

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Performance Modeling, Performance Tuning

and Quantization for GPU Programs

GPU 프로그램을위한 성능 모델링, 성능 튜닝 및 양자화

2021 년 8 월

서울대학교 대학원

전기·컴퓨터 공학부

Thanh Tuan Dao

Abstract

GPUs have played an important role in solving many scientific problems that

range across different domains. Writing GPU programs might be easy, but writ-

ing them efficiently is much more difficult. To achieve the best performance, it

is necessary that the compiler and runtime have advanced techniques to compile

and run the program efficiently. These techniques should be transparent to the

programmers and help them avoid the burden of having to know many details

of the underlying architecture. Among the most important aspects that help

improve the performance of a GPU program, we focus on the problem of perfor-

mance modeling, performance tuning and quantization. Performance modeling

estimates the execution time of the program and can be useful in analyzing the

program characteristics or partitioning the workload in a heterogenous system.

Performance tuning finds the optimal solution from an optimization space in

a reasonable time. Quantization reduces the precision needed to execute the

program without losing significant output accuracy. The proposed techniques

can be integrated into GPU compilers and runtimes to help them be more

efficient.

Keywords: Performance Modeling, Performance Tuning, GPU, Deep Learning,

Quantization

Student Number: 2013-30839

i

Contents

Abstract i

1 Introduction 1

1.1 Introduction . 1

2 Performance Modeling 4

2.1 Introduction . 4

2.2 Related Work . 8

2.3 Background . 10

2.3.1 OpenCL Framework . 10

2.3.2 GPU Architecture . 11

2.3.3 Support Vector Regression 14

2.4 Prerequisites to efficient profiling: An insight to warp scheduling 16

2.5 Performance Estimation . 23

2.5.1 Linear Model . 24

2.5.2 Model based on Machine Learning 25

2.6 Evaluation . 29

2.6.1 Evaluation Setup . 29

2.6.2 Performance estimation results 30

ii

2.6.3 The ML-based model on different classes of kernels 37

2.6.4 The performance at different saturation points 37

2.7 Conclusions . 39

3 Performance Auto-tuning 41

3.1 Introduction . 42

3.2 Related Work . 45

3.3 OpenCL and GPU Architectures 47

3.4 Effects of the Work-group Size 49

3.4.1 Occupancy . 50

3.4.2 Global Memory Coalescing 51

3.4.3 Cache Contention . 56

3.4.4 Amount of Work . 57

3.4.5 Work-group Scheduling and Barriers 58

3.4.6 Benchmark Applications 59

3.5 Auto-tuning Work-group Size . 61

3.5.1 Workload Tuner . 62

3.5.2 Non-coalescing Factor Tuner 64

3.5.3 Concurrency Tuner . 66

3.5.4 Exhaustive-search Tuner 70

3.6 Evaluation . 70

3.6.1 Overall Tuning Quality 70

3.6.2 Overall Tuning Cost . 75

3.6.3 Effect of the Workload Tuner 76

3.6.4 Effect of the Non-coalescing Factor Tuner 77

3.6.5 Effect of the Concurrency Tuner 77

3.7 Conclusions . 79

iii

4 Quantization for Deep Learning Programs 80

4.1 Introduction . 81

4.2 Related Work . 83

4.3 Background . 85

4.3.1 Integer Quantization . 85

4.3.2 Standard Techniques Used 87

4.4 Quantization Framework . 88

4.4.1 Inference Phase . 88

4.4.2 Training Phase . 89

4.4.3 Adding Noise to the Scale 89

4.4.4 Adaptively Adjusting Precisions 93

4.4.5 Computation of Histogram 97

4.5 Experiments . 97

4.5.1 Image Classification Tasks 100

4.5.2 Natural Language Processing 105

4.6 Conclusions . 106

5 Conculsion 107

Acknowledgements 123

iv

List of Figures

2.1 OpenCL Architecture. 10

2.2 Schematic block diagram of one SM in the GTX 580 GPU. . . . 13

2.3 Relationship of work-groups, work-items, and warps. 13

2.4 Instructions per microsecond for the first 160 workgroups of a

microkernel and nbody. 16

2.5 Start/finish times for the first 96 workgroups of a microkernel

and nbody. 16

2.6 Micro-benchmark containing a loop with a (a) single-precision

floating point addition (b) a double-precision floating point addi-

tion. 19

2.7 Progress within work-groups in the presence of a staircase. . . . 21

2.8 Micro-benchmark containing a loop with a (a) one (b) two and

(c) three double-precision floating point additions. 22

2.9 Sampling at saturation points and the linear model. 24

2.10 Actions and information flow for both models. 28

2.11 Error rates of the linear and ML-based model on the GTX 580

for the execution time of each kernel. 31

v

2.12 Error rates of the linear and ML-based model on the GTX 280

for the execution time of each kernel. 31

2.13 Error rates of the linear model on the GTX 680 for the execution

time of each kernel. 32

2.14 Error rates of the linear and ML-based model on the Radeon HD

6970 for the execution time of each kernel. 32

2.15 Average error rates of the linear and ML-based model at different

saturation points. 38

3.1 Proposed auto-tuning framework. 43

3.2 Work-items, work-groups, and warps. 48

3.3 Relationship between the execution time and occupancy of some

kernels from Rodinia and NVIDIA SDK. (a) BFS 1 from Rodinia.

(b) MatVecMulCoalesce2 from NVIDIA SDK. (c) Fan 2 from

Rodinia. 50

3.4 The effect of memory coalescing in terms of occupancy. 52

3.5 The effect of non-coalesced memory accesses for kernel Fan 2 in

Rodinia. 55

3.6 Micro-benchmark code to show the relationship between the

work-group size and cache contention. 55

3.7 The effect of cache contention. 55

3.8 Transforming the one-dimensional index space in Figure 3.2 by

the workload tuner. 62

3.9 The performance of the auto-tuner on GTX Titan X. 68

3.10 The performance of the auto-tuner on GTX Titan X with re-

spect to the occupancy, the number of memory transfers and the

instruction count. 68

vi

3.11 The tuning cost of the auto-tuner on GTX Titan X. 68

3.12 The performance of the auto-tuner in comparison with OpenTuner

on GTX Titan X. 72

3.13 The performance on FirePro W8000. 74

3.14 The effect of the workload tuner. 74

3.15 The effect of the non-coalescing factor tuner on GTX Titan X. . 74

3.16 The effect of the concurrency tuner on the kernels with high

workload variation on GTX Titan X. 75

3.17 The effect of the concurrency tuner on the two-dimensional kernels

on GTX Titan X. 75

4.1 The inference phase in our basic 8-bit integer (INT8) quantization

framework. 88

4.2 The forward pass in the training phase of our basic INT8 quanti-

zation framework. 89

4.3 The histogram of input activations of layer relu0 in EfficientNet-

B0 with CIFAR10. 90

4.4 The partial quantization scheme. 92

4.5 Validation accuracy comparison between different precisions used

to quantize activations: (a) INT4 (4-bit integers) and (b) INT8.

The weight precision is INT8 for all experiments. 94

4.6 8-bit validation accuracy of EfficientNet-B0 on CIFAR10 with

the SGD optimizer. 103

vii

List of Tables

2.1 List of features of the ML model for the GTX 280 and the GTX

580 . 26

2.2 OpenCL kernels . 29

2.3 Performance for different error classes. 37

3.1 Hardware specifications of the GPUs used. 49

3.2 Characteristics of the kernels used in this paper. 60

3.3 Values for P and λ0 for different GPU architectures. 67

1 The networks used in this paper. 98

2 Ablation Validation Accuracy (CIFAR10 and SGD) 101

3 Validation Accuracy for rand+mix for different histogram settings

(CIFAR10 and SGD) . 101

4 Validation Accuracy for rand+mix for different precision settings

(CIFAR10 and SGD) . 101

5 Validation Accuracy (CIFAR10 and SGD) 102

6 Validation Accuracy (ImageNet and SGD) 102

7 Validation Accuracy (CIFAR10 and Adam) 104

8 Validation Accuracy (ImageNet and Adam) 104

viii

9 Validation Results for NLP Tasks 105

ix

Chapter 1

Introduction

1.1 Introduction

Graphic Processing Unit (GPU) has gained tremendous popularity in the recent

years and has been used for general purpose computing in many domains [1],

called GPGPU. There is a huge gap in the theoretical peak bandwidth and the

gigaflops performance between GPUs and CPUs nowadays [2]. It is due to the

unique architectural featues of GPUs: It consists a massive number of processing

units that is suitable for processing embarassingly parallel workload. Typicall,

people can write their program using either CUDA or OpenCL programming

languages, which are among the most popular languages for GPUs. However,

achieving optimal performance, i.e., fully exploiting the redundant amount

of computing resources available in the hardware, is a challenging task. The

difficulties stem from many performance factors that can occur inside a program

and how they can interact with each other. Therefore, a large body of research

focus on understanding the performance characteristics of the GPU architecture

1

and modeling the performance of GPU programs [3, 4, 5, 6, 7, 8, 9, 10, 11].

Such techniques are especially crucial in heterogenous systems that partition

the workload into different hardwares of different types. To achieve the optimal

partitioning, the performance of the program needs to be estimated [12, 13].

Performance modeling, or performance estimation, for GPU programs is difficult

due to the lack of understanding the underlying architectural information

from the official documentation that the GPU vendors release. For example,

how multiple ready-to-execute threads are scheduled (or context-switched) on

the same Streaming Multiprocessor is not documented, meanwhile this type

of information is critical to construct an accurate predictive model for GPU

programs. In the next chapter of this thesis, we propose insightful techniques to

accurately model the performance for GPUs.

Currently, there are three main GPU vendors. They are AMD, Intel and

NVIDIA. Each of them has their own ecosystem to support their products.

These ecosystems include a great number of compilers, profilers and libraries

that complicate effort of writing portable performance codes. Even for the

same vendor, the fast change in the architecture between GPU generations also

poses a challenge to achieve portable performance. Normally, a code that is

optimized specifically for a device will not delivery comparable performance for

another device and needs to be re-optimized. If the optimization space is large,

finding optimal options might be very time consuming. Hence, the performance

autotuners come to the play with the ability to select the best options much

faster than an exhaustive search. One representative example of the tuning

options for GPU programs is the work-group size. Chapter 3 presents a set of

techniques to construct an efficient autotuner for GPU programs that can select

a good work-group size within a reasonable time.

Modern runtimes [14, 15, 16] do not only support program optimization by

2

parallelization or finding the best runtime options but they also support trading

the precision with performance. This process is called quantization [17, 18, 19,

20, 21]. Quantization has played an important role not only for GPUs but also

for other high performance devices [22] to improve the performance and reduce

the required memory size. This is even more critical for Deep Learning workloads,

where the model size can be a hurdle to deploy many state-of-the-art networks

onto devices with limited memory capability. For example, the state-of-the-art

language model GPT-3 [23] has 175 billions parameters that already exceed the

memory capacity of many recent high-end GPUs. Chapter 4 presents an effort

to quantize Deep Learning workloads into 8-bit precision using the integer-based

quantization.

3

Chapter 2

Performance Modeling

2.1 Introduction

Today, the word’s second-fastest supercomputer, Titan, and many more on the

Top500 list [24] are heterogeneous systems comprising both CPUs and GPUs.

In order to achieve optimal performance the workload needs to be distributed

evenly to the different computing nodes, and to do so an accurate performance

model is required.

Static workload distributions [12, 13] based on throughput and threshold

values are often far away from the optimal distribution because the performance

difference between CPUs and GPUs heavily depends on the program character-

istics. A performance estimation model can be used to dynamically distribute

the workload inversely proportional to the estimated execution time. While

performance modeling for general-purpose CPUs has been researched actively

and accurate performance models are available, the state-of-the-art models for

GPUs still suffer from a relatively large estimation error. Models for older GPU

4

architectures do not consider the GPU’s hardware caches [7, 5, 6], and many

are not suited for performance estimation at runtime [3, 4, 5, 6].

A performance model suitable for runtime workload distribution thus needs

to capture and characterize the intricate interactions of the most important

hardware and software features of modern GPUs. This is undoubtedly a challeng-

ing problem because of the GPU’s complex hardware that enables its massively

parallel processing capability. Aside from a large number of processors, each with

multiple scalar execution units, the GPU’s hardware thread context switching

mechanism and the on-board memory subsystem with different levels of cache

memories further complicate the task. Several approaches [5, 9, 7, 11, 8, 6]

have been proposed to model GPU performance, including analytical mod-

eling and Machine Learning (ML)-based modeling. The analytical modeling

approaches [5, 7, 8, 6] typically rely on micro-architecture information to predict

the performance of a program in a handcrafted manner. As GPU architectures

continue to evolve dramatically this approach is not that attractive: a minor

change in the architecture may require extensive work to adapt the model to the

new architecture. On the other hand, instead of evaluating a number of prede-

fined formulas and quickly reporting the execution time, ML models [9, 10, 11]

rely on training data to learn the mapping between program features and execu-

tion time. ML-based approaches seem to be more appropriate for this task as

they are more robust to changes in the GPU architecture.

In this chapter, we present two models to accurately predict the performance

of an OpenCL kernel on GPUs. Both the linear and the ML-based model rely

on sampling information to overcome the limitations of analytical methods.

Sampling incurs an overhead because a small part of the actual workload has

to be executed before the performance of the entire workload can be predicted;

thus, it is important to keep the sampling overhead to a minimum. In order

5

to determine the earliest sampling points that allow an accurate estimation,

it is essential to have a clear understanding how GPUs schedule a workload.

Unfortunately, GPU manufacturers do not disclose how the work is distributed

to the different compute units of a GPU, or how the more than 1000 active

threads are scheduled inside these units. We thus reverse-engineer the scheduling

policies of GPUs by analyzing the results of a set of hand-crafted OpenCL

micro-benchmarks. Based on these observations we formulate and verify the

scheduling policies of modern NVIDIA GPUs which then form the basis of the

two models.

The analysis of the GPU’s scheduling policy allows us to compute the

minimal number of work-items at which the GPU attains maximum throughput.

The sampled data is used by a linear model to extrapolate the total execution

time of the entire kernel. This linear model works reasonably well because the

amount of work per work-item in scientific workloads is typically distributed

evenly. On modern GPUs with on-chip caches and memory coalescing, however,

the execution time shows much more variance. To cope with such architectures

we combine the linear model with an ML-based approach that takes the data of

the GPU’s hardware performance counters as additional inputs. Training the

ML-based model with over 300 data sets allows the model to detect the complex

correlations between a workload’s sampled data and the actual execution time.

The experiments show that the ML-based model is able to improve the accuracy

of the linear model significantly.

We evaluate the accuracy of the proposed model with 70 different OpenCL

kernels by comparing the estimated kernel execution time with the actual

measured execution time. We evaluate the model on different GPU architectures

from two representative GPU vendors: NVIDIA and AMD. On the GTX 580 [25],

a representative of NVIDIA’s Fermi GPU-architecture, we achieve, on average,

6

an error rate of 5.72% for the linear model and 4.76% for the ML-based model.

To demonstrate that our model is not tied to a certain GPU architecture, we

have applied it to an NVIDIA GTX 280 and an NVIDIA GTX 680. The GTX

280 is a second-generation GPU with no hardware caches. The model achieves

an error rate of 7.19% for the linear and 6.42% for the ML-based model. The

GTX 680 is based on NVIDIA’s latest Kepler architecture [26]. It is currently

impossible to read the GPU’s performance counters from OpenCL, hence we

were only able to run the linear model. An error rate of less than 10% shows that

the linear model, although simple, can cover a wide range of GPU generations

with acceptable error rates. Interestingly, on the AMD Radeon HD 6970, the

model achieves an error rate of 8%. This shows that although the model is

formed based on an analysis on a specific NVIDIA GPU, it could be used with

not only different GPU generations from NVIDIA, but also from AMD.

The contributions of this chapter are:

• An in-depth analysis of scheduling policies of NVIDIA GPUs that allows

us to determine the sampling points with the fewest number of work-items

that still allow an accurate performance estimation.

• A simple linear performance model that is very accurate for applications

with an evenly distributed workload.

• An ML-based performance model that can cover a wide range of applica-

tions and significantly improve the performance of the linear model.

• An implementation and evaluation of the models with 70 OpenCL kernels

from four different benchmark suites and OpenCL kernel collections on

four different generations of GPU architectures from two different vendors.

The rest of this chapter is organized as follows. Section 2.2 reviews related

7

work. Section 2.3 contains a brief introduction to the OpenCL execution model

and the Fermi GPU architecture. In Section 2.4, we provide a comprehensive

analysis of the way modern GPUs execute kernels. The performance estimation

models described in detail in Section 2.5 are built upon these observations.

Section 3.6 evaluates and compares the accuracy of our models, and Section 2.7

concludes this chapter.

2.2 Related Work

Wong et al. [27] have analyzed the NVIDIA GTX 280 and revealed a number of

undisclosed characteristics by running micro-benchmarks. However, their analysis

does not consider contention and does thus not provide much information about

how warps are scheduled. Liu et al. [8] have developed a performance predictor for

a specific application. Although the prediction is precise, this method requires a

priori knowledge of the application’s throughput. Bitirgen et al. [10] proposed an

interval-based framework to dynamically select resource allocation decisions on

chip multiprocessors. Their model takes program behavior as input and estimates

the performance of the program at certain intervals. Though interesting, this

interval-based approach is not applicable to GPU performance estimation.

Zhang and Owens [6] have developed a performance model for CUDA pro-

grams executing on NVIDIA GeForce 200-series GPUs. Their main goal is to

help the programmer identify performance bottlenecks, potential optimizations

and architecture improvements. Static program features are collected by the

compiler and dynamic features are collected in a simulator [28]. Together with

machine-specific characteristics, these features are used to analytically calculate

the execution time of CUDA applications. This overhead can easily exceed the

running time of the kernel on a GPU itself. Jia et al. [4] proposed a regression-

8

based performance model for GPU design space exploration. Training this model

requires executing the program over a large number of design points which

makes this approach unsuitable for workload distribution.

Kerr et al. [29] have proposed a Machine Learning based model to predict

performance of CUDA programs on GPUs and CPUs (based on Ocelot compiler).

The static features of the program are used to derive the relationship between

the program behavior and the performance on a target architecture. This model

uses static features of the program so it is limited to an average error of 30%. Luk

et al. [30] have proposed a linear regression-based model to distribute workload

to a heterogeneous system of CPUs and GPUs. Unlike the proposed technique,

the linear regression-model needs to be trained for each new kernel encountered.

Hong and Kim [7], Baghsorkhi [5] and Grewe [31] have presented performance

models that can be used for workload distribution. These models are based

on static information of CUDA/OpenCL programs and require the programs

to be written in a parametrized way so that variables related to the problem

size can be analyzed symbolically. Another drawback of these models is that

they do not consider the presence of caches and are thus not applicable to

modern GPUs with caches. Finally, none of these models take into account the

interaction between the application and the hardware as well as the effect of

compiler optimizations.

The models proposed in this chapter remove the restrictions of static analysis

by using dynamic information through sampling. Experiments with a large

number of OpenCL kernels from a wide range of applications show that the

models can be easily applied to GPU from different architectures and produce a

more accurate performance estimate with an average error of less than 5% for

the GTX 580, 7% for the GTX 280, 10% for the GTX 680 and 8% for the HD

6970.

9

Compute
Device

Compute
Device

Compute
Device

Host

Host
Processor Main Memory

...

Compute Device

CU CU CU...

Global/Constant
Memory Data Cache

Global
Memory

Constant
Memory

Compute Device Memory

Interconnect Bus

Compute Unit

PE

Local Memory

PE PE
...

Private Memory

Compute
Device

1. print slide
2. open in adobe acrobat
3. View->Tools-Pages
4. Crop
5. select area, dblclick
6. save as

Figure 2.1: OpenCL Architecture.

2.3 Background

2.3.1 OpenCL Framework

In this section, we briefly introduce the OpenCL framework, the NVIDIA’s

Fermi GPU architecture [32], and provide a short introduction to the Machine

Learning techniques applied in this work. To make the discussion consistent we

use OpenCL terms to describe the GPU architecture.

In the OpenCL platform model [33] a host processor is connected to one

or more compute devices. A compute device contains a number of compute

units (CUs), each of which contains one or more processing elements (PEs)

(Figure 2.1).

An OpenCL application consists of a host program and one or several kernels.

The host program is executed on the host processor, and the kernels are executed

on the devices. For each kernel, the host defines an N -dimensional abstract

10

index space in which the kernel will be executed (N ∈ {1, 2, 3}). Each point in

this space defines one execution instance of the kernel, called work-item. The

work-items are organized into groups of equal size, called work-groups. The

work-groups are executed independently, i.e., concurrently and in any order.

There are four different types of memory accesses in an OpenCL kernel:

global memory, constant memory, local memory, and private memory. Global

and constant memory accesses have the highest latency since the accessed data

resides in the device global memory. The local memory is shared by all PEs in

the same compute unit. The private memory is local to a PE. Accesses to the

global memory or the constant memory may be cached in the global/constant

memory data cache if there is such a cache in the device.

2.3.2 GPU Architecture

NVIDIA’s Fermi architecture [32] is designed for massive parallel processing. It

comprises a fairly large number of streaming multiprocessors (SMs). Each SM

contains 32 streaming processors (SPs) for general computations, 16 load/store

(LD/ST) units, and four Special Function Units (SFUs) that handle transcenden-

tal operations. There are two levels of data caches: an L1 cache for each SM and

an L2 cache shared by all the SMs. Figure 2.2 shows a schematic block diagram

of one of the total 16 SMs in the GTX 580 GPU. In OpenCL terminology, the

GPU represents a compute device, an SM corresponds to a CU, and an SP to a

PE.

When running a work-group on an SM, each work-item is executed by one

thread. Threads are bundled into so-called warps. One warp consists of 32

threads (or work-items; Figure 2.3). All threads in a warp execute in lock-step.

The GPU compiler thus converts conditionally executed code (such as if-else-

constructs) into predicated code. A divergence describes the situation when, at

11

run-time, not all 32 threads take the same control path. When divergence occurs,

both parts of the conditionally executed code must be executed. Divergence

inevitably leads to reduced performance.

The work-group is the minimal allocation unit of work for an SM. A work-

group running on an SM is called an active work-group [34]. Similarly, active

warps denote warps that are currently executing or eligible for execution. If

enough hardware resources are available, several work-groups can be active

simultaneously in one SM. The number of active work-groups depends on the

kernel code, the kernel’s index space, and the hardware resources of the SM.

The metric to characterize this degree of concurrency is termed occupancy [35].

Occupancy is defined as the ratio of the actual number of active warps to the

maximum possible number of active warps per SM. This maximum is hardware

specific; in the case of the GTX 580, at most 48 warps (and thus 48 ∗ 32 = 1536

threads or work-items) can be active in one SM at the same time.

The work-groups and warps in a work-group are formed from consecutive

work-items. If the size of a work-group is not divisible by the warp size (i.e., 32),

every work-group contains one warp that has less than 32 work-items. Thus, to

maximize resource utilization, the number of work-items in a work-group should

always be a multiple of 32.

The active work-groups that execute concurrently in an SM might have

different starting and finishing times. As soon as one work-group finishes, the

SM scheduler activates a new work-group. The 32 work-items of a warp are

conceptually executed in one cycle. Recall from Figure 2.2 that one SM in the

Fermi architecture contains 32 SPs for general-purpose instructions but only 16

load/store units. Every time a warp issues a load/store instruction, its execution

would thus have to be split up into two cycles. Instead of doing so, every SM

contains two warp schedulers that, in every clock cycle, schedule two half-warps

12

SP SP LD/ST
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP
SP SP

LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

SFU

SFU

SFU

SFU

L1 Cache/Shared Memory

Global (Device) Memory

Warp Scheduler 1 Warp Scheduler 2

L2 Cache

SM

Figure 2.2: Schematic block diagram of one SM in the GTX 580 GPU.

...

work-item

work-group 0...0 1 31 ...32 33 63
warp 0 warp 1

work-group 1...64 65 95 ...96 97 127
warp 2 warp 3

Execution Index Space

Figure 2.3: Relationship of work-groups, work-items, and warps.

13

from different warps [34]. One scheduler handles warps with even IDs, and the

other one handles warps with odd IDs. Both schedulers issue the instruction

to one of the four execution units (2 x 16 SPs, 1 x 16 LD/ST units, 1 x 4

SFUs). Such a setup uses the hardware resources more efficiently and does not

require extra management of half-way executed warps because, for example, a

general-purpose instruction from one half-warp and a memory operation from

the other half-warp can be executed in parallel. However, for transcendental

operations that are scheduled on the 4 SFUs, a half-warp will require at least

four cycles to be scheduled.

Each SM contains an instruction cache and 64KB of local data memory that

can be dynamically configured as scratchpad memory or L1 cache. A unified L2

data cache of 768KB is shared by all SMs in the GPU.

2.3.3 Support Vector Regression

Here, we briefly introduce Support Vector Regression (SVR), the regression

learning algorithm used in the ML-based model. We use a non-linear form of a

supervised learning algorithm called ϵ-SVR [36]. In this form, the model takes

a feature vector as its input; this is simply a vector of input parameters. In a

learning phase the model is trained with a large number of input vectors and

the corresponding output values. The model learns the complex interactions

between the features of the input vector and the desired objective. We use the

leave-one-out-cross-validation technique: we train the model with training data

from which all data points of the kernel under test have been removed, and

then apply the model to the kernel. This method guarantees that the training

data set and the test data set are distinct which is important if we only have a

limited number of training data points.

In our context, the input data comprises a set of performance features of

14

an OpenCL kernel (provided by the compiler, and obtained through sampling),

and the objective is the execution time of kernel.

For the interested reader, the following paragraph provides some more details

about ϵ-SVR. To keep the discussion reasonably simple, we describe the linear

form; the basic idea is identical in the non-linear form. The training phase is

performed on a collection of training data. A data instance has the form {x, y}

where x is a collection of d representative features for this data instance and y

is the objective that is associated with this data instance. The goal is to find a

function f(x) that deviates by no more than ϵ from the training target yi for all

yi while being as flat as possible. In the linear problem statement, the function

f(x) has the form

f(x) = w · x + b

where w denotes the normal vector to the hyperplane and b is the bias with

w ∈ Rd, b ∈ R. The flatness in this case means that w is small [37]. Denoting

the training data as (x1, y1), (x2, y2), ..., (xN , yN), the objective then becomes

minimize
1

2
∥w∥2 (2.1)

subject to |w · xi + b− yi| ≤ ϵ, ∀i (2.2)

This convex optimization problem can be solved using its dual formulation

by introducing Lagrange multipliers [36]. Condition 2.2 assumes that such a

function f(x) exists; however, this is often not the case for large datasets. To

overcome this limitation, soft margin SVR [38] was introduced. Details of solving

the dual formulation and soft margin SVR are out of the scope of this chapter.

We chose ϵ-SVR because it generalizes well to unseen data. In the training

step, rather than only minimizing the observed training error, ϵ-SVR finds the

trade-off between the error and the complexity of the objective function. Once

15

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

in
st

r
/ m

s

number of work-groups per SM

(a) microkernel IPS

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

1 2 3 4 5 6 7 8 9 10

in
st

r
/ m

s

number of work-groups per SM

(b) nbody IPS

Figure 2.4: Instructions per microsecond for the first 160 workgroups of a microkernel

and nbody.

0

10

20

30

0 16 32 48 64 80 95

m
il

li
se

co
n

ds

work-group ID

(a) microkernel start/finish times

0

20

40

60

80

0 16 32 48 64 80 95

m
il

li
se

co
n

ds

work-group ID

(b) nbody start/finish times

Figure 2.5: Start/finish times for the first 96 workgroups of a microkernel and nbody.

the function f(x) has been determined, it can be used to predict the objective

value for yet unseen feature vectors x.

2.4 Prerequisites to efficient profiling: An insight to

warp scheduling

In order to accurately estimating the runtime performance of an OpenCL kernel,

a deep understanding of the inner workings of a GPU is necessary. In addition,

a sampling-based model must keep the number of sampled work-groups to a

minimum. This section presents our analysis of the NVIDIA GTX 580 scheduler

and provides the foundation for the performance model presented in the following

section.

From pieces of information about GPU scheduling gathered from various

sources [25, 39, 32, 35] we first state and verify the following two assumptions:

1. On the device-level, the work-group scheduler assigns a new work-group

to an SM as soon as an active work-group on that SM finishes executing.

16

2. On the SM-level, the two warp-schedulers use a round-robin scheduling

policy to schedule the active warps. Whenever a warp blocks or has

executed for a certain number of cycles, the scheduler picks a new warp.

To accurately measure the execution time of work-items, we add instru-

mentation code to the very beginning and the very end of real-world and

several hand-crafted kernels. The code reads the GPU’s clock cycle performance

counter. This instrumentation allows us to record the start time, swi(i) and

finish time, ewi(i) for each work-item i. The execution time is then given as

twi(i) = ewi(i) − swi(i). For a warp w containing N work-items, let

swarp(w) = MINN
k=1swi(k)

ewarp(w) = MAXN
k=1ewi(k)

twarp(w) = ewarp(w) − swarp(w)

The start, finish and execution time for work-groups comprising M warps is

defined accordingly:

swg(j) = MINM
k=1swarp(k)

ewg(j) = MAXM
k=1ewarp(k)

twg(j) = ewg(j) − swg(j)

Recall that several work-groups can be active within one SM. The compiler

computes a kernel’s occupancy as a by-product of compiling. Based on the

occupancy we can compute how many work-groups can be active simultaneously

within on SM. For example, with an occupancy of 1.0 and work-groups containing

256 work-items each, six work-groups can be active at the same time (one work-

group contains 256/32 = 8 warps, and to achieve an occupancy of 1.0, we need

6 work-groups with 8 warps to get 48 warps, the maximum number of active

warps per SM). Similarly, if the occupancy is 0.833, five work-groups can be

17

active at the same time. We call the number of active work-groups per SM for a

given kernel the saturation point, denoted Psat.

When executing one, then two, then up to Psat work-groups on one SM

we expect that the throughput, i.e., the number of issued instructions per

second (IPS) increases up to the saturation point. At that point, the running

kernel exploits as much of the hardware resources as possible, and the warp

schedulers within the SM have the biggest freedom when picking ready-to-run

warps. Micro-benchmarks consisting only of ALU operations and no memory

accesses indeed show the expected behavior. For more complex kernels, however,

the IPS can increase even after the saturation point due to cache warm-up

effects. In Figure 2.4 (a), the saturation point of the microbenchmark is two,

and indeed the throughput achieves a stable maximum at multiples of Psat. In

between saturation points, maximum throughput is not achieved because not

all hardware resources are fully utilized. For nbody in Figure 2.4 (b), the kernel

from the NBody application, the saturation point Psat is 3, yet, the throughput

clearly increases after the first saturation point. This increase is caused by cache

warm-up effects, i.e., the first work-groups suffer from more cold misses and

can profit less from memory coalescing than later work-groups. Figures 2.5

plots the start and finish time for each work-group for the microbenchmark

and nbody. In the case of the microbenchmark, Psat = 2 so the the first 32

work-groups are started at the same time (each of the 16 SMs receives two

work-groups). We observe that the work-group scheduler distributes the first

16 work-groups one-by-one to each of the 16 SMs. Work-groups 16 to 31 are

again evenly distributed to all SMs, and so on. For nbody in Figure 2.5(b)

Psat = 3 so initially, each SM is given three work-groups. These correspond

to the first 16 ∗ 3 = 48 work-groups. For both benchmarks, we observe that

whenever a work-group finishes the work-group scheduler immediately assigns a

18

0

30

60

90

120

0 16 32 48 64 80 95

m
il

li
se

co
nd

s

work-group ID

(a)

0
50

100
150
200

0 16 32 48 64 80 95

m
il

li
se

co
nd

s

work-group ID

(b)

Figure 2.6: Micro-benchmark containing a loop with a (a) single-precision floating point

addition (b) a double-precision floating point addition.

new work-group to the corresponding SM. This confirms assumption 1 about

the work-group scheduler.

We expect all active work-groups in an SM to start and finish at the same

time. Figure 2.5(a) confirms this assumption for the microbenchmark. In the

case of nbody, however, we observe that the third work-group on each SM takes

almost double the time to finish compared to the first work-group (Figure 2.5(b)).

We call such a behavior a staircase.

We have run a significant number of hand-crafted micro-benchmarks that

stress different types of instruction mixes in loops to explain the staircase.

Figure 2.6(a) shows the behavior of a kernel that contains a single-precision

floating point addition in a loop. There are a total of 96 work-groups in the

kernel index space of this benchmark, with each work-group containing 256

work-items. The kernel’s occupancy is 1.0, hence six work-groups or 48 warps

are active at the same time per SM. In total, there are 16 SMs on the GPU, so

19

all 96 work-groups can run in parallel. This explains why all work-groups start

at time 0. Since there is no resource contention between warps, warps block

very infrequently (e.g., only on changes in the control flow caused by iterating

the loop). According to assumption 2, if a warp does not block, the scheduler

will continue to run it until it exceeds a certain number of cycles. After this

point the scheduler will schedule another warp that is ready-to-run. Since the

kernel does not exhibit a staircase, the selection of the next warp seems to be

round-robin.

To trigger resource contention, we replace the single-precision with a double-

precision floating point addition. Single-precision floating point operations are

executed on one SP, but for double-precision operations, the two rows of sixteen

SPs are logically linked and operate as 16 double-precision SPs (Figure 2.2). If

one of the half-warps executes a double-precision floating point operation, all 32

SPs are occupied and the other half-warp will block unless it executes a memory

or transcendental operation. The execution time of the work-groups is shown in

Figure 2.6(b) and clearly exhibits a staircase. If the warp schedulers schedule

half-warps in a round-robin fashion, no staircase should appear since all warps

will get an equal share of the SM.

To better understand how the warp schedulers select the next warps, we

have added additional instrumentation code to the kernel. We not only measure

the start and finish time of the kernel, but also record the time after processing

20%, 40%, 60%, and 80% of the workload. The result of this experiment is

shown in Figure 2.7. The figure reveals that, while all work-groups start around

time 0, they do not progress at the same speed. In fact, the third work-group

on each SM does not even start running past the first couple of loop iterations

before the first work-group has finished. The same is true for the fourth work-

group (it effectively starts executing when the second one finishes), and the fifth

20

0

50

100

150

200

250

300

350

400

450

0 16 32 48 64 80 95

m
il

lis
ec

on
d

s

work-group ID

20% 40% 60% 80% 100%

Figure 2.7: Progress within work-groups in the presence of a staircase.

work-group (when the third work-group finishes). Using this result, we refine

assumption 2 on warp-scheduling:

2. On the SM-level, the two warp-schedulers use a round-robin scheduling

policy when the active warp has executed for a certain number of cycles.

If a warp blocks, the scheduler selects the first warp that is ready-to-run

from the work-group with the lowest ID.

With this refined assumption, we are able to explain kernels that do not

exhibit staircase behavior because warps seldom block and thus run more or

less at the same speed thanks to the round-robin scheduling policy. In high-

contention situations, however, the warp schedulers give higher priority to earlier

work-groups by picking the first warp that is ready to run from the work-group

that has been active for the longest time (i.e., has the lowest ID).

Clearly, the instruction mix will have an effect on what warp will be selected.

Figure 2.8 shows the start and end times of all 96 simultaneously active work-

groups. We run a loop with one, two, and three double-precision floating point

additions in the loop body. We anticipate that the staircase is more pronounced

21

0

50

100

150

0 16 32 48 64 80 95

m
il

li
se

co
nd

s

work-group ID

(a)

0

100

200

300

0 16 32 48 64 80 95

m
il

li
se

co
nd

s

work-group ID

(b)

0

100

200

300

400

0 16 32 48 64 80 95

m
il

li
se

co
nd

s

work-group ID

(c)

Figure 2.8: Micro-benchmark containing a loop with a (a) one (b) two and (c) three

double-precision floating point additions.

the higher the resource contention. This behavior is indeed observed in Fig-

ures 2.8 (a-c): in the case of only one double-precision addition, the mix between

operations that cause a warp to block and those that do not is still balanced so

that in most cases the scheduler can run a warp until its time quantum expires.

As we add more double-precision additions in Figure 2.8(b-c), the contention

becomes more severe. The warp schedulers now clearly favor work-groups with

a low ID. Indeed, for the case with three double-precision additions, the later

work-groups will not even start executing before the first work-group has finished

executing (Figure 2.8(c)).

22

A warp can block for several reasons: it blocks when it encounters an

instruction whose operands are not available (data dependency), when the

required execution units are occupied (hardware contention), or when control

flow occurs. We observe that there are three types of operations that can cause

hardware contention: double precision instructions, transcendental instructions

(such as sine, cosine, exp, etc.), and memory operations. However, whether the

warp will actually block or not also depends on the instruction mix of the kernel.

If the kernel contains a well-balanced mix of instructions that are handled by

different hardware resources, even a kernel with many double-precision floating

point operations may not exhibit a staircase.

The following section details the construction of the linear model, the ML-

based model and, in particular, the points at which the workload is sampled

based on the observations on the the scheduling mechanism.

2.5 Performance Estimation

Based on our analysis of the execution model of Fermi GPUs in the previous

section, we first construct a linear model to estimate the execution time of a

workload. This simple linear model, however, cannot capture the non-linear

effects of memory accesses on performance. Since recent GPUs such as those

based on the Fermi architecture [32] implement several levels of hardware caches,

we then propose a model based on machine learning techniques to improve the

prediction accuracy for modern architectures and non-linear benchmarks. The

ML-based model, guided by the linear model, has more relaxed assumptions than

the linear model and can thus make a more accurate execution time estimation

for the general case.

23

2*Psat 3*PsatPsat

tPsat

t2*Psat

t3*Psat

time

workgroups

staircase no staircase

Figure 2.9: Sampling at saturation points and the linear model.

2.5.1 Linear Model

The linear model estimates the total execution time of a kernel by extrapolating

the execution time obtained from two sampling points. Our goal is to choose

two sampling points with as small a number of work-groups as possible while

maintaining an acceptable accuracy for the estimation to keep the overhead to

a minimum.

The previous section shows that even though a kernel fully utilizes the

hardware resources of a GPU at the saturation point, Psat, the throughput can

increase even after Psat due to warming-up effects of the L1- and L2-caches on

the GPU (Figure 2.4(b)). We thus sample each kernel twice, once at Psat1 and

once at Psat2, where both Psat1 and Psat2 are multiples of Psat. The execution

time of the first sample, tPsat1, determines the displacement, and the difference in

execution time from the second sample to the first, i.e., tPsat2− tPsat1 represents

the slope. Sampling at integer multiples of the saturation point has the added

advantage that the staircase behavior can be ignored in the linear model. In

fact, the staircase as explained in Section 2.4 only manifests itself in between

24

two saturation points, at (integer multiples of) the saturation point the sampled

execution times are identical. Figure 2.9 visualizes this observation. We have

found that Psat1 = 2 ∗ Psat and Psat2 = 3 ∗ Psat are sufficient to avoid the

non-linearity of the first few work-groups.

Using two sampling points at multiples of Psat, the execution time of a kernel

can be modeled as follows. The first sampling point determines the displacement,

and the difference in execution time from the second to the first sampling point

yields the increment (Figure 2.9)

tlinear(N) = tPsat1 +
tPsat2 − tPsat1

Psat2 − Psat1
× (N − Psat1)

Here, tlinear(N) denotes the total execution time of the kernel for N work-groups.

tPsat1 and tPsat2 stand for the sampled execution time at saturation points Psat1

and Psat2, respectively.

This simple linear model accurately estimates the execution time of a kernel

when the following two conditions hold: (1) the workload is evenly distributed

and (2) the memory access patterns are similar for all work-groups. The accuracy

drops for unevenly distributed workloads or workloads that exhibit a variance

in performance caused by caching or memory coalescing effects. The ML-based

model tries to eliminate these shortcomings.

2.5.2 Model based on Machine Learning

For the ML-based model, we break the task of estimating the execution time

into two smaller tasks. First, we estimate the saturated instructions per second

(IPS) of a kernel using a machine learning algorithm. By instructions per seconds

we refer to the number of issued instructions per second, not the number of

executed instructions. The difference between issued instructions and executed

instructions is that issued instructions include instructions that are serialized due

25

Feature Description Source GPU Model

active work-groups number of work-groups that can be active compiler GTX 280/580
at the same time

registers per work-item number of registers used by a work-item compiler GTX 280/580
execution time execution time of the run performance counter GTX 280/580

branches number of branches performance counter GTX 280/580
work-items number of sampled work-items performance counter GTX 280/580

divergent branches number of divergent branches performance counter GTX 280
L1/L2 miss rate ratio of L1/L2 miss count to the issued performance counter GTX 580

instructions count
total L1 accesses L1 miss count plus L1 hit count performance counter GTX 580
issued instructions number of issued instructions performance counter GTX 280

executed instructions number of executed instructions performance counter GTX 280/580
bank conflicts bank conflict count performance counter GTX 580

shared loads/stores shared load/store count performance counter GTX 580
global loads/coalesced number of global total/coalesced load requests performance counter GTX 280

warp serializes number of warp serializes performance counter GTX 280
IPS IPS obtained by the linear model computed GTX 280/580

Table 2.1: List of features of the ML model for the GTX 280 and the GTX 580

to hardware contention, memory conflicts, or divergence. Serialization seriously

affects performance, thus using issued instructions improves the accuracy of the

model. After approximating the saturated IPS, we compute the total number of

instructions for the whole kernel and can easily calculate the total execution

time. The ML-based model makes less assumptions and covers a wider range of

kernels than the linear model since it only requires the kernel to distribute the

workload evenly between the work-groups.

Estimation of the saturated IPS. The features of a kernel comprise

static features collected by the compiler and dynamic features obtained during

sampling runs on the GPU. We use the data from the same two runs as the

linear model (at the second and the third saturation point). Table 2.1 lists the

kernel features that were used to construct the IPS estimation model for the

GTX 580 and the GTX 280.

Training and deploying the learning model. An ML-model requires a

large amount of training data during the training phase. To obtain a sufficient

amount of data from various kernels, each kernel is run several times, every

time with a different number of work-groups. Since the performance factors of a

26

kernel often fluctuate when executing the first few work-groups, several runs

at a varying number of work-groups help cover all behavioral differences of the

kernel.

Each run produces a set of performance counters. We combine these values

with the static features obtained from the compiler and the result produced

by the linear model using the second and the third saturation point to form a

feature vector. The feature vector is associated with the saturated IPS of the

kernel to form the training data. The saturated IPS is obtained by running the

kernel with the largest possible input data and recording the IPS.

Estimating the total execution time. Calculating the total execution

time for a kernel is straightforward. The features of a kernel include: the static

features of the kernel; the performance data obtained from the two sampling

runs; and the result given by the linear model. The features are combined to form

a feature vector that is fed into ML model. The model outputs the estimated

IPS for one work-group. Since we assume that the workload is evenly distributed

between the work-groups, we simply multiply the estimated IPS by the number

of work-groups as follows

tML(N) =
IPsat2 ×N

Psat2 × IPSest

Here, tML(N) denotes the total execution time of the kernel for N work-groups.

IPsat2 is the number of instructions issued on one SM at Psat2 work-groups that

is recorded when evaluating the linear model. Using sampling information at

Psat2 leads to more accurate results than at Psat1 because of lessened warming-

up effects and therefore more precise performance counter data. IPSest is the

estimated IPS computed by the ML model.

To summarize, as illustrated in figure 3.1, we describe the processing routine

to test an OpenCL kernel (that is not included in the training set):

27

OpenCL
kernel

kernel
binary

OpenCL
compiler

kernel
statistics

Psat

runtime t2*Psat

runtime t3*Psat

Linear Model

2*Psat 3*PsatPsat

tPsat

t2*Psat

t3*Psat

time

workgroups

staircase no staircase

tlinear

Machine Learning Model

trained
model

feature vector kernel stats runtime stats tlinear

tML-model

sample on GPU
at 3*Psat

sample on GPU
at 2*Psat

Figure 2.10: Actions and information flow for both models.

1. Based on occupancy and work-group size, analytically calculate the number

of concurrently active work-groups, Psat.

2. Extract the data buffer needed by the first work-groups at both sampling

points and copy it to the device memory.

3. Sample at Psat1 and Psat2 work-groups and record the performance coun-

ters.

4. Evaluate the linear model to obtain the estimated execution time and

compute IPSest.

5. Combine the data from the performance counters with the estimated

execution time from the linear model to form a feature vector for the ML-

based model. Then use the output of the model, the estimated saturated

IPS, to compute the estimated total execution time of the kernel for the

28

Source Application (Kernels) Input

AMD Binomial (binomial) 32768 samples
Blackscholes (blackscholes), BoxFilter (BoxRowsLmem), ConvolutionSeparable
(convolutionRows, convolutionColumns), CopyComputeOverlap (VectorHypot),
DXTCompress (compress), DotProduct (DotProduct),
FDTD3d (FiniteDifferences), HiddenMarkov (ViterbiOneStep),

NVIDIA Histogram (histrogram64), Matmul (matmul), MatVecMul
(uncoal0, uncoal1, coal0, coal1, coal2, coal3), MedialFilter (ckMedian), default
Nbody (nbody), QuasiRandomGenerator (Quasi, InvCND), RadixSort
(reorderDatakey, radixSortBlockKey), SobelFilter (ckSobel),
SortingNetworks (sortLocal, sortLocal1, mergeGlobal, mergeLocal),
Transpose (trans naive), Tridiagonal (pcr, cycle)
CP (cp), Cutcp (lattice), LBM (StreamCollideX), Mri-q (ComputeQ GPU),
Mri-gridding (binning, reorder, sort, rearrange, gridding),Parboil
Sad (mb calc, calc 8, calc 16), RPES (computeX), Tpacf (tpacf)

large

FFT (fft1D 512, fft1D 512), BFS (bfs), Sgemm (sgemmNN, sgemmNT),Shock
Spmv (spmv csr vector), Stencil2D (stencilKernel)

-s 4

BT (initialize2), CG (conj grad 2, conj grad 6), EP (ep), FT (cffts1, cffts2, cffts3,SNU NPB
indexmap, evolve), LU (setiv), MG (resid, norm2u3, rprj3, psinv, interp)

class=B/C

Table 2.2: OpenCL kernels

entire workload.

2.6 Evaluation

2.6.1 Evaluation Setup

The proposed model has been developed for NVIDIA GPUs with caches. However,

its simplicity and generality allow it to be applicable to any GPU that shares

similar design concepts. To demonstrate that it can be easily adapted to other

GPU architectures, we have evaluated the model on different architectures from

the two most significant GPU vendors: NVIDIA and AMD. For NVIDIA, we

evaluate the model on three NVIDIA GPUs from three architectural generations:

the Kepler-based GeForce GTX 680, the Fermi-based GeForce GTX 580, and

the GeForce GTX 280 as a representative for NVIDIA’s second-generation GPU

architecture without hardware caches. Currently, there are no CUDA/OpenCL

drivers for the GTX 680 that support reading the performance counters from

within OpenCL programs. For this reason we evaluate only the linear model on

the GTX 680. For AMD, we evaluate the model on a recent GPU; the Radeon

29

HD 6970, which comprises hardware caches.

To test the models, we use 70 kernels extracted from 39 OpenCL applications.

The OpenCL applications stem from the Parboil [40], SNU NPB [41], SHOC [42],

AMD [43] and NVIDIA [39] benchmark suites. The selected kernels all satisfy

two conditions: (1) the kernel is executed with a large number of work-groups

(at least several hundreds), and (2) the kernel’s execution time is longer than

one tenth of a second to minimize the effect of small measurement fluctuations.

Table 3.2 lists the applications, the kernels, the source of the application and

the input data. All experiments are performed with the NVIDIA OpenCL driver

1.1 and AMD APP SDK v2.9.

By executing each kernel at several saturation points, we extract a total

of 683 data instances for NVIDIA GPUs and 578 data instances for AMD

GPUs. We use the leave-one-out cross validation (see Section 2.3.3) technique to

evaluate the ML model: for each kernel to be evaluated, all data sets generated

by that kernel are removed from the data set before training the ML model.

To estimate the execution time of a kernel, we sample at the second and the

third saturation point. The kernel features and the performance counters are

used to compute the execution time for the linear model. The result of linear

model is combined with the recorded performance counters to estimate the final

execution time using the ML-based model.

2.6.2 Performance estimation results

NVIDIA GPUs

Figures 2.11 and 3.9 show the error rates of the the linear and the ML-based

model in terms of estimated execution time compared to the actual execution

time for NVIDIA GPUs. The error rates of the linear and ML-based model are,

30

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

E
rr

or
 r

at
e

(%
)

Linear

ML

45/43

Figure 2.11: Error rates of the linear and ML-based model on the GTX 580 for the

execution time of each kernel.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

E
rr

or
 r

at
e

(%
)

Linear

ML

93/93

Figure 2.12: Error rates of the linear and ML-based model on the GTX 280 for the

execution time of each kernel.

on average, 5.72% and 4.76% for the GTX 580 and 7.19% and 6.42% for the

GTX 280, respectively.

As expected, the linear model performs extremely well for the regular kernels,

i.e., when all performance factors scale linearly. GPUs perform best when

executing regular application, so it is not surprising that the performance

counter data of 80% of all kernels we have encountered scale linearly.

For certain kernels, the linear model over- or underestimates the execution

time significantly. This comes from several sources. First, even though we

have excluded very short running kernels, a few kernels still exhibit a rather

short execution time and cause a high fluctuation in the measurements. The

31

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

E
rr

or
 r

at
e

(%
)

95 85

Figure 2.13: Error rates of the linear model on the GTX 680 for the execution time of

each kernel.

Figure 2.14: Error rates of the linear and ML-based model on the Radeon HD 6970 for

the execution time of each kernel.

kernels belonging to this group include resid, rprj3, psinv, stencilKernel,

tran naive. These kernels show an average error of approximately 10%.

Second, for some kernels we have observed a significant warm-up effect at

the beginning of the execution. These effects are caused by the hardware caches,

or special instruction scheduling policies that cause the GPU to not evenly

distribute the work-groups across the SMs. The learning model observes these

non-linear effects through the performance counters and learns to correct the

result given by the linear model. On the GTX 580, the significant cases belonging

to this type include ifft1D 512, BoxRowsLmem, Quasi, MergeLocal, integrate,

StreamCollide, resid, norm2u3, and binning. The ML-based model achieves

32

the biggest improvement for binning. This kernel has a large number of warps

that are serialized (due to branch divergence) and warp re-issues (due to cache

misses) during its execution. These serializations are unevenly distributed across

the saturation points. The learning model observes this warm-up effect and is able

to produce a much more accurate result. The kernel Quasi has high error rate

with the linear model because during sampling, the GPU does not seem to evenly

distribute the work-groups across the SMs. The GPU performance counters only

report data for one SM, hence if the SM being sampled is assigned more work-

groups than some other SMs the performance counter numbers are distorted.

The ML-based model observes this behavior from the performance counter

sm cta launch and achieves an improved result. The kernels ifft1D 512 and

BoxRowsLmem have high error rates for the linear model because the performance

factors, such as the number of L1 and L2 cache misses or the number of coalesced

memory requests, do not scale linearly. On the GTX 280, the kernels falling

into this category include binning, ComputeX, cffts3, ViterbiOneStep and

reorderDataKeys.

The third source for large errors are unevenly distributed workloads across

the work-groups. This happens when a kernel contains a conditional branch or

a loop whose iteration count depends on the value of some input data, such as

the work-group ID or a work-item ID. The kernels that exhibit this behavior

are binning, gridding and gen hists, StreamCollide, uncoal1, integrate

on the GTX 280 and gridding, lattice, rprj3, trans naive, integrate on

the GTX 580. On most of those kernels, the ML-based model performs slightly

better than the linear model. This is due to the fact that the learning model

attributes this imbalance to warm-up effects and thus computes a more precise

throughput.

Comparing the performance of the linear model on GTX 580 and GTX

33

280, we observe a substantial difference in accuracy between a number of ker-

nels. This includes the kernels gridding, StreamCollide, calc 16, gen hists,

psinv, cffts3, setiv, ifft1D 512, BoxRowsLmem, ViterbiOneStep, uncoal1,

StencilKernel and Quasi. There are several reasons for these differences: First,

certain kernels have an imbalanced number of replays (across the work-groups)

on the GTX 580 but are balanced in terms of replays on GTX 280. A replay is

the re-execution of an instruction after a cache-miss [44]. The kernels falling into

this category are psinv, BoxRowsLmem and ifft1D 512. For these kernels the

linear model produces more accurate results on the GTX 280 than the GTX 580.

Similarly, the linear model works better on the GTX 580 for kernels that have

imbalanced replays on the GTX 280 but are balanced on the GTX 580. Included

in this group are StreamCollide and uncoal1. Second, on the GTX 280 the

requirements for memory coalescing are stricter than the GTX 580. For those

kernels, calc 16, cffts3 and ViterbiOneStep, the warm-up effect is stronger

on the GTX 280 and therefore the linear model performs better for the GTX

580 than the GTX 280. Third, due to different architectural parameters, the

saturation points are not necessarily equal for the same kernel. gen hists has a

large workload imbalance in the last quarter of its work-groups. On the GTX 580,

the second sampling point includes work-groups from the last quarter whereas

on the GTX 280 the second sampling point includes less work-groups which

do not exhibit workload imbalance. For this reason, the linear model has more

information on the GTX 580 and is thus more accurate. Similarly, gridding

is highly imbalanced in terms of the number of instructions per work-group.

The occupancy of gridding for the GTX 280 and the GTX 580 are different;

therefore, the degree of imbalance in the number of instructions at the sampling

points is different from the GTX 280 to the GTX 580. Finally, for kernels with

a relatively small sampling execution time, the measurement variation is also

34

a source of error, especially for kernels that have large number of work-groups

such as psinv or stencialKernel.

We note that the irregularity in warp serialization on the GTX 280 affects

the result of the performance estimation less than the irregularity in memory

access patterns on the GTX 580. This explains why the overall error rate of the

linear model on the GTX 280 is lower than that on the GTX 580.

We have implemented the model presented by Hong and Kim [7], an analytical

model to estimate performance on a GTX 280. Hong’s model has an average

error rate of 30%, almost five times as much as the ML-based model in Figure 3.9.

Note that we use the arithmetic average to compare error rates, while Hong et

al. report the geometric average in their paper.

To demonstrate the portability of the proposed model, we evaluate the

linear model on one of the most recent NVIDIA GPUs, a GTX 680 based on

the Kepler architecture, to see how it adapts to a newer GPU. It is currently

impossible to read the performance counters from OpenCL, thus we cannot

apply the ML-based model to this architecture yet. The linear model obtains

a slightly worse overall error rate of 10%. Figure 3.13 details the result on the

GTX 680 for each kernel. There are two kernels that suffer from especially high

error rates: gridding and setiv. The kernel gridding has an extremely uneven

workload distribution across the work-groups as described above. There is no

serious workload imbalance in setiv. However on the GTX 680, the number of

compute units and memory units has been increased, therefore having only 32

work-items per work-group and 8 active work-groups per SM does not use all

the GPU resources effectively. To confirm this conjecture we double the number

of work-groups per sampling run, i.e., we sample at 2 ∗ Psat and 4 ∗ Psat. This

dramatically reduces the error rate for setiv.

35

Note that ML models perform better the more training data is available. We

expect the ML-based model to perform better as we add more benchmarks.

AMD GPUs

Figures 2.14 shows the error rates of our model for AMD HD 6970 GPU. The

error rates of the linear and ML-based model are, on average, 8.10% and 7.91%

respectively. It is interesting that the linear model, although developed based

on an analysis of a specific NVIDIA GPU, predicts quite well for most kernels

running on AMD HD 6970 GPU. This is because both NVIDIA GPUs and

AMD GPUs use the concept of occupancy to indicate how many active groups of

work-items can be executed concurrently. This group is called warp in NVIDIA

GPUs and wave-front in AMD GPUs. The difference between warp and wave-

front is their size, i.e., the number of work-items executed in a lock-step manner.

This size is simply an input to the linear model. Because the sampling points

embody the execution behavior of warps and wave-fronts on the hardware, the

linear model can predict very well on both NVIDIA GPUs and AMD GPUs.

The linear model does not predict well on some kernels that include trans naive,

lattice, binning, gridding, setiv, gen hist, evolve, compress and ViterbiOneStep

with an error of more than 20%. There are several reasons for this error. First,

as explained in the result section for NVIDIA GPUs, there is a workload imbal-

ance between work-groups for binning, gridding, gen hist and trans naive.

Second, although there is no significant imbalance in the workload, some per-

formance factors do not scale linearly (e.g., the cycles stalled due to a memory

access) across different saturation points as in trans naive, latice, setiv,

compress, evolve and ViterbiOneStep.

On the Radeon HD 6970, the ML-based model predicts almost equally as well

as the linear model. This is because there is a limited number of performance

36

GTX 280 GTX 580Error class
LM ML delta LM ML delta

0-5% 1.88 2.36 -0.48 2.03 2.13 -0.10
5-10% 6.65 3.13 3.50 7.59 6.57 1.01
>10% 21.24 18.67 2.57 18.46 13.41 5.06

Table 2.3: Performance for different error classes.

counters we can access using OpenCL. Especially, there is no performance

counters related to hardware caches on AMD GPUs that can be accessed

through the OpenCL interface. The performance counters used as inputs to

the machine learning model on AMD are insufficient to capture the correlation

between the execution time and input performance factors, hence its performance

is similar that of the linear model.

2.6.3 The ML-based model on different classes of kernels

Table 2.3 compares the linear model to the ML-based model in relation to the

error class of the kernel for two NVIDIA GPUs. The error class 0-5% comprises

all kernels for which the error of the linear model is 0 to 5%, and the error

classes 5-10% and >10% are constructed accordingly. The results confirm that

the ML-based model performs better on kernels for which the linear based model

has a relatively big estimation error. For regular kernels the linear model slightly

outperforms the ML-model. While the ML-based model is capable of adapting

to irregularities in the kernels, this flexibility comes at the expense of a small

degradation in accuracy for such kernels.

2.6.4 The performance at different saturation points

Figure 2.15 shows the average error rate of the linear and ML-based model at

different sampling points for (a) the NVIDIA GTX 580 and (b) the AMD Radeon

HD 6970, respectively. The x-axis denotes the first sampling point at x-multiples

37

0.00
2.00
4.00
6.00
8.00

10.00

1+2 2+3 3+4 4+5 5+6

E
rr

or
 r

at
es

 (
%

)

Saturation points

Linear ML

(a) NVIDIA GTX 580

0.00
2.00
4.00
6.00
8.00

10.00

1+2 2+3 3+4 4+5 5+6

E
rr

or
 r

at
es

 (
%

)

Saturation points

Linear ML

(b) AMD Radeon HD 6790

Figure 2.15: Average error rates of the linear and ML-based model at different saturation

points.

of the saturation point (Psat); the second sampling point is at (x+ 1) ∗Psat. For

the GTX 580, warm-up effects in the caches lead to a reduced accuracy when

sampled at the first saturation point. From the second saturation point on, the

warm-up effects can be mostly covered and the accuracy of the model remains

similar even with a higher amount of sampling. For the Radeon HD 6970, the

linear model achieves error rates of 8-11% for the first five saturation points. This

implies that the model benefits from the architectural similarities between GPUs

from different vendors. The ML-based model does not perform significantly

better; the reason is that AMD GPUs provide much fewer performance counters

compared to NVIDIA GPUs. For example, there is not sufficient information

about the cache usage for the L1 and the L2 cache. Without these performance

counters, the ML model is unable to improve the accuracy of the estimation

38

significantly.

For both architectures, sampling at the second/third sampling point provides

reasonable accuracy at the lowest possible overhead. The overhead of sampling

compared to the total runtime of the kernels amounts to, on average, 8% for

NVIDIA and 15% for AMD GPUs. It is important to note that the sampling

overhead is independent of the size of the data input size and will thus be

significantly smaller for real-world kernels with very large input data sets.

2.7 Conclusions

We have presented a linear and an ML-based performance estimation model for

GPUs with or without hardware caches. The wide applicability of the models

is demonstrated by running the benchmarks on 70 OpenCL kernels on three

different generations of NVIDIA GPU architectures and one AMD GPU.

The linear model outperforms existing models and achieves error rates below

10%. On modern GPUs, the complex effects of cached memory accesses are

difficult to capture by a linear model. On NVIDIA GPUs, with performance

counters reflecting cache usage and branch divergences, the ML-based model

detects the correlation of these factors and the execution time and reduces the

average estimation error to about 5%. The ML-based model performs especially

well on benchmarks that exhibit non-linear throughput and are thus difficult to

estimate for the linear model. On the other hand, with AMD GPUs, the ML-

based model cannot detect this correlation due to the lack of certain important

performance counters.

The proposed models significantly outperform related work on various GPU

architectures. The models achieve a very good accuracy for a wide range of

benchmarks on different GPU architectures and can thus be used as performance

39

estimation models in a dynamic workload-distribution framework.

40

Chapter 3

Performance Auto-tuning

41

3.1 Introduction

Although the benefit of selecting a good work-group size for GPUs have been

widely studied for performance portability [45, 46, 47, 48, 49], there is still

no satisfactory analysis on the reasons that cause the performance varia-

tions according to different work-group sizes. Understanding the reasons is

very important for automatic performance tuning and program optimization.

Even though several approaches have been proposed for auto-tuning GPU pro-

grams [50, 45, 46, 47, 51, 52, 53, 54], the relationship between the work-group

size and the overall performance is not analyzed in detail.

To automatically select the work-group size for GPUs, most of current ap-

proaches are for a specific class of algorithms (e.g., matrix-multiplication) [50,

45, 46, 52, 54]. Some others require profiling on small input sizes of the pro-

grams [51, 53, 55, 56]. These approaches are not applicable to the programs that

have few input sizes. Other approaches consider many program optimization

techniques at the same time [47, 51, 57], however for tuning the work-group

size, they have to search through all possible work-group sizes to find the best

work-group size. Evolution search strategies [58] are effective for large-space

tuning problem. However, since the search mechanism generally lacks the domain-

specific knowledge (e.g., regarding the GPU architecture), it is difficult to find

the optimal work-group size.

The state-of-the-art technique [48] has demonstrated an excellent work on

finding a number of program parameters, including the work-group size. Their

search-space pruning mechanism relies on the number of concurrent threads

and the instruction count. It assumes that the programs do not use memory

operations intensively, which had been reasonable until Fermi architecture [59]

was introduced. However, both AMD and NVIDIA GPU memory systems have

42

Kernels with
workload variation

(13 kernels)

Workload tuner
(handles

amount of
workload)

Two-dimensional
kernels

(10 kernels)

Other
kernels

(31 kernels)

Non-coalescing
factor tuner

(handles
non-coalesced

memory accesses)

Selected
work-group sizes

Kernels

Exhaustive-search tuner

Selected
work-group sizes

Concurrency tuner
(handles cache contention and occupancy)

Selected
work-group sizes

Final
work-group size

Figure 3.1: Proposed auto-tuning framework.

become more complex, e.g., the presence of caches. GPU programmers have

extensively exploited this feature and many programs use heavier memory

operations as a result. The heavy use of memory operations in a cached memory

architecture leads to a diversity in memory access patterns, which certainly

complicates the choice of work-group size. This a clear demand for the GPU

auto-tuners to incorporate the ability to handle memory performance factors.

In this paper, we propose an auto-tuning framework that overcomes the

drawbacks of previous approaches. Our approach tackles the auto-tuning problem

by considering all important performance factors that can affect the choice of a

good work-group size. Our approach makes no special assumptions about the

program, thus it applies to any program.

We first characterize a large body of OpenCL kernels to identify the perfor-

43

mance factors that affect the choice of a good work-group size for GPUs. Based

on the characterization, we realize that the most influential performance factors

include the number of concurrently executed threads, coalesced global memory

accesses, cache contention, and the amount of workload in a kernel.

Based on the observations, we propose a set of auto-tuning techniques

that sub-optimally selects the work-group size and shape. By the shape, we

imply the two-dimensional shape of the work-group for two-dimensional kernels.

Our technique relies on a set of four tuners: workload, non-coalescing factor,

concurrency, and exhaustive-search tuners. The input to a tuner is a set of

work-group sizes to be searched. Those tuners utilize the profiling information

collected by executing the kernel with several representative work-group sizes to

prune the search space. Figure 3.1 shows the overall structure of the proposed

auto-tuning framework.

The workload tuner handles the variation of workload and transforms the

kernel index space to another so that the amount of workload does not vary as the

work-group size varies. The non-coalescing factor tuner handles non-coalesced

global memory accesses. It prunes the search space by quickly selecting the

work-group sizes that produce the smallest number of memory transactions. The

concurrency tuner considers the trade-off between the number of concurrently

executed threads and potential cache contention to prune the search space.

Finally, the exhaustive-search tuner executes the kernel with all the work-group

sizes in its input and selects the work-group size that produces the smallest

execution time.

In summary, contributions of the paper are as follows:

• We characterize OpenCL kernels to provide a clear picture that shows the

factors affecting the performance for different work-group sizes.

44

• We propose a kernel index transformation technique that improves the

performance and helps the auto-tuner choose better work-group size.

• We propose a simple metric, called memory intensiveness, to identify the

kernels that potentially have cache contention.

• We propose a simple method to calculate the number of memory transac-

tions for a work-group and use it to help pruning the work-group sizes.

To the best of our knowledge, this proposal is the first auto-tuner that

minimizes the number of memory transactions at the work-group level.

• We show the effectiveness of our approach by implementing the auto-

tuning techniques and evaluate it with 54 kernels from various sources on

three different NVIDIA GPUs and one AMD GPU. Our result shows an

improvement in both tuning quality and tuning cost when compared with

previous approaches [48, 58].

The remainder of our paper is structured as follows. The next section

describes related work. Section 3.3 introduces OpenCL. Section 3.4 characterizes

the OpenCL kernels with regard to the work-group size. In Section 3.5, we present

auto-tuning techniques for the work-group size. We evaluate our auto-tuner in

Section 3.6 and conclude in Section 3.7.

3.2 Related Work

Performance tuning for GPUs is an important research topic. Many studies have

been done to tune a set of parameters for a specific GPU program [50, 45, 46,

52, 54]. However, our work focuses on a generic auto-tuner of OpenCL programs

for GPUs.

45

Ryoo et al. [48] propose an optimization space pruning method for CUDA

programs using static program metrics. Ansel et al. [58] introduce a framework

called OpenTuner to automatically tune program parameters. OpenTuner frame-

work uses evolution algorithms to search for large space. These works are closest

to ours because they can find sub-optimal work-group size in a reasonable time.

By quantitatively comparing our result with their result, we show that our

approach finds better work-group sizes with similar or smaller cost.

Seo et al. [60] propose an automatic OpenCL work-group size selection

technique that is tailored to CPU processors and uses search space pruning

techniques that are different from ours.

Several compiler frameworks that offer the ability to tune the performance

for GPUs have been proposed [47, 51, 57]. These frameworks consider various

program optimization techniques. However, to select a work-group size, only

an exhaustive search is employed or it is not considered. Some approaches

consider auto-tuning the work-group size for more than one input size of the

program [51, 53, 55, 56]. However, these approaches require executing the

program several times for small input sizes. Our approach however focuses on

predicting the work-group size for a single input size.

To characterize the GPU performance, Yang et al. [49] also identify the

sophisticated relationship between the memory usage and the thread-block size

for CUDA programs. Their focus is evaluating compiler transformations rather

than pruning the optimization space. Thus, all the possible thread-block sizes

need to be fully executed. Rogers et al. [61] characterize the effect of the warp-size

on NVIDIA GPUs, however the work-group size is not considered. Zhang and

Owens [62] characterize some performance factors for NVIDIA GPUs including

work-group sizes. Bakhoda et al. [63] analyze a number of performance factors for

CUDA programs using a simulator. Their work focuses on architectural design

46

factors, not auto-tuning. The effect of work-group size on the performance is

not explored either.

Kayiran et al. [64] proposes a GPU scheduling mechanism that dynamically

determines the number of concurrently executed work-groups to improve the

performance. Their scheduling mechanism is also based on the relationship

between the resource contention and the optimal number of concurrently exe-

cuted work-groups, which is similar to a result of our analysis. However, our

work focuses on choosing a good work-group size and we also consider other

performance factors, such as the number of memory transactions and the amount

of workload.

3.3 OpenCL and GPU Architectures

An OpenCL application consists of a host program and one or more kernels.

A kernel is executed on a GPU in an N -dimensional abstract index space

(N ∈ {1, 2, 3}) specified by the host program. A point in the index space

corresponds to a work-item that is an execution instance of the kernel. The

work-items are organized into groups of equal size, called work-groups. The work-

groups are executed independently and the execution order of the work-groups

is determined dynamically [65].

A GPU consists of many Streaming Multiprocessors (SMs). Each SM contains

a number of processing elements, memory execution units and one or more warp

schedulers. When a kernel is executed on the GPU, work-groups in the kernel

index space are distributed to SMs. Once a work-group is assigned to an SM,

it will execute until all its work-items complete. The GPU hardware groups

work-items in a work-group into a smaller chunk, called warp, and execute them

together in a SIMD manner. All the work-items in a warp always execute the

47

64 65 96…
Warp 2

Work-group 1

A work-item
0 1 31…

Warp 0
32 33 63…

Warp 1
Work-group 0

…
Warp 2N-2

…
Warp 2N-1

Work-group N-1

…

97 98 127…
Warp 3

Figure 3.2: Work-items, work-groups, and warps.

same instruction [35, 65]. Figure 3.2 shows a sample one-dimensional index space

to illustrate the relationship between work-items, work-groups and warps. Note

that the warp IDs are numbered globally instead of being restarted from zero for

each work-group as in CUDA warp ID numbering. In practice, the work-group

size is typically determined by the programmer.

To keep hardware resources in the GPU busy, an SM can execute more than

one warp concurrently. The warps being executed on the SM are called resident

warps or active warps. Similarly, a work-group whose warps are active is called

an active work-group. The GPU resources (e.g., registers) are occupied by the

active work-groups. The GPU evenly distributes these resources to the active

warps and how much resources each warp receives is determined by the OpenCL

kernel compiler. Since each warp holds their own resources (i.e., context), they

can progress at their own pace. Context-switching between warps in an SM

happens at the hardware level.

Since each warp has its own hardware context in the SM, the number of warps

that can be active at the same time depends on how much resources they require.

The ratio of the number of active warps to the maximum number of active warps

allowed is called occupancy [65]. Typically, the higher the occupancy, the better

48

Device name GTX GTX GTX Firepro

580 Titan Titan X W8000

Vendor NVIDIA NVIDIA NVIDIA AMD

Architecture Fermi Kepler Maxwell Tahiti PRO

Core clock speed (MHz) 1590 902 1080 900

Number of SM 16 14 24 28

Size of L1 (KB) 16 16 24 16

Size of Local Memory (KB) 48 48 96 32

Size of L2 (KB) 768 1536 3072 512

Maximum active warps per SM 48 64 64 40

Maximum active work-groups per SM 8 16 32 40

Number of 32-bit registers per SM 32768 65536 65536 65536

Warp/wavefront size 32 32 32 64

Table 3.1: Hardware specifications of the GPUs used.

resource utilization. The maximum number of active warps depends on the

GPU architecture. GPUs also have a limit in the number of active work-groups.

Table 3.1 specifies the hardware specifications of the GPUs used in this paper.

3.4 Effects of the Work-group Size

In this section, we pinpoint the performance factors significantly affected by

the work-group size. Specifically, they are occupancy, memory coalescing, cache

contention, the amount of workload, work-group scheduling and barriers. The

experiments in this section are conducted using a GTX 580 GPU. The perfor-

mance behaviors of the other GPUs listed in Table 3.1 are similar to that of

GTX 580. When there is a significant difference between them, we will specify

it.

49

0.0

2.0

4.0

6.0

0.0
0.2
0.4
0.6
0.8
1.0

32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

54
4

57
6

60
8

64
0

67
2

70
4

73
6

76
8

80
0

83
2

86
4

89
6

92
8

96
0

99
2

10
24

1/
oc

cu
pa

nc
y

N
or

m
. e

xe
c.

 ti
m

e

Work-group size

(a)

0.0

2.0

4.0

6.0

0.0

5.0

10.0

15.0

32 64 128 256 512 1024

1/
oc

cu
pa

nc
y

N
or

m
. e

xe
c.

 ti
m

e

Work-group size

(b)

0.0

2.0

4.0

6.0

0.0

2.0

4.0

6.0

8.0

1x32 32x1 2x16 16x2 4x8 8x4 1x64 64x1 2x32 32x2 1/
oc

cu
pa

nc
y

N
or

m
. e

xe
c.

 ti
m

e

Work-group size

Normalized execution time 1/occupancy

(c)

Figure 3.3: Relationship between the execution time and occupancy of some kernels

from Rodinia and NVIDIA SDK. (a) BFS 1 from Rodinia. (b) MatVecMulCoalesce2

from NVIDIA SDK. (c) Fan 2 from Rodinia.

3.4.1 Occupancy

The most obvious metric that contributes to the performance of a kernel is the

degree of concurrency between warps. This is represented by the occupancy. The

work-group size (say G) is one of the three static parameters (together with the

number of registers used per work-item denoted by R and the amount of local

memory per work-group denoted by M) that the compiler uses to decide the

occupancy. When R is fixed and M = 0, the occupancy is hard-constrained by

G [65, 66].

50

Figure 3.3 shows the relationship between the execution time and the occu-

pancy of a kernel. Three different kernels BFS 1, Fan 2, and MatVecMulCoalesced2

are used. We vary the work-group size. We consider only work-group sizes that

are a multiple of the warp size to fully utilize the GPU resources. We plot the

execution time and the inverse of occupancy of each kernel to help the reader

visualize better.

When we vary the work-group size, the execution time varies. Figure 3.3(a)

shows that the changes in the execution time are identical to the changes in the

occupancy. This is the typical case where the occupancy is the main contributing

factor to overall performance.

Figure 3.3 (b) and (c), the occupancy is not a major contributing factor to

performance. In Figure 3.3 (b), a higher occupancy value does not guarantee

higher performance. Figure 3.3(c) shows the result for two-dimensional kernel

Fan 2. Even for the same number of work-items per work-group, the sizes of

each dimension affect the performance significantly.

The examples shown in Figure 3.3 have two implications. One is that it is

beneficial to choose a good work-group size. For example, the best work-group

size for BFS 1 is 5.22x faster than the worst. The other is that choosing a proper

work-group size for each kernel is very difficult because of the complicated

interactions between multiple performance factors.

3.4.2 Global Memory Coalescing

Using the global memory in a GPU can affect the choice of a good work-group

size because of two things: the ability of the GPU to hide memory latency and

the number of memory transactions per warp.

The ability of hiding memory latency. As we mentioned, the work-group

size that produces a higher occupancy allows more active warps. A higher

51

number of active warps lets the long latency of memory instructions be more

effectively hidden by the latency of compute instructions [65].

When a warp executes a global memory instruction, the GPU coalesces the

global memory accesses from the work-items within a warp into as few memory

transactions as possible. If accesses generated by a warp cannot be coalesced

into a single memory transaction, they are called the non-coalesced memory

accesses [67, 68].

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

32 64 96 12
8

41
6

16
0

32
0

22
4

44
8

35
2

28
8

48
0

19
2

25
6

38
4

51
2

O
cc

up
an

cy

N
or

m
. e

xe
c.

 ti
m

e

Work-group size
1 transaction per warp 2 transactions per warp

3 transactions per warp occupancy

Figure 3.4: The effect of memory coalescing in terms of occupancy.

We clarify how the number of non-coalesced memory accesses per warp may

affect the relationship between the work-group size and the ability of hiding

memory latency. Specifically, with a large number of non-coalesced memory

accesses per warp, the GPU spends most time on memory operations. The

memory accesses becomes the performance bottleneck. In this case, a work-

group size that produces a high occupancy will be less useful in hiding the

latency of the memory instructions.

Effect of non-coalesced memory accesses. To show how non-coalesced

memory accesses neutralize the benefit of high occupancy, we construct a micro-

benchmark that accesses the global memory with a strided pattern. The stride

52

determines the number of memory transactions generated by a warp. Note

that if the stride is bigger than one, the memory accesses are non-coalesced

memory accesses. We call the number of memory transactions per warp as

the non-coalescing factor. Also note that the non-coalescing factor does not

vary when the work-group size varies. We vary the non-coalescing factor and

measure the performance. The micro-benchmark is constructed in the way that

the occupancy does not change as we vary the non-coalescing factor (i.e., the

stride). We do not use local memory, and the number of registers used per

work-item is small and fixed. Thus, these two factors are not the limiting factor

of the occupancy, resulting in a fixed mapping between the work-group size and

the occupancy. To obtain a specific occupancy, we look-up this mapping and

choose the corresponding work-group size. Figure 3.4 shows the performance of

the micro-benchmark. To help reader visualize better, we show the performance

in an order of increasing occupancy.

We obtain two observations: First, when the memory requests are fully

coalesced (i.e., only one memory transaction per warp), the overall performance

varies with the first few occupancies (from 0.167 to 0.667). However, increasing

the number of transactions per warp (2 and 3) neutralizes the performance

variation. This observation confirms our conjecture that non-coalesced memory

accesses neutralize the benefit of high occupancy (i.e., the ability to hide the

memory latency). Second, if we consider the performance at the occupancy

where the performance saturates (e.g., 0.833), the difference in execution time

between consecutive strides is constant. The difference is equal to the execution

time of the coalesced case (one transaction per warp). This observation implies

that the execution time of the coalesced case is the time spent on memory

operations. Moreover, the time spent on compute and control instructions is

totally hidden by the time to execute memory instructions.

53

Memory intensiveness. Based on the observations, we define the memory

intensiveness of a kernel as the ratio of accumulated cycles spent on processing

memory instructions to the total execution time. The memory intensiveness

of a kernel represents the degree of how frequently memory instructions are

executed in the kernel. A kernel with its memory intensiveness higher than a pre-

determined threshold is called a memory-intensive kernel. Memory intensiveness

is different from the memory access intensity defined by Muralidhara et al. [69].

The memory access intensity is defined as the miss rate at the last-level cache.

Our memory intensiveness reflects not only the cache miss rate but also the rate

of accessing the global memory.

We denote by AMAT the average memory access time per memory transac-

tion, #mem the number of memory transactions, and Tmem the total amount

of time taken to process memory instructions in the kernel. We also denote

by P the ratio (#mem ·AMAT)/Tmem. When the memory bus in the GPU is

saturated, Tmem can be calculated by,

Tmem = (#mem ·AMAT)/P (3.1)

Since memory transactions can overlap with each other [62], P represents the

degree of transaction overlapping. If P is greater than one, the GPU allows more

than one memory transactions at a time. #mem ·AMAT is the time spent on

memory instructions if global memory transactions cannot overlap with each

other and have to be performed sequentially.

Since the value of P is hardware dependent, we empirically find P for different

GPU architectures. To find P , we measure the execution times for different

values of the non-coalescing factor by changing the stride (STRIDE) using the

same micro-benchmark used in Figure 3.4. When STRIDE = 1, let T denote

the execution time of the kernel. Then, as we observed before in Figure 3.4,

54

the difference between the execution times of consecutive values of STRIDE

is constant and equal to T . By calculating the ratio (#mem · AMAT)/T , we

obtain the value P . AMAT and #mem are derived from the values obtained by

the GPU performance counters. If the memory bus is not saturated (i.e., under-

utilized), Tmem gives an upper-bound of the time spent on memory instructions.

0.0

0.1

0.2

1.0

6.0

11.0

16.0

21.0

1x128 2x64 4x32 8x16 16x8 32x4 64x8 128x1N
or

m
. e

xe
c.

 ti
m

e

Work-group size

Normalized execution time Memory to computation

Figure 3.5: The effect of non-coalesced memory accesses for kernel Fan 2 in Rodinia.

#define NUM 32
__kernel
void test(__global float * in, __global float * out)
{

int gID = get_global_id(0);
float temp = 0.0f;
for (int i = 0; i < NUM; i++)
temp += in[STRIDE * gID + i];

out[gID] = temp;
}

Figure 3.6: Micro-benchmark code to show the relationship between the work-group
size and cache contention.

0.0

0.5

1.0

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

32 64 96 12
8

41
6

16
0

32
0

22
4

44
8

35
2

28
8

48
0

19
2

25
6

38
4

51
2

O
cc

up
an

cy

N
or

m
. e

xe
c.

 ti
m

e

Work-group size

Stride=1 Stride=4 Stride=8

Stride=16 occupancy

Figure 3.7: The effect of cache contention.

55

The memory intensiveness, which we denote by λ, can now be calculated as

the ratio of Tmem to the total execution time of the kernel. If λ is close to one,

we say the kernel is memory intensive. We will use λ later to identify the cases

where the global memory is the major performance bottleneck.

The number of memory transactions per warp. Another reason why

using the global memory affects the choice of a good work-group size is that

different work-group sizes may produce different non-coalescing factors. We do

not encounter this behavior for one-dimensional kernels. Instead, this behavior is

much more pronounced in two-dimensional kernels. Figure 3.5 shows the effect of

different shapes for 128 work-items per work-group. As we see, the performance

is almost proportional to the ratio of the number of memory transactions to

the number of non-memory instructions. Since the number of non-memory

instructions is constant, the quantity that varies is the number of memory

transactions. The difference in the number of memory transactions stems from

different non-coalescing factors.

3.4.3 Cache Contention

Having multiple warps executed on the same SM may raise the issue of cache

contention or thrashing [70] on both L1 and L2 caches. The number of multiple

warps to be concurrently executed on the same SM is determined by the

occupancy. It is partly determined by the work-group size. Thus, a different

work-group size may produce a different degree of cache contention. Note that

we do not use local memory, and the number of registers used per work-item is

very small in this experiment. Consequently, the only contributing factor to the

occupancy is the work-group size.

To trigger the cache space contention, we measure the performance of a

micro-benchmark described in Figure 3.6 with different values of STRIDE.

56

STRIDE is the number of memory transactions generated by a warp, i.e., the

non-coalescing factor.

The for loop loads 32 elements from the global memory. Since the size of

float is four bytes, all the 32 elements fall into the same 128-byte L1 cache

line. Thus, if only one warp executes, the first access introduces L1 cache miss

and remaining 31 subsequent accesses hit the L1 cache. The key idea is that

when the contention is triggered, the subsequent accesses of the iteration are

cache misses because other warps have evicted the cache line brought by the first

access of the iteration, resulting in significant performance drop. The contention

is triggered by high values of STRIDE.

Figure 3.7 shows the execution time when STRIDE = 1, 4, 8, 16, sorted

by an ascending order of occupancy values. With STRIDE = 1, 4, the cache

miss rates are small so the execution time is flat. STRIDE = 8, 16 triggers the

contention. The L1 cache miss rate increases significantly, and the execution

time increases when the occupancy increases. A higher occupancy value causes

L1 cache contention and thus, hurts performance.

On GTX Titan and GTX Titan X, global memory accesses are not cached

in the L1 cache. Instead, the issue that we have just addressed will typically

appear on the L2 cache. However, since their L2 caches is much bigger than the

L1 cache of GTX 580, the condition for the cache contention will be relaxed.

3.4.4 Amount of Work

The amount of work in a kernel can be different for different work-group

sizes. There are two main reasons. First, if the kernel employs a reduction

computation pattern that exploits the local memory, the work-group size is

typically proportional to the number of reduction steps. A higher number of

steps introduces more instructions. This might have a negative effect on the

57

overall performance. Several studies [71, 72, 48] have indicated that reduction

computations on GPUs introduce a large number of extra instructions.

Second, some kernels are executed with a fixed number of work-groups. For

these kernels, if we modify the work-group size, the total number of work-items

will change. However, these kernels often have a loop in each work-item and the

number of iterations of the loop is inversely proportional to the work-group size.

Thus in total, the effective amount of the workload should be constant as we

modify the work-group size. However, if a kernel is written this way, there should

be a portion of the code that processes private data (e.g., reading global memory

to registers and performing some computation). This portion of the code will be

multiplied to the total number of work-items and if it takes up a large portion, it

might hurt the performance for large work-group sizes. Kernels cffts1, cffts2,

and cffts3 in application FT from SNU NPB expose this behavior.

3.4.5 Work-group Scheduling and Barriers

The execution time of warps in a work-group may be different because of several

reasons: unbalanced workload across warps, different cache miss rates, etc. On

the other hand, the GPU schedules a new work-group if all warps inside a

currently active work-group complete. Thus, a small work-group size will be

more beneficial with regard to this aspect because a new work-group can be

scheduled earlier. For a large work-group size, a new work-group has to wait

longer.

However, small work-group sizes may have bad effect to the performance if

the number of work-groups is big enough. We launch an empty kernel with a

large number of work-groups and observe that smaller work-group sizes have

higher execution time. This is due to the work-group scheduling overhead, and

this overhead may vary for different GPUs.

58

Barriers. In OpenCL, barriers are a synchronization method between work-

items in the same work-group. If the execution of a work-item reaches a barrier,

it must wait until all other work-items in the same work-group reach this barrier.

Hence, if the warps in a work-group run at different paces, the warps that reach

the barrier earlier will be stalled. Thus, for large work-group sizes, the number

of warps that have to stall is larger than that of small work-group sizes.

We design a micro-benchmark that satisfies the following condition: when

varying the work-group size, the only affected factors are the execution time and

the occupancy. Then, we place barriers randomly in the kernel and we compare

the performance of having and not having the barriers. For the versions without

barriers, when comparing the performance of those work-group sizes having the

same occupancy, smaller work-group sizes give slightly better performance. This

is attributed to the effect of work-group scheduling described above. Under the

presence of barriers, smaller work-group sizes give much better performance.

This confirms our conjecture that small work-group sizes are advantageous when

the kernel has barriers.

3.4.6 Benchmark Applications

We collect a total number of 54 kernels from five different benchmark-suites:

SNU NPB [73], Parboil [74], SHOC [75], Rodinia [76], and NVIDIA SDK [39].

We list the kernel names and their sources that we analyze in Table 3.2. Using

these kernels, we categorize the effect of the work-group size according to the

important performance factors described earlier. Table 3.2 also shows whether

an OpenCL kernel is affected by one of the performance factors mentioned

before.

Based on the observations, the occupancy affects most kernels (51 out of

54 kernels). This is natural because a GPU has a large number of processing

59

Source Application Kernel Da Gb OcNdCeWfBg

Rodinia

BFS BFS 1 1 32 ×

BFS 2 1 32 ×

Cfd Initialize 1 32

Compute flux 1 17 × ×

Time step 1 17 × ×

Comptute step factor 1 32 ×

Gaussian Fan2 2 464 × ×

Kmeans Kmeans kernel c 1 32 ×

Kmeans swap 1 32 × × ×

B+tree FindK 1 32 × ×

FindRangeK 1 32 × ×

LavaMD Kernel gpu opencl 1 32 × × ×

Nn NearestNeighbor 1 32 ×

Pathfinder Dynproc kernel 1 31 × ×

Particle filter Find index 1 32 ×

Normalize weight 1 32

Srad Prepare kernel 1 6 ×

Extract kernel 1 6 ×

Reduce kernel 1 6 × × ×

Srad kernel 1 6 ×

Srad2 kernel 1 6 ×

Compress kernel 1 6 ×

Streamcluster Pgain kernel 1 32 × × ×

Parboil

Mri-q ComputeQ GPU 1 32 ×

Spmv Spmv jds 1 32 × ×

Spmv csr vector kernel 1 32 × × ×

Sgemm MysgemmNT 2 19 × × ×

Stencil Block2D hybrid coarsen x 2 464 × × ×

SHOC
BFS Bfs kernel warp 1 32 ×

MD Compute lj force 1 32 × ×

SNU

NPB

CG Conj grad 1 1 32 × × × × ×

Conj grad 2 1 32 × × × × ×

Conj grad 3 1 32 × × × × ×

Conj grad 4 1 32 × × × × ×

Conj grad 5 1 32 ×

Conj grad 6 1 32 × × × × ×

Conj grad 7 1 32 × × × × ×

Makea 3 1 32 ×

Makea 6 1 32 × × ×

EP Embar 1 4 ×

FT Cffts1 1 32 × × ×

Cffts2 1 32 × × ×

Cffts3 1 32 × × ×

Evolve 2 464 × × ×

SP Ninvr 2 200 ×

Pinvr 2 200 ×

Txinvr 2 200 ×

Tzetar 2 200 ×

IS Full verify1 1 32

Full verify2 1 32 × × × ×

NVIDIA

MatVecMul MatVecMulCoalesced2 1 6 × × ×

MatVecMulCoalesced3 1 6 × × ×

FDTD3d FiniteDifference 2 464 ×

MedianFilter CkMedian 2 340 ×

a Dimension.

b Work-group sizes (the number of possible work-group sizes).

c The kernel is affected by the occupancy.

d The kernel has memory access patterns that are not coalesced, and the

non-coalescing factor depends on the work-group size.

e Cache contention occurs at either L1 or L2 cache.

f The amount of workload exposes a significant variation between work-

group sizes.

g The kernel uses a barrier.

Table 3.2: Characteristics of the kernels used in this paper.
60

elements. Having as many active warps as possible at the same time increases

the utilization of GPU resources and hides long latency instructions. However,

as we discussed in Section 3.4.3 and Section 3.4.4, there are two factors that

significantly prevent the benefit of high occupancy: the amount of workload and

the cache contention. Furthermore, even for the same number of work-items per

work-group, different global memory access patterns and work-group shapes may

cause different non-coalescing factors, which significantly affect the performance.

3.5 Auto-tuning Work-group Size

In this section, we use the insights learned from the previous section to auto-

matically find a good work-group size for a given OpenCL kernel. We limit the

tuning space to be all the work-group sizes that are legal to compile the kernel

and are a multiple of the warp size, WARP SIZE.

Our auto-tuner is part of an OpenCL runtime. When a kernel is launched,

the runtime will profile the kernel with different work-group sizes using the

OpenCL profiler [68]. The auto-tuner uses the profiled information to choose

the work-group size and report it to the user.

Our auto-tuner takes into account of the following performance factors:

the amount of workload, non-coalesced memory accesses, cache contention

and occupancy. Figure 3.1 illustrates the overall structure of our auto-tuning

framework. The kernels are classified into three categories. The first category

includes the kernels that have the workload increased as the work-group size

increases. There are 13 such kernels. A kernel of this type can be easily detected

by profiling a few work-groups at different work-group sizes and compare the

instruction count. The second category includes 10 two-dimensional kernels. The

remaining category includes all other 31 kernels. The kernels of each type will

61

be assigned to the corresponding tuner.

64 65 96…
Warp 2

Work-group 2

A work-item

0 1 31…
Warp 0

Work-group 0

…
Warp 2N-2

…
Warp 2N-1

Work-group 2N-2

…

97 98 127…
Warp 3

32 33 63…
Warp 1

Work-group 1

Work-group 3

Work-group 2N-1

(a) After applying Step 1 to the index space in Figure 3.2.

64 65 96…
Warp 2

Work-group 1

0 1 31…
Warp 0

Work-group 0

…
Warp 2N-2

…
Warp 2N-1

…

97 98 127…
Warp 3

32 33 63…
Warp 1

Work-group 2N-1

C = 2

x
y

(b) After applying Step 2 to the index space in (a).

Figure 3.8: Transforming the one-dimensional index space in Figure 3.2 by the workload

tuner.

3.5.1 Workload Tuner

The input to this tuner is the kernels that expose high variation in their workload

for different work-group sizes. It applies an index space transformation to the

kernels to eliminate the variation. The transformation is performed in two steps:

Step 1. Make the work-group size to be WARP SIZE.

Step 2. Group C adjacent work-groups into a bigger work-group.

As mentioned in Section 3.4.4, a smaller work-group size produces a smaller

62

number of reduction steps or a smaller number of work-items, the amount of

workload in each work-item is smaller for a smaller work-group size for this

type of kernels. Thus, choosing the WARP SIZE as the work-group size will

minimize the amount of workload. The one-dimensional kernel index space in

Figure 3.2 is transformed to Figure 3.8 (a) by Step 1 of the workload tuner.

WARP SIZE = 32 in this example.

However, this small work-group size (WARP SIZE) often produces poor

performance. This is because GPUs have a limit in the maximum number of

active work-groups. For example, the GTX 580 GPU only allows 8 active work-

groups. Under an assumption that we have an enough number of work-groups,

a work-group size of WARP SIZE results in 8 active warps (each work-group

contains only one warp). This is very small compared to 48, the maximum

number of active warps in GTX 580. Thus, it is not enough to maximize the

warp-level concurrency in the GPU.

In Step 2, we group the small work-groups into a bigger work-group. This

gives us an opportunity to obtain a different, possibly higher occupancy. The

question is how many work-groups to be grouped together to obtain good

performance. We vary C to tune the new work-group size. This value is exposed

as the tuning parameter of the transformed kernel. All possible values of C will be

fed into the concurrency tuner later. Note that the transformed kernel is actually

a two-dimensional kernel with the size of one dimension fixed to WARP SIZE,

and the size of the other dimension is C. Figure 3.8 (b) illustrates Step 2 of the

transformation with C = 2.

Different values of C will only produce the same amount of workload for

the whole kernel. There are two reasons for this. First, C is independent

with the number of reduction steps. The number of the reduction steps is

log2(work group size). Hence it has been minimized due to Step 1, specifically,

63

log2(WARP SIZE). Second, for the kernels that have the total number of

work-items increased as the work-group size increases, this technique minimizes

the total number of work-items and keeps it constant with regard to the change

of C. The total number of work-items is minimized because Step 1 chooses the

smallest work-group size. It is kept constant for different values of C because

when we group C work-groups into a bigger work-group, the total number of

new work-groups will be reduced by C times.

In summary, the output of the workload tuner is a transformed kernel index

space with a list of work-group sizes (C×WARP SIZE) and all possible values

of C.

3.5.2 Non-coalescing Factor Tuner

This tuner handles two-dimensional kernels and filters work-group sizes with

regard to the non-coalescing factor (i.e., the number of memory transactions).

It selects work-group sizes that potentially have a low non-coalescing factor.

It solves the following problem: for a fixed number of work-items organized

into a work-group of m rows and n columns (m · n = W is a constant), find n

(or m) so that the non-coalescing factor is minimized. Since the way a warp is

formed is in row major order of work-items in the work-group, we assume that

WARP SIZE is a multiple of n. In addition, W is a multiple of WARP SIZE.

A GPU memory segment is a set of 128 consecutive bytes whose starting

address is divisible by 128 [77, 65]. The memory requests of each warp are

coalesced into as few segments as possible. One memory transaction is issued for

the requests in a segment. While the rules that the GPUs use to coalesce global

memory requests are provided by the GPU vendors [77, 65], no calculation for

work-groups is provided.

This tuner checks each global memory reference in the kernel if its accesses

64

are consecutive. If the accesses are consecutive, the location (e.g., array index)

accessed will be represented by the form of A · IDglobal
x + B · IDglobal

y + C with

A = 1 or B = 1. C is some constant and (IDglobal
x , IDglobal

y) is the global ID of

a work-item.

To simplify the discussion, we assume that the work-item (0, 0) inside a

work-group accesses the starting position of a memory segment. When A = 1

and B is some constant, each row accesses n consecutive locations, resulting in a

total of ⌈n ·D/128⌉ transactions (note that 128 is the size of a memory segment

and we denote D the size of each element). Thus, the entire work-group generates

m⌈n·D/128⌉ transactions. This can be rewritten as m⌈n·D/128⌉ = W
n ⌈n·D/128⌉.

We consider n in each range of 128/D consecutive values, starting from 0, as n

increases, the term ⌈n ·D/128⌉ does not change. Hence, bigger n will produce

smaller number of memory transactions for the work-group. Thus, we should

maximize n or minimize m in this case.

When B = 1 and A is some constant, we assume that A is bigger than

the memory segment size, and a warp spans r rows of the work-group (r =

WARP SIZE/n). Thus, the locations accessed by each row fall into different

memory segments. Each row generates n different memory transactions. On the

other hand, each column in a warp accesses r consecutive locations (because

B = 1). Assuming these r consecutive locations start at the starting position of

a memory segment, each column in a warp generates ⌈r ·D/128⌉ transactions.

Moreover, the whole work-group generates m
r n⌈r · D/128⌉ or W

r ⌈r · D/128⌉

transactions. Thus, we should maximize r or minimize n to minimize the non-

coalescing factor.

If both A and B are one, the number of memory transactions generated

by a warp becomes ⌈WARP SIZE ·D/128⌉. In turn, the whole work-group

generates ⌈WARP SIZE · D/128⌉ · (m/r) = ⌈WARP SIZE · D/128⌉ · (m ·

65

n)/WARP SIZE transactions. Thus, the number of transactions in this case

is a constant without regard to the value of m and n. Any values of m and n

will do.

The kernel might have more than one global memory references. Assume

that either A or B is one, not both. Then, each access pattern will require

either minimizing m or minimizing n. There are two cases. First, if all the access

patterns require minimizing the size of the same dimension, say m, we easily

find a work-group shape that has the smallest non-coalescing factor by selecting

the minimum value of m.

Second, one reference prefers minimizing m and another reference prefers

minimizing n. In this case, the work-group shape with minimal m or the work-

group shape with minimal n do not produce an optimal non-coalescing factor.

To find the work-group shape that produces the smallest non-coalescing factor

in this case, we rely on profiling all possible work-group sizes. However, this does

not happen at all in the kernels of the applications used (very rare in reality).

We denote the work-group size that is found to minimize the number of

transactions by (m0 × n0). To find all the work-group sizes that produce this

minimum number of transactions, we find all the work-group sizes that have a

form of (p× q) so that p is a multiple of m0 and q is also a multiple of n0. Any

such work-group size (p×q) will make the kernel have the same warp formulation

with work-group size (m0 × n0), resulting in the same number of transactions.

The output of the non-coalescing factor tuner is the list of work-group sizes

(p× q) that have been found.

3.5.3 Concurrency Tuner

The input to the concurrency tuner includes the work-group sizes filtered by

the workload tuner, the non-coalescing factor tuner, and the work-group sizes

66

Device name GTX 580 GTX Titan GTX Titan X FirePro W8000

P 16 24.5 36 392

λ0 0.52 0.62 0.88 ∞

Table 3.3: Values for P and λ0 for different GPU architectures.

that have not been considered by these two tuners.

The effect of cache contention is significant only if two conditions hold: cache

contention occurs and the kernel performs memory operations intensively. The

second condition can be checked by using the definition of λ that we defined in

Section 3.4.2. As λ approaches one, the more likely that cache contention (if

occurs) degrades the performance.

To find the threshold, denoted by λ0, which tells if a kernel performs memory

operations intensively, we use the micro-benchmark described in Section 3.4.3.

We vary the non-coalescing factor (in this case STRIDE) starting from one

(the fully coalesced case) and vary the work-group size so that the occupancy

increases from the lowest value to the highest value. If we detect a decrease (of

more than 10%) in performance when going from a lower occupancy to a higher

occupancy, we stop and record the value (say λ0) of λ at the higher occupancy.

If any work-group size of a kernel produces a λ higher than λ0, the kernel

is classified as a memory intensive kernel. For this kernel, if cache contention

occurs, the degradation it causes to the performance is likely to dominate the

benefit of high occupancy. Hence, this kernel achieves better performance at

the work-group size that produces a low occupancy. Table 3.3 specifies the

values obtained for P and λ0 for different GPU architectures. As mentioned in

Section 3.4.2, P represents the degree of memory transaction overlapping. If P

is greater than one, the GPU allows more than one memory transactions at a

time.

67

0.0

0.5

1.0

1.5

2.0

2.5
C

fft
s1

C
fft

s2
C

fft
s3

C
on

j_
gr

ad
_1

C
on

j_
gr

ad
_2

C
on

j_
gr

ad
_3

C
on

j_
gr

ad
_4

C
on

j_
gr

ad
_6

C
on

j_
gr

ad
_7

F
ul

l_
ve

rif
y2

M
at

V
ec

M
ul

...
2

M
at

V
ec

M
ul

...
3

R
ed

uc
e_

ke
rn

el
G

eo
m

. M
ea

n
B

lo
ck

2D
_h

yb
rid

_c
oa

rs
…

E
vo

lv
e

F
an

2
F

in
ite

D
iff

er
en

ce
C

kM
ed

ia
n

M
ys

ge
m

m
N

T
N

in
vr

P
in

vr
T

xi
nv

r
T

ze
ta

r
G

eo
m

. M
ea

n
B

F
S

_1
B

F
S

_2
B

F
S

_k
er

ne
l_

w
ar

p
C

om
pr

es
s_

ke
rn

el
C

om
pu

te
Q

_G
P

U
C

om
pu

te
_l

j_
fo

rc
e

C
om

pu
te

_f
lu

x
C

om
pu

te
_s

te
p_

fa
ct

or
C

on
j_

gr
ad

_5
D

yn
pr

oc
_k

er
ne

l
E

m
ba

r
E

xt
ra

ct
_k

er
ne

l
F

in
dK

F
in

dR
an

ge
K

F
in

d_
in

de
x

F
ul

l_
ve

rif
y1

In
iti

al
iz

e_
va

ria
bl

es
K

m
ea

ns
_k

er
ne

l_
c

K
m

ea
ns

_s
w

ap
K

er
ne

l_
gp

u_
op

en
cl

M
ak

ea
_3

M
ak

ea
_6

N
ea

re
st

N
ei

gh
bo

r
N

or
m

al
iz

e_
w

ei
gh

ts
P

ga
in

_k
er

ne
l

P
re

pa
re

_k
er

ne
l

S
pm

v_
cs

r_
ve

ct
or

_k
er

n…
S

pm
v_

jd
s

S
ra

d_
ke

rn
el

S
ra

d2
_k

er
ne

l
T

im
e_

st
ep

G
eo

m
. M

ea
nN
or

m
. e

xe
c.

 ti
m

e

Default Ryoo et al. Auto-tuner

Workload variation 2-Dimensional Others

13.3

Figure 3.9: The performance of the auto-tuner on GTX Titan X.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

C
fft

s1
C

fft
s2

C
fft

s3
C

on
j_

gr
ad

_1
C

on
j_

gr
ad

_2
C

on
j_

gr
ad

_3
C

on
j_

gr
ad

_4
C

on
j_

gr
ad

_6
C

on
j_

gr
ad

_7
F

ul
l_

ve
rif

y2
M

at
V

ec
M

ul
...

2
M

at
V

ec
M

ul
...

3
R

ed
uc

e_
ke

rn
el

G
eo

m
. M

ea
n

B
lo

ck
2D

_h
yb

rid
_c

oa
rs

e…
E

vo
lv

e
F

an
2

F
in

ite
D

iff
er

en
ce

C
kM

ed
ia

n
M

ys
ge

m
m

N
T

N
in

vr
P

in
vr

T
xi

nv
r

T
ze

ta
r

G
eo

m
. M

ea
n

B
F

S
_1

B
F

S
_2

B
F

S
_k

er
ne

l_
w

ar
p

C
om

pr
es

s_
ke

rn
el

C
om

pu
te

Q
_G

P
U

C
om

pu
te

_l
j_

fo
rc

e
C

om
pu

te
_f

lu
x

C
om

pu
te

_s
te

p_
fa

ct
or

C
on

j_
gr

ad
_5

D
yn

pr
oc

_k
er

ne
l

E
m

ba
r

E
xt

ra
ct

_k
er

ne
l

F
in

dK
F

in
dR

an
ge

K
F

in
d_

in
de

x
F

ul
l_

ve
rif

y1
In

iti
al

iz
e_

va
ria

bl
es

K
m

ea
ns

_k
er

ne
l_

c
K

m
ea

ns
_s

w
ap

K
er

ne
l_

gp
u_

op
en

cl
M

ak
ea

_3
M

ak
ea

_6
N

ea
re

st
N

ei
gh

bo
r

N
or

m
al

iz
e_

w
ei

gh
ts

P
ga

in
_k

er
ne

l
P

re
pa

re
_k

er
ne

l
S

pm
v_

cs
r_

ve
ct

or
_k

er
ne

l
S

pm
v_

jd
s

S
ra

d_
ke

rn
el

S
ra

d2
_k

er
ne

l
T

im
e_

st
ep

G
eo

m
. M

ea
n

N
or

m
al

iz
ed

 to
 D

ef
au

lt
w

or
k-

gr
ou

p
si

ze

norm. occupancy norm. memory transfer norm. instructions count

Workload variation 2-Dimensional Others

Figure 3.10: The performance of the auto-tuner on GTX Titan X with respect to the occupancy,

the number of memory transfers and the instruction count.

0%

5%

10%

15%

20%

25%

C
fft

s1
C

fft
s2

C
fft

s3
C

on
j_

gr
ad

_1
C

on
j_

gr
ad

_2
C

on
j_

gr
ad

_3
C

on
j_

gr
ad

_4
C

on
j_

gr
ad

_6
C

on
j_

gr
ad

_7
F

ul
l_

ve
rif

y2
M

at
V

ec
M

ul
…

2
M

at
V

ec
M

ul
...

3
R

ed
uc

e_
ke

rn
el

G
eo

m
. M

ea
n

B
lo

ck
2D

_h
yb

rid
_c

oa
rs

…
E

vo
lv

e
F

an
2

F
in

ite
D

iff
er

en
ce

C
kM

ed
ia

n
M

ys
ge

m
m

N
T

N
in

vr
P

in
vr

T
xi

nv
r

T
ze

ta
r

G
eo

m
. M

ea
n

B
F

S
_1

B
F

S
_2

B
F

S
_k

er
ne

l_
w

ar
p

C
om

pr
es

s_
ke

rn
el

C
om

pu
te

Q
_G

P
U

C
om

pu
te

_l
j_

fo
rc

e
C

om
pu

te
_f

lu
x

C
om

pu
te

_s
te

p_
fa

ct
or

C
on

j_
gr

ad
_5

D
yn

pr
oc

_k
er

ne
l

E
m

ba
r

E
xt

ra
ct

_k
er

ne
l

F
in

dK
F

in
dR

an
ge

K
F

in
d_

in
de

x
F

ul
l_

ve
rif

y1
In

iti
al

iz
e_

va
ria

bl
es

K
m

ea
ns

_k
er

ne
l_

c
K

m
ea

ns
_s

w
ap

K
er

ne
l_

gp
u_

op
en

cl
M

ak
ea

_3
M

ak
ea

_6
N

ea
re

st
N

ei
gh

bo
r

N
or

m
al

iz
e_

w
ei

gh
ts

P
ga

in
_k

er
ne

l
P

re
pa

re
_k

er
ne

l
S

pm
v_

cs
r_

ve
ct

or
_k

er
n…

S
pm

v_
jd

s
S

ra
d_

ke
rn

el
S

ra
d2

_k
er

ne
l

T
im

e_
st

ep
G

eo
m

. M
ea

n

P
er

ce
nt

ag
e

of
 tu

ni
ng

 ti
m

e

Ryoo et al. Auto-tuner46% 46% 42% 51%

Workload variation 2-Dimensional Others

Figure 3.11: The tuning cost of the auto-tuner on GTX Titan X.

The value obtained for λ0 becomes higher as we traverse from GTX 580,

GTX Titan and Titan X. This is because the L1 caches in GTX Titan and

68

Titan X do not cache global loads. Instead, the L2 cache plays the major role

in reducing the latency of memory accesses. Since the L2 cache size is much

bigger than the L1 cache size, the condition at which the heavy cache contention

occurs in GTX Titan and Titan X is relaxed, resulting in a higher value of λ0.

In addition, the L2 cache size of Titan X is higher than that of GTX Titan.

This explains that λ0 is higher in Titan X.

We do not detect heavy cache contention that causes performance variation

in FirePro W8000 (we denote λ0 = ∞ for this reason). In FirePro W8000, since

the cache line size (64 Bytes) is smaller than that (128 Bytes) of NVIDIA GPUs,

useful cache lines are less likely to be evicted before they are actually used.

In addition, the occupancy variation between all possible work-group sizes is

very small in FirePro W8000 (normally 5%-20%). We do not observe significant

performance variation due to cache contention.

The two conditions described before can be checked using profiling informa-

tion. We profile the kernel with two work-group sizes: one produces the lowest

occupancy and the other produces the highest occupancy. If the cache miss rates

produced by these two work-group sizes differ more than 10% (this value can

be determined empirically depending on the GPU architecture), we conclude

that the cache contention occurs. If the kernel has λ higher than λ0 at either

work-group size, we conclude that the kernel is sufficiently memory-intensive to

be hurt by the cache contention.

If the two conditions hold, we select the work-group sizes that minimize the

occupancy for the output of the concurrency tuner. Otherwise, we select the

work-group sizes that maximizes the occupancy.

69

3.5.4 Exhaustive-search Tuner

After iterating through all the previous steps, the selected work-group sizes

will be validated through an exhaustive search by the exhaustive-search tuner.

Specifically, it takes the work-group sizes produced by the concurrency tuner

and executes all these work-group sizes and selects one that produces the best

performance.

3.6 Evaluation

Table 3.2 describes the kernels used in this evaluation. We do not select those

kernels that have only very few number of work-groups because they cannot fully

utilize hardware resources in a GPU. We also exclude kernels whose work-group

size cannot be varied. We use three NVIDIA GPUs and one AMD GPU for the

evaluation. Their specifications are summarized in Table 3.1.

3.6.1 Overall Tuning Quality

GTX 580, GTX Titan, and GTX Titan X. Figure 3.9 shows the result

of the proposed auto-tuning techniques on GTX Titan X. We measure the

execution time at the selected work-group size and normalize it to the best

execution time of the original kernel. We compare our framework with the

default work-group size (Default) and the auto-tuner proposed by Ryoo et al.

(Ryoo et al.)[48]. Default represents the best work-group size of the kernel chosen

on a previous architecture. This is typically the case where the programmer

chooses a fixed value for the work-group size on the machine that the program

is manually tuned.

On GTX Titan X, our work-group size is on average 1.06x slower than

the original optimal work-group size (the work-group size that produces the

70

smallest execution time of the original, untouched kernel). On GTX 580 and

GTX Titan, our work-group size is on average 1.04x and 1.02x faster than the

optimal work-group size, respectively. This is because our tuner transforms the

kernel index space with a two-dimensional work-group size that is even better

than the original one-dimensional optimal work-group size.

The average on GTX Titan X is slightly worse than two other GTX GPUs.

This is because our auto-tuner does not work well on GTX Titan X for two

kernels BFS1 and BFS2 due to the work-group scheduling overhead that is

architecture dependent (Section 3.4.5). BFS1 and BFS2 have a very large number

of work-groups (e.g., millions), and the overhead is significant in this case. Other

than this, the performance on GTX 580 and GTX Titan is similar to that of

GTX Titan X.

Our method performs better than both Default and Ryoo et al. The perfor-

mance gap between ours and Ryoo et al. mainly stems from the case where the

kernel performance is strongly affected by the global memory usage, which was

not considered in Ryoo et al. The gap is smallest on GTX Titan X since our

selected work-group size is only 2% faster than the work-group size found by

Ryoo et al. This gap is 7% and 9% on GTX Titan and GTX 580, respectively.

The most significant difference in tuning quality between ours and Ryoo et

al. comes from considering the non-coalescing factor. This is manifested in Fan2,

evolve, and tzetar. These kernels are 2-dimensional, and their performance is

severely affected by the non-coalescing factor.

Performance Breakdown To further analyze the quality of the work-

group size selected by our auto-tuner, we detail the performance difference

between this work-group size and the default work-group size in Figure 3.10.

Specifically, the performance is broken down into the occupancy, the number of

memory transfers between the GPU and the global memory, and the number of

71

0.0

1.0

2.0

3.0

4.0

5.0

C
fft

s1
C

fft
s2

C
fft

s3
C

on
j_

gr
ad

_1
C

on
j_

gr
ad

_2
C

on
j_

gr
ad

_3
C

on
j_

gr
ad

_4
C

on
j_

gr
ad

_6
C

on
j_

gr
ad

_7
F

ul
l_

ve
rif

y2
M

at
V

ec
M

ul
...

2
M

at
V

ec
M

ul
...

3
R

ed
uc

e_
ke

rn
el

G
eo

m
. M

ea
n

B
lo

ck
2D

_h
yb

rid
_c

oa
rs

…
E

vo
lv

e
F

an
2

F
in

ite
D

iff
er

en
ce

C
kM

ed
ia

n
M

ys
ge

m
m

N
T

N
in

vr
P

in
vr

T
xi

nv
r

T
ze

ta
r

G
eo

m
. M

ea
n

B
F

S
_1

B
F

S
_2

B
F

S
_k

er
ne

l_
w

ar
p

C
om

pr
es

s_
ke

rn
el

C
om

pu
te

Q
_G

P
U

C
om

pu
te

_l
j_

fo
rc

e
C

om
pu

te
_f

lu
x

C
om

pu
te

_s
te

p_
fa

ct
or

C
on

j_
gr

ad
_5

D
yn

pr
oc

_k
er

ne
l

E
m

ba
r

E
xt

ra
ct

_k
er

ne
l

F
in

dK
F

in
dR

an
ge

K
F

in
d_

in
de

x
F

ul
l_

ve
rif

y1
In

iti
al

iz
e_

va
ria

bl
es

K
m

ea
ns

_k
er

ne
l_

c
K

m
ea

ns
_s

w
ap

K
er

ne
l_

gp
u_

op
en

cl
M

ak
ea

_3
M

ak
ea

_6
N

ea
re

st
N

ei
gh

bo
r

N
or

m
al

iz
e_

w
ei

gh
ts

P
ga

in
_k

er
ne

l
P

re
pa

re
_k

er
ne

l
S

pm
v_

cs
r_

ve
ct

or
_k

er
n…

S
pm

v_
jd

s
S

ra
d_

ke
rn

el
S

ra
d2

_k
er

ne
l

T
im

e_
st

ep
G

eo
m

. M
ea

nN
or

m
. e

xe
c.

 ti
m

e

Workload variation 2-Dimensional Others

Figure 3.12: The performance of the auto-tuner in comparison with OpenTuner on GTX

Titan X.

instructions executed by the GPU of the kernel. The occupancy, the number of

memory transfers and the number of instructions of the work-group sized selected

by the auto-tuner are normalized to the corresponding number of the default

work-group size. Note that we omit the analysis for the cache miss rate because

the effect of our auto-tuner to the cache contention is rather insignificant.

First, for the kernels that have the workload increased as the work-group size

increases, the work-group sizes selected by the auto-tuner reduce on average 28%

workload compared to the default work-group size. This is due to the effect of

the transformation employed by the workload tuner. By considering the number

of memory transfers between the GPU and the global memory, we realize that by

changing the structure of the work-group, the kernel index space transformation

can slightly change the number of memory transfers (as in conj grad 1 and

Reduce kernel with about 20% difference).

Second, for the 2-dimensional kernels, the work-group sizes selected by the

auto-tuner reduce on average 10% of the memory transfers. This is because

the auto-tuner correctly chooses the work-group shapes that minimize the

number of global memory transactions per work-group. In addition, we observe

12% of instruction count reduction. This is attributed to the effect of the

72

exhaustive-search tuner that searches among the work-group sizes having the

same non-coalescing factor. The occupancy for this group of kernels is 4%

lower than the default occupancy. This indicates that a work-group with high

occupancy does not necessarily produce a high performance.

The third group of kernels show the less significant effect of the auto-tuner

to the quality of the selected work-group size (only up to 5% difference with the

default work-group size). This is because these are mostly regular kernels and

the programmers can easily choose a good work-group size that works well for

multiple architectures. Therefore, the auto-tuner has little chance to find better

work-group sizes.

Comparision With OpenTuner. Figure 3.12 shows the comparison be-

tween our auto-tuner and OpenTuner [58]. This auto-tuner uses an evolution

search strategy to find the work-group size using a fixed number profiling runs.

For a fair comparison, we limit the number of profiling runs to be the same with

the number of profiling runs that our auto-tuner spends for each kernel. The

execution time of the work-group size selected by OpenTuner is normalized to the

execution time of the work-group size selected by our auto-tuner. On average,

OpenTuner finds an work-group size that is 15% slower than that found by our

auto-tuner. The most significant difference stems from the 2-dimensional kernels.

This is attributed to dramatic changes in the landscape of the 2-dimensional

work-group size space that the evolution search cannot capture. This result

shows that our tuning techniques are generally more efficient than evolution

search strategies for tuning the work-group size.

FirePro W8000. Figure 3.13 shows the result of the proposed auto-tuning

techniques on FirePro W8000. In this case, we do not show the result of the

one-dimensional kernels because there are only four possible work-group sizes

73

0.0

1.0

2.0

3.0

4.0

B
lo

ck
2D

_.
..

E
vo

lv
e

F
an

2

F
in

ite
D

iff
er

en
c

e

C
kM

ed
ia

n

M
ys

ge
m

m
N

T

N
in

vr

P
in

vr

T
xi

nv
r

T
ze

ta
r

G
eo

m
. M

ea
n

N
or

m
. e

xe
c.

 ti
m

e. Default Ryoo et al.

Auto‐tuner

Figure 3.13: The performance on FirePro W8000.

0.0

0.5

1.0

C
fft

s1

C
fft

s2

C
fft

s3

C
on

j_
gr

ad
_1

C
on

j_
gr

ad
_2

C
on

j_
gr

ad
_3

C
on

j_
gr

ad
_4

C
on

j_
gr

ad
_6

C
on

j_
gr

ad
_7

F
ul

l_
ve

rif
y2

M
at

V
ec

M
ul

...
2

M
at

V
ec

M
ul

...
3

R
ed

uc
e_

ke
rn

el

G
eo

m
. m

ea
nN
or

m
. e

xe
c.

 ti
m

e

GTX 580 GTX Titan GTX TITAN X

Figure 3.14: The effect of the workload tuner.

0.0

0.5

1.0

B
lo

ck
2D

_…

E
vo

lv
e

F
an

2

F
in

ite
D

iff
er

en
ce

C
kM

ed
ia

n

M
ys

ge
m

m
N

T

N
in

vr

P
in

vr

T
xi

nv
r

T
ze

ta
r

G
eo

m
. m

ea
n

N
or

m
. e

xe
c.

 ti
m

e

Selected work-group size Pruned space

Figure 3.15: The effect of the non-coalescing factor tuner on GTX Titan X.

to exploit for them and the performance variation across the four sizes is very

small. Instead, we focus on the two-dimensional kernels where the non-coalescing

factor causes significant performance variations.

Since two-dimensional kernels are all sensitive to the choice of work-group

shape, the gap between ours and Ryoo et al. becomes much bigger (33%). Our

74

0.0

0.5

1.0

C
fft

s1

C
fft

s2

C
fft

s3

C
on

j_
gr

ad
_1

C
on

j_
gr

ad
_2

C
on

j_
gr

ad
_3

C
on

j_
gr

ad
_4

C
on

j_
gr

ad
_6

C
on

j_
gr

ad
_7

F
ul

l_
ve

rif
y2

M
at

V
ec

M
ul

...
2

M
at

V
ec

M
ul

...
3

R
ed

uc
e_

ke
rn

el

G
eo

m
 m

ea
n

N
or

m
. e

xe
c.

 ti
m

e Selected work-group size Pruned space

Figure 3.16: The effect of the concurrency tuner on the kernels with high workload

variation on GTX Titan X.

0.0

0.5

1.0

B
lo

ck
2D

_…

E
vo

lv
e

F
an

2

F
in

ite
D

iff
er

en
ce

C
kM

ed
ia

n

M
ys

ge
m

m
N

T

N
in

vr

P
in

vr

T
xi

nv
r

T
ze

ta
r

G
eo

m
. m

ea
n

N
or

m
. e

xe
c.

 ti
m

e

Selected work-group size Pruned space

Figure 3.17: The effect of the concurrency tuner on the two-dimensional kernels on

GTX Titan X.

technique does not work well with the kernel MysgemmNT that has significant

unbalanced workload between work-groups. Our auto-tuner does not consider

this factor.

3.6.2 Overall Tuning Cost

The tuning cost is the time taken to apply the tuning techniques to an application.

This cost is dominated by the execution time spent on profiling the kernels

(including the profiling time to determine whether a kernel needs to be hanled

with workload tuner). We report the tuning time normalized to the execution

time of an exhaustive search that simply executes all possible work-group sizes.

Obviously, the more we profile, the closer this rate goes to one.

75

Figure 3.11 compares the tuning cost for each kernel between ours and Ryoo

et al. Our tuner spends 3% and 8% of the time taken for the exhaustive search

on GTX Titan X and FirePro W8000, respectively, to find a good work-group

size. This is better than the tuning cost of Ryoo et al., which requires 9%

and 21% on GTX Titan X and FirePro W8000, respectively. One exception

is MysgemmNT that has only 19 valid work-group sizes. The small search space

makes no difference between ours and Ryoo et al.

We do not compare with OpenTuner in terms of tuning cost because Open-

Tuner requires a number of profiling runs in order to stop the search.

3.6.3 Effect of the Workload Tuner

Figure 3.14 shows the effect of the kernel index space transformation by the

workload tuner on three GPUs: GTX 580, GTX Titan, and GTX Titan X. We

show the execution time of the selected work-group size when the output of the

workload tuner is fed directly to the exhaustive-search tuner. It is normalized to

the best work-group size in the original kernel. The result includes all kernels

whose workload increases as the work-group size increases.

Overall, the workload tuner achieves a speedup of 1.23x, 1.17x, and 1.02x

on GTX 580, GTX Titan, and GTX Titan X, respectively. The performance

is even better than that of the best work-group size. Especially, two kernels

MatVecMulCoalesed2 and MatVecMulCoalesced3 benefit from our transforma-

tion. The workload in these kernels is increased by both the number of reduction

steps and the total number of work-items as the work-group size increases. The

transformation by the workload tuner enables a kernel to reach the highest

occupancy without increasing the workload.

For FirePro W8000, we do not apply the kernel index transformation because

even the smallest work-group size (a work-group size of 64) can achieve full

76

occupancy, thus has good performance. This is because the maximum number

of active work-groups in FirePro W8000 is very large (40 work-groups). Hence,

if the number of active work-groups is not contrained by the number of registers

and the amount of local memory, the work-group size 64 can produce 40 active

work-groups and thus reaches the maximum occupancy.

3.6.4 Effect of the Non-coalescing Factor Tuner

Figure 3.15 shows the quality of the selected work-group by the non-coalescing

factor tuner when its result is fed to the exhaustive tuner. It also shows the search

space that the non-coalescing factor tuner prunes, compared to the original

space.

Bars marked with Selected work-group size show the execution time of the

selected work-group size. It is normalized to the best work-group size. Bars

marked with Pruned space show the amount of search space that the tuner has

pruned. It is the rate of the accumulated execution time of the kernel with the

work-group sizes pruned by the tuner to that with all the work-group sizes.

Overall, the non-coalescing factor tuner is able to select the near-optimal

work-group sizes for most of the two-dimensional kernels. On average, the

performance of the selected work-group size is the same as that of the best

work-group size on GTX Titan X. The amount of search space (in terms of

execution time) compared to the original space that non-coalescing factor tuner

can prune is 78%.

3.6.5 Effect of the Concurrency Tuner

The concurrency tuner acts like a second-level filter for the workload tuner and

the non-coalescing factor tuner. Thus, to see its effect on the final selection, we

compare the results obtained in Section 3.6.3 and Section 3.6.4 with the result

77

produced by the whole framework.

Figure 3.16 shows the performance of the selected work-group size by the

concurrency tuner and the amount of search space that it prunes. The execution

time of Selected work-group size is normalized to that of the best work-group size

selected by the workload tuner. In other words, we compare the performance of

the auto-tuner with and without the concurrency tuner for the kernels having

high workload variation. The comparable performance of the work-group size

selected by the concurrency tuner with that selected by the workload tuner

indicates that the concurrency tuner does not discard the good work-group sizes

among the work-group sizes it takes from workload tuner during its pruning

process.

On the other hand, the bar marked with Pruned space indicates how much

of the space that the concurrency tuner prunes compared to the total amount of

space that the workload tuner produces. The amount of space pruned is more

than 97% of the space that the workload tuner produces, on average.

Similarly, Figure 3.17 shows the result for the two-dimensional kernels. The

concurrency tuner can preserve the good work-group size provided by the non-

coalescing factor tuner because the best work-group size that it produces is very

close to the best work-group size that the non-coalescing factor tuner produces

for all the two-dimensional kernels. The bar marked with Pruned space indicates

the search space that the concurrency tuner prunes compared to the total

amount of space of two-dimensional kernels. The contribution of the concurrency

tuner to pruning for these kernels is rather limited (only 16% of the original

work-group sizes are pruned). This is because the non-coalescing factor tuner

has pruned most of the work-group sizes (77% of the original work-group sizes).

78

3.7 Conclusions

In this chapter, we characterize the relationship between the work-group size and

the OpenCL kernel performance on GPUs. By analyzing the micro-benchmarks

and a large number of OpenCL kernels, we identify the performance factors that

have the most significant impact to the overall performance with regard to the

work-group size. The identified performance factors include occupancy, coalesced

global memory accesses, cache contention, and the variation in the amount

of workload of the kernel. Based on these performance factors, we propose

an auto-tuning framework for OpenCL on GPUs. Our framework handles the

performance factor one-by-one. To facilitate the tuning framework, we propose

a kernel index transformation that both improves the performance of the kernel

and helps the auto-tuner choose the work-group size more easily. Our experiments

on four different GPUs (three from NVIDIA and one from AMD) show that

the auto-tuner can find a good work-group size in a reasonable amount of

time. When compared with a state-of-art work-group size tuning methods, we

obtain better tuning results in shorter execution time. Our auto-tuner is a good

alternative to the GPU performance tuning frameworks that currently use an

exhaustive search to tune the work-group size.

79

Chapter 4

Quantization for Deep Learning
Programs

80

4.1 Introduction

Under the vast development and success of deep learning applications, there is a

tendency to deploy state-of-the-art deep learning models into devices with more

limited memory capability than conventional servers. Thus, there has been a

tremendous effort to effectively quantize the model’s weights and activations

to reduce the model size. Weight quantization reduces the model size, and

activation quantization reduces the memory footprint at the inference phase.

To achieve the best result, both weights and activations are often quantized

together.

Quantization [17, 18, 19, 20, 21] is not only beneficial for lowering the

memory requirement, but it also provides a computational improvement in the

inference phase. It is because many devices perform faster at lower precision,

such as INT8. For example, Edge TPUs have hardware support for 8-bit integer

computation [22]. Recently, TensorRT also has 8-bit integer mode computation

support [16, 78].

The key to successful quantization is to choose proper quantization parame-

ters. For integer quantization methods, the two important parameters include

the quantization scale and the precision [18, 79]. These parameters determine

how to map a floating-point value to an integer value. Intuitively, the scale

characterizes the gap between two consecutive quantized elements, and the

precision dictates how many bits in which the quantized integer values can be

represented.

Choosing a proper value for these parameters at training time is challeng-

ing [21] as it depends on many unknown factors. Previous approaches aim to

optimize the quantization scale [17, 18, 19] and the precision [18] by learning

them together with the model weights. In general, these approaches can find

81

the parameters that minimize the loss function, i.e., the network learns better

from the training data.

However, we approach the quantization in deep learning from an entirely

different perspective. We draw a connection between the quantization parame-

ters to the generalization ability of the network. We show that even a simple

realization of this idea can improve the quantization quality in many scenarios.

More specifically, we propose two new techniques to adjust the quantization

parameters during the training phase so that the inference accuracy is signifi-

cantly improved. One technique randomly adds some noise to the computation

of the quantization scale. The degree of noise to be added is monitored through

the training phase. The noise introduces uncertainty to the quantization scale

in the training phase. Thus, the model is more robust to unseen data in the

inference phase. Adding uncertainty to achieve better generalization has been

extensively studied in the literature of machine learning [80, 81, 82].

The other technique learns the precision for each layer to minimize the Kull-

back Leibler divergence [83] with the target precision. The proposed technique

dynamically finds an appropriate schedule between maximizing the learning

ability and maximizing the generalization ability of the network.

The contributions of this paper are summarized as follows:

• We introduce a novel technique to improve the model’s generalization

ability by adding random noise to the quantization scale at the training

time.

• We introduce a novel technique to dynamically schedule the integer quanti-

zation precision at the training time that improves the validation accuracy.

• Our techniques are simple and intuitive. They can be easily applied to

any layer.

82

• We evaluate our techniques using 8-bit integer quantization. The results are

reported with different network architectures, learning tasks, optimization

algorithms, and datasets. The results indicate that our techniques are

effective and practical. They are applicable to a wide range of model

architectures and input data.

4.2 Related Work

Many quantization studies show different levels of success with different preci-

sions. Binary quantization [84] quantizes the weights with two-bit integers. The

two-bit integer quantization is insufficient to retain competent accuracy for more

complex models and datasets [85]. Misha et al. [20] show that the accuracy loss

can be recovered by increasing the number of filters for convolutional networks.

However, the added filters may result in extra computation time compared

with the original model. Some studies [86, 87] show that 16-bit quantization

is sufficient to achieve good accuracy with many networks by using simple

quantization functions.

8-bit integer (INT8) quantization seems to be a more reasonable balanced

trade-off between the accuracy and the performance as recent architectures

have better support for INT8. Some studies show that the 8-bit quantization of

state-of-the-art models for large datasets like ImageNet is challenging [85, 21],

especially for batch-normalization layers [85]. This type of layers performs

more expensive operations (e.g., square-root operations) than other types of

layers. These operations typically require higher precision than addition and

multiplication operations. Since quantizing batch-normalization layers results in

a significant accuracy drop in general, it is a common practice to leave this layer

unquantized. Dorefa-net [79] provides a fundamental approach to quantizing

83

weights and activations to arbitrary precision. This paper also shows that the

last fully connected layer and the output layer should not be quantized to avoid

a significant accuracy drop. We also follow these practices in this paper.

The quantization function proposed by Dorefa-net is fundamental to many

recent studies. The quantization scale is the key parameter to this function.

Traditionally, a tensor’s maximum value is used to compute this value [79, 21, 85].

However, depending on the tensor values distribution, this choice may not be

optimal [21]. Recently, Choi et al. [17] propose a method to learn the quantization

scale. However, this method applies to only ReLU-based models. Similarly, some

other studies [18, 19] introduce the quantization scale as a learnable parameter.

These approaches require a pretrained model (in full precision) and fine-tune

the model with quantization. However, there is no evidence that these methods

are appropriate for training from scratch.

Quant noise [88] randomly selects the elements of a tensor to quantize during

the training phase. This method allows two precisions in training: 32-bit floating-

point (FP32) and the target bit-width used in testing. Our method is different

in that we quantize for different integer precisions at different stages of the

training phase.

Regarding adding uncertainty to the training phase, many previous studies

perform this in different ways [80, 81, 82, 89, 90]. Moving average [89] may cancel

certain noise when computing the max value of a tensor. Some work directly

add Bernoulli noises [90] to the output of the quantization function. However,

none has considered adding the uncertainty specifically to the quantization scale.

Even though there has been some effort to quantize both weights and activations

of transformer models [91, 92], their quantization scale is based on the maximum

value of the tensor.

Regarding optimizing the precision during the training phase, previous

84

work treat the precision as a learning parameter and update it to optimize the

conventional training loss function [93, 18]. However, the initial precision need

to be initialized within a small range with the target precision.

4.3 Background

In this section, we describe commonly used integer quantization techniques.

4.3.1 Integer Quantization

In an integer quantization method, the floating-point values in the network are

replaced by fixed-point numbers. A fixed-point number is generally represented

by an integer value and a scale value [21]. The scale value characterizes the gap

between two consecutive quantized elements.

We assume that the value x to be quantized is non-negative (i.e., x ≥ 0)

for the simplicity of discussion. Handling negative values will be presented in

the following section. Let qn,b(x) be the b-bit integer after quantizing an n-bit

floating-point number x with the basic integer quantization. The value b, the

precision of the quantization, is the maximum bit width allowed to represent

the quantized values. Let s be the scale value. The quantization function qI for

the basic quantization is defined as follows:

qn,b(x, s) = clamp(round(x · s), 0, 2b − 1) (4.1)

where clamp ensures the quantized value is in the range that can be represented

with b bits, which is [0, 2b − 1] in this case. It is defined by

clamp(x, l, u) =

l if x < l

u if x > u

x otherwise,

85

and the round function rounds a number to the nearest integer with half-way

values rounded up:

round(x) = ⌊x + 0.5⌋.

Function db,n(y, s) dequantizes the b-bit quantized value y to an n-bit floating-

point number, i.e., it maps the b-bit quantized integer y to an n-bit floating-point

number:

db,n(y, s) =
1

s
· y (4.2)

where the value y is an integer. The quantity 1/s is the gap between two

consecutive elements in the dequantized values. This quantity is often referred

to as the step size of the corresponding quantization function.

In practice, we apply the quantization function to a tensor. Each tensor has

a common quantization scale for the values stored in it. Thus, to represent a

tensor, we can replace the original floating-point values with integers and extra

storage space for the quantization scale. A floating-point number represents the

scale.

To compute the quantization scale sx of a tensor x, it is common to base on

the maximum value of x’s elements:

sx =
2b − 1

MAX(x)
(4.3)

From Equation 4.1, the information loss stems from two sources. One is the

round function that causes the difference between the original floating-point

value and the rounded value. The other is the clamp function that cuts away

the rounded value if it exceeds 2b − 1.

Using the MAX values in Equation 4.3 prevents the output of the round

function in Equation 4.1 to be out of the bound [0, 2b − 1], and thus avoid the

clamp function from causing the information loss.

86

However, using MAX might cause a large difference between the original

floating-point value and its quantized value in Equation 4.1. In practice, a value

smaller than MAX will produce a larger quantization scale, which may improve

overall accuracy. Thus, it is crucial to find the trade-off between the quantization

space’s granularity and the information loss due to the clamp function.

4.3.2 Standard Techniques Used

There are several standard quantization techniques that we employ in this work.

Handling negative values. The quantization function 4.1 assumes that

the original floating-point value is non-negative. To handle the case where

the original values contain negative numbers, we use the range [−2b−1, 2b−1 −

1] in Equation 4.1 that is the range of numbers in b-bit two’s complement

representation. The scale computation for a tensor x becomes:

sx =
2b − 1

2MAX(|x|)
(4.4)

where MAX(|x|) is the maximum value of the absolute values of x’s elements.

Affine quantization. One can explicitly introduce the minimum value of

the tensor elements to the quantization function [89]. This method in general

yields a larger quantization scale than that in Equation 4.3. The scale for a

tensor x can be computed as:

sx =
2b − 1

MAX(x) −MIN(x)
(4.5)

where MIN(x) is the minimun value of x’s elements. However, using the

minimum value might introduce some additional computation cost [21]

Straight-through estimator. It is not efficient to calculate the exact

derivative of the quantization function since it will be zero almost everywhere.

Thus, we apply a commonly used gradient approximation method, called straight-

through estimator [94], to backpropagate the gradients.

87

4.4 Quantization Framework

In this section, we detail our methodology to quantize deep neural networks. The

goals of our approach are reducing the model size, achieving high accuracy, and

running faster in the inference phase. We assume that the original computational

precision of a given network is 32-bit floating-point (FP32).

Quantize

INT8 Layer

nputFP32 Input

INT8 Weight

INT8 InputNetwork

INT8 Output

INT8 Output

…
INT8 Weight

INT8 Weight

…

MAX recorded
at training time

INT8 Layer

Figure 4.1: The inference phase in our basic 8-bit integer (INT8) quantization framework.

4.4.1 Inference Phase

Figure 4.1 illustrates the inference phase in basic 8-bit integer (INT8) quantiza-

tion framework. In the inference phase, the model weights are presented in the

INT8 format. Only the input is required to be quantized to INT8, and the rest

of the network functions in the INT8 mode. To compute the quantization scale

for an input tensor, we use the quantization scale that was recorded from the

last iteration of the training phase.

88

nputFP32 Input

Compute MAX Quantize

INT8 Layer

INT8 Input

INT8 Output

INT8 Output

…

INT8 Layer

INT8 Weight

Network

INT8 Weight

INT8 Weight

…Q
ua
nt
ize

FP32 Weight

Network

FP32 Weight

FP32 Weight

…

Figure 4.2: The forward pass in the training phase of our basic INT8 quantization

framework.

4.4.2 Training Phase

Figure 4.2 shows how our INT8 quantization approach applies to the forward

pass in the training phase. Before an INT8 layer performing its computation, its

FP32 weights and FP32 input are quantized to INT8. The quantization scale

is based on the maximum value. However, since our framework focuses on the

inference phase’s performance, the backward pass operates in the FP32 mode.

The update is committed to the FP32 copy of the model weights.

4.4.3 Adding Noise to the Scale

To improve the quantization quality for activations, we introduce a technique to

add noise to the computation of the quantization scale in the training phase.

This will help the model generalize better to new data whose value range of the

activations are quite different from that of the training data.

Observation I. Figure 4.3 shows the histogram of the input activation values

of the first ReLU layer in the EfficientNet-B0 model. The x-axis represents the

89

0

100

200

300

400

500

N
u
m
b
er
 o
f
el
em

en
ts

Histogram bin

0

max99,9%

10080604020 89

Figure 4.3: The histogram of input activations of layer relu0 in EfficientNet-B0 with

CIFAR10.

values and the y-axis represents the frequency. It is noteworthy that 99.9% of

the activation map are smaller than the value marked by the red line. In other

words, only 0.1% of the activation maps belong to the 11% of the entire range

(between the maximum value 16.5 and the value 14.6 at 99.9%). However, it is

shown that simply removing these 0.01% activations may severely degrade the

accuracy in many cases [21]. Several activations among these 0.01% might affect

the accuracy significantly. The degree of sensitivity is different between different

layers and also between different input data.

From another view, when the quantization scale is computed based on a

smaller value than the maximum element of a tensor x, say α, the activations

within the range (α,MAX(x)] will be clamped into the value α by Equation 4.1.

This results in two effects. One is that this can be seen as adding certain noise

to these activations. From the perspective of stochastic training, adding noise

is known to help the model generalize better. The other is that computing the

quantization scale based on a value smaller than the maximum element reduces

the gap between two consecutive elements in the quantization space as explained

in Section 4.3.1. Consequently, choosing a value smaller than the maximum value

has two advantages: helping the neural network generalize better and decreasing

90

the quantization granularity. With smaller granularity, the information loss

caused by the quantization is also smaller.

Stochastic scales. Based on the observation, instead of using the maximum

value, we choose a random value that is smaller than the maximum value to

compute the quantization scale.

Let MAX and MIN be the values of the maximum and minimum elements

in a tensor x, respectively. The computation of the quantization scale for x

becomes:

MAXnew = MAX − random(0, p ∗MAX)

sx =
2b − 1

MAXnew −MIN

(4.6)

where p is a parameter that determines how far from MAX the random value

is. The function random returns a value in the range [0, p ·MAX]

Since each activation tensor might have different distribution of element

values, especially if they belong to different types of layers, we make p specific

to each activation tensor. To do so, for each activation tensor of the network,

we maintain a histogram of the tensor values at the training time. Based on the

histogram, p is chosen so that the ratio of the number of elements in the tensor

falling into the range of [MAXnew,MAX] to the total number of elements does

not exceed a predetermined threshold. This threshold is empirically determined

based on the model. We find that a simple value, such as 0.001% or 0.005%, is

sufficient for most networks. The histogram that is used to calculate MAXnew

is generated once after each epoch.

Partial quantization. Common practices [85, 21, 79] suggest that some of

the layers should be computed in high precision to avoid significant accuracy

reduction. From our experience, we do not quantize the batch-normalization

(Batchnorm), layer-normalization (Layernorm), and GeLU layers. These layers

perform transcendental operations that require high precision to maintain

91

MAX

MAXnew = MAX‐random(0, p*MAX)

nputFP32 Input

nputINT8 Input

INT8 Convolution layer

nputINT8 Output

nputFP32 Output

FP32 Batchnorm layer

nputINT8 Input

nputINT8 Output

INT8 Convolution layer

FP32 Weight

INT8 Weight

Quantize

Dequantize

nputFP32 Output

Quantize

INT8 ReLU layer

Quantize

MAX

MAXnew = MAX‐random(0, p*MAX)

Figure 4.4: The partial quantization scheme.

adequate accuracy. These layers typically occupy only a small portion of the

model size. The time taken to process them is also very small.

For such a case, we insert a dequantization (Dequantize) operation to convert

INT8 values to FP32 values before forwarding them into a layer that is not

quantized. Figure 4.4 illustrates how to perform the partial quantization. In

Figure 4.4, we do not quantize the batch normalization (denoted by FP32 Batch-

norm in Figure 4.4) layer. Thus, the INT8 output of the previous convolution

layer will be dequantized to FP32 before being fed into the next Batchnorm

layer. Then, the FP32 output of the Batchnorm layer is quantized to INT8

92

before going into the next INT8 layer, ReLU.

4.4.4 Adaptively Adjusting Precisions

Observation II. We perform a set of experiments to explore the connection

between the precision (i.e., the integer bit width) used during the training phase

and the validation accuracy. It is common to believe that the training and

validation precisions are the same. However, we show that this is not always the

case. Specifically, it depends on training stages.

As an example, we quantize EfficientNet-B0 with the CIFAR10 data set. We

quantize its convolution and ReLU layers. Their activations and weights (if they

exist) are quantized. To obtain the validation accuracy at the specific precision,

we insert the quantization modules with the desired precision before each layer

to be quantized. This process emulates the accuracy as if the model is executed

with real hardware support.

Figure 4.5(a) shows the validation accuracy when we use INT4 for validation

when the model is trained with 32-bit integers (INT32) and INT4 in the forward

pass. Note that we use FP32 in the backward pass in training. Figure 4.5(b)

shows similar experiments but we use INT8 for validation when the model is

trained with 32-bit integers (INT32) and INT4 in the forward pass. To see the

effect of different precisions used in activation quantization, all experiments in

Figure 4.5 use INT8 for weight quantization. The validation accuracy is reported

at the end of each training epoch.

Figure 4.5, the teal lines represent the case where the training precision is

equal to the validation precision, say Case E, and the orange lines represent

the case where training precision is larger than the validation, say Case L. For

both Figure 4.5(a) and Figure 4.5(b), the validation accuracy at the end of the

training for Case E is better or comparable to that of Case L. This indicates

93

0

20

40

60

80

100

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

A
cc
u
ra
cy

Epoch

32‐bit activation training

4‐bit activation training

(a) INT4 validation

0

20

40

60

80

100

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

A
cc
u
ra
cy

Epoch

32‐bit activation training
8‐bit activation training

(b) INT8 validation

Figure 4.5: Validation accuracy comparison between different precisions used to quantize

activations: (a) INT4 (4-bit integers) and (b) INT8. The weight precision is INT8 for

all experiments.

that the validation precision is important and hence, it should be used at the

training phase. This is consistent with the common knowledge.

However, if we look closer at the divergence between Case E and Case L, Case

L performs better than Case E at the early stage of the training. Specifically, for

the 4-bit validation case in Figure 4.5(a), the 32-bit version performs better from

94

epoch 1 to epoch 15. Meanwhile, for the 8-bit validation case in Figure 4.5(b),

the 32-bit version performs noticeably better from epoch 1 to epoch 19.

Our proposition for this phenomenon is that at the beginning, when the

network is not yet stable, i.e., when the update to the weights is large, higher

precision are more helpful to learn critical information from the training data. As

the training continues, the changes being made to the weights become smaller,

the network moves into a more stable state, and the higher precision is no longer

helpful. At this point, the training favors the precision that is close to the one

used in validation.

Adaptive precision scheduling. The observation suggests adjusting the

training precision to obtain better validation accuracy as the training goes by.

Here, we propose an approach to learn the training precision. Intuitively, we

we start the training with an initial precision that is significantly larger than

the validating precision (e.g., 32-bit) and we modify the precision in order to

minimize the Kull-back Leibler divergence.

For two discrete probability distributions P and Q, the Kullback-Leibler

divergence D(P ||Q) defines the relative entropy from Q to P , which is calculated

as follow:

D(P ||Q) =
∑
x∈X

P (x)log
P (x)

Q(x)
(4.7)

where X is the common probability space of P and Q. An intuitive inter-

pretation of this relative entropy can be seen as the information gain (or loss)

obtained if P would be used instead of Q.

In our framework, for each activation tensor, we maintain a parameter b to

represent the training precision for this tensor. This value will be the input to

the function 4.1. Initially, b is set to 32 (32-bit). This is a good initialization

as we observed in the previous section. To search for the optimal values of the

95

training precision distribution, we update b as follow:

b = b− β∆b

∆b =
δD(PT ||Pb)

δb

(4.8)

Here, Pb is the probability distribution of the tensor as the network is trained

using b-bit for quantization and PT is the desired probability distribution of the

tensor at the inference phase using T -bit quantization. Intuitively, we adjust

b so that the extra bits needed to encode the distribution using b bits rather

using T bits is minimized. Note that, we can also use D(Pb||DT) to characterize

the difference between two probability distributions since this function an

asymmetric.

The gradient ∆b can be approximated as follow:

δD(PT ||Pb)

δb
=

δ
∑

x∈X PT (x)logPT (x)
Pb(x)

δb

=
δ
∑

x∈X PT (x)(logPT (x) − logPb(x))

δb

(4.9)

Since logPT (x) does not depend on b, we have δlogPT (x)
δb = 0. Hence,

δD(PT ||Pb)

δb
= −

δ
∑

x∈X PT (x)logPb(x)

δb

= −
∑
x∈X

PT (x)
δlogPb(x)

δb

= −
∑
x∈X

PT (x)
1

Pb(x)ln2

δPb(x)

δb

(4.10)

Using the chain rule, we have:

δD(PT ||Pb)

δb
= −

∑
x∈X

PT (x)
1

Pb(x)ln2

δPb(x)

δx

δ(x)

δb (4.11)

Here, x is the quantized value (from a floating point value xf) using b bits.

Taking the derivatives of 4.1, we have

δ(x)

δb
=

−2b−1−1log(2)

2b−1 if xf < MAX

0 otherwise

(4.12)

96

The quantity Pb(x) can be approximated from a histogram of the values of the

tensor that Pb represents. The quantity δPb(x)
δb can be effectively approximated

by using a simple form of finite difference method:

δPb(x)

δb
≈ Pb(x + ϵ) − Pb(x)

ϵ
(4.13)

where x and x + ϵ belong to two consecutive bins of the histogram.

We approximate PT using T-bit quantization from the floating-point tensor

at training time.

4.4.5 Computation of Histogram

Both of our techniques use the histogram of the activation tensors. In this

section, we discuss how histograms are used in our framework. For each tensor

that will be quantized during the training phase, we compute its histogram

periodically after each τ iteraions. To cancel the high variation between each

iteration, the histograms are averaged over η iterations. We observe that τ and

η can take values so that the overhead due to the histogram computation is

negligible compared with the total execution time. After each τ + η iterations,

we update the parameter p and the precision b for each activation tensor.

In our experiments, we also perform sensitive analysis with various values of

τ and η.

4.5 Experiments

In this section, we detail our experiments. To ensure the comparisons are fair,

we ensure that the comparisons quantize exactly the same layers for all networks

used. We present our experimental results for two different task domains: image

processing and natural language processing. We will refer to the method of using

the maximum value of the tensor to compute the scale as the MAX method (in

97

Section 4.4) in our experiments. FP32 denotes the original 32-bit floating point

version of the network.

Table 1: The networks used in this paper.

Network Source Number of Task

parameters

Resnet18 [95] 11.25M Image classification

Resnet50 [95] 23.5M Image classification

Resnet101 [95] 42.5M Image classification

Resnet152 [95] 58.1M Image classification

EfficientNet-B0 [96] 2.9M Image classification

MobilenetV2 [97] 2.3M Image classification

Transformer [98] 213M Machine translation

LSTM [99] 154M Machine translation

BERT [100] 108M Text classification

GPT-2 [101] 124M Language modeling

Table 1 lists up the networks used in our experiments. We use multiple

versions of the Resnet architecture because they have different numbers of

parameters and expose different behavior. It is easy to analyze the effect of our

techniques on the network size.

To preserve accuracy, we do not quantize the batch-normalization, last fully-

connected, and output layers in CNNs. Also, EfficientNetB0 uses sigmoid to

compute the activation. This function requires high precision to obtain good

accuracy. Thus, we do not quantize the activation layer that uses sigmoid. For

the other networks, we do not quantize the layer-normalization and GeLU layers.

In general, the number of parameters in the layers that we do not quantize is less

than 0.1% of the total number of parameters. Thus, the proposed quantization

technique reduces the network size by approximately 1/4 (from FP32 to INT8).

We compare our techniques with severals state-of-the-art techniques. The

first is PACT [17]. PACT introduces a learnable parameter for each ReLU layer.

98

This parameter determines the quantization scale that is applied to the output

of the ReLU layer. Other layers use the MAX method to quantize their input

activations. We do not perform PACT on the networks that do not contain any

ReLU layer.

The second is Quant noise [88], denoted Quant in our experiment. In this

work, quantization is applied to a random portion of the activation map during

the training phase with a predetermined probability. For example, in the training

phase, 20% of the activation is quantized, and 80% is kept in full precision. In

the inference phase, 100% of activations are quantized. We use 20% for the

probability as recommended in their paper. This scheme currently only applies

to convolutional layers and fully-connected layers. Other layers use the MAX

method.

The other two work include Fracbits [93] and DQ [18]. In these work, the

precision is modified so that the conventional loss function is minimized and

therefore, it can be treated a regular parameter. Heuristic methods are used to

approximate the gradient of the precision.

We evaluate two of our schemes. One is to add randomness to the compu-

tation of the quantization scale. We denote this method Rand. The other is to

combine Rand with the idea of using mixed precision of integer quantization

that we present in Section 4.4.4. We denote this method Rand+mix. We use

Pytorch1.4 [14] to implement our techniques. For experiments that show high

variations due to the random initialization, we repeat each experiment 4 times

with different seeds and select the highest result. These experiments include the

networks with CIFAR10 and natural language processing tasks. We generally use

the default hyper-parameters from the Imagenet benchmark suit from Pytorch

repository for the experiments.

99

4.5.1 Image Classification Tasks

For the image classification task, we evaluate our techniques with two datasets:

CIFAR10 and ImageNet. We report the accuracy as the percentage of the

correctly predicted images to the total number of images. To show that our

techniques are generic, we show the results for two optimization algorithms:

Stochastic Gradient Descent (SGD) [102] and ADAM [103].

Ablation study. We conduct experiments on CIFAR10 with SGD optimizer

to study the effect of our proposed techniques in an independent manner on two

networks: Resnet18 and EfficientNetB0.

To demonstrate the effectiveness of our stochastic method, we compare with

two other stochastic based methods. The first method, Moving Average [89], uses

an moving average variable of the max values of each tensor. The second method,

Bernoulli [90], directly adds Bernoulli noises to the output of the quantization

function.

To demonstrate the effectiveness of our mix-precision method, we compare

with a previous work [104] that proposed to schedule the training precision

from higher to smaller value. The version ScheduleA schedules the precision

with a sequence of (32, 16, 8) as in the original paper. We additionally include

the version ScheduleB that schedules the precision that starts with 32 bit and

decreases the precision by one after each epoch until it reaches 8 bit.

Table 2 shows the experiment results. Our Rand outperforms other stochastic

based methods, especially for EfficientNetB0. On the other hand, our mix

outperforms the two versions that schedule the precision in a fixed manner.

To analyze the sensitivity of the accuracy to the choices of τ and η in the

Section 4.4.5, we perform the experiments over three different combinations

of these values and the result is shown in Table 3. The combination (τ = 100

100

Table 2: Ablation Validation Accuracy (CIFAR10 and SGD)

Network FP32 MAX Moving Average Bernoulli Rand ScheduleA ScheduleB Mix

Resnet18 94.53 94.1 94.46 93.83 94.5 94.48 94.54 94.67

EfficientNetB0 85.75 83.52 84.01 84.03 86.6 86.51 86.2 86.85

η = 4) produces the most reasonable results so we use these values for all other

experiments.

Table 3: Validation Accuracy for rand+mix for different histogram settings

(CIFAR10 and SGD)

Network τ = 200 η = 2 τ = 100 η = 4 τ = 50 η = 8

Resnet18 94.8 94.8 94.83

Resnet50 93.92 94.91 93.8

EfficientNetB0 86.02 86.85 85.13

MobileNetV2 90.39 91.02 90.52

As the update rule specified by Equation 4.8 suggests the the precision might

be a floating point value, we also compare the results when using the precision as

float and integer. In the case of integer, the precision is rounded up to the nearest

integer before going to the quantization function. Using the precision as a float

or an integer might have an impact to the complexity of the implementation

with real hardware support (in the training phase). The comparison is presented

in Table 4. As we can see, there is no significant difference between the two

settings. Therefore, we use integer precision in all other experiments.

Table 4: Validation Accuracy for rand+mix for different precision settings

(CIFAR10 and SGD)

Network Floating point precision Integer precision

Resnet18 94.8 94.77

EfficientNetB0 86.85 86.79

101

Table 5: Validation Accuracy (CIFAR10 and SGD)

Network FP32 MAX PACT Quant Fracbits DQ Rand Rand+mix

Resnet18 94.53 94.1 94.2 94.41 94.44 94.04 94.23 94.72

Resnet50 94.66 93.42 93.92 92.05 93.54 94.54 93.66 94.71

Resnet101 95.03 92.75 93.59 93.15 93.84 94.26 92.88 94.37

Resnet152 94.95 93.38 93.76 93.47 92.95 90.55 92.95 94.33

EfficientNet-B0 85.75 83.52 N/A 1 83.83 84.26 82.55 83.68 86.85

MobileNetV2 90.77 89.1 87.81 89.46 89.66 90.51 89 91.02

Table 6: Validation Accuracy (ImageNet and SGD)

Network FP32 MAX PACT Quant Fracbits DQ Rand Rand+mix

Resnet18 69.9 68.53 69.67 69.55 69.61 69.1 69.2 69.63

Resnet50 75.7 73.31 75.61 74.41 74.01 75.1 73.32 75.53

EfficientNet-B0 68.86 67.34 N/A1 66.78 67.8 66.0 66.13 68.3

MobileNetV2 65.79 60.38 60.86 63.01 62.66 63.12 60.58 63.66

CIFAR10 and SGD. As shown in Table 5, Rand slightly improves the

accuracy over the MAX method on four out of six networks. Rand and MAX

together do not perform well on Resnet50, Resnet101, Resnet152 and EfficientNet-

B0 and significantly degrade the accuracy compared with the FP32 version.

However, when combined with mixed precision (Rand+mix), the improvement

in accuracy is noticeable, especially for EfficientNet-B0 with 3.13% improvement

over the MAX method. Rand+mix obtains the best results for 5 out of 6

networks and have comparable accuracy to the FP32 version. Especially, it

achieves better accuracy than the FP32 version for MobileNetV2 and EfficientNet-

B0.

To illustrate the effectiveness of our method during the training process,

Figure 4.6 shows the validation accuracy of EfficientNet-B0 for different methods:

MAX, PACT, Quant noise and Rand+mix. The validation accuracy is reported

at the end of each training epoch. As shown in the figure, Rand+mix dominates

1PACT does not apply to these networks.

102

20

30

40

50

60

70

80

90

1 13 31 49 67 85 103 120

A
cc
u
ra
cy

Epoch

CIFAR10

Max

Random+mix precision

PACT

Quant_noise

Figure 4.6: 8-bit validation accuracy of EfficientNet-B0 on CIFAR10 with the SGD

optimizer.

the other three methods during the whole training time. In the first 30 epochs,

Rand+mix uses 32-bit precision, and MAX uses 8-bit precision for quantization

in the training phase. As a result, the validation accuracy of Rand+mix is much

better than that of MAX in this period. This justifies the effectiveness of using

high precision at the beginning of the training.

ImageNet and SGD. Table 6 shows the results on ImageNet dataset with

the SGD optimizer. We select four representative networks. As for the current

experiment data, Rand improves the accuracy over MAX for three out of four

networks except for EfficientNet-B0. This shows the potential of using stochastic

quantization scale, though using it alone does not out perform previous work

(such as PACT). The combination rand+mix achieves the best accuracy for two

out of four networks with significant improvement over the second best (around

0.6%). For Resnet18 and Resnet50, it is only slightly worse than the best, which

is PACT (up to 0.07%).

103

Table 7: Validation Accuracy (CIFAR10 and Adam)

Network FP32 MAX Rand Rand+mix

Resnet18 89.6 89.24 89.57 89.44

Resnet50 90.2 89.87 89.68 87.46

Resnet101 92.3 91.9 92.05 87.8

Resnet152 92.5 92.16 92.95 87.89

EfficientNet-B0 86.31 86.07 86.2 86.4

MobileNetV2 89.1 88.22 87.86 88.44

Table 8: Validation Accuracy (ImageNet and Adam)

Network FP32 MAX Rand Rand+mix

Resnet18 64.12 63.86 63.76 64.24

Resnet50 70.09 70.46 70.6 70.5

EfficientNet-B0 64.95 64.41 64.42 64.88

MobileNetV2 57.45 56.76 56.78 57.14

CIFAR10 and ADAM. Table 7 shows the results of our methods compared

with the FP32 and MAX using the CIFAR10 dataset using Adam optimizer.

We use the same hyper parameters as in the experiments with SGD, i.e., the

only difference is the optimizer. Except for Resnet50 and MobileNetV2, Rand

improves the accuracy over the MAX method. However, for the four resnet-

based networks, the accuracy of rand+mix significantly degrades compared with

MAX and FP32. First, when comparing Rand+mix and MAX, we observe that

the training of Rand+mix converges much slower. We believe that this stems

from two things. One is ADAM’s poor ability of generalization compared to

SGD [105]. This phenomenon is more severe for deeper architectures with a

small dataset, such as CIFAR10 [105]. The other is the fast progress at the

beginning of the training compared with SGD [105]. Thus, the ADAM optimizer

learns the training data in high precision so quickly that when the precision

is reduced, it encounters difficulties in bridging the gap between two different

quantization precisions.

104

ImageNet and ADAM. Table 8 shows the results of our methods in

ImageNet dataset compared with FP32 and MAX using the ADAM optimizer.

Rand only slightly improves the accuracy of two out of four networks over the

MAX baseline. The results are rather similar to that of Imagenet and SGD.

Rand+mix performs best for two out of four networks.

Table 9: Validation Results for NLP Tasks

Network FP32 MAX Quant noise Rand Rand+mix

Transformer 35.53 35.20 35.3 35.23 35.52

LSTM 29.7 29.61 N/A 1 29.86 29.96

BERT 85.29 85.23 85.67 85.83 85.21

GPT-2 20.1 20.82 N/A 1 19.72 21.81

4.5.2 Natural Language Processing

In natural language processing, we evaluate four networks: Transformer, LSTM,

BERT, and GPT-2. The first two networks solve the problem of machine

translation. We use the dataset IWSLT14 German-English to evaluate these

two networks and report the BLEU score. Their implementations are based

on the implementations from Facebook [106]. We evaluate BERT using MPRC

task [107], which is one of the tasks in the GLUE benchmark suite[108]. Following

the practice, we report the F1 score for this network. We evaluate GPT-2 with

the task of language modeling on the dataset wikitext-2 [109]. We report the

perplexity (PPL) for GPT-2. Since a widely validated implementation of the

pretraining (training from scratch) script is not available at the time of writing

this paper, we use the fine-tuning script from Hugging Face [110]. We start

the training with quantization using the FP32 pre-trained models. BERT and

GPT-2 are the only networks that we use the FP32 pre-trained versions.

1Currently, Quant noise does not apply to these networks.

105

As shown in Table 9, our method Rand improves the accuracy over the

MAX method for three out of four networks. The most significant result is

GPT-2 with more than 1 PPL point reduced using Rand. Overall, the best

results can be achieved by using one of the two schemes we present here. Our

results are comparable to or better than the original FP32 version.

4.6 Conclusions

In this chapter, we present two techniques for integer quantization in deep

learning. One is adding random noise into computing the quantization scale.

This added noise makes the deep learning models more robust to unseen data,

thus improves their generalization capability. The other adjusts the integer

quantization precision in the training phase. The use of multiple precisions

makes the models able to learn better from the training data and achieve better

accuracy in general. We evaluate our techniques using various models on two

different domains: image processing and natural language processing. The results

for different tasks show that our techniques are effective and applicable to a

wide range of model architectures and input data.

106

Chapter 5

Conculsion

In this thesis, we presented three main techniques for modeling, autotuning

and quantizing GPU programs. To accurately modeling the performance, we

reverse-engineered the GPU scheduling policy using micro-benchmarks. We then

use a Machine Learning method to build the performance model based on the

training data obtained from the performance counters.

We presented an efficient autotuner for selecting a good work-group size for

GPU kernels. We also used a set of micro-benchmarks to single out the most

critical performance factors on GPUs. Using these insights, we proposed our

autotuner.

Lastly, we presented a set of techniques used in integer quantization. Our

techniques improve the accuracy compared to previous work using the same preci-

sion. We evaluated our techniques using a large number of network architectures

and various learning tasks and obtained potential results.

107

Bibliography

[1] D. Luebke and M. Harris, “General-purpose computation on graphics

hardware,” in Workshop, SIGGRAPH, vol. 33, 2004.

[2] A. R. Brodtkorb, T. R. Hagen, and M. L. Saetra, “Gpu programming

strategies and trends in gpu computing,” 2012.

[3] S. Hong and H. Kim, “An integrated gpu power and performance model,”

in Proceedings of the 37th annual international symposium on Computer

architecture, pp. 280–289, 2010.

[4] W. Jia, K. A. Shaw, and M. Martonosi, “Stargazer: Automated regression-

based gpu design space exploration,” in 2012 IEEE International Sympo-

sium on Performance Analysis of Systems & Software, pp. 2–13, IEEE,

2012.

[5] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.

Hwu, “An adaptive performance modeling tool for gpu architectures,” in

Proceedings of the 15th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pp. 105–114, 2010.

108

[6] Y. Zhang and J. D. Owens, “A quantitative performance analysis model

for gpu architectures,” in 2011 IEEE 17th international symposium on

high performance computer architecture, pp. 382–393, IEEE, 2011.

[7] S. Hong and H. Kim, “An analytical model for a gpu architecture with

memory-level and thread-level parallelism awareness,” in Proceedings of the

36th annual international symposium on Computer architecture, pp. 152–

163, 2009.

[8] W. Liu, W. Muller-Wittig, and B. Schmidt, “Performance predictions for

general-purpose computation on gpus,” in 2007 International Conference

on Parallel Processing (ICPP 2007), pp. 50–50, IEEE, 2007.

[9] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. De Supinski,

and M. Schulz, “A regression-based approach to scalability prediction,” in

Proceedings of the 22nd annual international conference on Supercomputing,

pp. 368–377, 2008.

[10] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management of

multiple interacting resources in chip multiprocessors: A machine learn-

ing approach,” in 2008 41st IEEE/ACM International Symposium on

Microarchitecture, pp. 318–329, IEEE, 2008.

[11] E. Ipek, B. R. De Supinski, M. Schulz, and S. A. McKee, “An approach to

performance prediction for parallel applications,” in European Conference

on Parallel Processing, pp. 196–205, Springer, 2005.

[12] M. Fatica, “Accelerating linpack with cuda on heterogenous clusters,” in

Proceedings of 2nd Workshop on General Purpose Processing on Graphics

Processing Units, pp. 46–51, 2009.

109

[13] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu, “Adaptive

optimization for petascale heterogeneous cpu/gpu computing,” in 2010

IEEE International Conference on Cluster Computing, pp. 19–28, IEEE,

2010.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style,

high-performance deep learning library,” arXiv preprint arXiv:1912.01703,

2019.

[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for

large-scale machine learning,” in 12th {USENIX} symposium on operating

systems design and implementation ({OSDI} 16), pp. 265–283, 2016.

[16] H. Vanholder, “Efficient inference with tensorrt,” 2016.

[17] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and

K. Gopalakrishnan, “Pact: Parameterized clipping activation for quantized

neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[18] S. Uhlich, L. Mauch, F. Cardinaux, K. Yoshiyama, J. A. Garcia, S. Tiede-

mann, T. Kemp, and A. Nakamura, “Mixed precision dnns: All you need

is a good parametrization,” arXiv preprint arXiv:1905.11452, 2019.

[19] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan,

“Differentiable soft quantization: Bridging full-precision and low-bit neu-

ral networks,” in Proceedings of the IEEE International Conference on

Computer Vision, pp. 4852–4861, 2019.

110

[20] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “Wrpn: wide reduced-

precision networks,” arXiv preprint arXiv:1709.01134, 2017.

[21] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quan-

tization for deep learning inference: Principles and empirical evaluation,”

arXiv preprint arXiv:2004.09602, 2020.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter perfor-

mance analysis of a tensor processing unit,” in Proceedings of the 44th

Annual International Symposium on Computer Architecture, pp. 1–12,

2017.

[23] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models

are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[24] Top500.org, “Top500 supercomputer sites - november 2013,” 2013.

[25] NVIDIA, “Nvidia geforce gtx 580.,”

[26] NVIDIA, “Nvidia geforce gtx 680.,”

[27] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,

“Demystifying gpu microarchitecture through microbenchmarking,” in 2010

IEEE International Symposium on Performance Analysis of Systems &

Software (ISPASS), pp. 235–246, IEEE, 2010.

[28] S. Collange, D. Defour, and D. Parello, “Barra, a parallel functional gpgpu

simulator,” 2009.

111

[29] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling gpu-cpu workloads

and systems,” in Proceedings of the 3rd workshop on general-purpose

computation on graphics processing units, pp. 31–42, 2010.

[30] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on hetero-

geneous multiprocessors with adaptive mapping,” in 2009 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),

pp. 45–55, IEEE, 2009.

[31] D. Grewe and M. F. O’Boyle, “A static task partitioning approach for het-

erogeneous systems using opencl,” in International conference on compiler

construction, pp. 286–305, Springer, 2011.

[32] NVIDIA, “Nvidia fermi compute architecture white paper.,”

[33] K. O. Group, The OpenCL Specification Version 1.1. Khronos Group.

[34] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg, OpenCL program-

ming guide. Pearson Education, 2011.

[35] N. C. Team et al., “Nvidia compute ptx: Parallel thread execution,” ISA

version, vol. 1, 2009.

[36] V. Vapnik, The nature of statistical learning theory. Springer science &

business media, 2013.

[37] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”

Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[38] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

vol. 20, no. 3, pp. 273–297, 1995.

[39] NVIDIA, NVIDIA OpenCL SDK code samples.

112

[40] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,

G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised benchmark suite for

scientific and commercial throughput computing,” Center for Reliable and

High-Performance Computing, vol. 127, 2012.

[41] S. Seo, G. Jo, and J. Lee, “Performance characterization of the nas

parallel benchmarks in opencl,” in 2011 IEEE international symposium

on workload characterization (IISWC), pp. 137–148, IEEE, 2011.

[42] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,

V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous computing

(shoc) benchmark suite,” in Proceedings of the 3rd Workshop on General-

Purpose Computation on Graphics Processing Units, pp. 63–74, 2010.

[43] A. ATI, “Stream software development kit (sdk) v2. 1,” 2010.

[44] NVIDIA, “Nvidia cuda profiler.,”

[45] C. Jiang and M. Snir, “Automatic tuning matrix multiplication perfor-

mance on graphics hardware,” in Proceedings of the 14th International

Conference on Parallel Architectures and Compilation Techniques, pp. 185–

194, IEEE, 2005.

[46] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “An auto-tuning

framework for parallel multicore stencil computations,” in International

Parallel & Distributed Processing Symposium, pp. 1–12, IEEE, 2010.

[47] S. Lee and R. Eigenmann, “Openmpc: Extended openmp programming

and tuning for gpus,” in Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis, pp. 1–11, IEEE Computer Society, 2010.

113

[48] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A.

Stratton, and W.-m. W. Hwu, “Program optimization space pruning

for a multithreaded gpu,” in Proceedings of the 6th annual IEEE/ACM

International Symposium on Code Generation and Optimization, pp. 195–

204, ACM, 2008.

[49] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A gpgpu compiler for memory

optimization and parallelism management,” in ACM Sigplan Notices,

vol. 45, pp. 86–97, ACM, 2010.

[50] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-

terson, J. Shalf, and K. Yelick, “Stencil computation optimization and

auto-tuning on state-of-the-art multicore architectures,” in Proceedings of

the 2008 ACM/IEEE Conference on Supercomputing, p. 4, IEEE Press,

2008.

[51] Y. Liu, E. Z. Zhang, and X. Shen, “A cross-input adaptive framework

for gpu program optimizations,” in International Parallel & Distributed

Processing Symposium, pp. 1–10, IEEE, 2009.

[52] A. Nukada and S. Matsuoka, “Auto-tuning 3-d fft library for cuda gpus,”

in Proceedings of the Conference on High Performance Computing Net-

working, Storage and Analysis, p. 30, ACM, 2009.

[53] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe,

“Portable performance on heterogeneous architectures,” in ACM SIGPLAN

Notices, vol. 48, pp. 431–444, ACM, 2013.

[54] V. Volkov and J. W. Demmel, “Benchmarking gpus to tune dense linear

algebra,” in Proceedings of the 2008 ACM/IEEE Conference on Super-

computing, pp. 1–11, IEEE, 2008.

114

[55] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and

S. Amarasinghe, “Autotuning algorithmic choice for input sensitivity,” in

ACM SIGPLAN Notices, vol. 50, pp. 379–390, ACM, 2015.

[56] S. Muralidharan, A. Roy, M. Hall, M. Garland, and P. Rai, “Architecture-

adaptive code variant tuning,” in ACM SIGPLAN Notices, vol. 51, pp. 325–

338, ACM, 2016.

[57] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:

Self-tuning approximation for graphics engines,” in Proceedings of the

46th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 13–24, ACM, 2013.

[58] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-

M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible framework

for program autotuning,” in Proceedings of the 22nd International Confer-

ence on Parallel Architectures and Compilation Techniques, (Edmonton,

Canada), August 2014.

[59] F. NVidia, “Nvidia’s next generation cuda compute architecture,” 2009.

[60] S. Seo, J. Lee, G. Jo, and J. Lee, “Automatic opencl work-group size

selection for multicore cpus,” in Proceedings of the 22nd International

Conference on Parallel Architectures and Compilation Techniques, pp. 387–

398, IEEE Press, 2013.

[61] T. G. Rogers, D. R. Johnson, M. O’Connor, and S. W. Keckler, “A variable

warp size architecture,” in Proceedings of the 42nd Annual International

Symposium on Computer Architecture, pp. 489–501, ACM, 2015.

115

[62] Y. Zhang and J. D. Owens, “A quantitative performance analysis model

for gpu architectures,” in Proceedings of the 17th IEEE International

Symposium on High Performance Computer Architecture, pp. 382–393,

IEEE, 2011.

[63] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,

“Analyzing cuda workloads using a detailed gpu simulator,” in International

Symposium on Performance Analysis of Systems and Software, pp. 163–

174, IEEE, 2009.

[64] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor

less: optimizing thread-level parallelism for gpgpus,” in Proceedings of the

22nd International Conference on Parallel Architectures and Compilation

Techniques, pp. 157–166, IEEE Press, 2013.

[65] NVIDIA, “Cuda programming guide,” 2012.

[66] NVIDIA, “Occupancy calculator,” 2012.

[67] J.-C. Huang, J. H. Lee, H. Kim, and H.-H. S. Lee, “Gpumech: Gpu perfor-

mance modeling technique based on interval analysis,” in Proceedings of the

47th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 268–279, IEEE, 2014.

[68] NVIDIA, NVIDIA Compute Visual Profiler User Guide, May 2011.

[69] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Mosci-

broda, “Reducing memory interference in multicore systems via application-

aware memory channel partitioning,” in Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 374–385,

ACM, 2011.

116

[70] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious wave-

front scheduling,” in Proceedings of the 45th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pp. 72–83, IEEE Computer

Society, 2012.

[71] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,

N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, et al., “De-

bunking the 100x gpu vs. cpu myth: an evaluation of throughput computing

on cpu and gpu,” in ACM SIGARCH Computer Architecture News, vol. 38,

pp. 451–460, ACM, 2010.

[72] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and

W.-m. W. Hwu, “Optimization principles and application performance

evaluation of a multithreaded gpu using cuda,” in Proceedings of the

13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pp. 73–82, ACM, 2008.

[73] S. Seo, G. Jo, and J. Lee, “Performance characterization of the nas parallel

benchmarks in opencl,” in Proceedings of the 2011 IEEE Symposium on

Workload Characterization, pp. 137–148, IEEE, 2011.

[74] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,

G. D. Liu, and W.-M. Hwu, “Parboil: A revised benchmark suite for

scientific and commercial throughput computing,” Center for Reliable and

High-Performance Computing, 2012.

[75] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,

V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous computing

(shoc) benchmark suite,” in Proceedings of the 3rd Workshop on General-

117

Purpose Computation on Graphics Processing Units, pp. 63–74, ACM,

2010.

[76] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”

in Proceedings of the 2009 IEEE Symposium on Workload Characterization,

pp. 44–54, IEEE, 2009.

[77] NVIDIA, “Opencl programming guide,” 2013.

[78] S. Migacz, “8-bit inference with tensorrt,” in GPU technology conference,

vol. 2, p. 5, 2017.

[79] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training

low bitwidth convolutional neural networks with low bitwidth gradients,”

arXiv preprint arXiv:1606.06160, 2016.

[80] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[81] C. M. Bishop, “Training with noise is equivalent to tikhonov regularization,”

Neural computation, vol. 7, no. 1, pp. 108–116, 1995.

[82] G. An, “The effects of adding noise during backpropagation training on a

generalization performance,” Neural computation, vol. 8, no. 3, pp. 643–674,

1996.

[83] J. R. Hershey and P. A. Olsen, “Approximating the kullback leibler

divergence between gaussian mixture models,” in 2007 IEEE International

Conference on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 4,

pp. IV–317, IEEE, 2007.

118

[84] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training

deep neural networks with binary weights during propagations,” in Ad-

vances in neural information processing systems, pp. 3123–3131, 2015.

[85] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for

8-bit training of neural networks,” in Advances in neural information

processing systems, pp. 5145–5153, 2018.

[86] D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha, K. Baner-

jee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas, et al., “Mixed

precision training of convolutional neural networks using integer opera-

tions,” arXiv preprint arXiv:1802.00930, 2018.

[87] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep

learning with limited numerical precision,” in International Conference

on Machine Learning, pp. 1737–1746, 2015.

[88] A. Fan, P. Stock, , B. Graham, E. Grave, R. Gribonval, H. Jegou, and

A. Joulin, “Training with quantization noise for extreme model compres-

sion,” 2020.

[89] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient

inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[90] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation

and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[91] G. Prato, E. Charlaix, and M. Rezagholizadeh, “Fully quantized trans-

former for machine translation,” arXiv, pp. arXiv–1910, 2019.

[92] A. Tierno, “Quantized transformer,” tech. rep., tech. rep., Stanford Uni-

versity, Stanford, California, 2019.

119

[93] L. Yang and Q. Jin, “Fracbits: Mixed precision quantization via fractional

bit-widths,” arXiv preprint arXiv:2007.02017, vol. 1, 2020.

[94] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating

gradients through stochastic neurons for conditional computation,” arXiv

preprint arXiv:1308.3432, 2013.

[95] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016.

[96] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolu-

tional neural networks,” arXiv preprint arXiv:1905.11946, 2019.

[97] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural

networks for mobile vision applications,” 2017.

[98] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in

neural information processing systems, pp. 5998–6008, 2017.

[99] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-

proaches to attention-based neural machine translation,” arXiv preprint

arXiv:1508.04025, 2015.

[100] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv

preprint arXiv:1810.04805, 2018.

[101] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,

“Language models are unsupervised multitask learners,” 2019.

120

[102] H. Robbins and S. Monro, “A stochastic approximation method,” The

annals of mathematical statistics, pp. 400–407, 1951.

[103] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

[104] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, “Towards effective

low-bitwidth convolutional neural networks,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 7920–7928,

2018.

[105] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal

value of adaptive gradient methods in machine learning,” arXiv preprint

arXiv:1705.08292, 2017.

[106] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,

and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”

in Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

[107] W. B. Dolan and C. Brockett, “Automatically constructing a corpus of sen-

tential paraphrases,” in Proceedings of the Third International Workshop

on Paraphrasing (IWP2005), 2005.

[108] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,

“Glue: A multi-task benchmark and analysis platform for natural language

understanding,” arXiv preprint arXiv:1804.07461, 2018.

[109] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture

models,” arXiv preprint arXiv:1609.07843, 2016.

[110] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,

T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen,

121

C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,

Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural lan-

guage processing,” in Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations, 2020.

122

Acknowledgements

I would like to express my sincerest thanks to my advisor, Professor Jaejin Lee,

for his generous support during my PhD study. His patience, enthusiasm and

great understanding in the field have motivated me to perform the research

righteously. There were times when I had doubts, but he helped me clear them

away by showing me passion and trust, like a father. I am fortunate to have

Professor Jaejin Lee as my advisor and I could never thank him enough.

Besides my advisor, I would like to deeply thank the other members of my

thesis committee: Prof. Jin-soo Kim, Prof. Soo-Mook Moon, Prof. ChangHee

Jung, Prof. Hyungmin Cho. Their insightful comments and questions were

helpful to improve my thesis.

I had an opportunity to work with Professor Bernhard Egger in my early

stage of my PhD study. His wise advice and encouragement were motivational

for me to settle the first step in this thesis.

I wholeheartedly thank my colleagues at Thunder Research Group. From

the bottom of my heart, I will never forget that they have taken care of me as a

member of the family since my first day in Korea. I would not have made this

far without their enormous help. Additionally, special thanks to Wookeun Jung

for having in-depth discussion and valuable comments about my thesis.

123

I would like to thank my family for always being there for me. Most of

all, I want to thank my son, who has given me the strength to overcome any

difficulties since the day he was born. Thank you for being a great, strong and

always a strong boy. I thank my wife for her understanding and continuous

support for the family throughout the hardest time. I thank my sister for visiting

me in Korea. Lastly, I would not be able to carry on without unconditional love

from my parents. There would be no possible way to tell how much they have

sacrificed for their children and grandchildren.

124

	1 Introduction
	1.1 Introduction

	2 Performance Modeling
	2.1 Introduction
	2.2 Related
	2.3 Background
	2.3.1 OpenCL Framework
	2.3.2 GPU Architecture
	2.3.3 Support Vector

	2.4 Prerequisites to efficient profiling: An insight to warp scheduling
	2.5 Performance
	2.5.1 Linear Model
	2.5.2 Model based on Machine Learning

	2.6 Evaluation
	2.6.1 Evaluation Setup
	2.6.2 Performance estimation results.
	2.6.3 The ML-based model on different classes of kernels
	2.6.4 The performance at different saturation points.

	2.7 Conclusions

	3 Performance Auto-tuning
	3.1 Introduction
	3.2 Related
	3.3 OpenCL and GPU Architectures
	3.4 Effects of the Work-group Size
	3.4.1
	3.4.2 Global Memory Coalescing
	3.4.3 Cache Contention
	3.4.4 Amount of
	3.4.5 Work-group Scheduling and Barriers
	3.4.6 Benchmark Applications

	3.5 Auto-tuning Work-group
	3.5.1 Workload
	3.5.2 Non-coalescing Factor Tuner
	3.5.3 Concurrency Tuner
	3.5.4 Exhaustive-search Tuner

	3.6 Evaluation
	3.6.1 Overall Tuning Quality
	3.6.2 Overall Tuning Cost
	3.6.3 Effect of the Workload Tuner
	3.6.4 Effect of the Non-coalescing Factor Tuner
	3.6.5 Effect of the Concurrency Tuner

	3.7 Conclusions

	4 Quantization for Deep Learning Programs
	4.1 Introduction
	4.2 Related
	4.3 Background
	4.3.1 Integer Quantization
	4.3.2 Standard Techniques Used

	4.4 Quantization
	4.4.1 Inference Phase
	4.4.2 Training Phase
	4.4.3 Adding Noise to the Scale
	4.4.4 Adaptively Adjusting Precisions
	4.4.5 Computation of

	4.5 Experiments
	4.5.1 Image Classification Tasks
	4.5.2 Natural Language Processing

	4.6 Conclusions

	5 Conculsion
	Acknowledgements

<startpage>13
1 Introduction 1
 1.1 Introduction 1
2 Performance Modeling 4
 2.1 Introduction 4
 2.2 Related Work8
 2.3 Background 10
 2.3.1 OpenCL Framework 10
 2.3.2 GPU Architecture 11
 2.3.3 Support Vector Regression.14
 2.4 Prerequisites to efficient profiling: An insight to warp scheduling 16
 2.5 Performance Estimation.23
 2.5.1 Linear Model 24
 2.5.2 Model based on Machine Learning 25
 2.6 Evaluation 29
 2.6.1 Evaluation Setup 29
 2.6.2 Performance estimation results. 30
 2.6.3 The ML-based model on different classes of kernels 37
 2.6.4 The performance at different saturation points. 37
 2.7 Conclusions 39
3 Performance Auto-tuning 41
 3.1 Introduction 42
 3.2 Related Work45
 3.3 OpenCL and GPU Architectures 47
 3.4 Effects of the Work-group Size 49
 3.4.1 Occupancy50
 3.4.2 Global Memory Coalescing 51
 3.4.3 Cache Contention 56
 3.4.4 Amount of Work.57
 3.4.5 Work-group Scheduling and Barriers 58
 3.4.6 Benchmark Applications 59
 3.5 Auto-tuning Work-group Size.61
 3.5.1 Workload Tuner.62
 3.5.2 Non-coalescing Factor Tuner 64
 3.5.3 Concurrency Tuner 66
 3.5.4 Exhaustive-search Tuner 70
 3.6 Evaluation 70
 3.6.1 Overall Tuning Quality 70
 3.6.2 Overall Tuning Cost 75
 3.6.3 Effect of the Workload Tuner 76
 3.6.4 Effect of the Non-coalescing Factor Tuner 77
 3.6.5 Effect of the Concurrency Tuner 77
 3.7 Conclusions 79
4 Quantization for Deep Learning Programs 80
 4.1 Introduction 81
 4.2 Related Work83
 4.3 Background 85
 4.3.1 Integer Quantization 85
 4.3.2 Standard Techniques Used 87
 4.4 Quantization Framework.88
 4.4.1 Inference Phase 88
 4.4.2 Training Phase 89
 4.4.3 Adding Noise to the Scale 89
 4.4.4 Adaptively Adjusting Precisions 93
 4.4.5 Computation of Histogram.97
 4.5 Experiments 97
 4.5.1 Image Classification Tasks 100
 4.5.2 Natural Language Processing 105
 4.6 Conclusions 106
5 Conculsion 107
Acknowledgements 123
</body>

