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ABSTRACT               I 

                  

 

Abstract 

 

In this thesis, a design of high-speed, power-efficient wireline transmitter is re-

ported. An energy-efficient voltage-mode transmitter with an un-segmented output 

driver equalizes channel loss in the time-domain based on the phase delay analysis. 

By modulating the phase of the transmitting clock rather than the serialized data 

stream, the proposed transmitter significantly reduces the data-dependent jitter. The 

horizontal eye-opening is improved by compensating for the zero-crossing time vari-

ation dependent on the run-length of the transmitted data. The proposed scheme sig-

nificantly reduces the driver complexity by eliminating many driver slices that con-

sume significant signaling and switching power. The prototype chip has been fabri-

cated in a 28-nm CMOS process and occupies an active area of 0.045 mm2. The 

measured results show that the proposed transmitter achieves an energy efficiency of 

0.95 pJ/b at 22 Gb/s with an output swing of 440 mVppd at 1.0 V supply. In addition, 

peak-to-peak jitter is reduced from 34 ps to 20 ps at 22 Gb/s with the proposed phase 

delay compensation over the channel with a 15.0 dB loss. 

 

 

Keywords : voltage-mode transmitter, time-based feed-forward equalizer (TB-FFE), 

phase delay, zero-crossing time, data-dependent jitter (DDJ), quarter-rate clocking, 

forwarded-clocking, NRZ. 
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Chapter 1  

 

Introduction 

 

 

 

 

 

1.1 Motivation 

 

The growth of machine learning, big data, artificial intelligence (AI), and the In-

ternet of Things (IoT) is expected to increase the global internet data traffic to approx-

imately 400 EB/month in 2022 [1]. This has resulted in an exponential increase in the 

chip-to-chip and chip-to-module aggregate data rates. While data rates continue to 

increase exponentially, it has been observed that the energy efficiency improvement 

of wireline links has slowed down in the last five years, as shown in Fig. 1.1 [2]. If 

this trend continues, a significant portion of the system on-chip (SoC) power will be 

consumed by the wireline communication system, and only very little power will be 

available for computing. Therefore, improving the energy efficiency of wireline links 

by reducing their power consumption is required. Power consumption in a typical 
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high-speed wireline communication consists of three components: 1) driving power 

(power consumption in the output driver to drive a transmission line); 2) analog power 

(power consumption in the analog blocks); and 3) clocking power (power consump-

tion in the clock distribution network). Power consumption in a wireline link can also 

be classified into the transmitter, receiver, and clocking blocks. The transmitter power 

consists of the serializer, equalizer, and the output driver to drive a 50-Ω transmission 

line. The receiver power consists of the front-end power in the analog blocks, such as 

an amplifier, deserializer, and equalizer. The clocking power consists of the clock 

generation and clock distribution network, clock buffer, duty-correction, and phase-

correction. 

Especially, a primary reason for increased power consumption at the transmitter is 

 

Fig. 1.1 Energy efficiency of recently published wireline links. 
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the driving power for transmitting the data. Driving power consumption is a function 

of the signal swing, output driver architecture (SST or CML), and equalization archi-

tecture. The use of SST output driver architecture can help reduce the output driver’s 

power by four times compared with the CML-based output driver [3]. Low-voltage 

differential signaling (LVDS) output drivers offer better energy efficiency than SST 

drivers when a small output signal swing is required [4]. However, when LVDS driv-

ers are operated for the maximum swing that the SST driver can achieve, LVDS driv-

ers consume twice the power compared with SST driver. 

Another reason for degrading energy efficiency improvement is that consuming 

power for equalization of the channel loss is significant as the data rate increases. To 

equalize the channel loss at the transmitter, the pre-driver and the driver power are 

significant to tune the equalizer tap coefficients, and set termination resistance for 

impedance matching. 

In this thesis, we propose an energy-efficient and low-complexity equalization 

method for the transmitter. We analyze the phase delay to optimize the coefficient 

value and the number of taps for equalization. To find the tap coefficients adaptively, 

behavioral model of the adaptive equalization is proposed and simulated. 
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1.2 Thesis Organization 

 

This thesis is organized as follows. In Chapter 2, a background of the feed-forward 

equalization (FFE) is explained. The basic operations and critical blocks of the general 

FFE are defined. Especially, equalizing with amplitude-domain, phase-domain, and 

pulse-width modulation are introduced. Also, adaptive equalization for the optimum 

FFE coefficient is described. 

In Chapter 3, a transmitter with the time-based feed-forward equalization (TB-FFE) 

and its quarter-rate implementation is proposed. First, the basic concept of the zero-

crossing time and the phase delay is described and analyzed. The optimum coefficient 

and the optimum number of taps for the phase delay compensation are proposed by 

calculating the phase difference of the different frequency components. Secondly, the 

behavioral model of the adaptive TB-FFE is presented and simulated. Finally, the cir-

cuit implementation of the proposed transmitter is described. 

In Chapter 4, the measurement results of the implemented transmitter are described. 

The eye diagrams of the transmitter output are measured. With the significant channel 

loss, the eye diagram improvement of the receiver side is measured by modulating the 

phase of the transmitter output. At the end of Chapter 4, the proposed TB-FFE scheme 

is compared with the prior works of the other published transmitters. 

Finally, Chapter 5 summarizes the proposed work and concludes this thesis.  
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Chapter 2  

 

Backgrounds 

 

 

 

 

 

2.1 Overview 

 

The bandwidth-limited channel attenuates the high-frequency gain of the transmit-

ted data due to the skin effect and dielectric loss. It induces inter-symbol interference 

(ISI). The ISI may degrade the timing jitter and eye-opening of received data and 

worsen the bit error rate (BER). The FFE is usually implemented in a transmitter to 

compensate the channel loss to equivalently boost the high-frequency gain. The FFE 

on a transmitter avoids the feedback path and results in an efficient equalization. Var-

ious equalizing methods in a transmitter have been proposed. Representatively, there 

are three methods for equalization of transmitter: amplitude-domain, phase-domain, 

and pulse-width modulation. The amplitude-domain equalization has the advantages 

of an accurate FFE tap coefficient setting for channel loss compensation. However, as 
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the number of the segment driver cells is increased, the impedance matching is diffi-

cult. Also, the bandwidth is limited due to the output capacitance of the driver. The 

phase-domain and pulse-width modulation have the advantages of decoupling the 

trade-off among the impedance matching, output swing, and gain resolution of the 

FFE. 

In this chapter, before explaining the proposed TB-FFE scheme in the later chapter, 

the conventional FFE scheme and basic theory are firstly described. Also, the tradi-

tional adaptive FFE scheme at the amplitude-domain and the phase-domain is de-

scribed. 
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2.2 Feed-Forward Equalization 

 

2.2.1 Amplitude-Domain Equalization 

 

Amplitude-domain equalization is the most widely used method of equalization in 

a transmitter design. The amplitude-domain equalization provides high resolution for 

equalization coefficients, and it is simple to implement and measure [5], [6]. However, 

the amplitude-domain equalization requires significant driving and switching power 

in the driver node of the transmitter because of the high simultaneous switching noise 

[7]. Also, to equalize the data at the driver node, many slices of the driver is signifi-

cantly required, as shown in Fig. 2.1. 

Amplitude-domain equalization techniques, such as FFE, involve increasing the 

amplitude of transition bits or decreasing the amplitude of non-transition bits, as 

shown in Fig. 2.2. Amplitude-domain equalization can be incorporated in a voltage-

mode driver without sacrificing channel impedance matching by means of a high-pass 

filter. The driver output YFFE[n] of 2-tap FFE can be expressed as follows: 

where α is the tap coefficient, X[n-1] and X[n] are 1 UI delayed input bit and input 

bit, respectively. Fig. 2.3 shows how consecutive bits of pull-up data undergo ampli-

tude-domain equalization in an impedance-matched voltage-mode driver having a VSS 

termination. When data is transmitted, the voltage level of a transition bit is VOH,MAIN. 

 [ ] [ ] [ 1]FFEY n X n X n     (2.1) 
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During transmission of a non-transition bit, the voltage level is reduced by the tap 

coefficient α, producing the voltage level of VOH,POST. When this operation happens, 

some pull-up and pull-down drivers turn on or off, which creates a short current path 

from the supply to the ground [8], increasing the power consumption. 
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Fig. 2.1 Block diagram of transmitter with amplitude-domain equalization. 



Chapter 2. Backgrounds                                              9 

 

 

 

 

  

1
1-α 

-1+α
-1

V

t
0

1+α 
1

-1
-1-α

V

t
0

T 2T 3T 4T

T 2T 3T 4T

 

Fig. 2.2 Amplitude modulation of pre-emphasis and de-emphasis. 
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To overcome the drawbacks of the scheme, if only some pull-up drivers are turned 

on or off when transferring consecutive identical data ‘1’s, the output voltage VOH,POST 

of non-transition bits can be adjusted by the tap coefficient α to equalize the amplitude 

of the pull-up data, as shown in Fig. 2.3. This can have a harmful effect on channel 

impedance matching, but signal reflections are somewhat attenuated as the channel 

loss increases [9]. Besides, the short current path is removed. Overall, relaxing im-

pedance matching [10] in pull-up data equalization can balance simultaneous switch-

ing noise and signal reflections while equalizing the output amplitude and reducing 

power consumption. 
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Fig. 2.3 Transmission of a non-transition bit by the voltage-mode driver for ampli-

tude equalization with impedance matching and with relaxed impedance matching. 
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2.2.2 Phase-Domain Equalization 

 

Phase-domain equalization conventionally leads or lags the rising or falling edges 

of data, depending on the previous data pattern. 

Generally, the eye-opening of the received signal is narrowed by jitter, as shown 

in Fig. 2.4. The total jitter probability distribution function (PDF) is separated to ran-

dom jitter (RJ) from deterministic jitter (DJ) [11]. RJ can be modeled as a Gaussian 

distribution, and the distribution of DJ can be modeled as two impulse functions [12] 

and then characterized by the distance between those impulses. DJ can be classified 

into various types. DDJ is the significant component of DJ. DDJ is the deviation of 

each data zero-crossing time from a reference period due to the residual effect of pre-

vious data [13]. Due to the limited bandwidth of the transmission channel and the 

front end of a receiver, the transmission of a single bit causes a response with a long 

tail, which modifies the channel’s response to the next bit. This ISI affects both the 

0 0

1

0

1

1

Δt

ft(Δt) = fr(Δt)    fd(Δt)

0 0

1

0

1

1

Δt

ft(Δt) = fr(Δt)
 

Fig. 2.4 Eye-diagrams and jitter histograms of the receiving end without phase-do-

main equalization and with phase-domain equalization. 
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amplitude and phase of the received signal. The phase-domain equalization compen-

sates for this effect by making the time at which transmission begins depending on 

the previous data. 

The system response determines the behavior of DDJ. Therefore, an analysis of 

phase-domain equalization naturally starts with a first-order system, modeled by a 

low-pass filter (LPF) with a time constant τ (=RC). In the absence of noise, the re-

ceived data r(t) can be expressed as follows. 

 0

( ) ( )n

n

r t a g t nT


    (2.2) 

 
( ) 1

t

g t e 


   0 < t < T 
(2.3) 

where an is the data symbol and g(t) is the single-bit response determined by the 

channel. We have used the normalized signal amplitude in the equation because the 

amplitude is an irrelevant parameter that is canceled during the calculation. We define 

the phase shift coefficient αn to be the factor required to compensate for DDJ caused 

by the previous bit a-(n+1) when the current bit a0 passes through the decision threshold 

voltage of the receiver. In a first-order system, α1 can be derived from two single-bit 

responses, r1(t) and r2(t), with different widths, as shown in Fig. 2.5. These two re-

sponses, including the effect of phase-domain equalization, can be written as follows: 

 
1 1( ) ( ) ( 3 ) ( 4 )r t g t g t T g t T         (2.4) 

 
2 ( ) ( ) ( 2 ) ( 3 )r t g t g t T g t T       . (2.5) 
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Since optimum phase-domain equalization will cause the decision threshold volt-

age to occur at the same time in the signals described by (2.4) and (2.5), α1 can be 

obtained as follows: 

 2

1 ln(1 )
T T

e e  


    . (2.6) 

Similarly, we can find Sn and αn by using single-bit responses with widths of nT 

and (n+1)T 

 

1

n

n k

k

S a


  (2.7) 

 
1n n na S S    (2.8) 

The maximum eye height HEye,ph after DDJ compensation can also be found nu-

merically. The ideal maximum eye height is determined by a clock pattern. This pro-

duces the same eye-opening for any phase shift coefficients since the previous data 

pattern is always identical for any bit in a clock pattern. Fig. 2.6 shows the response 

to a clock pattern and a single bit with and without the presence of DDJ compensation. 

The response to a clock pattern can be represented as single-bit responses superim-

posed on each other at 2T intervals. The value of αeven is the sum of the phase shift 

coefficients required to compensate for the effect of the previous even bits in the clock 

pattern. The single-bit response requires the most significant phase shift, αmax. αmax is 

equal to the sum of the phase shift coefficients, S∞, and it has the same meaning as 

maximum DDJ. When phase-domain equalization is applied, the single-bit response 

with phase-domain equalization is equal to the response to a clock pattern at the deci-

sion level of the receiver side, and αmax can be derived from (2.7), as follows: 
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maxlim ln(1 )

T

n
n

S e  



    . (2.9) 

If the signal responses overlap correctly, and the previous data cannot affect cur-

rent data in response to the clock pattern, the eye height can be obtained by the varia-

tion in voltage of the response to the clock pattern between t = T- αeven and t = - αeven 

 

,

1
0

1

T

Eye emp T

e
H

e










 



. (2.10) 

Unlike the amplitude-domain equalization, the phase-domain equalization does 

not require segmentation of the output driver or additional output driver slices for 

equalization. This reduces the input and output capacitance (CIO), which improves the 

signal integrity of both the transmitter and the receiver. Because the phase-domain 

equalization does not produce the short current path at the output driver, it uses less 

power than amplitude-domain equalization and reduces simultaneous switching noise. 
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2.2.3 Pulse-Width Modulation 

 

The pulse-width modulation (PWM) performs equalization by adjusting the duty 

cycle of the transmit pulse of period T, as shown in Fig. 2.7. It equalizes channel 

response similar to the FIR filter. PWM employs time as an equalizer variable, and 

FIR uses voltage variable. In contrast to FIR filter-based de-emphasis, PWM provides 

selective frequency amplification beyond the Nyquist frequency (1/2T). It is to be 

noted that a high pass frequency response of an equalization filter over a larger fre-

quency range helps in compensating channel loss beyond Nyquist frequency and 

thereby reducing ISI. 

A PWM pulse with duty cycle D can be expressed as 

 ( ) ( ) 2 ( ) ( )pwmp t u t u t DT u t T    
 (2.11) 

where T is the bit period, 0.5 ≤ D ≤ 1 is the duty cycle of the pulse waveform, and 

u(t) is a step function. ISI caused by channel loss can be compensated by selecting D 

D

1-D

1

-1

'1' pulse

t

P(t)
D

1-D

1

-1

'0' pulse

t

P(t)

 

Fig. 2.7 Representation of bits “1” and “0” using PWM pulses with duty cycle D. 
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between 0.5 and 1. The impact of the duty cycle of the PWM pulse on ISI can be 

visualized both in the time and frequency domains. In the time domain, consider the 

normalized channel response to a PWM pulse, shown in Fig. 2.8, for three different 

duty cycle conditions. In the channel loss at Nyquist frequency 28dB, compared with 

unequalized NRZ, D = 0.5 shows significantly less ISI, thereby reducing ISI by se-

lecting D optimally. In the frequency domain shown in Fig. 2.9, the power spectral 

density of the PWM pulse can be calculated to be 

 1
( ) 1 cos( )[cos( ) 2cos((2 1) )]PWMS f fT fT D fT

f
  


   

 
(2.12) 
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Fig. 2.8 Normalized response of a channel to PWM pulses. 
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It extends beyond the Nyquist frequency in contrast to an amplitude-domain equal-

ization, which de-emphasizes frequencies only below the Nyquist frequency. Conse-

quently, PWM-based de-emphasis enables wide-range ISI suppression. 

PWM-based equalization transmits only two voltage levels. This makes it ideally 

suited for implementing de-emphasis in a voltage-mode driver. It eliminates the non-

linear dependence of driver output impedance on varying output swing present in a 

voltage-mode de-emphasis. Also, it decouples termination impedance from both the 

amount of de-emphasis and output swing. 
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Fig. 2.9 Power spectral density of PWM pulses with different duty cycles. 
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2.3 Adaptive Feed-Forward Equalization 

 

2.3.1 Amplitude-Domain Equalization 

 

The transmitter side for the adaptation logic of the equalization can be imple-

mented by using the information of the receiver side, as shown in Fig. 2.10. To adapt 

the tap coefficients of FFE, the back-channel is needed. However, in [14], by trans-

mitting a step signal through the channel, as shown in Fig. 2.11, the propagation time 

is estimated to update the digitally controlled tap coefficients. This structure does not 

need an additional back channel or a collaborating receiver. 

Initially, the transmitter is operated in propagation-time detection mode, and the 

terminations of the receiver are isolated. When the step signal is transmitted from one 

ChannelTX RX

Update

Logic

Update 

coefficients

 

Fig. 2.10 Adaptive equalization of transmitter. 
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side of the transmission line, the signal Ctrl connected to a counter goes high. The 

counter starts to count up to update the coefficients of the FFE. 

The fixed tap coefficient with the main driver and the variable tap coefficient with 

the FFE tap driver is combined at the driver node, as shown in Fig. 2.12. 

This scheme has advantages of eliminating back-channel with only detecting prop-

agation time. However, it may limit the bandwidth of the counter and the comparator 

to detect the propagation time. 
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Fig. 2.11 Propagation-time detection timing diagram. 
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2.3.2 Pulse-Width Modulation 

 

In [7], the comparison result is transmitted back to the transmitter, and the duty 

cycle of the PWM is updated to compensate for the channel loss, as shown in Fig. 

2.13. The advantage of this adaptation is the tolerance of the PVT variations. It can 

adaptively compensate for the loss of the channels with different lengths. However, it 

has a calibration circuit to return the transmitter controller to increase the hardware. 

Also, this approach will be limited to differential communications through two single-

ended channels. This approach is susceptible to mismatches between two cables, the 

channel imperfections, the offset of the transceiver. 
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Fig. 2.13 Adaptive phase-domain equalization of transmitter. 
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Fig. 2.14 The transceiver operating in the calibration mode. 



Chapter 3. Design of the Time-Based Feed-Forward Equalization of the Transmitter     26 

 

Chapter 3  

 

Design of the Time-Based Feed-For-
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ter 

 

 

 

 

 

3.1 Overview 

 

As the number of data buffers increases dramatically in high-speed I/O interfaces, 

minimizing power consumption with minimal DJ becomes a critical issue. As the data 

rate expands, the channel loss at the Nyquist frequency is increased, and thus, equal-

izing the channel loss with good energy efficiency is required. DDJ takes up the major 

DJ and shows up as varied zero-crossing times dependent on the transmitted data. To 

address this issue, the equalization at the transmit-side is conventionally provided by 
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the FFE [15]-[17]. Reducing the amplitude at the non-transition bits effectively 

achieves high frequency boosting at the Nyquist frequency. However, it increases sig-

naling and switching power because of the implementation of the segmented driver 

slices for equalization. Although the PWM-based transmitter [7] does not require the 

segmented driver slices, a narrow pulse must be generated precisely at the high data 

rate. The phase-domain equalization [18], which modulates the phase of the transmit-

ting data to compensate for the post-cursor ISI, was presented. However, the modula-

tion is performed at the output driver, which requires high bandwidth. 

This thesis proposes a voltage-mode transmitter operating up to 22 Gb/s with the 

TB-FFE that is suitable for low-power operation. By modulating the phase of the 

transmitting clock at the low-bandwidth path, DDJ is significantly reduced. It achieves 

good energy efficiency with low driver complexity. The phase delay analysis for cal-

culating the zero-crossing times of the transmitting data is presented to obtain the op-

timum number of the previous bits to examine and the optimum coefficients to com-

pensate for DDJ. The overall hardware complexity is more relaxed than the FFE, 

thereby allowing enhanced bandwidth of the equalization. The active-feedback output 

driver is implemented for driving the data in the voltage mode. 
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3.2 Basic Concept of Time-Based FFE 

 

3.2.1 Zero-Crossing Time 

 

The response of the LTI system with a finite bandwidth to a data bit is influenced 

by the transmitted data [19] since the frequency-dependent loss shifts the zero-cross-

ing time of the transmitting data, as shown in Fig. 3.1. 

Assuming the first-order system with the RC LPF channel shown in Fig. 3.2, the 

zero-crossing times are spread according to the transmitted data. If the three previous 

bits (D-4, D-3, D-2) are considered at the current low-to-high transition, the sequence 

can be grouped into eight ways with the lower and upper delay boundaries, as shown 

in Table 3.1. The zero-crossing times can be analytically obtained using the two pa-

rameters; τ (=RC) and T(=1UI). 

In this case, three previous bits (D-4, D-3, D-2) are examined, with all other earlier 

bits accounted as all 1s and -1s for the lower and upper delay boundaries. For example, 

the sequence of (D-2, D-1, D0) = (-1, -1, 1) has a more lagged zero-crossing time with 

respect to the sequence of (D-2, D-1, D0) = (1, -1, 1) since the narrow bandwidth pre-

vents the settlement to a complete binary level in the latter case. By properly adjusting 

the timing of the transmitting data with respect to the leading one, the zero-crossing 

times are equalized, thereby improving the horizontal eye-opening of the receiver side. 

Ideally, DDJ can be fully compensated by adjusting the zero-crossing time with re-
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spect to the most leading one by examining all the previous bits. However, the com-

plexity of the encoder increases to examine more previous bits. Thus, for the reduced 

encoder complexity, the previous bits to examine have to be limited. 
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Fig. 3.1 Zero-crossing time variation due to transmitted data. 
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Fig. 3.2 RC low-pass filter channel under analysis. 
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Table 3.1 Table of zero-crossing time. 
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3.2.2 Phase Delay 

 

Recently, the required bandwidth of wireline communications has been increasing 

[20], and therefore many on-chip bandwidth extension techniques have been proposed 

[21]. The importance of evaluating timing distortion of a wideband circuit has also 

been increasing to assess such bandwidth extension techniques because the timing 

accuracy is as important as the signal-to-noise ratio (SNR) [22], which is related to a 

magnitude response of a wideband circuit. A group delay has been a widely used per-

formance metric for evaluating wideband amplifiers and buffers. It is believed that the 

group delay provides information on timing distortion caused by a wideband circuit, 

which is hard to be intuitionally informed from a magnitude response. It has also been 

believed that a flat group delay response across the frequency range of interest assures 

the quality of the wideband circuit [23]. 

However, inherently, a phase delay analysis corresponds much more with the clas-

sic theory on distortionless transmission [24], than the group delay analysis. 

By definition, the group delay and the phase delay are given as 

 ( )
( )g

d

d

 
 


 

, 
(3.1) 

 ( )
( )p

 
 


 

, 

(3.2) 

where ω is an angular frequency, and ϕ(ω) is a phase response. Notably, that the group 

delay is obtained by using a differentiation operation. If there is a non-zero ‘constant’ 

term in ϕ(ω), this data is lost after the differentiation. Before we decide to discard 
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some information, we must ensure that the information is truly negligible. Let us as-

sume an imaginary transfer function, whose magnitude response is unity across all the 

frequency and phase response is proportional to the frequency. It may be referred to 

as a linear phase shifter. The phase response of this phase shifter can be expressed as 

 ( ) k C    
, (3.3) 

where k and C are non-zero, arbitrary constants. Note that the group delay of the linear 

phase shifter is k regardless of the frequency being investigated. This transfer function 

is perfect from the conventional standpoint because it has a flat magnitude and a flat 

group delay across the overall frequency range. When two combined sinusoidal sig-

nals are applied to the input of the linear phase shifter as shown in Fig. 3.3, two sinus-

oidal components experience a different phase shift. It is noteworthy that there is no 

signal distortion when the two signals experience the same delay in time. The output 

of the phase shifter can then be rewritten as 

That is, the first and the second sinusoidal signals experience time delays of 

 and , respectively, which is the phase delay. In the case of a linear 

phase shifter, (3.4) becomes 

 
1 2

1 2

( ) sin{ ( )} sin{ ( )}
C C

Out t t k t k 
 

      . (3.5) 

 

 

 
1 2

1 2

1 2

( ) ( )
( ) sin{ ( )} sin{ ( )}Out t t t

   
 

 
    . (3.4) 
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Because the time delays experienced by the sinusoid at  and  are always dif-

ferent from each other, except when C=0, the waveform at the output deviates from 

that at the input, as shown in Fig. 3.4. On the other hand, when C=0, the result shows 

the same waveform as that of the input and is just delayed by k, as shown in Fig. 3.5. 

From this observation, it is concluded that neglecting the constant term, which usually 

happens during the calculation of a group delay, results in a loss of necessary infor-

mation. 

Even when C=0, the flat group delay may fail to reflect a waveform distortion in 

some cases. Let us assume a phase shifter, whose phase response is given as a third-

order polynomial as follows, 

 3 2

3 2 1( ) k k k        , (3.6) 

where k3, k2, and k1 are arbitrary constants. Then the phase delay τp becomes 

 2

3 2 1( )p k k k      , (3.7) 

while the group delay is 

 2

3 2 1( ) 3 2g k k k      , (3.8) 

With coefficients of k3510-25/(12π2), k2510-17/(2π), and k1510-9
, the phase 

delays at 100 MHz and 200 MHz are made the same, whereas the same group delays 

are obtained with a slightly different set of coefficients of k3510-25/(36π2), 

k2510-17/(4π), and k1510-9. The waveforms at the output of this polynomial phase 

shifter are shown and compared to those at the input in Fig. 3.6. For the case of the 
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Fig. 3.4 Calculated waveforms of input and output of the linear phase shifter when 

C is non-zero. 
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Fig. 3.5 Calculated waveforms of input and output of the linear phase shifter when 

C is zero. 
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Fig. 3.6 Calculated waveforms of input and output of the 3rd-order polynomial 

phase shifter with same phase delay. 
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Fig. 3.7 Calculated waveforms of input and output of the 3rd-order polynomial 

phase shifter with same group delay. 
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same phase delay, the output waveform exactly matches with the input waveform de-

spite the group delays differ by 5 ns, as shown in Fig. 3.7. On the other hand, the 

output waveform deviates from the input waveform even with the same group delay, 

although the difference between the phase delays is less than 1 ns. In other words, the 

coefficient multiplication due to the presence of a differentiation in group delay cal-

culation causes not only the loss of the constant term but also deformation of the orig-

inal phase information. Considering Taylor’s theorem where an n-th order polynomial 

can approximate all n-times differentiable functions, it can be inferred that the failure 

of group delay analysis on this polynomial based example may be extended to very 

general cases. 
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3.2.3 Finding the Optimum Coefficient 

 

To determine the optimum number of the previous bits to examine and the opti-

mum coefficients, the phase delay analysis is employed. It is appropriate to evaluate 

more precise timing information on the LTI system. The phase delay is the amount of 

time delay at each frequency component of the signal. If the phase delays of the dif-

ferent frequencies at the particular channel environment are adjusted equally, the zero-

crossing times of the receiver side will match perfectly for any random data sequence. 

The phase response and the phase delay of the LPF channel in Fig. 3.2 can be 

expressed as 

 ( ) arctan( )RC   
 (3.9) 

and 

 arctan( )
( )p

RC
 




, 
(3.10) 

where ω is an angular frequency, ϕ(ω) is the phase response, and τp(ω) is the phase 

delay of the LPF channel. 

Fig. 3.8 and Fig. 3.9 show the phase response and the phase delay of the LPF chan-

nel, respectively. The phase delay can be numerically calculated and plotted using and 

T. The phase delay difference between the sub-harmonic frequencies can be approxi-

mated by the difference of the average zero-crossing time. 
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Fig. 3.8 Phase response of RC channel. 
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Fig. 3.9 Phase delay of RC channel. 
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Fig. 3.10 Comparison results of average zero-crossing time and phase delay with 

two previous bits. 
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Fig. 3.11 Comparison results of average zero-crossing time and phase delay with 

three previous bits. 
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By compensating for the phase delay difference from the phase delay at the 

Nyquist frequency as the reference, the difference of the average zero-crossing time 

due to the various run-lengths (consecutive identical bits) can be significantly reduced. 

The comparison results between the phase delays at the sub-harmonic frequencies and 

the average zero-crossing times of the corresponding sequence are summarized. Fig. 

3.10 shows the comparison results with two previous bits (D-3, D-2) case. Fig. 3.11 

shows the comparison results with three previous bits (D-4, D-3, D-2) case. 
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3.2.4 Comparison with Conventional FFE 

 

The calculated average zero-crossing time over the various run lengths and the 

phase delay of the corresponding sequence is quite similar. The results show that the 

time difference due to the run length is much smaller beyond the run length of four. 

Although examining more previous bits can reduce more DDJ, the encoder complex-

ity is significantly increased. Thus, we limit the number of the previous bits to exam-

ine by two (D-3, D-2) or three (D-4, D-3, D-2). 

As the analysis presented so far indicates, the equalization at the transmit-side can 

be easily realized by adjusting the timing of the transmitting data. To compare the 

performance of the TB-FFE with the conventional FFE, we can conceptually model 

the transmitter architecture as shown in Fig. 3.12 and Fig. 3.13. In the RC channel 

environment used in Fig. 3.2, the simulated eye diagrams of the receiver side are pre-

sented. In this simulation, the number of the FFE taps is limited by two and three. As 

shown in Fig. 3.14, the block diagram of behavioral modeling for TB-FFE is illus-

trated. Fig. 3.15 shows the eye diagrams of the receiver side on the RC channel with 

the FFE. Without equalization, the eye diagram is entirely closed. With the FFE, the 

output voltage is attenuated at the non-transition bits to boost high-frequency compo-

nents of the signal. Fig. 3.16 shows the eye diagrams of the receiver side on the RC 

channel with the TB-FFE. With the TB-FFE, the delay elements adjust the transmit-

ting data appropriately by the two control signals. Using the results of Fig. 3.11, the 

phase delay difference is added to compensate for the zero-crossing time. By com-

pensating the transmitting timing for the corresponding sequence, the zero-cross
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Fig. 3.12 Conceptual diagram of FFE. 

 

 

 

D[n]

Channel

Eye MeasureZ

Z

Z

-1

-1

-1

...

...

β1β2

1

β1

β2

 

Fig. 3.13 Conceptual diagram of TB-FFE. 
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ing times are converged to the reference timing spread between the lower and upper 

boundaries, resulting from the two worst-case sequences (all 1s and all -1s) preceding 

the previous bits. The horizontal eye-opening is similar in both cases. However, the 

vertical eye-opening of the TB-FFE is better than the vertical eye-opening of the FFE 

because the TB-FFE does not attenuate the signal amplitude. 

The phase delay analysis can be employed in the real channel environment. In this 

work, based on the Interference Tolerance Test Channel model provided by the IEEE 

Ethernet task force [25], the performance of the equalizer is analyzed. 
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Fig. 3.14 Block diagram of behavioral modeling for TB-FFE. 
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Fig. 3.15 Simulated eye-diagrams of receiver side on RC channel with FFE. 
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Fig. 3.16 Simulated eye-diagrams of receiver side on RC channel with TB-FFE. 

 

Table 3.2 Summary of eye-opening on RC channel. 
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Fig. 3.17 Real channel characterisitcs under simulation. 
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Fig. 3.18 Real channel phase delay under simulation. 
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The channel characteristics and phase delay are shown in Fig. 3.17 and Fig. 3.18. 

The eye diagrams of the receiver side on the real channel with the FFE and with the 

TB-FFE are presented in Fig. 3.19 and Fig. 3.20, respectively. Without equalization, 

the eye diagram is completely closed. The FFE has a slightly better performance of 

the horizontal eye-opening than the TB-FFE in this case. However, the TB-FFE has 

better vertical eye-pening than the FFE. Considering that the same number of the 

FFE taps, the difference in the eye-opening between the FFE and the TB-FFE is not 

significant. In addition, the difference in the eye-opening is not substantial compared 

to the number of the FFE taps. We focus on low-power operation with good jitter 

performance. As mentioned earlier, the encoder complexity proportionally increases 

as we investigate more previous bits. While reducing the encoder complexity, we 

can compensate DDJ sufficiently with the TB-FFE using only two previous bits (D-3, 

D-2). 
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Fig. 3.19 Simulated eye-diagrams of receiver side on real channel with FFE. 
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Fig. 3.20 Simulated eye-diagrams of receiver side on real channel with TB-FFE. 

 

Table 3.3 Summary of eye-opening on real channel. 
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3.3 Adaptive Time-Based FFE 

 

3.3.1 Overview 

 

Since the channel characteristics vary due to different lengths and materials, the 

adaptive FFE is needed. We can compensate the channel distortion with the optimum 

coefficient setting like the amplitude and PWM-based adaptive equalization. In this 

section, we model the adaptive TB-FFE with System Verilog. Firstly, the concept of 

the adaptive TB-FFE is explained. Secondly, the simulation results are shown by the 

eye diagram of the receiving end changing with the adaptation time. The first-order 

system with the RC LPF is used for the channel environment. Finally, the optimum 

number for TB-FFE taps is concluded. 
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3.3.2 Behavioral Modeling 

 

We can model the transceiver with the transmitter which transmits the phase-mod-

ulated data by the previous data pattern and the receiver which receives the data and 

measures zero-crossing time. Fig. 3.21 shows the block diagram of the adaptive TB-

FFE. In this scheme, the back channel is needed for delivering the information of the 

zero-crossing time to the transmitter. 

Firstly, the data is transmitted to the receiver with the RC LPF channel. Secondly, 

the receiver detects the rising time with the zero-crossing time. The detection result is 

sent back to the transmitter. Finally, the delay of the transmitting data is updated to 

compensate for the RC LPF channel loss. The delay for compensation is based on the 

pattern of the {D-7, D-6, D-5, D-4, D-3, D-2, D-1}. The delay for compensation is as fol-

lows. 

 0.01*( _ _ )Delay ideal time real time  
 (3.6) 

The delay line can be implemented by the digitally controlled delay line (DCDL) 

and the look-up table (LUT) for real circuit design. The delay coefficients are updated 

with the information of the zero-crossing time. The delay code of LUT modulates the 

transmitting data for zero-crossing time compensation as shown in Fig. 3.22. 
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Fig. 3.21 Block diagram of behavioral modeling for adaptive TB-FFE. 

 

 

11

11

1-1

1-1
1-1

D0D-1D-2D-3 Delay CoefficientD-4

1

-1

1

-1

-11

-11

-1-1

-1-1

1

-1

1

-1

C1

C2

C3

C4

0

 

Fig. 3.22 Look-up table for the pattern of {D-4, D-3, D-2, D-1}. 
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3.3.3 Simulation Results 

 

Using System Verilog, we can simulate the behavior of the adaptive TB-FFE. By 

measuring the eye diagram of the channel output, we can compare the eye-opening by 

the adaptation time. As the adaptation progresses, the eye diagram of the channel out-

put is improved by the time, as shown in from Fig. 3.23 to Fig. 3.30. As the adaptation 

has proceeded, the rising edge of the data is converged to the rising edge of the 

Nyquist frequency. The adaptation is settled after 2 us. The horizontal eye-opening 

improvement after settling of the coefficients is 0.39 UI, and the vertical eye-opening 

improvement after settling of the coefficients is 178 mV, as shown in Fig. 3.31. Fig. 

3.32 shows the settling behavior of the tap coefficients with 7-taps. Compared to Fig. 

3.33 from the 3-tap to 7-tap coefficient, the coefficients are converged to similar value 

under 2 ps. Thus, using 3-tap equalizer is efficient for reducing hardware. 
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Fig. 3.23 Simulated eye-diagram without equalization. 

 

1
Time [UI]

1

V
o

lt
a
g

e
 [

V
]

0
0

w/o eq.

w/eq.

 

 

Fig. 3.24 Simulated eye-diagram with equalization after 50ns. 
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Fig. 3.25 Simulated eye-diagram with equalization after 100ns. 
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Fig. 3.26 Simulated eye-diagram with equalization after 200ns. 
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Fig. 3.27 Simulated eye-diagram with equalization after 400ns. 
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Fig. 3.28 Simulated eye-diagram with equalization after 700ns. 
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Fig. 3.29 Simulated eye-diagram with equalization after 1.2us. 
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Fig. 3.30 Simulated eye-diagram with equalization after 2us. 
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Fig. 3.31 Comparison result of the eye-diagrams. 
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Fig. 3.32 Settling behavior of the tap coefficients with 7-taps of TB-FFE. 
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Fig. 3.33 Settling behavior of the tap coefficients with 3-taps of TB-FFE. 
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3.4 Transmitter Implementation 

 

3.4.1 Overview 

 

Fig. 3.34 shows the overall architecture of the proposed transmitter, which includes 

a built-in parallel 8-bit PRBS-7 generator, a phase control signal encoder, a phase 

modulator, a serializer, a single-to-differential converter, an active-feedback output 

driver, and a clock path. The 8-bit parallel data generated by the internal PRBS-7 

generator are 8-to-4 serialized, and then 4-to-1 serialized using the quarter-rate phase-

modulated clock to make a phase-modulated data. To overcome the limited bandwidth 

of the equalization, the control signal generator is implemented at the low-bandwidth 

path. A single-to-differential converter is implemented at the pre-driver node, not only 

to reduce the common-mode noise which is induced by the simultaneous switching 

noise (SSN), but also to improve the signal swing. The output driver is the active-

feedback architecture [26] which dramatically enhances the output swing without dis-

tortion of the output impedance due to varying feedback resistance. It does not need 

segmentation to keep a constant output impedance of 50- and no switching loss is 

incurred for FFE computation as shown in Fig. 3.35. 
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Fig. 3.34 Overall architecture of proposed transmitter. 
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Fig. 3.35 Output impedance of the active-feedback driver. 
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3.4.2 Phase Modulation 

 

The details of the implemented phase control signal encoder are shown in Fig. 3.36. 

Using the parallel data from the PRBS-7 generator, the two control signals are gener-

ated. The 8-bit input parallel data are retimed to examine the two previous bits. 
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Fig. 3.36 Phase control signal encoder. 
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For example, if D0[n-1] and D1[n-1] are equal, Ctrl1[2] signal goes high, which 

indicates the request for the earlier-phase clock modulation. 

In the same way, the Ctrl2 signal goes high if the current bit and the two previous 

bits are equal. The two control signals are serialized at the 8-to-4 clocked MUX and 

then go to the phase modulator. 
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Fig. 3.37 Timing diagram of phase modulation. 
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Fig. 3.37 shows the timing diagram of the phase modulation. If the current and the 

two previous bits are equal, the current transition timing is pulled forward by C1+C2. 

In other words, the current transition timing is pulled earlier if the 3-consecutive iden-

tical bits are detected. 

The optimum delays for the coefficients of C1 and C2 are determined by the phase 

delay analysis of the channel. The values of C1 and C2 are provided manually in this 

implementation with the 3-bit binary code. 
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Fig. 3.38 Phase modulator and its timing diagram. 
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As shown in Fig. 3.38, the phase modulator is implemented as the current-starved 

inverter where only NMOS transistors are used to adjust the current transition timing 

of the rising edge is pulled early. 

As the phase modulation is performed before the 4-to-1 clocked MUX, the equal-

ization overhead is significantly reduced at the output driver node. 

To assess the sensitivity of the phase modulator to the process variation, the delay 

coefficient of the phase modulator is illustrated in Fig. 3.39. The range of the delay 

coefficient is 10.6 ps at TT corner, 7.6 ps at FF corner, and 13.9 ps at SS corner, 
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Fig. 3.39 Delay coefficient of phase modulator across process variation. 
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respectively. As the target data rate is about 20 Gb/s, 1 UI is about 50 ps. It is appro-

priate to set the delay coefficient at about 0.2 UI as presented earlier. 

Fig. 3.40 shows the difference from the prior work. In the prior work, there is the 

bandwidth limitation of the encoder because encoding is performed at the driver node. 

However, in this work, the bandwidth limitation of the encoder is significantly re-

duced because the encoding is performed at the low-bandwidth clock path. 
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Fig. 3.40 Difference from the prior work. 
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3.4.3 Serializer and Clock Path 

 

The serializer consists of the two stages. The 8-to-4 clocked MUX is based on the 

flip-flop-based structure using the quarter-rate clock as shown in Fig. 3.41. The 4-to-

1 clocked MUX, and its timing diagram are shown in Fig. 3.42. A NAND-based 

quarter-rate pulse generator (PG) proposed in [27] is employed to combine the data 

before the final stage. 

This structure makes the driver simple, and the phase modulation is performed at 

the quarter rate. In addition, the timing constraint is significantly reduced due to the 

operation at the low frequency. 

In this structure, 1 UI pulse of the phase-modulated data is generated using the two 

phase-modulated quarter rate clock. As the data from 8-to-4 clocked MUX are retimed 

by the quarter-rate clock before PG, the sampling margin is significantly enhanced. 
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Fig. 3.41 8-to-4 clocked MUX. 
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To reduce glitches at PG, the delay of the inverter and the transmission gate are 

matched. DJ is minimized by trimming the delay of the data path. Fig. 3.43 shows the 

post-layout simulated eye diagrams of S2D output and driver output at 20 Gb/s. The 

output bandwidth is enhanced by sufficient buffering with minimized capacitor load. 
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Fig. 3.42 4-to-1 clocked MUX and its timing diagram. 
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Fig. 3.43 Post-layout simulated eye diagrams of S2D output and driver output at 20 

Gb/s. 
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Fig. 3.44 Circuit implementation of clock path. 
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The circuit implementation of the clock path using the differential clock is shown 

in Fig. 3.44. The differential clock passes the duty-cycle corrector (DCC) to adjust the 

duty cycle. It consists of ac-coupled capacitors and resistive feedback inverters to 

enhance the bandwidth of the clock path. I/Q generator generates the quadrature clock 

for clocking. The phase corrector corrects the errors of the quadrature clock. The 

delays of the phase corrector are adjusted by a DCDL which is implemented by 

inverters and 3-bit MOS capacitors. The DCDL code is selected manually through an 

I2C interface. 
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Chapter 4  

 

Measurement 

 

 

 

 

 

4.1 Overview 

 

The prototype chip has been fabricated in a 28-nm CMOS process and operates 

from a 1.0 V supply. The total active area of the proposed transmitter is 0.045 mm2, 

as shown in Fig. 4.1 with the chip photomicrograph. Fig. 4.2 shows the measurement 

setup. The differential input reference clock is generated from Agilent N4903A J-

BERT, and the clock is forwarded to DUT. An MSO71604C oscilloscope is used for 

measurement. The chip is directly attached to a 50-Ω impedance-matched PCB with 

wire-bonding to pads. 

To verify the performance of the TB-FFE in the real channel environment, the FR4 

trace channel is inserted with a significant loss. The measured loss profile and the 
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measured phase delay profile are plotted in Fig. 4.3 and Fig. 4.4, respectively. The 

measured loss with the FR4 trace, an SMA connector, and an SMA cable at the 

Nyquist frequency of 10 GHz and 11 GHz is 13.1 dB and 15.0 dB, respectively. 
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Fig. 4.1 Chip photomicrograph of the implemented transmitter. 
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Fig. 4.2 Measurement setup. 
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The phase delay can be obtained by measuring the channel’s phase and then divid-

ing by the angular frequency. The phase delay difference with respect to the longest 

delay at the Nyquist frequency of 10 GHz and 11 GHz is used to compensate for DDJ. 

Table 4.1 summarizes the phase delay at 20 Gb/s and 22 Gb/s. 
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Fig. 4.3 Measured loss profile of FR4 trace, SMA connector and SMA cable. 
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Fig. 4.4 Measured phase delay profile of channel. 

 

 

 

 

Table 4.1 Summary of phase delay at 20 Gb/s and 22 Gb/s. 
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Data Rate
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4.2 Eye Diagram 

 

Fig. 4.5 shows the measured eye diagram of the transmitter output at 20 Gb/s with-

out the FR4 trace channel. As shown in Fig. 4.6, the effect of the TB-FFE is indicated 

clearly in the eye diagram. By modulating the phase of the transmitting clock, the 

transmitter output is deviated by three patterns dependent on the run-length of the 

transmitted data. Fig. 4.7 and Fig. 4.8 show the measured eye diagrams of the receiver 

side on the inserted channel at 20 Gb/s, respectively. By compensating for the meas-

ured phase delay difference in each case with the calculated optimum coefficients, 

DDJ is significantly improved. Fig. 4.9 and Fig. 4.10 show the measured eye diagrams 

of the receiver side on the inserted channel at 22 Gb/s, respectively. Consequently, 

the horizontal eye-opening is improved to 0.66 UI and 0.53 UI at 20 Gb/s and 22 Gb/s, 

respectively. The signal amplitude is not attenuated after the equalization compared 

with the FFE. 

Table 4.2 summarizes the improvement of the peak-to-peak jitter with the TB-FFE. 

Peak-to-peak jitter is approximately reduced by the phase delay difference with re-

spect to the longest delay at the Nyquist frequency. The zero-crossing time variation 

at the Nyquist frequency shows up as the residue jitter due to the phase difference 

between the lower delay of (D-3, D-2, D-1) = (-1, 1, -1) and the upper delay of (D-3, D-

2, D-1) = (1, 1, -1). The random jitter arising from the noise sources in power and 

ground is another cause of the residue jitter. 
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Fig. 4.5 Measured eye-diagram of transmitter output at 20 Gb/s without modula-

tion. 
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Fig. 4.6 Measured eye-diagram of transmitter output at 20 Gb/s with modulation. 



Chapter 4. Measurement               78 

 

  

20 Gb/s (w/o TB-FFE)

20 ps

100 mV

26 ps

 

Fig. 4.7 Measured eye-diagram of receiver side on inserted channel at 20 Gb/s with-

out TB-FFE. 
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Fig. 4.8 Measured eye-diagram of receiver side on inserted channel at 20 Gb/s with 

2-tap TB-FFE. 
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Fig. 4.9 Measured eye-diagram of receiver side on inserted channel at 22 Gb/s with-

out TB-FFE. 
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Fig. 4.10 Measured eye-diagram of receiver side on inserted channel at 22 Gb/s with 

2-tap TB-FFE. 
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Table 4.2 Summary of peak-to-peak jitter improvement. 

(1,1,-1),(-1,1,-1)

20 Gb/s 22 Gb/s
Data rate

--

6 ps

Frequency
(D-3,D-2,D-1)

(1,-1,-1)

Compensation

(-1,-1,-1) 5 ps

7 ps

5 ps

11 ps 12 ps

11 ps 14 ps

Total difference

Reduction Ratio 42.3 % 41.1 %
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4.3 Power Consumption 

 

Fig. 4.11 shows the power breakdown of the entire transmitter at 22 Gb/s for the 

optimum setting in Fig. 4.10. For an output swing of 440 mVppd, the transmitter con-

sumes a total power of 20.9 mW at 22 Gb/s while the corresponding energy efficiency 

is 0.95 pJ/b. Power consumption of only the driver and the pre-driver is 8.5 mW, and 

the energy efficiency is 0.39 pJ/b. 

Table 4.3 compares this work with the other recently published equalizing trans-

mitters. The proposed transmitter achieves the best energy efficiency of 0.95 pJ/b 

among the reported voltage-mode transmitters with the channel loss equalization of 

above 10 dB. 

With the figure-of-merit (FoM2) considering the amount of the equalization [28] 

given as 

 2 ( / ) / ( )FoM pJ b dB
 (4.1) 

The proposed transmitter shows the best number as well. Fig. 4.12 illustrates the 

comparison of energy efficiency with the recently reported voltage-mode transmit-

ters across the data rate. 
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Fig. 4.11 Measured power breakdown of entire transmitter at 22 Gb/s. 
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Fig. 4.12 Comparison of energy efficiency with recently reported voltage-mode 

transmitters across the data rate. 
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Chapter 5  

 

Conclusion 

 

 

 

 

 

In this thesis, a design of high speed, a power-efficient transmitter is described. 

The proposed transmitter presents a good energy efficiency under significant channel 

loss with simple and low complexity architecture. 

The phase delay analysis is used to determine the optimum number of the previous 

bits to examine and the optimum coefficients. The phase modulation is performed at 

the low-bandwidth path. Thereby the bandwidth limitation for the equalization is sig-

nificantly relaxed with the reduced power consumption and the low driver complexity. 

The adaptive TB-FFE is modeled and behaviorally simulated under the RC LPF chan-

nel. 

The transmitter is implemented for quarter-rate clocking to alleviate the clocking 

timing issue and to operate at a high speed. Phase modulation at the clock path by 

control signal is highly reconfigurable because of not modulating the voltage level. 

A prototype chip fabricated in 28-nm CMOS technology occupies 0.045 mm2 and 
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consumes 20.9 mW at 22 Gb/s. 

The proposed transmitter achieves an energy efficiency of 0.95 pJ/b over the chan-

nel with a 15.0 dB loss at the Nyquist frequency. With 2-tap TB-FFE, DDJ is reduced 

by 41% at 22 Gb/s. The compensation amount is quite similar to the phase delay dif-

ference of the measured phase delay.
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초 록 

 

본 논문은 고속, 저전력으로 동작하는 유선 송신기의 설계에 대해 설

명하고 있다. 분리되지 않은 출력 드라이버가 있는 에너지 효율적인 전압 

모드 송신기는 위상 지연 분석을 기반으로 시간 영역에서 채널 손실을 보

상한다. 직렬화된 데이터 스트림이 아닌 송신 클럭의 위상을 변조함으로

써 제안된 송신기는 데이터 의존적 지터를 크게 줄인다. 수평 아이 오프

닝은 전송된 데이터의 실행 길이에 따라 제로 크로싱 시간 변동을 보상함

으로써 개선된다. 제안된 방식은 큰 신호 및 스위칭 전력을 소비하는 많

은 드라이버 슬라이스를 제거함으로써 드라이버 복잡성을 크게 줄인다.  

프로토타입 칩은 28 nm CMOS 공정으로 제작되었으며 0.045 mm2 의 실

제 면적을 차지한다. 측정된 결과는 제안된 송신기가 1.0 V 공급에서 440 

mVppd 의 출력 스윙으로 22 Gb/s 의 속도에서 0.95 pJ/b 의 에너지 효율을 

달성함을 보여준다. 또한 피크 대 피크 지터는 15.0 dB 손실의 채널에 대

해 제안된 위상 지연 보상을 통해 22 Gb/s 의 속도에서 34 ps 에서 20 ps 로 

감소된다. 

 

주요어 : 전압 모드 송신기, 시간 기반 피드 포워드 이퀄라이저, 위상 

지연, 제로 크로싱 시간, 데이터 종속 지터, 1/4 속도 클럭킹, 포워드 클럭

킹, NRZ 
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