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Abstract 

 

To reduce the performance gap between the predicted and measured energy 

uses, many studies have focused on estimation of unknown parameters of a building 

energy model. This study proposes a transfer learning (TL)-based parameter 

estimation method to identify unknown building properties from measured energy 

use data. TL is a machine learning method that a model developed for one task is 

reused as the starting point for a model on another task.  

Using TL, this study examines the transferability from virtual (EnergyPlus) 

to existing buildings, especially for identifying wall U-value, HVAC efficiency, and 

lighting power density (LPD). For this purpose, synthetic data was generated from 

simulation results of sampled EnergyPlus models, and then we developed artificial 

neural network (ANN) models using this data. By adopting TL, the ANN models 

were transferred to the domain of existing buildings and evaluated on 61 existing 

buildings. As a result, the relative improvements in CVRMSE achieved by the 

transferred models against the models trained only with existing buildings’ data were 

8.85%, 10.34%, and 15.73% for nominal cooling COP, wall U-value, and LPD, 

respectively.  

The results indicate that prior knowledge obtained from simulation results of 

a physics-based model can improve the performance of a data-driven model by 

adopting TL, leading to reduced data dependency of data-driven methods. Moreover, 
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it is expected that the use of TL enables the developed model to be reusable for 

another group of buildings with improved performance and reduced training time. 

 

 

Keyword: Transfer learning, Parameter estimation, Machine learning, Artificial 

neural network, Building energy, Calibration 
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Chapter 1. Introduction 

 

 

1.1. Importance of Parameter Estimation in Building 

Simulation 

 

The built and urban environments comprise a large proportion of energy 

consumption and greenhouse gas emissions in the world. With the growing concerns 

to reduce building energy consumption, high performance buildings have attracted 

attention. Building performance simulation (BPS) tools have been widely used to 

predict building energy performance and to estimate energy savings from various 

energy conservation measures (ECMs). However, a significant gap between 

predicted and measured energy use has been observed, identified as the ‘energy 

performance gap’, and this gap has been growing with the increasing availability of 

high-resolution operational data (de Wilde, 2014). It was reported that measured 

electricity consumption can be up to 90% higher than that predicted at the design 

phase (UCL Energy Institute and CarbonBuzz, 2013). The large gap decreases the 

trust in the design and engineering sectors of the building industry and may result in 

a distrust of the ambitious targets, such as High Performance Buildings and Net Zero 

Energy Buildings.  

The energy performance gap is mainly caused by inherently uncertain 

variables that affect building energy performance, such as occupant behavior, 

thermal properties of building envelope, heating, ventilation and air-conditioning 
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(HVAC) efficiency, lighting and plug loads, and etc. It is difficult to determine such 

variables for BPS, because data collection would be too costly or data may not exist 

due to loss of original drawings and specifications, and some variables may be 

impossible to be measured (e.g. effective leakage area). In addition, efficiencies of 

building envelopes and systems can degrade over time, thus might be different to 

those in drawings. Therefore, many variables are assumed by the judgement of 

modelers, which may lead to energy performance gap. In this regard, many studies 

have focused on model calibration and validation to reduce the performance gap 

(Heo, Choudhary, and Augenbroe, 2012; Sun, 2014). For this purpose, many 

parameter estimation (inverse modeling) methods have been introduced in the 

building simulation domain to estimate unknown inputs (e.g. building thermal 

properties and HVAC efficiencies) using outputs (e.g. measured building energy 

consumption). 

 

1.2. Current Methods for Parameter Estimation  

 

Existing parameter estimation methods in the building simulation domain 

can be categorized into physics-based vs. data-driven, and deterministic vs. 

stochastic, as depicted in Figure 1.1 (Ahn et al., 2019). Physics-based deterministic 

approaches usually combine first-principle models (e.g. EnergyPlus) with measured 

data. Manual approach, i.e., trial-and-error, finds unknown parameters by repeated 

attempts until success. This would work for a simple model requiring only a few 

inputs but would be an exhaustive procedure for the model of an existing building 

with a large number of inputs. The least-squares, one of the most widely used 
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approaches for optimization, are to minimize the squared deviation between 

measured and predicted outputs (Reddy and Andersen, 2002). Yoon et al. (2011) 

adopted a deterministic optimization to estimate unknown parameters in the lumped 

model of a double-skin façade system. Many studies have attempted to automatize 

this optimization process to reduce the manual effort (New et al., 2012; Robertson 

et al., 2013; Yang et al., 2016). However, most of these require significant 

computation even for a single building and thus may not suitable for large-scale 

implementation.  

 

 

Figure 1.1 Parameter estimation approaches used in the building energy 

modeling process (scope of this thesis in blue) [modified from Ahn et al. 

(2019)] 

 

Data-driven deterministic approaches use measured data and can alleviate 

computational burdens of physics-based models, enabling large-scale applications. 
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Clustering techniques have been applied to capture building properties (i.e., 

unknown parameters) from available data. An et al. (2012) clustered buildings based 

on similarity to estimate thermal parameters. Westermann et al. (2020) identified 

energy signatures of buildings to estimate heating systems and building use type 

from smart meter data using K-means and hierarchical clustering. Artificial neural 

networks (ANN) have been adopted to develop a surrogate model as well as to reduce 

computational cost. Nagpal et al. (2018) developed surrogate models of ANN to 

rapidly estimate unknown parameters through optimization routines. Nutkiewicz et 

al. (2019) applied residual networks (ResNet), one of the deepest convolutional 

neural network (CNN) architectures, to automatically calibrate urban building 

energy models. 

Because deterministic approaches cannot consider stochastic characteristics 

of unknown parameters, many stochastic approaches for both physics-based [e.g., 

Bayesian inference (BI)] and data-driven [e.g., Gaussian process (GP)] have been 

introduced. Bayesian inference (BI) has attracted attention due to its capability to 

estimate probability distribution of uncertain input parameters using domain 

knowledge (i.e. prior distribution) and observed data (i.e. likelihood) (Tian et al., 

2018). The Bayesian approach has been widely applied not only to an individual 

building (Heo et al., 2012; Chong et al., 2017), but recently also to buildings at a 

large scale (Sokol et al., 2017; Tardioli et al., 2020). Heo et al. (2012) applied 

Markov chain Monte Carlo (MCMC) to estimate unknown parameters in a normative 

building energy model. Chong et al. (2017) proposed the improved framework using 

the No-U-Turn Sampler for BI of building energy models. While the MCMC is used 

for a one-time estimation, Kalman filter (KF) and particle filter (PF) are used for 

iterative estimation, meaning that posterior distributions of uncertain parameters are 
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updated at each time step. Kim and Park (2017) applied KF to estimate a time-

varying heat sources of a building. Li and Liu (2017) used PF to estimate room 

cooling load in real time. 

Bayesian approaches have been also adopted for urban building energy 

models. Sokol et al. (2017) first classified buildings into archetypes using available 

information, and then estimated probability distributions of high-uncertainty 

parameters by Bayesian calibration. Tardioli et al. (2020) used clustering to identify 

representative buildings and developed surrogate models for Bayesian calibration of 

building energy models at district scale. 

Despite many advantages of Bayesian approaches, the several issues remain 

unsolved including prior selection, data quality and quantity, large computational 

cost, and parameter identifiability (Yi et al., 2019; Yi et al., 2020). 

In contrast to ANN, CNN, and clustering algorithms, GP can reflect the 

stochastic relationship between inputs and outputs of a model. Ahn et al. (2019) used 

GP to estimate the stochastic heat removal rate and efficiencies of eight parallel heat 

pumps in a hospital building. 

Although many rigorous approaches have been introduced, many of them 

require a large amount of data. In other words, at least a similar amount of data used 

for case studies may be required to apply the methods to new target buildings. This 

hinders previous models to be reused for other buildings.  
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1.3. Research Hypothesis and New Parameter Estimation 

Method 

 

To overcome the lack of detailed building data and the reusability issue, this 

study proposes a transfer learning (TL)-based inverse approach. Figure 1.2 depicts 

the hypothesis of this study investigating the feasibility of the TL approach. This can 

maximize the utility of limited data available by transferring the prior knowledge 

obtained from other existing buildings or even from virtual buildings, e.g. 

EnergyPlus models, leading to less data dependency than conventional machine 

learning approaches. In addition, the developed data-driven models can be easily re-

used by adopting TL that re-trains the models with a new dataset (i.e., a new target 

building) while maintaining useful fundamental knowledge obtained from previous 

data, leading to the performance improvement and computational efficiency. 

 

 

Figure 1.2 Hypothesis of this study: reusability vs. data dependency for 

three different modeling approaches (Ko and Park, 2022) 
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Figure 1.3 compares conventional data-driven approaches and transfer 

learning for building simulation. While the conventional approach requires a 

separate model for each building (Figure 1.3(a)), transfer learning uses the 

knowledge extracted from multiple buildings to improve the model performance for 

a target building (Figure 1.3(b)). However, this cannot be employed when data of 

other buildings are not accessible. In this regard, as depicted in Figure 1.3(c), this 

study proposes transfer learning from virtual buildings (i.e., EnergyPlus models) to 

existing buildings for the identification of unknown building properties. For this 

purpose, an ANN (artificial neural network) model is pre-trained with simulation 

results of 10,000 EnergyPlus models generated by Latin Hypercube Sampling and 

then is transferred to real data of 61 existing buildings by fine-tuning the model, one 

of the TL strategies. The proposed approach can rapidly identify building properties, 

such as U-value of building envelopes, COP (coefficient of performance) of heat 

pumps, and lighting power density (LPD), given aggregated monthly electricity use 

data. It is noteworthy that the data generated from simulation runs can improve the 

performance of the data-driven models through TL. 

 

 

(a) Conventional data-driven approach 

Building #1 Building #2 Building #n

Model #1 Model #2 Model #n
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(b) Transfer learning from existing buildings to an existing target building 

 

(c) Transfer learning from virtual buildings (EnergyPlus models) to an 

existing target building (proposed in this study) 

Figure 1.3 Comparison of conventional data-driven approach and transfer 

learning for building simulation [modified from Ribeiro et al. (2018)] 

 

1.4. Organization of the Thesis 

 

This thesis is outlined as follows: 

⚫ Chapter 1 presents motivations for parameter estimation in BPS, 

followed by the literature reviews on current parameter estimation 

methods, and proposed a new method using transfer learning from 

virtual to existing buildings. 

⚫ Chapter 2 describes the technical background of artificial neural 

network (ANN) and transfer learning (TL) that are machine learning 
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techniques applied in this thesis and provides a review of related 

works. 

⚫ Chapter 3 provides the detailed overview of the TL-based proposed 

method in three steps as well as the description of the data collected 

and used in this study. 

⚫ Chapter 4 shows the estimation performance of the proposed method 

for the properties of the existing buildings, compared to the baseline 

methods. 

⚫ Chapter 5 concludes the remarks to understand the overall results of 

the thesis including the benefits and limitations of the proposed 

method and suggests the future directions to pursue. 
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Chapter 2. Background and Related Works 

 

 

2.1. Artificial Neural Network (ANN) 

 

Artificial neural network (ANN) is one of the supervised machine learning 

methods that consists of input layers, hidden layers, and output layers as shown in 

Figure 2.1, where wij is the weight of the ith input neuron to the jth hidden neuron 

and wjk is the weight of the jth hidden neuron to the kth output neuron. The number 

of input and output neurons is equal to the number of input and output variables, and 

each neuron in the network is connected by a weight. The neurons in the hidden 

layers perform the summation of the values obtained from the input layer, and then 

it processes the summations with its activation function, such as the sigmoid function, 

tangent-hyperbolic function, linear function, or ReLU (Rectified Linear Unit), that 

converts the neuron values into meaningful response values (Biswas, Robinson, and 

Fumo 2016). The output of ANN is calculated by the input values propagated 

through all layers and weights.  
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Figure 2.1 Structure of multi-layer perceptron artificial neural 

network [modified from Ahn et al. (2020)] 

 

The training process of ANN uses a back propagation learning algorithm to 

update the weights started from random initial values to map the input and output 

relationship. The error between the output of ANN and the training dataset is back 

propagated, and the weights are updated based on the back propagated error using a 

gradient descent method until a desired output is achieved (Raza and Khosravi 2015).  

The performance of ANN may significantly vary according to 

hyperparameters which determine the network structure including the number of 

network layers, the number of nodes in each layer, and the type of activation 

functions and determine how the network is trained including learning rate, batch 

size, and the number of epochs. To improve the performance of ANN by tuning such 

hyperparameters, manual search, grid search and random sampling search can be 

used (Bengio, 2013).  
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Artificial neural networks (ANN) have been widely employed in many 

research fields including building simulation due to its ability to describe non-linear 

dynamics (Zhao and Magoulès, 2012; Kumar, Aggarwal, and Sharma, 2013). Major 

applications of ANN in the building simulation domain are as follows: 

 

⚫ Prediction of heating and cooling loads (Olofsson and Andersson, 2001; Ben-

Nakhi and Mahmoud, 2004; Yokoyama, Wakui, and Satake, 2009; Wang, 

Lee, and Yuen, 2018) 

⚫ Prediction of energy consumption (Roldán-Blay et al., 2013; Biswas, 

Robinson, and Fumo, 2016; Jovanovic, Sretenovic, and Zivkovic, 2016)  

⚫ Prediction of building thermal responses (e.g. solar radiation and indoor air 

temperature) (Mechaqrane and Zouak, 2004; Argiriou et al., 2004; Moon, 

Yoon, and Kim, 2013; Chen et al., 2020) 

⚫ Model predictive control (MPC) and optimization of a building system 

(Afram et al. 2017; Ahn et al., 2020) 

 

2.2. Transfer Learning (TL) 

 

The lack of detailed data for training is a main challenge to develop a new 

data-driven model. In addition, training a model with a large dataset often takes a 

long time. To overcome these issues, transfer learning (TL) was introduced and has 

been applied to many tasks in various fields including image classification and 

natural language processing. The aim of TL is to transfer knowledge acquired from 
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‘source’ domain to ‘target’ domain in order to improve performance of models with 

reduced training time. In this study, the author used TL for identifying unknown 

factors because TL can inherit knowledge learned from ‘source’ data as exemplified 

from Figure 2.2. While conventional machine learning approach requires a separate 

model for each task, TL approach can use one model for many tasks by rapid fine-

tuning (Figure 2.2). In other words, a data-driven model trained with ‘source’data, 

i.e. a pre-trained model, can be re-used after fine-tuning with target data which may 

be not sufficient for a training dataset.  

 

 

(a) Conventional machine learning modeling approach 

 

(b) Transfer learning modeling approach 

Figure 2.2 (a) conventional machine learning (ML) vs. (b) transfer learning 

(TL) (Ko and Park, 2022) 
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Three possible benefits of TL are illustrated in Figure 2.3: higher start (higher 

initial performance), higher slope (faster training), and higher asymptote (higher 

final performance). However, TL can also result in lower performance, which is 

referred to as negative transfer (Torrey and Shavlik, 2009). To avoid this, a source 

dataset that related with a target task should be carefully selected (Weiss et al., 2016). 

 

 

Figure 2.3 Three possible benefits when using transfer learning [modified 

from Torrey and Shavlik (2009)] 

 

Fine-tuning is one of the widely used transfer learning approaches. Major 

fine-tuning strategies for neural network-based models are depicted in Figure 2.4. If 

the target dataset is large enough and not similar to the source dataset, we can 

develop a new model, needless to fine-tune the pre-trained model (Quadrant 2 in 

Figure 2.4). On the other hand, if the target dataset is large and similar to the source 

dataset, we should consider fine-tuning the model pre-trained on the source dataset 

rather than training a model from scratch (Quadrant 1 in Figure 2.4). This is because 

starting from pre-trained weights to train a model may result in better performance 
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than from initial random weights, even if the target task is different to the source task 

(Yosinski et al., 2014). If the target dataset is small and different to the source dataset, 

which may be the most difficult case, we should fine-tune the weights in the last 

layers of the pre-trained model on target data (Quadrant 3 in Figure 2.4). For fine-

tuning, usually earlier layers are frozen and only later layers are unfrozen to be 

retrained with target data. This is because earlier layers contain more generic 

information that can be applicable to many datasets and tasks, while later layers 

include more specific information (Yosinski et al., 2014). If the target dataset is small 

and similar to the source dataset, we could replace only the output layer of the pre-

trained model and retrain a new output layer on target data (Quadrant 4 in Figure 

2.4).  

 

 

Figure 2.4 Fine-tuning strategies for transfer learning of neural network-

based models [modified from Gao et al. (2020)] 
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Recently, several studies have applied TL to building simulation domain. 

Grubinger et al. (2017) presented an online TL framework to predict indoor 

temperature in residential buildings, and the performance improvement of TL was 

proved by experiments on a simulation environment. Ribeiro et al. (2018) developed 

a data-driven model to predict electricity consumption of a school building by using 

data of the four other school buildings as source data. Fan et al. (2020) showed that 

a TL-based methodology can reduce the prediction error of electricity consumption 

from 15% up to 78%. Chen et al. (2020) experimented the transferability of deep 

neural network models for indoor temperature and relative humidity prediction of 

two buildings located in different climate zones using EnergyPlus. Xu et al. (2020) 

tested whether a deep reinforcement learning-based HVAC controller developed for 

an individual building can be transferred to another building. The result showed that 

transfer learning can significantly reduce training time, energy cost, and temperature 

violations. 

Depending on tasks, data-driven prediction models can be transferred even 

without any calibration process. Markovic et al. (2021) developed a long-short-term 

memory (LSTM) model for electric load prediction using data collected from a 

research building located in Abu Dhabi, United Arab Emirates (UAE). Without any 

calibration, the model showed competitive accuracy evaluated using data from two 

additional buildings located in different climates. Ward et al. (2021) explored the 

transferability of models for occupant-related electricity load prediction by training 

ML models on data from one building in UK and using these models for the other 

building in Singapore. The result showed that the models can be transferable from 

one building to the other building, and vice versa. 
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Previous studies effectively showed the adaptation capability of TL from 

virtual buildings (i.e., buildings in simulation environments) to virtual buildings or 

from existing buildings to existing buildings. However, it might be more difficult to 

collect data of many other existing buildings than that of a target building. In this 

regard, this study examines the transferability from virtual to existing buildings, 

especially for identifying unknown factors in existing buildings. This transferability 

may overcome not only the lack of data but also the model’s non-reusability issue in 

the building simulation domain. 
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Chapter 3. New Parameter Estimation Method Using 

Transfer Learning  

 

 

This chapter describes the data collected for this study and the methodology 

in three steps: 

 

⚫ Step 1: the author generates synthetic data composed of 10,000 EnergyPlus 

models of a virtual building [i.e., U.S. DoE (Department of Energy) reference 

building] through Latin Hypercube Sampling (LHS). Please note that this is 

a single building with 10,000 combinations of varying parameters. 

⚫ Step 2: the author pre-trains an artificial neural networks (ANN) model on 

the generated synthetic data out of Step 1. 

⚫ Step 3: the author fine-tunes (re-train) the ANN model fit to 49 existing 

buildings out of 61 existing buildings and then apply it to estimating the 

properties of the remained 12 buildings. 

 

Figure 3.1 provides an overview of the proposed TL-based parameter 

estimation method. The details of each step are described in the following 

subchapters. 
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Figure 3.1 Procedure of the proposed transfer learning-based inverse 

modeling approach (Ko and Park, 2022) 
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3.1. Data Description 

 

Data of 61 existing office buildings located in South Korea was collected 

from the building energy certificate database managed by the Korean government’s 

energy agency (KEA). These buildings are equipped with electric heat pumps (EHP). 

The data is obligatorily collected from the audits conducted by certified energy 

inspectors and submitted for issuing a certificate. This includes date of construction, 

gross floor area, the number of floors, nominal cooling and heating COP of EHP 

from the manufacturers’ data sheets, thermal properties of envelopes (U-values of 

wall, roof, floor, and window) calculated based on construction drawings and 

documents, lighting power density (LPD) (W/m2) based on the total power of 

installed lights divided by the gross floor area of a building. Monthly electricity 

consumptions of these buildings are collected from a public open database of 

building energy provided by a Korean government agency (MOLIT, 2021). Fig. 3.2 

shows five selected buildings out of 61 existing office buildings, and Fig. 3.3 shows 

the distributions of building characteristics. Monthly EUI (electricity) of these 61 

buildings are plotted in Fig. 3.4.  

 

 

Figure 3.2 Five selected buildings out of 61 existing office buildings 
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Figure 3.3 Distribution of collected data (61 existing office buildings) 
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Figure 3.4 Monthly EUI (electricity) of 61 existing buildings 

 

3.2. Generate Synthetic Data Using Latin Hypercube 

Sampling (LHS) of EnergyPlus Models 

 

To explore the transferability of a data-driven model from virtual buildings 

(i.e., EnergyPlus models) to existing buildings, the author first generated synthetic 

data in this chapter to develop an artificial neural network (ANN) model. For this 

purpose, a medium office of U.S. DoE (Department of Energy) reference 

commercial buildings was sampled using Latin Hypercube Sampling (LHS) based 

on Table 1 (U.S. DoE, 2012). The office building has a total floor area of 4,982m2 

with three stories above ground and is equipped with an EHP for heating and cooling 

and a gas boiler for hot water. The weather data of Seoul, South Korea is used for a 

one-year simulation (Lawrie and Crawley, 2019). 
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Table 3.1 Sampling distribution of parameters 

 

Uniform distribution was selected for LHS because the purpose of sampling 

is not to reflect the actual statistics of the variables, but to provide ANN models with 

balanced dataset that could result in better prediction accuracy. In total, 10,000 

EnergyPlus models (i.e., a single building with 10,000 combinations of variable 

Variable 
Distribution 

(uniform) 
Variable type References 

U-values  

(wall, roof, and floor) 

[W/m2K] 

[0.18, 0.5] 

continuous 

MOLIT 

(2018) 
U-value (window) [W/m2K] [2.1, 3.8] 

SHGC [-] [0.4, 0.8] 

Infiltration [ACH] [0.1,0.7] 
Hyun et al. 

(2008) 

Cooling COP [-] [2, 6] Collected 

data from 

drawings and 

specification

s in this 

study Heating COP [-] [2, 6] 

Occupancy [people/m2] [0.04, 0.3] 
Li et al. 

(2016); 

ASHRAE 

(2011) 
Lighting power density 

[W/m2] 
[6, 35] 

Hopfe (2009) 

Equip. density [W/m2] [6, 30] 

HVAC start [hour] [6, 9] discrete 

(step = 1 hour) 

- 

HVAC stop [hour] [19, 22] - 

Cooling set point [˚C] [24, 27] discrete 

(step = 1˚C) 

- 

Heating set point [˚C] [17, 21] - 
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parameters) were generated and simulated to obtain 12-monthly energy use data 

associated with the parameters in Table 3.1, which will be used for pre-training. 

Although these models do not represent existing office buildings, an ANN model 

could acquire prior knowledge, e.g. building thermal dynamics and HVAC dynamics, 

and could use this knowledge to adapt rapidly to the domain of existing buildings. 

Moreover, it can be examined whether virtual data obtained from the 1st principles-

based models can be utilized to improve the performance of a data-driven model for 

existing buildings through transfer learning, although synthetic data from a virtual 

building is not a representative for target existing buildings. Please note that using 

data of buildings that are similar to target buildings may improve the performance 

of transfer learning but such approach would not be practical because it is difficult 

to collect or generate those actual data. 

 

3.3. Pre-train ANN Models on Synthetic Data 

 

Using the synthetic data obtained from 10,000 EnergyPlus simulations in 

Chapter 3.2, three ANN models were developed to identify (1) nominal cooling COP 

of EHPs, (2) U-value of walls, and (3) LPD, respectively from aggregated monthly 

electricity use data. There are many significant parameters such as SHGC, air 

infiltration rate, and operational parameters other than these three variables, but due 

to lack of such data, only these three that are available from the buildings’ drawings 

and specifications are selected to evaluate the proposed method. Figure 3.5 shows 

the structure of the ANN models that has 12 inputs (monthly energy use) and three 

outputs (cooling COP, wall U-value, LPD). For ANN modeling, Keras, a deep 
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learning library written in Python, was used (Chollet, 2015). The dataset of 10,000 

simulation results were split into two subsets: 7,000 for training and 3,000 for 

validation. The following hyperparameters of ANN models were determined by a 

trial-and-error method:  

 

⚫ Number of hidden layers: 10 

⚫ Number of nodes at each hidden layer: 16 

⚫ Epoch: 1,000 

⚫ Optimizer: Adam (Adaptive moment estimation) 

⚫ Activation function: leaky ReLU (Rectified Linear Unit) 

 

 

Figure 3.5 Model structure of ANN for identifying three building properties: 

nominal cooling COP, wall U-value, and lighting power density (Ko and Park, 

2022) 

 

 

 

• Monthly EUI (electricity) 

[kWh/m2]  

Input layer Hidden layers Output layer

• 10 layers

• Dense 16

• Leaky ReLU

Jan Jul

Feb Aug

Mar Sep

Apr Oct

May Nov

Jun Dec
• (1) Nominal cooling COP [-]

• (2) Wall U-value [W/m2K]

• (3) Lighting power density [W/m2]
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3.4. Transfer Learning to Fine-tune Pre-trained ANN Models 

on Real Data (Existing Buildings) 

 

In this chapter, the ANN models pre-trained in Chpater 3.3 were fine-tuned 

to be used for existing buildings by adopting transfer learning. After fine-tuning (re-

training) the pre-trained models on 49 out of 61 existing buildings (for LPD, 38 out 

of 48 buildings due to missing data), the estimation models were evaluated on the 

remained 12 buildings (for LPD, 10 buildings). 

Because the generated synthetic data may not be representative for the 

existing buildings, the fine-tuning strategy that re-trains the last layer(s) of a pre-

trained model is selected (Quadrant 3 in Fig. 2.4). This strategy can be adopted when 

the target dataset is not similar to the source dataset and is not large enough for 

training a model from scratch. In addition, it is known that starting from pre-trained 

weights to train a model could lead to better performance than from initial random 

weights, even if the target task is not similar to the source task (Yosinski et al., 2014).  

To re-train only the last layer(s) of the pre-trained model, while keeping the 

pre-trained weights of the other remaining layers, the layers to be fine-tuned should 

be unfrozen. The number of unfrozen layers should be selected depending on how 

large the target dataset is and how different it is to the source dataset. The more data 

is, the fewer layers should be unfrozen, while the more different data is to source 

data, the more layers should be unfrozen. To unfreeze or freeze the layers, the weight 

attributes of Keras were used (Chollet, 2015). In this study, only the last layer was 

unfrozen and re-trained on the dataset of the existing buildings for 1,000 epochs with 

the learning rate of 0.001. After un-freezing the last layer, the number of trainable 
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parameters for the ANN models are only 17, while 2,673 parameters are required to 

train a new ANN model. This indicates that TL can significantly reduce 

computational cost, i.e., easily scalable to many other buildings. For example, the 

TL process for the ANN model of COP took only 16.2 seconds in the hardware 

environment as follows: AMD Ryzen 7 2700X eight-core processor for CPU, 32GB 

RAM, and NVIDIA GeForce GTX 1060 6GB for GPU.  

In this study, estimation results were evaluated with CVRMSE (coefficient 

of variation of the root mean square error), MBE (mean bias error), and MAPE (mean 

absolute percentage error). These are computed as follows: 

 

𝐶𝑉𝑅𝑀𝑆𝐸 (%) =  
1

𝑚̅
√

∑ (𝑚𝑖−𝑠𝑖)2𝑛
𝑖=1

𝑛
 × 100 (1) 

𝑀𝐵𝐸 (%) =  
∑ (𝑚𝑖−𝑠𝑖)𝑛

𝑖=1

∑ 𝑚𝑖
𝑛
𝑖=1

× 100 (2) 

𝑀𝐴𝑃𝐸 (%) =  
1

𝑛
∑ |

𝑚𝑖−𝑠𝑖

𝑚𝑖
|𝑛

𝑖=1 × 100 (3) 

where m = measured value, s = simulated (estimated) value, and 𝑚̅ = 

mean of measured values. 
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Chapter 4. Transfer Learning from Virtual to 

Existing Buildings for Parameter Estimation 

 

 

4.1. Estimation Accuracy of ANN Models Pre-trained on 

Synthetic Data 

 

The author generated the synthetic data (i.e., the simulation results of 10,000 

EnergyPlus models) in Chapter 3.2, pre-trained the ANN models using this virtual 

data in Chapter 3.3, and transferred these pre-trained models to the data of 61 existing 

buildings in Chapter 3.4. In this chapter, the estimation performance of the pre-

trained models was evaluated on the validation dataset (3,000 out of 10,000 samples). 

Figure 4.1 shows the validation results of the pre-trained models. The estimation 

errors (CVRMSE) of the ANN models are 6.80%, 20.92%, and 5.57% for nominal 

cooling COP, wall U-value, and lighting power density (LPD), respectively. It can 

be said that the pre-trained ANN models can well capture the relationship between 

the input (monthly EUI) and the outputs (cooling COP, wall U-value, and LPD). It 

is notable that the error of wall U-value is larger than that of COP and LPD. This 

could be explained by that thermal insulation in building envelope has relatively low 

impact on energy use of internal-load dominated buildings as which office buildings 

are usually categorized, while this may significantly influence energy use of skin-

load dominated buildings such as residential buildings (Al-Homoud, 2005). 
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(a) Nominal cooling COP 

 

(b) Wall U-value 

CVRMSE = 6.80%

MBE = -0.94%

MAPE = 5.42%

CVRMSE = 20.92%

MBE = 10.02%

MAPE = 15.81%
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(c) Lighting power density 

Figure 4.1 Validation results of pre-trained ANN models on 3,000 

samples of the DOE reference medium office building 

 

4.2. Improvement of Estimation Performance by Transfer 

Learning 

 

In order to evaluate the performance improvement by transfer learning, two 

baseline cases were made: (a) source to target (S2T) and (b) target to target (T2T). 

S2T represents that the ANN models pre-trained with the synthetic data are directly 

used to predict real data (i.e., 61 existing buildings), while T2T, a conventional 

machine learning modeling approach, uses only real data for training and validation. 

We compared the results of these two baselines with those of (c) our proposed 

transfer learning (TL) approach. 

CVRMSE = 5.57%

MBE = 0.09%

MAPE = 5.18%
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As shown in Table 4.1, the S2T models have poor performance for all three 

outputs. The estimation errors (CVRMSE) of the S2T models are 106.16%, 70.69%, 

and 153.19% for nominal cooling COP, wall U-value, and LPD, respectively. Not 

only large variance in estimation is observed, but also the results contain physically 

unrealistic values, e.g., negative values of COP, U-value, and LPD were observed. 

It can be said that that the S2T models cannot be directly used for target data 

prediction. 

To compare T2T with TL, we repeated the evaluation procedure 100 times 

with randomly shuffling training (80%) and validation (20%) dataset, because which 

of 61 buildings are included in training or validation set may have huge impact on 

comparison results. Fig. 4.2 shows the validation results of 100 random cases for 

T2T and TL. Although TL outperforms T2T in the most of 100 random cases, T2T 

is comparable to TL or even surpasses TL in several cases. This result may be 

explained as negative transfer, resulting in lower prediction accuracy of TL than that 

of T2T. Negative transfers were observed in 1, 18, and 23 out of 100 cases for 

cooling COP, wall U-value, and LPD, respectively. 

The median values of the estimation results of the 100 random cases for T2T 

and TL are summarized in Table 4.1. The relative improvements (the difference in 

the median values of CVRMSE in Fig. 4.2) achieved by TL against T2T were 8.85%, 

10.34%, and 15.73% for nominal cooling COP, wall U-value, and LPD, respectively. 

One of the improvement cases (the lowest CVRMSE of TL) for each output were 

scattered in Fig. 4.3. The significant gaps between T2T and TL demonstrate that the 

TL models were properly adapted to the target domain (i.e., existing buildings) by 

integrating the prior knowledge acquired from virtual buildings. 
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Table 4.1 Validation results of S2T, T2T, and TL (proposed) 

Variable Case CVRMSE  MBE MAPE 

Nominal cooling COP 

S2T 106.16% -54.84% 92.48% 

T2T 25.39% 2.82% 20.35% 

TL 16.54% -0.83% 13.27% 

Wall U-value 

S2T 70.69% 52.44% 147.04% 

T2T 40.58% 1.09% 36.79% 

TL 30.24% 0.03% 24.53% 

Lighting power density 

S2T 153.19% 130.61% 59.69% 

T2T 49.93% -4.93% 40.07% 

TL 34.20% 1.29% 29.40% 

 

 

(a) Nominal cooling COP 

 

(b) Wall U-value 

Performance improvement by TL
｜16.54%－25.39%｜= 8.85%

Performance improvement by TL
｜30.24%－40.58%｜= 10.34%
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(c) Lighting power density 

Figure 4.2 Validation results of 100 random cases: T2T vs. TL 

 

 

(a) Nominal cooling COP 

Performance improvement by TL
｜34.20%－49.93%｜= 15.73%

-78.32%

-16.64%
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(b) Wall U-value 

 

(c) Lighting power density (LPD) 

Figure 4.3 Estimation results of S2T, T2T, and TL: the lowest 

CVRMSE case of TL 

-115.38%

-24.05%

-11.08%

-39.71%
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It is noteworthy that the CVRMSE of wall U-value for the target existing 

buildings is larger than that of COP, as in the domain of EnergyPlus. This may be 

due to relatively lower impact of wall U-value on energy use of internal-load 

dominated buildings generally including office buildings, as described in Chapter 

4.1. In addition, it is interesting that the LPD were relatively poorly estimated by 

both T2T and TL, while these were well captured in the domain of EnergyPlus 

(CVRMSE=5.57%, Fig. 4.2). This might be because LPD would change 

dramatically in existing buildings as influenced by occupant behaviors and 

operational schedules, while U-values and COP would change relatively less than 

lights over time. In other words, LPD in existing buildings may be different from the 

LPD documented in drawings and specifications, thus it may be difficult to estimate 

from monthly energy data only. 

As a result, it was found that TL can improve the performance of a data-

driven model despite the use of virtual data out of a building that is not similar to 

target buildings. In other words, the proposed approach can be adopted for other 

existing buildings without collecting actual data of existing buildings. Moreover, it 

can be expected that the TL models will be further improved by re-transferring those 

to another group of buildings while keeping fundamental knowledge obtained from 

the virtual and existing buildings used in this study. 
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Chapter 5. Conclusion and Future Work 

 

 

This study presents a transfer learning (TL)-based inverse modeling (i.e., 

parameter estimation) approach. The proposed approach consists of three steps: Step 

1 generates synthetic data including 10,000 EnergyPlus models of a virtual building 

through Latin Hypercube Sampling, Step 2 pre-trains an ANN model on the 

generated data, and Step 3 fine-tunes the ANN on 49 existing buildings for TL and 

then applies it to estimating the properties of 12 buildings. This approach can rapidly 

identify unknown building properties (nominal cooling COP of EHP, wall U-value, 

and lighting power density) from aggregated monthly energy (electricity) use data 

by maximizing the utility of available data through TL.  

The results show that the data-driven model trained only with virtual data 

cannot be directly used for existing buildings, as we expected. On the other hand, the 

models that are pre-trained with a virtual building and then fine-tuned on existing 

buildings through TL significantly outperform the models trained only with data of 

existing buildings in terms of accuracy (CVRMSE) in estimating unknown 

properties by about 10% on average. It is noteworthy that synthetic data collected 

from the physics-based models of a virtual building can be used through TL to 

improve the performance of a data-driven model, even if the virtual building used to 

generate synthetic data does not exactly represent the existing buildings of our 

interest. This makes the proposed approach more practical, because no effort is 

required to collect or generate data of buildings that are similar to target buildings. 

Moreover, the TL procedure can be conducted in a computationally efficient manner 
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(about 16 seconds in this study), because only a few parameters (17 parameters in 

this study) are re-trained, i.e., easily scalable to a large group of buildings. 

In addition, the performance achieved in this study can be further improved 

by re-transferring the developed model to other buildings. In other words, the 

developed TL models in this study can be re-used as a pre-trained model and 

transferred to another group of buildings, while maintaining useful knowledge 

captured from virtual and existing buildings used in this study. Such expected 

improvement potential is shown schematically in Fig. 5.1. 

 

 

Figure 5.1 Expected performance improvement of transfer learning according 

to number of transfers (Ko and Park, 2022) 

 

The proposed method can be a good alternative for large-scale collection (or 

estimation) of building properties when detailed data is not available, and potential 

applications, which could be future works of this study, may be as follows: 
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⚫ Building energy benchmarking: Due to the lack of detailed building 

data, many existing building energy benchmarking systems have to 

rely on EUI per use type (office, school, hospital, etc). However, it 

could lead to a false comparison when two buildings consume same 

EUI but have different thermal characteristics, such as thermal 

properties of building envelopes and efficiencies of HVAC systems. 

By using charateristics identified by the proposed method, buildings 

can be categorized into peer groups by ‘similar’ performance 

charateristics and then compared for ‘objective energy performance 

benchmarking’ rather than ‘EUI-based benchmarking’.  

⚫ (Urban) building energy modeling and calibration: Identified 

parameters can be used for simulation inputs of (urban) building 

energy models when data is not available and on-site data collection 

is not possible or too costly.  

 

In spite of the merits in the proposed approach, some limitations still exist. 

While this study showed the transferability of the ANN models from virtual to 

existing buildings, the transferability to different building use types, climates, 

HVAC types, or periods of construction should be examined for larger applicability 

of the proposed method. It should be also figured out whether the proposed method 

can be used for other relevant parameters not conducted in this study due to lack of 

data for validation, such as thermal mass, infiltration, operational information (e.g., 

set-point temperature, HVAC operation schedules, and occupancy). These will be 

future works of this study. 
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국문초록 

전이학습 기반 건물 미지 변수의  

파라미터 추정 
 

고윤담 

건축학과 건축공학전공 

서울대학교 대학원 
 

 

건물 에너지 시뮬레이션 모델의 예측 값과 실제 측정 값의 차이

(Performance Gap)를 줄이기 위해 모델 보정 및 검증 (model 

calibration and validation)에 관한 연구가 활발히 진행되고 있다. 이를 

위해, 측정된 건물 에너지 사용량에서 미지 변수를 추정하는 파라미터 

추정 (Parameter estimation) 방법이 널리 사용되고 있다. 본 연구는 

전이학습(Transfer learning) 기반 파라미터 추정 방법을 제안한다. 전

이학습은 딥러닝 분야의 대표적인 모델인 심층 인공 신경망 학습에 필요

한 데이터가 적을 때, 유사하거나 전혀 다른 분야에 학습된 신경망 모델

을 활용하는 접근이다.  

본 연구는 물리 법칙 기반(physics-based) 모델(EnergyPlus)의 

시뮬레이션을 통해 생성된 가상 건물의 데이터를 활용하여 미지 변수 추

정을 위한 인공 신경망 모델을 사전 훈련시켰다. 사전 훈련된 모델을 전

이학습을 통해 실제 사무소 건물 데이터에 미세 조정(fine-tuning)하여 

월별 에너지 사용량에서 미지 변수(벽체 열관류율, 히트펌프의 정격 냉

방 COP, 조명 밀도)를 추정하였다.  

추정 결과, 기존의 실제 건물의 데이터만으로 추정하는 방법 대비 

본 연구에서 제안한 가상 건물 데이터로부터 전이 학습하는 방법의 오차

(CVRMSE)가 벽체 열관류율, 정격 냉방 COP, 조명 밀도의 추정에서 
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각각 8.85%, 10.34%, 15.73% 감소하였다. 이는 전이학습을 통해 물리 

법칙 기반 모델의 시뮬레이션 결과를 활용하여 데이터 기반(data-

driven) 모델 성능을 개선할 수 있음을 보인다. 또한, 본 연구에서 개발

한 전이 학습 기반 파라미터 추정 모델을 추가 데이터 수집을 통해 재전

이하여 성능을 개선하거나, 새로운 대상 건물 집단으로 전이하여 재사용

할 수 있다. 

 

 

주요어 : 건물 에너지, 전이학습, 파라미터 추정, 기계학습, 인공신경망, 

보정 
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