 consists of the

origin {0} alone.

15



Chapter 3

Classical results and sieving

generating theorem

3.1 Springer’s theorem on regular elements

Before applying orbit harmonics to prove sieving results, we state representation-
theoretic results of Springer [Spr74] and Morita-Nakajima [MNO6] which
will be useful in our combinatorial work. We explain how orbit harmonics
may be used to prove these results.
Let W C GL,(C) be a complex reflection group and let ¢ € W be
a regular element with regular eigenvector v € C™ whose eigenvalue is
w € C*. Let C = (c) be the cyclic subgroup of W generated by c¢. We
regard the coinvariant ring Ry as a graded W x C'-module, where W acts
by linear substitutions and the generator ¢ € C sends each variable z; to

wx;.

Theorem 3.1.1. (Springer [Spr74]) Consider the action of W x C' on W

given by (u, c")-w = uwc™". The corresponding permutation representation

16



C[W] is isomorphic to Ry as an ungraded W x C-module.

Remark 3.1.1. Theorem 3.1.1 gives a way to compute the irreducible
characters of W on the subgroup C' generated by c. As explained in [Spr74,
Prop. 4.5], if U is an irreducible W-module with character xy : W — C,
then

x(c") = tracep(c”) = fU (W) = [fY(q)]ur

where fU"(q) € C|q] is the fake degree polynomial attached to the dual
U* = Hom¢(U, C) of the representation U.

We describe an argument of Kostant [Kos63] which proves Theorem 3.1.1
using orbit harmonics. This argument will be used to give an orbit har-
monics proof of a result [BRS08, Thm. 1.4] of Barcelo, Reiner, and Stanton
(see Theorem 5.2.1).

We let C act on C" by the rule co v’ := w1/ for all v € V. The
corresponding action of C' on C[x,] by linear substitutions sends z; to wx;
for all 4, just like the C-action on Ry, in Theorem 3.1.1. Furthermore, this
action of C' on C" commutes with the natural action (w,v’) — w-v" of W,
so we may regard C" as a W x C-module in this way.

Define the Springer locus to be the W-orbit of the regular eigenvector
v of ¢

W.-v={w-v:weW}CC"

The locus W - v is certainly closed under the action of W; we claim that

X is also closed under the o-action of C'. Indeed, for any w € W we have
cow-v)=wtw-v)=w- (W) =w-(c'v)=(wc ) -veW-w.
Since the o action of C' and the - action of W on C" commute, we may

17



regard X as a W x C-set. An inspection of the above chain of equalities
and the regularity of v shows that the map w — w - v furnishes a W x C-
equivariant bijection

W= Weo (3.1.1)

where the action of W x C' on W is as in Theorem 3.1.1.

Chevalley [Che55] proved that there exist algebraically independent T~

invariant polynomials fi, ..., f, of homogeneous positive degree such that
Clx,]" = C[fi, ..., fa]. Furthermore, we have isomorphisms of ungraded
W-modules

Ry = Clx]/(f1,. .., fa) = C[W].

We claim that the invariant polynomials fi,..., f, generate the ideal
T(X). Indeed, for any 1 < i < n, let fi(v) € C be the value of f; on the
regular eigenvector v € C". The W-invariance of f; implies that f;— f;(v) €
I(W -v), and taking the top degree component gives f; € T(W -v), so that
(fi,-.., fn) € T(W -v). On the other hand,

dim(Cxa]/{f1, .-, fn)) = dim CW] = [W] = [W-v] = dim(C[x,]/T(W-v)),

so that
(Fiveeo fa) = T(OW -0).

We use the ideal equality (3.1) to prove Theorem 3.1.1. Since the defin-
ing ideal (C[x,]") of the coinvariant ring Ry is generated by fi,..., fu.

orbit harmonics furnishes isomorphisms of ungraded W x C-modules
Ru = €/ (i fu) = Clxal /T(W v) = CW -] = C[W]
where the last isomorphism used the W x C-equivariant bijection (3.1.1).
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This completes the orbit harmonics proof of Theorem 3.1.1.

3.2 A theorem of Morita-Nakajima via Or-

bit Harmonics

In this section we consider the case of the symmetric group W = G,,.
Throughout this section, we fix a weak composition p = (u1, ..., ux) of n
with k& parts which has cyclic symmetry of order a for some a | k. That
is, we have p; = p;4, for all ¢ with subscripts interpreted modulo k. Let
c be an arbitrary but fixed generator of the cyclic group Zj/,. Morita and
Nakajima proved [MNO0G6] a variant of Springer’s Theorem 3.1.1 as follows.

Let W, be the family of length n words w, ... w, over the alphabet
[k] in which the letter ¢ appears p; times. The set W), carries an action
of &, X Zyj, where &, acts by subscript permutation and Zj/, acts by
c:wy...w, — (w +a)---(w, + a) where letter values are interpreted
modulo k. Extending by linearity, the space C[W,] is an &,, x Zj, /,-module.

Let I, C Cix,] be the Tanisaki ideal attached to the composition g
and let R, := C[x,]/1, be the corresponding Tanisaki quotient ring. The
ring R, is a graded &,-module which may be described in three equivalent

ways.

1. Let F¥, be the variety of complete flags Vo = (0=V, C V; C --- C
V, = C") of subspaces of C". If X, € GL,,(C) is a unipotent operator
of Jordan type p, The Springer fiber B, is the closed subvariety of
Ft, consisting of flags V, which satisfy X,V; = V; for all 7. The
cohomology of B, may be presented [Tan82] as

H*(B,;C) = R,.
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Although the variety B, is not stable under the action of &, C

GL,(C), there is a Springer representation of &,, on the cohomology
ring H*(B,;C).

2. Tanisaki [Tan82] and Garsia-Procesi [GP92] gave explicit generators
for the defining ideal I, of I,,. These generators are certain elemen-
tary symmetric polynomials e4(.S) in a subset S of the variable set
{z1,...,2,} which depend on u. This presentation makes it clear
that R, is closed under the action of &,,; we will make no explicit
use of it here. Garsia and Procesi used this presentation to show that

the graded Frobenius image of R, is a Hall-Littlewood function:

grFrob( R, q) = Q,(x; q). (3.2.1)

Here we interpret QVN(X; q) = stort(u) (x;q) where sort(u) is the par-

tition obtained by sorting p into weakly decreasing order.

3. Let aq,...,a, € C be distinct complex numbers. We may consider

the set W, C C" as a point locus by identifying
Wy e Wy > (Quyy ey Qg )

We have I, = T(W,) as ideals in C[x,]. Since W, is closed under
the coordinate permuting action of &,,, this makes it clear that R, =
C[x,]/1, = C[x,]/T(W,) is &,-stable.

The orbit harmonics interpretation (3) of R, was used by Garsia and Pro-
cesi [GP92] to derive Equation (3.2.1).

Let w := exp(2ami/k) be a primitive (k/a)™ root-of-unity. We extend
the graded &,-action on R, to a graded &,, x Zj4-action by letting the
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distinguished generator ¢ € Zj/, scale by w? in homogeneous degree d.

Theorem 3.2.1. (Morita-Nakajima [MNO6, Theorem 13]) We have an

isomorphism of ungraded &,, X Zj/q-modules
CW,] =2 R,.

When p = (1), Theorem 3.2.1 reduces to Theorem 3.1.1 when W = G,
at the regular element (1,2,...,n) € &,. The proof of Theorem 3.2.1
given in [MNOG] involves tricky symmetric function manipulations involv-
ing the Hall-Littlewood polynomials @“(X; q) when ¢ is specialized to a
root, of unity and relies on further intricate symmetric function identities
due to Lascoux-Leclerc-Thibon [LLT94]. Orbit harmonics gives an easier

and more conceptual proof.

Proof. Let ¢ := exp(2mi/k) be a primitive k' root-of-unity with (¢ =
w. In the interpretation (3) of R, described above, take the parameters
o, ..., ay defining the point locus W, C C" to be a; := (7. If we let our
distinguished generator ¢ of Zy/, act on C" as scaling by w, the set W, is
closed under the action of the linear group &,, X Zy/,. As discussed above,

Garsia and Procesi [GP92] used orbit harmonics to give an isomorphism
CIW,] = Clx,]/T(W,) = R,

of ungraded &,, x Zj/,-modules. O]
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3.3 Loci and Sieving

Our main ‘generating theorem’ for sieving results is as follows. For any
group W, write Irr(W) for the family of (isomorphism classes of) irre-
ducible W-modules.

Theorem 3.3.1. Let W C GL,(C) be a complex reflection group, let ¢ €
W be a regular element, let C' = (') be the subgroup of W generated by
d, and let w := exp(2mi/k) € C*. Let C' = (c) = Zy be a cyclic group of
order k and consider the action of W x C on C" where ¢ scales by w and
W acts by left multiplication. Let X C C"™ be a finite point set which is
closed under the action of W x C'.

(1) Suppose that for d > 0, the isomorphism type of the degree d piece of
Clx,]/T(X) is given by

Chl/T(X)a= @ U,

Uehr(W)

The triple (X,CxC", X(q,t)) exhibits the bicyclic sieving phenomenon

where

X(gt)= > mulg)f” (@)

Uelrr(W)

where my (q) = Y450 Mu,aq”-

(2) Let G C W be a subgroup. The set X/G of G-orbits in X carries
a natural C-action and the triple (X/G,C, X(q)) exhibits the cyclic

sieving phenomenon where

X (q) = Hilb((C[x,]/T(X))%; ).
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Proof. Applying orbit harmonics to the action of W x C' on X yields an

isomorphism of ungraded W x C-modules
C[X] = C[x,)/T(X). (3.3.1)

Let ¢ := exp(2mi/n). To prove (1), apply Theorem 3.1.1 (and Remark 3.1.1)
to get that for any r,s > 0, the trace of (¢’,(¢)?) € C x C' acting on
Clxn]/T(X) 18 D permawy my (W) fU(¢*) = X (w", ¢*). By the isomorphism
(3.3.1), this coincides with the number of fixed points of (¢”, (¢)®) acting
on X, completing the proof of (1).

For (2), we take G-invariants of both sides of the isomorphism (3.3.1)

to get an isomorphism of C-modules
CX/G) 2 (Clx,]/T(X))°C. (3.3.2)

Since C' acts on the graded vector space (C[x,]/T(X)) by root-of-unity

scaling, we see that the trace of ¢ on (3.3.2) is
[Hilb((Clx]/ T(X)) s q)]g=0r = X (&)

for the right-hand side, and the number of orbits in X/G fixed by ¢* for
the left-hand side, finishing the proof. ]

Remark 3.3.1. We will mostly apply Theorem 3.3.1 in the case W = G,,.
In this context Irr(W) coincides with the family of partitions A F n and
the fU"(t) appearing in Theorem 3.3.1 (1) may be replaced by f*(t).

In order to use Theorem 3.3.1 to prove a sieving result involving a set

X, we must
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e realize the relevant action on X in terms of an action on a point locus

in C", or a quotient thereof, and

e calculate the graded isomorphism type of C[x,|/T(X), or the Hilbert
series of (C[x,]/T(X))¢.

As we shall see, this program varies in difficulty depending on the combi-

natorial action in question.
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Chapter 4

The Functional Loci

Rota’s Twelvefold Way is a foundational result in enumeration and involves
counting functions between finite sets which are arbitrary, injective, or
surjective. Inspired by this, the loci considered in this section correspond

to arbitrary, injective, and surjective functions between finite sets.

Definition 4.0.1. Given integers n and k, set w := exp(2mi/k). We define

the following three point sets in C™:

Xog = {(a,...,a,) : a; € {w,w?, ..., 0"}
Yor :={(a,...,a,) € Xpk : a1,...,a, are distinct}

Zng ={(ar,...,;a,) € X : {a1,...,a,} = {w,w?, ..., W}

Observe that V), , = @it k <n and Z,;, = g if n < k. When n = &,
we have the identification of Y,, , = Z,, , with permutations in &,,. Each of

these sets is closed under the action of &,, X Zj, where Z;, scales by w.
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4.1 The Quotient Rings

In this section we describe generating sets for the homogeneous ideals
T(X) corresponding to the functional loci defined in Section 4.0.1 and
describe the graded &,,-isomorphism types of the quotients C[x,|/T(X).
This is easiest for the case of X, ; corresponding to arbitrary functions
{1,2,...,n} = {1,2,... k}.

Proposition 4.1.1. Let n,k > 0. The quotient ring C[x,]/T (X, ) has
presentation

Clxn)/T(Xpi) = C[xn]/(xlf, . .CIZk>

rrn

and we have

grirob(Clx,|/T(X,x); q) = Z qwhm(,\)
A<k

L(N)<n
where the sum is over all partitions A with largest part size < k and length
< n. Here m(\) is the partition obtained by rearranging the nonzero ele-
ments of (n — L£(X),mi(X),ma(N),...,mg_1(N)) into weakly decreasing or-

der.

Proof. Let 1 <i < n.Forany (ay,...,a,) € X, wehavea; € {w,w?, ... "}
which means that (z; —w)(z; —w?) - - - (r; —w¥) € I(X,, ). Taking the high-
est degree component, we have z¥ € T(X,, ;). We conclude that (xf, ..., z%) C
T (X, x). On the other hand, we know that

dim C[x,)]/T(Xps) = | X k| = k"

and since dim C[x,,|/(z%,...,2%) = k", this proves the first assertion.
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For the second assertion, observe that {28 --.ab» : 0 < b; < k} is a
basis for the quotient C[x,]/{x¥, ..., x%). The action of &,, on these mono-
mials decomposes this set into orbits indexed by the partitions appearing
in the sum. For each partition A, the corresponding orbit lies in degree ||

and has Frobenius image /(). O

We turn our attention to the locus Y, ; corresponding to injective func-
tions [n] — [k]. The idea is to use regular sequences to reduce to the case

where k = n.

Proposition 4.1.2. For any n < k we have

C[Xn]/T(Ymk) = C[Xn]/<hk—n+1(xn)7 ceey hkz—l(xn)’ hk(xn)>

and

k
grirob(Clx,|/T(Yak); q) = [n} Z qmaJ ) Schape(T)

4TeSYT(n
where the sum is over all standard tableauz T with n boxes.

Proof. We first show that h4(x,) € T(Y,x) for any d > k — n. Indeed,

introduce a new variable ¢t and consider the quotient

(1—w)(1—w?t) (1 - Z Z LW WM ()t

(1 —zqt)(1 — xot) -+ - (1 — xt) ol

Whenever (z1,...,2,) € Y, i, the n factors in the denominator will can-
cel with n factors in the numerator, yielding a polynomial in ¢ of de-
gree k —n. If d > k — n, taking the coefficient of t¢ on both sides yields
> eipea(—D)%a(w,w?, .. W) hy(x,) € I(Ysx) so that hy(x,) € T(Yok).
It is known that the sequence hy_,11(x,), ..., hx—1(X,), hi(x,) of poly-

nomials in C[x,] is regular. One way to see this is to check that the locus
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in C™ cut out by these polynomials consists only of the origin {0}. Indeed,
the identities

hd(fL’l, Ce 71’1') = xihd_l(m‘l, e ,l’i) + hd(l’l, e 7Ii—1>

mean that the system

S~—
I

hk—n+1<171; Ce ,ZL’n) = hk_n+2(l'1, ey Iy

= hgi(z,...,2,) = hg(z,...,2,)=0

is equivalent to the system

Ri—ns1(T1, .o T0) = hpmppo (@1, .o 1) = -+ = hy—1 (21, 22) = hy(z1) = 0.

The latter system is triangular and may be solved to yield the solution set

{0}
Since hg_pi1(Xn), .- hi—1(Xn), hx(x,) is a regular sequence, we see

that

dim C[x,]/ (hk—nt1(Xn), - - -5 Pr—1(Xn), hi (X))
=(k—n+1)---(k—1)k=1|Y,x| = dimClx,)/T(YV.x)

which forces (hg—nt1(Xn), ..., he—1(Xn), he(x,)) = T(Y,x). Furthermore,

since the exact sequences

—)Xhg_n z(xn)
0 = Clxal/ Bomrs (%), -+« s ipmpi 1 (3)) L rmmtilen),

Clxnl/(Pk—nt1(Xn)s - -+ s hbongio1(Xn)) =
Clxnl/(ht—ng1(Xn)s - - s Prnrio1(Xn)s k—npi(Xn)) — 0

28
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involve G,,-equivariant maps, we see that
grFrob(C[x,]/T(Y); q) = grFrob(C[x,]; ) x (1—¢* 1) ... (1—¢* 1) (1—¢")

for all £ > n and in particular

W Frob(Chx ] T(V,0):0) = | ] srFrob(Chx,l DY)

- BB (%), ) ) = > A st

n
4 TeSYT(n
(4.1.1)

where the final equality is due to Lusztig (unpublished) and Stanley [Sta79].
O

The surjective locus Z,, ; was studied by Haglund, Rhoades, and Shi-
mozono [HRS18] and is the most difficult functional locus among the func-

tional loci to analyze. We quote their results here.

Proposition 4.1.3. (Haglund-Rhoades-Shimozono [HRS18]) For any k <

n we have

(C[Xn]/T(Zn,k) = C[Xn]/<x’f> $§> s ’xfw en(xn)v enfl(xn)a . 7€nfk+1(xn)>
and
e —des(T) — 1
gI’FI‘Ob(C[{,El, sy ]/T Z q i) |i n—k 1 Sshape(T')
TeSYT(n q

All known proofs of Proposition 4.1.3 involve intricate arguments such

as Grobner theory, a variant of Lehmer codes attached to points in Z,, 4,
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and somewhat involved symmetric function theory:.

4.2 Bicyclic Sieving

We describe the bicyclic sieving phenomena obtained by applying Theo-
rem 3.3.1 (1) to the loci X, i, Y, x, and Z,, ;. Rather than actions on point

sets, we phrase the result in terms of actions on words.

Theorem 4.2.1. Let n and k be positive integers. The following triples

exhibit the bicyclic sieving phenomenon.

1. The triple (X g, Zp X Zg, X0 (¢, 1)) where X, i is the set of all length
n words wiws ... w, over the alphabet k], the cyclic group Z, acts
by rotating positions wiwsy . .. w, — Wy ... wywy, the cyclic group Zy
acts by rotating values wywsy . .. wy, — (wy + 1)(wy + 1)+ (w, + 1)

(interpreted modulo k), and

n

Xan(q’ t) = Z q|”| |:n — g(ﬂ), my (M)a m2(ﬂ)> SR

© a partition
Lp)<n, p1<k

t

2. The triple (Yo, Zn X Zg, Ynr(q,t)) where Y, € X,k is the subset
of words with distinct letters, the group Z, X Zj acts by restricting

its action on X, , and

You(at) = [f;] S P,

4 \Fn

3. The triple (Zy g, Ln, X Ly, Zn 1 (q,t)) where Z, C X, is the subset

of words in which every letter in [k] appears, the group Z,, X Zj acts
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by restricting its action on X, i, and

Zuata.t) = 3 |1 T e,
q

n—=k
TeSYT(n)

Proof. We prove these items in reverse order: (3), then (2), then (1). Item
(3) follows immediately by combining Theorem 3.3.1 (1) and Proposi-
tion 4.1.3.

If we apply Theorem 3.3.1 (1) to the locus Y, and use Proposi-

tion 4.1.2, we obtain a bicyclic sieving result with polynomial

[?lj $ gD pebape(n) [}Zﬁ () S (1) = Yau(g,t);

TeSYT(n) AFn

this proves item (2) of this theorem.
Finally, if we apply Theorem 3.3.1 (1) to the locus X, x and use Propo-

sition 4.1.1, we obtain a bicyclic sieving result with polynomial

> D dMELA (4.2.1)

w© a partition AFn
Lp)<n, u1<k
where we applied Young’s Rule: for ptn we have h, = >, K ,s. For

fixed p, we claim that

n

ZKA’Mf (t) B {n_g(ﬂ)vml(u)vm2(ﬂ)v“'

AFn

(4.2.2)

t

Indeed, the left-hand side of Equation 4.2.2 is the generating function for
the major index statistic over the set of words w = w; ... w, with m;(u)

copies of 7. The Schensted correspondence bijects such words w with ordered
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pairs (P, @) of tableaux of the same shape with n boxes such that
e P is semistandard and () is standard, and
o if w— (P,Q) then maj(w) = maj(Q).

Since f(t) is the generating function for major index on standard tableaux
of shape A\, Equation (4.2.2) follows. Applying Equation (4.2.2), we see that
the expression (4.2.1) equals the formula for X, (¢, t) in the statement of
the theorem. W

4.3 The subgroup G =6,

For our first application of Theorem 3.3.1 (2), we consider the case where
W = &,, and the subgroup G = &,, is the full symmetric group. We phrase
our sieving results in terms of compositions.

Let WComp,, ; be the family of weak compositions of n of length k
and Comp,, ;, be the set of compositions of n of length k. We have natural

identifications of orbit sets

k
X/ 6, = WComp,, , Yoi/6n = ([ ]), Zn 1/ S, = Comp,,
k) n 2
where ([:}) is the family of n-element subsets of [k]. The relevant sieving
result reads as follows.

Theorem 4.3.1. Let n and k be positive integers. The following triples

exhibit the cyclic sieving phenomenon.

(1) The triple (WComp,, , Zy, [n+s—1]q) where Zy, acts by rotation

(0417062, ... ,Ckk) —> (O{z, . ,ak,al).
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(2) The triple <([fj),Zk, [ﬁ]q) where Zy, acts on ([fl]) by increasing entries
by 1 modulo k.

(3) The triple (Comp,, i, Zy, [z:ﬂq) where Zy, acts by rotation.

Theorem 4.3.1 (2) is the ‘first example’ of the CSP of Reiner, Stanton,
and White [RSW04]. Theorem 4.3.1 (1) and (3) seem to have not been

explicitly stated in the literature so far.

Proof. For any graded &,-module V, the Hilbert series Hilb(V®; q) of the
S,,-invariant subspace of V' is the coefficient of s(,) in grFrob(V;¢). Since
the coefficient of s,y in h, is 1 for any partition p = n, Proposition 4.1.1

yields

n

Hilb(Cx,)/T(Xns) " 0) = Y M= {
A a partition
A<k, £(N)<n

n—i—/{:—l]
q

and Theorem 3.3.1 (2) finishes the proof of item (1).
For item (2), we extract the coefficient of s(,) in Proposition 4.1.2 to

get

Hilb(C[x,] /T (Yo )1 q) = m ;

and apply Theorem 3.3.1 (2).
For item (3), extracting the coefficient of s(,y in Theorem 4.1.3 yields

Hilb(Clx, ]/ T(Z0) " 4) = {Z _ ﬂ

and Theorem 3.3.1 (2) finishes the proof. O
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4.4 'The subgroup G = (),

In this section we consider the subgroup C,, of &,, generated by the long
cycle (1,2,...,n). Recall that a necklace of length n over the bead set [k]
is an equivalence class of length n sequences (by,bs,...,b,) of beads in
[k] where two such sequences are considered equivalent if they differ by a

cyclic shift. We have the following three families of necklaces over the bead

set [k].

N;¥, := {all length n necklaces with bead set [k]}
N, := {all length n necklaces with bead set [k] and no repeated beads}

N7, = {all length n necklaces with bead set [k] in which every bead appears}

Each of the sets N, NY, N7, carries an action of Z by bead color

rotation:
(b1,b9,...,by) — (b1+1,bo+1,...,b,+1) (letters interpreted modulo k)
and we have the orbit set identifications

Xoi/Crp = Ny Yi/Co = N) ., Zni)Crn = N7 ..

Theorem 4.4.1. Let n and k be positive integers. The following triples

exhibit the cyclic sieving phenomenon.

(1) The triple (N, Zy, Ny (q)) where

N = > q"b,

1 a partition
Lpw)<n, p1<k
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where b, is the number of length n words w = w; ... w, satisfying
n | maj(w) containing n — €(u) copies of 0 and m;(u) copies of i for

each i > 0.
(2) The triple (N}, Z, N ,(q)) where
% k A
Vi = 1] Sonr@
9 \n

where ay,, is the number of standard Young tableaux T' of shape A
with n | maj(T).

(3) The triple (N, Z, N,.(q)) where

maicry |7 — des(T) — 1
NnZ,k(Q) = Z q i) |: n—k :| Qshape(T),n -
TeSYT(n) q

Proof. For 0 < j <n—1,let V; be the linear representation of C,, on which
(1,2,...,n — 1) acts by exp(2mij/n). Kraskiewicz and Weyman proved
[KWO01] that the induction of V; from C), to &,, may be written

‘/j TGn ~ @ Sshapc(T)

maj(T)=j (mod n)

where the direct sum is over all standard tableaux T with n boxes such that
maj(7T") = 7 modulo n. Specializing at j = 0, we see that the dimension of
the C,-fixed space of the &,,-irreducible S* is

<17S)\ iCn>Cn = <1 T6n7s)\>6n = Qxn
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which proves (2) and (3). For (1), apply the RSK bijection to see that

< i(ﬁl Cn EE: }<X7n égA iC& Cn :E::}kan(u Axn = b

AFn AFn

4.5 The subgroup G = H,

In this section we assume n = 2r is even and let H,, C &,, be the subgroup

generated by the permutations
(1,2),(3,4),...,(n—1,n),(1,3)(2,4),(3,5)(4,6),...,(n=3,n—1)(n—2,n).

The group H, is isomorphic to the hyperoctohedral group of signed per-
mutations of an r-element set.

We consider undirected graphs on the vertex set [k] in which multiple
edges and loops are allowed. An isolated vertexr in such a graph is an
element i € [k] which is not incident to any edge (so that a vertex which
has a loop is not isolated). We have the following families of graphs on the

vertex set [k].

Gryy ), = {all r-edge graphs on [k]}
GrY . := {all r-edge loopless graphs on [k] in which each vertex has degree < 1}

Gr7, := {all r-edge graphs on [k] with no isolated vertices}

Observe that when k = n, the set Gr}; , may be identified with the family
of perfect matchings on [n].

Each of the three sets Gr,, Gr) ., and Gr7, carries an action of Z by
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the vertex-rotating cycle (1,2,..., k). This Zj-action is compatible with

the orbit-set identifications
X')’L,k/HT' - Grik, Yn7k/Hr - Gr,r);k., ZTL,k/HT - GT’ik

In the following theorem, a partition A is called even if each of its parts

A1, Ag, ... is even.

Theorem 4.5.1. We have the following cyclic sieving triples.

(1) The triple (Gr;Y ., Zy, Gry 1.(q)) exhibits the cyclic sieving phenomenon,

where

Grap@ =Y. > K -d" o).

partitions p AFn even
nC(k™)

Here m(pu) & n is the partition obtained by writing the part multiplic-

ities in (i1, ftg, - . . , fn) 0 weakly decreasing order and Ky p(u) 1s the

Kotska number.

(2) The triple (Grn i> L, Gr};k(q)) exhibits the cyclic sieving phenomenon,

where

GrY (g Hq > )

AFn
A even

(3) The triple (Grik, Ly, Grik(q)) exhibits the cyclic sieving phenomenon,

where

. —des(T) — 1
Grf,k(Q) - Z g @ [n es(T) } )
q

n—k
TeSYT(n)
shape(T) even

This result should be compared with the result of Berget, Eu, and
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Reiner. In [BER11, Theorem 5 (i)] they prove a result equivalent to Theo-
rem 4.5.1 (1). Their proof, like ours, uses the symmetric function operation

of plethysm.

Proof. For any value of d, the wreath product &, &, embeds naturally
inside the larger symmetric group &,,.. The Frobenius image of the corre-

sponding coset representation may be expressed using plethysm as
Frob(1 g% ) = Frob(C[S4, /&4 &,]) = halh,].

Finding the Schur expansion of hylh,| is difficult in general, and is closely
related to Thrall’s Problem. In the special case d = 2, we may identify
H,. = 65,16, and we have

holhe] = > s»

AFn
A even

where n = 2r. Applying Frobenius Reciprocity, for any A - n the dimension
of the H,-fixed subspace of the &,,-irreducible S is given by the character

inner product:

1 Miseven
dim (M) = (1 xM 5 s, = (115 Ve, =
0 ) is not even

where we use 1 for the trivial character of H,.. Correspondingly, if V' is any

graded &,,-module with graded Frobenius image

grkrob(V; q) = Z cx(q)$a,

AFn
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the Hilbert series of the H,-fixed subspace will be

Hilb(V#;q) = > ex(g).

AFn
A even

The polynomials Gr; ,.(q), Gryy . (q), GrZ,(q) are obtained in this way from
Propositions 4.1.1, 4.1.2, and 4.1.3. O]
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Chapter 5

Other Combinatorial Loci

5.1 The Tanisaki Locus

Throughout this section, we fix a weak composition p = (u1, ..., ux) of n
into k parts which satisfies p; = p;4, for all ¢, where indices are interpreted
modulo k. If w := exp(27i/k), define the Tanisaki locus X, C C" by

X, = {(a1,...,an) : aj =" for precisely ju; values of j}.

As discussed in Section 3.2, Garsia-Procesi [GP92] proved that T'(X,) = I,
(the Tanisaki ideal) and grFrob(Clx,]/T(X,):q) = éu(x;q) (the Hall-
Littlewood symmetric function). We have the following bicyclic sieving

result.

Theorem 5.1.1. Let W, be the set of length n words wy ... w, which
contain p; copies of the letter i for each v =1,2,... k. The set W, carries
an action of Zn X Zyja, where Z, acts by word rotation wyw; ... w, =

Wy ... wpwy and Ly acts by wy ... wy, = (wy +a) ... (w, +a) where letter
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values are interpreted modulo k. The triple (W, Zy X Ziyq, X (q,t)) exhibits

the bicyclic sieving phenomenon, where

X“(q, t) = Z jgk,sort(u)(‘])f)\(t)

AFn

and sort(p) is the partition obtained by sorting the parts of u into weakly

decreasing order.

Proof. Apply Theorem 3.3.1 (1) to the point locus X, and use the Schur

expansion
H,(x;9) = Y Kxu(g)sa(x)
AFn
of the Hall-Littlewood polynomials. ]

Theorem 5.1.1 was proven in the unpublished work of Reiner and
White. A proof of Theorem 5.1.1 using Theorem 3.2.1 may be found in
[Rho10].

Given a subgroup G C &,,, what happens when we apply Theorem 3.3.1
(2) to Y,? By reasoning analogous to that in Section 4 we obtain the
following CSPs.

Example 5.1.1. When G = &,, the locus X, is a single G-orbit. The
S,-invariant part of R, is simply the ground field in degree 0, so we get
the trivial CSP ({*}, Zy/q, 1) for the action of Zj on a one-point set.

Example 5.1.2. When G = C,,, we may identify X, /G with the family
of n-bead necklaces (by,...,b,) with y; copies of the bead of color i. The

cyclic group Zj, acts on these necklaces by a-fold color rotation b; — b;+a
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and we get a CSP (X,/G, Zy/q, X(q)) where

X(Q) = Z [?)\,sort(u) (Q)a)\,n

AFn

and ay ,, is the number of standard tableaux T" of shape A with n | maj(T’).

Example 5.1.3. When n = 2r is even and G = H,, we may identify
X,,/G with the family of graphs (loops and multiple edges permitted) on
the vertex set [k] where the vertex ¢ has degree y; (here a loop contributes
two to the degree of its vertex). The orbit set X, /G is acted upon by Zj/,
by a-fold vertex rotation, and the triple (X, /G, Zy/,, X (¢)) exhibits the
CSP where

X(q) = Z [?)\,sort(u)(q)'

AFn
A even

5.2 The Springer Locus

In this section we return to the setting of an arbitrary complex reflection
group W C GL,(C) acting on V := C". We fix a regular element ¢ € W
with regular eigenvector v € V' and corresponding regular eigenvalue w €
C, so that ¢-v = wv. We also let C' := (c¢) be the subgroup of W generated
by c.

Recall that the Springer locus is the W-orbit W-v = {w-v : w €
W} C V. Section 3.1 shows that the Springer locus is closed under the
action of the group W x C, where W acts by its natural action on V and
C' acts by the rule ¢ : v/ — wov’ for all v € V. (Note that this is different

from the o-action co v’ := w0’ of C' considered in Section 3.1.)

Theorem 5.2.1. Let ¢, € W be reqular elements and let C = (c),C" =
(') be the cyclic subgroups which they generate. The product of cyclic
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groups C' x C" acts on W by the rule (¢,c) - w = dwe. The triple (W, C X
C",Wi(q,t)) exhibits the bicyclic sieving phenomenon where

W(g.t):=>_ fU(q)f" (t)

and the sum is over all (isomorphism classes of ) irreducible W-modules

U.

Proof. The discussion in Section 3.1 shows that the homogeneous quotient
C[V]/T(W - v) attached to the Springer locus W - v C V' is given by the
coinvariant ring

Rw = C[V]/T(W -v).

The map W — W -v given by w — w - v is a W x C-equivariant bijection.
Indeed, the generator ¢ of the group C acts on w-v € W - v by

c:w-vww-v)=w-(wv) =w- (c-v) = (we)-v

which agrees with the action of C' on W. By definition, the fake degree
polynomial fY(q) is the graded multiplicity of U in the W-module Ry .
Now apply Theorem 3.3.1 (1). O

Theorem 5.2.1 is a result of Barcelo, Reiner, and Stanton [BRS08, Thm.
1.4]. In [BRS08] the polynomial W (q,t) is referred to as a bimahonian
distribution. More generally, Barcelo, Reiner, and Stanton consider ‘Galois
twisted” actions of C'x C’ on W as follows. Let d be the order of the regular
element ¢ € W and let s be an integer coprime to d. The group C' x '
acts on W by the rule

(e,d):= () w-ec (5.2.1)



If we let ( := exp(2mi/d), there is a unique Galois automorphism o €
Gal(Q[¢]/Q) satistying o(¢) = ¢®. Furthermore, if U is any W-module,
there is a W-module o(U) obtained by applying o entrywise to the matrices
representing group elements in the action of W on U. The operation U —
o(U) preserves the irreducibility of W-modules.

In [BRS08, Thm. 1.4] Barcelo, Reiner, and Stanton prove that

(W, C x C',W?(q,t))

exhibits the biCSP where C'x C" acts by the Galois-twisted action of (5.2.1)
and W7(q,t) is the o-bimahonian distribution given by

Wo(q.t) =Y )7 D)
U

where U runs over all isomorphism classes of irreducible W modules. This
more general biCSP can also be proven using orbit harmonics; one observes
that (¢)® € " is a regular element in W with regular eigenvalue ¢* and

applies Theorem 5.2.1 with ¢ — (¢)°.

5.3 Loci of colored words

The complex reflection group G(r,1,n) < GL,(C) is a group of n x n
monomial matrices whose nonzero entries are (¢ for some i, where ¢ :=
e’r € C. Irreducible representations of G(r,1,n) are in one-to-one corre-
spondence with r-tuple A* = (A© ... A=) of partitions with total size
[Xo| + -+ + |Ar—1] = n. We denote the irreducible representation corre-
sponding to A* by S**. Let A¢(»1m) .= A®" be the r** tensor of the sym-

metric function ring A (with variables 2()’s). For any finite-dimensional
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G(r,1,n)-module V', there extists unique multiplicity cyo for each A* so
that V 22 @,.., cx+S*". The Frobenius image of V is defined by

Frob®Chm (V) i= 3 " cresye(x) € ACCEM,
AFn

where $ye(x) = 530 (x@) 5,021 (x"D). We define grFrob®"™ in a
usual way.

Suppose X is invariant under the action of &,, x C, where &,, acts on
X by permuting coordinates and a generator ¢ € Oy acts on X by k* root

of unity scaling. Then an r-colored version of X,

1

1
Col.(X) :={(¢%x7,...,Cx) : (x1,...,2,) € X,1,...,¢c, € {0,1,...,r—1}}

is invariant under action of G(r,1,n) x Cy,, where G(r,1,n) acts by left
multiplication and Cj, acts by scaling a k7" root of unity. Then we have

the following equivalence as ungraded G(r,1,n) x Cg,-modules
C[Col,(X)] = Clxy, ..., z,]/ Col(T(X)),

where Col,(T'(X)) is the image of T(X) under r* power ring homomor-
phism given by xj — ). We apply Theorem 3.3.1 to Col,(X) for a loci X
to get a sieving result.

For example, following Section 5.1 let = (p, .. ., ux) be a weak com-
position of n into k parts with which satisfies p; = p;4, for all ¢, where
indices are interpreted modulo k£ and X, be the Tanisaki locus. Then
Col,(X,) can be regarded as the set of words of length n where there are
p; (colored) 7’s. To calculate graded Frobenius image, we use the following

proposition.
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Proposition 5.3.1. [0S19, Proposition 9] For a locus X C C", we have
the following identity:

ngrobG(T’l’")(C[xn]/ Col(T(X)); q) =
grFrob(Clx,]/T(X): ¢")[x© + gx® 4+ .. 4+ ¢ 1x= 1],

where grErob is the usual graded Frobenius image of &, module and [-]

denotes the plethystic substitution.

Before we calculate the graded Frobenius image of Col, (X)), let us de-
fine a statistic. Let A* = (A® ..., AU=D) - n be an r-tuple of partitions
of n. We draw a Young diagram of A* having n cells total, consisting of
r-tuples of Young diagrams arranged in the plane so that A*~1) is north-
west of A*). A semistandard tableau of shape A® if its entries are weakly
increasing from left to right in each row and strictly increasing from bot-
tom to top in each column. A weight of a semistandard tableau T" of shape
A*is (11,15, . .. ), where T; denotes the number of i’s in T". Then define the
flag-cocharge of a tableau T of shape \* by

r—1
fee(T) = r-ce(T)+ Y _i-|N],
=0

where cc is the usual cocharge statistic.
Since the graded Frobenius image of Col, (X)) is the Hall-Littlewood
polynomial, by applying the above proposition to Col,(X,), we have
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Col,(X,)(x;q) == ngrobG(r’l’”) (Clxn]/ Col, (T(X,)); ¢")
= grFrob(C[x,) /T (X); ¢")[x” + qxV + -+ 4+ ¢ 'x"7Y)]
= @u(f QT)[X(O) + qx(l) o g Y]

AFn

= Z Z K)\#L Yi%e 741/7.c>‘.81/(0) (X(O)) e 5,,(r—1)(X(T_1))

AFn vekn

Z Kflag )Sye(X).

where Izﬁag (q) is the generating function of flag-cocharge over all semis-
tandard tabelau of shape v* and content u. To be precise, the last equality
comes from a usual fact of plethysm and the last equality comes from
the fact that the jeu-de-taquin provides a cocharge-preserving bijection
between semistandard tableaux of shape A and pairs of a Yamanouchi
tableau and a semistandard tableau of shape v°.

Taking the Hilbert series to associated G(r,1,n) module of Col,(X,,),

Col,(X,, =Y KM@ 1),

pukn vetkn

we have

where v**(t) is the dual fake degree polynomial attached to the dual of
the irreducible G(r,1,n) module indexed by v*. By Theorem 3.3.1 we ob-

tain a bicyclic sieving result concerning colored words with the action of

Cn—1

¢ : : ) c1 c cnt+1,,,C1
twisted rotation” (w{*...wS) — (wSw . w7

o ) and ‘color rotation’
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(wit .. we) = (Wit we ). When po= (1),

Col, (Xam)(@.1) = 3 7 (0" (1)

vekn

this reduces to a bicyclic sieving theorem of [BRSO08].
When p = (1) and r = 2,

Coly(X(1))(q.1) = ; s m

$2

This provides a biCSP for binary words (words of length n with alphabets

in {—1,1}) where one cyclic group acts by twisted rotation (ay,...,a,) —
(—an,ai,...,a,-1) and the other cyclic group Zy acts by (ai,...,a,) —
(—aq,...,—ay). This gives a desired representation theoretic proof of the

sieving result for twisted rotation on binary words in [AU19].

48

&1

| &1



Chapter 6

Macdonald polynomials and

cyclic sieving

6.1 Main theorems

Since Macdonald [Mac88| defined Macdonald polynomials H u(x;q,t) and
conjectured the Schur positivity of them, the Macdonald polynomial has
been one of the central objects in algebraic combinatorics. Even though a
combinatorial formula for Macdonald polynomials is given [HHLO05] and the
Schur positivity of Macdonald polynomials is proved [Hai01], not much is
known about an explicit combinatorial formula for the (g, t)-Kostka poly-
nomials, which are the Schur coefficients of the Macdonald polynomial.
In this chapter, we discuss some enumerative results involving the (g, )-
Kostka polynomials in the words of cyclic sieving phenomena. This will
provide a series of identities between the number of matrices with certain
cyclic symmetries and evaluation of (g, t)-Kostka polynomials at a root of

unity, uncovering a part of the mystery of the (g, t)-Kostka polynomials.
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To begin, we generalize the cyclic seiving phenomena. Let X be a set
with action of a direct product of k cyclic groups C; x Cy X --- x C}.
For each i = 1,2,...,k, fix a generator ¢; for C;. Let X(q1,q2,...,qx) €
Z[q1,q, - . ., qx] be a polynomial in k variables. Following [BRS08|, we say
the triple (X, Cy x Cy x + -+ X Cx, X(q1, G2, - - -, q)) exhibits the k-ary-cyclic
sieving phenomenon (k-ari-CSP) if for any integers 71,79, ..., r; the num-
ber of fixed points of (cf',cy?,...,¢r) in X is equal to the evaluation of

T1 T2

X(q1aq2a-">Qk) at (q17QZ7"'an) :( 152 5+ ]:k>a Le.
Xt edO) = | {a € X 1 (e, ) = 2] = X (GG G,

where (; is a root of unity having the same multiplicative order as c;.
In this chapter, we provide instances of tricyclic sieving phenomena, i.e.
k-ary-CSP for k = 3.

In this chapter, we adopt orbit harmonics to the diagonal orbit harmon-
ics to obtain a ‘generating theorem’ (Theorem 6.3.1) for sieving results of
the combinatorial locus X C C?" with diagonal action of &, on X. A
precise explanation of diagonal orbit harmonics is given in Section 6.3.

The main theorems of this chapter are Theorem 6.1.1 and Theorem 6.1.2
involving (g, t)—Kostka polynomials and enumeration of matrices under

certain symmetries [Oh21].

Theorem 6.1.1. Let X, be the set of b X a matrices of content (19b),
The product of cyclic groups Zy X Zq X Zap acts on X gy by row rotation,
column rotation and adding 1 modulo ab to each entry. In addition for
a composition v = ab, let X ), be the set of b x a matrices of content
v where the product of cyclic groups Zy X Z, acts on Xy, by row and

column rotation. Then we have the following.
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o (X(aty, Zy X L X Lap, X(a4)(q, 1, 2)) exhibits triCSP, where

X(ab) q,t, Z ZK/\ ab) Q7 f)\< )

A-ab

o (X(at)0> Zip X Zgy X (1), (q, 1)) exhibits biCSP, where

X(ab),V(q7 t) = Z kA,(a”)(Qa t)K)\,V'

A-ab

Here, [?,\,M(q, t) (K, respectively) denotes the modified (q,t)-Kostka poly-
nomial (Kostka number, respectively) and f*(z) is the fake degree polyno-

maial.

We say a composition v has cyclic symmetry of order m if v; = vy,
for all ¢, where the subscripts are interpreted modulo the length [(v) of v.
In the second bullet point of the above theorem, if v has a cyclic symmetry
of order a dividing I(v), the set X, possesses an additional action of
a cyclic group Zy)/m by adding m modulo I(v) to each entry. Then one
might ask if there is a natural z-analogue of X4, (q,t) to give triCSP for

X(avy,n- We give an answer of this question in the following theorem.

Theorem 6.1.2. Let v = ab be a composition with cyclic symmetry of
order m dwiding l[(v). Let X4, be the set of b X a matrices of content
v. The product of cyclic groups Zy X Zq X Ziw)m acts on X, by row
rotation, column rotation and adding a modulo [(v) to each entry. Then the
triple (X(qvy0, Lo X Lg X Li()jm> X(a4)0(q, L, 2)) exhibits the triCSP, where

X(ab),y(QJ t? Z) = Z K)x,(ab)<Q7 t)K)\,l/(Z)'
AFab
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Here, I?,\,“(qﬂf) (I?,\,u(z), respectively) denotes the modified (q,t)-Kostka
polynomial (z-Kostka polynomial, respectively).

It should be remarked that there have been similar results discovered
which relate root of unity specializations of ¢g-Kostka polynomials and fixed
point enumerations of matrices or fillings of tableaux (see [Rhol10, AU19]
for example). It should be mentioned that there is more resemblance be-
tween Theorem 6.1.2 and the results of Rhoades [Rhol0] in which, using
Hall-Littlewood polynomial, he showed that N-matrices with fixed col-
umn content g and row content v exhibits biCSP [Rhol0]. We modify the
argument in [Rhol0] to prove Theorem 6.1.2 in Section 6.5.2.

6.2 Modules of Garsia and Haiman

To each partition u of n, one associates a matrix (x?y?)lgigm(a’b)eu. The
S,,-module H), is the smallest vector space over C that contains the deter-
minant A, := det(x?yf)lgigny(mb)@ and its partial derivatives with respect
to any of the variables x;’s and y;’s for 1 < ¢ < n. For example, for a

partition pu = (3, 2), the corresponding matrix is given by

1 Ty Y1 11
T2 Ty Y2 T3Ys
T3 Ys T3Y3
Ty Ty Ysa TqlYs

Is Ty Ys IsYs

=

Il
G S —ry

&

wio

Then the module H,, is given by the C-span

C{axla)’J AM}LJ = C{A#, aIlA/“ aJﬂz AW 8y1 A/“ ay2Au7 1}7
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where I, J are over all multisets with entries in {1,2,...,n} and Oy, :=
Oy, -+ Oy, for a multiset I = {iy,...,4;} and Oy, is defined similarly.
The symmetric group &,, acts on H,, diagonally i.e. permuting = and y
coordinates in the same way. This bigraded &,-module H, is called the
Garsia—Haiman module. Haiman [Hai01l] proved the n! conjecture which
asserts that this module is of dimension n! regardless of u, and moreover,
the graded Frobenius image of H,, is the modified Macdonald polynomial
of u:

grkrob(H,; ¢,t) = f[u(x; q,t) = Zkku(q’ t)sa(x). (6.2.1)
A

6.3 Diagonal orbit harmonics and cyclic siev
ing

In this section, we introduce a systematic way to generate sieving results
using orbit harmonics. The author and Rhoades provided a ‘generating
theorem’ for sieving results (Theorem 3.4. in [OR20]) by exploiting orbit
harmonics applied to a locus X C C" with G,, acting on X by permuting
coordinates. To modify this idea for our purpose, we first explain the di-
agonal orbit harmonics (see [GH96] for more details). Consider X C C**

which is closed under &,, x C; x Cy-action where

e a symmetric group &,, acts on C** by permuting coordinates diago-

nally, i.e.
0‘($1’ e Ty Yty - ayn) = (ma(l)a <o Lon)s Yo(1)s - - - 7ya(n))7

e a finite cyclic group C; acts on C" by scaling the x-coordinates by a

53



root of unity, and

e a finite cyclic group Cy acts on C” by scaling the y-coordinates by a

root of unity.

Then the method of orbit harmonics gives us an isomorphism of &,, x
C x Cy-modules:
C[X] = C[xy, ya|/I(X). (6.3.1)

We further define a homogeneous ideal

T(X) := (o (f) : f € (X)\{0}) C C[x],

where 7, and 7, is the map taking top degree homogeneous part of x,, and

¥, respectively. Then the isomorphism (6.3.1) extends to an isomorphism
ClX] = Clxp, yul/I(X) = Clxp, yu]/T(X),

where the last item C[x,,y,|/T(X) has an additional structure of graded
G, x €7 x Cy-module on which ¢} and C5 act by scaling in each fixed
(bi)degree. Thanks to this isomorphism, we can provide a generating theo-
rem for sieving results in diagonal orbit harmonics whose proof is analogous
to the proof of Theorem 3.4 in [OR20].

Theorem 6.3.1. Let C' be the subgroup of G,, generated by a long cycle
c = (1,2,...,n). Fiz positive integers ki and ky. For j = 1,2, let (; :=
exp(2mi/k;) € C* and C; = (c;) = Zy, be a cyclic group of order k;.
Consider the action of &,, x C; x Cy on C* where ¢, scales x-coordinates
by (1, co scales y-coordinates by (5 and G,, acts by permuting coordinates
diagonally. Let X C C?" be a finite point set which is closed under the
action of &,, x Cy x Cs.
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1. Suppose that for d,e > 0, the isomorphism type of the degree (d,e)-
piece of C[x,,yn|/T(X) is given by

(Clxn, yul/T(X))ae = @ CadeS

AFn
The triple (X,Cy x Cy x C,X(q,t,2)) exhibits the tricyclic sieving

phenomenon where

X(Qa t Z) = Z CA(Qa t)fA(Z>

AFn

where c\(q,t) := Zd,ezo Cxdeqte.

2. Let G C &, be a subgroup. The set X/G of G-orbits in X carries
a natural Cy x Cy-action and the triple (X/G,C; x Cy, X/G(q,t))

exhibits the cyclic sieving phenomenon where

X/G(g,t) = Hilb((Clxn, yal /T(X))% ¢, ).

Proof. Applying orbit harmonics to the action of &,, x C} x C5 on X yields

an isomorphism of ungraded &,, x C; x Cs-modules
CIX] = . yal /T(X). (6.3.2)

Let ¢ := exp(2mi/n). To prove (1), apply Theorem 3.1.1 to obtain that
for any integers r, s, k, the trace of (cf,c5,c*) € C; x Cy x C acting on
Clxp, yn]/T(X) is given by

D el AT = X, 6,6,

AFn
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By the isomorphism (6.3.2), this coincides with the trace of (c},c3,c¥)
which is the number of fixed points of (¢}, c5, c*) acting on X, completing
the proof of (1).

For (2), we take G-invariants of both sides of (6.3.2) to get an isomor-

phism of C; x Cy-modules
C[X/G] = (C[xn, ya]/T(X))Y. (6.3.3)

Since C; x Cy acts on the graded vector space (C[x,,y.]/T(X))¢ by a
root of unity scaling for each = and y variables, the trace of (cf, c5) on the

right hand side of isomorphism (6.3.3) is given by

[Hilb((Clxa, ] /T(X) 3 ¢, )] g=cr=5 = X (¢, 65)-

The trace of (¢f,c3) on the left hand side of (6.3.3) coincides with the
number of orbits in X/G fixed by (¢}, c3). O

Remark 6.3.1. In order to obtain a sieving result involving a combinato-

rial set X with a cyclic group action using Theorem 6.3.1, we must

e realize X (or its quotient X/G) and the relevant action on it as a

point locus in C?* and the compatible action,

e calculate the graded Frobenius image of C[x,,,y,]/T(X) or the Hilbert
series of the quotient Hilb((C[x,, y.]/T(X))%; q,t).

56



6.4 Orbit harmonics and Garsia—Haiman mod-

ule

There is a way to understand the Garsia-Haiman module H, via orbit
harmonics. Let p be a partition of n with I(x) = [ and (') = I'. Let
{ag,...,aq—1} and {By, ..., Br—1} be two sets of distinct complex numbers.
Recall that an injective tableau T of shape u F n is a filling of cells of u by
integers 1,2, ..., n without repetition. The collection of such tableaux will
be denoted by IT(u). For each T' € IT(u), we assign a point pr € C*" by
letting the i-th and the (n + i)-th coordinates of pr record the position of
1in T
pr = (Qyr(1)s -+ Q) Bor(1)s - -+ Bor(m))s

where z7(7) and yp(i) are the x and y coordinates of 7 in T'. For example,
for a partition u = (2,1) and an injective tableau 7" of shape p in the
figure below, the point assigned for T"is pr = (o, a1, o, 51, o, Bo). Let us

2
3]1]

denote the collection of points associated to the injective tableaux by
X, ={preC™ . T €IT(n)}.

Note there are exactly n! points in X,. The point locus X, possesses a

natural diagonal action of &,,: For 0 € &,

O-('Ilv ce Ty Y1, - ayn) = (wo'(l)a <o s To(n)s Yo (1)y - - - 7y0'(n))‘
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Using orbit harmonics, one can promote this ungraded &,,-module X, to
the bigraded &,-module. As usual, let I(X,) be the ideal of polynomials

in C[x,,y,] which vanish on X and define a homogeneous ideal

T(X,) = (w07, (f) : f € I(X,) \ {0}) C C[xp,ynl-

Then the module R, := C[x,,y,]/T(X,) has an additional structure of
(bi)graded &,-module.

Garsia and Haiman [GH96| proved that the Garsia-Haiman module H,,
embedds into this graded module R,. Thanks to the n!-conjecture, we can

conclude the following isomorphism between R, and H,,.

Theorem 6.4.1. We have an isomorphism as bigraded S,,-modules:

6.5 Proofs of main theorems

6.5.1 A proof of Theorem 6.1.1

Let ab = n. Consider a point locus X, associated to a rectangular parti-
tion p = (ab). Following Section 6.4, to consider X (ab) @8 & point locus in
C*", we choose two sets of distinct complex numbers {ag, ..., 1} and
{Bo, - -, Pa_1} For our purpose, let (; = exp(%) and (o = exp(?). Then
setaj:dfor()gj§b—landﬁk:@for()gkga—l.Thenthe

corresponding locus X(ab) possesses

e diagonal action of G,,
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e action of a cyclic group C] of order b acting by scaling a root of unity

(1 to each x-coordinates, and

e action of a cyclic group C5 of order a acting by scaling a root of unity

(2 to each y-coordinates.

Now we can present a proof of Theorem 6.1.1. By the construction
above, C[X (.| has &,, x (1 x Cy action which corresponds to permuta-
tion of letters, row rotation and column rotation on IT(u), respectively.
Combining an isomorphism between R, and H, (Theorem 6.4.1), Equa-
tion 6.2.1 and the sieving generating theorem (Theorem 6.3.1), the first
bullet point of Theorem 6.1.1 immediately follows.

To proceed to the second bullet point, consider a composition v of n.
For the Young subgroup G = 6, = 6,, X G,,--- of v, the G-orbits of
X(qvy are in one-to-one correspondence with the set of b x a matrices with
content v.

To obtain a sieving result for X(,y/G, we must calculate the Hilbert
series of G-fixed subspace of R,. Let 1 be the trivial representation of &,.
It is a standard fact that the induction of 1 from &, to &,, can be written

as

1182 P Kno 5™,
A

where K, denotes the Kostka number. Applying Frobenius reciprocity, it
follows that the dimension of the &,-fixed subspace of the &,,-irreducible
S* is given by the character inner product:

dim(S*)® = (1, 8* lg")e, = (11g", 5N)s, = K

71/‘
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Correspondingly, if V' is any bigraded &,,-module with Frobenius image

grirob(V;q,t) = Z ex(g, t)S™,

AFn

the Hilbert series of &, fixed subspace will be

H11b<V6V7 q, t) = Z C)\(qv t)K)\,z/-
AFn
By (2) of Theorem 6.3.1, and Theorem 6.4.1 this concludes the second
bullet point.

6.5.2 A proof of Theorem 6.1.2

In previous section, we proved that for a composition v of n, the triple
(X () s Ly X Ly Y I?,W(q, t)K, ) exhibits biCSP. Suppose, furthermore,
v has a cyclic symmetry of order m. Then the set X, possesses another
cyclic group action by adding m modulo [(r) to each entry. Therefore, it
is natural to seek for a sieving result that reflects this additional cyclic
action.

Before we begin, we recall the Tanisaki locus. For a composition v |= d,
let W, be the set of length d words w = (wy,...,wy) of content v. Let

i

(= exp(m). We assign a point p,, in C? so that we can realize W, as a

point locus Y, (called the Tanisaki locus) in C? as follows:

Pw = (Cwla"'7cwd)'

Garsia and Procesi [GP92| proved that the T-ideal corresponding to the

Tanisaki locus is given by the ideal generated by elementary symmetric
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polynomials with extra conditions (for precise definition of this Tanisaki

ideal, we refer [GP92]). By orbit harmonics, there is an isomorphism
ClY,] = L, := C[x4)/T(Y,). (6.5.1)

Moreover, they showed that the graded Frobenius image coincides with the

Hall-Littlewood symmetric function,

grFrob(L,; q) = QM(X; q).

Furthermore, if a composition v has a cyclic symmetry of order a, the set
W, has additional cyclic group action given by adding a modulo I(v) to
each letter. This action corresponds with the action of scaling a root of
unity ¢ in each coordinates in Y. In this setting, the isomorphism 6.5.1
extends to an isomorphism as graded &, x C-modules, where C'is a cyclic
group of order [(v)/a.

Now let p = (ab) a rectangular partition and v be a composition of
n with cyclic symmetry of order a. Then the product X, x Y, carries
an &, X Zy X Ly X Zy,)/m-action, where &,, acts diagonally on X, and
Y, and the cyclic groups Zy, Z, and Z;,)/, acts by row rotation on X,
column rotation on X, and translation on the entries on Y, respectively.

By Theorem 6.4.1 and the isomorphism (6.5.1), we have an isomorphism
C[X, x Y,] = R, ®c L, (6.5.2)

as &, X Zy X Lq X Zi)m-modules. Since the graded Frobenius image of
the module R, is given by the Macdonald polynomial and the Frobenius

image of the Garsia—Procesi module L, is given by the Hall-Littlewood

61



polynomial, the Frobenius image is given by

gtFrob(C[X, x Y Jiq.t,2) = > Kaulg,)Knuw(2)g5 50 (6.5.3)
PN En

where ¢f |, denotes the Kronecker coefficient. By taking isotypic compo-

nents for a trivial module of &,, on both sides of equation (6.5.2), we have
C[X, x Y,]®" 2[R, ®c L,]°". (6.5.4)

There is a natural basis of C[X,,xY,]®" indexed by &,-orbits of X, xY,,
given by the sum of elements in each orbit. Note that each of these orbits
corresponds to a b X a matrix with content of it eqauls to v. It is clear
that the cyclic groups Zy, Z, and Z)/m act on these matrices by row
rotation, column rotation and translation of the entries. For an element
g € Zy X Zq X Ziw)jm, we can count the number of fixed points of g in
(X, xY,)/6, is given by the trace of g acting on the left hand side of the
isomorphism 6.5.4. On the other hand, this can be calculated by trigraded

Hilbert series

Hilb([R, ®c L)1 q.t,2) = Y Ky @(, ) Kno(2)g\%,  (6.5.5)

AN En

of [R, ®c L,]®" at a root of unity. By Proposition 2.3.1, taking the coeffi-
cient of trivial Schur function s, in Equation (6.5.5), we have the following

polynomial

Hilb([R, ®c L,]°";q,t,2) = X, (q,t,2) == Z IN(,\7(ab)(q, K, (2)

AFn
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for sieving result. Thus we have proven Theorem 6.1.2. We end this section

with an example of Theorem 6.1.2.

Example 6.5.1. Take p = (2,2) and v = (2, 2). We have six 2 x 2 matrices

with content v listed in the following.

S
~
b
S

1|1 1({2 112 2| 1
212 1({2 2|1 112 2|1 1|1

Fixed points of (0,1,1) € Zg X Zg X Zs correspond to the following four
matrices, and there is no fixed point of (0,0,1) € Zgy X Zy X Zs

1(2 2 2|1 2|1
1(2 211 1|2 2|1

P,

The polynomial X (q,t, z) is given by

X(q,t,z) = Z f},\,(m)(q, t)[?A,(Z?)(Z)
A4

= K.22)(0: ) K),22)(2) + Ka1).02)(¢ ) Ks1),02)(2)
+ fN((z,z),(z,z) (g, t)f((zz),(z,z) (2)
=3+qz+tz+qtz mod (¢* — 1,12 — 1,2 —1).

Note that X(—1,1,—1) =4 and X (1,1, —1) = 0, which verifies the asser-

tion of Theorem 6.1.2 for this example.
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Chapter 7

Concluding remarks

7.1 A conjecture for Macdonald polynomi-

als for rectangles

Since we have a specialization IN(,\VM(l, 1) = f2, the (q,t)-Kostka polynomial
can be considered as a ‘(g, t)-analogue of f*’. However, writing (g, t)-Kostka
polynomial as a generating function with respect to certain statistics of
standard Young tableaux is one of the major open problems in algebraic
combinatorics. One can try to reduce one’s attention to a small family of
w's such as hooks or rectangles. Theorem 6.1.1 suggests that Macdonald
polynomials (or (g, t)-Kostka polynomials) for rectangles might have more

structure than general partitions. We conjecture the following.
Conjecture 7.1.1. Let n = ab. Then f(,\(ab)(q, q*) = f(,\(ab)(q, t) = fq).

The author has checked this conjecture for n < 15 by Sage. For n = 4,
the polynomials K au(q, t) for some rectangles p is given in the table below

and it is straightforward to check the conjecture by hand.
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pAA | 4] [3,1] [2,2] 2,1,1] [1,1,1,1,1]
[4] 1L ¢+ +¢ | ¢+¢ | @P+a+¢ ¢°
2,2] 1 | t+qgt+q | 2 +q¢° | qt* + qt + ¢*t q*t?
LI | 1 | t+2+8 | 2+t | B3+t t6

Hopefully, we may define two statistics stat; and stat, such that

R)\,(ab)(q,t>2 Z (gt (Dpstata D)y,
TESYT())

If Conjecture 7.1.1 is true, then for a standard tableaux 7" of shape A, the

two statistics may satisfy
staty (1) + a - state(T) = maj(7T).

Hopefully, this identity above may help to uncover a part of the mystery
of the (g, t)-Kostka polynomials.

7.2 Other combinatorial loci

Recall that we obtained Theorem 6.1.2 by taking the tensor product of
modules of Garsia-Haiman and Garsia—Procesi, then by taking &,,,-invariant
part. We could replace one of those modules to obtain various sieving re-
sults. One way to do this is replacing Garsia—Procesi modules with the
module R, ; defined in [HRS18|. They defined this module to construct a
graded &,,-module for the Delta conjecture. The module R, ; can also be
obtained by applying orbit harmonics to the locus corresponding to the set
of surjective functions from [k] to [n]. For mn < k by taking &,,,, invariant

part of R(,ny @ Rpnk, we could obtain a triCSP for n times m matrices
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(or fillings of a rectangular partition) with entries given by nonempty set
partitions of [k] into [mn| parts.

This process can be applied to a broad class of modules obtained via
orbit harmonics. One of the interesting modules which we did not consider
in this thesis is the module R,  defined by Griffin [Gri21]. This module is a
common generalization of the Garsia-Procesi module and the module R,,
of Haglund-Rhoades-Shimozono and it is possible to obtain this module

via orbit harmonics.

7.3 CSP for bracelets

Inducing representions of C),, to &,, was studied by Kraskiewicz and Wey-
man [KWO01]. This was the key ingredient in Section 4.4 that allows us to
deduce sieving results for necklaces as C), orbits of words could be under-
stood as necklaces. To obtain an analogous result for ‘bracelets’, a knowl-
edge for inducing the trivial D,, representation to &,, is needed. During
the work of [OR20], the author conjectured that by, = (1 15", 5*) has

the following description, where ( , ) stands for the Hall inner product.

Conjecture 7.3.1. For a partition A\ of a positive integer n, let by, be
given as above and SYT(X,0) be the set of standard tableaux of shape A

with major index equal to 0 modulo n. Then we have
2ban = | SYT(X, 0)| + (—1)“M|SYT(A, 0)*],

where ev 1s the operation on standard tableaux called the evacuation and

e(\) determines a sign associated to a partition .

Stembridge [Ste95] showed that the evacuation action on SYT coincides
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with the action of a longest element on a cellular basis. Using the results in
[Ste95], the author managed to prove this conjecture for odd n. Although
the same argument cannot resolve the conjecture for even n, it seems that

there is a good chance to prove it using arguments in [Ste95].
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